1 //===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Attributes.h" 10 #include "AttributeDetail.h" 11 #include "mlir/IR/AffineMap.h" 12 #include "mlir/IR/BuiltinOps.h" 13 #include "mlir/IR/Diagnostics.h" 14 #include "mlir/IR/Dialect.h" 15 #include "mlir/IR/IntegerSet.h" 16 #include "mlir/IR/Types.h" 17 #include "mlir/Interfaces/DecodeAttributesInterfaces.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Support/Endian.h" 21 22 using namespace mlir; 23 using namespace mlir::detail; 24 25 //===----------------------------------------------------------------------===// 26 // AttributeStorage 27 //===----------------------------------------------------------------------===// 28 29 AttributeStorage::AttributeStorage(Type type) 30 : type(type.getAsOpaquePointer()) {} 31 AttributeStorage::AttributeStorage() : type(nullptr) {} 32 33 Type AttributeStorage::getType() const { 34 return Type::getFromOpaquePointer(type); 35 } 36 void AttributeStorage::setType(Type newType) { 37 type = newType.getAsOpaquePointer(); 38 } 39 40 //===----------------------------------------------------------------------===// 41 // Attribute 42 //===----------------------------------------------------------------------===// 43 44 /// Return the type of this attribute. 45 Type Attribute::getType() const { return impl->getType(); } 46 47 /// Return the context this attribute belongs to. 48 MLIRContext *Attribute::getContext() const { return getType().getContext(); } 49 50 /// Get the dialect this attribute is registered to. 51 Dialect &Attribute::getDialect() const { 52 return impl->getAbstractAttribute().getDialect(); 53 } 54 55 //===----------------------------------------------------------------------===// 56 // AffineMapAttr 57 //===----------------------------------------------------------------------===// 58 59 AffineMapAttr AffineMapAttr::get(AffineMap value) { 60 return Base::get(value.getContext(), value); 61 } 62 63 AffineMap AffineMapAttr::getValue() const { return getImpl()->value; } 64 65 //===----------------------------------------------------------------------===// 66 // ArrayAttr 67 //===----------------------------------------------------------------------===// 68 69 ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) { 70 return Base::get(context, value); 71 } 72 73 ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; } 74 75 Attribute ArrayAttr::operator[](unsigned idx) const { 76 assert(idx < size() && "index out of bounds"); 77 return getValue()[idx]; 78 } 79 80 //===----------------------------------------------------------------------===// 81 // DictionaryAttr 82 //===----------------------------------------------------------------------===// 83 84 /// Helper function that does either an in place sort or sorts from source array 85 /// into destination. If inPlace then storage is both the source and the 86 /// destination, else value is the source and storage destination. Returns 87 /// whether source was sorted. 88 template <bool inPlace> 89 static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value, 90 SmallVectorImpl<NamedAttribute> &storage) { 91 // Specialize for the common case. 92 switch (value.size()) { 93 case 0: 94 // Zero already sorted. 95 break; 96 case 1: 97 // One already sorted but may need to be copied. 98 if (!inPlace) 99 storage.assign({value[0]}); 100 break; 101 case 2: { 102 bool isSorted = value[0] < value[1]; 103 if (inPlace) { 104 if (!isSorted) 105 std::swap(storage[0], storage[1]); 106 } else if (isSorted) { 107 storage.assign({value[0], value[1]}); 108 } else { 109 storage.assign({value[1], value[0]}); 110 } 111 return !isSorted; 112 } 113 default: 114 if (!inPlace) 115 storage.assign(value.begin(), value.end()); 116 // Check to see they are sorted already. 117 bool isSorted = llvm::is_sorted(value); 118 if (!isSorted) { 119 // If not, do a general sort. 120 llvm::array_pod_sort(storage.begin(), storage.end()); 121 value = storage; 122 } 123 return !isSorted; 124 } 125 return false; 126 } 127 128 /// Returns an entry with a duplicate name from the given sorted array of named 129 /// attributes. Returns llvm::None if all elements have unique names. 130 static Optional<NamedAttribute> 131 findDuplicateElement(ArrayRef<NamedAttribute> value) { 132 const Optional<NamedAttribute> none{llvm::None}; 133 if (value.size() < 2) 134 return none; 135 136 if (value.size() == 2) 137 return value[0].first == value[1].first ? value[0] : none; 138 139 auto it = std::adjacent_find( 140 value.begin(), value.end(), 141 [](NamedAttribute l, NamedAttribute r) { return l.first == r.first; }); 142 return it != value.end() ? *it : none; 143 } 144 145 bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value, 146 SmallVectorImpl<NamedAttribute> &storage) { 147 bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage); 148 assert(!findDuplicateElement(storage) && 149 "DictionaryAttr element names must be unique"); 150 return isSorted; 151 } 152 153 bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) { 154 bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array); 155 assert(!findDuplicateElement(array) && 156 "DictionaryAttr element names must be unique"); 157 return isSorted; 158 } 159 160 Optional<NamedAttribute> 161 DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array, 162 bool isSorted) { 163 if (!isSorted) 164 dictionaryAttrSort</*inPlace=*/true>(array, array); 165 return findDuplicateElement(array); 166 } 167 168 DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value, 169 MLIRContext *context) { 170 if (value.empty()) 171 return DictionaryAttr::getEmpty(context); 172 assert(llvm::all_of(value, 173 [](const NamedAttribute &attr) { return attr.second; }) && 174 "value cannot have null entries"); 175 176 // We need to sort the element list to canonicalize it. 177 SmallVector<NamedAttribute, 8> storage; 178 if (dictionaryAttrSort</*inPlace=*/false>(value, storage)) 179 value = storage; 180 assert(!findDuplicateElement(value) && 181 "DictionaryAttr element names must be unique"); 182 return Base::get(context, value); 183 } 184 /// Construct a dictionary with an array of values that is known to already be 185 /// sorted by name and uniqued. 186 DictionaryAttr DictionaryAttr::getWithSorted(ArrayRef<NamedAttribute> value, 187 MLIRContext *context) { 188 if (value.empty()) 189 return DictionaryAttr::getEmpty(context); 190 // Ensure that the attribute elements are unique and sorted. 191 assert(llvm::is_sorted(value, 192 [](NamedAttribute l, NamedAttribute r) { 193 return l.first.strref() < r.first.strref(); 194 }) && 195 "expected attribute values to be sorted"); 196 assert(!findDuplicateElement(value) && 197 "DictionaryAttr element names must be unique"); 198 return Base::get(context, value); 199 } 200 201 ArrayRef<NamedAttribute> DictionaryAttr::getValue() const { 202 return getImpl()->getElements(); 203 } 204 205 /// Return the specified attribute if present, null otherwise. 206 Attribute DictionaryAttr::get(StringRef name) const { 207 Optional<NamedAttribute> attr = getNamed(name); 208 return attr ? attr->second : nullptr; 209 } 210 Attribute DictionaryAttr::get(Identifier name) const { 211 Optional<NamedAttribute> attr = getNamed(name); 212 return attr ? attr->second : nullptr; 213 } 214 215 /// Return the specified named attribute if present, None otherwise. 216 Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const { 217 ArrayRef<NamedAttribute> values = getValue(); 218 const auto *it = llvm::lower_bound(values, name); 219 return it != values.end() && it->first == name ? *it 220 : Optional<NamedAttribute>(); 221 } 222 Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const { 223 for (auto elt : getValue()) 224 if (elt.first == name) 225 return elt; 226 return llvm::None; 227 } 228 229 DictionaryAttr::iterator DictionaryAttr::begin() const { 230 return getValue().begin(); 231 } 232 DictionaryAttr::iterator DictionaryAttr::end() const { 233 return getValue().end(); 234 } 235 size_t DictionaryAttr::size() const { return getValue().size(); } 236 237 //===----------------------------------------------------------------------===// 238 // FloatAttr 239 //===----------------------------------------------------------------------===// 240 241 FloatAttr FloatAttr::get(Type type, double value) { 242 return Base::get(type.getContext(), type, value); 243 } 244 245 FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) { 246 return Base::getChecked(loc, type, value); 247 } 248 249 FloatAttr FloatAttr::get(Type type, const APFloat &value) { 250 return Base::get(type.getContext(), type, value); 251 } 252 253 FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) { 254 return Base::getChecked(loc, type, value); 255 } 256 257 APFloat FloatAttr::getValue() const { return getImpl()->getValue(); } 258 259 double FloatAttr::getValueAsDouble() const { 260 return getValueAsDouble(getValue()); 261 } 262 double FloatAttr::getValueAsDouble(APFloat value) { 263 if (&value.getSemantics() != &APFloat::IEEEdouble()) { 264 bool losesInfo = false; 265 value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 266 &losesInfo); 267 } 268 return value.convertToDouble(); 269 } 270 271 /// Verify construction invariants. 272 static LogicalResult verifyFloatTypeInvariants(Location loc, Type type) { 273 if (!type.isa<FloatType>()) 274 return emitError(loc, "expected floating point type"); 275 return success(); 276 } 277 278 LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type, 279 double value) { 280 return verifyFloatTypeInvariants(loc, type); 281 } 282 283 LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type, 284 const APFloat &value) { 285 // Verify that the type is correct. 286 if (failed(verifyFloatTypeInvariants(loc, type))) 287 return failure(); 288 289 // Verify that the type semantics match that of the value. 290 if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) { 291 return emitError( 292 loc, "FloatAttr type doesn't match the type implied by its value"); 293 } 294 return success(); 295 } 296 297 //===----------------------------------------------------------------------===// 298 // SymbolRefAttr 299 //===----------------------------------------------------------------------===// 300 301 FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) { 302 return Base::get(ctx, value, llvm::None).cast<FlatSymbolRefAttr>(); 303 } 304 305 SymbolRefAttr SymbolRefAttr::get(StringRef value, 306 ArrayRef<FlatSymbolRefAttr> nestedReferences, 307 MLIRContext *ctx) { 308 return Base::get(ctx, value, nestedReferences); 309 } 310 311 StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; } 312 313 StringRef SymbolRefAttr::getLeafReference() const { 314 ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences(); 315 return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue(); 316 } 317 318 ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const { 319 return getImpl()->getNestedRefs(); 320 } 321 322 //===----------------------------------------------------------------------===// 323 // IntegerAttr 324 //===----------------------------------------------------------------------===// 325 326 IntegerAttr IntegerAttr::get(Type type, const APInt &value) { 327 if (type.isSignlessInteger(1)) 328 return BoolAttr::get(value.getBoolValue(), type.getContext()); 329 return Base::get(type.getContext(), type, value); 330 } 331 332 IntegerAttr IntegerAttr::get(Type type, int64_t value) { 333 // This uses 64 bit APInts by default for index type. 334 if (type.isIndex()) 335 return get(type, APInt(IndexType::kInternalStorageBitWidth, value)); 336 337 auto intType = type.cast<IntegerType>(); 338 return get(type, APInt(intType.getWidth(), value, intType.isSignedInteger())); 339 } 340 341 APInt IntegerAttr::getValue() const { return getImpl()->getValue(); } 342 343 int64_t IntegerAttr::getInt() const { 344 assert((getImpl()->getType().isIndex() || 345 getImpl()->getType().isSignlessInteger()) && 346 "must be signless integer"); 347 return getValue().getSExtValue(); 348 } 349 350 int64_t IntegerAttr::getSInt() const { 351 assert(getImpl()->getType().isSignedInteger() && "must be signed integer"); 352 return getValue().getSExtValue(); 353 } 354 355 uint64_t IntegerAttr::getUInt() const { 356 assert(getImpl()->getType().isUnsignedInteger() && 357 "must be unsigned integer"); 358 return getValue().getZExtValue(); 359 } 360 361 static LogicalResult verifyIntegerTypeInvariants(Location loc, Type type) { 362 if (type.isa<IntegerType, IndexType>()) 363 return success(); 364 return emitError(loc, "expected integer or index type"); 365 } 366 367 LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type, 368 int64_t value) { 369 return verifyIntegerTypeInvariants(loc, type); 370 } 371 372 LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type, 373 const APInt &value) { 374 if (failed(verifyIntegerTypeInvariants(loc, type))) 375 return failure(); 376 if (auto integerType = type.dyn_cast<IntegerType>()) 377 if (integerType.getWidth() != value.getBitWidth()) 378 return emitError(loc, "integer type bit width (") 379 << integerType.getWidth() << ") doesn't match value bit width (" 380 << value.getBitWidth() << ")"; 381 return success(); 382 } 383 384 //===----------------------------------------------------------------------===// 385 // BoolAttr 386 387 bool BoolAttr::getValue() const { 388 auto *storage = reinterpret_cast<IntegerAttributeStorage *>(impl); 389 return storage->getValue().getBoolValue(); 390 } 391 392 bool BoolAttr::classof(Attribute attr) { 393 IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>(); 394 return intAttr && intAttr.getType().isSignlessInteger(1); 395 } 396 397 //===----------------------------------------------------------------------===// 398 // IntegerSetAttr 399 //===----------------------------------------------------------------------===// 400 401 IntegerSetAttr IntegerSetAttr::get(IntegerSet value) { 402 return Base::get(value.getConstraint(0).getContext(), value); 403 } 404 405 IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; } 406 407 //===----------------------------------------------------------------------===// 408 // OpaqueAttr 409 //===----------------------------------------------------------------------===// 410 411 OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type, 412 MLIRContext *context) { 413 return Base::get(context, dialect, attrData, type); 414 } 415 416 OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData, 417 Type type, Location location) { 418 return Base::getChecked(location, dialect, attrData, type); 419 } 420 421 /// Returns the dialect namespace of the opaque attribute. 422 Identifier OpaqueAttr::getDialectNamespace() const { 423 return getImpl()->dialectNamespace; 424 } 425 426 /// Returns the raw attribute data of the opaque attribute. 427 StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; } 428 429 /// Verify the construction of an opaque attribute. 430 LogicalResult OpaqueAttr::verifyConstructionInvariants(Location loc, 431 Identifier dialect, 432 StringRef attrData, 433 Type type) { 434 if (!Dialect::isValidNamespace(dialect.strref())) 435 return emitError(loc, "invalid dialect namespace '") << dialect << "'"; 436 return success(); 437 } 438 439 //===----------------------------------------------------------------------===// 440 // StringAttr 441 //===----------------------------------------------------------------------===// 442 443 StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) { 444 return get(bytes, NoneType::get(context)); 445 } 446 447 /// Get an instance of a StringAttr with the given string and Type. 448 StringAttr StringAttr::get(StringRef bytes, Type type) { 449 return Base::get(type.getContext(), bytes, type); 450 } 451 452 StringRef StringAttr::getValue() const { return getImpl()->value; } 453 454 //===----------------------------------------------------------------------===// 455 // TypeAttr 456 //===----------------------------------------------------------------------===// 457 458 TypeAttr TypeAttr::get(Type value) { 459 return Base::get(value.getContext(), value); 460 } 461 462 Type TypeAttr::getValue() const { return getImpl()->value; } 463 464 //===----------------------------------------------------------------------===// 465 // ElementsAttr 466 //===----------------------------------------------------------------------===// 467 468 ShapedType ElementsAttr::getType() const { 469 return Attribute::getType().cast<ShapedType>(); 470 } 471 472 /// Returns the number of elements held by this attribute. 473 int64_t ElementsAttr::getNumElements() const { 474 return getType().getNumElements(); 475 } 476 477 /// Return the value at the given index. If index does not refer to a valid 478 /// element, then a null attribute is returned. 479 Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const { 480 if (auto denseAttr = dyn_cast<DenseElementsAttr>()) 481 return denseAttr.getValue(index); 482 if (auto opaqueAttr = dyn_cast<OpaqueElementsAttr>()) 483 return opaqueAttr.getValue(index); 484 return cast<SparseElementsAttr>().getValue(index); 485 } 486 487 /// Return if the given 'index' refers to a valid element in this attribute. 488 bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const { 489 auto type = getType(); 490 491 // Verify that the rank of the indices matches the held type. 492 auto rank = type.getRank(); 493 if (rank != static_cast<int64_t>(index.size())) 494 return false; 495 496 // Verify that all of the indices are within the shape dimensions. 497 auto shape = type.getShape(); 498 return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) { 499 return static_cast<int64_t>(index[i]) < shape[i]; 500 }); 501 } 502 503 ElementsAttr 504 ElementsAttr::mapValues(Type newElementType, 505 function_ref<APInt(const APInt &)> mapping) const { 506 if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>()) 507 return intOrFpAttr.mapValues(newElementType, mapping); 508 llvm_unreachable("unsupported ElementsAttr subtype"); 509 } 510 511 ElementsAttr 512 ElementsAttr::mapValues(Type newElementType, 513 function_ref<APInt(const APFloat &)> mapping) const { 514 if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>()) 515 return intOrFpAttr.mapValues(newElementType, mapping); 516 llvm_unreachable("unsupported ElementsAttr subtype"); 517 } 518 519 /// Method for support type inquiry through isa, cast and dyn_cast. 520 bool ElementsAttr::classof(Attribute attr) { 521 return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr, 522 OpaqueElementsAttr, SparseElementsAttr>(); 523 } 524 525 /// Returns the 1 dimensional flattened row-major index from the given 526 /// multi-dimensional index. 527 uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const { 528 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 529 auto type = getType(); 530 531 // Reduce the provided multidimensional index into a flattended 1D row-major 532 // index. 533 auto rank = type.getRank(); 534 auto shape = type.getShape(); 535 uint64_t valueIndex = 0; 536 uint64_t dimMultiplier = 1; 537 for (int i = rank - 1; i >= 0; --i) { 538 valueIndex += index[i] * dimMultiplier; 539 dimMultiplier *= shape[i]; 540 } 541 return valueIndex; 542 } 543 544 //===----------------------------------------------------------------------===// 545 // DenseElementsAttr Utilities 546 //===----------------------------------------------------------------------===// 547 548 /// Get the bitwidth of a dense element type within the buffer. 549 /// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8. 550 static size_t getDenseElementStorageWidth(size_t origWidth) { 551 return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth); 552 } 553 static size_t getDenseElementStorageWidth(Type elementType) { 554 return getDenseElementStorageWidth(getDenseElementBitWidth(elementType)); 555 } 556 557 /// Set a bit to a specific value. 558 static void setBit(char *rawData, size_t bitPos, bool value) { 559 if (value) 560 rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT)); 561 else 562 rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT)); 563 } 564 565 /// Return the value of the specified bit. 566 static bool getBit(const char *rawData, size_t bitPos) { 567 return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0; 568 } 569 570 /// Get start position of actual data in `value`. Actual data is 571 /// stored in last `bitWidth`/CHAR_BIT bytes in big endian. 572 static char *getAPIntDataPos(APInt &value, size_t bitWidth) { 573 char *dataPos = 574 const_cast<char *>(reinterpret_cast<const char *>(value.getRawData())); 575 if (llvm::support::endian::system_endianness() == 576 llvm::support::endianness::big) 577 dataPos = dataPos + 8 - llvm::divideCeil(bitWidth, CHAR_BIT); 578 return dataPos; 579 } 580 581 /// Read APInt `value` from appropriate position. 582 static void readAPInt(APInt &value, size_t bitWidth, char *outData) { 583 char *dataPos = getAPIntDataPos(value, bitWidth); 584 std::copy_n(dataPos, llvm::divideCeil(bitWidth, CHAR_BIT), outData); 585 } 586 587 /// Write `inData` to appropriate position of APInt `value`. 588 static void writeAPInt(const char *inData, size_t bitWidth, APInt &value) { 589 char *dataPos = getAPIntDataPos(value, bitWidth); 590 std::copy_n(inData, llvm::divideCeil(bitWidth, CHAR_BIT), dataPos); 591 } 592 593 /// Writes value to the bit position `bitPos` in array `rawData`. 594 static void writeBits(char *rawData, size_t bitPos, APInt value) { 595 size_t bitWidth = value.getBitWidth(); 596 597 // If the bitwidth is 1 we just toggle the specific bit. 598 if (bitWidth == 1) 599 return setBit(rawData, bitPos, value.isOneValue()); 600 601 // Otherwise, the bit position is guaranteed to be byte aligned. 602 assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); 603 readAPInt(value, bitWidth, rawData + (bitPos / CHAR_BIT)); 604 } 605 606 /// Reads the next `bitWidth` bits from the bit position `bitPos` in array 607 /// `rawData`. 608 static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) { 609 // Handle a boolean bit position. 610 if (bitWidth == 1) 611 return APInt(1, getBit(rawData, bitPos) ? 1 : 0); 612 613 // Otherwise, the bit position must be 8-bit aligned. 614 assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned"); 615 APInt result(bitWidth, 0); 616 writeAPInt(rawData + (bitPos / CHAR_BIT), bitWidth, result); 617 return result; 618 } 619 620 /// Returns true if 'values' corresponds to a splat, i.e. one element, or has 621 /// the same element count as 'type'. 622 template <typename Values> 623 static bool hasSameElementsOrSplat(ShapedType type, const Values &values) { 624 return (values.size() == 1) || 625 (type.getNumElements() == static_cast<int64_t>(values.size())); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // DenseElementsAttr Iterators 630 //===----------------------------------------------------------------------===// 631 632 //===----------------------------------------------------------------------===// 633 // AttributeElementIterator 634 635 DenseElementsAttr::AttributeElementIterator::AttributeElementIterator( 636 DenseElementsAttr attr, size_t index) 637 : llvm::indexed_accessor_iterator<AttributeElementIterator, const void *, 638 Attribute, Attribute, Attribute>( 639 attr.getAsOpaquePointer(), index) {} 640 641 Attribute DenseElementsAttr::AttributeElementIterator::operator*() const { 642 auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>(); 643 Type eltTy = owner.getType().getElementType(); 644 if (auto intEltTy = eltTy.dyn_cast<IntegerType>()) 645 return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); 646 if (eltTy.isa<IndexType>()) 647 return IntegerAttr::get(eltTy, *IntElementIterator(owner, index)); 648 if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) { 649 IntElementIterator intIt(owner, index); 650 FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt); 651 return FloatAttr::get(eltTy, *floatIt); 652 } 653 if (owner.isa<DenseStringElementsAttr>()) { 654 ArrayRef<StringRef> vals = owner.getRawStringData(); 655 return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy); 656 } 657 llvm_unreachable("unexpected element type"); 658 } 659 660 //===----------------------------------------------------------------------===// 661 // BoolElementIterator 662 663 DenseElementsAttr::BoolElementIterator::BoolElementIterator( 664 DenseElementsAttr attr, size_t dataIndex) 665 : DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>( 666 attr.getRawData().data(), attr.isSplat(), dataIndex) {} 667 668 bool DenseElementsAttr::BoolElementIterator::operator*() const { 669 return getBit(getData(), getDataIndex()); 670 } 671 672 //===----------------------------------------------------------------------===// 673 // IntElementIterator 674 675 DenseElementsAttr::IntElementIterator::IntElementIterator( 676 DenseElementsAttr attr, size_t dataIndex) 677 : DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>( 678 attr.getRawData().data(), attr.isSplat(), dataIndex), 679 bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {} 680 681 APInt DenseElementsAttr::IntElementIterator::operator*() const { 682 return readBits(getData(), 683 getDataIndex() * getDenseElementStorageWidth(bitWidth), 684 bitWidth); 685 } 686 687 //===----------------------------------------------------------------------===// 688 // ComplexIntElementIterator 689 690 DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator( 691 DenseElementsAttr attr, size_t dataIndex) 692 : DenseElementIndexedIteratorImpl<ComplexIntElementIterator, 693 std::complex<APInt>, std::complex<APInt>, 694 std::complex<APInt>>( 695 attr.getRawData().data(), attr.isSplat(), dataIndex) { 696 auto complexType = attr.getType().getElementType().cast<ComplexType>(); 697 bitWidth = getDenseElementBitWidth(complexType.getElementType()); 698 } 699 700 std::complex<APInt> 701 DenseElementsAttr::ComplexIntElementIterator::operator*() const { 702 size_t storageWidth = getDenseElementStorageWidth(bitWidth); 703 size_t offset = getDataIndex() * storageWidth * 2; 704 return {readBits(getData(), offset, bitWidth), 705 readBits(getData(), offset + storageWidth, bitWidth)}; 706 } 707 708 //===----------------------------------------------------------------------===// 709 // FloatElementIterator 710 711 DenseElementsAttr::FloatElementIterator::FloatElementIterator( 712 const llvm::fltSemantics &smt, IntElementIterator it) 713 : llvm::mapped_iterator<IntElementIterator, 714 std::function<APFloat(const APInt &)>>( 715 it, [&](const APInt &val) { return APFloat(smt, val); }) {} 716 717 //===----------------------------------------------------------------------===// 718 // ComplexFloatElementIterator 719 720 DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator( 721 const llvm::fltSemantics &smt, ComplexIntElementIterator it) 722 : llvm::mapped_iterator< 723 ComplexIntElementIterator, 724 std::function<std::complex<APFloat>(const std::complex<APInt> &)>>( 725 it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> { 726 return {APFloat(smt, val.real()), APFloat(smt, val.imag())}; 727 }) {} 728 729 //===----------------------------------------------------------------------===// 730 // DenseElementsAttr 731 //===----------------------------------------------------------------------===// 732 733 /// Method for support type inquiry through isa, cast and dyn_cast. 734 bool DenseElementsAttr::classof(Attribute attr) { 735 return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>(); 736 } 737 738 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 739 ArrayRef<Attribute> values) { 740 assert(hasSameElementsOrSplat(type, values)); 741 742 // If the element type is not based on int/float/index, assume it is a string 743 // type. 744 auto eltType = type.getElementType(); 745 if (!type.getElementType().isIntOrIndexOrFloat()) { 746 SmallVector<StringRef, 8> stringValues; 747 stringValues.reserve(values.size()); 748 for (Attribute attr : values) { 749 assert(attr.isa<StringAttr>() && 750 "expected string value for non integer/index/float element"); 751 stringValues.push_back(attr.cast<StringAttr>().getValue()); 752 } 753 return get(type, stringValues); 754 } 755 756 // Otherwise, get the raw storage width to use for the allocation. 757 size_t bitWidth = getDenseElementBitWidth(eltType); 758 size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); 759 760 // Compress the attribute values into a character buffer. 761 SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) * 762 values.size()); 763 APInt intVal; 764 for (unsigned i = 0, e = values.size(); i < e; ++i) { 765 assert(eltType == values[i].getType() && 766 "expected attribute value to have element type"); 767 if (eltType.isa<FloatType>()) 768 intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt(); 769 else if (eltType.isa<IntegerType>()) 770 intVal = values[i].cast<IntegerAttr>().getValue(); 771 else 772 llvm_unreachable("unexpected element type"); 773 774 assert(intVal.getBitWidth() == bitWidth && 775 "expected value to have same bitwidth as element type"); 776 writeBits(data.data(), i * storageBitWidth, intVal); 777 } 778 return DenseIntOrFPElementsAttr::getRaw(type, data, 779 /*isSplat=*/(values.size() == 1)); 780 } 781 782 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 783 ArrayRef<bool> values) { 784 assert(hasSameElementsOrSplat(type, values)); 785 assert(type.getElementType().isInteger(1)); 786 787 std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT)); 788 for (int i = 0, e = values.size(); i != e; ++i) 789 setBit(buff.data(), i, values[i]); 790 return DenseIntOrFPElementsAttr::getRaw(type, buff, 791 /*isSplat=*/(values.size() == 1)); 792 } 793 794 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 795 ArrayRef<StringRef> values) { 796 assert(!type.getElementType().isIntOrFloat()); 797 return DenseStringElementsAttr::get(type, values); 798 } 799 800 /// Constructs a dense integer elements attribute from an array of APInt 801 /// values. Each APInt value is expected to have the same bitwidth as the 802 /// element type of 'type'. 803 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 804 ArrayRef<APInt> values) { 805 assert(type.getElementType().isIntOrIndex()); 806 assert(hasSameElementsOrSplat(type, values)); 807 size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); 808 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, 809 /*isSplat=*/(values.size() == 1)); 810 } 811 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 812 ArrayRef<std::complex<APInt>> values) { 813 ComplexType complex = type.getElementType().cast<ComplexType>(); 814 assert(complex.getElementType().isa<IntegerType>()); 815 assert(hasSameElementsOrSplat(type, values)); 816 size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; 817 ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()), 818 values.size() * 2); 819 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals, 820 /*isSplat=*/(values.size() == 1)); 821 } 822 823 // Constructs a dense float elements attribute from an array of APFloat 824 // values. Each APFloat value is expected to have the same bitwidth as the 825 // element type of 'type'. 826 DenseElementsAttr DenseElementsAttr::get(ShapedType type, 827 ArrayRef<APFloat> values) { 828 assert(type.getElementType().isa<FloatType>()); 829 assert(hasSameElementsOrSplat(type, values)); 830 size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType()); 831 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values, 832 /*isSplat=*/(values.size() == 1)); 833 } 834 DenseElementsAttr 835 DenseElementsAttr::get(ShapedType type, 836 ArrayRef<std::complex<APFloat>> values) { 837 ComplexType complex = type.getElementType().cast<ComplexType>(); 838 assert(complex.getElementType().isa<FloatType>()); 839 assert(hasSameElementsOrSplat(type, values)); 840 ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()), 841 values.size() * 2); 842 size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2; 843 return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals, 844 /*isSplat=*/(values.size() == 1)); 845 } 846 847 /// Construct a dense elements attribute from a raw buffer representing the 848 /// data for this attribute. Users should generally not use this methods as 849 /// the expected buffer format may not be a form the user expects. 850 DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type, 851 ArrayRef<char> rawBuffer, 852 bool isSplatBuffer) { 853 return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer); 854 } 855 856 /// Returns true if the given buffer is a valid raw buffer for the given type. 857 bool DenseElementsAttr::isValidRawBuffer(ShapedType type, 858 ArrayRef<char> rawBuffer, 859 bool &detectedSplat) { 860 size_t storageWidth = getDenseElementStorageWidth(type.getElementType()); 861 size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT; 862 863 // Storage width of 1 is special as it is packed by the bit. 864 if (storageWidth == 1) { 865 // Check for a splat, or a buffer equal to the number of elements. 866 if ((detectedSplat = rawBuffer.size() == 1)) 867 return true; 868 return rawBufferWidth == llvm::alignTo<8>(type.getNumElements()); 869 } 870 // All other types are 8-bit aligned. 871 if ((detectedSplat = rawBufferWidth == storageWidth)) 872 return true; 873 return rawBufferWidth == (storageWidth * type.getNumElements()); 874 } 875 876 /// Check the information for a C++ data type, check if this type is valid for 877 /// the current attribute. This method is used to verify specific type 878 /// invariants that the templatized 'getValues' method cannot. 879 static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt, 880 bool isSigned) { 881 // Make sure that the data element size is the same as the type element width. 882 if (getDenseElementBitWidth(type) != 883 static_cast<size_t>(dataEltSize * CHAR_BIT)) 884 return false; 885 886 // Check that the element type is either float or integer or index. 887 if (!isInt) 888 return type.isa<FloatType>(); 889 if (type.isIndex()) 890 return true; 891 892 auto intType = type.dyn_cast<IntegerType>(); 893 if (!intType) 894 return false; 895 896 // Make sure signedness semantics is consistent. 897 if (intType.isSignless()) 898 return true; 899 return intType.isSigned() ? isSigned : !isSigned; 900 } 901 902 /// Defaults down the subclass implementation. 903 DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type, 904 ArrayRef<char> data, 905 int64_t dataEltSize, 906 bool isInt, bool isSigned) { 907 return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt, 908 isSigned); 909 } 910 DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type, 911 ArrayRef<char> data, 912 int64_t dataEltSize, 913 bool isInt, 914 bool isSigned) { 915 return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize, 916 isInt, isSigned); 917 } 918 919 /// A method used to verify specific type invariants that the templatized 'get' 920 /// method cannot. 921 bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt, 922 bool isSigned) const { 923 return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt, 924 isSigned); 925 } 926 927 /// Check the information for a C++ data type, check if this type is valid for 928 /// the current attribute. 929 bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt, 930 bool isSigned) const { 931 return ::isValidIntOrFloat( 932 getType().getElementType().cast<ComplexType>().getElementType(), 933 dataEltSize / 2, isInt, isSigned); 934 } 935 936 /// Returns true if this attribute corresponds to a splat, i.e. if all element 937 /// values are the same. 938 bool DenseElementsAttr::isSplat() const { 939 return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat; 940 } 941 942 /// Return the held element values as a range of Attributes. 943 auto DenseElementsAttr::getAttributeValues() const 944 -> llvm::iterator_range<AttributeElementIterator> { 945 return {attr_value_begin(), attr_value_end()}; 946 } 947 auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator { 948 return AttributeElementIterator(*this, 0); 949 } 950 auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator { 951 return AttributeElementIterator(*this, getNumElements()); 952 } 953 954 /// Return the held element values as a range of bool. The element type of 955 /// this attribute must be of integer type of bitwidth 1. 956 auto DenseElementsAttr::getBoolValues() const 957 -> llvm::iterator_range<BoolElementIterator> { 958 auto eltType = getType().getElementType().dyn_cast<IntegerType>(); 959 assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type"); 960 (void)eltType; 961 return {BoolElementIterator(*this, 0), 962 BoolElementIterator(*this, getNumElements())}; 963 } 964 965 /// Return the held element values as a range of APInts. The element type of 966 /// this attribute must be of integer type. 967 auto DenseElementsAttr::getIntValues() const 968 -> llvm::iterator_range<IntElementIterator> { 969 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 970 return {raw_int_begin(), raw_int_end()}; 971 } 972 auto DenseElementsAttr::int_value_begin() const -> IntElementIterator { 973 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 974 return raw_int_begin(); 975 } 976 auto DenseElementsAttr::int_value_end() const -> IntElementIterator { 977 assert(getType().getElementType().isIntOrIndex() && "expected integral type"); 978 return raw_int_end(); 979 } 980 auto DenseElementsAttr::getComplexIntValues() const 981 -> llvm::iterator_range<ComplexIntElementIterator> { 982 Type eltTy = getType().getElementType().cast<ComplexType>().getElementType(); 983 (void)eltTy; 984 assert(eltTy.isa<IntegerType>() && "expected complex integral type"); 985 return {ComplexIntElementIterator(*this, 0), 986 ComplexIntElementIterator(*this, getNumElements())}; 987 } 988 989 /// Return the held element values as a range of APFloat. The element type of 990 /// this attribute must be of float type. 991 auto DenseElementsAttr::getFloatValues() const 992 -> llvm::iterator_range<FloatElementIterator> { 993 auto elementType = getType().getElementType().cast<FloatType>(); 994 const auto &elementSemantics = elementType.getFloatSemantics(); 995 return {FloatElementIterator(elementSemantics, raw_int_begin()), 996 FloatElementIterator(elementSemantics, raw_int_end())}; 997 } 998 auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator { 999 return getFloatValues().begin(); 1000 } 1001 auto DenseElementsAttr::float_value_end() const -> FloatElementIterator { 1002 return getFloatValues().end(); 1003 } 1004 auto DenseElementsAttr::getComplexFloatValues() const 1005 -> llvm::iterator_range<ComplexFloatElementIterator> { 1006 Type eltTy = getType().getElementType().cast<ComplexType>().getElementType(); 1007 assert(eltTy.isa<FloatType>() && "expected complex float type"); 1008 const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics(); 1009 return {{semantics, {*this, 0}}, 1010 {semantics, {*this, static_cast<size_t>(getNumElements())}}}; 1011 } 1012 1013 /// Return the raw storage data held by this attribute. 1014 ArrayRef<char> DenseElementsAttr::getRawData() const { 1015 return static_cast<DenseIntOrFPElementsAttributeStorage *>(impl)->data; 1016 } 1017 1018 ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const { 1019 return static_cast<DenseStringElementsAttributeStorage *>(impl)->data; 1020 } 1021 1022 /// Return a new DenseElementsAttr that has the same data as the current 1023 /// attribute, but has been reshaped to 'newType'. The new type must have the 1024 /// same total number of elements as well as element type. 1025 DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) { 1026 ShapedType curType = getType(); 1027 if (curType == newType) 1028 return *this; 1029 1030 (void)curType; 1031 assert(newType.getElementType() == curType.getElementType() && 1032 "expected the same element type"); 1033 assert(newType.getNumElements() == curType.getNumElements() && 1034 "expected the same number of elements"); 1035 return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat()); 1036 } 1037 1038 DenseElementsAttr 1039 DenseElementsAttr::mapValues(Type newElementType, 1040 function_ref<APInt(const APInt &)> mapping) const { 1041 return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping); 1042 } 1043 1044 DenseElementsAttr DenseElementsAttr::mapValues( 1045 Type newElementType, function_ref<APInt(const APFloat &)> mapping) const { 1046 return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // DenseStringElementsAttr 1051 //===----------------------------------------------------------------------===// 1052 1053 DenseStringElementsAttr 1054 DenseStringElementsAttr::get(ShapedType type, ArrayRef<StringRef> values) { 1055 return Base::get(type.getContext(), type, values, (values.size() == 1)); 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // DenseIntOrFPElementsAttr 1060 //===----------------------------------------------------------------------===// 1061 1062 /// Utility method to write a range of APInt values to a buffer. 1063 template <typename APRangeT> 1064 static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data, 1065 APRangeT &&values) { 1066 data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values)); 1067 size_t offset = 0; 1068 for (auto it = values.begin(), e = values.end(); it != e; 1069 ++it, offset += storageWidth) { 1070 assert((*it).getBitWidth() <= storageWidth); 1071 writeBits(data.data(), offset, *it); 1072 } 1073 } 1074 1075 /// Constructs a dense elements attribute from an array of raw APFloat values. 1076 /// Each APFloat value is expected to have the same bitwidth as the element 1077 /// type of 'type'. 'type' must be a vector or tensor with static shape. 1078 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1079 size_t storageWidth, 1080 ArrayRef<APFloat> values, 1081 bool isSplat) { 1082 std::vector<char> data; 1083 auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); }; 1084 writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat)); 1085 return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); 1086 } 1087 1088 /// Constructs a dense elements attribute from an array of raw APInt values. 1089 /// Each APInt value is expected to have the same bitwidth as the element type 1090 /// of 'type'. 1091 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1092 size_t storageWidth, 1093 ArrayRef<APInt> values, 1094 bool isSplat) { 1095 std::vector<char> data; 1096 writeAPIntsToBuffer(storageWidth, data, values); 1097 return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat); 1098 } 1099 1100 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type, 1101 ArrayRef<char> data, 1102 bool isSplat) { 1103 assert((type.isa<RankedTensorType, VectorType>()) && 1104 "type must be ranked tensor or vector"); 1105 assert(type.hasStaticShape() && "type must have static shape"); 1106 return Base::get(type.getContext(), type, data, isSplat); 1107 } 1108 1109 /// Overload of the raw 'get' method that asserts that the given type is of 1110 /// complex type. This method is used to verify type invariants that the 1111 /// templatized 'get' method cannot. 1112 DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type, 1113 ArrayRef<char> data, 1114 int64_t dataEltSize, 1115 bool isInt, 1116 bool isSigned) { 1117 assert(::isValidIntOrFloat( 1118 type.getElementType().cast<ComplexType>().getElementType(), 1119 dataEltSize / 2, isInt, isSigned)); 1120 1121 int64_t numElements = data.size() / dataEltSize; 1122 assert(numElements == 1 || numElements == type.getNumElements()); 1123 return getRaw(type, data, /*isSplat=*/numElements == 1); 1124 } 1125 1126 /// Overload of the 'getRaw' method that asserts that the given type is of 1127 /// integer type. This method is used to verify type invariants that the 1128 /// templatized 'get' method cannot. 1129 DenseElementsAttr 1130 DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data, 1131 int64_t dataEltSize, bool isInt, 1132 bool isSigned) { 1133 assert( 1134 ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned)); 1135 1136 int64_t numElements = data.size() / dataEltSize; 1137 assert(numElements == 1 || numElements == type.getNumElements()); 1138 return getRaw(type, data, /*isSplat=*/numElements == 1); 1139 } 1140 1141 void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine( 1142 const char *inRawData, char *outRawData, size_t elementBitWidth, 1143 size_t numElements) { 1144 using llvm::support::ulittle16_t; 1145 using llvm::support::ulittle32_t; 1146 using llvm::support::ulittle64_t; 1147 1148 assert(llvm::support::endian::system_endianness() == // NOLINT 1149 llvm::support::endianness::big); // NOLINT 1150 // NOLINT to avoid warning message about replacing by static_assert() 1151 1152 // Following std::copy_n always converts endianness on BE machine. 1153 switch (elementBitWidth) { 1154 case 16: { 1155 const ulittle16_t *inRawDataPos = 1156 reinterpret_cast<const ulittle16_t *>(inRawData); 1157 uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData); 1158 std::copy_n(inRawDataPos, numElements, outDataPos); 1159 break; 1160 } 1161 case 32: { 1162 const ulittle32_t *inRawDataPos = 1163 reinterpret_cast<const ulittle32_t *>(inRawData); 1164 uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData); 1165 std::copy_n(inRawDataPos, numElements, outDataPos); 1166 break; 1167 } 1168 case 64: { 1169 const ulittle64_t *inRawDataPos = 1170 reinterpret_cast<const ulittle64_t *>(inRawData); 1171 uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData); 1172 std::copy_n(inRawDataPos, numElements, outDataPos); 1173 break; 1174 } 1175 default: { 1176 size_t nBytes = elementBitWidth / CHAR_BIT; 1177 for (size_t i = 0; i < nBytes; i++) 1178 std::copy_n(inRawData + (nBytes - 1 - i), numElements, outRawData + i); 1179 break; 1180 } 1181 } 1182 } 1183 1184 void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine( 1185 ArrayRef<char> inRawData, MutableArrayRef<char> outRawData, 1186 ShapedType type) { 1187 size_t numElements = type.getNumElements(); 1188 Type elementType = type.getElementType(); 1189 if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) { 1190 elementType = complexTy.getElementType(); 1191 numElements = numElements * 2; 1192 } 1193 size_t elementBitWidth = getDenseElementStorageWidth(elementType); 1194 assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT && 1195 inRawData.size() <= outRawData.size()); 1196 convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(), 1197 elementBitWidth, numElements); 1198 } 1199 1200 //===----------------------------------------------------------------------===// 1201 // DenseFPElementsAttr 1202 //===----------------------------------------------------------------------===// 1203 1204 template <typename Fn, typename Attr> 1205 static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType, 1206 Type newElementType, 1207 llvm::SmallVectorImpl<char> &data) { 1208 size_t bitWidth = getDenseElementBitWidth(newElementType); 1209 size_t storageBitWidth = getDenseElementStorageWidth(bitWidth); 1210 1211 ShapedType newArrayType; 1212 if (inType.isa<RankedTensorType>()) 1213 newArrayType = RankedTensorType::get(inType.getShape(), newElementType); 1214 else if (inType.isa<UnrankedTensorType>()) 1215 newArrayType = RankedTensorType::get(inType.getShape(), newElementType); 1216 else if (inType.isa<VectorType>()) 1217 newArrayType = VectorType::get(inType.getShape(), newElementType); 1218 else 1219 assert(newArrayType && "Unhandled tensor type"); 1220 1221 size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements(); 1222 data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements); 1223 1224 // Functor used to process a single element value of the attribute. 1225 auto processElt = [&](decltype(*attr.begin()) value, size_t index) { 1226 auto newInt = mapping(value); 1227 assert(newInt.getBitWidth() == bitWidth); 1228 writeBits(data.data(), index * storageBitWidth, newInt); 1229 }; 1230 1231 // Check for the splat case. 1232 if (attr.isSplat()) { 1233 processElt(*attr.begin(), /*index=*/0); 1234 return newArrayType; 1235 } 1236 1237 // Otherwise, process all of the element values. 1238 uint64_t elementIdx = 0; 1239 for (auto value : attr) 1240 processElt(value, elementIdx++); 1241 return newArrayType; 1242 } 1243 1244 DenseElementsAttr DenseFPElementsAttr::mapValues( 1245 Type newElementType, function_ref<APInt(const APFloat &)> mapping) const { 1246 llvm::SmallVector<char, 8> elementData; 1247 auto newArrayType = 1248 mappingHelper(mapping, *this, getType(), newElementType, elementData); 1249 1250 return getRaw(newArrayType, elementData, isSplat()); 1251 } 1252 1253 /// Method for supporting type inquiry through isa, cast and dyn_cast. 1254 bool DenseFPElementsAttr::classof(Attribute attr) { 1255 return attr.isa<DenseElementsAttr>() && 1256 attr.getType().cast<ShapedType>().getElementType().isa<FloatType>(); 1257 } 1258 1259 //===----------------------------------------------------------------------===// 1260 // DenseIntElementsAttr 1261 //===----------------------------------------------------------------------===// 1262 1263 DenseElementsAttr DenseIntElementsAttr::mapValues( 1264 Type newElementType, function_ref<APInt(const APInt &)> mapping) const { 1265 llvm::SmallVector<char, 8> elementData; 1266 auto newArrayType = 1267 mappingHelper(mapping, *this, getType(), newElementType, elementData); 1268 1269 return getRaw(newArrayType, elementData, isSplat()); 1270 } 1271 1272 /// Method for supporting type inquiry through isa, cast and dyn_cast. 1273 bool DenseIntElementsAttr::classof(Attribute attr) { 1274 return attr.isa<DenseElementsAttr>() && 1275 attr.getType().cast<ShapedType>().getElementType().isIntOrIndex(); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // OpaqueElementsAttr 1280 //===----------------------------------------------------------------------===// 1281 1282 OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type, 1283 StringRef bytes) { 1284 assert(TensorType::isValidElementType(type.getElementType()) && 1285 "Input element type should be a valid tensor element type"); 1286 return Base::get(type.getContext(), type, dialect, bytes); 1287 } 1288 1289 StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; } 1290 1291 /// Return the value at the given index. If index does not refer to a valid 1292 /// element, then a null attribute is returned. 1293 Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const { 1294 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 1295 return Attribute(); 1296 } 1297 1298 Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; } 1299 1300 bool OpaqueElementsAttr::decode(ElementsAttr &result) { 1301 auto *d = getDialect(); 1302 if (!d) 1303 return true; 1304 auto *interface = 1305 d->getRegisteredInterface<DialectDecodeAttributesInterface>(); 1306 if (!interface) 1307 return true; 1308 return failed(interface->decode(*this, result)); 1309 } 1310 1311 //===----------------------------------------------------------------------===// 1312 // SparseElementsAttr 1313 //===----------------------------------------------------------------------===// 1314 1315 SparseElementsAttr SparseElementsAttr::get(ShapedType type, 1316 DenseElementsAttr indices, 1317 DenseElementsAttr values) { 1318 assert(indices.getType().getElementType().isInteger(64) && 1319 "expected sparse indices to be 64-bit integer values"); 1320 assert((type.isa<RankedTensorType, VectorType>()) && 1321 "type must be ranked tensor or vector"); 1322 assert(type.hasStaticShape() && "type must have static shape"); 1323 return Base::get(type.getContext(), type, 1324 indices.cast<DenseIntElementsAttr>(), values); 1325 } 1326 1327 DenseIntElementsAttr SparseElementsAttr::getIndices() const { 1328 return getImpl()->indices; 1329 } 1330 1331 DenseElementsAttr SparseElementsAttr::getValues() const { 1332 return getImpl()->values; 1333 } 1334 1335 /// Return the value of the element at the given index. 1336 Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const { 1337 assert(isValidIndex(index) && "expected valid multi-dimensional index"); 1338 auto type = getType(); 1339 1340 // The sparse indices are 64-bit integers, so we can reinterpret the raw data 1341 // as a 1-D index array. 1342 auto sparseIndices = getIndices(); 1343 auto sparseIndexValues = sparseIndices.getValues<uint64_t>(); 1344 1345 // Check to see if the indices are a splat. 1346 if (sparseIndices.isSplat()) { 1347 // If the index is also not a splat of the index value, we know that the 1348 // value is zero. 1349 auto splatIndex = *sparseIndexValues.begin(); 1350 if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; })) 1351 return getZeroAttr(); 1352 1353 // If the indices are a splat, we also expect the values to be a splat. 1354 assert(getValues().isSplat() && "expected splat values"); 1355 return getValues().getSplatValue(); 1356 } 1357 1358 // Build a mapping between known indices and the offset of the stored element. 1359 llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices; 1360 auto numSparseIndices = sparseIndices.getType().getDimSize(0); 1361 size_t rank = type.getRank(); 1362 for (size_t i = 0, e = numSparseIndices; i != e; ++i) 1363 mappedIndices.try_emplace( 1364 {&*std::next(sparseIndexValues.begin(), i * rank), rank}, i); 1365 1366 // Look for the provided index key within the mapped indices. If the provided 1367 // index is not found, then return a zero attribute. 1368 auto it = mappedIndices.find(index); 1369 if (it == mappedIndices.end()) 1370 return getZeroAttr(); 1371 1372 // Otherwise, return the held sparse value element. 1373 return getValues().getValue(it->second); 1374 } 1375 1376 /// Get a zero APFloat for the given sparse attribute. 1377 APFloat SparseElementsAttr::getZeroAPFloat() const { 1378 auto eltType = getType().getElementType().cast<FloatType>(); 1379 return APFloat(eltType.getFloatSemantics()); 1380 } 1381 1382 /// Get a zero APInt for the given sparse attribute. 1383 APInt SparseElementsAttr::getZeroAPInt() const { 1384 auto eltType = getType().getElementType().cast<IntegerType>(); 1385 return APInt::getNullValue(eltType.getWidth()); 1386 } 1387 1388 /// Get a zero attribute for the given attribute type. 1389 Attribute SparseElementsAttr::getZeroAttr() const { 1390 auto eltType = getType().getElementType(); 1391 1392 // Handle floating point elements. 1393 if (eltType.isa<FloatType>()) 1394 return FloatAttr::get(eltType, 0); 1395 1396 // Otherwise, this is an integer. 1397 // TODO: Handle StringAttr here. 1398 return IntegerAttr::get(eltType, 0); 1399 } 1400 1401 /// Flatten, and return, all of the sparse indices in this attribute in 1402 /// row-major order. 1403 std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const { 1404 std::vector<ptrdiff_t> flatSparseIndices; 1405 1406 // The sparse indices are 64-bit integers, so we can reinterpret the raw data 1407 // as a 1-D index array. 1408 auto sparseIndices = getIndices(); 1409 auto sparseIndexValues = sparseIndices.getValues<uint64_t>(); 1410 if (sparseIndices.isSplat()) { 1411 SmallVector<uint64_t, 8> indices(getType().getRank(), 1412 *sparseIndexValues.begin()); 1413 flatSparseIndices.push_back(getFlattenedIndex(indices)); 1414 return flatSparseIndices; 1415 } 1416 1417 // Otherwise, reinterpret each index as an ArrayRef when flattening. 1418 auto numSparseIndices = sparseIndices.getType().getDimSize(0); 1419 size_t rank = getType().getRank(); 1420 for (size_t i = 0, e = numSparseIndices; i != e; ++i) 1421 flatSparseIndices.push_back(getFlattenedIndex( 1422 {&*std::next(sparseIndexValues.begin(), i * rank), rank})); 1423 return flatSparseIndices; 1424 } 1425 1426 //===----------------------------------------------------------------------===// 1427 // MutableDictionaryAttr 1428 //===----------------------------------------------------------------------===// 1429 1430 MutableDictionaryAttr::MutableDictionaryAttr( 1431 ArrayRef<NamedAttribute> attributes) { 1432 setAttrs(attributes); 1433 } 1434 1435 /// Return the underlying dictionary attribute. 1436 DictionaryAttr 1437 MutableDictionaryAttr::getDictionary(MLIRContext *context) const { 1438 // Construct empty DictionaryAttr if needed. 1439 if (!attrs) 1440 return DictionaryAttr::get({}, context); 1441 return attrs; 1442 } 1443 1444 ArrayRef<NamedAttribute> MutableDictionaryAttr::getAttrs() const { 1445 return attrs ? attrs.getValue() : llvm::None; 1446 } 1447 1448 /// Replace the held attributes with ones provided in 'newAttrs'. 1449 void MutableDictionaryAttr::setAttrs(ArrayRef<NamedAttribute> attributes) { 1450 // Don't create an attribute list if there are no attributes. 1451 if (attributes.empty()) 1452 attrs = nullptr; 1453 else 1454 attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext()); 1455 } 1456 1457 /// Return the specified attribute if present, null otherwise. 1458 Attribute MutableDictionaryAttr::get(StringRef name) const { 1459 return attrs ? attrs.get(name) : nullptr; 1460 } 1461 1462 /// Return the specified attribute if present, null otherwise. 1463 Attribute MutableDictionaryAttr::get(Identifier name) const { 1464 return attrs ? attrs.get(name) : nullptr; 1465 } 1466 1467 /// Return the specified named attribute if present, None otherwise. 1468 Optional<NamedAttribute> MutableDictionaryAttr::getNamed(StringRef name) const { 1469 return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>(); 1470 } 1471 Optional<NamedAttribute> 1472 MutableDictionaryAttr::getNamed(Identifier name) const { 1473 return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>(); 1474 } 1475 1476 /// If the an attribute exists with the specified name, change it to the new 1477 /// value. Otherwise, add a new attribute with the specified name/value. 1478 void MutableDictionaryAttr::set(Identifier name, Attribute value) { 1479 assert(value && "attributes may never be null"); 1480 1481 // Look for an existing value for the given name, and set it in-place. 1482 ArrayRef<NamedAttribute> values = getAttrs(); 1483 const auto *it = llvm::find_if( 1484 values, [name](NamedAttribute attr) { return attr.first == name; }); 1485 if (it != values.end()) { 1486 // Bail out early if the value is the same as what we already have. 1487 if (it->second == value) 1488 return; 1489 1490 SmallVector<NamedAttribute, 8> newAttrs(values.begin(), values.end()); 1491 newAttrs[it - values.begin()].second = value; 1492 attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext()); 1493 return; 1494 } 1495 1496 // Otherwise, insert the new attribute into its sorted position. 1497 it = llvm::lower_bound(values, name); 1498 SmallVector<NamedAttribute, 8> newAttrs; 1499 newAttrs.reserve(values.size() + 1); 1500 newAttrs.append(values.begin(), it); 1501 newAttrs.push_back({name, value}); 1502 newAttrs.append(it, values.end()); 1503 attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext()); 1504 } 1505 1506 /// Remove the attribute with the specified name if it exists. The return 1507 /// value indicates whether the attribute was present or not. 1508 auto MutableDictionaryAttr::remove(Identifier name) -> RemoveResult { 1509 auto origAttrs = getAttrs(); 1510 for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) { 1511 if (origAttrs[i].first == name) { 1512 // Handle the simple case of removing the only attribute in the list. 1513 if (e == 1) { 1514 attrs = nullptr; 1515 return RemoveResult::Removed; 1516 } 1517 1518 SmallVector<NamedAttribute, 8> newAttrs; 1519 newAttrs.reserve(origAttrs.size() - 1); 1520 newAttrs.append(origAttrs.begin(), origAttrs.begin() + i); 1521 newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end()); 1522 attrs = DictionaryAttr::getWithSorted(newAttrs, 1523 newAttrs[0].second.getContext()); 1524 return RemoveResult::Removed; 1525 } 1526 } 1527 return RemoveResult::NotFound; 1528 } 1529 1530 bool mlir::operator<(const NamedAttribute &lhs, const NamedAttribute &rhs) { 1531 return strcmp(lhs.first.data(), rhs.first.data()) < 0; 1532 } 1533 bool mlir::operator<(const NamedAttribute &lhs, StringRef rhs) { 1534 // This is correct even when attr.first.data()[name.size()] is not a zero 1535 // string terminator, because we only care about a less than comparison. 1536 // This can't use memcmp, because it doesn't guarantee that it will stop 1537 // reading both buffers if one is shorter than the other, even if there is 1538 // a difference. 1539 return strncmp(lhs.first.data(), rhs.data(), rhs.size()) < 0; 1540 } 1541