1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <fstream> 30 #include <iostream> 31 #include <limits> 32 #include <numeric> 33 #include <vector> 34 35 //===----------------------------------------------------------------------===// 36 // 37 // Internal support for storing and reading sparse tensors. 38 // 39 // The following memory-resident sparse storage schemes are supported: 40 // 41 // (a) A coordinate scheme for temporarily storing and lexicographically 42 // sorting a sparse tensor by index (SparseTensorCOO). 43 // 44 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 45 // per-dimension sparse/dense annnotations together with a dimension 46 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 47 // 48 // The following external formats are supported: 49 // 50 // (1) Matrix Market Exchange (MME): *.mtx 51 // https://math.nist.gov/MatrixMarket/formats.html 52 // 53 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 54 // http://frostt.io/tensors/file-formats.html 55 // 56 // Two public APIs are supported: 57 // 58 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 59 // tensors. These methods should be used exclusively by MLIR 60 // compiler-generated code. 61 // 62 // (II) Methods that accept C-style data structures to interact with sparse 63 // tensors. These methods can be used by any external runtime that wants 64 // to interact with MLIR compiler-generated code. 65 // 66 // In both cases (I) and (II), the SparseTensorStorage format is externally 67 // only visible as an opaque pointer. 68 // 69 //===----------------------------------------------------------------------===// 70 71 namespace { 72 73 static constexpr int kColWidth = 1025; 74 75 /// A version of `operator*` on `uint64_t` which checks for overflows. 76 static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 77 assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 78 "Integer overflow"); 79 return lhs * rhs; 80 } 81 82 /// A sparse tensor element in coordinate scheme (value and indices). 83 /// For example, a rank-1 vector element would look like 84 /// ({i}, a[i]) 85 /// and a rank-5 tensor element like 86 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 87 template <typename V> 88 struct Element { 89 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 90 std::vector<uint64_t> indices; 91 V value; 92 /// Returns true if indices of e1 < indices of e2. 93 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 94 uint64_t rank = e1.indices.size(); 95 assert(rank == e2.indices.size()); 96 for (uint64_t r = 0; r < rank; r++) { 97 if (e1.indices[r] == e2.indices[r]) 98 continue; 99 return e1.indices[r] < e2.indices[r]; 100 } 101 return false; 102 } 103 }; 104 105 /// A memory-resident sparse tensor in coordinate scheme (collection of 106 /// elements). This data structure is used to read a sparse tensor from 107 /// any external format into memory and sort the elements lexicographically 108 /// by indices before passing it back to the client (most packed storage 109 /// formats require the elements to appear in lexicographic index order). 110 template <typename V> 111 struct SparseTensorCOO { 112 public: 113 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 114 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 115 if (capacity) 116 elements.reserve(capacity); 117 } 118 /// Adds element as indices and value. 119 void add(const std::vector<uint64_t> &ind, V val) { 120 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 121 uint64_t rank = getRank(); 122 assert(rank == ind.size()); 123 for (uint64_t r = 0; r < rank; r++) 124 assert(ind[r] < sizes[r]); // within bounds 125 elements.emplace_back(ind, val); 126 } 127 /// Sorts elements lexicographically by index. 128 void sort() { 129 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 130 // TODO: we may want to cache an `isSorted` bit, to avoid 131 // unnecessary/redundant sorting. 132 std::sort(elements.begin(), elements.end(), Element<V>::lexOrder); 133 } 134 /// Returns rank. 135 uint64_t getRank() const { return sizes.size(); } 136 /// Getter for sizes array. 137 const std::vector<uint64_t> &getSizes() const { return sizes; } 138 /// Getter for elements array. 139 const std::vector<Element<V>> &getElements() const { return elements; } 140 141 /// Switch into iterator mode. 142 void startIterator() { 143 iteratorLocked = true; 144 iteratorPos = 0; 145 } 146 /// Get the next element. 147 const Element<V> *getNext() { 148 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 149 if (iteratorPos < elements.size()) 150 return &(elements[iteratorPos++]); 151 iteratorLocked = false; 152 return nullptr; 153 } 154 155 /// Factory method. Permutes the original dimensions according to 156 /// the given ordering and expects subsequent add() calls to honor 157 /// that same ordering for the given indices. The result is a 158 /// fully permuted coordinate scheme. 159 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 160 const uint64_t *sizes, 161 const uint64_t *perm, 162 uint64_t capacity = 0) { 163 std::vector<uint64_t> permsz(rank); 164 for (uint64_t r = 0; r < rank; r++) { 165 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 166 permsz[perm[r]] = sizes[r]; 167 } 168 return new SparseTensorCOO<V>(permsz, capacity); 169 } 170 171 private: 172 const std::vector<uint64_t> sizes; // per-dimension sizes 173 std::vector<Element<V>> elements; 174 bool iteratorLocked; 175 unsigned iteratorPos; 176 }; 177 178 /// Abstract base class of sparse tensor storage. Note that we use 179 /// function overloading to implement "partial" method specialization. 180 class SparseTensorStorageBase { 181 public: 182 /// Dimension size query. 183 virtual uint64_t getDimSize(uint64_t) const = 0; 184 185 /// Overhead storage. 186 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 187 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 188 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 189 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 190 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 191 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 192 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 193 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 194 195 /// Primary storage. 196 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 197 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 198 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 199 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 200 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 201 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 202 203 /// Element-wise insertion in lexicographic index order. 204 virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 205 virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 206 virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 207 virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 208 virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 209 virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 210 211 /// Expanded insertion. 212 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 213 fatal("expf64"); 214 } 215 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 216 fatal("expf32"); 217 } 218 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 219 fatal("expi64"); 220 } 221 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 222 fatal("expi32"); 223 } 224 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 225 fatal("expi16"); 226 } 227 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 228 fatal("expi8"); 229 } 230 231 /// Finishes insertion. 232 virtual void endInsert() = 0; 233 234 virtual ~SparseTensorStorageBase() = default; 235 236 private: 237 static void fatal(const char *tp) { 238 fprintf(stderr, "unsupported %s\n", tp); 239 exit(1); 240 } 241 }; 242 243 /// A memory-resident sparse tensor using a storage scheme based on 244 /// per-dimension sparse/dense annotations. This data structure provides a 245 /// bufferized form of a sparse tensor type. In contrast to generating setup 246 /// methods for each differently annotated sparse tensor, this method provides 247 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 248 /// and annotations to implement all required setup in a general manner. 249 template <typename P, typename I, typename V> 250 class SparseTensorStorage : public SparseTensorStorageBase { 251 public: 252 /// Constructs a sparse tensor storage scheme with the given dimensions, 253 /// permutation, and per-dimension dense/sparse annotations, using 254 /// the coordinate scheme tensor for the initial contents if provided. 255 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 256 const DimLevelType *sparsity, 257 SparseTensorCOO<V> *tensor = nullptr) 258 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 259 indices(getRank()) { 260 uint64_t rank = getRank(); 261 // Store "reverse" permutation. 262 for (uint64_t r = 0; r < rank; r++) 263 rev[perm[r]] = r; 264 // Provide hints on capacity of pointers and indices. 265 // TODO: needs fine-tuning based on sparsity 266 bool allDense = true; 267 uint64_t sz = 1; 268 for (uint64_t r = 0; r < rank; r++) { 269 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 270 sz = checkedMul(sz, sizes[r]); 271 if (sparsity[r] == DimLevelType::kCompressed) { 272 pointers[r].reserve(sz + 1); 273 indices[r].reserve(sz); 274 sz = 1; 275 allDense = false; 276 // Prepare the pointer structure. We cannot use `appendPointer` 277 // here, because `isCompressedDim` won't work until after this 278 // preparation has been done. 279 pointers[r].push_back(0); 280 } else { 281 assert(sparsity[r] == DimLevelType::kDense && 282 "singleton not yet supported"); 283 } 284 } 285 // Then assign contents from coordinate scheme tensor if provided. 286 if (tensor) { 287 // Ensure both preconditions of `fromCOO`. 288 assert(tensor->getSizes() == sizes && "Tensor size mismatch"); 289 tensor->sort(); 290 // Now actually insert the `elements`. 291 const std::vector<Element<V>> &elements = tensor->getElements(); 292 uint64_t nnz = elements.size(); 293 values.reserve(nnz); 294 fromCOO(elements, 0, nnz, 0); 295 } else if (allDense) { 296 values.resize(sz, 0); 297 } 298 } 299 300 ~SparseTensorStorage() override = default; 301 302 /// Get the rank of the tensor. 303 uint64_t getRank() const { return sizes.size(); } 304 305 /// Get the size of the given dimension of the tensor. 306 uint64_t getDimSize(uint64_t d) const override { 307 assert(d < getRank()); 308 return sizes[d]; 309 } 310 311 /// Partially specialize these getter methods based on template types. 312 void getPointers(std::vector<P> **out, uint64_t d) override { 313 assert(d < getRank()); 314 *out = &pointers[d]; 315 } 316 void getIndices(std::vector<I> **out, uint64_t d) override { 317 assert(d < getRank()); 318 *out = &indices[d]; 319 } 320 void getValues(std::vector<V> **out) override { *out = &values; } 321 322 /// Partially specialize lexicographical insertions based on template types. 323 void lexInsert(const uint64_t *cursor, V val) override { 324 // First, wrap up pending insertion path. 325 uint64_t diff = 0; 326 uint64_t top = 0; 327 if (!values.empty()) { 328 diff = lexDiff(cursor); 329 endPath(diff + 1); 330 top = idx[diff] + 1; 331 } 332 // Then continue with insertion path. 333 insPath(cursor, diff, top, val); 334 } 335 336 /// Partially specialize expanded insertions based on template types. 337 /// Note that this method resets the values/filled-switch array back 338 /// to all-zero/false while only iterating over the nonzero elements. 339 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 340 uint64_t count) override { 341 if (count == 0) 342 return; 343 // Sort. 344 std::sort(added, added + count); 345 // Restore insertion path for first insert. 346 const uint64_t lastDim = getRank() - 1; 347 uint64_t index = added[0]; 348 cursor[lastDim] = index; 349 lexInsert(cursor, values[index]); 350 assert(filled[index]); 351 values[index] = 0; 352 filled[index] = false; 353 // Subsequent insertions are quick. 354 for (uint64_t i = 1; i < count; i++) { 355 assert(index < added[i] && "non-lexicographic insertion"); 356 index = added[i]; 357 cursor[lastDim] = index; 358 insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 359 assert(filled[index]); 360 values[index] = 0; 361 filled[index] = false; 362 } 363 } 364 365 /// Finalizes lexicographic insertions. 366 void endInsert() override { 367 if (values.empty()) 368 finalizeSegment(0); 369 else 370 endPath(0); 371 } 372 373 /// Returns this sparse tensor storage scheme as a new memory-resident 374 /// sparse tensor in coordinate scheme with the given dimension order. 375 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 376 // Restore original order of the dimension sizes and allocate coordinate 377 // scheme with desired new ordering specified in perm. 378 uint64_t rank = getRank(); 379 std::vector<uint64_t> orgsz(rank); 380 for (uint64_t r = 0; r < rank; r++) 381 orgsz[rev[r]] = sizes[r]; 382 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 383 rank, orgsz.data(), perm, values.size()); 384 // Populate coordinate scheme restored from old ordering and changed with 385 // new ordering. Rather than applying both reorderings during the recursion, 386 // we compute the combine permutation in advance. 387 std::vector<uint64_t> reord(rank); 388 for (uint64_t r = 0; r < rank; r++) 389 reord[r] = perm[rev[r]]; 390 toCOO(*tensor, reord, 0, 0); 391 assert(tensor->getElements().size() == values.size()); 392 return tensor; 393 } 394 395 /// Factory method. Constructs a sparse tensor storage scheme with the given 396 /// dimensions, permutation, and per-dimension dense/sparse annotations, 397 /// using the coordinate scheme tensor for the initial contents if provided. 398 /// In the latter case, the coordinate scheme must respect the same 399 /// permutation as is desired for the new sparse tensor storage. 400 static SparseTensorStorage<P, I, V> * 401 newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 402 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 403 SparseTensorStorage<P, I, V> *n = nullptr; 404 if (tensor) { 405 assert(tensor->getRank() == rank); 406 for (uint64_t r = 0; r < rank; r++) 407 assert(shape[r] == 0 || shape[r] == tensor->getSizes()[perm[r]]); 408 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 409 tensor); 410 } else { 411 std::vector<uint64_t> permsz(rank); 412 for (uint64_t r = 0; r < rank; r++) { 413 assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 414 permsz[perm[r]] = shape[r]; 415 } 416 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 417 } 418 return n; 419 } 420 421 private: 422 /// Appends an arbitrary new position to `pointers[d]`. This method 423 /// checks that `pos` is representable in the `P` type; however, it 424 /// does not check that `pos` is semantically valid (i.e., larger than 425 /// the previous position and smaller than `indices[d].capacity()`). 426 inline void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 427 assert(isCompressedDim(d)); 428 assert(pos <= std::numeric_limits<P>::max() && 429 "Pointer value is too large for the P-type"); 430 pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 431 } 432 433 /// Appends index `i` to dimension `d`, in the semantically general 434 /// sense. For non-dense dimensions, that means appending to the 435 /// `indices[d]` array, checking that `i` is representable in the `I` 436 /// type; however, we do not verify other semantic requirements (e.g., 437 /// that `i` is in bounds for `sizes[d]`, and not previously occurring 438 /// in the same segment). For dense dimensions, this method instead 439 /// appends the appropriate number of zeros to the `values` array, 440 /// where `full` is the number of "entries" already written to `values` 441 /// for this segment (aka one after the highest index previously appended). 442 void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 443 if (isCompressedDim(d)) { 444 assert(i <= std::numeric_limits<I>::max() && 445 "Index value is too large for the I-type"); 446 indices[d].push_back(static_cast<I>(i)); 447 } else { // Dense dimension. 448 assert(i >= full && "Index was already filled"); 449 if (i == full) 450 return; // Short-circuit, since it'll be a nop. 451 if (d + 1 == getRank()) 452 values.insert(values.end(), i - full, 0); 453 else 454 finalizeSegment(d + 1, 0, i - full); 455 } 456 } 457 458 /// Initializes sparse tensor storage scheme from a memory-resident sparse 459 /// tensor in coordinate scheme. This method prepares the pointers and 460 /// indices arrays under the given per-dimension dense/sparse annotations. 461 /// 462 /// Preconditions: 463 /// (1) the `elements` must be lexicographically sorted. 464 /// (2) the indices of every element are valid for `sizes` (equal rank 465 /// and pointwise less-than). 466 void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 467 uint64_t hi, uint64_t d) { 468 // Once dimensions are exhausted, insert the numerical values. 469 assert(d <= getRank() && hi <= elements.size()); 470 if (d == getRank()) { 471 assert(lo < hi); 472 values.push_back(elements[lo].value); 473 return; 474 } 475 // Visit all elements in this interval. 476 uint64_t full = 0; 477 while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 478 // Find segment in interval with same index elements in this dimension. 479 uint64_t i = elements[lo].indices[d]; 480 uint64_t seg = lo + 1; 481 while (seg < hi && elements[seg].indices[d] == i) 482 seg++; 483 // Handle segment in interval for sparse or dense dimension. 484 appendIndex(d, full, i); 485 full = i + 1; 486 fromCOO(elements, lo, seg, d + 1); 487 // And move on to next segment in interval. 488 lo = seg; 489 } 490 // Finalize the sparse pointer structure at this dimension. 491 finalizeSegment(d, full); 492 } 493 494 /// Stores the sparse tensor storage scheme into a memory-resident sparse 495 /// tensor in coordinate scheme. 496 void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 497 uint64_t pos, uint64_t d) { 498 assert(d <= getRank()); 499 if (d == getRank()) { 500 assert(pos < values.size()); 501 tensor.add(idx, values[pos]); 502 } else if (isCompressedDim(d)) { 503 // Sparse dimension. 504 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 505 idx[reord[d]] = indices[d][ii]; 506 toCOO(tensor, reord, ii, d + 1); 507 } 508 } else { 509 // Dense dimension. 510 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 511 idx[reord[d]] = i; 512 toCOO(tensor, reord, off + i, d + 1); 513 } 514 } 515 } 516 517 /// Finalize the sparse pointer structure at this dimension. 518 void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 519 if (count == 0) 520 return; // Short-circuit, since it'll be a nop. 521 if (isCompressedDim(d)) { 522 appendPointer(d, indices[d].size(), count); 523 } else { // Dense dimension. 524 const uint64_t sz = sizes[d]; 525 assert(sz >= full && "Segment is overfull"); 526 // Assuming we checked for overflows in the constructor, then this 527 // multiply will never overflow. 528 count *= (sz - full); 529 // For dense storage we must enumerate all the remaining coordinates 530 // in this dimension (i.e., coordinates after the last non-zero 531 // element), and either fill in their zero values or else recurse 532 // to finalize some deeper dimension. 533 if (d + 1 == getRank()) 534 values.insert(values.end(), count, 0); 535 else 536 finalizeSegment(d + 1, 0, count); 537 } 538 } 539 540 /// Wraps up a single insertion path, inner to outer. 541 void endPath(uint64_t diff) { 542 uint64_t rank = getRank(); 543 assert(diff <= rank); 544 for (uint64_t i = 0; i < rank - diff; i++) { 545 const uint64_t d = rank - i - 1; 546 finalizeSegment(d, idx[d] + 1); 547 } 548 } 549 550 /// Continues a single insertion path, outer to inner. 551 void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 552 uint64_t rank = getRank(); 553 assert(diff < rank); 554 for (uint64_t d = diff; d < rank; d++) { 555 uint64_t i = cursor[d]; 556 appendIndex(d, top, i); 557 top = 0; 558 idx[d] = i; 559 } 560 values.push_back(val); 561 } 562 563 /// Finds the lexicographic differing dimension. 564 uint64_t lexDiff(const uint64_t *cursor) const { 565 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 566 if (cursor[r] > idx[r]) 567 return r; 568 else 569 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 570 assert(0 && "duplication insertion"); 571 return -1u; 572 } 573 574 /// Returns true if dimension is compressed. 575 inline bool isCompressedDim(uint64_t d) const { 576 assert(d < getRank()); 577 return (!pointers[d].empty()); 578 } 579 580 private: 581 const std::vector<uint64_t> sizes; // per-dimension sizes 582 std::vector<uint64_t> rev; // "reverse" permutation 583 std::vector<uint64_t> idx; // index cursor 584 std::vector<std::vector<P>> pointers; 585 std::vector<std::vector<I>> indices; 586 std::vector<V> values; 587 }; 588 589 /// Helper to convert string to lower case. 590 static char *toLower(char *token) { 591 for (char *c = token; *c; c++) 592 *c = tolower(*c); 593 return token; 594 } 595 596 /// Read the MME header of a general sparse matrix of type real. 597 static void readMMEHeader(FILE *file, char *filename, char *line, 598 uint64_t *idata, bool *isSymmetric) { 599 char header[64]; 600 char object[64]; 601 char format[64]; 602 char field[64]; 603 char symmetry[64]; 604 // Read header line. 605 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 606 symmetry) != 5) { 607 fprintf(stderr, "Corrupt header in %s\n", filename); 608 exit(1); 609 } 610 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 611 // Make sure this is a general sparse matrix. 612 if (strcmp(toLower(header), "%%matrixmarket") || 613 strcmp(toLower(object), "matrix") || 614 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 615 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 616 fprintf(stderr, 617 "Cannot find a general sparse matrix with type real in %s\n", 618 filename); 619 exit(1); 620 } 621 // Skip comments. 622 while (true) { 623 if (!fgets(line, kColWidth, file)) { 624 fprintf(stderr, "Cannot find data in %s\n", filename); 625 exit(1); 626 } 627 if (line[0] != '%') 628 break; 629 } 630 // Next line contains M N NNZ. 631 idata[0] = 2; // rank 632 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 633 idata + 1) != 3) { 634 fprintf(stderr, "Cannot find size in %s\n", filename); 635 exit(1); 636 } 637 } 638 639 /// Read the "extended" FROSTT header. Although not part of the documented 640 /// format, we assume that the file starts with optional comments followed 641 /// by two lines that define the rank, the number of nonzeros, and the 642 /// dimensions sizes (one per rank) of the sparse tensor. 643 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 644 uint64_t *idata) { 645 // Skip comments. 646 while (true) { 647 if (!fgets(line, kColWidth, file)) { 648 fprintf(stderr, "Cannot find data in %s\n", filename); 649 exit(1); 650 } 651 if (line[0] != '#') 652 break; 653 } 654 // Next line contains RANK and NNZ. 655 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 656 fprintf(stderr, "Cannot find metadata in %s\n", filename); 657 exit(1); 658 } 659 // Followed by a line with the dimension sizes (one per rank). 660 for (uint64_t r = 0; r < idata[0]; r++) { 661 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 662 fprintf(stderr, "Cannot find dimension size %s\n", filename); 663 exit(1); 664 } 665 } 666 fgets(line, kColWidth, file); // end of line 667 } 668 669 /// Reads a sparse tensor with the given filename into a memory-resident 670 /// sparse tensor in coordinate scheme. 671 template <typename V> 672 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 673 const uint64_t *shape, 674 const uint64_t *perm) { 675 // Open the file. 676 FILE *file = fopen(filename, "r"); 677 if (!file) { 678 assert(filename && "Received nullptr for filename"); 679 fprintf(stderr, "Cannot find file %s\n", filename); 680 exit(1); 681 } 682 // Perform some file format dependent set up. 683 char line[kColWidth]; 684 uint64_t idata[512]; 685 bool isSymmetric = false; 686 if (strstr(filename, ".mtx")) { 687 readMMEHeader(file, filename, line, idata, &isSymmetric); 688 } else if (strstr(filename, ".tns")) { 689 readExtFROSTTHeader(file, filename, line, idata); 690 } else { 691 fprintf(stderr, "Unknown format %s\n", filename); 692 exit(1); 693 } 694 // Prepare sparse tensor object with per-dimension sizes 695 // and the number of nonzeros as initial capacity. 696 assert(rank == idata[0] && "rank mismatch"); 697 uint64_t nnz = idata[1]; 698 for (uint64_t r = 0; r < rank; r++) 699 assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 700 "dimension size mismatch"); 701 SparseTensorCOO<V> *tensor = 702 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 703 // Read all nonzero elements. 704 std::vector<uint64_t> indices(rank); 705 for (uint64_t k = 0; k < nnz; k++) { 706 if (!fgets(line, kColWidth, file)) { 707 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 708 exit(1); 709 } 710 char *linePtr = line; 711 for (uint64_t r = 0; r < rank; r++) { 712 uint64_t idx = strtoul(linePtr, &linePtr, 10); 713 // Add 0-based index. 714 indices[perm[r]] = idx - 1; 715 } 716 // The external formats always store the numerical values with the type 717 // double, but we cast these values to the sparse tensor object type. 718 double value = strtod(linePtr, &linePtr); 719 tensor->add(indices, value); 720 // We currently chose to deal with symmetric matrices by fully constructing 721 // them. In the future, we may want to make symmetry implicit for storage 722 // reasons. 723 if (isSymmetric && indices[0] != indices[1]) 724 tensor->add({indices[1], indices[0]}, value); 725 } 726 // Close the file and return tensor. 727 fclose(file); 728 return tensor; 729 } 730 731 /// Writes the sparse tensor to extended FROSTT format. 732 template <typename V> 733 static void outSparseTensor(void *tensor, void *dest, bool sort) { 734 assert(tensor && dest); 735 auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 736 if (sort) 737 coo->sort(); 738 char *filename = static_cast<char *>(dest); 739 auto &sizes = coo->getSizes(); 740 auto &elements = coo->getElements(); 741 uint64_t rank = coo->getRank(); 742 uint64_t nnz = elements.size(); 743 std::fstream file; 744 file.open(filename, std::ios_base::out | std::ios_base::trunc); 745 assert(file.is_open()); 746 file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 747 for (uint64_t r = 0; r < rank - 1; r++) 748 file << sizes[r] << " "; 749 file << sizes[rank - 1] << std::endl; 750 for (uint64_t i = 0; i < nnz; i++) { 751 auto &idx = elements[i].indices; 752 for (uint64_t r = 0; r < rank; r++) 753 file << (idx[r] + 1) << " "; 754 file << elements[i].value << std::endl; 755 } 756 file.flush(); 757 file.close(); 758 assert(file.good()); 759 } 760 761 /// Initializes sparse tensor from an external COO-flavored format. 762 template <typename V> 763 static SparseTensorStorage<uint64_t, uint64_t, V> * 764 toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 765 uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 766 const DimLevelType *sparsity = (DimLevelType *)(sparse); 767 #ifndef NDEBUG 768 // Verify that perm is a permutation of 0..(rank-1). 769 std::vector<uint64_t> order(perm, perm + rank); 770 std::sort(order.begin(), order.end()); 771 for (uint64_t i = 0; i < rank; ++i) { 772 if (i != order[i]) { 773 fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 774 exit(1); 775 } 776 } 777 778 // Verify that the sparsity values are supported. 779 for (uint64_t i = 0; i < rank; ++i) { 780 if (sparsity[i] != DimLevelType::kDense && 781 sparsity[i] != DimLevelType::kCompressed) { 782 fprintf(stderr, "Unsupported sparsity value %d\n", 783 static_cast<int>(sparsity[i])); 784 exit(1); 785 } 786 } 787 #endif 788 789 // Convert external format to internal COO. 790 auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 791 std::vector<uint64_t> idx(rank); 792 for (uint64_t i = 0, base = 0; i < nse; i++) { 793 for (uint64_t r = 0; r < rank; r++) 794 idx[perm[r]] = indices[base + r]; 795 coo->add(idx, values[i]); 796 base += rank; 797 } 798 // Return sparse tensor storage format as opaque pointer. 799 auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 800 rank, shape, perm, sparsity, coo); 801 delete coo; 802 return tensor; 803 } 804 805 /// Converts a sparse tensor to an external COO-flavored format. 806 template <typename V> 807 static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 808 uint64_t **pShape, V **pValues, 809 uint64_t **pIndices) { 810 auto sparseTensor = 811 static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 812 uint64_t rank = sparseTensor->getRank(); 813 std::vector<uint64_t> perm(rank); 814 std::iota(perm.begin(), perm.end(), 0); 815 SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 816 817 const std::vector<Element<V>> &elements = coo->getElements(); 818 uint64_t nse = elements.size(); 819 820 uint64_t *shape = new uint64_t[rank]; 821 for (uint64_t i = 0; i < rank; i++) 822 shape[i] = coo->getSizes()[i]; 823 824 V *values = new V[nse]; 825 uint64_t *indices = new uint64_t[rank * nse]; 826 827 for (uint64_t i = 0, base = 0; i < nse; i++) { 828 values[i] = elements[i].value; 829 for (uint64_t j = 0; j < rank; j++) 830 indices[base + j] = elements[i].indices[j]; 831 base += rank; 832 } 833 834 delete coo; 835 *pRank = rank; 836 *pNse = nse; 837 *pShape = shape; 838 *pValues = values; 839 *pIndices = indices; 840 } 841 842 } // namespace 843 844 extern "C" { 845 846 //===----------------------------------------------------------------------===// 847 // 848 // Public API with methods that operate on MLIR buffers (memrefs) to interact 849 // with sparse tensors, which are only visible as opaque pointers externally. 850 // These methods should be used exclusively by MLIR compiler-generated code. 851 // 852 // Some macro magic is used to generate implementations for all required type 853 // combinations that can be called from MLIR compiler-generated code. 854 // 855 //===----------------------------------------------------------------------===// 856 857 #define CASE(p, i, v, P, I, V) \ 858 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 859 SparseTensorCOO<V> *coo = nullptr; \ 860 if (action <= Action::kFromCOO) { \ 861 if (action == Action::kFromFile) { \ 862 char *filename = static_cast<char *>(ptr); \ 863 coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 864 } else if (action == Action::kFromCOO) { \ 865 coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 866 } else { \ 867 assert(action == Action::kEmpty); \ 868 } \ 869 auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 870 rank, shape, perm, sparsity, coo); \ 871 if (action == Action::kFromFile) \ 872 delete coo; \ 873 return tensor; \ 874 } \ 875 if (action == Action::kEmptyCOO) \ 876 return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 877 coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 878 if (action == Action::kToIterator) { \ 879 coo->startIterator(); \ 880 } else { \ 881 assert(action == Action::kToCOO); \ 882 } \ 883 return coo; \ 884 } 885 886 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 887 888 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 889 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 890 assert(ref &&tensor); \ 891 std::vector<TYPE> *v; \ 892 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 893 ref->basePtr = ref->data = v->data(); \ 894 ref->offset = 0; \ 895 ref->sizes[0] = v->size(); \ 896 ref->strides[0] = 1; \ 897 } 898 899 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 900 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 901 index_type d) { \ 902 assert(ref &&tensor); \ 903 std::vector<TYPE> *v; \ 904 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 905 ref->basePtr = ref->data = v->data(); \ 906 ref->offset = 0; \ 907 ref->sizes[0] = v->size(); \ 908 ref->strides[0] = 1; \ 909 } 910 911 #define IMPL_ADDELT(NAME, TYPE) \ 912 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 913 StridedMemRefType<index_type, 1> *iref, \ 914 StridedMemRefType<index_type, 1> *pref) { \ 915 assert(tensor &&iref &&pref); \ 916 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 917 assert(iref->sizes[0] == pref->sizes[0]); \ 918 const index_type *indx = iref->data + iref->offset; \ 919 const index_type *perm = pref->data + pref->offset; \ 920 uint64_t isize = iref->sizes[0]; \ 921 std::vector<index_type> indices(isize); \ 922 for (uint64_t r = 0; r < isize; r++) \ 923 indices[perm[r]] = indx[r]; \ 924 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 925 return tensor; \ 926 } 927 928 #define IMPL_GETNEXT(NAME, V) \ 929 bool _mlir_ciface_##NAME(void *tensor, \ 930 StridedMemRefType<index_type, 1> *iref, \ 931 StridedMemRefType<V, 0> *vref) { \ 932 assert(tensor &&iref &&vref); \ 933 assert(iref->strides[0] == 1); \ 934 index_type *indx = iref->data + iref->offset; \ 935 V *value = vref->data + vref->offset; \ 936 const uint64_t isize = iref->sizes[0]; \ 937 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 938 const Element<V> *elem = iter->getNext(); \ 939 if (elem == nullptr) \ 940 return false; \ 941 for (uint64_t r = 0; r < isize; r++) \ 942 indx[r] = elem->indices[r]; \ 943 *value = elem->value; \ 944 return true; \ 945 } 946 947 #define IMPL_LEXINSERT(NAME, V) \ 948 void _mlir_ciface_##NAME(void *tensor, \ 949 StridedMemRefType<index_type, 1> *cref, V val) { \ 950 assert(tensor &&cref); \ 951 assert(cref->strides[0] == 1); \ 952 index_type *cursor = cref->data + cref->offset; \ 953 assert(cursor); \ 954 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 955 } 956 957 #define IMPL_EXPINSERT(NAME, V) \ 958 void _mlir_ciface_##NAME( \ 959 void *tensor, StridedMemRefType<index_type, 1> *cref, \ 960 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 961 StridedMemRefType<index_type, 1> *aref, index_type count) { \ 962 assert(tensor &&cref &&vref &&fref &&aref); \ 963 assert(cref->strides[0] == 1); \ 964 assert(vref->strides[0] == 1); \ 965 assert(fref->strides[0] == 1); \ 966 assert(aref->strides[0] == 1); \ 967 assert(vref->sizes[0] == fref->sizes[0]); \ 968 index_type *cursor = cref->data + cref->offset; \ 969 V *values = vref->data + vref->offset; \ 970 bool *filled = fref->data + fref->offset; \ 971 index_type *added = aref->data + aref->offset; \ 972 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 973 cursor, values, filled, added, count); \ 974 } 975 976 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 977 // can safely rewrite kIndex to kU64. We make this assertion to guarantee 978 // that this file cannot get out of sync with its header. 979 static_assert(std::is_same<index_type, uint64_t>::value, 980 "Expected index_type == uint64_t"); 981 982 /// Constructs a new sparse tensor. This is the "swiss army knife" 983 /// method for materializing sparse tensors into the computation. 984 /// 985 /// Action: 986 /// kEmpty = returns empty storage to fill later 987 /// kFromFile = returns storage, where ptr contains filename to read 988 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 989 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 990 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 991 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 992 void * 993 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 994 StridedMemRefType<index_type, 1> *sref, 995 StridedMemRefType<index_type, 1> *pref, 996 OverheadType ptrTp, OverheadType indTp, 997 PrimaryType valTp, Action action, void *ptr) { 998 assert(aref && sref && pref); 999 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 1000 pref->strides[0] == 1); 1001 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1002 const DimLevelType *sparsity = aref->data + aref->offset; 1003 const index_type *shape = sref->data + sref->offset; 1004 const index_type *perm = pref->data + pref->offset; 1005 uint64_t rank = aref->sizes[0]; 1006 1007 // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1008 // This is safe because of the static_assert above. 1009 if (ptrTp == OverheadType::kIndex) 1010 ptrTp = OverheadType::kU64; 1011 if (indTp == OverheadType::kIndex) 1012 indTp = OverheadType::kU64; 1013 1014 // Double matrices with all combinations of overhead storage. 1015 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1016 uint64_t, double); 1017 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1018 uint32_t, double); 1019 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1020 uint16_t, double); 1021 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1022 uint8_t, double); 1023 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1024 uint64_t, double); 1025 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1026 uint32_t, double); 1027 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1028 uint16_t, double); 1029 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1030 uint8_t, double); 1031 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1032 uint64_t, double); 1033 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1034 uint32_t, double); 1035 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1036 uint16_t, double); 1037 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1038 uint8_t, double); 1039 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1040 uint64_t, double); 1041 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1042 uint32_t, double); 1043 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1044 uint16_t, double); 1045 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1046 uint8_t, double); 1047 1048 // Float matrices with all combinations of overhead storage. 1049 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1050 uint64_t, float); 1051 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1052 uint32_t, float); 1053 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1054 uint16_t, float); 1055 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1056 uint8_t, float); 1057 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1058 uint64_t, float); 1059 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1060 uint32_t, float); 1061 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1062 uint16_t, float); 1063 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1064 uint8_t, float); 1065 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1066 uint64_t, float); 1067 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1068 uint32_t, float); 1069 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1070 uint16_t, float); 1071 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1072 uint8_t, float); 1073 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1074 uint64_t, float); 1075 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1076 uint32_t, float); 1077 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1078 uint16_t, float); 1079 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1080 uint8_t, float); 1081 1082 // Integral matrices with both overheads of the same type. 1083 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1084 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1085 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1086 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1087 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1088 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1089 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1090 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1091 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1092 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1093 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1094 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1095 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 1096 1097 // Unsupported case (add above if needed). 1098 fputs("unsupported combination of types\n", stderr); 1099 exit(1); 1100 } 1101 1102 /// Methods that provide direct access to pointers. 1103 IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 1104 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 1105 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 1106 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 1107 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 1108 1109 /// Methods that provide direct access to indices. 1110 IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 1111 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 1112 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 1113 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 1114 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 1115 1116 /// Methods that provide direct access to values. 1117 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 1118 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 1119 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 1120 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 1121 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 1122 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 1123 1124 /// Helper to add value to coordinate scheme, one per value type. 1125 IMPL_ADDELT(addEltF64, double) 1126 IMPL_ADDELT(addEltF32, float) 1127 IMPL_ADDELT(addEltI64, int64_t) 1128 IMPL_ADDELT(addEltI32, int32_t) 1129 IMPL_ADDELT(addEltI16, int16_t) 1130 IMPL_ADDELT(addEltI8, int8_t) 1131 1132 /// Helper to enumerate elements of coordinate scheme, one per value type. 1133 IMPL_GETNEXT(getNextF64, double) 1134 IMPL_GETNEXT(getNextF32, float) 1135 IMPL_GETNEXT(getNextI64, int64_t) 1136 IMPL_GETNEXT(getNextI32, int32_t) 1137 IMPL_GETNEXT(getNextI16, int16_t) 1138 IMPL_GETNEXT(getNextI8, int8_t) 1139 1140 /// Insert elements in lexicographical index order, one per value type. 1141 IMPL_LEXINSERT(lexInsertF64, double) 1142 IMPL_LEXINSERT(lexInsertF32, float) 1143 IMPL_LEXINSERT(lexInsertI64, int64_t) 1144 IMPL_LEXINSERT(lexInsertI32, int32_t) 1145 IMPL_LEXINSERT(lexInsertI16, int16_t) 1146 IMPL_LEXINSERT(lexInsertI8, int8_t) 1147 1148 /// Insert using expansion, one per value type. 1149 IMPL_EXPINSERT(expInsertF64, double) 1150 IMPL_EXPINSERT(expInsertF32, float) 1151 IMPL_EXPINSERT(expInsertI64, int64_t) 1152 IMPL_EXPINSERT(expInsertI32, int32_t) 1153 IMPL_EXPINSERT(expInsertI16, int16_t) 1154 IMPL_EXPINSERT(expInsertI8, int8_t) 1155 1156 #undef CASE 1157 #undef IMPL_SPARSEVALUES 1158 #undef IMPL_GETOVERHEAD 1159 #undef IMPL_ADDELT 1160 #undef IMPL_GETNEXT 1161 #undef IMPL_LEXINSERT 1162 #undef IMPL_EXPINSERT 1163 1164 /// Output a sparse tensor, one per value type. 1165 void outSparseTensorF64(void *tensor, void *dest, bool sort) { 1166 return outSparseTensor<double>(tensor, dest, sort); 1167 } 1168 void outSparseTensorF32(void *tensor, void *dest, bool sort) { 1169 return outSparseTensor<float>(tensor, dest, sort); 1170 } 1171 void outSparseTensorI64(void *tensor, void *dest, bool sort) { 1172 return outSparseTensor<int64_t>(tensor, dest, sort); 1173 } 1174 void outSparseTensorI32(void *tensor, void *dest, bool sort) { 1175 return outSparseTensor<int32_t>(tensor, dest, sort); 1176 } 1177 void outSparseTensorI16(void *tensor, void *dest, bool sort) { 1178 return outSparseTensor<int16_t>(tensor, dest, sort); 1179 } 1180 void outSparseTensorI8(void *tensor, void *dest, bool sort) { 1181 return outSparseTensor<int8_t>(tensor, dest, sort); 1182 } 1183 1184 //===----------------------------------------------------------------------===// 1185 // 1186 // Public API with methods that accept C-style data structures to interact 1187 // with sparse tensors, which are only visible as opaque pointers externally. 1188 // These methods can be used both by MLIR compiler-generated code as well as by 1189 // an external runtime that wants to interact with MLIR compiler-generated code. 1190 // 1191 //===----------------------------------------------------------------------===// 1192 1193 /// Helper method to read a sparse tensor filename from the environment, 1194 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1195 char *getTensorFilename(index_type id) { 1196 char var[80]; 1197 sprintf(var, "TENSOR%" PRIu64, id); 1198 char *env = getenv(var); 1199 if (!env) { 1200 fprintf(stderr, "Environment variable %s is not set\n", var); 1201 exit(1); 1202 } 1203 return env; 1204 } 1205 1206 /// Returns size of sparse tensor in given dimension. 1207 index_type sparseDimSize(void *tensor, index_type d) { 1208 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1209 } 1210 1211 /// Finalizes lexicographic insertions. 1212 void endInsert(void *tensor) { 1213 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1214 } 1215 1216 /// Releases sparse tensor storage. 1217 void delSparseTensor(void *tensor) { 1218 delete static_cast<SparseTensorStorageBase *>(tensor); 1219 } 1220 1221 /// Releases sparse tensor coordinate scheme. 1222 #define IMPL_DELCOO(VNAME, V) \ 1223 void delSparseTensorCOO##VNAME(void *coo) { \ 1224 delete static_cast<SparseTensorCOO<V> *>(coo); \ 1225 } 1226 IMPL_DELCOO(F64, double) 1227 IMPL_DELCOO(F32, float) 1228 IMPL_DELCOO(I64, int64_t) 1229 IMPL_DELCOO(I32, int32_t) 1230 IMPL_DELCOO(I16, int16_t) 1231 IMPL_DELCOO(I8, int8_t) 1232 #undef IMPL_DELCOO 1233 1234 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1235 /// data structures. The expected parameters are: 1236 /// 1237 /// rank: rank of tensor 1238 /// nse: number of specified elements (usually the nonzeros) 1239 /// shape: array with dimension size for each rank 1240 /// values: a "nse" array with values for all specified elements 1241 /// indices: a flat "nse x rank" array with indices for all specified elements 1242 /// perm: the permutation of the dimensions in the storage 1243 /// sparse: the sparsity for the dimensions 1244 /// 1245 /// For example, the sparse matrix 1246 /// | 1.0 0.0 0.0 | 1247 /// | 0.0 5.0 3.0 | 1248 /// can be passed as 1249 /// rank = 2 1250 /// nse = 3 1251 /// shape = [2, 3] 1252 /// values = [1.0, 5.0, 3.0] 1253 /// indices = [ 0, 0, 1, 1, 1, 2] 1254 // 1255 // TODO: generalize beyond 64-bit indices. 1256 // 1257 void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 1258 double *values, uint64_t *indices, 1259 uint64_t *perm, uint8_t *sparse) { 1260 return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 1261 sparse); 1262 } 1263 void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 1264 float *values, uint64_t *indices, 1265 uint64_t *perm, uint8_t *sparse) { 1266 return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 1267 sparse); 1268 } 1269 1270 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1271 /// data structures. The expected output parameters are pointers for these 1272 /// values: 1273 /// 1274 /// rank: rank of tensor 1275 /// nse: number of specified elements (usually the nonzeros) 1276 /// shape: array with dimension size for each rank 1277 /// values: a "nse" array with values for all specified elements 1278 /// indices: a flat "nse x rank" array with indices for all specified elements 1279 /// 1280 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1281 /// from convertToMLIRSparseTensor. 1282 /// 1283 // TODO: Currently, values are copied from SparseTensorStorage to 1284 // SparseTensorCOO, then to the output. We may want to reduce the number of 1285 // copies. 1286 // 1287 // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 1288 // compressed 1289 // 1290 void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 1291 uint64_t *pNse, uint64_t **pShape, 1292 double **pValues, uint64_t **pIndices) { 1293 fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 1294 } 1295 void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 1296 uint64_t *pNse, uint64_t **pShape, 1297 float **pValues, uint64_t **pIndices) { 1298 fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 1299 } 1300 1301 } // extern "C" 1302 1303 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1304