1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <numeric> 30 #include <vector> 31 32 //===----------------------------------------------------------------------===// 33 // 34 // Internal support for storing and reading sparse tensors. 35 // 36 // The following memory-resident sparse storage schemes are supported: 37 // 38 // (a) A coordinate scheme for temporarily storing and lexicographically 39 // sorting a sparse tensor by index (SparseTensorCOO). 40 // 41 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 42 // per-dimension sparse/dense annnotations together with a dimension 43 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 44 // 45 // The following external formats are supported: 46 // 47 // (1) Matrix Market Exchange (MME): *.mtx 48 // https://math.nist.gov/MatrixMarket/formats.html 49 // 50 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 51 // http://frostt.io/tensors/file-formats.html 52 // 53 // Two public APIs are supported: 54 // 55 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 56 // tensors. These methods should be used exclusively by MLIR 57 // compiler-generated code. 58 // 59 // (II) Methods that accept C-style data structures to interact with sparse 60 // tensors. These methods can be used by any external runtime that wants 61 // to interact with MLIR compiler-generated code. 62 // 63 // In both cases (I) and (II), the SparseTensorStorage format is externally 64 // only visible as an opaque pointer. 65 // 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 70 /// A sparse tensor element in coordinate scheme (value and indices). 71 /// For example, a rank-1 vector element would look like 72 /// ({i}, a[i]) 73 /// and a rank-5 tensor element like 74 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 75 template <typename V> 76 struct Element { 77 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 78 std::vector<uint64_t> indices; 79 V value; 80 }; 81 82 /// A memory-resident sparse tensor in coordinate scheme (collection of 83 /// elements). This data structure is used to read a sparse tensor from 84 /// any external format into memory and sort the elements lexicographically 85 /// by indices before passing it back to the client (most packed storage 86 /// formats require the elements to appear in lexicographic index order). 87 template <typename V> 88 struct SparseTensorCOO { 89 public: 90 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 91 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 92 if (capacity) 93 elements.reserve(capacity); 94 } 95 /// Adds element as indices and value. 96 void add(const std::vector<uint64_t> &ind, V val) { 97 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 98 uint64_t rank = getRank(); 99 assert(rank == ind.size()); 100 for (uint64_t r = 0; r < rank; r++) 101 assert(ind[r] < sizes[r]); // within bounds 102 elements.emplace_back(ind, val); 103 } 104 /// Sorts elements lexicographically by index. 105 void sort() { 106 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 107 std::sort(elements.begin(), elements.end(), lexOrder); 108 } 109 /// Returns rank. 110 uint64_t getRank() const { return sizes.size(); } 111 /// Getter for sizes array. 112 const std::vector<uint64_t> &getSizes() const { return sizes; } 113 /// Getter for elements array. 114 const std::vector<Element<V>> &getElements() const { return elements; } 115 116 /// Switch into iterator mode. 117 void startIterator() { 118 iteratorLocked = true; 119 iteratorPos = 0; 120 } 121 /// Get the next element. 122 const Element<V> *getNext() { 123 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 124 if (iteratorPos < elements.size()) 125 return &(elements[iteratorPos++]); 126 iteratorLocked = false; 127 return nullptr; 128 } 129 130 /// Factory method. Permutes the original dimensions according to 131 /// the given ordering and expects subsequent add() calls to honor 132 /// that same ordering for the given indices. The result is a 133 /// fully permuted coordinate scheme. 134 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 135 const uint64_t *sizes, 136 const uint64_t *perm, 137 uint64_t capacity = 0) { 138 std::vector<uint64_t> permsz(rank); 139 for (uint64_t r = 0; r < rank; r++) 140 permsz[perm[r]] = sizes[r]; 141 return new SparseTensorCOO<V>(permsz, capacity); 142 } 143 144 private: 145 /// Returns true if indices of e1 < indices of e2. 146 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 147 uint64_t rank = e1.indices.size(); 148 assert(rank == e2.indices.size()); 149 for (uint64_t r = 0; r < rank; r++) { 150 if (e1.indices[r] == e2.indices[r]) 151 continue; 152 return e1.indices[r] < e2.indices[r]; 153 } 154 return false; 155 } 156 const std::vector<uint64_t> sizes; // per-dimension sizes 157 std::vector<Element<V>> elements; 158 bool iteratorLocked; 159 unsigned iteratorPos; 160 }; 161 162 /// Abstract base class of sparse tensor storage. Note that we use 163 /// function overloading to implement "partial" method specialization. 164 class SparseTensorStorageBase { 165 public: 166 virtual uint64_t getDimSize(uint64_t) = 0; 167 168 // Overhead storage. 169 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 170 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 171 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 172 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 173 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 174 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 175 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 176 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 177 178 // Primary storage. 179 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 180 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 181 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 182 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 183 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 184 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 185 186 virtual ~SparseTensorStorageBase() {} 187 188 private: 189 void fatal(const char *tp) { 190 fprintf(stderr, "unsupported %s\n", tp); 191 exit(1); 192 } 193 }; 194 195 /// A memory-resident sparse tensor using a storage scheme based on 196 /// per-dimension sparse/dense annotations. This data structure provides a 197 /// bufferized form of a sparse tensor type. In contrast to generating setup 198 /// methods for each differently annotated sparse tensor, this method provides 199 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 200 /// and annotations to implement all required setup in a general manner. 201 template <typename P, typename I, typename V> 202 class SparseTensorStorage : public SparseTensorStorageBase { 203 public: 204 /// Constructs a sparse tensor storage scheme with the given dimensions, 205 /// permutation, and per-dimension dense/sparse annotations, using 206 /// the coordinate scheme tensor for the initial contents if provided. 207 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 208 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) 209 : sizes(szs), rev(getRank()), pointers(getRank()), indices(getRank()) { 210 uint64_t rank = getRank(); 211 // Store "reverse" permutation. 212 for (uint64_t r = 0; r < rank; r++) 213 rev[perm[r]] = r; 214 // Provide hints on capacity of pointers and indices. 215 // TODO: needs fine-tuning based on sparsity 216 for (uint64_t r = 0, s = 1; r < rank; r++) { 217 s *= sizes[r]; 218 if (sparsity[r] == DimLevelType::kCompressed) { 219 pointers[r].reserve(s + 1); 220 indices[r].reserve(s); 221 s = 1; 222 } else { 223 assert(sparsity[r] == DimLevelType::kDense && 224 "singleton not yet supported"); 225 } 226 } 227 // Prepare sparse pointer structures for all dimensions. 228 for (uint64_t r = 0; r < rank; r++) 229 if (sparsity[r] == DimLevelType::kCompressed) 230 pointers[r].push_back(0); 231 // Then assign contents from coordinate scheme tensor if provided. 232 if (tensor) { 233 uint64_t nnz = tensor->getElements().size(); 234 values.reserve(nnz); 235 fromCOO(tensor, sparsity, 0, nnz, 0); 236 } 237 } 238 239 virtual ~SparseTensorStorage() {} 240 241 /// Get the rank of the tensor. 242 uint64_t getRank() const { return sizes.size(); } 243 244 /// Get the size in the given dimension of the tensor. 245 uint64_t getDimSize(uint64_t d) override { 246 assert(d < getRank()); 247 return sizes[d]; 248 } 249 250 // Partially specialize these three methods based on template types. 251 void getPointers(std::vector<P> **out, uint64_t d) override { 252 assert(d < getRank()); 253 *out = &pointers[d]; 254 } 255 void getIndices(std::vector<I> **out, uint64_t d) override { 256 assert(d < getRank()); 257 *out = &indices[d]; 258 } 259 void getValues(std::vector<V> **out) override { *out = &values; } 260 261 /// Returns this sparse tensor storage scheme as a new memory-resident 262 /// sparse tensor in coordinate scheme with the given dimension order. 263 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 264 // Restore original order of the dimension sizes and allocate coordinate 265 // scheme with desired new ordering specified in perm. 266 uint64_t rank = getRank(); 267 std::vector<uint64_t> orgsz(rank); 268 for (uint64_t r = 0; r < rank; r++) 269 orgsz[rev[r]] = sizes[r]; 270 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 271 rank, orgsz.data(), perm, values.size()); 272 // Populate coordinate scheme restored from old ordering and changed with 273 // new ordering. Rather than applying both reorderings during the recursion, 274 // we compute the combine permutation in advance. 275 std::vector<uint64_t> reord(rank); 276 for (uint64_t r = 0; r < rank; r++) 277 reord[r] = perm[rev[r]]; 278 std::vector<uint64_t> idx(rank); 279 toCOO(tensor, reord, idx, 0, 0); 280 assert(tensor->getElements().size() == values.size()); 281 return tensor; 282 } 283 284 /// Factory method. Constructs a sparse tensor storage scheme with the given 285 /// dimensions, permutation, and per-dimension dense/sparse annotations, 286 /// using the coordinate scheme tensor for the initial contents if provided. 287 /// In the latter case, the coordinate scheme must respect the same 288 /// permutation as is desired for the new sparse tensor storage. 289 static SparseTensorStorage<P, I, V> * 290 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 291 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 292 SparseTensorStorage<P, I, V> *n = nullptr; 293 if (tensor) { 294 assert(tensor->getRank() == rank); 295 for (uint64_t r = 0; r < rank; r++) 296 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 297 tensor->sort(); // sort lexicographically 298 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 299 tensor); 300 delete tensor; 301 } else { 302 std::vector<uint64_t> permsz(rank); 303 for (uint64_t r = 0; r < rank; r++) 304 permsz[perm[r]] = sizes[r]; 305 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, tensor); 306 } 307 return n; 308 } 309 310 private: 311 /// Initializes sparse tensor storage scheme from a memory-resident sparse 312 /// tensor in coordinate scheme. This method prepares the pointers and 313 /// indices arrays under the given per-dimension dense/sparse annotations. 314 void fromCOO(SparseTensorCOO<V> *tensor, const DimLevelType *sparsity, 315 uint64_t lo, uint64_t hi, uint64_t d) { 316 const std::vector<Element<V>> &elements = tensor->getElements(); 317 // Once dimensions are exhausted, insert the numerical values. 318 if (d == getRank()) { 319 assert(lo >= hi || lo < elements.size()); 320 values.push_back(lo < hi ? elements[lo].value : 0); 321 return; 322 } 323 assert(d < getRank()); 324 // Visit all elements in this interval. 325 uint64_t full = 0; 326 while (lo < hi) { 327 assert(lo < elements.size() && hi <= elements.size()); 328 // Find segment in interval with same index elements in this dimension. 329 uint64_t idx = elements[lo].indices[d]; 330 uint64_t seg = lo + 1; 331 while (seg < hi && elements[seg].indices[d] == idx) 332 seg++; 333 // Handle segment in interval for sparse or dense dimension. 334 if (sparsity[d] == DimLevelType::kCompressed) { 335 indices[d].push_back(idx); 336 } else { 337 // For dense storage we must fill in all the zero values between 338 // the previous element (when last we ran this for-loop) and the 339 // current element. 340 for (; full < idx; full++) 341 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 342 full++; 343 } 344 fromCOO(tensor, sparsity, lo, seg, d + 1); 345 // And move on to next segment in interval. 346 lo = seg; 347 } 348 // Finalize the sparse pointer structure at this dimension. 349 if (sparsity[d] == DimLevelType::kCompressed) { 350 pointers[d].push_back(indices[d].size()); 351 } else { 352 // For dense storage we must fill in all the zero values after 353 // the last element. 354 for (uint64_t sz = sizes[d]; full < sz; full++) 355 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 356 } 357 } 358 359 /// Stores the sparse tensor storage scheme into a memory-resident sparse 360 /// tensor in coordinate scheme. 361 void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord, 362 std::vector<uint64_t> &idx, uint64_t pos, uint64_t d) { 363 assert(d <= getRank()); 364 if (d == getRank()) { 365 assert(pos < values.size()); 366 tensor->add(idx, values[pos]); 367 } else if (pointers[d].empty()) { 368 // Dense dimension. 369 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 370 idx[reord[d]] = i; 371 toCOO(tensor, reord, idx, off + i, d + 1); 372 } 373 } else { 374 // Sparse dimension. 375 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 376 idx[reord[d]] = indices[d][ii]; 377 toCOO(tensor, reord, idx, ii, d + 1); 378 } 379 } 380 } 381 382 private: 383 std::vector<uint64_t> sizes; // per-dimension sizes 384 std::vector<uint64_t> rev; // "reverse" permutation 385 std::vector<std::vector<P>> pointers; 386 std::vector<std::vector<I>> indices; 387 std::vector<V> values; 388 }; 389 390 /// Helper to convert string to lower case. 391 static char *toLower(char *token) { 392 for (char *c = token; *c; c++) 393 *c = tolower(*c); 394 return token; 395 } 396 397 /// Read the MME header of a general sparse matrix of type real. 398 static void readMMEHeader(FILE *file, char *name, uint64_t *idata) { 399 char line[1025]; 400 char header[64]; 401 char object[64]; 402 char format[64]; 403 char field[64]; 404 char symmetry[64]; 405 // Read header line. 406 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 407 symmetry) != 5) { 408 fprintf(stderr, "Corrupt header in %s\n", name); 409 exit(1); 410 } 411 // Make sure this is a general sparse matrix. 412 if (strcmp(toLower(header), "%%matrixmarket") || 413 strcmp(toLower(object), "matrix") || 414 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 415 strcmp(toLower(symmetry), "general")) { 416 fprintf(stderr, 417 "Cannot find a general sparse matrix with type real in %s\n", name); 418 exit(1); 419 } 420 // Skip comments. 421 while (1) { 422 if (!fgets(line, 1025, file)) { 423 fprintf(stderr, "Cannot find data in %s\n", name); 424 exit(1); 425 } 426 if (line[0] != '%') 427 break; 428 } 429 // Next line contains M N NNZ. 430 idata[0] = 2; // rank 431 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 432 idata + 1) != 3) { 433 fprintf(stderr, "Cannot find size in %s\n", name); 434 exit(1); 435 } 436 } 437 438 /// Read the "extended" FROSTT header. Although not part of the documented 439 /// format, we assume that the file starts with optional comments followed 440 /// by two lines that define the rank, the number of nonzeros, and the 441 /// dimensions sizes (one per rank) of the sparse tensor. 442 static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) { 443 char line[1025]; 444 // Skip comments. 445 while (1) { 446 if (!fgets(line, 1025, file)) { 447 fprintf(stderr, "Cannot find data in %s\n", name); 448 exit(1); 449 } 450 if (line[0] != '#') 451 break; 452 } 453 // Next line contains RANK and NNZ. 454 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 455 fprintf(stderr, "Cannot find metadata in %s\n", name); 456 exit(1); 457 } 458 // Followed by a line with the dimension sizes (one per rank). 459 for (uint64_t r = 0; r < idata[0]; r++) { 460 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 461 fprintf(stderr, "Cannot find dimension size %s\n", name); 462 exit(1); 463 } 464 } 465 } 466 467 /// Reads a sparse tensor with the given filename into a memory-resident 468 /// sparse tensor in coordinate scheme. 469 template <typename V> 470 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 471 const uint64_t *sizes, 472 const uint64_t *perm) { 473 // Open the file. 474 FILE *file = fopen(filename, "r"); 475 if (!file) { 476 fprintf(stderr, "Cannot find %s\n", filename); 477 exit(1); 478 } 479 // Perform some file format dependent set up. 480 uint64_t idata[512]; 481 if (strstr(filename, ".mtx")) { 482 readMMEHeader(file, filename, idata); 483 } else if (strstr(filename, ".tns")) { 484 readExtFROSTTHeader(file, filename, idata); 485 } else { 486 fprintf(stderr, "Unknown format %s\n", filename); 487 exit(1); 488 } 489 // Prepare sparse tensor object with per-dimension sizes 490 // and the number of nonzeros as initial capacity. 491 assert(rank == idata[0] && "rank mismatch"); 492 uint64_t nnz = idata[1]; 493 for (uint64_t r = 0; r < rank; r++) 494 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 495 "dimension size mismatch"); 496 SparseTensorCOO<V> *tensor = 497 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 498 // Read all nonzero elements. 499 std::vector<uint64_t> indices(rank); 500 for (uint64_t k = 0; k < nnz; k++) { 501 uint64_t idx = -1; 502 for (uint64_t r = 0; r < rank; r++) { 503 if (fscanf(file, "%" PRIu64, &idx) != 1) { 504 fprintf(stderr, "Cannot find next index in %s\n", filename); 505 exit(1); 506 } 507 // Add 0-based index. 508 indices[perm[r]] = idx - 1; 509 } 510 // The external formats always store the numerical values with the type 511 // double, but we cast these values to the sparse tensor object type. 512 double value; 513 if (fscanf(file, "%lg\n", &value) != 1) { 514 fprintf(stderr, "Cannot find next value in %s\n", filename); 515 exit(1); 516 } 517 tensor->add(indices, value); 518 } 519 // Close the file and return tensor. 520 fclose(file); 521 return tensor; 522 } 523 524 } // anonymous namespace 525 526 extern "C" { 527 528 /// This type is used in the public API at all places where MLIR expects 529 /// values with the built-in type "index". For now, we simply assume that 530 /// type is 64-bit, but targets with different "index" bit widths should link 531 /// with an alternatively built runtime support library. 532 // TODO: support such targets? 533 typedef uint64_t index_t; 534 535 //===----------------------------------------------------------------------===// 536 // 537 // Public API with methods that operate on MLIR buffers (memrefs) to interact 538 // with sparse tensors, which are only visible as opaque pointers externally. 539 // These methods should be used exclusively by MLIR compiler-generated code. 540 // 541 // Some macro magic is used to generate implementations for all required type 542 // combinations that can be called from MLIR compiler-generated code. 543 // 544 //===----------------------------------------------------------------------===// 545 546 #define CASE(p, i, v, P, I, V) \ 547 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 548 SparseTensorCOO<V> *tensor = nullptr; \ 549 if (action <= Action::kFromCOO) { \ 550 if (action == Action::kFromFile) { \ 551 char *filename = static_cast<char *>(ptr); \ 552 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 553 } else if (action == Action::kFromCOO) { \ 554 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 555 } else { \ 556 assert(action == Action::kEmpty); \ 557 } \ 558 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 559 sparsity, tensor); \ 560 } else if (action == Action::kEmptyCOO) { \ 561 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 562 } else { \ 563 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 564 if (action == Action::kToIterator) { \ 565 tensor->startIterator(); \ 566 } else { \ 567 assert(action == Action::kToCOO); \ 568 } \ 569 return tensor; \ 570 } \ 571 } 572 573 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 574 575 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 576 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 577 assert(ref); \ 578 assert(tensor); \ 579 std::vector<TYPE> *v; \ 580 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 581 ref->basePtr = ref->data = v->data(); \ 582 ref->offset = 0; \ 583 ref->sizes[0] = v->size(); \ 584 ref->strides[0] = 1; \ 585 } 586 587 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 588 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 589 index_t d) { \ 590 assert(ref); \ 591 assert(tensor); \ 592 std::vector<TYPE> *v; \ 593 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 594 ref->basePtr = ref->data = v->data(); \ 595 ref->offset = 0; \ 596 ref->sizes[0] = v->size(); \ 597 ref->strides[0] = 1; \ 598 } 599 600 #define IMPL_ADDELT(NAME, TYPE) \ 601 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 602 StridedMemRefType<index_t, 1> *iref, \ 603 StridedMemRefType<index_t, 1> *pref) { \ 604 assert(tensor); \ 605 assert(iref); \ 606 assert(pref); \ 607 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 608 assert(iref->sizes[0] == pref->sizes[0]); \ 609 const index_t *indx = iref->data + iref->offset; \ 610 const index_t *perm = pref->data + pref->offset; \ 611 uint64_t isize = iref->sizes[0]; \ 612 std::vector<index_t> indices(isize); \ 613 for (uint64_t r = 0; r < isize; r++) \ 614 indices[perm[r]] = indx[r]; \ 615 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 616 return tensor; \ 617 } 618 619 #define IMPL_GETNEXT(NAME, V) \ 620 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<uint64_t, 1> *iref, \ 621 StridedMemRefType<V, 0> *vref) { \ 622 assert(iref->strides[0] == 1); \ 623 uint64_t *indx = iref->data + iref->offset; \ 624 V *value = vref->data + vref->offset; \ 625 const uint64_t isize = iref->sizes[0]; \ 626 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 627 const Element<V> *elem = iter->getNext(); \ 628 if (elem == nullptr) { \ 629 delete iter; \ 630 return false; \ 631 } \ 632 for (uint64_t r = 0; r < isize; r++) \ 633 indx[r] = elem->indices[r]; \ 634 *value = elem->value; \ 635 return true; \ 636 } 637 638 /// Constructs a new sparse tensor. This is the "swiss army knife" 639 /// method for materializing sparse tensors into the computation. 640 /// 641 /// Action: 642 /// kEmpty = returns empty storage to fill later 643 /// kFromFile = returns storage, where ptr contains filename to read 644 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 645 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 646 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 647 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 648 void * 649 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 650 StridedMemRefType<index_t, 1> *sref, 651 StridedMemRefType<index_t, 1> *pref, 652 OverheadType ptrTp, OverheadType indTp, 653 PrimaryType valTp, Action action, void *ptr) { 654 assert(aref && sref && pref); 655 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 656 pref->strides[0] == 1); 657 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 658 const DimLevelType *sparsity = aref->data + aref->offset; 659 const index_t *sizes = sref->data + sref->offset; 660 const index_t *perm = pref->data + pref->offset; 661 uint64_t rank = aref->sizes[0]; 662 663 // Double matrices with all combinations of overhead storage. 664 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 665 uint64_t, double); 666 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 667 uint32_t, double); 668 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 669 uint16_t, double); 670 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 671 uint8_t, double); 672 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 673 uint64_t, double); 674 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 675 uint32_t, double); 676 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 677 uint16_t, double); 678 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 679 uint8_t, double); 680 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 681 uint64_t, double); 682 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 683 uint32_t, double); 684 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 685 uint16_t, double); 686 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 687 uint8_t, double); 688 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 689 uint64_t, double); 690 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 691 uint32_t, double); 692 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 693 uint16_t, double); 694 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 695 uint8_t, double); 696 697 // Float matrices with all combinations of overhead storage. 698 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 699 uint64_t, float); 700 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 701 uint32_t, float); 702 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 703 uint16_t, float); 704 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 705 uint8_t, float); 706 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 707 uint64_t, float); 708 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 709 uint32_t, float); 710 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 711 uint16_t, float); 712 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 713 uint8_t, float); 714 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 715 uint64_t, float); 716 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 717 uint32_t, float); 718 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 719 uint16_t, float); 720 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 721 uint8_t, float); 722 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 723 uint64_t, float); 724 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 725 uint32_t, float); 726 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 727 uint16_t, float); 728 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 729 uint8_t, float); 730 731 // Integral matrices with both overheads of the same type. 732 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 733 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 734 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 735 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 736 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 737 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 738 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 739 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 740 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 741 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 742 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 743 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 744 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 745 746 // Unsupported case (add above if needed). 747 fputs("unsupported combination of types\n", stderr); 748 exit(1); 749 } 750 751 /// Methods that provide direct access to pointers. 752 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 753 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 754 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 755 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 756 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 757 758 /// Methods that provide direct access to indices. 759 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 760 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 761 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 762 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 763 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 764 765 /// Methods that provide direct access to values. 766 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 767 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 768 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 769 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 770 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 771 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 772 773 /// Helper to add value to coordinate scheme, one per value type. 774 IMPL_ADDELT(addEltF64, double) 775 IMPL_ADDELT(addEltF32, float) 776 IMPL_ADDELT(addEltI64, int64_t) 777 IMPL_ADDELT(addEltI32, int32_t) 778 IMPL_ADDELT(addEltI16, int16_t) 779 IMPL_ADDELT(addEltI8, int8_t) 780 781 /// Helper to enumerate elements of coordinate scheme, one per value type. 782 IMPL_GETNEXT(getNextF64, double) 783 IMPL_GETNEXT(getNextF32, float) 784 IMPL_GETNEXT(getNextI64, int64_t) 785 IMPL_GETNEXT(getNextI32, int32_t) 786 IMPL_GETNEXT(getNextI16, int16_t) 787 IMPL_GETNEXT(getNextI8, int8_t) 788 789 #undef CASE 790 #undef IMPL_SPARSEVALUES 791 #undef IMPL_GETOVERHEAD 792 #undef IMPL_ADDELT 793 #undef IMPL_GETNEXT 794 795 //===----------------------------------------------------------------------===// 796 // 797 // Public API with methods that accept C-style data structures to interact 798 // with sparse tensors, which are only visible as opaque pointers externally. 799 // These methods can be used both by MLIR compiler-generated code as well as by 800 // an external runtime that wants to interact with MLIR compiler-generated code. 801 // 802 //===----------------------------------------------------------------------===// 803 804 /// Helper method to read a sparse tensor filename from the environment, 805 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 806 char *getTensorFilename(index_t id) { 807 char var[80]; 808 sprintf(var, "TENSOR%" PRIu64, id); 809 char *env = getenv(var); 810 return env; 811 } 812 813 /// Returns size of sparse tensor in given dimension. 814 index_t sparseDimSize(void *tensor, index_t d) { 815 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 816 } 817 818 /// Releases sparse tensor storage. 819 void delSparseTensor(void *tensor) { 820 delete static_cast<SparseTensorStorageBase *>(tensor); 821 } 822 823 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 824 /// data structures. The expected parameters are: 825 /// 826 /// rank: rank of tensor 827 /// nse: number of specified elements (usually the nonzeros) 828 /// shape: array with dimension size for each rank 829 /// values: a "nse" array with values for all specified elements 830 /// indices: a flat "nse x rank" array with indices for all specified elements 831 /// 832 /// For example, the sparse matrix 833 /// | 1.0 0.0 0.0 | 834 /// | 0.0 5.0 3.0 | 835 /// can be passed as 836 /// rank = 2 837 /// nse = 3 838 /// shape = [2, 3] 839 /// values = [1.0, 5.0, 3.0] 840 /// indices = [ 0, 0, 1, 1, 1, 2] 841 // 842 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 843 // 844 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 845 double *values, uint64_t *indices) { 846 // Setup all-dims compressed and default ordering. 847 std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 848 std::vector<uint64_t> perm(rank); 849 std::iota(perm.begin(), perm.end(), 0); 850 // Convert external format to internal COO. 851 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 852 rank, shape, perm.data(), nse); 853 std::vector<uint64_t> idx(rank); 854 for (uint64_t i = 0, base = 0; i < nse; i++) { 855 for (uint64_t r = 0; r < rank; r++) 856 idx[r] = indices[base + r]; 857 tensor->add(idx, values[i]); 858 base += rank; 859 } 860 // Return sparse tensor storage format as opaque pointer. 861 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 862 rank, shape, perm.data(), sparse.data(), tensor); 863 } 864 865 } // extern "C" 866 867 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 868