xref: /llvm-project-15.0.7/mlir/lib/IR/Block.cpp (revision 54fa9ecd)
1 //===- Block.cpp - MLIR Block Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Block.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/Operation.h"
12 using namespace mlir;
13 
14 //===----------------------------------------------------------------------===//
15 // BlockArgument
16 //===----------------------------------------------------------------------===//
17 
18 /// Returns the number of this argument.
19 unsigned BlockArgument::getArgNumber() const {
20   // Arguments are not stored in place, so we have to find it within the list.
21   auto argList = getOwner()->getArguments();
22   return std::distance(argList.begin(), llvm::find(argList, *this));
23 }
24 
25 //===----------------------------------------------------------------------===//
26 // Block
27 //===----------------------------------------------------------------------===//
28 
29 Block::~Block() {
30   assert(!verifyOpOrder() && "Expected valid operation ordering.");
31   clear();
32   for (BlockArgument arg : arguments)
33     arg.destroy();
34 }
35 
36 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
37 
38 /// Returns the closest surrounding operation that contains this block or
39 /// nullptr if this block is unlinked.
40 Operation *Block::getParentOp() {
41   return getParent() ? getParent()->getParentOp() : nullptr;
42 }
43 
44 /// Return if this block is the entry block in the parent region.
45 bool Block::isEntryBlock() { return this == &getParent()->front(); }
46 
47 /// Insert this block (which must not already be in a region) right before the
48 /// specified block.
49 void Block::insertBefore(Block *block) {
50   assert(!getParent() && "already inserted into a block!");
51   assert(block->getParent() && "cannot insert before a block without a parent");
52   block->getParent()->getBlocks().insert(block->getIterator(), this);
53 }
54 
55 /// Unlink this block from its current region and insert it right before the
56 /// specific block.
57 void Block::moveBefore(Block *block) {
58   assert(block->getParent() && "cannot insert before a block without a parent");
59   block->getParent()->getBlocks().splice(
60       block->getIterator(), getParent()->getBlocks(), getIterator());
61 }
62 
63 /// Unlink this Block from its parent Region and delete it.
64 void Block::erase() {
65   assert(getParent() && "Block has no parent");
66   getParent()->getBlocks().erase(this);
67 }
68 
69 /// Returns 'op' if 'op' lies in this block, or otherwise finds the
70 /// ancestor operation of 'op' that lies in this block. Returns nullptr if
71 /// the latter fails.
72 Operation *Block::findAncestorOpInBlock(Operation &op) {
73   // Traverse up the operation hierarchy starting from the owner of operand to
74   // find the ancestor operation that resides in the block of 'forOp'.
75   auto *currOp = &op;
76   while (currOp->getBlock() != this) {
77     currOp = currOp->getParentOp();
78     if (!currOp)
79       return nullptr;
80   }
81   return currOp;
82 }
83 
84 /// This drops all operand uses from operations within this block, which is
85 /// an essential step in breaking cyclic dependences between references when
86 /// they are to be deleted.
87 void Block::dropAllReferences() {
88   for (Operation &i : *this)
89     i.dropAllReferences();
90 }
91 
92 void Block::dropAllDefinedValueUses() {
93   for (auto arg : getArguments())
94     arg.dropAllUses();
95   for (auto &op : *this)
96     op.dropAllDefinedValueUses();
97   dropAllUses();
98 }
99 
100 /// Returns true if the ordering of the child operations is valid, false
101 /// otherwise.
102 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
103 
104 /// Invalidates the current ordering of operations.
105 void Block::invalidateOpOrder() {
106   // Validate the current ordering.
107   assert(!verifyOpOrder());
108   parentValidOpOrderPair.setInt(false);
109 }
110 
111 /// Verifies the current ordering of child operations. Returns false if the
112 /// order is valid, true otherwise.
113 bool Block::verifyOpOrder() {
114   // The order is already known to be invalid.
115   if (!isOpOrderValid())
116     return false;
117   // The order is valid if there are less than 2 operations.
118   if (operations.empty() || std::next(operations.begin()) == operations.end())
119     return false;
120 
121   Operation *prev = nullptr;
122   for (auto &i : *this) {
123     // The previous operation must have a smaller order index than the next as
124     // it appears earlier in the list.
125     if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
126         prev->orderIndex >= i.orderIndex)
127       return true;
128     prev = &i;
129   }
130   return false;
131 }
132 
133 /// Recomputes the ordering of child operations within the block.
134 void Block::recomputeOpOrder() {
135   parentValidOpOrderPair.setInt(true);
136 
137   unsigned orderIndex = 0;
138   for (auto &op : *this)
139     op.orderIndex = (orderIndex += Operation::kOrderStride);
140 }
141 
142 //===----------------------------------------------------------------------===//
143 // Argument list management.
144 //===----------------------------------------------------------------------===//
145 
146 BlockArgument Block::addArgument(Type type) {
147   BlockArgument arg = BlockArgument::create(type, this);
148   arguments.push_back(arg);
149   return arg;
150 }
151 
152 /// Add one argument to the argument list for each type specified in the list.
153 auto Block::addArguments(ArrayRef<Type> types)
154     -> iterator_range<args_iterator> {
155   arguments.reserve(arguments.size() + types.size());
156   auto initialSize = arguments.size();
157   for (auto type : types) {
158     addArgument(type);
159   }
160   return {arguments.data() + initialSize, arguments.data() + arguments.size()};
161 }
162 
163 BlockArgument Block::insertArgument(unsigned index, Type type) {
164   auto arg = BlockArgument::create(type, this);
165   assert(index <= arguments.size());
166   arguments.insert(arguments.begin() + index, arg);
167   return arg;
168 }
169 
170 void Block::eraseArgument(unsigned index, bool updatePredTerms) {
171   assert(index < arguments.size());
172 
173   // If requested, update predecessors. We do this first since this block might
174   // be a predecessor of itself and use this block argument as a successor
175   // operand.
176   if (updatePredTerms) {
177     // Erase this argument from each of the predecessor's terminator.
178     for (auto predIt = pred_begin(), predE = pred_end(); predIt != predE;
179          ++predIt) {
180       auto *predTerminator = (*predIt)->getTerminator();
181       predTerminator->eraseSuccessorOperand(predIt.getSuccessorIndex(), index);
182     }
183   }
184 
185   // Delete the argument.
186   arguments[index].destroy();
187   arguments.erase(arguments.begin() + index);
188 }
189 
190 /// Insert one value to the given position of the argument list. The existing
191 /// arguments are shifted. The block is expected not to have predecessors.
192 BlockArgument Block::insertArgument(args_iterator it, Type type) {
193   assert(llvm::empty(getPredecessors()) &&
194          "cannot insert arguments to blocks with predecessors");
195 
196   // Use the args_iterator (on the BlockArgListType) to compute the insertion
197   // iterator in the underlying argument storage.
198   size_t distance = std::distance(args_begin(), it);
199   auto arg = BlockArgument::create(type, this);
200   arguments.insert(std::next(arguments.begin(), distance), arg);
201   return arg;
202 }
203 
204 //===----------------------------------------------------------------------===//
205 // Terminator management
206 //===----------------------------------------------------------------------===//
207 
208 /// Get the terminator operation of this block. This function asserts that
209 /// the block has a valid terminator operation.
210 Operation *Block::getTerminator() {
211   assert(!empty() && !back().isKnownNonTerminator());
212   return &back();
213 }
214 
215 /// Return true if this block has no predecessors.
216 bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); }
217 
218 // Indexed successor access.
219 unsigned Block::getNumSuccessors() {
220   return empty() ? 0 : back().getNumSuccessors();
221 }
222 
223 Block *Block::getSuccessor(unsigned i) {
224   assert(i < getNumSuccessors());
225   return getTerminator()->getSuccessor(i);
226 }
227 
228 /// If this block has exactly one predecessor, return it.  Otherwise, return
229 /// null.
230 ///
231 /// Note that multiple edges from a single block (e.g. if you have a cond
232 /// branch with the same block as the true/false destinations) is not
233 /// considered to be a single predecessor.
234 Block *Block::getSinglePredecessor() {
235   auto it = pred_begin();
236   if (it == pred_end())
237     return nullptr;
238   auto *firstPred = *it;
239   ++it;
240   return it == pred_end() ? firstPred : nullptr;
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // Other
245 //===----------------------------------------------------------------------===//
246 
247 /// Split the block into two blocks before the specified operation or
248 /// iterator.
249 ///
250 /// Note that all operations BEFORE the specified iterator stay as part of
251 /// the original basic block, and the rest of the operations in the original
252 /// block are moved to the new block, including the old terminator.  The
253 /// original block is left without a terminator.
254 ///
255 /// The newly formed Block is returned, and the specified iterator is
256 /// invalidated.
257 Block *Block::splitBlock(iterator splitBefore) {
258   // Start by creating a new basic block, and insert it immediate after this
259   // one in the containing region.
260   auto newBB = new Block();
261   getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
262 
263   // Move all of the operations from the split point to the end of the region
264   // into the new block.
265   newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
266                                 end());
267   return newBB;
268 }
269 
270 //===----------------------------------------------------------------------===//
271 // Predecessors
272 //===----------------------------------------------------------------------===//
273 
274 Block *PredecessorIterator::unwrap(BlockOperand &value) {
275   return value.getOwner()->getBlock();
276 }
277 
278 /// Get the successor number in the predecessor terminator.
279 unsigned PredecessorIterator::getSuccessorIndex() const {
280   return I->getOperandNumber();
281 }
282 
283 //===----------------------------------------------------------------------===//
284 // Successors
285 //===----------------------------------------------------------------------===//
286 
287 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange(nullptr, 0) {
288   if (Operation *term = block->getTerminator())
289     if ((count = term->getNumSuccessors()))
290       base = term->getBlockOperands().data();
291 }
292 
293 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange(nullptr, 0) {
294   if ((count = term->getNumSuccessors()))
295     base = term->getBlockOperands().data();
296 }
297