1 //===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Attributes.h" 10 #include "AttributeDetail.h" 11 #include "mlir/IR/AffineMap.h" 12 #include "mlir/IR/Diagnostics.h" 13 #include "mlir/IR/Dialect.h" 14 #include "mlir/IR/Function.h" 15 #include "mlir/IR/IntegerSet.h" 16 #include "mlir/IR/Types.h" 17 #include "llvm/ADT/Sequence.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Support/Endian.h" 20 21 using namespace mlir; 22 using namespace mlir::detail; 23 24 //===----------------------------------------------------------------------===// 25 // AttributeStorage 26 //===----------------------------------------------------------------------===// 27 28 AttributeStorage::AttributeStorage(Type type) 29 : type(type.getAsOpaquePointer()) {} 30 AttributeStorage::AttributeStorage() : type(nullptr) {} 31 32 Type AttributeStorage::getType() const { 33 return Type::getFromOpaquePointer(type); 34 } 35 void AttributeStorage::setType(Type newType) { 36 type = newType.getAsOpaquePointer(); 37 } 38 39 //===----------------------------------------------------------------------===// 40 // Attribute 41 //===----------------------------------------------------------------------===// 42 43 /// Return the type of this attribute. 44 Type Attribute::getType() const { return impl->getType(); } 45 46 /// Return the context this attribute belongs to. 47 MLIRContext *Attribute::getContext() const { return getType().getContext(); } 48 49 /// Get the dialect this attribute is registered to. 50 Dialect &Attribute::getDialect() const { return impl->getDialect(); } 51 52 //===----------------------------------------------------------------------===// 53 // AffineMapAttr 54 //===----------------------------------------------------------------------===// 55 56 AffineMapAttr AffineMapAttr::get(AffineMap value) { 57 return Base::get(value.getContext(), StandardAttributes::AffineMap, value); 58 } 59 60 AffineMap AffineMapAttr::getValue() const { return getImpl()->value; } 61 62 //===----------------------------------------------------------------------===// 63 // ArrayAttr 64 //===----------------------------------------------------------------------===// 65 66 ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) { 67 return Base::get(context, StandardAttributes::Array, value); 68 } 69 70 ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; } 71 72 Attribute ArrayAttr::operator[](unsigned idx) const { 73 assert(idx < size() && "index out of bounds"); 74 return getValue()[idx]; 75 } 76 77 //===----------------------------------------------------------------------===// 78 // BoolAttr 79 //===----------------------------------------------------------------------===// 80 81 bool BoolAttr::getValue() const { return getImpl()->value; } 82 83 //===----------------------------------------------------------------------===// 84 // DictionaryAttr 85 //===----------------------------------------------------------------------===// 86 87 /// Helper function that does either an in place sort or sorts from source array 88 /// into destination. If inPlace then storage is both the source and the 89 /// destination, else value is the source and storage destination. Returns 90 /// whether source was sorted. 91 template <bool inPlace> 92 static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value, 93 SmallVectorImpl<NamedAttribute> &storage) { 94 // Specialize for the common case. 95 switch (value.size()) { 96 case 0: 97 // Zero already sorted. 98 break; 99 case 1: 100 // One already sorted but may need to be copied. 101 if (!inPlace) 102 storage.assign({value[0]}); 103 break; 104 case 2: { 105 assert(value[0].first != value[1].first && 106 "DictionaryAttr element names must be unique"); 107 bool isSorted = value[0] < value[1]; 108 if (inPlace) { 109 if (!isSorted) 110 std::swap(storage[0], storage[1]); 111 } else if (isSorted) { 112 storage.assign({value[0], value[1]}); 113 } else { 114 storage.assign({value[1], value[0]}); 115 } 116 return !isSorted; 117 } 118 default: 119 if (!inPlace) 120 storage.assign(value.begin(), value.end()); 121 // Check to see they are sorted already. 122 bool isSorted = llvm::is_sorted(value); 123 if (!isSorted) { 124 // If not, do a general sort. 125 llvm::array_pod_sort(storage.begin(), storage.end()); 126 value = storage; 127 } 128 129 // Ensure that the attribute elements are unique. 130 assert(std::adjacent_find(value.begin(), value.end(), 131 [](NamedAttribute l, NamedAttribute r) { 132 return l.first == r.first; 133 }) == value.end() && 134 "DictionaryAttr element names must be unique"); 135 return !isSorted; 136 } 137 return false; 138 } 139 140 bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value, 141 SmallVectorImpl<NamedAttribute> &storage) { 142 return dictionaryAttrSort</*inPlace=*/false>(value, storage); 143 } 144 145 bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) { 146 return dictionaryAttrSort</*inPlace=*/true>(array, array); 147 } 148 149 DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value, 150 MLIRContext *context) { 151 if (value.empty()) 152 return DictionaryAttr::getEmpty(context); 153 assert(llvm::all_of(value, 154 [](const NamedAttribute &attr) { return attr.second; }) && 155 "value cannot have null entries"); 156 157 // We need to sort the element list to canonicalize it. 158 SmallVector<NamedAttribute, 8> storage; 159 if (dictionaryAttrSort</*inPlace=*/false>(value, storage)) 160 value = storage; 161 162 return Base::get(context, StandardAttributes::Dictionary, value); 163 } 164 /// Construct a dictionary with an array of values that is known to already be 165 /// sorted by name and uniqued. 166 DictionaryAttr DictionaryAttr::getWithSorted(ArrayRef<NamedAttribute> value, 167 MLIRContext *context) { 168 if (value.empty()) 169 return DictionaryAttr::getEmpty(context); 170 // Ensure that the attribute elements are unique and sorted. 171 assert(llvm::is_sorted(value, 172 [](NamedAttribute l, NamedAttribute r) { 173 return l.first.strref() < r.first.strref(); 174 }) && 175 "expected attribute values to be sorted"); 176 assert(std::adjacent_find(value.begin(), value.end(), 177 [](NamedAttribute l, NamedAttribute r) { 178 return l.first == r.first; 179 }) == value.end() && 180 "DictionaryAttr element names must be unique"); 181 return Base::get(context, StandardAttributes::Dictionary, value); 182 } 183 184 ArrayRef<NamedAttribute> DictionaryAttr::getValue() const { 185 return getImpl()->getElements(); 186 } 187 188 /// Return the specified attribute if present, null otherwise. 189 Attribute DictionaryAttr::get(StringRef name) const { 190 Optional<NamedAttribute> attr = getNamed(name); 191 return attr ? attr->second : nullptr; 192 } 193 Attribute DictionaryAttr::get(Identifier name) const { 194 Optional<NamedAttribute> attr = getNamed(name); 195 return attr ? attr->second : nullptr; 196 } 197 198 /// Return the specified named attribute if present, None otherwise. 199 Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const { 200 ArrayRef<NamedAttribute> values = getValue(); 201 const auto *it = llvm::lower_bound(values, name); 202 return it != values.end() && it->first == name ? *it 203 : Optional<NamedAttribute>(); 204 } 205 Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const { 206 for (auto elt : getValue()) 207 if (elt.first == name) 208 return elt; 209 return llvm::None; 210 } 211 212 DictionaryAttr::iterator DictionaryAttr::begin() const { 213 return getValue().begin(); 214 } 215 DictionaryAttr::iterator DictionaryAttr::end() const { 216 return getValue().end(); 217 } 218 size_t DictionaryAttr::size() const { return getValue().size(); } 219 220 //===----------------------------------------------------------------------===// 221 // FloatAttr 222 //===----------------------------------------------------------------------===// 223 224 FloatAttr FloatAttr::get(Type type, double value) { 225 return Base::get(type.getContext(), StandardAttributes::Float, type, value); 226 } 227 228 FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) { 229 return Base::getChecked(loc, StandardAttributes::Float, type, value); 230 } 231 232 FloatAttr FloatAttr::get(Type type, const APFloat &value) { 233 return Base::get(type.getContext(), StandardAttributes::Float, type, value); 234 } 235 236 FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) { 237 return Base::getChecked(loc, StandardAttributes::Float, type, value); 238 } 239 240 APFloat FloatAttr::getValue() const { return getImpl()->getValue(); } 241 242 double FloatAttr::getValueAsDouble() const { 243 return getValueAsDouble(getValue()); 244 } 245 double FloatAttr::getValueAsDouble(APFloat value) { 246 if (&value.getSemantics() != &APFloat::IEEEdouble()) { 247 bool losesInfo = false; 248 value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 249 &losesInfo); 250 } 251 return value.convertToDouble(); 252 } 253 254 /// Verify construction invariants. 255 static LogicalResult verifyFloatTypeInvariants(Location loc, Type type) { 256 if (!type.isa<FloatType>()) 257 return emitError(loc, "expected floating point type"); 258 return success(); 259 } 260 261 LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type, 262 double value) { 263 return verifyFloatTypeInvariants(loc, type); 264 } 265 266 LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type, 267 const APFloat &value) { 268 // Verify that the type is correct. 269 if (failed(verifyFloatTypeInvariants(loc, type))) 270 return failure(); 271 272 // Verify that the type semantics match that of the value. 273 if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) { 274 return emitError( 275 loc, "FloatAttr type doesn't match the type implied by its value"); 276 } 277 return success(); 278 } 279 280 //===----------------------------------------------------------------------===// 281 // SymbolRefAttr 282 //===----------------------------------------------------------------------===// 283 284 FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) { 285 return Base::get(ctx, StandardAttributes::SymbolRef, value, llvm::None) 286 .cast<FlatSymbolRefAttr>(); 287 } 288 289 SymbolRefAttr SymbolRefAttr::get(StringRef value, 290 ArrayRef<FlatSymbolRefAttr> nestedReferences, 291 MLIRContext *ctx) { 292 return Base::get(ctx, StandardAttributes::SymbolRef, value, nestedReferences); 293 } 294 295 StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; } 296 297 StringRef SymbolRefAttr::getLeafReference() const { 298 ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences(); 299 return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue(); 300 } 301 302 ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const { 303 return getImpl()->getNestedRefs(); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // IntegerAttr 308 //===----------------------------------------------------------------------===// 309 310 IntegerAttr IntegerAttr::get(Type type, const APInt &value) { 311 return Base::get(type.getContext(), StandardAttributes::Integer, type, value); 312 } 313 314 IntegerAttr IntegerAttr::get(Type type, int64_t value) { 315 // This uses 64 bit APInts by default for index type. 316 if (type.isIndex()) 317 return get(type, APInt(IndexType::kInternalStorageBitWidth, value)); 318 319 auto intType = type.cast<IntegerType>(); 320 return get(type, APInt(intType.getWidth(), value, intType.isSignedInteger())); 321 } 322 323 APInt IntegerAttr::getValue() const { return getImpl()->getValue(); } 324 325 int64_t IntegerAttr::getInt() const { 326 assert((getImpl()->getType().isIndex() || 327 getImpl()->getType().isSignlessInteger()) && 328 "must be signless integer"); 329 return getValue().getSExtValue(); 330 } 331 332 int64_t IntegerAttr::getSInt() const { 333 assert(getImpl()->getType().isSignedInteger() && "must be signed integer"); 334 return getValue().getSExtValue(); 335 } 336 337 uint64_t IntegerAttr::getUInt() const { 338 assert(getImpl()->getType().isUnsignedInteger() && 339 "must be unsigned integer"); 340 return getValue().getZExtValue(); 341 } 342 343 static LogicalResult verifyIntegerTypeInvariants(Location loc, Type type) { 344 if (type.isa<IntegerType>() || type.isa<IndexType>()) 345 return success(); 346 return emitError(loc, "expected integer or index type"); 347 } 348 349 LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type, 350 int64_t value) { 351 return verifyIntegerTypeInvariants(loc, type); 352 } 353 354 LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type, 355 const APInt &value) { 356 if (failed(verifyIntegerTypeInvariants(loc, type))) 357 return failure(); 358 if (auto integerType = type.dyn_cast<IntegerType>()) 359 if (integerType.getWidth() != value.getBitWidth()) 360 return emitError(loc, "integer type bit width (") 361 << integerType.getWidth() << ") doesn't match value bit width (" 362 << value.getBitWidth() << ")"; 363 return success(); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // IntegerSetAttr 368 //===----------------------------------------------------------------------===// 369 370 IntegerSetAttr IntegerSetAttr::get(IntegerSet value) { 371 return Base::get(value.getConstraint(0).getContext(), 372 StandardAttributes::IntegerSet, value); 373 } 374 375 IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; } 376 377 //===----------------------------------------------------------------------===// 378 // OpaqueAttr 379 //===----------------------------------------------------------------------===// 380 381 OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type, 382 MLIRContext *context) { 383 return Base::get(context, StandardAttributes::Opaque, dialect, attrData, 384 type); 385 } 386 387 OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData, 388 Type type, Location location) { 389 return Base::getChecked(location, StandardAttributes::Opaque, dialect, 390 attrData, type); 391 } 392 393 /// Returns the dialect namespace of the opaque attribute. 394 Identifier OpaqueAttr::getDialectNamespace() const { 395 return getImpl()->dialectNamespace; 396 } 397 398 /// Returns the raw attribute data of the opaque attribute. 399 StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; } 400 401 /// Verify the construction of an opaque attribute. 402 LogicalResult OpaqueAttr::verifyConstructionInvariants(Location loc, 403 Identifier dialect, 404 StringRef attrData, 405 Type type) { 406 if (!Dialect::isValidNamespace(dialect.strref())) 407 return emitError(loc, "invalid dialect namespace '") << dialect << "'"; 408 return success(); 409 } 410 411 //===----------------------------------------------------------------------===// 412 // StringAttr 413 //===----------------------------------------------------------------------===// 414 415 StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) { 416 return get(bytes, NoneType::get(context)); 417 } 418 419 /// Get an instance of a StringAttr with the given string and Type. 420 StringAttr StringAttr::get(StringRef bytes, Type type) { 421 return Base::get(type.getContext(), StandardAttributes::String, bytes, type); 422 } 423 424 StringRef StringAttr::getValue() const { return getImpl()->value; } 425 426 //===----------------------------------------------------------------------===// 427 // TypeAttr 428 //===----------------------------------------------------------------------===// 429 430 TypeAttr TypeAttr::get(Type value) { 431 return Base::get(value.getContext(), StandardAttributes::Type, value); 432 } 433 434 Type TypeAttr::getValue() const { return getImpl()->value; } 435 436 //===----------------------------------------------------------------------===// 437 // ElementsAttr 438 //===----------------------------------------------------------------------===// 439 440 ShapedType ElementsAttr::getType() const { 441 return Attribute::getType().cast<ShapedType>(); 442 } 443 444 /// Returns the number of elements held by this attribute. 445 int64_t ElementsAttr::getNumElements() const { 446 return getType().getNumElements(); 447 } 448 449 /// Return the value at the given index. If index does not refer to a valid 450 /// element, then a null attribute is returned. 451 Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const { 452 switch (getKind()) { 453 case StandardAttributes::DenseIntOrFPElements: 454 return cast<DenseElementsAttr>().getValue(index); 455 case StandardAttributes::OpaqueElements: 456 return cast<OpaqueElementsAttr>().getValue(index); 457 case StandardAttributes::SparseElements: 458 return cast<SparseElementsAttr>().getValue(index); 459 default: 460 llvm_unreachable("unknown ElementsAttr kind"); 461 } 462 } 463 464 /// Return if the given 'index' refers to a valid element in this attribute. 465 bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const { 466 auto type = getType(); 467 468 // Verify that the rank of the indices matches the held type. 469 auto rank = type.getRank(); 470 if (rank != static_cast<int64_t>(index.size())) 471 return false; 472 473 // Verify that all of the indices are within the shape dimensions. 474 auto shape = type.getShape(); 475 return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) { 476 return static_cast<int64_t>(index[i]) < shape[i]; 477 }); 478 } 479 480 ElementsAttr 481 ElementsAttr::mapValues(Type newElementType, 482 function_ref<APInt(const APInt &)> mapping) const { 483 switch (getKind()) { 484 case StandardAttributes::DenseIntOrFPElements: 485 return cast<DenseElementsAttr>().mapValues(newElementType, mapping); 486 default: 487 llvm_unreachable("unsupported ElementsAttr subtype"); 488 } 489 } 490 491 ElementsAttr 492 ElementsAttr::mapValues(Type newElementType, 493 function_ref<APInt(const APFloat &)> mapping) const { 494 switch (getKind()) { 495 case StandardAttributes::DenseIntOrFPElements: 496 return cast<DenseElementsAttr>().mapValues(newElementType, mapping); 497 default: 498 llvm_unreachable("unsupported ElementsAttr subtype"); 499 } 500 } 501 502 /// Returns the 1 dimensional flattened row-major index from the given 503 /// multi-dimensional index. 504 uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const { 505 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 506 auto type = getType(); 507 508 // Reduce the provided multidimensional index into a flattended 1D row-major 509 // index. 510 auto rank = type.getRank(); 511 auto shape = type.getShape(); 512 uint64_t valueIndex = 0; 513 uint64_t dimMultiplier = 1; 514 for (int i = rank - 1; i >= 0; --i) { 515 valueIndex += index[i] * dimMultiplier; 516 dimMultiplier *= shape[i]; 517 } 518 return valueIndex; 519 } 520 521 //===----------------------------------------------------------------------===// 522 // DenseElementAttr Utilities 523 //===----------------------------------------------------------------------===// 524 525 /// Get the bitwidth of a dense element type within the buffer. 526 /// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8. 527 static size_t getDenseElementStorageWidth(size_t origWidth) { 528 return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth); 529 } 530 static size_t getDenseElementStorageWidth(Type elementType) { 531 return getDenseElementStorageWidth(getDenseElementBitWidth(elementType)); 532 } 533 534 /// Set a bit to a specific value. 535 static void setBit(char *rawData, size_t bitPos, bool value) { 536 if (value) 537 rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT)); 538 else 539 rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT)); 540 } 541 542 /// Return the value of the specified bit. 543 static bool getBit(const char *rawData, size_t bitPos) { 544 return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0; 545 } 546 547 /// Get start position of actual data in `value`. Actual data is 548 /// stored in last `bitWidth`/CHAR_BIT bytes in big endian. 549 static char *getAPIntDataPos(APInt &value, size_t bitWidth) { 550 char *dataPos = 551 const_cast<char *>(reinterpret_cast<const char *>(value.getRawData())); 552 if (llvm::support::endian::system_endianness() == 553 llvm::support::endianness::big) 554 dataPos = dataPos + 8 - llvm::divideCeil(bitWidth, CHAR_BIT); 555 return dataPos; 556 } 557 558 /// Read APInt `value` from appropriate position. 559 static void readAPInt(APInt &value, size_t bitWidth, char *outData) { 560 char *dataPos = getAPIntDataPos(value, bitWidth); 561 std::copy_n(dataPos, llvm::divideCeil(bitWidth, CHAR_BIT), outData); 562 } 563 564 /// Write `inData` to appropriate position of APInt `value`. 565 static void writeAPInt(const char *inData, size_t bitWidth, APInt &value) { 566 char *dataPos = getAPIntDataPos(value, bitWidth); 567 std::copy_n(inData, llvm::divideCeil(bitWidth, CHAR_BIT), dataPos); 568 } 569 570 /// Writes value to the bit position `bitPos` in array `rawData`. 571 static void writeBits(char *rawData, size_t bitPos, APInt value) { 572 size_t bitWidth = value.getBitWidth(); 573 574 // If the bitwidth is 1 we just toggle the specific bit. 575 if (bitWidth == 1) 576 return setBit(rawData, bitPos, value.isOneValue()); 577 578 // Otherwise, the bit position is guaranteed to be byte aligned. 579 assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); 580 readAPInt(value, bitWidth, rawData + (bitPos / CHAR_BIT)); 581 } 582 583 /// Reads the next `bitWidth` bits from the bit position `bitPos` in array 584 /// `rawData`. 585 static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) { 586 // Handle a boolean bit position. 587 if (bitWidth == 1) 588 return APInt(1, getBit(rawData, bitPos) ? 1 : 0); 589 590 // Otherwise, the bit position must be 8-bit aligned. 591 assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); 592 APInt result(bitWidth, 0); 593 writeAPInt(rawData + (bitPos / CHAR_BIT), bitWidth, result); 594 return result; 595 } 596 597 /// Returns if 'values' corresponds to a splat, i.e. one element, or has the 598 /// same element count as 'type'. 599 template <typename Values> 600 static bool hasSameElementsOrSplat(ShapedType type, const Values &values) { 601 return (values.size() == 1) || 602 (type.getNumElements() == static_cast<int64_t>(values.size())); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // DenseElementAttr Iterators 607 //===----------------------------------------------------------------------===// 608 609 //===----------------------------------------------------------------------===// 610 // AttributeElementIterator 611 612 DenseElementsAttr::AttributeElementIterator::AttributeElementIterator( 613 DenseElementsAttr attr, size_t index) 614 : llvm::indexed_accessor_iterator<AttributeElementIterator, const void *, 615 Attribute, Attribute, Attribute>( 616 attr.getAsOpaquePointer(), index) {} 617 618 Attribute DenseElementsAttr::AttributeElementIterator::operator*() const { 619 auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>(); 620 Type eltTy = owner.getType().getElementType(); 621 if (auto intEltTy = eltTy.dyn_cast<IntegerType>()) { 622 if (intEltTy.getWidth() == 1) 623 return BoolAttr::get((*IntElementIterator(owner, index)).isOneValue(), 624 owner.getContext()); 625 return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); 626 } 627 if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) { 628 IntElementIterator intIt(owner, index); 629 FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt); 630 return FloatAttr::get(eltTy, *floatIt); 631 } 632 if (owner.isa<DenseStringElementsAttr>()) { 633 ArrayRef<StringRef> vals = owner.getRawStringData(); 634 return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy); 635 } 636 llvm_unreachable("unexpected element type"); 637 } 638 639 //===----------------------------------------------------------------------===// 640 // BoolElementIterator 641 642 DenseElementsAttr::BoolElementIterator::BoolElementIterator( 643 DenseElementsAttr attr, size_t dataIndex) 644 : DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>( 645 attr.getRawData().data(), attr.isSplat(), dataIndex) {} 646 647 bool DenseElementsAttr::BoolElementIterator::operator*() const { 648 return getBit(getData(), getDataIndex()); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // IntElementIterator 653 654 DenseElementsAttr::IntElementIterator::IntElementIterator( 655 DenseElementsAttr attr, size_t dataIndex) 656 : DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>( 657 attr.getRawData().data(), attr.isSplat(), dataIndex), 658 bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {} 659 660 APInt DenseElementsAttr::IntElementIterator::operator*() const { 661 return readBits(getData(), 662 getDataIndex() * getDenseElementStorageWidth(bitWidth), 663 bitWidth); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // ComplexIntElementIterator 668 669 DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator( 670 DenseElementsAttr attr, size_t dataIndex) 671 : DenseElementIndexedIteratorImpl<ComplexIntElementIterator, 672 std::complex<APInt>, std::complex<APInt>, 673 std::complex<APInt>>( 674 attr.getRawData().data(), attr.isSplat(), dataIndex) { 675 auto complexType = attr.getType().getElementType().cast<ComplexType>(); 676 bitWidth = getDenseElementBitWidth(complexType.getElementType()); 677 } 678 679 std::complex<APInt> 680 DenseElementsAttr::ComplexIntElementIterator::operator*() const { 681 size_t storageWidth = getDenseElementStorageWidth(bitWidth); 682 size_t offset = getDataIndex() * storageWidth * 2; 683 return {readBits(getData(), offset, bitWidth), 684 readBits(getData(), offset + storageWidth, bitWidth)}; 685 } 686 687 //===----------------------------------------------------------------------===// 688 // FloatElementIterator 689 690 DenseElementsAttr::FloatElementIterator::FloatElementIterator( 691 const llvm::fltSemantics &smt, IntElementIterator it) 692 : llvm::mapped_iterator<IntElementIterator, 693 std::function<APFloat(const APInt &)>>( 694 it, [&](const APInt &val) { return APFloat(smt, val); }) {} 695 696 //===----------------------------------------------------------------------===// 697 // ComplexFloatElementIterator 698 699 DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator( 700 const llvm::fltSemantics &smt, ComplexIntElementIterator it) 701 : llvm::mapped_iterator< 702 ComplexIntElementIterator, 703 std::function<std::complex<APFloat>(const std::complex<APInt> &)>>( 704 it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> { 705 return {APFloat(smt, val.real()), APFloat(smt, val.imag())}; 706 }) {} 707 708 //===----------------------------------------------------------------------===// 709 // DenseElementsAttr 710 //===----------------------------------------------------------------------===// 711 712 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 713 ArrayRef<Attribute> values) { 714 assert(hasSameElementsOrSplat(type, values)); 715 716 // If the element type is not based on int/float/index, assume it is a string 717 // type. 718 auto eltType = type.getElementType(); 719 if (!type.getElementType().isIntOrIndexOrFloat()) { 720 SmallVector<StringRef, 8> stringValues; 721 stringValues.reserve(values.size()); 722 for (Attribute attr : values) { 723 assert(attr.isa<StringAttr>() && 724 "expected string value for non integer/index/float element"); 725 stringValues.push_back(attr.cast<StringAttr>().getValue()); 726 } 727 return get(type, stringValues); 728 } 729 730 // Otherwise, get the raw storage width to use for the allocation. 731 size_t bitWidth = getDenseElementBitWidth(eltType); 732 size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); 733 734 // Compress the attribute values into a character buffer. 735 SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) * 736 values.size()); 737 APInt intVal; 738 for (unsigned i = 0, e = values.size(); i < e; ++i) { 739 assert(eltType == values[i].getType() && 740 "expected attribute value to have element type"); 741 742 switch (eltType.getKind()) { 743 case StandardTypes::BF16: 744 case StandardTypes::F16: 745 case StandardTypes::F32: 746 case StandardTypes::F64: 747 intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt(); 748 break; 749 case StandardTypes::Integer: 750 case StandardTypes::Index: 751 intVal = values[i].isa<BoolAttr>() 752 ? APInt(1, values[i].cast<BoolAttr>().getValue() ? 1 : 0) 753 : values[i].cast<IntegerAttr>().getValue(); 754 break; 755 default: 756 llvm_unreachable("unexpected element type"); 757 } 758 assert(intVal.getBitWidth() == bitWidth && 759 "expected value to have same bitwidth as element type"); 760 writeBits(data.data(), i * storageBitWidth, intVal); 761 } 762 return DenseIntOrFPElementsAttr::getRaw(type, data, 763 /*isSplat=*/(values.size() == 1)); 764 } 765 766 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 767 ArrayRef<bool> values) { 768 assert(hasSameElementsOrSplat(type, values)); 769 assert(type.getElementType().isInteger(1)); 770 771 std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT)); 772 for (int i = 0, e = values.size(); i != e; ++i) 773 setBit(buff.data(), i, values[i]); 774 return DenseIntOrFPElementsAttr::getRaw(type, buff, 775 /*isSplat=*/(values.size() == 1)); 776 } 777 778 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 779 ArrayRef<StringRef> values) { 780 assert(!type.getElementType().isIntOrFloat()); 781 return DenseStringElementsAttr::get(type, values); 782 } 783 784 /// Constructs a dense integer elements attribute from an array of APInt 785 /// values. Each APInt value is expected to have the same bitwidth as the 786 /// element type of 'type'. 787 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 788 ArrayRef<APInt> values) { 789 assert(type.getElementType().isIntOrIndex()); 790 assert(hasSameElementsOrSplat(type, values)); 791 size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); 792 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, 793 /*isSplat=*/(values.size() == 1)); 794 } 795 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 796 ArrayRef<std::complex<APInt>> values) { 797 ComplexType complex = type.getElementType().cast<ComplexType>(); 798 assert(complex.getElementType().isa<IntegerType>()); 799 assert(hasSameElementsOrSplat(type, values)); 800 size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; 801 ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()), 802 values.size() * 2); 803 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals, 804 /*isSplat=*/(values.size() == 1)); 805 } 806 807 // Constructs a dense float elements attribute from an array of APFloat 808 // values. Each APFloat value is expected to have the same bitwidth as the 809 // element type of 'type'. 810 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 811 ArrayRef<APFloat> values) { 812 assert(type.getElementType().isa<FloatType>()); 813 assert(hasSameElementsOrSplat(type, values)); 814 size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); 815 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, 816 /*isSplat=*/(values.size() == 1)); 817 } 818 DenseElementsAttr 819 DenseElementsAttr::get(ShapedType type, 820 ArrayRef<std::complex<APFloat>> values) { 821 ComplexType complex = type.getElementType().cast<ComplexType>(); 822 assert(complex.getElementType().isa<FloatType>()); 823 assert(hasSameElementsOrSplat(type, values)); 824 ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()), 825 values.size() * 2); 826 size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; 827 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals, 828 /*isSplat=*/(values.size() == 1)); 829 } 830 831 /// Construct a dense elements attribute from a raw buffer representing the 832 /// data for this attribute. Users should generally not use this methods as 833 /// the expected buffer format may not be a form the user expects. 834 DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type, 835 ArrayRef<char> rawBuffer, 836 bool isSplatBuffer) { 837 return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer); 838 } 839 840 /// Returns true if the given buffer is a valid raw buffer for the given type. 841 bool DenseElementsAttr::isValidRawBuffer(ShapedType type, 842 ArrayRef<char> rawBuffer, 843 bool &detectedSplat) { 844 size_t storageWidth = getDenseElementStorageWidth(type.getElementType()); 845 size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT; 846 847 // Storage width of 1 is special as it is packed by the bit. 848 if (storageWidth == 1) { 849 // Check for a splat, or a buffer equal to the number of elements. 850 if ((detectedSplat = rawBuffer.size() == 1)) 851 return true; 852 return rawBufferWidth == llvm::alignTo<8>(type.getNumElements()); 853 } 854 // All other types are 8-bit aligned. 855 if ((detectedSplat = rawBufferWidth == storageWidth)) 856 return true; 857 return rawBufferWidth == (storageWidth * type.getNumElements()); 858 } 859 860 /// Check the information for a C++ data type, check if this type is valid for 861 /// the current attribute. This method is used to verify specific type 862 /// invariants that the templatized 'getValues' method cannot. 863 static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt, 864 bool isSigned) { 865 // Make sure that the data element size is the same as the type element width. 866 if (getDenseElementBitWidth(type) != 867 static_cast<size_t>(dataEltSize * CHAR_BIT)) 868 return false; 869 870 // Check that the element type is either float or integer or index. 871 if (!isInt) 872 return type.isa<FloatType>(); 873 if (type.isIndex()) 874 return true; 875 876 auto intType = type.dyn_cast<IntegerType>(); 877 if (!intType) 878 return false; 879 880 // Make sure signedness semantics is consistent. 881 if (intType.isSignless()) 882 return true; 883 return intType.isSigned() ? isSigned : !isSigned; 884 } 885 886 /// Defaults down the subclass implementation. 887 DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type, 888 ArrayRef<char> data, 889 int64_t dataEltSize, 890 bool isInt, bool isSigned) { 891 return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt, 892 isSigned); 893 } 894 DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type, 895 ArrayRef<char> data, 896 int64_t dataEltSize, 897 bool isInt, 898 bool isSigned) { 899 return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize, 900 isInt, isSigned); 901 } 902 903 /// A method used to verify specific type invariants that the templatized 'get' 904 /// method cannot. 905 bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt, 906 bool isSigned) const { 907 return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt, 908 isSigned); 909 } 910 911 /// Check the information for a C++ data type, check if this type is valid for 912 /// the current attribute. 913 bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt, 914 bool isSigned) const { 915 return ::isValidIntOrFloat( 916 getType().getElementType().cast<ComplexType>().getElementType(), 917 dataEltSize / 2, isInt, isSigned); 918 } 919 920 /// Returns if this attribute corresponds to a splat, i.e. if all element 921 /// values are the same. 922 bool DenseElementsAttr::isSplat() const { 923 return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat; 924 } 925 926 /// Return the held element values as a range of Attributes. 927 auto DenseElementsAttr::getAttributeValues() const 928 -> llvm::iterator_range<AttributeElementIterator> { 929 return {attr_value_begin(), attr_value_end()}; 930 } 931 auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator { 932 return AttributeElementIterator(*this, 0); 933 } 934 auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator { 935 return AttributeElementIterator(*this, getNumElements()); 936 } 937 938 /// Return the held element values as a range of bool. The element type of 939 /// this attribute must be of integer type of bitwidth 1. 940 auto DenseElementsAttr::getBoolValues() const 941 -> llvm::iterator_range<BoolElementIterator> { 942 auto eltType = getType().getElementType().dyn_cast<IntegerType>(); 943 assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type"); 944 (void)eltType; 945 return {BoolElementIterator(*this, 0), 946 BoolElementIterator(*this, getNumElements())}; 947 } 948 949 /// Return the held element values as a range of APInts. The element type of 950 /// this attribute must be of integer type. 951 auto DenseElementsAttr::getIntValues() const 952 -> llvm::iterator_range<IntElementIterator> { 953 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 954 return {raw_int_begin(), raw_int_end()}; 955 } 956 auto DenseElementsAttr::int_value_begin() const -> IntElementIterator { 957 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 958 return raw_int_begin(); 959 } 960 auto DenseElementsAttr::int_value_end() const -> IntElementIterator { 961 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 962 return raw_int_end(); 963 } 964 auto DenseElementsAttr::getComplexIntValues() const 965 -> llvm::iterator_range<ComplexIntElementIterator> { 966 Type eltTy = getType().getElementType().cast<ComplexType>().getElementType(); 967 (void)eltTy; 968 assert(eltTy.isa<IntegerType>() && "expected complex integral type"); 969 return {ComplexIntElementIterator(*this, 0), 970 ComplexIntElementIterator(*this, getNumElements())}; 971 } 972 973 /// Return the held element values as a range of APFloat. The element type of 974 /// this attribute must be of float type. 975 auto DenseElementsAttr::getFloatValues() const 976 -> llvm::iterator_range<FloatElementIterator> { 977 auto elementType = getType().getElementType().cast<FloatType>(); 978 const auto &elementSemantics = elementType.getFloatSemantics(); 979 return {FloatElementIterator(elementSemantics, raw_int_begin()), 980 FloatElementIterator(elementSemantics, raw_int_end())}; 981 } 982 auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator { 983 return getFloatValues().begin(); 984 } 985 auto DenseElementsAttr::float_value_end() const -> FloatElementIterator { 986 return getFloatValues().end(); 987 } 988 auto DenseElementsAttr::getComplexFloatValues() const 989 -> llvm::iterator_range<ComplexFloatElementIterator> { 990 Type eltTy = getType().getElementType().cast<ComplexType>().getElementType(); 991 assert(eltTy.isa<FloatType>() && "expected complex float type"); 992 const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics(); 993 return {{semantics, {*this, 0}}, 994 {semantics, {*this, static_cast<size_t>(getNumElements())}}}; 995 } 996 997 /// Return the raw storage data held by this attribute. 998 ArrayRef<char> DenseElementsAttr::getRawData() const { 999 return static_cast<DenseIntOrFPElementsAttributeStorage *>(impl)->data; 1000 } 1001 1002 ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const { 1003 return static_cast<DenseStringElementsAttributeStorage *>(impl)->data; 1004 } 1005 1006 /// Return a new DenseElementsAttr that has the same data as the current 1007 /// attribute, but has been reshaped to 'newType'. The new type must have the 1008 /// same total number of elements as well as element type. 1009 DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) { 1010 ShapedType curType = getType(); 1011 if (curType == newType) 1012 return *this; 1013 1014 (void)curType; 1015 assert(newType.getElementType() == curType.getElementType() && 1016 "expected the same element type"); 1017 assert(newType.getNumElements() == curType.getNumElements() && 1018 "expected the same number of elements"); 1019 return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat()); 1020 } 1021 1022 DenseElementsAttr 1023 DenseElementsAttr::mapValues(Type newElementType, 1024 function_ref<APInt(const APInt &)> mapping) const { 1025 return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping); 1026 } 1027 1028 DenseElementsAttr DenseElementsAttr::mapValues( 1029 Type newElementType, function_ref<APInt(const APFloat &)> mapping) const { 1030 return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping); 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // DenseStringElementsAttr 1035 //===----------------------------------------------------------------------===// 1036 1037 DenseStringElementsAttr 1038 DenseStringElementsAttr::get(ShapedType type, ArrayRef<StringRef> values) { 1039 return Base::get(type.getContext(), StandardAttributes::DenseStringElements, 1040 type, values, (values.size() == 1)); 1041 } 1042 1043 //===----------------------------------------------------------------------===// 1044 // DenseIntOrFPElementsAttr 1045 //===----------------------------------------------------------------------===// 1046 1047 /// Utility method to write a range of APInt values to a buffer. 1048 template <typename APRangeT> 1049 static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data, 1050 APRangeT &&values) { 1051 data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values)); 1052 size_t offset = 0; 1053 for (auto it = values.begin(), e = values.end(); it != e; 1054 ++it, offset += storageWidth) { 1055 assert((*it).getBitWidth() <= storageWidth); 1056 writeBits(data.data(), offset, *it); 1057 } 1058 } 1059 1060 /// Constructs a dense elements attribute from an array of raw APFloat values. 1061 /// Each APFloat value is expected to have the same bitwidth as the element 1062 /// type of 'type'. 'type' must be a vector or tensor with static shape. 1063 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1064 size_t storageWidth, 1065 ArrayRef<APFloat> values, 1066 bool isSplat) { 1067 std::vector<char> data; 1068 auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); }; 1069 writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat)); 1070 return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); 1071 } 1072 1073 /// Constructs a dense elements attribute from an array of raw APInt values. 1074 /// Each APInt value is expected to have the same bitwidth as the element type 1075 /// of 'type'. 1076 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1077 size_t storageWidth, 1078 ArrayRef<APInt> values, 1079 bool isSplat) { 1080 std::vector<char> data; 1081 writeAPIntsToBuffer(storageWidth, data, values); 1082 return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); 1083 } 1084 1085 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1086 ArrayRef<char> data, 1087 bool isSplat) { 1088 assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) && 1089 "type must be ranked tensor or vector"); 1090 assert(type.hasStaticShape() && "type must have static shape"); 1091 return Base::get(type.getContext(), StandardAttributes::DenseIntOrFPElements, 1092 type, data, isSplat); 1093 } 1094 1095 /// Overload of the raw 'get' method that asserts that the given type is of 1096 /// complex type. This method is used to verify type invariants that the 1097 /// templatized 'get' method cannot. 1098 DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type, 1099 ArrayRef<char> data, 1100 int64_t dataEltSize, 1101 bool isInt, 1102 bool isSigned) { 1103 assert(::isValidIntOrFloat( 1104 type.getElementType().cast<ComplexType>().getElementType(), 1105 dataEltSize / 2, isInt, isSigned)); 1106 1107 int64_t numElements = data.size() / dataEltSize; 1108 assert(numElements == 1 || numElements == type.getNumElements()); 1109 return getRaw(type, data, /*isSplat=*/numElements == 1); 1110 } 1111 1112 /// Overload of the 'getRaw' method that asserts that the given type is of 1113 /// integer type. This method is used to verify type invariants that the 1114 /// templatized 'get' method cannot. 1115 DenseElementsAttr 1116 DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data, 1117 int64_t dataEltSize, bool isInt, 1118 bool isSigned) { 1119 assert( 1120 ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned)); 1121 1122 int64_t numElements = data.size() / dataEltSize; 1123 assert(numElements == 1 || numElements == type.getNumElements()); 1124 return getRaw(type, data, /*isSplat=*/numElements == 1); 1125 } 1126 1127 //===----------------------------------------------------------------------===// 1128 // DenseFPElementsAttr 1129 //===----------------------------------------------------------------------===// 1130 1131 template <typename Fn, typename Attr> 1132 static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType, 1133 Type newElementType, 1134 llvm::SmallVectorImpl<char> &data) { 1135 size_t bitWidth = getDenseElementBitWidth(newElementType); 1136 size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); 1137 1138 ShapedType newArrayType; 1139 if (inType.isa<RankedTensorType>()) 1140 newArrayType = RankedTensorType::get(inType.getShape(), newElementType); 1141 else if (inType.isa<UnrankedTensorType>()) 1142 newArrayType = RankedTensorType::get(inType.getShape(), newElementType); 1143 else if (inType.isa<VectorType>()) 1144 newArrayType = VectorType::get(inType.getShape(), newElementType); 1145 else 1146 assert(newArrayType && "Unhandled tensor type"); 1147 1148 size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements(); 1149 data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements); 1150 1151 // Functor used to process a single element value of the attribute. 1152 auto processElt = [&](decltype(*attr.begin()) value, size_t index) { 1153 auto newInt = mapping(value); 1154 assert(newInt.getBitWidth() == bitWidth); 1155 writeBits(data.data(), index * storageBitWidth, newInt); 1156 }; 1157 1158 // Check for the splat case. 1159 if (attr.isSplat()) { 1160 processElt(*attr.begin(), /*index=*/0); 1161 return newArrayType; 1162 } 1163 1164 // Otherwise, process all of the element values. 1165 uint64_t elementIdx = 0; 1166 for (auto value : attr) 1167 processElt(value, elementIdx++); 1168 return newArrayType; 1169 } 1170 1171 DenseElementsAttr DenseFPElementsAttr::mapValues( 1172 Type newElementType, function_ref<APInt(const APFloat &)> mapping) const { 1173 llvm::SmallVector<char, 8> elementData; 1174 auto newArrayType = 1175 mappingHelper(mapping, *this, getType(), newElementType, elementData); 1176 1177 return getRaw(newArrayType, elementData, isSplat()); 1178 } 1179 1180 /// Method for supporting type inquiry through isa, cast and dyn_cast. 1181 bool DenseFPElementsAttr::classof(Attribute attr) { 1182 return attr.isa<DenseElementsAttr>() && 1183 attr.getType().cast<ShapedType>().getElementType().isa<FloatType>(); 1184 } 1185 1186 //===----------------------------------------------------------------------===// 1187 // DenseIntElementsAttr 1188 //===----------------------------------------------------------------------===// 1189 1190 DenseElementsAttr DenseIntElementsAttr::mapValues( 1191 Type newElementType, function_ref<APInt(const APInt &)> mapping) const { 1192 llvm::SmallVector<char, 8> elementData; 1193 auto newArrayType = 1194 mappingHelper(mapping, *this, getType(), newElementType, elementData); 1195 1196 return getRaw(newArrayType, elementData, isSplat()); 1197 } 1198 1199 /// Method for supporting type inquiry through isa, cast and dyn_cast. 1200 bool DenseIntElementsAttr::classof(Attribute attr) { 1201 return attr.isa<DenseElementsAttr>() && 1202 attr.getType().cast<ShapedType>().getElementType().isIntOrIndex(); 1203 } 1204 1205 //===----------------------------------------------------------------------===// 1206 // OpaqueElementsAttr 1207 //===----------------------------------------------------------------------===// 1208 1209 OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type, 1210 StringRef bytes) { 1211 assert(TensorType::isValidElementType(type.getElementType()) && 1212 "Input element type should be a valid tensor element type"); 1213 return Base::get(type.getContext(), StandardAttributes::OpaqueElements, type, 1214 dialect, bytes); 1215 } 1216 1217 StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; } 1218 1219 /// Return the value at the given index. If index does not refer to a valid 1220 /// element, then a null attribute is returned. 1221 Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const { 1222 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 1223 if (Dialect *dialect = getDialect()) 1224 return dialect->extractElementHook(*this, index); 1225 return Attribute(); 1226 } 1227 1228 Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; } 1229 1230 bool OpaqueElementsAttr::decode(ElementsAttr &result) { 1231 if (auto *d = getDialect()) 1232 return d->decodeHook(*this, result); 1233 return true; 1234 } 1235 1236 //===----------------------------------------------------------------------===// 1237 // SparseElementsAttr 1238 //===----------------------------------------------------------------------===// 1239 1240 SparseElementsAttr SparseElementsAttr::get(ShapedType type, 1241 DenseElementsAttr indices, 1242 DenseElementsAttr values) { 1243 assert(indices.getType().getElementType().isInteger(64) && 1244 "expected sparse indices to be 64-bit integer values"); 1245 assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) && 1246 "type must be ranked tensor or vector"); 1247 assert(type.hasStaticShape() && "type must have static shape"); 1248 return Base::get(type.getContext(), StandardAttributes::SparseElements, type, 1249 indices.cast<DenseIntElementsAttr>(), values); 1250 } 1251 1252 DenseIntElementsAttr SparseElementsAttr::getIndices() const { 1253 return getImpl()->indices; 1254 } 1255 1256 DenseElementsAttr SparseElementsAttr::getValues() const { 1257 return getImpl()->values; 1258 } 1259 1260 /// Return the value of the element at the given index. 1261 Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const { 1262 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 1263 auto type = getType(); 1264 1265 // The sparse indices are 64-bit integers, so we can reinterpret the raw data 1266 // as a 1-D index array. 1267 auto sparseIndices = getIndices(); 1268 auto sparseIndexValues = sparseIndices.getValues<uint64_t>(); 1269 1270 // Check to see if the indices are a splat. 1271 if (sparseIndices.isSplat()) { 1272 // If the index is also not a splat of the index value, we know that the 1273 // value is zero. 1274 auto splatIndex = *sparseIndexValues.begin(); 1275 if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; })) 1276 return getZeroAttr(); 1277 1278 // If the indices are a splat, we also expect the values to be a splat. 1279 assert(getValues().isSplat() && "expected splat values"); 1280 return getValues().getSplatValue(); 1281 } 1282 1283 // Build a mapping between known indices and the offset of the stored element. 1284 llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices; 1285 auto numSparseIndices = sparseIndices.getType().getDimSize(0); 1286 size_t rank = type.getRank(); 1287 for (size_t i = 0, e = numSparseIndices; i != e; ++i) 1288 mappedIndices.try_emplace( 1289 {&*std::next(sparseIndexValues.begin(), i * rank), rank}, i); 1290 1291 // Look for the provided index key within the mapped indices. If the provided 1292 // index is not found, then return a zero attribute. 1293 auto it = mappedIndices.find(index); 1294 if (it == mappedIndices.end()) 1295 return getZeroAttr(); 1296 1297 // Otherwise, return the held sparse value element. 1298 return getValues().getValue(it->second); 1299 } 1300 1301 /// Get a zero APFloat for the given sparse attribute. 1302 APFloat SparseElementsAttr::getZeroAPFloat() const { 1303 auto eltType = getType().getElementType().cast<FloatType>(); 1304 return APFloat(eltType.getFloatSemantics()); 1305 } 1306 1307 /// Get a zero APInt for the given sparse attribute. 1308 APInt SparseElementsAttr::getZeroAPInt() const { 1309 auto eltType = getType().getElementType().cast<IntegerType>(); 1310 return APInt::getNullValue(eltType.getWidth()); 1311 } 1312 1313 /// Get a zero attribute for the given attribute type. 1314 Attribute SparseElementsAttr::getZeroAttr() const { 1315 auto eltType = getType().getElementType(); 1316 1317 // Handle floating point elements. 1318 if (eltType.isa<FloatType>()) 1319 return FloatAttr::get(eltType, 0); 1320 1321 // Otherwise, this is an integer. 1322 auto intEltTy = eltType.cast<IntegerType>(); 1323 if (intEltTy.getWidth() == 1) 1324 return BoolAttr::get(false, eltType.getContext()); 1325 return IntegerAttr::get(eltType, 0); 1326 } 1327 1328 /// Flatten, and return, all of the sparse indices in this attribute in 1329 /// row-major order. 1330 std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const { 1331 std::vector<ptrdiff_t> flatSparseIndices; 1332 1333 // The sparse indices are 64-bit integers, so we can reinterpret the raw data 1334 // as a 1-D index array. 1335 auto sparseIndices = getIndices(); 1336 auto sparseIndexValues = sparseIndices.getValues<uint64_t>(); 1337 if (sparseIndices.isSplat()) { 1338 SmallVector<uint64_t, 8> indices(getType().getRank(), 1339 *sparseIndexValues.begin()); 1340 flatSparseIndices.push_back(getFlattenedIndex(indices)); 1341 return flatSparseIndices; 1342 } 1343 1344 // Otherwise, reinterpret each index as an ArrayRef when flattening. 1345 auto numSparseIndices = sparseIndices.getType().getDimSize(0); 1346 size_t rank = getType().getRank(); 1347 for (size_t i = 0, e = numSparseIndices; i != e; ++i) 1348 flatSparseIndices.push_back(getFlattenedIndex( 1349 {&*std::next(sparseIndexValues.begin(), i * rank), rank})); 1350 return flatSparseIndices; 1351 } 1352 1353 //===----------------------------------------------------------------------===// 1354 // MutableDictionaryAttr 1355 //===----------------------------------------------------------------------===// 1356 1357 MutableDictionaryAttr::MutableDictionaryAttr( 1358 ArrayRef<NamedAttribute> attributes) { 1359 setAttrs(attributes); 1360 } 1361 1362 /// Return the underlying dictionary attribute. 1363 DictionaryAttr 1364 MutableDictionaryAttr::getDictionary(MLIRContext *context) const { 1365 // Construct empty DictionaryAttr if needed. 1366 if (!attrs) 1367 return DictionaryAttr::get({}, context); 1368 return attrs; 1369 } 1370 1371 ArrayRef<NamedAttribute> MutableDictionaryAttr::getAttrs() const { 1372 return attrs ? attrs.getValue() : llvm::None; 1373 } 1374 1375 /// Replace the held attributes with ones provided in 'newAttrs'. 1376 void MutableDictionaryAttr::setAttrs(ArrayRef<NamedAttribute> attributes) { 1377 // Don't create an attribute list if there are no attributes. 1378 if (attributes.empty()) 1379 attrs = nullptr; 1380 else 1381 attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext()); 1382 } 1383 1384 /// Return the specified attribute if present, null otherwise. 1385 Attribute MutableDictionaryAttr::get(StringRef name) const { 1386 return attrs ? attrs.get(name) : nullptr; 1387 } 1388 1389 /// Return the specified attribute if present, null otherwise. 1390 Attribute MutableDictionaryAttr::get(Identifier name) const { 1391 return attrs ? attrs.get(name) : nullptr; 1392 } 1393 1394 /// Return the specified named attribute if present, None otherwise. 1395 Optional<NamedAttribute> MutableDictionaryAttr::getNamed(StringRef name) const { 1396 return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>(); 1397 } 1398 Optional<NamedAttribute> 1399 MutableDictionaryAttr::getNamed(Identifier name) const { 1400 return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>(); 1401 } 1402 1403 /// If the an attribute exists with the specified name, change it to the new 1404 /// value. Otherwise, add a new attribute with the specified name/value. 1405 void MutableDictionaryAttr::set(Identifier name, Attribute value) { 1406 assert(value && "attributes may never be null"); 1407 1408 // Look for an existing value for the given name, and set it in-place. 1409 ArrayRef<NamedAttribute> values = getAttrs(); 1410 const auto *it = llvm::find_if( 1411 values, [name](NamedAttribute attr) { return attr.first == name; }); 1412 if (it != values.end()) { 1413 // Bail out early if the value is the same as what we already have. 1414 if (it->second == value) 1415 return; 1416 1417 SmallVector<NamedAttribute, 8> newAttrs(values.begin(), values.end()); 1418 newAttrs[it - values.begin()].second = value; 1419 attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext()); 1420 return; 1421 } 1422 1423 // Otherwise, insert the new attribute into its sorted position. 1424 it = llvm::lower_bound(values, name); 1425 SmallVector<NamedAttribute, 8> newAttrs; 1426 newAttrs.reserve(values.size() + 1); 1427 newAttrs.append(values.begin(), it); 1428 newAttrs.push_back({name, value}); 1429 newAttrs.append(it, values.end()); 1430 attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext()); 1431 } 1432 1433 /// Remove the attribute with the specified name if it exists. The return 1434 /// value indicates whether the attribute was present or not. 1435 auto MutableDictionaryAttr::remove(Identifier name) -> RemoveResult { 1436 auto origAttrs = getAttrs(); 1437 for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) { 1438 if (origAttrs[i].first == name) { 1439 // Handle the simple case of removing the only attribute in the list. 1440 if (e == 1) { 1441 attrs = nullptr; 1442 return RemoveResult::Removed; 1443 } 1444 1445 SmallVector<NamedAttribute, 8> newAttrs; 1446 newAttrs.reserve(origAttrs.size() - 1); 1447 newAttrs.append(origAttrs.begin(), origAttrs.begin() + i); 1448 newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end()); 1449 attrs = DictionaryAttr::getWithSorted(newAttrs, 1450 newAttrs[0].second.getContext()); 1451 return RemoveResult::Removed; 1452 } 1453 } 1454 return RemoveResult::NotFound; 1455 } 1456 1457 bool mlir::operator<(const NamedAttribute &lhs, const NamedAttribute &rhs) { 1458 return strcmp(lhs.first.data(), rhs.first.data()) < 0; 1459 } 1460 bool mlir::operator<(const NamedAttribute &lhs, StringRef rhs) { 1461 // This is correct even when attr.first.data()[name.size()] is not a zero 1462 // string terminator, because we only care about a less than comparison. 1463 // This can't use memcmp, because it doesn't guarantee that it will stop 1464 // reading both buffers if one is shorter than the other, even if there is 1465 // a difference. 1466 return strncmp(lhs.first.data(), rhs.data(), rhs.size()) < 0; 1467 } 1468