1 //===- Block.cpp - MLIR Block Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Block.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/Operation.h" 12 using namespace mlir; 13 14 //===----------------------------------------------------------------------===// 15 // BlockArgument 16 //===----------------------------------------------------------------------===// 17 18 /// Returns the number of this argument. 19 unsigned BlockArgument::getArgNumber() const { 20 // Arguments are not stored in place, so we have to find it within the list. 21 auto argList = getOwner()->getArguments(); 22 return std::distance(argList.begin(), llvm::find(argList, *this)); 23 } 24 25 //===----------------------------------------------------------------------===// 26 // Block 27 //===----------------------------------------------------------------------===// 28 29 Block::~Block() { 30 assert(!verifyOpOrder() && "Expected valid operation ordering."); 31 clear(); 32 for (BlockArgument arg : arguments) 33 arg.destroy(); 34 } 35 36 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } 37 38 /// Returns the closest surrounding operation that contains this block or 39 /// nullptr if this block is unlinked. 40 Operation *Block::getParentOp() { 41 return getParent() ? getParent()->getParentOp() : nullptr; 42 } 43 44 /// Return if this block is the entry block in the parent region. 45 bool Block::isEntryBlock() { return this == &getParent()->front(); } 46 47 /// Insert this block (which must not already be in a region) right before the 48 /// specified block. 49 void Block::insertBefore(Block *block) { 50 assert(!getParent() && "already inserted into a block!"); 51 assert(block->getParent() && "cannot insert before a block without a parent"); 52 block->getParent()->getBlocks().insert(block->getIterator(), this); 53 } 54 55 /// Unlink this block from its current region and insert it right before the 56 /// specific block. 57 void Block::moveBefore(Block *block) { 58 assert(block->getParent() && "cannot insert before a block without a parent"); 59 block->getParent()->getBlocks().splice( 60 block->getIterator(), getParent()->getBlocks(), getIterator()); 61 } 62 63 /// Unlink this Block from its parent Region and delete it. 64 void Block::erase() { 65 assert(getParent() && "Block has no parent"); 66 getParent()->getBlocks().erase(this); 67 } 68 69 /// Returns 'op' if 'op' lies in this block, or otherwise finds the 70 /// ancestor operation of 'op' that lies in this block. Returns nullptr if 71 /// the latter fails. 72 Operation *Block::findAncestorOpInBlock(Operation &op) { 73 // Traverse up the operation hierarchy starting from the owner of operand to 74 // find the ancestor operation that resides in the block of 'forOp'. 75 auto *currOp = &op; 76 while (currOp->getBlock() != this) { 77 currOp = currOp->getParentOp(); 78 if (!currOp) 79 return nullptr; 80 } 81 return currOp; 82 } 83 84 /// This drops all operand uses from operations within this block, which is 85 /// an essential step in breaking cyclic dependences between references when 86 /// they are to be deleted. 87 void Block::dropAllReferences() { 88 for (Operation &i : *this) 89 i.dropAllReferences(); 90 } 91 92 void Block::dropAllDefinedValueUses() { 93 for (auto arg : getArguments()) 94 arg.dropAllUses(); 95 for (auto &op : *this) 96 op.dropAllDefinedValueUses(); 97 dropAllUses(); 98 } 99 100 /// Returns true if the ordering of the child operations is valid, false 101 /// otherwise. 102 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } 103 104 /// Invalidates the current ordering of operations. 105 void Block::invalidateOpOrder() { 106 // Validate the current ordering. 107 assert(!verifyOpOrder()); 108 parentValidOpOrderPair.setInt(false); 109 } 110 111 /// Verifies the current ordering of child operations. Returns false if the 112 /// order is valid, true otherwise. 113 bool Block::verifyOpOrder() { 114 // The order is already known to be invalid. 115 if (!isOpOrderValid()) 116 return false; 117 // The order is valid if there are less than 2 operations. 118 if (operations.empty() || std::next(operations.begin()) == operations.end()) 119 return false; 120 121 Operation *prev = nullptr; 122 for (auto &i : *this) { 123 // The previous operation must have a smaller order index than the next as 124 // it appears earlier in the list. 125 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && 126 prev->orderIndex >= i.orderIndex) 127 return true; 128 prev = &i; 129 } 130 return false; 131 } 132 133 /// Recomputes the ordering of child operations within the block. 134 void Block::recomputeOpOrder() { 135 parentValidOpOrderPair.setInt(true); 136 137 unsigned orderIndex = 0; 138 for (auto &op : *this) 139 op.orderIndex = (orderIndex += Operation::kOrderStride); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Argument list management. 144 //===----------------------------------------------------------------------===// 145 146 BlockArgument Block::addArgument(Type type) { 147 BlockArgument arg = BlockArgument::create(type, this); 148 arguments.push_back(arg); 149 return arg; 150 } 151 152 /// Add one argument to the argument list for each type specified in the list. 153 auto Block::addArguments(ArrayRef<Type> types) 154 -> iterator_range<args_iterator> { 155 arguments.reserve(arguments.size() + types.size()); 156 auto initialSize = arguments.size(); 157 for (auto type : types) { 158 addArgument(type); 159 } 160 return {arguments.data() + initialSize, arguments.data() + arguments.size()}; 161 } 162 163 BlockArgument Block::insertArgument(unsigned index, Type type) { 164 auto arg = BlockArgument::create(type, this); 165 assert(index <= arguments.size()); 166 arguments.insert(arguments.begin() + index, arg); 167 return arg; 168 } 169 170 void Block::eraseArgument(unsigned index, bool updatePredTerms) { 171 assert(index < arguments.size()); 172 173 // If requested, update predecessors. We do this first since this block might 174 // be a predecessor of itself and use this block argument as a successor 175 // operand. 176 if (updatePredTerms) { 177 // Erase this argument from each of the predecessor's terminator. 178 for (auto predIt = pred_begin(), predE = pred_end(); predIt != predE; 179 ++predIt) { 180 auto *predTerminator = (*predIt)->getTerminator(); 181 predTerminator->eraseSuccessorOperand(predIt.getSuccessorIndex(), index); 182 } 183 } 184 185 // Delete the argument. 186 arguments[index].destroy(); 187 arguments.erase(arguments.begin() + index); 188 } 189 190 /// Insert one value to the given position of the argument list. The existing 191 /// arguments are shifted. The block is expected not to have predecessors. 192 BlockArgument Block::insertArgument(args_iterator it, Type type) { 193 assert(llvm::empty(getPredecessors()) && 194 "cannot insert arguments to blocks with predecessors"); 195 196 // Use the args_iterator (on the BlockArgListType) to compute the insertion 197 // iterator in the underlying argument storage. 198 size_t distance = std::distance(args_begin(), it); 199 auto arg = BlockArgument::create(type, this); 200 arguments.insert(std::next(arguments.begin(), distance), arg); 201 return arg; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // Terminator management 206 //===----------------------------------------------------------------------===// 207 208 /// Get the terminator operation of this block. This function asserts that 209 /// the block has a valid terminator operation. 210 Operation *Block::getTerminator() { 211 assert(!empty() && !back().isKnownNonTerminator()); 212 return &back(); 213 } 214 215 /// Return true if this block has no predecessors. 216 bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); } 217 218 // Indexed successor access. 219 unsigned Block::getNumSuccessors() { 220 return empty() ? 0 : back().getNumSuccessors(); 221 } 222 223 Block *Block::getSuccessor(unsigned i) { 224 assert(i < getNumSuccessors()); 225 return getTerminator()->getSuccessor(i); 226 } 227 228 /// If this block has exactly one predecessor, return it. Otherwise, return 229 /// null. 230 /// 231 /// Note that multiple edges from a single block (e.g. if you have a cond 232 /// branch with the same block as the true/false destinations) is not 233 /// considered to be a single predecessor. 234 Block *Block::getSinglePredecessor() { 235 auto it = pred_begin(); 236 if (it == pred_end()) 237 return nullptr; 238 auto *firstPred = *it; 239 ++it; 240 return it == pred_end() ? firstPred : nullptr; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Other 245 //===----------------------------------------------------------------------===// 246 247 /// Split the block into two blocks before the specified operation or 248 /// iterator. 249 /// 250 /// Note that all operations BEFORE the specified iterator stay as part of 251 /// the original basic block, and the rest of the operations in the original 252 /// block are moved to the new block, including the old terminator. The 253 /// original block is left without a terminator. 254 /// 255 /// The newly formed Block is returned, and the specified iterator is 256 /// invalidated. 257 Block *Block::splitBlock(iterator splitBefore) { 258 // Start by creating a new basic block, and insert it immediate after this 259 // one in the containing region. 260 auto newBB = new Block(); 261 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); 262 263 // Move all of the operations from the split point to the end of the region 264 // into the new block. 265 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, 266 end()); 267 return newBB; 268 } 269 270 //===----------------------------------------------------------------------===// 271 // Predecessors 272 //===----------------------------------------------------------------------===// 273 274 Block *PredecessorIterator::unwrap(BlockOperand &value) { 275 return value.getOwner()->getBlock(); 276 } 277 278 /// Get the successor number in the predecessor terminator. 279 unsigned PredecessorIterator::getSuccessorIndex() const { 280 return I->getOperandNumber(); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // Successors 285 //===----------------------------------------------------------------------===// 286 287 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange(nullptr, 0) { 288 if (Operation *term = block->getTerminator()) 289 if ((count = term->getNumSuccessors())) 290 base = term->getBlockOperands().data(); 291 } 292 293 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange(nullptr, 0) { 294 if ((count = term->getNumSuccessors())) 295 base = term->getBlockOperands().data(); 296 } 297