xref: /llvm-project-15.0.7/mlir/lib/IR/Block.cpp (revision 2ff533cb)
1 //===- Block.cpp - MLIR Block Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Block.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/Operation.h"
12 #include "llvm/ADT/BitVector.h"
13 using namespace mlir;
14 
15 //===----------------------------------------------------------------------===//
16 // Block
17 //===----------------------------------------------------------------------===//
18 
19 Block::~Block() {
20   assert(!verifyOpOrder() && "Expected valid operation ordering.");
21   clear();
22   for (BlockArgument arg : arguments)
23     arg.destroy();
24 }
25 
26 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
27 
28 /// Returns the closest surrounding operation that contains this block or
29 /// nullptr if this block is unlinked.
30 Operation *Block::getParentOp() {
31   return getParent() ? getParent()->getParentOp() : nullptr;
32 }
33 
34 /// Return if this block is the entry block in the parent region.
35 bool Block::isEntryBlock() { return this == &getParent()->front(); }
36 
37 /// Insert this block (which must not already be in a region) right before the
38 /// specified block.
39 void Block::insertBefore(Block *block) {
40   assert(!getParent() && "already inserted into a block!");
41   assert(block->getParent() && "cannot insert before a block without a parent");
42   block->getParent()->getBlocks().insert(block->getIterator(), this);
43 }
44 
45 /// Unlink this block from its current region and insert it right before the
46 /// specific block.
47 void Block::moveBefore(Block *block) {
48   assert(block->getParent() && "cannot insert before a block without a parent");
49   block->getParent()->getBlocks().splice(
50       block->getIterator(), getParent()->getBlocks(), getIterator());
51 }
52 
53 /// Unlink this Block from its parent Region and delete it.
54 void Block::erase() {
55   assert(getParent() && "Block has no parent");
56   getParent()->getBlocks().erase(this);
57 }
58 
59 /// Returns 'op' if 'op' lies in this block, or otherwise finds the
60 /// ancestor operation of 'op' that lies in this block. Returns nullptr if
61 /// the latter fails.
62 Operation *Block::findAncestorOpInBlock(Operation &op) {
63   // Traverse up the operation hierarchy starting from the owner of operand to
64   // find the ancestor operation that resides in the block of 'forOp'.
65   auto *currOp = &op;
66   while (currOp->getBlock() != this) {
67     currOp = currOp->getParentOp();
68     if (!currOp)
69       return nullptr;
70   }
71   return currOp;
72 }
73 
74 /// This drops all operand uses from operations within this block, which is
75 /// an essential step in breaking cyclic dependences between references when
76 /// they are to be deleted.
77 void Block::dropAllReferences() {
78   for (Operation &i : *this)
79     i.dropAllReferences();
80 }
81 
82 void Block::dropAllDefinedValueUses() {
83   for (auto arg : getArguments())
84     arg.dropAllUses();
85   for (auto &op : *this)
86     op.dropAllDefinedValueUses();
87   dropAllUses();
88 }
89 
90 /// Returns true if the ordering of the child operations is valid, false
91 /// otherwise.
92 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
93 
94 /// Invalidates the current ordering of operations.
95 void Block::invalidateOpOrder() {
96   // Validate the current ordering.
97   assert(!verifyOpOrder());
98   parentValidOpOrderPair.setInt(false);
99 }
100 
101 /// Verifies the current ordering of child operations. Returns false if the
102 /// order is valid, true otherwise.
103 bool Block::verifyOpOrder() {
104   // The order is already known to be invalid.
105   if (!isOpOrderValid())
106     return false;
107   // The order is valid if there are less than 2 operations.
108   if (operations.empty() || std::next(operations.begin()) == operations.end())
109     return false;
110 
111   Operation *prev = nullptr;
112   for (auto &i : *this) {
113     // The previous operation must have a smaller order index than the next as
114     // it appears earlier in the list.
115     if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
116         prev->orderIndex >= i.orderIndex)
117       return true;
118     prev = &i;
119   }
120   return false;
121 }
122 
123 /// Recomputes the ordering of child operations within the block.
124 void Block::recomputeOpOrder() {
125   parentValidOpOrderPair.setInt(true);
126 
127   unsigned orderIndex = 0;
128   for (auto &op : *this)
129     op.orderIndex = (orderIndex += Operation::kOrderStride);
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // Argument list management.
134 //===----------------------------------------------------------------------===//
135 
136 /// Return a range containing the types of the arguments for this block.
137 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> {
138   return ValueTypeRange<BlockArgListType>(getArguments());
139 }
140 
141 BlockArgument Block::addArgument(Type type) {
142   BlockArgument arg = BlockArgument::create(type, this, arguments.size());
143   arguments.push_back(arg);
144   return arg;
145 }
146 
147 /// Add one argument to the argument list for each type specified in the list.
148 auto Block::addArguments(TypeRange types) -> iterator_range<args_iterator> {
149   size_t initialSize = arguments.size();
150   arguments.reserve(initialSize + types.size());
151   for (auto type : types)
152     addArgument(type);
153   return {arguments.data() + initialSize, arguments.data() + arguments.size()};
154 }
155 
156 BlockArgument Block::insertArgument(unsigned index, Type type) {
157   auto arg = BlockArgument::create(type, this, index);
158   assert(index <= arguments.size());
159   arguments.insert(arguments.begin() + index, arg);
160   // Update the cached position for all the arguments after the newly inserted
161   // one.
162   ++index;
163   for (BlockArgument arg : llvm::drop_begin(arguments, index))
164     arg.setArgNumber(index++);
165   return arg;
166 }
167 
168 /// Insert one value to the given position of the argument list. The existing
169 /// arguments are shifted. The block is expected not to have predecessors.
170 BlockArgument Block::insertArgument(args_iterator it, Type type) {
171   assert(llvm::empty(getPredecessors()) &&
172          "cannot insert arguments to blocks with predecessors");
173   return insertArgument(it->getArgNumber(), type);
174 }
175 
176 void Block::eraseArgument(unsigned index) {
177   assert(index < arguments.size());
178   arguments[index].destroy();
179   arguments.erase(arguments.begin() + index);
180   for (BlockArgument arg : llvm::drop_begin(arguments, index))
181     arg.setArgNumber(index++);
182 }
183 
184 void Block::eraseArguments(ArrayRef<unsigned> argIndices) {
185   llvm::BitVector eraseIndices(getNumArguments());
186   for (unsigned i : argIndices)
187     eraseIndices.set(i);
188   eraseArguments(eraseIndices);
189 }
190 
191 void Block::eraseArguments(llvm::BitVector eraseIndices) {
192   // We do this in reverse so that we erase later indices before earlier
193   // indices, to avoid shifting the later indices.
194   unsigned originalNumArgs = getNumArguments();
195   int64_t firstErased = originalNumArgs;
196   for (unsigned i = 0; i < originalNumArgs; ++i) {
197     int64_t currentPos = originalNumArgs - i - 1;
198     if (eraseIndices.test(currentPos)) {
199       arguments[currentPos].destroy();
200       arguments.erase(arguments.begin() + currentPos);
201       firstErased = currentPos;
202     }
203   }
204   // Update the cached position for the arguments after the first erased one.
205   int64_t index = firstErased;
206   for (BlockArgument arg : llvm::drop_begin(arguments, index))
207     arg.setArgNumber(index++);
208 }
209 
210 //===----------------------------------------------------------------------===//
211 // Terminator management
212 //===----------------------------------------------------------------------===//
213 
214 /// Get the terminator operation of this block. This function asserts that
215 /// the block has a valid terminator operation.
216 Operation *Block::getTerminator() {
217   assert(!empty() && back().mightHaveTrait<OpTrait::IsTerminator>());
218   return &back();
219 }
220 
221 // Indexed successor access.
222 unsigned Block::getNumSuccessors() {
223   return empty() ? 0 : back().getNumSuccessors();
224 }
225 
226 Block *Block::getSuccessor(unsigned i) {
227   assert(i < getNumSuccessors());
228   return getTerminator()->getSuccessor(i);
229 }
230 
231 /// If this block has exactly one predecessor, return it.  Otherwise, return
232 /// null.
233 ///
234 /// Note that multiple edges from a single block (e.g. if you have a cond
235 /// branch with the same block as the true/false destinations) is not
236 /// considered to be a single predecessor.
237 Block *Block::getSinglePredecessor() {
238   auto it = pred_begin();
239   if (it == pred_end())
240     return nullptr;
241   auto *firstPred = *it;
242   ++it;
243   return it == pred_end() ? firstPred : nullptr;
244 }
245 
246 /// If this block has a unique predecessor, i.e., all incoming edges originate
247 /// from one block, return it. Otherwise, return null.
248 Block *Block::getUniquePredecessor() {
249   auto it = pred_begin(), e = pred_end();
250   if (it == e)
251     return nullptr;
252 
253   // Check for any conflicting predecessors.
254   auto *firstPred = *it;
255   for (++it; it != e; ++it)
256     if (*it != firstPred)
257       return nullptr;
258   return firstPred;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Other
263 //===----------------------------------------------------------------------===//
264 
265 /// Split the block into two blocks before the specified operation or
266 /// iterator.
267 ///
268 /// Note that all operations BEFORE the specified iterator stay as part of
269 /// the original basic block, and the rest of the operations in the original
270 /// block are moved to the new block, including the old terminator.  The
271 /// original block is left without a terminator.
272 ///
273 /// The newly formed Block is returned, and the specified iterator is
274 /// invalidated.
275 Block *Block::splitBlock(iterator splitBefore) {
276   // Start by creating a new basic block, and insert it immediate after this
277   // one in the containing region.
278   auto newBB = new Block();
279   getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
280 
281   // Move all of the operations from the split point to the end of the region
282   // into the new block.
283   newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
284                                 end());
285   return newBB;
286 }
287 
288 //===----------------------------------------------------------------------===//
289 // Predecessors
290 //===----------------------------------------------------------------------===//
291 
292 Block *PredecessorIterator::unwrap(BlockOperand &value) {
293   return value.getOwner()->getBlock();
294 }
295 
296 /// Get the successor number in the predecessor terminator.
297 unsigned PredecessorIterator::getSuccessorIndex() const {
298   return I->getOperandNumber();
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // SuccessorRange
303 //===----------------------------------------------------------------------===//
304 
305 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {}
306 
307 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() {
308   if (Operation *term = block->getTerminator())
309     if ((count = term->getNumSuccessors()))
310       base = term->getBlockOperands().data();
311 }
312 
313 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() {
314   if ((count = term->getNumSuccessors()))
315     base = term->getBlockOperands().data();
316 }
317 
318 //===----------------------------------------------------------------------===//
319 // BlockRange
320 //===----------------------------------------------------------------------===//
321 
322 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) {
323   if ((count = blocks.size()))
324     base = blocks.data();
325 }
326 
327 BlockRange::BlockRange(SuccessorRange successors)
328     : BlockRange(successors.begin().getBase(), successors.size()) {}
329 
330 /// See `llvm::detail::indexed_accessor_range_base` for details.
331 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) {
332   if (auto *operand = object.dyn_cast<BlockOperand *>())
333     return {operand + index};
334   return {object.dyn_cast<Block *const *>() + index};
335 }
336 
337 /// See `llvm::detail::indexed_accessor_range_base` for details.
338 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) {
339   if (const auto *operand = object.dyn_cast<BlockOperand *>())
340     return operand[index].get();
341   return object.dyn_cast<Block *const *>()[index];
342 }
343