1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <numeric> 30 #include <vector> 31 32 //===----------------------------------------------------------------------===// 33 // 34 // Internal support for storing and reading sparse tensors. 35 // 36 // The following memory-resident sparse storage schemes are supported: 37 // 38 // (a) A coordinate scheme for temporarily storing and lexicographically 39 // sorting a sparse tensor by index (SparseTensorCOO). 40 // 41 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 42 // per-dimension sparse/dense annnotations together with a dimension 43 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 44 // 45 // The following external formats are supported: 46 // 47 // (1) Matrix Market Exchange (MME): *.mtx 48 // https://math.nist.gov/MatrixMarket/formats.html 49 // 50 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 51 // http://frostt.io/tensors/file-formats.html 52 // 53 // Two public APIs are supported: 54 // 55 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 56 // tensors. These methods should be used exclusively by MLIR 57 // compiler-generated code. 58 // 59 // (II) Methods that accept C-style data structures to interact with sparse 60 // tensors. These methods can be used by any external runtime that wants 61 // to interact with MLIR compiler-generated code. 62 // 63 // In both cases (I) and (II), the SparseTensorStorage format is externally 64 // only visible as an opaque pointer. 65 // 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 70 /// A sparse tensor element in coordinate scheme (value and indices). 71 /// For example, a rank-1 vector element would look like 72 /// ({i}, a[i]) 73 /// and a rank-5 tensor element like 74 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 75 template <typename V> 76 struct Element { 77 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 78 std::vector<uint64_t> indices; 79 V value; 80 }; 81 82 /// A memory-resident sparse tensor in coordinate scheme (collection of 83 /// elements). This data structure is used to read a sparse tensor from 84 /// any external format into memory and sort the elements lexicographically 85 /// by indices before passing it back to the client (most packed storage 86 /// formats require the elements to appear in lexicographic index order). 87 template <typename V> 88 struct SparseTensorCOO { 89 public: 90 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 91 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 92 if (capacity) 93 elements.reserve(capacity); 94 } 95 /// Adds element as indices and value. 96 void add(const std::vector<uint64_t> &ind, V val) { 97 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 98 uint64_t rank = getRank(); 99 assert(rank == ind.size()); 100 for (uint64_t r = 0; r < rank; r++) 101 assert(ind[r] < sizes[r]); // within bounds 102 elements.emplace_back(ind, val); 103 } 104 /// Sorts elements lexicographically by index. 105 void sort() { 106 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 107 std::sort(elements.begin(), elements.end(), lexOrder); 108 } 109 /// Returns rank. 110 uint64_t getRank() const { return sizes.size(); } 111 /// Getter for sizes array. 112 const std::vector<uint64_t> &getSizes() const { return sizes; } 113 /// Getter for elements array. 114 const std::vector<Element<V>> &getElements() const { return elements; } 115 116 /// Switch into iterator mode. 117 void startIterator() { 118 iteratorLocked = true; 119 iteratorPos = 0; 120 } 121 /// Get the next element. 122 const Element<V> *getNext() { 123 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 124 if (iteratorPos < elements.size()) 125 return &(elements[iteratorPos++]); 126 iteratorLocked = false; 127 return nullptr; 128 } 129 130 /// Factory method. Permutes the original dimensions according to 131 /// the given ordering and expects subsequent add() calls to honor 132 /// that same ordering for the given indices. The result is a 133 /// fully permuted coordinate scheme. 134 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 135 const uint64_t *sizes, 136 const uint64_t *perm, 137 uint64_t capacity = 0) { 138 std::vector<uint64_t> permsz(rank); 139 for (uint64_t r = 0; r < rank; r++) 140 permsz[perm[r]] = sizes[r]; 141 return new SparseTensorCOO<V>(permsz, capacity); 142 } 143 144 private: 145 /// Returns true if indices of e1 < indices of e2. 146 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 147 uint64_t rank = e1.indices.size(); 148 assert(rank == e2.indices.size()); 149 for (uint64_t r = 0; r < rank; r++) { 150 if (e1.indices[r] == e2.indices[r]) 151 continue; 152 return e1.indices[r] < e2.indices[r]; 153 } 154 return false; 155 } 156 const std::vector<uint64_t> sizes; // per-dimension sizes 157 std::vector<Element<V>> elements; 158 bool iteratorLocked; 159 unsigned iteratorPos; 160 }; 161 162 /// Abstract base class of sparse tensor storage. Note that we use 163 /// function overloading to implement "partial" method specialization. 164 class SparseTensorStorageBase { 165 public: 166 // Dimension size query. 167 virtual uint64_t getDimSize(uint64_t) = 0; 168 169 // Overhead storage. 170 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 171 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 172 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 173 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 174 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 175 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 176 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 177 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 178 179 // Primary storage. 180 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 181 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 182 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 183 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 184 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 185 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 186 187 // Element-wise insertion in lexicographic index order. 188 virtual void lexInsert(uint64_t *, double) { fatal("insf64"); } 189 virtual void lexInsert(uint64_t *, float) { fatal("insf32"); } 190 virtual void lexInsert(uint64_t *, int64_t) { fatal("insi64"); } 191 virtual void lexInsert(uint64_t *, int32_t) { fatal("insi32"); } 192 virtual void lexInsert(uint64_t *, int16_t) { fatal("ins16"); } 193 virtual void lexInsert(uint64_t *, int8_t) { fatal("insi8"); } 194 virtual void endInsert() = 0; 195 196 virtual ~SparseTensorStorageBase() {} 197 198 private: 199 void fatal(const char *tp) { 200 fprintf(stderr, "unsupported %s\n", tp); 201 exit(1); 202 } 203 }; 204 205 /// A memory-resident sparse tensor using a storage scheme based on 206 /// per-dimension sparse/dense annotations. This data structure provides a 207 /// bufferized form of a sparse tensor type. In contrast to generating setup 208 /// methods for each differently annotated sparse tensor, this method provides 209 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 210 /// and annotations to implement all required setup in a general manner. 211 template <typename P, typename I, typename V> 212 class SparseTensorStorage : public SparseTensorStorageBase { 213 public: 214 /// Constructs a sparse tensor storage scheme with the given dimensions, 215 /// permutation, and per-dimension dense/sparse annotations, using 216 /// the coordinate scheme tensor for the initial contents if provided. 217 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 218 const DimLevelType *sparsity, 219 SparseTensorCOO<V> *tensor = nullptr) 220 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 221 indices(getRank()) { 222 uint64_t rank = getRank(); 223 // Store "reverse" permutation. 224 for (uint64_t r = 0; r < rank; r++) 225 rev[perm[r]] = r; 226 // Provide hints on capacity of pointers and indices. 227 // TODO: needs fine-tuning based on sparsity 228 bool allDense = true; 229 uint64_t sz = 1; 230 for (uint64_t r = 0; r < rank; r++) { 231 sz *= sizes[r]; 232 if (sparsity[r] == DimLevelType::kCompressed) { 233 pointers[r].reserve(sz + 1); 234 indices[r].reserve(sz); 235 sz = 1; 236 allDense = false; 237 } else { 238 assert(sparsity[r] == DimLevelType::kDense && 239 "singleton not yet supported"); 240 } 241 } 242 // Prepare sparse pointer structures for all dimensions. 243 for (uint64_t r = 0; r < rank; r++) 244 if (sparsity[r] == DimLevelType::kCompressed) 245 pointers[r].push_back(0); 246 // Then assign contents from coordinate scheme tensor if provided. 247 if (tensor) { 248 uint64_t nnz = tensor->getElements().size(); 249 values.reserve(nnz); 250 fromCOO(tensor, sparsity, 0, nnz, 0); 251 } else { 252 if (allDense) 253 values.resize(sz, 0); 254 for (uint64_t r = 0; r < rank; r++) 255 idx[r] = -1u; 256 } 257 } 258 259 virtual ~SparseTensorStorage() {} 260 261 /// Get the rank of the tensor. 262 uint64_t getRank() const { return sizes.size(); } 263 264 /// Get the size in the given dimension of the tensor. 265 uint64_t getDimSize(uint64_t d) override { 266 assert(d < getRank()); 267 return sizes[d]; 268 } 269 270 /// Partially specialize these getter methods based on template types. 271 void getPointers(std::vector<P> **out, uint64_t d) override { 272 assert(d < getRank()); 273 *out = &pointers[d]; 274 } 275 void getIndices(std::vector<I> **out, uint64_t d) override { 276 assert(d < getRank()); 277 *out = &indices[d]; 278 } 279 void getValues(std::vector<V> **out) override { *out = &values; } 280 281 /// Partially specialize lexicographic insertions based on template types. 282 // TODO: 1-dim tensors only for now, generalize soon 283 void lexInsert(uint64_t *cursor, V val) override { 284 assert((idx[0] == -1u || idx[0] < cursor[0]) && "not lexicographic"); 285 indices[0].push_back(cursor[0]); 286 values.push_back(val); 287 idx[0] = cursor[0]; 288 } 289 290 /// Finalizes lexicographic insertions. 291 void endInsert() override { pointers[0].push_back(indices[0].size()); } 292 293 /// Returns this sparse tensor storage scheme as a new memory-resident 294 /// sparse tensor in coordinate scheme with the given dimension order. 295 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 296 // Restore original order of the dimension sizes and allocate coordinate 297 // scheme with desired new ordering specified in perm. 298 uint64_t rank = getRank(); 299 std::vector<uint64_t> orgsz(rank); 300 for (uint64_t r = 0; r < rank; r++) 301 orgsz[rev[r]] = sizes[r]; 302 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 303 rank, orgsz.data(), perm, values.size()); 304 // Populate coordinate scheme restored from old ordering and changed with 305 // new ordering. Rather than applying both reorderings during the recursion, 306 // we compute the combine permutation in advance. 307 std::vector<uint64_t> reord(rank); 308 for (uint64_t r = 0; r < rank; r++) 309 reord[r] = perm[rev[r]]; 310 toCOO(tensor, reord, 0, 0); 311 assert(tensor->getElements().size() == values.size()); 312 return tensor; 313 } 314 315 /// Factory method. Constructs a sparse tensor storage scheme with the given 316 /// dimensions, permutation, and per-dimension dense/sparse annotations, 317 /// using the coordinate scheme tensor for the initial contents if provided. 318 /// In the latter case, the coordinate scheme must respect the same 319 /// permutation as is desired for the new sparse tensor storage. 320 static SparseTensorStorage<P, I, V> * 321 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 322 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 323 SparseTensorStorage<P, I, V> *n = nullptr; 324 if (tensor) { 325 assert(tensor->getRank() == rank); 326 for (uint64_t r = 0; r < rank; r++) 327 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 328 tensor->sort(); // sort lexicographically 329 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 330 tensor); 331 delete tensor; 332 } else { 333 std::vector<uint64_t> permsz(rank); 334 for (uint64_t r = 0; r < rank; r++) 335 permsz[perm[r]] = sizes[r]; 336 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 337 } 338 return n; 339 } 340 341 private: 342 /// Initializes sparse tensor storage scheme from a memory-resident sparse 343 /// tensor in coordinate scheme. This method prepares the pointers and 344 /// indices arrays under the given per-dimension dense/sparse annotations. 345 void fromCOO(SparseTensorCOO<V> *tensor, const DimLevelType *sparsity, 346 uint64_t lo, uint64_t hi, uint64_t d) { 347 const std::vector<Element<V>> &elements = tensor->getElements(); 348 // Once dimensions are exhausted, insert the numerical values. 349 assert(d <= getRank()); 350 if (d == getRank()) { 351 assert(lo >= hi || lo < elements.size()); 352 values.push_back(lo < hi ? elements[lo].value : 0); 353 return; 354 } 355 // Visit all elements in this interval. 356 uint64_t full = 0; 357 while (lo < hi) { 358 assert(lo < elements.size() && hi <= elements.size()); 359 // Find segment in interval with same index elements in this dimension. 360 uint64_t i = elements[lo].indices[d]; 361 uint64_t seg = lo + 1; 362 while (seg < hi && elements[seg].indices[d] == i) 363 seg++; 364 // Handle segment in interval for sparse or dense dimension. 365 if (sparsity[d] == DimLevelType::kCompressed) { 366 indices[d].push_back(i); 367 } else { 368 // For dense storage we must fill in all the zero values between 369 // the previous element (when last we ran this for-loop) and the 370 // current element. 371 for (; full < i; full++) 372 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 373 full++; 374 } 375 fromCOO(tensor, sparsity, lo, seg, d + 1); 376 // And move on to next segment in interval. 377 lo = seg; 378 } 379 // Finalize the sparse pointer structure at this dimension. 380 if (sparsity[d] == DimLevelType::kCompressed) { 381 pointers[d].push_back(indices[d].size()); 382 } else { 383 // For dense storage we must fill in all the zero values after 384 // the last element. 385 for (uint64_t sz = sizes[d]; full < sz; full++) 386 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 387 } 388 } 389 390 /// Stores the sparse tensor storage scheme into a memory-resident sparse 391 /// tensor in coordinate scheme. 392 void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord, 393 uint64_t pos, uint64_t d) { 394 assert(d <= getRank()); 395 if (d == getRank()) { 396 assert(pos < values.size()); 397 tensor->add(idx, values[pos]); 398 } else if (pointers[d].empty()) { 399 // Dense dimension. 400 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 401 idx[reord[d]] = i; 402 toCOO(tensor, reord, off + i, d + 1); 403 } 404 } else { 405 // Sparse dimension. 406 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 407 idx[reord[d]] = indices[d][ii]; 408 toCOO(tensor, reord, ii, d + 1); 409 } 410 } 411 } 412 413 private: 414 std::vector<uint64_t> sizes; // per-dimension sizes 415 std::vector<uint64_t> rev; // "reverse" permutation 416 std::vector<uint64_t> idx; // index cursor 417 std::vector<std::vector<P>> pointers; 418 std::vector<std::vector<I>> indices; 419 std::vector<V> values; 420 }; 421 422 /// Helper to convert string to lower case. 423 static char *toLower(char *token) { 424 for (char *c = token; *c; c++) 425 *c = tolower(*c); 426 return token; 427 } 428 429 /// Read the MME header of a general sparse matrix of type real. 430 static void readMMEHeader(FILE *file, char *name, uint64_t *idata) { 431 char line[1025]; 432 char header[64]; 433 char object[64]; 434 char format[64]; 435 char field[64]; 436 char symmetry[64]; 437 // Read header line. 438 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 439 symmetry) != 5) { 440 fprintf(stderr, "Corrupt header in %s\n", name); 441 exit(1); 442 } 443 // Make sure this is a general sparse matrix. 444 if (strcmp(toLower(header), "%%matrixmarket") || 445 strcmp(toLower(object), "matrix") || 446 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 447 strcmp(toLower(symmetry), "general")) { 448 fprintf(stderr, 449 "Cannot find a general sparse matrix with type real in %s\n", name); 450 exit(1); 451 } 452 // Skip comments. 453 while (1) { 454 if (!fgets(line, 1025, file)) { 455 fprintf(stderr, "Cannot find data in %s\n", name); 456 exit(1); 457 } 458 if (line[0] != '%') 459 break; 460 } 461 // Next line contains M N NNZ. 462 idata[0] = 2; // rank 463 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 464 idata + 1) != 3) { 465 fprintf(stderr, "Cannot find size in %s\n", name); 466 exit(1); 467 } 468 } 469 470 /// Read the "extended" FROSTT header. Although not part of the documented 471 /// format, we assume that the file starts with optional comments followed 472 /// by two lines that define the rank, the number of nonzeros, and the 473 /// dimensions sizes (one per rank) of the sparse tensor. 474 static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) { 475 char line[1025]; 476 // Skip comments. 477 while (1) { 478 if (!fgets(line, 1025, file)) { 479 fprintf(stderr, "Cannot find data in %s\n", name); 480 exit(1); 481 } 482 if (line[0] != '#') 483 break; 484 } 485 // Next line contains RANK and NNZ. 486 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 487 fprintf(stderr, "Cannot find metadata in %s\n", name); 488 exit(1); 489 } 490 // Followed by a line with the dimension sizes (one per rank). 491 for (uint64_t r = 0; r < idata[0]; r++) { 492 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 493 fprintf(stderr, "Cannot find dimension size %s\n", name); 494 exit(1); 495 } 496 } 497 } 498 499 /// Reads a sparse tensor with the given filename into a memory-resident 500 /// sparse tensor in coordinate scheme. 501 template <typename V> 502 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 503 const uint64_t *sizes, 504 const uint64_t *perm) { 505 // Open the file. 506 FILE *file = fopen(filename, "r"); 507 if (!file) { 508 fprintf(stderr, "Cannot find %s\n", filename); 509 exit(1); 510 } 511 // Perform some file format dependent set up. 512 uint64_t idata[512]; 513 if (strstr(filename, ".mtx")) { 514 readMMEHeader(file, filename, idata); 515 } else if (strstr(filename, ".tns")) { 516 readExtFROSTTHeader(file, filename, idata); 517 } else { 518 fprintf(stderr, "Unknown format %s\n", filename); 519 exit(1); 520 } 521 // Prepare sparse tensor object with per-dimension sizes 522 // and the number of nonzeros as initial capacity. 523 assert(rank == idata[0] && "rank mismatch"); 524 uint64_t nnz = idata[1]; 525 for (uint64_t r = 0; r < rank; r++) 526 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 527 "dimension size mismatch"); 528 SparseTensorCOO<V> *tensor = 529 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 530 // Read all nonzero elements. 531 std::vector<uint64_t> indices(rank); 532 for (uint64_t k = 0; k < nnz; k++) { 533 uint64_t idx = -1u; 534 for (uint64_t r = 0; r < rank; r++) { 535 if (fscanf(file, "%" PRIu64, &idx) != 1) { 536 fprintf(stderr, "Cannot find next index in %s\n", filename); 537 exit(1); 538 } 539 // Add 0-based index. 540 indices[perm[r]] = idx - 1; 541 } 542 // The external formats always store the numerical values with the type 543 // double, but we cast these values to the sparse tensor object type. 544 double value; 545 if (fscanf(file, "%lg\n", &value) != 1) { 546 fprintf(stderr, "Cannot find next value in %s\n", filename); 547 exit(1); 548 } 549 tensor->add(indices, value); 550 } 551 // Close the file and return tensor. 552 fclose(file); 553 return tensor; 554 } 555 556 } // anonymous namespace 557 558 extern "C" { 559 560 /// This type is used in the public API at all places where MLIR expects 561 /// values with the built-in type "index". For now, we simply assume that 562 /// type is 64-bit, but targets with different "index" bit widths should link 563 /// with an alternatively built runtime support library. 564 // TODO: support such targets? 565 typedef uint64_t index_t; 566 567 //===----------------------------------------------------------------------===// 568 // 569 // Public API with methods that operate on MLIR buffers (memrefs) to interact 570 // with sparse tensors, which are only visible as opaque pointers externally. 571 // These methods should be used exclusively by MLIR compiler-generated code. 572 // 573 // Some macro magic is used to generate implementations for all required type 574 // combinations that can be called from MLIR compiler-generated code. 575 // 576 //===----------------------------------------------------------------------===// 577 578 #define CASE(p, i, v, P, I, V) \ 579 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 580 SparseTensorCOO<V> *tensor = nullptr; \ 581 if (action <= Action::kFromCOO) { \ 582 if (action == Action::kFromFile) { \ 583 char *filename = static_cast<char *>(ptr); \ 584 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 585 } else if (action == Action::kFromCOO) { \ 586 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 587 } else { \ 588 assert(action == Action::kEmpty); \ 589 } \ 590 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 591 sparsity, tensor); \ 592 } else if (action == Action::kEmptyCOO) { \ 593 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 594 } else { \ 595 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 596 if (action == Action::kToIterator) { \ 597 tensor->startIterator(); \ 598 } else { \ 599 assert(action == Action::kToCOO); \ 600 } \ 601 return tensor; \ 602 } \ 603 } 604 605 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 606 607 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 608 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 609 assert(ref); \ 610 assert(tensor); \ 611 std::vector<TYPE> *v; \ 612 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 613 ref->basePtr = ref->data = v->data(); \ 614 ref->offset = 0; \ 615 ref->sizes[0] = v->size(); \ 616 ref->strides[0] = 1; \ 617 } 618 619 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 620 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 621 index_t d) { \ 622 assert(ref); \ 623 assert(tensor); \ 624 std::vector<TYPE> *v; \ 625 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 626 ref->basePtr = ref->data = v->data(); \ 627 ref->offset = 0; \ 628 ref->sizes[0] = v->size(); \ 629 ref->strides[0] = 1; \ 630 } 631 632 #define IMPL_ADDELT(NAME, TYPE) \ 633 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 634 StridedMemRefType<index_t, 1> *iref, \ 635 StridedMemRefType<index_t, 1> *pref) { \ 636 assert(tensor); \ 637 assert(iref); \ 638 assert(pref); \ 639 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 640 assert(iref->sizes[0] == pref->sizes[0]); \ 641 const index_t *indx = iref->data + iref->offset; \ 642 const index_t *perm = pref->data + pref->offset; \ 643 uint64_t isize = iref->sizes[0]; \ 644 std::vector<index_t> indices(isize); \ 645 for (uint64_t r = 0; r < isize; r++) \ 646 indices[perm[r]] = indx[r]; \ 647 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 648 return tensor; \ 649 } 650 651 #define IMPL_GETNEXT(NAME, V) \ 652 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<uint64_t, 1> *iref, \ 653 StridedMemRefType<V, 0> *vref) { \ 654 assert(iref->strides[0] == 1); \ 655 uint64_t *indx = iref->data + iref->offset; \ 656 V *value = vref->data + vref->offset; \ 657 const uint64_t isize = iref->sizes[0]; \ 658 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 659 const Element<V> *elem = iter->getNext(); \ 660 if (elem == nullptr) { \ 661 delete iter; \ 662 return false; \ 663 } \ 664 for (uint64_t r = 0; r < isize; r++) \ 665 indx[r] = elem->indices[r]; \ 666 *value = elem->value; \ 667 return true; \ 668 } 669 670 #define IMPL_LEXINSERT(NAME, V) \ 671 void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \ 672 V val) { \ 673 assert(cref->strides[0] == 1); \ 674 uint64_t *cursor = cref->data + cref->offset; \ 675 assert(cursor); \ 676 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 677 } 678 679 /// Constructs a new sparse tensor. This is the "swiss army knife" 680 /// method for materializing sparse tensors into the computation. 681 /// 682 /// Action: 683 /// kEmpty = returns empty storage to fill later 684 /// kFromFile = returns storage, where ptr contains filename to read 685 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 686 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 687 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 688 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 689 void * 690 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 691 StridedMemRefType<index_t, 1> *sref, 692 StridedMemRefType<index_t, 1> *pref, 693 OverheadType ptrTp, OverheadType indTp, 694 PrimaryType valTp, Action action, void *ptr) { 695 assert(aref && sref && pref); 696 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 697 pref->strides[0] == 1); 698 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 699 const DimLevelType *sparsity = aref->data + aref->offset; 700 const index_t *sizes = sref->data + sref->offset; 701 const index_t *perm = pref->data + pref->offset; 702 uint64_t rank = aref->sizes[0]; 703 704 // Double matrices with all combinations of overhead storage. 705 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 706 uint64_t, double); 707 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 708 uint32_t, double); 709 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 710 uint16_t, double); 711 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 712 uint8_t, double); 713 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 714 uint64_t, double); 715 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 716 uint32_t, double); 717 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 718 uint16_t, double); 719 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 720 uint8_t, double); 721 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 722 uint64_t, double); 723 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 724 uint32_t, double); 725 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 726 uint16_t, double); 727 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 728 uint8_t, double); 729 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 730 uint64_t, double); 731 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 732 uint32_t, double); 733 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 734 uint16_t, double); 735 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 736 uint8_t, double); 737 738 // Float matrices with all combinations of overhead storage. 739 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 740 uint64_t, float); 741 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 742 uint32_t, float); 743 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 744 uint16_t, float); 745 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 746 uint8_t, float); 747 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 748 uint64_t, float); 749 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 750 uint32_t, float); 751 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 752 uint16_t, float); 753 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 754 uint8_t, float); 755 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 756 uint64_t, float); 757 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 758 uint32_t, float); 759 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 760 uint16_t, float); 761 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 762 uint8_t, float); 763 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 764 uint64_t, float); 765 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 766 uint32_t, float); 767 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 768 uint16_t, float); 769 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 770 uint8_t, float); 771 772 // Integral matrices with both overheads of the same type. 773 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 774 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 775 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 776 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 777 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 778 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 779 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 780 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 781 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 782 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 783 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 784 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 785 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 786 787 // Unsupported case (add above if needed). 788 fputs("unsupported combination of types\n", stderr); 789 exit(1); 790 } 791 792 /// Methods that provide direct access to pointers. 793 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 794 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 795 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 796 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 797 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 798 799 /// Methods that provide direct access to indices. 800 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 801 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 802 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 803 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 804 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 805 806 /// Methods that provide direct access to values. 807 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 808 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 809 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 810 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 811 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 812 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 813 814 /// Helper to add value to coordinate scheme, one per value type. 815 IMPL_ADDELT(addEltF64, double) 816 IMPL_ADDELT(addEltF32, float) 817 IMPL_ADDELT(addEltI64, int64_t) 818 IMPL_ADDELT(addEltI32, int32_t) 819 IMPL_ADDELT(addEltI16, int16_t) 820 IMPL_ADDELT(addEltI8, int8_t) 821 822 /// Helper to enumerate elements of coordinate scheme, one per value type. 823 IMPL_GETNEXT(getNextF64, double) 824 IMPL_GETNEXT(getNextF32, float) 825 IMPL_GETNEXT(getNextI64, int64_t) 826 IMPL_GETNEXT(getNextI32, int32_t) 827 IMPL_GETNEXT(getNextI16, int16_t) 828 IMPL_GETNEXT(getNextI8, int8_t) 829 830 /// Helper to insert elements in lexicograph index order, one per value type. 831 IMPL_LEXINSERT(lexInsertF64, double) 832 IMPL_LEXINSERT(lexInsertF32, float) 833 IMPL_LEXINSERT(lexInsertI64, int64_t) 834 IMPL_LEXINSERT(lexInsertI32, int32_t) 835 IMPL_LEXINSERT(lexInsertI16, int16_t) 836 IMPL_LEXINSERT(lexInsertI8, int8_t) 837 838 #undef CASE 839 #undef IMPL_SPARSEVALUES 840 #undef IMPL_GETOVERHEAD 841 #undef IMPL_ADDELT 842 #undef IMPL_GETNEXT 843 #undef IMPL_INSERTLEX 844 845 //===----------------------------------------------------------------------===// 846 // 847 // Public API with methods that accept C-style data structures to interact 848 // with sparse tensors, which are only visible as opaque pointers externally. 849 // These methods can be used both by MLIR compiler-generated code as well as by 850 // an external runtime that wants to interact with MLIR compiler-generated code. 851 // 852 //===----------------------------------------------------------------------===// 853 854 /// Helper method to read a sparse tensor filename from the environment, 855 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 856 char *getTensorFilename(index_t id) { 857 char var[80]; 858 sprintf(var, "TENSOR%" PRIu64, id); 859 char *env = getenv(var); 860 return env; 861 } 862 863 /// Returns size of sparse tensor in given dimension. 864 index_t sparseDimSize(void *tensor, index_t d) { 865 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 866 } 867 868 /// Finalizes lexicographic insertions. 869 void endInsert(void *tensor) { 870 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 871 } 872 873 /// Releases sparse tensor storage. 874 void delSparseTensor(void *tensor) { 875 delete static_cast<SparseTensorStorageBase *>(tensor); 876 } 877 878 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 879 /// data structures. The expected parameters are: 880 /// 881 /// rank: rank of tensor 882 /// nse: number of specified elements (usually the nonzeros) 883 /// shape: array with dimension size for each rank 884 /// values: a "nse" array with values for all specified elements 885 /// indices: a flat "nse x rank" array with indices for all specified elements 886 /// 887 /// For example, the sparse matrix 888 /// | 1.0 0.0 0.0 | 889 /// | 0.0 5.0 3.0 | 890 /// can be passed as 891 /// rank = 2 892 /// nse = 3 893 /// shape = [2, 3] 894 /// values = [1.0, 5.0, 3.0] 895 /// indices = [ 0, 0, 1, 1, 1, 2] 896 // 897 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 898 // 899 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 900 double *values, uint64_t *indices) { 901 // Setup all-dims compressed and default ordering. 902 std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 903 std::vector<uint64_t> perm(rank); 904 std::iota(perm.begin(), perm.end(), 0); 905 // Convert external format to internal COO. 906 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 907 rank, shape, perm.data(), nse); 908 std::vector<uint64_t> idx(rank); 909 for (uint64_t i = 0, base = 0; i < nse; i++) { 910 for (uint64_t r = 0; r < rank; r++) 911 idx[r] = indices[base + r]; 912 tensor->add(idx, values[i]); 913 base += rank; 914 } 915 // Return sparse tensor storage format as opaque pointer. 916 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 917 rank, shape, perm.data(), sparse.data(), tensor); 918 } 919 920 } // extern "C" 921 922 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 923