1 //===- Block.cpp - MLIR Block Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Block.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/Operation.h" 12 using namespace mlir; 13 14 //===----------------------------------------------------------------------===// 15 // BlockArgument 16 //===----------------------------------------------------------------------===// 17 18 /// Returns the number of this argument. 19 unsigned BlockArgument::getArgNumber() const { 20 // Arguments are not stored in place, so we have to find it within the list. 21 auto argList = getOwner()->getArguments(); 22 return std::distance(argList.begin(), llvm::find(argList, *this)); 23 } 24 25 //===----------------------------------------------------------------------===// 26 // Block 27 //===----------------------------------------------------------------------===// 28 29 Block::~Block() { 30 assert(!verifyOpOrder() && "Expected valid operation ordering."); 31 clear(); 32 for (BlockArgument arg : arguments) 33 arg.destroy(); 34 } 35 36 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } 37 38 /// Returns the closest surrounding operation that contains this block or 39 /// nullptr if this block is unlinked. 40 Operation *Block::getParentOp() { 41 return getParent() ? getParent()->getParentOp() : nullptr; 42 } 43 44 /// Return if this block is the entry block in the parent region. 45 bool Block::isEntryBlock() { return this == &getParent()->front(); } 46 47 /// Insert this block (which must not already be in a region) right before the 48 /// specified block. 49 void Block::insertBefore(Block *block) { 50 assert(!getParent() && "already inserted into a block!"); 51 assert(block->getParent() && "cannot insert before a block without a parent"); 52 block->getParent()->getBlocks().insert(block->getIterator(), this); 53 } 54 55 /// Unlink this block from its current region and insert it right before the 56 /// specific block. 57 void Block::moveBefore(Block *block) { 58 assert(block->getParent() && "cannot insert before a block without a parent"); 59 block->getParent()->getBlocks().splice( 60 block->getIterator(), getParent()->getBlocks(), getIterator()); 61 } 62 63 /// Unlink this Block from its parent Region and delete it. 64 void Block::erase() { 65 assert(getParent() && "Block has no parent"); 66 getParent()->getBlocks().erase(this); 67 } 68 69 /// Returns 'op' if 'op' lies in this block, or otherwise finds the 70 /// ancestor operation of 'op' that lies in this block. Returns nullptr if 71 /// the latter fails. 72 Operation *Block::findAncestorOpInBlock(Operation &op) { 73 // Traverse up the operation hierarchy starting from the owner of operand to 74 // find the ancestor operation that resides in the block of 'forOp'. 75 auto *currOp = &op; 76 while (currOp->getBlock() != this) { 77 currOp = currOp->getParentOp(); 78 if (!currOp) 79 return nullptr; 80 } 81 return currOp; 82 } 83 84 /// This drops all operand uses from operations within this block, which is 85 /// an essential step in breaking cyclic dependences between references when 86 /// they are to be deleted. 87 void Block::dropAllReferences() { 88 for (Operation &i : *this) 89 i.dropAllReferences(); 90 } 91 92 void Block::dropAllDefinedValueUses() { 93 for (auto arg : getArguments()) 94 arg.dropAllUses(); 95 for (auto &op : *this) 96 op.dropAllDefinedValueUses(); 97 dropAllUses(); 98 } 99 100 /// Returns true if the ordering of the child operations is valid, false 101 /// otherwise. 102 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } 103 104 /// Invalidates the current ordering of operations. 105 void Block::invalidateOpOrder() { 106 // Validate the current ordering. 107 assert(!verifyOpOrder()); 108 parentValidOpOrderPair.setInt(false); 109 } 110 111 /// Verifies the current ordering of child operations. Returns false if the 112 /// order is valid, true otherwise. 113 bool Block::verifyOpOrder() { 114 // The order is already known to be invalid. 115 if (!isOpOrderValid()) 116 return false; 117 // The order is valid if there are less than 2 operations. 118 if (operations.empty() || std::next(operations.begin()) == operations.end()) 119 return false; 120 121 Operation *prev = nullptr; 122 for (auto &i : *this) { 123 // The previous operation must have a smaller order index than the next as 124 // it appears earlier in the list. 125 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && 126 prev->orderIndex >= i.orderIndex) 127 return true; 128 prev = &i; 129 } 130 return false; 131 } 132 133 /// Recomputes the ordering of child operations within the block. 134 void Block::recomputeOpOrder() { 135 parentValidOpOrderPair.setInt(true); 136 137 unsigned orderIndex = 0; 138 for (auto &op : *this) 139 op.orderIndex = (orderIndex += Operation::kOrderStride); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Argument list management. 144 //===----------------------------------------------------------------------===// 145 146 /// Return a range containing the types of the arguments for this block. 147 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> { 148 return ValueTypeRange<BlockArgListType>(getArguments()); 149 } 150 151 BlockArgument Block::addArgument(Type type) { 152 BlockArgument arg = BlockArgument::create(type, this); 153 arguments.push_back(arg); 154 return arg; 155 } 156 157 /// Add one argument to the argument list for each type specified in the list. 158 auto Block::addArguments(TypeRange types) -> iterator_range<args_iterator> { 159 size_t initialSize = arguments.size(); 160 arguments.reserve(initialSize + types.size()); 161 for (auto type : types) 162 addArgument(type); 163 return {arguments.data() + initialSize, arguments.data() + arguments.size()}; 164 } 165 166 BlockArgument Block::insertArgument(unsigned index, Type type) { 167 auto arg = BlockArgument::create(type, this); 168 assert(index <= arguments.size()); 169 arguments.insert(arguments.begin() + index, arg); 170 return arg; 171 } 172 173 void Block::eraseArgument(unsigned index) { 174 assert(index < arguments.size()); 175 arguments[index].destroy(); 176 arguments.erase(arguments.begin() + index); 177 } 178 179 /// Insert one value to the given position of the argument list. The existing 180 /// arguments are shifted. The block is expected not to have predecessors. 181 BlockArgument Block::insertArgument(args_iterator it, Type type) { 182 assert(llvm::empty(getPredecessors()) && 183 "cannot insert arguments to blocks with predecessors"); 184 185 // Use the args_iterator (on the BlockArgListType) to compute the insertion 186 // iterator in the underlying argument storage. 187 size_t distance = std::distance(args_begin(), it); 188 auto arg = BlockArgument::create(type, this); 189 arguments.insert(std::next(arguments.begin(), distance), arg); 190 return arg; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // Terminator management 195 //===----------------------------------------------------------------------===// 196 197 /// Get the terminator operation of this block. This function asserts that 198 /// the block has a valid terminator operation. 199 Operation *Block::getTerminator() { 200 assert(!empty() && !back().isKnownNonTerminator()); 201 return &back(); 202 } 203 204 /// Return true if this block has no predecessors. 205 bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); } 206 207 // Indexed successor access. 208 unsigned Block::getNumSuccessors() { 209 return empty() ? 0 : back().getNumSuccessors(); 210 } 211 212 Block *Block::getSuccessor(unsigned i) { 213 assert(i < getNumSuccessors()); 214 return getTerminator()->getSuccessor(i); 215 } 216 217 /// If this block has exactly one predecessor, return it. Otherwise, return 218 /// null. 219 /// 220 /// Note that multiple edges from a single block (e.g. if you have a cond 221 /// branch with the same block as the true/false destinations) is not 222 /// considered to be a single predecessor. 223 Block *Block::getSinglePredecessor() { 224 auto it = pred_begin(); 225 if (it == pred_end()) 226 return nullptr; 227 auto *firstPred = *it; 228 ++it; 229 return it == pred_end() ? firstPred : nullptr; 230 } 231 232 /// If this block has a unique predecessor, i.e., all incoming edges originate 233 /// from one block, return it. Otherwise, return null. 234 Block *Block::getUniquePredecessor() { 235 auto it = pred_begin(), e = pred_end(); 236 if (it == e) 237 return nullptr; 238 239 // Check for any conflicting predecessors. 240 auto *firstPred = *it; 241 for (++it; it != e; ++it) 242 if (*it != firstPred) 243 return nullptr; 244 return firstPred; 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Other 249 //===----------------------------------------------------------------------===// 250 251 /// Split the block into two blocks before the specified operation or 252 /// iterator. 253 /// 254 /// Note that all operations BEFORE the specified iterator stay as part of 255 /// the original basic block, and the rest of the operations in the original 256 /// block are moved to the new block, including the old terminator. The 257 /// original block is left without a terminator. 258 /// 259 /// The newly formed Block is returned, and the specified iterator is 260 /// invalidated. 261 Block *Block::splitBlock(iterator splitBefore) { 262 // Start by creating a new basic block, and insert it immediate after this 263 // one in the containing region. 264 auto newBB = new Block(); 265 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); 266 267 // Move all of the operations from the split point to the end of the region 268 // into the new block. 269 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, 270 end()); 271 return newBB; 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Predecessors 276 //===----------------------------------------------------------------------===// 277 278 Block *PredecessorIterator::unwrap(BlockOperand &value) { 279 return value.getOwner()->getBlock(); 280 } 281 282 /// Get the successor number in the predecessor terminator. 283 unsigned PredecessorIterator::getSuccessorIndex() const { 284 return I->getOperandNumber(); 285 } 286 287 //===----------------------------------------------------------------------===// 288 // Successors 289 //===----------------------------------------------------------------------===// 290 291 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange(nullptr, 0) { 292 if (Operation *term = block->getTerminator()) 293 if ((count = term->getNumSuccessors())) 294 base = term->getBlockOperands().data(); 295 } 296 297 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange(nullptr, 0) { 298 if ((count = term->getNumSuccessors())) 299 base = term->getBlockOperands().data(); 300 } 301