1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <fstream> 30 #include <iostream> 31 #include <limits> 32 #include <numeric> 33 #include <vector> 34 35 //===----------------------------------------------------------------------===// 36 // 37 // Internal support for storing and reading sparse tensors. 38 // 39 // The following memory-resident sparse storage schemes are supported: 40 // 41 // (a) A coordinate scheme for temporarily storing and lexicographically 42 // sorting a sparse tensor by index (SparseTensorCOO). 43 // 44 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 45 // per-dimension sparse/dense annnotations together with a dimension 46 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 47 // 48 // The following external formats are supported: 49 // 50 // (1) Matrix Market Exchange (MME): *.mtx 51 // https://math.nist.gov/MatrixMarket/formats.html 52 // 53 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 54 // http://frostt.io/tensors/file-formats.html 55 // 56 // Two public APIs are supported: 57 // 58 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 59 // tensors. These methods should be used exclusively by MLIR 60 // compiler-generated code. 61 // 62 // (II) Methods that accept C-style data structures to interact with sparse 63 // tensors. These methods can be used by any external runtime that wants 64 // to interact with MLIR compiler-generated code. 65 // 66 // In both cases (I) and (II), the SparseTensorStorage format is externally 67 // only visible as an opaque pointer. 68 // 69 //===----------------------------------------------------------------------===// 70 71 namespace { 72 73 static constexpr int kColWidth = 1025; 74 75 /// A sparse tensor element in coordinate scheme (value and indices). 76 /// For example, a rank-1 vector element would look like 77 /// ({i}, a[i]) 78 /// and a rank-5 tensor element like 79 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 80 template <typename V> 81 struct Element { 82 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 83 std::vector<uint64_t> indices; 84 V value; 85 /// Returns true if indices of e1 < indices of e2. 86 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 87 uint64_t rank = e1.indices.size(); 88 assert(rank == e2.indices.size()); 89 for (uint64_t r = 0; r < rank; r++) { 90 if (e1.indices[r] == e2.indices[r]) 91 continue; 92 return e1.indices[r] < e2.indices[r]; 93 } 94 return false; 95 } 96 }; 97 98 /// A memory-resident sparse tensor in coordinate scheme (collection of 99 /// elements). This data structure is used to read a sparse tensor from 100 /// any external format into memory and sort the elements lexicographically 101 /// by indices before passing it back to the client (most packed storage 102 /// formats require the elements to appear in lexicographic index order). 103 template <typename V> 104 struct SparseTensorCOO { 105 public: 106 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 107 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 108 if (capacity) 109 elements.reserve(capacity); 110 } 111 /// Adds element as indices and value. 112 void add(const std::vector<uint64_t> &ind, V val) { 113 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 114 uint64_t rank = getRank(); 115 assert(rank == ind.size()); 116 for (uint64_t r = 0; r < rank; r++) 117 assert(ind[r] < sizes[r]); // within bounds 118 elements.emplace_back(ind, val); 119 } 120 /// Sorts elements lexicographically by index. 121 void sort() { 122 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 123 // TODO: we may want to cache an `isSorted` bit, to avoid 124 // unnecessary/redundant sorting. 125 std::sort(elements.begin(), elements.end(), Element<V>::lexOrder); 126 } 127 /// Returns rank. 128 uint64_t getRank() const { return sizes.size(); } 129 /// Getter for sizes array. 130 const std::vector<uint64_t> &getSizes() const { return sizes; } 131 /// Getter for elements array. 132 const std::vector<Element<V>> &getElements() const { return elements; } 133 134 /// Switch into iterator mode. 135 void startIterator() { 136 iteratorLocked = true; 137 iteratorPos = 0; 138 } 139 /// Get the next element. 140 const Element<V> *getNext() { 141 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 142 if (iteratorPos < elements.size()) 143 return &(elements[iteratorPos++]); 144 iteratorLocked = false; 145 return nullptr; 146 } 147 148 /// Factory method. Permutes the original dimensions according to 149 /// the given ordering and expects subsequent add() calls to honor 150 /// that same ordering for the given indices. The result is a 151 /// fully permuted coordinate scheme. 152 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 153 const uint64_t *sizes, 154 const uint64_t *perm, 155 uint64_t capacity = 0) { 156 std::vector<uint64_t> permsz(rank); 157 for (uint64_t r = 0; r < rank; r++) { 158 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 159 permsz[perm[r]] = sizes[r]; 160 } 161 return new SparseTensorCOO<V>(permsz, capacity); 162 } 163 164 private: 165 const std::vector<uint64_t> sizes; // per-dimension sizes 166 std::vector<Element<V>> elements; 167 bool iteratorLocked; 168 unsigned iteratorPos; 169 }; 170 171 /// Abstract base class of sparse tensor storage. Note that we use 172 /// function overloading to implement "partial" method specialization. 173 class SparseTensorStorageBase { 174 public: 175 /// Dimension size query. 176 virtual uint64_t getDimSize(uint64_t) const = 0; 177 178 /// Overhead storage. 179 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 180 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 181 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 182 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 183 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 184 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 185 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 186 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 187 188 /// Primary storage. 189 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 190 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 191 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 192 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 193 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 194 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 195 196 /// Element-wise insertion in lexicographic index order. 197 virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 198 virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 199 virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 200 virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 201 virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 202 virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 203 204 /// Expanded insertion. 205 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 206 fatal("expf64"); 207 } 208 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 209 fatal("expf32"); 210 } 211 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 212 fatal("expi64"); 213 } 214 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 215 fatal("expi32"); 216 } 217 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 218 fatal("expi16"); 219 } 220 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 221 fatal("expi8"); 222 } 223 224 /// Finishes insertion. 225 virtual void endInsert() = 0; 226 227 virtual ~SparseTensorStorageBase() = default; 228 229 private: 230 static void fatal(const char *tp) { 231 fprintf(stderr, "unsupported %s\n", tp); 232 exit(1); 233 } 234 }; 235 236 /// A memory-resident sparse tensor using a storage scheme based on 237 /// per-dimension sparse/dense annotations. This data structure provides a 238 /// bufferized form of a sparse tensor type. In contrast to generating setup 239 /// methods for each differently annotated sparse tensor, this method provides 240 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 241 /// and annotations to implement all required setup in a general manner. 242 template <typename P, typename I, typename V> 243 class SparseTensorStorage : public SparseTensorStorageBase { 244 public: 245 /// Constructs a sparse tensor storage scheme with the given dimensions, 246 /// permutation, and per-dimension dense/sparse annotations, using 247 /// the coordinate scheme tensor for the initial contents if provided. 248 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 249 const DimLevelType *sparsity, 250 SparseTensorCOO<V> *tensor = nullptr) 251 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 252 indices(getRank()) { 253 uint64_t rank = getRank(); 254 // Store "reverse" permutation. 255 for (uint64_t r = 0; r < rank; r++) 256 rev[perm[r]] = r; 257 // Provide hints on capacity of pointers and indices. 258 // TODO: needs fine-tuning based on sparsity 259 bool allDense = true; 260 uint64_t sz = 1; 261 for (uint64_t r = 0; r < rank; r++) { 262 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 263 sz *= sizes[r]; 264 if (sparsity[r] == DimLevelType::kCompressed) { 265 pointers[r].reserve(sz + 1); 266 indices[r].reserve(sz); 267 sz = 1; 268 allDense = false; 269 // Prepare the pointer structure. We cannot use `appendPointer` 270 // here, because `isCompressedDim` won't work until after this 271 // preparation has been done. 272 pointers[r].push_back(0); 273 } else { 274 assert(sparsity[r] == DimLevelType::kDense && 275 "singleton not yet supported"); 276 } 277 } 278 // Then assign contents from coordinate scheme tensor if provided. 279 if (tensor) { 280 // Ensure both preconditions of `fromCOO`. 281 assert(tensor->getSizes() == sizes && "Tensor size mismatch"); 282 tensor->sort(); 283 // Now actually insert the `elements`. 284 const std::vector<Element<V>> &elements = tensor->getElements(); 285 uint64_t nnz = elements.size(); 286 values.reserve(nnz); 287 fromCOO(elements, 0, nnz, 0); 288 } else if (allDense) { 289 values.resize(sz, 0); 290 } 291 } 292 293 ~SparseTensorStorage() override = default; 294 295 /// Get the rank of the tensor. 296 uint64_t getRank() const { return sizes.size(); } 297 298 /// Get the size of the given dimension of the tensor. 299 uint64_t getDimSize(uint64_t d) const override { 300 assert(d < getRank()); 301 return sizes[d]; 302 } 303 304 /// Partially specialize these getter methods based on template types. 305 void getPointers(std::vector<P> **out, uint64_t d) override { 306 assert(d < getRank()); 307 *out = &pointers[d]; 308 } 309 void getIndices(std::vector<I> **out, uint64_t d) override { 310 assert(d < getRank()); 311 *out = &indices[d]; 312 } 313 void getValues(std::vector<V> **out) override { *out = &values; } 314 315 /// Partially specialize lexicographical insertions based on template types. 316 void lexInsert(const uint64_t *cursor, V val) override { 317 // First, wrap up pending insertion path. 318 uint64_t diff = 0; 319 uint64_t top = 0; 320 if (!values.empty()) { 321 diff = lexDiff(cursor); 322 endPath(diff + 1); 323 top = idx[diff] + 1; 324 } 325 // Then continue with insertion path. 326 insPath(cursor, diff, top, val); 327 } 328 329 /// Partially specialize expanded insertions based on template types. 330 /// Note that this method resets the values/filled-switch array back 331 /// to all-zero/false while only iterating over the nonzero elements. 332 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 333 uint64_t count) override { 334 if (count == 0) 335 return; 336 // Sort. 337 std::sort(added, added + count); 338 // Restore insertion path for first insert. 339 uint64_t rank = getRank(); 340 uint64_t index = added[0]; 341 cursor[rank - 1] = index; 342 lexInsert(cursor, values[index]); 343 assert(filled[index]); 344 values[index] = 0; 345 filled[index] = false; 346 // Subsequent insertions are quick. 347 for (uint64_t i = 1; i < count; i++) { 348 assert(index < added[i] && "non-lexicographic insertion"); 349 index = added[i]; 350 cursor[rank - 1] = index; 351 insPath(cursor, rank - 1, added[i - 1] + 1, values[index]); 352 assert(filled[index]); 353 values[index] = 0.0; 354 filled[index] = false; 355 } 356 } 357 358 /// Finalizes lexicographic insertions. 359 void endInsert() override { 360 if (values.empty()) 361 endDim(0); 362 else 363 endPath(0); 364 } 365 366 /// Returns this sparse tensor storage scheme as a new memory-resident 367 /// sparse tensor in coordinate scheme with the given dimension order. 368 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 369 // Restore original order of the dimension sizes and allocate coordinate 370 // scheme with desired new ordering specified in perm. 371 uint64_t rank = getRank(); 372 std::vector<uint64_t> orgsz(rank); 373 for (uint64_t r = 0; r < rank; r++) 374 orgsz[rev[r]] = sizes[r]; 375 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 376 rank, orgsz.data(), perm, values.size()); 377 // Populate coordinate scheme restored from old ordering and changed with 378 // new ordering. Rather than applying both reorderings during the recursion, 379 // we compute the combine permutation in advance. 380 std::vector<uint64_t> reord(rank); 381 for (uint64_t r = 0; r < rank; r++) 382 reord[r] = perm[rev[r]]; 383 toCOO(*tensor, reord, 0, 0); 384 assert(tensor->getElements().size() == values.size()); 385 return tensor; 386 } 387 388 /// Factory method. Constructs a sparse tensor storage scheme with the given 389 /// dimensions, permutation, and per-dimension dense/sparse annotations, 390 /// using the coordinate scheme tensor for the initial contents if provided. 391 /// In the latter case, the coordinate scheme must respect the same 392 /// permutation as is desired for the new sparse tensor storage. 393 static SparseTensorStorage<P, I, V> * 394 newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 395 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 396 SparseTensorStorage<P, I, V> *n = nullptr; 397 if (tensor) { 398 assert(tensor->getRank() == rank); 399 for (uint64_t r = 0; r < rank; r++) 400 assert(shape[r] == 0 || shape[r] == tensor->getSizes()[perm[r]]); 401 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 402 tensor); 403 delete tensor; 404 } else { 405 std::vector<uint64_t> permsz(rank); 406 for (uint64_t r = 0; r < rank; r++) { 407 assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 408 permsz[perm[r]] = shape[r]; 409 } 410 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 411 } 412 return n; 413 } 414 415 private: 416 /// Appends the next free position of `indices[d]` to `pointers[d]`. 417 /// Thus, when called after inserting the last element of a segment, 418 /// it will append the position where the next segment begins. 419 inline void appendPointer(uint64_t d) { 420 assert(isCompressedDim(d)); // Entails `d < getRank()`. 421 uint64_t p = indices[d].size(); 422 assert(p <= std::numeric_limits<P>::max() && 423 "Pointer value is too large for the P-type"); 424 pointers[d].push_back(p); // Here is where we convert to `P`. 425 } 426 427 /// Appends the given index to `indices[d]`. 428 inline void appendIndex(uint64_t d, uint64_t i) { 429 assert(isCompressedDim(d)); // Entails `d < getRank()`. 430 assert(i <= std::numeric_limits<I>::max() && 431 "Index value is too large for the I-type"); 432 indices[d].push_back(i); // Here is where we convert to `I`. 433 } 434 435 /// Initializes sparse tensor storage scheme from a memory-resident sparse 436 /// tensor in coordinate scheme. This method prepares the pointers and 437 /// indices arrays under the given per-dimension dense/sparse annotations. 438 /// 439 /// Preconditions: 440 /// (1) the `elements` must be lexicographically sorted. 441 /// (2) the indices of every element are valid for `sizes` (equal rank 442 /// and pointwise less-than). 443 void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 444 uint64_t hi, uint64_t d) { 445 // Once dimensions are exhausted, insert the numerical values. 446 assert(d <= getRank() && hi <= elements.size()); 447 if (d == getRank()) { 448 assert(lo < hi); 449 values.push_back(elements[lo].value); 450 return; 451 } 452 // Visit all elements in this interval. 453 uint64_t full = 0; 454 while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 455 // Find segment in interval with same index elements in this dimension. 456 uint64_t i = elements[lo].indices[d]; 457 uint64_t seg = lo + 1; 458 while (seg < hi && elements[seg].indices[d] == i) 459 seg++; 460 // Handle segment in interval for sparse or dense dimension. 461 if (isCompressedDim(d)) { 462 appendIndex(d, i); 463 } else { 464 // For dense storage we must fill in all the zero values between 465 // the previous element (when last we ran this for-loop) and the 466 // current element. 467 for (; full < i; full++) 468 endDim(d + 1); 469 full++; 470 } 471 fromCOO(elements, lo, seg, d + 1); 472 // And move on to next segment in interval. 473 lo = seg; 474 } 475 // Finalize the sparse pointer structure at this dimension. 476 if (isCompressedDim(d)) { 477 appendPointer(d); 478 } else { 479 // For dense storage we must fill in all the zero values after 480 // the last element. 481 for (uint64_t sz = sizes[d]; full < sz; full++) 482 endDim(d + 1); 483 } 484 } 485 486 /// Stores the sparse tensor storage scheme into a memory-resident sparse 487 /// tensor in coordinate scheme. 488 void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 489 uint64_t pos, uint64_t d) { 490 assert(d <= getRank()); 491 if (d == getRank()) { 492 assert(pos < values.size()); 493 tensor.add(idx, values[pos]); 494 } else if (isCompressedDim(d)) { 495 // Sparse dimension. 496 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 497 idx[reord[d]] = indices[d][ii]; 498 toCOO(tensor, reord, ii, d + 1); 499 } 500 } else { 501 // Dense dimension. 502 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 503 idx[reord[d]] = i; 504 toCOO(tensor, reord, off + i, d + 1); 505 } 506 } 507 } 508 509 /// Ends a deeper, never seen before dimension. 510 void endDim(uint64_t d) { 511 assert(d <= getRank()); 512 if (d == getRank()) { 513 values.push_back(0); 514 } else if (isCompressedDim(d)) { 515 appendPointer(d); 516 } else { 517 for (uint64_t full = 0, sz = sizes[d]; full < sz; full++) 518 endDim(d + 1); 519 } 520 } 521 522 /// Wraps up a single insertion path, inner to outer. 523 void endPath(uint64_t diff) { 524 uint64_t rank = getRank(); 525 assert(diff <= rank); 526 for (uint64_t i = 0; i < rank - diff; i++) { 527 uint64_t d = rank - i - 1; 528 if (isCompressedDim(d)) { 529 appendPointer(d); 530 } else { 531 for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++) 532 endDim(d + 1); 533 } 534 } 535 } 536 537 /// Continues a single insertion path, outer to inner. 538 void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 539 uint64_t rank = getRank(); 540 assert(diff < rank); 541 for (uint64_t d = diff; d < rank; d++) { 542 uint64_t i = cursor[d]; 543 if (isCompressedDim(d)) { 544 appendIndex(d, i); 545 } else { 546 for (uint64_t full = top; full < i; full++) 547 endDim(d + 1); 548 } 549 top = 0; 550 idx[d] = i; 551 } 552 values.push_back(val); 553 } 554 555 /// Finds the lexicographic differing dimension. 556 uint64_t lexDiff(const uint64_t *cursor) const { 557 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 558 if (cursor[r] > idx[r]) 559 return r; 560 else 561 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 562 assert(0 && "duplication insertion"); 563 return -1u; 564 } 565 566 /// Returns true if dimension is compressed. 567 inline bool isCompressedDim(uint64_t d) const { 568 assert(d < getRank()); 569 return (!pointers[d].empty()); 570 } 571 572 private: 573 const std::vector<uint64_t> sizes; // per-dimension sizes 574 std::vector<uint64_t> rev; // "reverse" permutation 575 std::vector<uint64_t> idx; // index cursor 576 std::vector<std::vector<P>> pointers; 577 std::vector<std::vector<I>> indices; 578 std::vector<V> values; 579 }; 580 581 /// Helper to convert string to lower case. 582 static char *toLower(char *token) { 583 for (char *c = token; *c; c++) 584 *c = tolower(*c); 585 return token; 586 } 587 588 /// Read the MME header of a general sparse matrix of type real. 589 static void readMMEHeader(FILE *file, char *filename, char *line, 590 uint64_t *idata, bool *isSymmetric) { 591 char header[64]; 592 char object[64]; 593 char format[64]; 594 char field[64]; 595 char symmetry[64]; 596 // Read header line. 597 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 598 symmetry) != 5) { 599 fprintf(stderr, "Corrupt header in %s\n", filename); 600 exit(1); 601 } 602 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 603 // Make sure this is a general sparse matrix. 604 if (strcmp(toLower(header), "%%matrixmarket") || 605 strcmp(toLower(object), "matrix") || 606 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 607 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 608 fprintf(stderr, 609 "Cannot find a general sparse matrix with type real in %s\n", 610 filename); 611 exit(1); 612 } 613 // Skip comments. 614 while (true) { 615 if (!fgets(line, kColWidth, file)) { 616 fprintf(stderr, "Cannot find data in %s\n", filename); 617 exit(1); 618 } 619 if (line[0] != '%') 620 break; 621 } 622 // Next line contains M N NNZ. 623 idata[0] = 2; // rank 624 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 625 idata + 1) != 3) { 626 fprintf(stderr, "Cannot find size in %s\n", filename); 627 exit(1); 628 } 629 } 630 631 /// Read the "extended" FROSTT header. Although not part of the documented 632 /// format, we assume that the file starts with optional comments followed 633 /// by two lines that define the rank, the number of nonzeros, and the 634 /// dimensions sizes (one per rank) of the sparse tensor. 635 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 636 uint64_t *idata) { 637 // Skip comments. 638 while (true) { 639 if (!fgets(line, kColWidth, file)) { 640 fprintf(stderr, "Cannot find data in %s\n", filename); 641 exit(1); 642 } 643 if (line[0] != '#') 644 break; 645 } 646 // Next line contains RANK and NNZ. 647 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 648 fprintf(stderr, "Cannot find metadata in %s\n", filename); 649 exit(1); 650 } 651 // Followed by a line with the dimension sizes (one per rank). 652 for (uint64_t r = 0; r < idata[0]; r++) { 653 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 654 fprintf(stderr, "Cannot find dimension size %s\n", filename); 655 exit(1); 656 } 657 } 658 fgets(line, kColWidth, file); // end of line 659 } 660 661 /// Reads a sparse tensor with the given filename into a memory-resident 662 /// sparse tensor in coordinate scheme. 663 template <typename V> 664 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 665 const uint64_t *shape, 666 const uint64_t *perm) { 667 // Open the file. 668 FILE *file = fopen(filename, "r"); 669 if (!file) { 670 assert(filename && "Received nullptr for filename"); 671 fprintf(stderr, "Cannot find file %s\n", filename); 672 exit(1); 673 } 674 // Perform some file format dependent set up. 675 char line[kColWidth]; 676 uint64_t idata[512]; 677 bool isSymmetric = false; 678 if (strstr(filename, ".mtx")) { 679 readMMEHeader(file, filename, line, idata, &isSymmetric); 680 } else if (strstr(filename, ".tns")) { 681 readExtFROSTTHeader(file, filename, line, idata); 682 } else { 683 fprintf(stderr, "Unknown format %s\n", filename); 684 exit(1); 685 } 686 // Prepare sparse tensor object with per-dimension sizes 687 // and the number of nonzeros as initial capacity. 688 assert(rank == idata[0] && "rank mismatch"); 689 uint64_t nnz = idata[1]; 690 for (uint64_t r = 0; r < rank; r++) 691 assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 692 "dimension size mismatch"); 693 SparseTensorCOO<V> *tensor = 694 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 695 // Read all nonzero elements. 696 std::vector<uint64_t> indices(rank); 697 for (uint64_t k = 0; k < nnz; k++) { 698 if (!fgets(line, kColWidth, file)) { 699 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 700 exit(1); 701 } 702 char *linePtr = line; 703 for (uint64_t r = 0; r < rank; r++) { 704 uint64_t idx = strtoul(linePtr, &linePtr, 10); 705 // Add 0-based index. 706 indices[perm[r]] = idx - 1; 707 } 708 // The external formats always store the numerical values with the type 709 // double, but we cast these values to the sparse tensor object type. 710 double value = strtod(linePtr, &linePtr); 711 tensor->add(indices, value); 712 // We currently chose to deal with symmetric matrices by fully constructing 713 // them. In the future, we may want to make symmetry implicit for storage 714 // reasons. 715 if (isSymmetric && indices[0] != indices[1]) 716 tensor->add({indices[1], indices[0]}, value); 717 } 718 // Close the file and return tensor. 719 fclose(file); 720 return tensor; 721 } 722 723 /// Writes the sparse tensor to extended FROSTT format. 724 template <typename V> 725 static void outSparseTensor(void *tensor, void *dest, bool sort) { 726 assert(tensor && dest); 727 auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 728 if (sort) 729 coo->sort(); 730 char *filename = static_cast<char *>(dest); 731 auto &sizes = coo->getSizes(); 732 auto &elements = coo->getElements(); 733 uint64_t rank = coo->getRank(); 734 uint64_t nnz = elements.size(); 735 std::fstream file; 736 file.open(filename, std::ios_base::out | std::ios_base::trunc); 737 assert(file.is_open()); 738 file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 739 for (uint64_t r = 0; r < rank - 1; r++) 740 file << sizes[r] << " "; 741 file << sizes[rank - 1] << std::endl; 742 for (uint64_t i = 0; i < nnz; i++) { 743 auto &idx = elements[i].indices; 744 for (uint64_t r = 0; r < rank; r++) 745 file << (idx[r] + 1) << " "; 746 file << elements[i].value << std::endl; 747 } 748 file.flush(); 749 file.close(); 750 assert(file.good()); 751 delete coo; 752 } 753 754 /// Initializes sparse tensor from an external COO-flavored format. 755 template <typename V> 756 static SparseTensorStorage<uint64_t, uint64_t, V> * 757 toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 758 uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 759 const DimLevelType *sparsity = (DimLevelType *)(sparse); 760 #ifndef NDEBUG 761 // Verify that perm is a permutation of 0..(rank-1). 762 std::vector<uint64_t> order(perm, perm + rank); 763 std::sort(order.begin(), order.end()); 764 for (uint64_t i = 0; i < rank; ++i) { 765 if (i != order[i]) { 766 fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 767 exit(1); 768 } 769 } 770 771 // Verify that the sparsity values are supported. 772 for (uint64_t i = 0; i < rank; ++i) { 773 if (sparsity[i] != DimLevelType::kDense && 774 sparsity[i] != DimLevelType::kCompressed) { 775 fprintf(stderr, "Unsupported sparsity value %d\n", 776 static_cast<int>(sparsity[i])); 777 exit(1); 778 } 779 } 780 #endif 781 782 // Convert external format to internal COO. 783 auto *tensor = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 784 std::vector<uint64_t> idx(rank); 785 for (uint64_t i = 0, base = 0; i < nse; i++) { 786 for (uint64_t r = 0; r < rank; r++) 787 idx[perm[r]] = indices[base + r]; 788 tensor->add(idx, values[i]); 789 base += rank; 790 } 791 // Return sparse tensor storage format as opaque pointer. 792 return SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 793 rank, shape, perm, sparsity, tensor); 794 } 795 796 /// Converts a sparse tensor to an external COO-flavored format. 797 template <typename V> 798 static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 799 uint64_t **pShape, V **pValues, 800 uint64_t **pIndices) { 801 auto sparseTensor = 802 static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 803 uint64_t rank = sparseTensor->getRank(); 804 std::vector<uint64_t> perm(rank); 805 std::iota(perm.begin(), perm.end(), 0); 806 SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 807 808 const std::vector<Element<V>> &elements = coo->getElements(); 809 uint64_t nse = elements.size(); 810 811 uint64_t *shape = new uint64_t[rank]; 812 for (uint64_t i = 0; i < rank; i++) 813 shape[i] = coo->getSizes()[i]; 814 815 V *values = new V[nse]; 816 uint64_t *indices = new uint64_t[rank * nse]; 817 818 for (uint64_t i = 0, base = 0; i < nse; i++) { 819 values[i] = elements[i].value; 820 for (uint64_t j = 0; j < rank; j++) 821 indices[base + j] = elements[i].indices[j]; 822 base += rank; 823 } 824 825 delete coo; 826 *pRank = rank; 827 *pNse = nse; 828 *pShape = shape; 829 *pValues = values; 830 *pIndices = indices; 831 } 832 833 } // namespace 834 835 extern "C" { 836 837 //===----------------------------------------------------------------------===// 838 // 839 // Public API with methods that operate on MLIR buffers (memrefs) to interact 840 // with sparse tensors, which are only visible as opaque pointers externally. 841 // These methods should be used exclusively by MLIR compiler-generated code. 842 // 843 // Some macro magic is used to generate implementations for all required type 844 // combinations that can be called from MLIR compiler-generated code. 845 // 846 //===----------------------------------------------------------------------===// 847 848 #define CASE(p, i, v, P, I, V) \ 849 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 850 SparseTensorCOO<V> *tensor = nullptr; \ 851 if (action <= Action::kFromCOO) { \ 852 if (action == Action::kFromFile) { \ 853 char *filename = static_cast<char *>(ptr); \ 854 tensor = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 855 } else if (action == Action::kFromCOO) { \ 856 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 857 } else { \ 858 assert(action == Action::kEmpty); \ 859 } \ 860 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, shape, perm, \ 861 sparsity, tensor); \ 862 } \ 863 if (action == Action::kEmptyCOO) \ 864 return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 865 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 866 if (action == Action::kToIterator) { \ 867 tensor->startIterator(); \ 868 } else { \ 869 assert(action == Action::kToCOO); \ 870 } \ 871 return tensor; \ 872 } 873 874 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 875 876 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 877 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 878 assert(ref &&tensor); \ 879 std::vector<TYPE> *v; \ 880 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 881 ref->basePtr = ref->data = v->data(); \ 882 ref->offset = 0; \ 883 ref->sizes[0] = v->size(); \ 884 ref->strides[0] = 1; \ 885 } 886 887 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 888 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 889 index_type d) { \ 890 assert(ref &&tensor); \ 891 std::vector<TYPE> *v; \ 892 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 893 ref->basePtr = ref->data = v->data(); \ 894 ref->offset = 0; \ 895 ref->sizes[0] = v->size(); \ 896 ref->strides[0] = 1; \ 897 } 898 899 #define IMPL_ADDELT(NAME, TYPE) \ 900 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 901 StridedMemRefType<index_type, 1> *iref, \ 902 StridedMemRefType<index_type, 1> *pref) { \ 903 assert(tensor &&iref &&pref); \ 904 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 905 assert(iref->sizes[0] == pref->sizes[0]); \ 906 const index_type *indx = iref->data + iref->offset; \ 907 const index_type *perm = pref->data + pref->offset; \ 908 uint64_t isize = iref->sizes[0]; \ 909 std::vector<index_type> indices(isize); \ 910 for (uint64_t r = 0; r < isize; r++) \ 911 indices[perm[r]] = indx[r]; \ 912 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 913 return tensor; \ 914 } 915 916 #define IMPL_GETNEXT(NAME, V) \ 917 bool _mlir_ciface_##NAME(void *tensor, \ 918 StridedMemRefType<index_type, 1> *iref, \ 919 StridedMemRefType<V, 0> *vref) { \ 920 assert(tensor &&iref &&vref); \ 921 assert(iref->strides[0] == 1); \ 922 index_type *indx = iref->data + iref->offset; \ 923 V *value = vref->data + vref->offset; \ 924 const uint64_t isize = iref->sizes[0]; \ 925 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 926 const Element<V> *elem = iter->getNext(); \ 927 if (elem == nullptr) { \ 928 delete iter; \ 929 return false; \ 930 } \ 931 for (uint64_t r = 0; r < isize; r++) \ 932 indx[r] = elem->indices[r]; \ 933 *value = elem->value; \ 934 return true; \ 935 } 936 937 #define IMPL_LEXINSERT(NAME, V) \ 938 void _mlir_ciface_##NAME(void *tensor, \ 939 StridedMemRefType<index_type, 1> *cref, V val) { \ 940 assert(tensor &&cref); \ 941 assert(cref->strides[0] == 1); \ 942 index_type *cursor = cref->data + cref->offset; \ 943 assert(cursor); \ 944 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 945 } 946 947 #define IMPL_EXPINSERT(NAME, V) \ 948 void _mlir_ciface_##NAME( \ 949 void *tensor, StridedMemRefType<index_type, 1> *cref, \ 950 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 951 StridedMemRefType<index_type, 1> *aref, index_type count) { \ 952 assert(tensor &&cref &&vref &&fref &&aref); \ 953 assert(cref->strides[0] == 1); \ 954 assert(vref->strides[0] == 1); \ 955 assert(fref->strides[0] == 1); \ 956 assert(aref->strides[0] == 1); \ 957 assert(vref->sizes[0] == fref->sizes[0]); \ 958 index_type *cursor = cref->data + cref->offset; \ 959 V *values = vref->data + vref->offset; \ 960 bool *filled = fref->data + fref->offset; \ 961 index_type *added = aref->data + aref->offset; \ 962 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 963 cursor, values, filled, added, count); \ 964 } 965 966 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 967 // can safely rewrite kIndex to kU64. We make this assertion to guarantee 968 // that this file cannot get out of sync with its header. 969 static_assert(std::is_same<index_type, uint64_t>::value, 970 "Expected index_type == uint64_t"); 971 972 /// Constructs a new sparse tensor. This is the "swiss army knife" 973 /// method for materializing sparse tensors into the computation. 974 /// 975 /// Action: 976 /// kEmpty = returns empty storage to fill later 977 /// kFromFile = returns storage, where ptr contains filename to read 978 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 979 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 980 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 981 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 982 void * 983 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 984 StridedMemRefType<index_type, 1> *sref, 985 StridedMemRefType<index_type, 1> *pref, 986 OverheadType ptrTp, OverheadType indTp, 987 PrimaryType valTp, Action action, void *ptr) { 988 assert(aref && sref && pref); 989 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 990 pref->strides[0] == 1); 991 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 992 const DimLevelType *sparsity = aref->data + aref->offset; 993 const index_type *shape = sref->data + sref->offset; 994 const index_type *perm = pref->data + pref->offset; 995 uint64_t rank = aref->sizes[0]; 996 997 // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 998 // This is safe because of the static_assert above. 999 if (ptrTp == OverheadType::kIndex) 1000 ptrTp = OverheadType::kU64; 1001 if (indTp == OverheadType::kIndex) 1002 indTp = OverheadType::kU64; 1003 1004 // Double matrices with all combinations of overhead storage. 1005 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1006 uint64_t, double); 1007 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1008 uint32_t, double); 1009 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1010 uint16_t, double); 1011 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1012 uint8_t, double); 1013 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1014 uint64_t, double); 1015 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1016 uint32_t, double); 1017 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1018 uint16_t, double); 1019 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1020 uint8_t, double); 1021 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1022 uint64_t, double); 1023 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1024 uint32_t, double); 1025 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1026 uint16_t, double); 1027 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1028 uint8_t, double); 1029 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1030 uint64_t, double); 1031 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1032 uint32_t, double); 1033 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1034 uint16_t, double); 1035 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1036 uint8_t, double); 1037 1038 // Float matrices with all combinations of overhead storage. 1039 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1040 uint64_t, float); 1041 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1042 uint32_t, float); 1043 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1044 uint16_t, float); 1045 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1046 uint8_t, float); 1047 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1048 uint64_t, float); 1049 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1050 uint32_t, float); 1051 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1052 uint16_t, float); 1053 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1054 uint8_t, float); 1055 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1056 uint64_t, float); 1057 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1058 uint32_t, float); 1059 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1060 uint16_t, float); 1061 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1062 uint8_t, float); 1063 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1064 uint64_t, float); 1065 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1066 uint32_t, float); 1067 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1068 uint16_t, float); 1069 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1070 uint8_t, float); 1071 1072 // Integral matrices with both overheads of the same type. 1073 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1074 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1075 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1076 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1077 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1078 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1079 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1080 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1081 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1082 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1083 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1084 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1085 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 1086 1087 // Unsupported case (add above if needed). 1088 fputs("unsupported combination of types\n", stderr); 1089 exit(1); 1090 } 1091 1092 /// Methods that provide direct access to pointers. 1093 IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 1094 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 1095 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 1096 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 1097 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 1098 1099 /// Methods that provide direct access to indices. 1100 IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 1101 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 1102 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 1103 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 1104 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 1105 1106 /// Methods that provide direct access to values. 1107 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 1108 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 1109 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 1110 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 1111 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 1112 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 1113 1114 /// Helper to add value to coordinate scheme, one per value type. 1115 IMPL_ADDELT(addEltF64, double) 1116 IMPL_ADDELT(addEltF32, float) 1117 IMPL_ADDELT(addEltI64, int64_t) 1118 IMPL_ADDELT(addEltI32, int32_t) 1119 IMPL_ADDELT(addEltI16, int16_t) 1120 IMPL_ADDELT(addEltI8, int8_t) 1121 1122 /// Helper to enumerate elements of coordinate scheme, one per value type. 1123 IMPL_GETNEXT(getNextF64, double) 1124 IMPL_GETNEXT(getNextF32, float) 1125 IMPL_GETNEXT(getNextI64, int64_t) 1126 IMPL_GETNEXT(getNextI32, int32_t) 1127 IMPL_GETNEXT(getNextI16, int16_t) 1128 IMPL_GETNEXT(getNextI8, int8_t) 1129 1130 /// Insert elements in lexicographical index order, one per value type. 1131 IMPL_LEXINSERT(lexInsertF64, double) 1132 IMPL_LEXINSERT(lexInsertF32, float) 1133 IMPL_LEXINSERT(lexInsertI64, int64_t) 1134 IMPL_LEXINSERT(lexInsertI32, int32_t) 1135 IMPL_LEXINSERT(lexInsertI16, int16_t) 1136 IMPL_LEXINSERT(lexInsertI8, int8_t) 1137 1138 /// Insert using expansion, one per value type. 1139 IMPL_EXPINSERT(expInsertF64, double) 1140 IMPL_EXPINSERT(expInsertF32, float) 1141 IMPL_EXPINSERT(expInsertI64, int64_t) 1142 IMPL_EXPINSERT(expInsertI32, int32_t) 1143 IMPL_EXPINSERT(expInsertI16, int16_t) 1144 IMPL_EXPINSERT(expInsertI8, int8_t) 1145 1146 #undef CASE 1147 #undef IMPL_SPARSEVALUES 1148 #undef IMPL_GETOVERHEAD 1149 #undef IMPL_ADDELT 1150 #undef IMPL_GETNEXT 1151 #undef IMPL_LEXINSERT 1152 #undef IMPL_EXPINSERT 1153 1154 /// Output a sparse tensor, one per value type. 1155 void outSparseTensorF64(void *tensor, void *dest, bool sort) { 1156 return outSparseTensor<double>(tensor, dest, sort); 1157 } 1158 void outSparseTensorF32(void *tensor, void *dest, bool sort) { 1159 return outSparseTensor<float>(tensor, dest, sort); 1160 } 1161 void outSparseTensorI64(void *tensor, void *dest, bool sort) { 1162 return outSparseTensor<int64_t>(tensor, dest, sort); 1163 } 1164 void outSparseTensorI32(void *tensor, void *dest, bool sort) { 1165 return outSparseTensor<int32_t>(tensor, dest, sort); 1166 } 1167 void outSparseTensorI16(void *tensor, void *dest, bool sort) { 1168 return outSparseTensor<int16_t>(tensor, dest, sort); 1169 } 1170 void outSparseTensorI8(void *tensor, void *dest, bool sort) { 1171 return outSparseTensor<int8_t>(tensor, dest, sort); 1172 } 1173 1174 //===----------------------------------------------------------------------===// 1175 // 1176 // Public API with methods that accept C-style data structures to interact 1177 // with sparse tensors, which are only visible as opaque pointers externally. 1178 // These methods can be used both by MLIR compiler-generated code as well as by 1179 // an external runtime that wants to interact with MLIR compiler-generated code. 1180 // 1181 //===----------------------------------------------------------------------===// 1182 1183 /// Helper method to read a sparse tensor filename from the environment, 1184 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1185 char *getTensorFilename(index_type id) { 1186 char var[80]; 1187 sprintf(var, "TENSOR%" PRIu64, id); 1188 char *env = getenv(var); 1189 if (!env) { 1190 fprintf(stderr, "Environment variable %s is not set\n", var); 1191 exit(1); 1192 } 1193 return env; 1194 } 1195 1196 /// Returns size of sparse tensor in given dimension. 1197 index_type sparseDimSize(void *tensor, index_type d) { 1198 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1199 } 1200 1201 /// Finalizes lexicographic insertions. 1202 void endInsert(void *tensor) { 1203 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1204 } 1205 1206 /// Releases sparse tensor storage. 1207 void delSparseTensor(void *tensor) { 1208 delete static_cast<SparseTensorStorageBase *>(tensor); 1209 } 1210 1211 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1212 /// data structures. The expected parameters are: 1213 /// 1214 /// rank: rank of tensor 1215 /// nse: number of specified elements (usually the nonzeros) 1216 /// shape: array with dimension size for each rank 1217 /// values: a "nse" array with values for all specified elements 1218 /// indices: a flat "nse x rank" array with indices for all specified elements 1219 /// perm: the permutation of the dimensions in the storage 1220 /// sparse: the sparsity for the dimensions 1221 /// 1222 /// For example, the sparse matrix 1223 /// | 1.0 0.0 0.0 | 1224 /// | 0.0 5.0 3.0 | 1225 /// can be passed as 1226 /// rank = 2 1227 /// nse = 3 1228 /// shape = [2, 3] 1229 /// values = [1.0, 5.0, 3.0] 1230 /// indices = [ 0, 0, 1, 1, 1, 2] 1231 // 1232 // TODO: generalize beyond 64-bit indices. 1233 // 1234 void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 1235 double *values, uint64_t *indices, 1236 uint64_t *perm, uint8_t *sparse) { 1237 return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 1238 sparse); 1239 } 1240 void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 1241 float *values, uint64_t *indices, 1242 uint64_t *perm, uint8_t *sparse) { 1243 return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 1244 sparse); 1245 } 1246 1247 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1248 /// data structures. The expected output parameters are pointers for these 1249 /// values: 1250 /// 1251 /// rank: rank of tensor 1252 /// nse: number of specified elements (usually the nonzeros) 1253 /// shape: array with dimension size for each rank 1254 /// values: a "nse" array with values for all specified elements 1255 /// indices: a flat "nse x rank" array with indices for all specified elements 1256 /// 1257 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1258 /// from convertToMLIRSparseTensor. 1259 /// 1260 // TODO: Currently, values are copied from SparseTensorStorage to 1261 // SparseTensorCOO, then to the output. We may want to reduce the number of 1262 // copies. 1263 // 1264 // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 1265 // compressed 1266 // 1267 void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 1268 uint64_t *pNse, uint64_t **pShape, 1269 double **pValues, uint64_t **pIndices) { 1270 fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 1271 } 1272 void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 1273 uint64_t *pNse, uint64_t **pShape, 1274 float **pValues, uint64_t **pIndices) { 1275 fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 1276 } 1277 1278 } // extern "C" 1279 1280 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1281