1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a light-weight runtime support library that is useful
10 // for sparse tensor manipulations. The functionality provided in this library
11 // is meant to simplify benchmarking, testing, and debugging MLIR code that
12 // operates on sparse tensors. The provided functionality is **not** part
13 // of core MLIR, however.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
18 #include "mlir/ExecutionEngine/CRunnerUtils.h"
19 
20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
21 
22 #include <algorithm>
23 #include <cassert>
24 #include <cctype>
25 #include <cinttypes>
26 #include <cstdio>
27 #include <cstdlib>
28 #include <cstring>
29 #include <fstream>
30 #include <iostream>
31 #include <limits>
32 #include <numeric>
33 #include <vector>
34 
35 //===----------------------------------------------------------------------===//
36 //
37 // Internal support for storing and reading sparse tensors.
38 //
39 // The following memory-resident sparse storage schemes are supported:
40 //
41 // (a) A coordinate scheme for temporarily storing and lexicographically
42 //     sorting a sparse tensor by index (SparseTensorCOO).
43 //
44 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by
45 //     per-dimension sparse/dense annnotations together with a dimension
46 //     ordering used by MLIR compiler-generated code (SparseTensorStorage).
47 //
48 // The following external formats are supported:
49 //
50 // (1) Matrix Market Exchange (MME): *.mtx
51 //     https://math.nist.gov/MatrixMarket/formats.html
52 //
53 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
54 //     http://frostt.io/tensors/file-formats.html
55 //
56 // Two public APIs are supported:
57 //
58 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
59 //     tensors. These methods should be used exclusively by MLIR
60 //     compiler-generated code.
61 //
62 // (II) Methods that accept C-style data structures to interact with sparse
63 //      tensors. These methods can be used by any external runtime that wants
64 //      to interact with MLIR compiler-generated code.
65 //
66 // In both cases (I) and (II), the SparseTensorStorage format is externally
67 // only visible as an opaque pointer.
68 //
69 //===----------------------------------------------------------------------===//
70 
71 namespace {
72 
73 static constexpr int kColWidth = 1025;
74 
75 /// A sparse tensor element in coordinate scheme (value and indices).
76 /// For example, a rank-1 vector element would look like
77 ///   ({i}, a[i])
78 /// and a rank-5 tensor element like
79 ///   ({i,j,k,l,m}, a[i,j,k,l,m])
80 template <typename V>
81 struct Element {
82   Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
83   std::vector<uint64_t> indices;
84   V value;
85 };
86 
87 /// A memory-resident sparse tensor in coordinate scheme (collection of
88 /// elements). This data structure is used to read a sparse tensor from
89 /// any external format into memory and sort the elements lexicographically
90 /// by indices before passing it back to the client (most packed storage
91 /// formats require the elements to appear in lexicographic index order).
92 template <typename V>
93 struct SparseTensorCOO {
94 public:
95   SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
96       : sizes(szs), iteratorLocked(false), iteratorPos(0) {
97     if (capacity)
98       elements.reserve(capacity);
99   }
100   /// Adds element as indices and value.
101   void add(const std::vector<uint64_t> &ind, V val) {
102     assert(!iteratorLocked && "Attempt to add() after startIterator()");
103     uint64_t rank = getRank();
104     assert(rank == ind.size());
105     for (uint64_t r = 0; r < rank; r++)
106       assert(ind[r] < sizes[r]); // within bounds
107     elements.emplace_back(ind, val);
108   }
109   /// Sorts elements lexicographically by index.
110   void sort() {
111     assert(!iteratorLocked && "Attempt to sort() after startIterator()");
112     // TODO: we may want to cache an `isSorted` bit, to avoid
113     // unnecessary/redundant sorting.
114     std::sort(elements.begin(), elements.end(), lexOrder);
115   }
116   /// Returns rank.
117   uint64_t getRank() const { return sizes.size(); }
118   /// Getter for sizes array.
119   const std::vector<uint64_t> &getSizes() const { return sizes; }
120   /// Getter for elements array.
121   const std::vector<Element<V>> &getElements() const { return elements; }
122 
123   /// Switch into iterator mode.
124   void startIterator() {
125     iteratorLocked = true;
126     iteratorPos = 0;
127   }
128   /// Get the next element.
129   const Element<V> *getNext() {
130     assert(iteratorLocked && "Attempt to getNext() before startIterator()");
131     if (iteratorPos < elements.size())
132       return &(elements[iteratorPos++]);
133     iteratorLocked = false;
134     return nullptr;
135   }
136 
137   /// Factory method. Permutes the original dimensions according to
138   /// the given ordering and expects subsequent add() calls to honor
139   /// that same ordering for the given indices. The result is a
140   /// fully permuted coordinate scheme.
141   static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
142                                                 const uint64_t *sizes,
143                                                 const uint64_t *perm,
144                                                 uint64_t capacity = 0) {
145     std::vector<uint64_t> permsz(rank);
146     for (uint64_t r = 0; r < rank; r++)
147       permsz[perm[r]] = sizes[r];
148     return new SparseTensorCOO<V>(permsz, capacity);
149   }
150 
151 private:
152   /// Returns true if indices of e1 < indices of e2.
153   static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
154     uint64_t rank = e1.indices.size();
155     assert(rank == e2.indices.size());
156     for (uint64_t r = 0; r < rank; r++) {
157       if (e1.indices[r] == e2.indices[r])
158         continue;
159       return e1.indices[r] < e2.indices[r];
160     }
161     return false;
162   }
163   const std::vector<uint64_t> sizes; // per-dimension sizes
164   std::vector<Element<V>> elements;
165   bool iteratorLocked;
166   unsigned iteratorPos;
167 };
168 
169 /// Abstract base class of sparse tensor storage. Note that we use
170 /// function overloading to implement "partial" method specialization.
171 class SparseTensorStorageBase {
172 public:
173   /// Dimension size query.
174   virtual uint64_t getDimSize(uint64_t) = 0;
175 
176   /// Overhead storage.
177   virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
178   virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
179   virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
180   virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
181   virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
182   virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
183   virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
184   virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
185 
186   /// Primary storage.
187   virtual void getValues(std::vector<double> **) { fatal("valf64"); }
188   virtual void getValues(std::vector<float> **) { fatal("valf32"); }
189   virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
190   virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
191   virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
192   virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
193 
194   /// Element-wise insertion in lexicographic index order.
195   virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); }
196   virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); }
197   virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); }
198   virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); }
199   virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); }
200   virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); }
201 
202   /// Expanded insertion.
203   virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) {
204     fatal("expf64");
205   }
206   virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) {
207     fatal("expf32");
208   }
209   virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) {
210     fatal("expi64");
211   }
212   virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) {
213     fatal("expi32");
214   }
215   virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) {
216     fatal("expi16");
217   }
218   virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) {
219     fatal("expi8");
220   }
221 
222   /// Finishes insertion.
223   virtual void endInsert() = 0;
224 
225   virtual ~SparseTensorStorageBase() = default;
226 
227 private:
228   void fatal(const char *tp) {
229     fprintf(stderr, "unsupported %s\n", tp);
230     exit(1);
231   }
232 };
233 
234 /// A memory-resident sparse tensor using a storage scheme based on
235 /// per-dimension sparse/dense annotations. This data structure provides a
236 /// bufferized form of a sparse tensor type. In contrast to generating setup
237 /// methods for each differently annotated sparse tensor, this method provides
238 /// a convenient "one-size-fits-all" solution that simply takes an input tensor
239 /// and annotations to implement all required setup in a general manner.
240 template <typename P, typename I, typename V>
241 class SparseTensorStorage : public SparseTensorStorageBase {
242 public:
243   /// Constructs a sparse tensor storage scheme with the given dimensions,
244   /// permutation, and per-dimension dense/sparse annotations, using
245   /// the coordinate scheme tensor for the initial contents if provided.
246   SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
247                       const DimLevelType *sparsity,
248                       SparseTensorCOO<V> *tensor = nullptr)
249       : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()),
250         indices(getRank()) {
251     uint64_t rank = getRank();
252     // Store "reverse" permutation.
253     for (uint64_t r = 0; r < rank; r++)
254       rev[perm[r]] = r;
255     // Provide hints on capacity of pointers and indices.
256     // TODO: needs fine-tuning based on sparsity
257     bool allDense = true;
258     uint64_t sz = 1;
259     for (uint64_t r = 0; r < rank; r++) {
260       assert(sizes[r] > 0 && "Dimension size zero has trivial storage");
261       sz *= sizes[r];
262       if (sparsity[r] == DimLevelType::kCompressed) {
263         pointers[r].reserve(sz + 1);
264         indices[r].reserve(sz);
265         sz = 1;
266         allDense = false;
267         // Prepare the pointer structure.  We cannot use `addPointer`
268         // here, because `isCompressedDim` won't work until after this
269         // preparation has been done.
270         pointers[r].push_back(0);
271       } else {
272         assert(sparsity[r] == DimLevelType::kDense &&
273                "singleton not yet supported");
274       }
275     }
276     // Then assign contents from coordinate scheme tensor if provided.
277     if (tensor) {
278       // Ensure both preconditions of `fromCOO`.
279       assert(tensor->getSizes() == sizes && "Tensor size mismatch");
280       tensor->sort();
281       // Now actually insert the `elements`.
282       const std::vector<Element<V>> &elements = tensor->getElements();
283       uint64_t nnz = elements.size();
284       values.reserve(nnz);
285       fromCOO(elements, 0, nnz, 0);
286     } else if (allDense) {
287       values.resize(sz, 0);
288     }
289   }
290 
291   ~SparseTensorStorage() override = default;
292 
293   /// Get the rank of the tensor.
294   uint64_t getRank() const { return sizes.size(); }
295 
296   /// Get the size in the given dimension of the tensor.
297   uint64_t getDimSize(uint64_t d) override {
298     assert(d < getRank());
299     return sizes[d];
300   }
301 
302   /// Partially specialize these getter methods based on template types.
303   void getPointers(std::vector<P> **out, uint64_t d) override {
304     assert(d < getRank());
305     *out = &pointers[d];
306   }
307   void getIndices(std::vector<I> **out, uint64_t d) override {
308     assert(d < getRank());
309     *out = &indices[d];
310   }
311   void getValues(std::vector<V> **out) override { *out = &values; }
312 
313   /// Partially specialize lexicographical insertions based on template types.
314   void lexInsert(const uint64_t *cursor, V val) override {
315     // First, wrap up pending insertion path.
316     uint64_t diff = 0;
317     uint64_t top = 0;
318     if (!values.empty()) {
319       diff = lexDiff(cursor);
320       endPath(diff + 1);
321       top = idx[diff] + 1;
322     }
323     // Then continue with insertion path.
324     insPath(cursor, diff, top, val);
325   }
326 
327   /// Partially specialize expanded insertions based on template types.
328   /// Note that this method resets the values/filled-switch array back
329   /// to all-zero/false while only iterating over the nonzero elements.
330   void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
331                  uint64_t count) override {
332     if (count == 0)
333       return;
334     // Sort.
335     std::sort(added, added + count);
336     // Restore insertion path for first insert.
337     uint64_t rank = getRank();
338     uint64_t index = added[0];
339     cursor[rank - 1] = index;
340     lexInsert(cursor, values[index]);
341     assert(filled[index]);
342     values[index] = 0;
343     filled[index] = false;
344     // Subsequent insertions are quick.
345     for (uint64_t i = 1; i < count; i++) {
346       assert(index < added[i] && "non-lexicographic insertion");
347       index = added[i];
348       cursor[rank - 1] = index;
349       insPath(cursor, rank - 1, added[i - 1] + 1, values[index]);
350       assert(filled[index]);
351       values[index] = 0.0;
352       filled[index] = false;
353     }
354   }
355 
356   /// Finalizes lexicographic insertions.
357   void endInsert() override {
358     if (values.empty())
359       endDim(0);
360     else
361       endPath(0);
362   }
363 
364   /// Returns this sparse tensor storage scheme as a new memory-resident
365   /// sparse tensor in coordinate scheme with the given dimension order.
366   SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
367     // Restore original order of the dimension sizes and allocate coordinate
368     // scheme with desired new ordering specified in perm.
369     uint64_t rank = getRank();
370     std::vector<uint64_t> orgsz(rank);
371     for (uint64_t r = 0; r < rank; r++)
372       orgsz[rev[r]] = sizes[r];
373     SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
374         rank, orgsz.data(), perm, values.size());
375     // Populate coordinate scheme restored from old ordering and changed with
376     // new ordering. Rather than applying both reorderings during the recursion,
377     // we compute the combine permutation in advance.
378     std::vector<uint64_t> reord(rank);
379     for (uint64_t r = 0; r < rank; r++)
380       reord[r] = perm[rev[r]];
381     toCOO(*tensor, reord, 0, 0);
382     assert(tensor->getElements().size() == values.size());
383     return tensor;
384   }
385 
386   /// Factory method. Constructs a sparse tensor storage scheme with the given
387   /// dimensions, permutation, and per-dimension dense/sparse annotations,
388   /// using the coordinate scheme tensor for the initial contents if provided.
389   /// In the latter case, the coordinate scheme must respect the same
390   /// permutation as is desired for the new sparse tensor storage.
391   static SparseTensorStorage<P, I, V> *
392   newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm,
393                   const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) {
394     SparseTensorStorage<P, I, V> *n = nullptr;
395     if (tensor) {
396       assert(tensor->getRank() == rank);
397       for (uint64_t r = 0; r < rank; r++)
398         assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]);
399       n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
400                                            tensor);
401       delete tensor;
402     } else {
403       std::vector<uint64_t> permsz(rank);
404       for (uint64_t r = 0; r < rank; r++)
405         permsz[perm[r]] = sizes[r];
406       n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity);
407     }
408     return n;
409   }
410 
411 private:
412   /// Appends the next free position of `indices[d]` to `pointers[d]`.
413   /// Thus, when called after inserting the last element of a segment,
414   /// it will append the position where the next segment begins.
415   inline void addPointer(uint64_t d) {
416     assert(isCompressedDim(d)); // Entails `d < getRank()`.
417     uint64_t p = indices[d].size();
418     assert(p <= std::numeric_limits<P>::max() &&
419            "Pointer value is too large for the P-type");
420     pointers[d].push_back(p); // Here is where we convert to `P`.
421   }
422 
423   /// Appends the given index to `indices[d]`.
424   inline void addIndex(uint64_t d, uint64_t i) {
425     assert(isCompressedDim(d)); // Entails `d < getRank()`.
426     assert(i <= std::numeric_limits<I>::max() &&
427            "Index value is too large for the I-type");
428     indices[d].push_back(i); // Here is where we convert to `I`.
429   }
430 
431   /// Initializes sparse tensor storage scheme from a memory-resident sparse
432   /// tensor in coordinate scheme. This method prepares the pointers and
433   /// indices arrays under the given per-dimension dense/sparse annotations.
434   ///
435   /// Preconditions:
436   /// (1) the `elements` must be lexicographically sorted.
437   /// (2) the indices of every element are valid for `sizes` (equal rank
438   ///     and pointwise less-than).
439   void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
440                uint64_t hi, uint64_t d) {
441     // Once dimensions are exhausted, insert the numerical values.
442     assert(d <= getRank() && hi <= elements.size());
443     if (d == getRank()) {
444       assert(lo < hi);
445       values.push_back(elements[lo].value);
446       return;
447     }
448     // Visit all elements in this interval.
449     uint64_t full = 0;
450     while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`.
451       // Find segment in interval with same index elements in this dimension.
452       uint64_t i = elements[lo].indices[d];
453       uint64_t seg = lo + 1;
454       while (seg < hi && elements[seg].indices[d] == i)
455         seg++;
456       // Handle segment in interval for sparse or dense dimension.
457       if (isCompressedDim(d)) {
458         addIndex(d, i);
459       } else {
460         // For dense storage we must fill in all the zero values between
461         // the previous element (when last we ran this for-loop) and the
462         // current element.
463         for (; full < i; full++)
464           endDim(d + 1);
465         full++;
466       }
467       fromCOO(elements, lo, seg, d + 1);
468       // And move on to next segment in interval.
469       lo = seg;
470     }
471     // Finalize the sparse pointer structure at this dimension.
472     if (isCompressedDim(d)) {
473       addPointer(d);
474     } else {
475       // For dense storage we must fill in all the zero values after
476       // the last element.
477       for (uint64_t sz = sizes[d]; full < sz; full++)
478         endDim(d + 1);
479     }
480   }
481 
482   /// Stores the sparse tensor storage scheme into a memory-resident sparse
483   /// tensor in coordinate scheme.
484   void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord,
485              uint64_t pos, uint64_t d) {
486     assert(d <= getRank());
487     if (d == getRank()) {
488       assert(pos < values.size());
489       tensor.add(idx, values[pos]);
490     } else if (isCompressedDim(d)) {
491       // Sparse dimension.
492       for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
493         idx[reord[d]] = indices[d][ii];
494         toCOO(tensor, reord, ii, d + 1);
495       }
496     } else {
497       // Dense dimension.
498       for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
499         idx[reord[d]] = i;
500         toCOO(tensor, reord, off + i, d + 1);
501       }
502     }
503   }
504 
505   /// Ends a deeper, never seen before dimension.
506   void endDim(uint64_t d) {
507     assert(d <= getRank());
508     if (d == getRank()) {
509       values.push_back(0);
510     } else if (isCompressedDim(d)) {
511       addPointer(d);
512     } else {
513       for (uint64_t full = 0, sz = sizes[d]; full < sz; full++)
514         endDim(d + 1);
515     }
516   }
517 
518   /// Wraps up a single insertion path, inner to outer.
519   void endPath(uint64_t diff) {
520     uint64_t rank = getRank();
521     assert(diff <= rank);
522     for (uint64_t i = 0; i < rank - diff; i++) {
523       uint64_t d = rank - i - 1;
524       if (isCompressedDim(d)) {
525         addPointer(d);
526       } else {
527         for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++)
528           endDim(d + 1);
529       }
530     }
531   }
532 
533   /// Continues a single insertion path, outer to inner.
534   void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
535     uint64_t rank = getRank();
536     assert(diff < rank);
537     for (uint64_t d = diff; d < rank; d++) {
538       uint64_t i = cursor[d];
539       if (isCompressedDim(d)) {
540         addIndex(d, i);
541       } else {
542         for (uint64_t full = top; full < i; full++)
543           endDim(d + 1);
544       }
545       top = 0;
546       idx[d] = i;
547     }
548     values.push_back(val);
549   }
550 
551   /// Finds the lexicographic differing dimension.
552   uint64_t lexDiff(const uint64_t *cursor) {
553     for (uint64_t r = 0, rank = getRank(); r < rank; r++)
554       if (cursor[r] > idx[r])
555         return r;
556       else
557         assert(cursor[r] == idx[r] && "non-lexicographic insertion");
558     assert(0 && "duplication insertion");
559     return -1u;
560   }
561 
562   /// Returns true if dimension is compressed.
563   inline bool isCompressedDim(uint64_t d) const {
564     assert(d < getRank());
565     return (!pointers[d].empty());
566   }
567 
568 private:
569   std::vector<uint64_t> sizes; // per-dimension sizes
570   std::vector<uint64_t> rev;   // "reverse" permutation
571   std::vector<uint64_t> idx;   // index cursor
572   std::vector<std::vector<P>> pointers;
573   std::vector<std::vector<I>> indices;
574   std::vector<V> values;
575 };
576 
577 /// Helper to convert string to lower case.
578 static char *toLower(char *token) {
579   for (char *c = token; *c; c++)
580     *c = tolower(*c);
581   return token;
582 }
583 
584 /// Read the MME header of a general sparse matrix of type real.
585 static void readMMEHeader(FILE *file, char *filename, char *line,
586                           uint64_t *idata, bool *isSymmetric) {
587   char header[64];
588   char object[64];
589   char format[64];
590   char field[64];
591   char symmetry[64];
592   // Read header line.
593   if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
594              symmetry) != 5) {
595     fprintf(stderr, "Corrupt header in %s\n", filename);
596     exit(1);
597   }
598   *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0);
599   // Make sure this is a general sparse matrix.
600   if (strcmp(toLower(header), "%%matrixmarket") ||
601       strcmp(toLower(object), "matrix") ||
602       strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
603       (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) {
604     fprintf(stderr,
605             "Cannot find a general sparse matrix with type real in %s\n",
606             filename);
607     exit(1);
608   }
609   // Skip comments.
610   while (true) {
611     if (!fgets(line, kColWidth, file)) {
612       fprintf(stderr, "Cannot find data in %s\n", filename);
613       exit(1);
614     }
615     if (line[0] != '%')
616       break;
617   }
618   // Next line contains M N NNZ.
619   idata[0] = 2; // rank
620   if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
621              idata + 1) != 3) {
622     fprintf(stderr, "Cannot find size in %s\n", filename);
623     exit(1);
624   }
625 }
626 
627 /// Read the "extended" FROSTT header. Although not part of the documented
628 /// format, we assume that the file starts with optional comments followed
629 /// by two lines that define the rank, the number of nonzeros, and the
630 /// dimensions sizes (one per rank) of the sparse tensor.
631 static void readExtFROSTTHeader(FILE *file, char *filename, char *line,
632                                 uint64_t *idata) {
633   // Skip comments.
634   while (true) {
635     if (!fgets(line, kColWidth, file)) {
636       fprintf(stderr, "Cannot find data in %s\n", filename);
637       exit(1);
638     }
639     if (line[0] != '#')
640       break;
641   }
642   // Next line contains RANK and NNZ.
643   if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
644     fprintf(stderr, "Cannot find metadata in %s\n", filename);
645     exit(1);
646   }
647   // Followed by a line with the dimension sizes (one per rank).
648   for (uint64_t r = 0; r < idata[0]; r++) {
649     if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
650       fprintf(stderr, "Cannot find dimension size %s\n", filename);
651       exit(1);
652     }
653   }
654   fgets(line, kColWidth, file); // end of line
655 }
656 
657 /// Reads a sparse tensor with the given filename into a memory-resident
658 /// sparse tensor in coordinate scheme.
659 template <typename V>
660 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
661                                                const uint64_t *sizes,
662                                                const uint64_t *perm) {
663   // Open the file.
664   FILE *file = fopen(filename, "r");
665   if (!file) {
666     fprintf(stderr, "Cannot find %s\n", filename);
667     exit(1);
668   }
669   // Perform some file format dependent set up.
670   char line[kColWidth];
671   uint64_t idata[512];
672   bool isSymmetric = false;
673   if (strstr(filename, ".mtx")) {
674     readMMEHeader(file, filename, line, idata, &isSymmetric);
675   } else if (strstr(filename, ".tns")) {
676     readExtFROSTTHeader(file, filename, line, idata);
677   } else {
678     fprintf(stderr, "Unknown format %s\n", filename);
679     exit(1);
680   }
681   // Prepare sparse tensor object with per-dimension sizes
682   // and the number of nonzeros as initial capacity.
683   assert(rank == idata[0] && "rank mismatch");
684   uint64_t nnz = idata[1];
685   for (uint64_t r = 0; r < rank; r++)
686     assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) &&
687            "dimension size mismatch");
688   SparseTensorCOO<V> *tensor =
689       SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
690   //  Read all nonzero elements.
691   std::vector<uint64_t> indices(rank);
692   for (uint64_t k = 0; k < nnz; k++) {
693     if (!fgets(line, kColWidth, file)) {
694       fprintf(stderr, "Cannot find next line of data in %s\n", filename);
695       exit(1);
696     }
697     char *linePtr = line;
698     for (uint64_t r = 0; r < rank; r++) {
699       uint64_t idx = strtoul(linePtr, &linePtr, 10);
700       // Add 0-based index.
701       indices[perm[r]] = idx - 1;
702     }
703     // The external formats always store the numerical values with the type
704     // double, but we cast these values to the sparse tensor object type.
705     double value = strtod(linePtr, &linePtr);
706     tensor->add(indices, value);
707     // We currently chose to deal with symmetric matrices by fully constructing
708     // them. In the future, we may want to make symmetry implicit for storage
709     // reasons.
710     if (isSymmetric && indices[0] != indices[1])
711       tensor->add({indices[1], indices[0]}, value);
712   }
713   // Close the file and return tensor.
714   fclose(file);
715   return tensor;
716 }
717 
718 /// Writes the sparse tensor to extended FROSTT format.
719 template <typename V>
720 void outSparseTensor(const SparseTensorCOO<V> &tensor, char *filename) {
721   auto &sizes = tensor.getSizes();
722   auto &elements = tensor.getElements();
723   uint64_t rank = tensor.getRank();
724   uint64_t nnz = elements.size();
725   std::fstream file;
726   file.open(filename, std::ios_base::out | std::ios_base::trunc);
727   assert(file.is_open());
728   file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl;
729   for (uint64_t r = 0; r < rank - 1; r++)
730     file << sizes[r] << " ";
731   file << sizes[rank - 1] << std::endl;
732   for (uint64_t i = 0; i < nnz; i++) {
733     auto &idx = elements[i].indices;
734     for (uint64_t r = 0; r < rank; r++)
735       file << (idx[r] + 1) << " ";
736     file << elements[i].value << std::endl;
737   }
738   file.flush();
739   file.close();
740   assert(file.good());
741 }
742 
743 } // namespace
744 
745 extern "C" {
746 
747 //===----------------------------------------------------------------------===//
748 //
749 // Public API with methods that operate on MLIR buffers (memrefs) to interact
750 // with sparse tensors, which are only visible as opaque pointers externally.
751 // These methods should be used exclusively by MLIR compiler-generated code.
752 //
753 // Some macro magic is used to generate implementations for all required type
754 // combinations that can be called from MLIR compiler-generated code.
755 //
756 //===----------------------------------------------------------------------===//
757 
758 #define CASE(p, i, v, P, I, V)                                                 \
759   if (ptrTp == (p) && indTp == (i) && valTp == (v)) {                          \
760     SparseTensorCOO<V> *tensor = nullptr;                                      \
761     if (action <= Action::kFromCOO) {                                          \
762       if (action == Action::kFromFile) {                                       \
763         char *filename = static_cast<char *>(ptr);                             \
764         tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm);          \
765       } else if (action == Action::kFromCOO) {                                 \
766         tensor = static_cast<SparseTensorCOO<V> *>(ptr);                       \
767       } else {                                                                 \
768         assert(action == Action::kEmpty);                                      \
769       }                                                                        \
770       return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm,  \
771                                                            sparsity, tensor);  \
772     }                                                                          \
773     if (action == Action::kEmptyCOO)                                           \
774       return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm);        \
775     tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm);    \
776     if (action == Action::kToIterator) {                                       \
777       tensor->startIterator();                                                 \
778     } else {                                                                   \
779       assert(action == Action::kToCOO);                                        \
780     }                                                                          \
781     return tensor;                                                             \
782   }
783 
784 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
785 
786 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB)                                     \
787   void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) {    \
788     assert(ref &&tensor);                                                      \
789     std::vector<TYPE> *v;                                                      \
790     static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v);                   \
791     ref->basePtr = ref->data = v->data();                                      \
792     ref->offset = 0;                                                           \
793     ref->sizes[0] = v->size();                                                 \
794     ref->strides[0] = 1;                                                       \
795   }
796 
797 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB)                                      \
798   void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor,      \
799                            index_type d) {                                     \
800     assert(ref &&tensor);                                                      \
801     std::vector<TYPE> *v;                                                      \
802     static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d);                \
803     ref->basePtr = ref->data = v->data();                                      \
804     ref->offset = 0;                                                           \
805     ref->sizes[0] = v->size();                                                 \
806     ref->strides[0] = 1;                                                       \
807   }
808 
809 #define IMPL_ADDELT(NAME, TYPE)                                                \
810   void *_mlir_ciface_##NAME(void *tensor, TYPE value,                          \
811                             StridedMemRefType<index_type, 1> *iref,            \
812                             StridedMemRefType<index_type, 1> *pref) {          \
813     assert(tensor &&iref &&pref);                                              \
814     assert(iref->strides[0] == 1 && pref->strides[0] == 1);                    \
815     assert(iref->sizes[0] == pref->sizes[0]);                                  \
816     const index_type *indx = iref->data + iref->offset;                        \
817     const index_type *perm = pref->data + pref->offset;                        \
818     uint64_t isize = iref->sizes[0];                                           \
819     std::vector<index_type> indices(isize);                                    \
820     for (uint64_t r = 0; r < isize; r++)                                       \
821       indices[perm[r]] = indx[r];                                              \
822     static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value);         \
823     return tensor;                                                             \
824   }
825 
826 #define IMPL_GETNEXT(NAME, V)                                                  \
827   bool _mlir_ciface_##NAME(void *tensor,                                       \
828                            StridedMemRefType<index_type, 1> *iref,             \
829                            StridedMemRefType<V, 0> *vref) {                    \
830     assert(tensor &&iref &&vref);                                              \
831     assert(iref->strides[0] == 1);                                             \
832     index_type *indx = iref->data + iref->offset;                              \
833     V *value = vref->data + vref->offset;                                      \
834     const uint64_t isize = iref->sizes[0];                                     \
835     auto iter = static_cast<SparseTensorCOO<V> *>(tensor);                     \
836     const Element<V> *elem = iter->getNext();                                  \
837     if (elem == nullptr) {                                                     \
838       delete iter;                                                             \
839       return false;                                                            \
840     }                                                                          \
841     for (uint64_t r = 0; r < isize; r++)                                       \
842       indx[r] = elem->indices[r];                                              \
843     *value = elem->value;                                                      \
844     return true;                                                               \
845   }
846 
847 #define IMPL_LEXINSERT(NAME, V)                                                \
848   void _mlir_ciface_##NAME(void *tensor,                                       \
849                            StridedMemRefType<index_type, 1> *cref, V val) {    \
850     assert(tensor &&cref);                                                     \
851     assert(cref->strides[0] == 1);                                             \
852     index_type *cursor = cref->data + cref->offset;                            \
853     assert(cursor);                                                            \
854     static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val);    \
855   }
856 
857 #define IMPL_EXPINSERT(NAME, V)                                                \
858   void _mlir_ciface_##NAME(                                                    \
859       void *tensor, StridedMemRefType<index_type, 1> *cref,                    \
860       StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref,         \
861       StridedMemRefType<index_type, 1> *aref, index_type count) {              \
862     assert(tensor &&cref &&vref &&fref &&aref);                                \
863     assert(cref->strides[0] == 1);                                             \
864     assert(vref->strides[0] == 1);                                             \
865     assert(fref->strides[0] == 1);                                             \
866     assert(aref->strides[0] == 1);                                             \
867     assert(vref->sizes[0] == fref->sizes[0]);                                  \
868     index_type *cursor = cref->data + cref->offset;                            \
869     V *values = vref->data + vref->offset;                                     \
870     bool *filled = fref->data + fref->offset;                                  \
871     index_type *added = aref->data + aref->offset;                             \
872     static_cast<SparseTensorStorageBase *>(tensor)->expInsert(                 \
873         cursor, values, filled, added, count);                                 \
874   }
875 
876 #define IMPL_OUT(NAME, V)                                                      \
877   void NAME(void *tensor, void *dest, bool sort) {                             \
878     assert(tensor &&dest);                                                     \
879     auto coo = static_cast<SparseTensorCOO<V> *>(tensor);                      \
880     if (sort)                                                                  \
881       coo->sort();                                                             \
882     char *filename = static_cast<char *>(dest);                                \
883     outSparseTensor<V>(*coo, filename);                                        \
884     delete coo;                                                                \
885   }
886 
887 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
888 // can safely rewrite kIndex to kU64.  We make this assertion to guarantee
889 // that this file cannot get out of sync with its header.
890 static_assert(std::is_same<index_type, uint64_t>::value,
891               "Expected index_type == uint64_t");
892 
893 /// Constructs a new sparse tensor. This is the "swiss army knife"
894 /// method for materializing sparse tensors into the computation.
895 ///
896 /// Action:
897 /// kEmpty = returns empty storage to fill later
898 /// kFromFile = returns storage, where ptr contains filename to read
899 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
900 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
901 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
902 /// kToIterator = returns iterator from storage in ptr (call getNext() to use)
903 void *
904 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
905                              StridedMemRefType<index_type, 1> *sref,
906                              StridedMemRefType<index_type, 1> *pref,
907                              OverheadType ptrTp, OverheadType indTp,
908                              PrimaryType valTp, Action action, void *ptr) {
909   assert(aref && sref && pref);
910   assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
911          pref->strides[0] == 1);
912   assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
913   const DimLevelType *sparsity = aref->data + aref->offset;
914   const index_type *sizes = sref->data + sref->offset;
915   const index_type *perm = pref->data + pref->offset;
916   uint64_t rank = aref->sizes[0];
917 
918   // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
919   // This is safe because of the static_assert above.
920   if (ptrTp == OverheadType::kIndex)
921     ptrTp = OverheadType::kU64;
922   if (indTp == OverheadType::kIndex)
923     indTp = OverheadType::kU64;
924 
925   // Double matrices with all combinations of overhead storage.
926   CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
927        uint64_t, double);
928   CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
929        uint32_t, double);
930   CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
931        uint16_t, double);
932   CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
933        uint8_t, double);
934   CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
935        uint64_t, double);
936   CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
937        uint32_t, double);
938   CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
939        uint16_t, double);
940   CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
941        uint8_t, double);
942   CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
943        uint64_t, double);
944   CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
945        uint32_t, double);
946   CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
947        uint16_t, double);
948   CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
949        uint8_t, double);
950   CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
951        uint64_t, double);
952   CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
953        uint32_t, double);
954   CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
955        uint16_t, double);
956   CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
957        uint8_t, double);
958 
959   // Float matrices with all combinations of overhead storage.
960   CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
961        uint64_t, float);
962   CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
963        uint32_t, float);
964   CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
965        uint16_t, float);
966   CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
967        uint8_t, float);
968   CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
969        uint64_t, float);
970   CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
971        uint32_t, float);
972   CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
973        uint16_t, float);
974   CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
975        uint8_t, float);
976   CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
977        uint64_t, float);
978   CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
979        uint32_t, float);
980   CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
981        uint16_t, float);
982   CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
983        uint8_t, float);
984   CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
985        uint64_t, float);
986   CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
987        uint32_t, float);
988   CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
989        uint16_t, float);
990   CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
991        uint8_t, float);
992 
993   // Integral matrices with both overheads of the same type.
994   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
995   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
996   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
997   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
998   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
999   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
1000   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
1001   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
1002   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
1003   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
1004   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
1005   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
1006   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
1007 
1008   // Unsupported case (add above if needed).
1009   fputs("unsupported combination of types\n", stderr);
1010   exit(1);
1011 }
1012 
1013 /// Methods that provide direct access to pointers.
1014 IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers)
1015 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers)
1016 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers)
1017 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers)
1018 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers)
1019 
1020 /// Methods that provide direct access to indices.
1021 IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices)
1022 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices)
1023 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices)
1024 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices)
1025 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices)
1026 
1027 /// Methods that provide direct access to values.
1028 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues)
1029 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues)
1030 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues)
1031 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues)
1032 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues)
1033 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues)
1034 
1035 /// Helper to add value to coordinate scheme, one per value type.
1036 IMPL_ADDELT(addEltF64, double)
1037 IMPL_ADDELT(addEltF32, float)
1038 IMPL_ADDELT(addEltI64, int64_t)
1039 IMPL_ADDELT(addEltI32, int32_t)
1040 IMPL_ADDELT(addEltI16, int16_t)
1041 IMPL_ADDELT(addEltI8, int8_t)
1042 
1043 /// Helper to enumerate elements of coordinate scheme, one per value type.
1044 IMPL_GETNEXT(getNextF64, double)
1045 IMPL_GETNEXT(getNextF32, float)
1046 IMPL_GETNEXT(getNextI64, int64_t)
1047 IMPL_GETNEXT(getNextI32, int32_t)
1048 IMPL_GETNEXT(getNextI16, int16_t)
1049 IMPL_GETNEXT(getNextI8, int8_t)
1050 
1051 /// Helper to insert elements in lexicographical index order, one per value
1052 /// type.
1053 IMPL_LEXINSERT(lexInsertF64, double)
1054 IMPL_LEXINSERT(lexInsertF32, float)
1055 IMPL_LEXINSERT(lexInsertI64, int64_t)
1056 IMPL_LEXINSERT(lexInsertI32, int32_t)
1057 IMPL_LEXINSERT(lexInsertI16, int16_t)
1058 IMPL_LEXINSERT(lexInsertI8, int8_t)
1059 
1060 /// Helper to insert using expansion, one per value type.
1061 IMPL_EXPINSERT(expInsertF64, double)
1062 IMPL_EXPINSERT(expInsertF32, float)
1063 IMPL_EXPINSERT(expInsertI64, int64_t)
1064 IMPL_EXPINSERT(expInsertI32, int32_t)
1065 IMPL_EXPINSERT(expInsertI16, int16_t)
1066 IMPL_EXPINSERT(expInsertI8, int8_t)
1067 
1068 /// Helper to output a sparse tensor, one per value type.
1069 IMPL_OUT(outSparseTensorF64, double)
1070 IMPL_OUT(outSparseTensorF32, float)
1071 IMPL_OUT(outSparseTensorI64, int64_t)
1072 IMPL_OUT(outSparseTensorI32, int32_t)
1073 IMPL_OUT(outSparseTensorI16, int16_t)
1074 IMPL_OUT(outSparseTensorI8, int8_t)
1075 
1076 #undef CASE
1077 #undef IMPL_SPARSEVALUES
1078 #undef IMPL_GETOVERHEAD
1079 #undef IMPL_ADDELT
1080 #undef IMPL_GETNEXT
1081 #undef IMPL_LEXINSERT
1082 #undef IMPL_EXPINSERT
1083 #undef IMPL_OUT
1084 
1085 //===----------------------------------------------------------------------===//
1086 //
1087 // Public API with methods that accept C-style data structures to interact
1088 // with sparse tensors, which are only visible as opaque pointers externally.
1089 // These methods can be used both by MLIR compiler-generated code as well as by
1090 // an external runtime that wants to interact with MLIR compiler-generated code.
1091 //
1092 //===----------------------------------------------------------------------===//
1093 
1094 /// Helper method to read a sparse tensor filename from the environment,
1095 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
1096 char *getTensorFilename(index_type id) {
1097   char var[80];
1098   sprintf(var, "TENSOR%" PRIu64, id);
1099   char *env = getenv(var);
1100   return env;
1101 }
1102 
1103 /// Returns size of sparse tensor in given dimension.
1104 index_type sparseDimSize(void *tensor, index_type d) {
1105   return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
1106 }
1107 
1108 /// Finalizes lexicographic insertions.
1109 void endInsert(void *tensor) {
1110   return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
1111 }
1112 
1113 /// Releases sparse tensor storage.
1114 void delSparseTensor(void *tensor) {
1115   delete static_cast<SparseTensorStorageBase *>(tensor);
1116 }
1117 
1118 /// Initializes sparse tensor from a COO-flavored format expressed using C-style
1119 /// data structures. The expected parameters are:
1120 ///
1121 ///   rank:    rank of tensor
1122 ///   nse:     number of specified elements (usually the nonzeros)
1123 ///   shape:   array with dimension size for each rank
1124 ///   values:  a "nse" array with values for all specified elements
1125 ///   indices: a flat "nse x rank" array with indices for all specified elements
1126 ///
1127 /// For example, the sparse matrix
1128 ///     | 1.0 0.0 0.0 |
1129 ///     | 0.0 5.0 3.0 |
1130 /// can be passed as
1131 ///      rank    = 2
1132 ///      nse     = 3
1133 ///      shape   = [2, 3]
1134 ///      values  = [1.0, 5.0, 3.0]
1135 ///      indices = [ 0, 0,  1, 1,  1, 2]
1136 //
1137 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
1138 //
1139 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape,
1140                                 double *values, uint64_t *indices) {
1141   // Setup all-dims compressed and default ordering.
1142   std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed);
1143   std::vector<uint64_t> perm(rank);
1144   std::iota(perm.begin(), perm.end(), 0);
1145   // Convert external format to internal COO.
1146   SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO(
1147       rank, shape, perm.data(), nse);
1148   std::vector<uint64_t> idx(rank);
1149   for (uint64_t i = 0, base = 0; i < nse; i++) {
1150     for (uint64_t r = 0; r < rank; r++)
1151       idx[r] = indices[base + r];
1152     tensor->add(idx, values[i]);
1153     base += rank;
1154   }
1155   // Return sparse tensor storage format as opaque pointer.
1156   return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor(
1157       rank, shape, perm.data(), sparse.data(), tensor);
1158 }
1159 
1160 /// Converts a sparse tensor to COO-flavored format expressed using C-style
1161 /// data structures. The expected output parameters are pointers for these
1162 /// values:
1163 ///
1164 ///   rank:    rank of tensor
1165 ///   nse:     number of specified elements (usually the nonzeros)
1166 ///   shape:   array with dimension size for each rank
1167 ///   values:  a "nse" array with values for all specified elements
1168 ///   indices: a flat "nse x rank" array with indices for all specified elements
1169 ///
1170 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
1171 /// from convertToMLIRSparseTensor.
1172 ///
1173 //  TODO: Currently, values are copied from SparseTensorStorage to
1174 //  SparseTensorCOO, then to the output. We may want to reduce the number of
1175 //  copies.
1176 //
1177 //  TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
1178 //
1179 void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse,
1180                                  uint64_t **pShape, double **pValues,
1181                                  uint64_t **pIndices) {
1182   SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor =
1183       static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor);
1184   uint64_t rank = sparseTensor->getRank();
1185   std::vector<uint64_t> perm(rank);
1186   std::iota(perm.begin(), perm.end(), 0);
1187   SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data());
1188 
1189   const std::vector<Element<double>> &elements = coo->getElements();
1190   uint64_t nse = elements.size();
1191 
1192   uint64_t *shape = new uint64_t[rank];
1193   for (uint64_t i = 0; i < rank; i++)
1194     shape[i] = coo->getSizes()[i];
1195 
1196   double *values = new double[nse];
1197   uint64_t *indices = new uint64_t[rank * nse];
1198 
1199   for (uint64_t i = 0, base = 0; i < nse; i++) {
1200     values[i] = elements[i].value;
1201     for (uint64_t j = 0; j < rank; j++)
1202       indices[base + j] = elements[i].indices[j];
1203     base += rank;
1204   }
1205 
1206   delete coo;
1207   *pRank = rank;
1208   *pNse = nse;
1209   *pShape = shape;
1210   *pValues = values;
1211   *pIndices = indices;
1212 }
1213 
1214 } // extern "C"
1215 
1216 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
1217