1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <complex> 25 #include <cctype> 26 #include <cinttypes> 27 #include <cstdio> 28 #include <cstdlib> 29 #include <cstring> 30 #include <fstream> 31 #include <functional> 32 #include <iostream> 33 #include <limits> 34 #include <numeric> 35 #include <vector> 36 37 using complex64 = std::complex<double>; 38 using complex32 = std::complex<float>; 39 40 //===----------------------------------------------------------------------===// 41 // 42 // Internal support for storing and reading sparse tensors. 43 // 44 // The following memory-resident sparse storage schemes are supported: 45 // 46 // (a) A coordinate scheme for temporarily storing and lexicographically 47 // sorting a sparse tensor by index (SparseTensorCOO). 48 // 49 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 50 // per-dimension sparse/dense annnotations together with a dimension 51 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 52 // 53 // The following external formats are supported: 54 // 55 // (1) Matrix Market Exchange (MME): *.mtx 56 // https://math.nist.gov/MatrixMarket/formats.html 57 // 58 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 59 // http://frostt.io/tensors/file-formats.html 60 // 61 // Two public APIs are supported: 62 // 63 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 64 // tensors. These methods should be used exclusively by MLIR 65 // compiler-generated code. 66 // 67 // (II) Methods that accept C-style data structures to interact with sparse 68 // tensors. These methods can be used by any external runtime that wants 69 // to interact with MLIR compiler-generated code. 70 // 71 // In both cases (I) and (II), the SparseTensorStorage format is externally 72 // only visible as an opaque pointer. 73 // 74 //===----------------------------------------------------------------------===// 75 76 namespace { 77 78 static constexpr int kColWidth = 1025; 79 80 /// A version of `operator*` on `uint64_t` which checks for overflows. 81 static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 82 assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 83 "Integer overflow"); 84 return lhs * rhs; 85 } 86 87 /// A sparse tensor element in coordinate scheme (value and indices). 88 /// For example, a rank-1 vector element would look like 89 /// ({i}, a[i]) 90 /// and a rank-5 tensor element like 91 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 92 /// We use pointer to a shared index pool rather than e.g. a direct 93 /// vector since that (1) reduces the per-element memory footprint, and 94 /// (2) centralizes the memory reservation and (re)allocation to one place. 95 template <typename V> 96 struct Element { 97 Element(uint64_t *ind, V val) : indices(ind), value(val){}; 98 uint64_t *indices; // pointer into shared index pool 99 V value; 100 }; 101 102 /// The type of callback functions which receive an element. We avoid 103 /// packaging the coordinates and value together as an `Element` object 104 /// because this helps keep code somewhat cleaner. 105 template <typename V> 106 using ElementConsumer = 107 const std::function<void(const std::vector<uint64_t> &, V)> &; 108 109 /// A memory-resident sparse tensor in coordinate scheme (collection of 110 /// elements). This data structure is used to read a sparse tensor from 111 /// any external format into memory and sort the elements lexicographically 112 /// by indices before passing it back to the client (most packed storage 113 /// formats require the elements to appear in lexicographic index order). 114 template <typename V> 115 struct SparseTensorCOO { 116 public: 117 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 118 : sizes(szs) { 119 if (capacity) { 120 elements.reserve(capacity); 121 indices.reserve(capacity * getRank()); 122 } 123 } 124 125 /// Adds element as indices and value. 126 void add(const std::vector<uint64_t> &ind, V val) { 127 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 128 uint64_t *base = indices.data(); 129 uint64_t size = indices.size(); 130 uint64_t rank = getRank(); 131 assert(rank == ind.size()); 132 for (uint64_t r = 0; r < rank; r++) { 133 assert(ind[r] < sizes[r]); // within bounds 134 indices.push_back(ind[r]); 135 } 136 // This base only changes if indices were reallocated. In that case, we 137 // need to correct all previous pointers into the vector. Note that this 138 // only happens if we did not set the initial capacity right, and then only 139 // for every internal vector reallocation (which with the doubling rule 140 // should only incur an amortized linear overhead). 141 uint64_t *newBase = indices.data(); 142 if (newBase != base) { 143 for (uint64_t i = 0, n = elements.size(); i < n; i++) 144 elements[i].indices = newBase + (elements[i].indices - base); 145 base = newBase; 146 } 147 // Add element as (pointer into shared index pool, value) pair. 148 elements.emplace_back(base + size, val); 149 } 150 151 /// Sorts elements lexicographically by index. 152 void sort() { 153 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 154 // TODO: we may want to cache an `isSorted` bit, to avoid 155 // unnecessary/redundant sorting. 156 std::sort(elements.begin(), elements.end(), 157 [this](const Element<V> &e1, const Element<V> &e2) { 158 uint64_t rank = getRank(); 159 for (uint64_t r = 0; r < rank; r++) { 160 if (e1.indices[r] == e2.indices[r]) 161 continue; 162 return e1.indices[r] < e2.indices[r]; 163 } 164 return false; 165 }); 166 } 167 168 /// Returns rank. 169 uint64_t getRank() const { return sizes.size(); } 170 171 /// Getter for sizes array. 172 const std::vector<uint64_t> &getSizes() const { return sizes; } 173 174 /// Getter for elements array. 175 const std::vector<Element<V>> &getElements() const { return elements; } 176 177 /// Switch into iterator mode. 178 void startIterator() { 179 iteratorLocked = true; 180 iteratorPos = 0; 181 } 182 183 /// Get the next element. 184 const Element<V> *getNext() { 185 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 186 if (iteratorPos < elements.size()) 187 return &(elements[iteratorPos++]); 188 iteratorLocked = false; 189 return nullptr; 190 } 191 192 /// Factory method. Permutes the original dimensions according to 193 /// the given ordering and expects subsequent add() calls to honor 194 /// that same ordering for the given indices. The result is a 195 /// fully permuted coordinate scheme. 196 /// 197 /// Precondition: `sizes` and `perm` must be valid for `rank`. 198 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 199 const uint64_t *sizes, 200 const uint64_t *perm, 201 uint64_t capacity = 0) { 202 std::vector<uint64_t> permsz(rank); 203 for (uint64_t r = 0; r < rank; r++) { 204 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 205 permsz[perm[r]] = sizes[r]; 206 } 207 return new SparseTensorCOO<V>(permsz, capacity); 208 } 209 210 private: 211 const std::vector<uint64_t> sizes; // per-dimension sizes 212 std::vector<Element<V>> elements; // all COO elements 213 std::vector<uint64_t> indices; // shared index pool 214 bool iteratorLocked = false; 215 unsigned iteratorPos = 0; 216 }; 217 218 /// Abstract base class for `SparseTensorStorage<P,I,V>`. This class 219 /// takes responsibility for all the `<P,I,V>`-independent aspects 220 /// of the tensor (e.g., shape, sparsity, permutation). In addition, 221 /// we use function overloading to implement "partial" method 222 /// specialization, which the C-API relies on to catch type errors 223 /// arising from our use of opaque pointers. 224 class SparseTensorStorageBase { 225 public: 226 /// Constructs a new storage object. The `perm` maps the tensor's 227 /// semantic-ordering of dimensions to this object's storage-order. 228 /// The `szs` and `sparsity` arrays are already in storage-order. 229 /// 230 /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 231 SparseTensorStorageBase(const std::vector<uint64_t> &szs, 232 const uint64_t *perm, const DimLevelType *sparsity) 233 : dimSizes(szs), rev(getRank()), 234 dimTypes(sparsity, sparsity + getRank()) { 235 assert(perm && sparsity); 236 const uint64_t rank = getRank(); 237 // Validate parameters. 238 assert(rank > 0 && "Trivial shape is unsupported"); 239 for (uint64_t r = 0; r < rank; r++) { 240 assert(dimSizes[r] > 0 && "Dimension size zero has trivial storage"); 241 assert((dimTypes[r] == DimLevelType::kDense || 242 dimTypes[r] == DimLevelType::kCompressed) && 243 "Unsupported DimLevelType"); 244 } 245 // Construct the "reverse" (i.e., inverse) permutation. 246 for (uint64_t r = 0; r < rank; r++) 247 rev[perm[r]] = r; 248 } 249 250 virtual ~SparseTensorStorageBase() = default; 251 252 /// Get the rank of the tensor. 253 uint64_t getRank() const { return dimSizes.size(); } 254 255 /// Getter for the dimension-sizes array, in storage-order. 256 const std::vector<uint64_t> &getDimSizes() const { return dimSizes; } 257 258 /// Safely lookup the size of the given (storage-order) dimension. 259 uint64_t getDimSize(uint64_t d) const { 260 assert(d < getRank()); 261 return dimSizes[d]; 262 } 263 264 /// Getter for the "reverse" permutation, which maps this object's 265 /// storage-order to the tensor's semantic-order. 266 const std::vector<uint64_t> &getRev() const { return rev; } 267 268 /// Getter for the dimension-types array, in storage-order. 269 const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; } 270 271 /// Safely check if the (storage-order) dimension uses compressed storage. 272 bool isCompressedDim(uint64_t d) const { 273 assert(d < getRank()); 274 return (dimTypes[d] == DimLevelType::kCompressed); 275 } 276 277 /// Overhead storage. 278 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 279 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 280 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 281 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 282 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 283 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 284 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 285 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 286 287 /// Primary storage. 288 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 289 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 290 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 291 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 292 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 293 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 294 virtual void getValues(std::vector<complex64> **) { fatal("valc64"); } 295 virtual void getValues(std::vector<complex32> **) { fatal("valc32"); } 296 297 /// Element-wise insertion in lexicographic index order. 298 virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 299 virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 300 virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 301 virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 302 virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 303 virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 304 virtual void lexInsert(const uint64_t *, complex64) { fatal("insc64"); } 305 virtual void lexInsert(const uint64_t *, complex32) { fatal("insc32"); } 306 307 /// Expanded insertion. 308 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 309 fatal("expf64"); 310 } 311 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 312 fatal("expf32"); 313 } 314 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 315 fatal("expi64"); 316 } 317 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 318 fatal("expi32"); 319 } 320 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 321 fatal("expi16"); 322 } 323 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 324 fatal("expi8"); 325 } 326 virtual void expInsert(uint64_t *, complex64 *, bool *, uint64_t *, 327 uint64_t) { 328 fatal("expc64"); 329 } 330 virtual void expInsert(uint64_t *, complex32 *, bool *, uint64_t *, 331 uint64_t) { 332 fatal("expc32"); 333 } 334 335 /// Finishes insertion. 336 virtual void endInsert() = 0; 337 338 protected: 339 // Since this class is virtual, we must disallow public copying in 340 // order to avoid "slicing". Since this class has data members, 341 // that means making copying protected. 342 // <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-copy-virtual> 343 SparseTensorStorageBase(const SparseTensorStorageBase &) = default; 344 // Copy-assignment would be implicitly deleted (because `dimSizes` 345 // is const), so we explicitly delete it for clarity. 346 SparseTensorStorageBase &operator=(const SparseTensorStorageBase &) = delete; 347 348 private: 349 static void fatal(const char *tp) { 350 fprintf(stderr, "unsupported %s\n", tp); 351 exit(1); 352 } 353 354 const std::vector<uint64_t> dimSizes; 355 std::vector<uint64_t> rev; 356 const std::vector<DimLevelType> dimTypes; 357 }; 358 359 // Forward. 360 template <typename P, typename I, typename V> 361 class SparseTensorEnumerator; 362 363 /// A memory-resident sparse tensor using a storage scheme based on 364 /// per-dimension sparse/dense annotations. This data structure provides a 365 /// bufferized form of a sparse tensor type. In contrast to generating setup 366 /// methods for each differently annotated sparse tensor, this method provides 367 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 368 /// and annotations to implement all required setup in a general manner. 369 template <typename P, typename I, typename V> 370 class SparseTensorStorage : public SparseTensorStorageBase { 371 public: 372 /// Constructs a sparse tensor storage scheme with the given dimensions, 373 /// permutation, and per-dimension dense/sparse annotations, using 374 /// the coordinate scheme tensor for the initial contents if provided. 375 /// 376 /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 377 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 378 const DimLevelType *sparsity, 379 SparseTensorCOO<V> *coo = nullptr) 380 : SparseTensorStorageBase(szs, perm, sparsity), pointers(getRank()), 381 indices(getRank()), idx(getRank()) { 382 // Provide hints on capacity of pointers and indices. 383 // TODO: needs much fine-tuning based on actual sparsity; currently 384 // we reserve pointer/index space based on all previous dense 385 // dimensions, which works well up to first sparse dim; but 386 // we should really use nnz and dense/sparse distribution. 387 bool allDense = true; 388 uint64_t sz = 1; 389 for (uint64_t r = 0, rank = getRank(); r < rank; r++) { 390 if (isCompressedDim(r)) { 391 // TODO: Take a parameter between 1 and `sizes[r]`, and multiply 392 // `sz` by that before reserving. (For now we just use 1.) 393 pointers[r].reserve(sz + 1); 394 pointers[r].push_back(0); 395 indices[r].reserve(sz); 396 sz = 1; 397 allDense = false; 398 } else { // Dense dimension. 399 sz = checkedMul(sz, getDimSizes()[r]); 400 } 401 } 402 // Then assign contents from coordinate scheme tensor if provided. 403 if (coo) { 404 // Ensure both preconditions of `fromCOO`. 405 assert(coo->getSizes() == getDimSizes() && "Tensor size mismatch"); 406 coo->sort(); 407 // Now actually insert the `elements`. 408 const std::vector<Element<V>> &elements = coo->getElements(); 409 uint64_t nnz = elements.size(); 410 values.reserve(nnz); 411 fromCOO(elements, 0, nnz, 0); 412 } else if (allDense) { 413 values.resize(sz, 0); 414 } 415 } 416 417 ~SparseTensorStorage() override = default; 418 419 /// Partially specialize these getter methods based on template types. 420 void getPointers(std::vector<P> **out, uint64_t d) override { 421 assert(d < getRank()); 422 *out = &pointers[d]; 423 } 424 void getIndices(std::vector<I> **out, uint64_t d) override { 425 assert(d < getRank()); 426 *out = &indices[d]; 427 } 428 void getValues(std::vector<V> **out) override { *out = &values; } 429 430 /// Partially specialize lexicographical insertions based on template types. 431 void lexInsert(const uint64_t *cursor, V val) override { 432 // First, wrap up pending insertion path. 433 uint64_t diff = 0; 434 uint64_t top = 0; 435 if (!values.empty()) { 436 diff = lexDiff(cursor); 437 endPath(diff + 1); 438 top = idx[diff] + 1; 439 } 440 // Then continue with insertion path. 441 insPath(cursor, diff, top, val); 442 } 443 444 /// Partially specialize expanded insertions based on template types. 445 /// Note that this method resets the values/filled-switch array back 446 /// to all-zero/false while only iterating over the nonzero elements. 447 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 448 uint64_t count) override { 449 if (count == 0) 450 return; 451 // Sort. 452 std::sort(added, added + count); 453 // Restore insertion path for first insert. 454 const uint64_t lastDim = getRank() - 1; 455 uint64_t index = added[0]; 456 cursor[lastDim] = index; 457 lexInsert(cursor, values[index]); 458 assert(filled[index]); 459 values[index] = 0; 460 filled[index] = false; 461 // Subsequent insertions are quick. 462 for (uint64_t i = 1; i < count; i++) { 463 assert(index < added[i] && "non-lexicographic insertion"); 464 index = added[i]; 465 cursor[lastDim] = index; 466 insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 467 assert(filled[index]); 468 values[index] = 0; 469 filled[index] = false; 470 } 471 } 472 473 /// Finalizes lexicographic insertions. 474 void endInsert() override { 475 if (values.empty()) 476 finalizeSegment(0); 477 else 478 endPath(0); 479 } 480 481 /// Returns this sparse tensor storage scheme as a new memory-resident 482 /// sparse tensor in coordinate scheme with the given dimension order. 483 /// 484 /// Precondition: `perm` must be valid for `getRank()`. 485 SparseTensorCOO<V> *toCOO(const uint64_t *perm) const { 486 SparseTensorEnumerator<P, I, V> enumerator(*this, getRank(), perm); 487 SparseTensorCOO<V> *coo = 488 new SparseTensorCOO<V>(enumerator.permutedSizes(), values.size()); 489 enumerator.forallElements([&coo](const std::vector<uint64_t> &ind, V val) { 490 coo->add(ind, val); 491 }); 492 // TODO: This assertion assumes there are no stored zeros, 493 // or if there are then that we don't filter them out. 494 // Cf., <https://github.com/llvm/llvm-project/issues/54179> 495 assert(coo->getElements().size() == values.size()); 496 return coo; 497 } 498 499 /// Factory method. Constructs a sparse tensor storage scheme with the given 500 /// dimensions, permutation, and per-dimension dense/sparse annotations, 501 /// using the coordinate scheme tensor for the initial contents if provided. 502 /// In the latter case, the coordinate scheme must respect the same 503 /// permutation as is desired for the new sparse tensor storage. 504 /// 505 /// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`. 506 static SparseTensorStorage<P, I, V> * 507 newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 508 const DimLevelType *sparsity, SparseTensorCOO<V> *coo) { 509 SparseTensorStorage<P, I, V> *n = nullptr; 510 if (coo) { 511 assert(coo->getRank() == rank && "Tensor rank mismatch"); 512 const auto &coosz = coo->getSizes(); 513 for (uint64_t r = 0; r < rank; r++) 514 assert(shape[r] == 0 || shape[r] == coosz[perm[r]]); 515 n = new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo); 516 } else { 517 std::vector<uint64_t> permsz(rank); 518 for (uint64_t r = 0; r < rank; r++) { 519 assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 520 permsz[perm[r]] = shape[r]; 521 } 522 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 523 } 524 return n; 525 } 526 527 private: 528 /// Appends an arbitrary new position to `pointers[d]`. This method 529 /// checks that `pos` is representable in the `P` type; however, it 530 /// does not check that `pos` is semantically valid (i.e., larger than 531 /// the previous position and smaller than `indices[d].capacity()`). 532 void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 533 assert(isCompressedDim(d)); 534 assert(pos <= std::numeric_limits<P>::max() && 535 "Pointer value is too large for the P-type"); 536 pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 537 } 538 539 /// Appends index `i` to dimension `d`, in the semantically general 540 /// sense. For non-dense dimensions, that means appending to the 541 /// `indices[d]` array, checking that `i` is representable in the `I` 542 /// type; however, we do not verify other semantic requirements (e.g., 543 /// that `i` is in bounds for `sizes[d]`, and not previously occurring 544 /// in the same segment). For dense dimensions, this method instead 545 /// appends the appropriate number of zeros to the `values` array, 546 /// where `full` is the number of "entries" already written to `values` 547 /// for this segment (aka one after the highest index previously appended). 548 void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 549 if (isCompressedDim(d)) { 550 assert(i <= std::numeric_limits<I>::max() && 551 "Index value is too large for the I-type"); 552 indices[d].push_back(static_cast<I>(i)); 553 } else { // Dense dimension. 554 assert(i >= full && "Index was already filled"); 555 if (i == full) 556 return; // Short-circuit, since it'll be a nop. 557 if (d + 1 == getRank()) 558 values.insert(values.end(), i - full, 0); 559 else 560 finalizeSegment(d + 1, 0, i - full); 561 } 562 } 563 564 /// Initializes sparse tensor storage scheme from a memory-resident sparse 565 /// tensor in coordinate scheme. This method prepares the pointers and 566 /// indices arrays under the given per-dimension dense/sparse annotations. 567 /// 568 /// Preconditions: 569 /// (1) the `elements` must be lexicographically sorted. 570 /// (2) the indices of every element are valid for `sizes` (equal rank 571 /// and pointwise less-than). 572 void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 573 uint64_t hi, uint64_t d) { 574 uint64_t rank = getRank(); 575 assert(d <= rank && hi <= elements.size()); 576 // Once dimensions are exhausted, insert the numerical values. 577 if (d == rank) { 578 assert(lo < hi); 579 values.push_back(elements[lo].value); 580 return; 581 } 582 // Visit all elements in this interval. 583 uint64_t full = 0; 584 while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 585 // Find segment in interval with same index elements in this dimension. 586 uint64_t i = elements[lo].indices[d]; 587 uint64_t seg = lo + 1; 588 while (seg < hi && elements[seg].indices[d] == i) 589 seg++; 590 // Handle segment in interval for sparse or dense dimension. 591 appendIndex(d, full, i); 592 full = i + 1; 593 fromCOO(elements, lo, seg, d + 1); 594 // And move on to next segment in interval. 595 lo = seg; 596 } 597 // Finalize the sparse pointer structure at this dimension. 598 finalizeSegment(d, full); 599 } 600 601 /// Finalize the sparse pointer structure at this dimension. 602 void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 603 if (count == 0) 604 return; // Short-circuit, since it'll be a nop. 605 if (isCompressedDim(d)) { 606 appendPointer(d, indices[d].size(), count); 607 } else { // Dense dimension. 608 const uint64_t sz = getDimSizes()[d]; 609 assert(sz >= full && "Segment is overfull"); 610 count = checkedMul(count, sz - full); 611 // For dense storage we must enumerate all the remaining coordinates 612 // in this dimension (i.e., coordinates after the last non-zero 613 // element), and either fill in their zero values or else recurse 614 // to finalize some deeper dimension. 615 if (d + 1 == getRank()) 616 values.insert(values.end(), count, 0); 617 else 618 finalizeSegment(d + 1, 0, count); 619 } 620 } 621 622 /// Wraps up a single insertion path, inner to outer. 623 void endPath(uint64_t diff) { 624 uint64_t rank = getRank(); 625 assert(diff <= rank); 626 for (uint64_t i = 0; i < rank - diff; i++) { 627 const uint64_t d = rank - i - 1; 628 finalizeSegment(d, idx[d] + 1); 629 } 630 } 631 632 /// Continues a single insertion path, outer to inner. 633 void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 634 uint64_t rank = getRank(); 635 assert(diff < rank); 636 for (uint64_t d = diff; d < rank; d++) { 637 uint64_t i = cursor[d]; 638 appendIndex(d, top, i); 639 top = 0; 640 idx[d] = i; 641 } 642 values.push_back(val); 643 } 644 645 /// Finds the lexicographic differing dimension. 646 uint64_t lexDiff(const uint64_t *cursor) const { 647 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 648 if (cursor[r] > idx[r]) 649 return r; 650 else 651 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 652 assert(0 && "duplication insertion"); 653 return -1u; 654 } 655 656 // Allow `SparseTensorEnumerator` to access the data-members (to avoid 657 // the cost of virtual-function dispatch in inner loops), without 658 // making them public to other client code. 659 friend class SparseTensorEnumerator<P, I, V>; 660 661 std::vector<std::vector<P>> pointers; 662 std::vector<std::vector<I>> indices; 663 std::vector<V> values; 664 std::vector<uint64_t> idx; // index cursor for lexicographic insertion. 665 }; 666 667 /// A (higher-order) function object for enumerating the elements of some 668 /// `SparseTensorStorage` under a permutation. That is, the `forallElements` 669 /// method encapsulates the loop-nest for enumerating the elements of 670 /// the source tensor (in whatever order is best for the source tensor), 671 /// and applies a permutation to the coordinates/indices before handing 672 /// each element to the callback. A single enumerator object can be 673 /// freely reused for several calls to `forallElements`, just so long 674 /// as each call is sequential with respect to one another. 675 /// 676 /// N.B., this class stores a reference to the `SparseTensorStorageBase` 677 /// passed to the constructor; thus, objects of this class must not 678 /// outlive the sparse tensor they depend on. 679 /// 680 /// Design Note: The reason we define this class instead of simply using 681 /// `SparseTensorEnumerator<P,I,V>` is because we need to hide/generalize 682 /// the `<P,I>` template parameters from MLIR client code (to simplify the 683 /// type parameters used for direct sparse-to-sparse conversion). And the 684 /// reason we define the `SparseTensorEnumerator<P,I,V>` subclasses rather 685 /// than simply using this class, is to avoid the cost of virtual-method 686 /// dispatch within the loop-nest. 687 template <typename V> 688 class SparseTensorEnumeratorBase { 689 public: 690 /// Constructs an enumerator with the given permutation for mapping 691 /// the semantic-ordering of dimensions to the desired target-ordering. 692 /// 693 /// Preconditions: 694 /// * the `tensor` must have the same `V` value type. 695 /// * `perm` must be valid for `rank`. 696 SparseTensorEnumeratorBase(const SparseTensorStorageBase &tensor, 697 uint64_t rank, const uint64_t *perm) 698 : src(tensor), permsz(src.getRev().size()), reord(getRank()), 699 cursor(getRank()) { 700 assert(perm && "Received nullptr for permutation"); 701 assert(rank == getRank() && "Permutation rank mismatch"); 702 const auto &rev = src.getRev(); // source stg-order -> semantic-order 703 const auto &sizes = src.getDimSizes(); // in source storage-order 704 for (uint64_t s = 0; s < rank; s++) { // `s` source storage-order 705 uint64_t t = perm[rev[s]]; // `t` target-order 706 reord[s] = t; 707 permsz[t] = sizes[s]; 708 } 709 } 710 711 virtual ~SparseTensorEnumeratorBase() = default; 712 713 // We disallow copying to help avoid leaking the `src` reference. 714 // (In addition to avoiding the problem of slicing.) 715 SparseTensorEnumeratorBase(const SparseTensorEnumeratorBase &) = delete; 716 SparseTensorEnumeratorBase & 717 operator=(const SparseTensorEnumeratorBase &) = delete; 718 719 /// Returns the source/target tensor's rank. (The source-rank and 720 /// target-rank are always equal since we only support permutations. 721 /// Though once we add support for other dimension mappings, this 722 /// method will have to be split in two.) 723 uint64_t getRank() const { return permsz.size(); } 724 725 /// Returns the target tensor's dimension sizes. 726 const std::vector<uint64_t> &permutedSizes() const { return permsz; } 727 728 /// Enumerates all elements of the source tensor, permutes their 729 /// indices, and passes the permuted element to the callback. 730 /// The callback must not store the cursor reference directly, 731 /// since this function reuses the storage. Instead, the callback 732 /// must copy it if they want to keep it. 733 virtual void forallElements(ElementConsumer<V> yield) = 0; 734 735 protected: 736 const SparseTensorStorageBase &src; 737 std::vector<uint64_t> permsz; // in target order. 738 std::vector<uint64_t> reord; // source storage-order -> target order. 739 std::vector<uint64_t> cursor; // in target order. 740 }; 741 742 template <typename P, typename I, typename V> 743 class SparseTensorEnumerator final : public SparseTensorEnumeratorBase<V> { 744 using Base = SparseTensorEnumeratorBase<V>; 745 746 public: 747 /// Constructs an enumerator with the given permutation for mapping 748 /// the semantic-ordering of dimensions to the desired target-ordering. 749 /// 750 /// Precondition: `perm` must be valid for `rank`. 751 SparseTensorEnumerator(const SparseTensorStorage<P, I, V> &tensor, 752 uint64_t rank, const uint64_t *perm) 753 : Base(tensor, rank, perm) {} 754 755 ~SparseTensorEnumerator() final override = default; 756 757 void forallElements(ElementConsumer<V> yield) final override { 758 forallElements(yield, 0, 0); 759 } 760 761 private: 762 /// The recursive component of the public `forallElements`. 763 void forallElements(ElementConsumer<V> yield, uint64_t parentPos, 764 uint64_t d) { 765 // Recover the `<P,I,V>` type parameters of `src`. 766 const auto &src = 767 static_cast<const SparseTensorStorage<P, I, V> &>(this->src); 768 if (d == Base::getRank()) { 769 assert(parentPos < src.values.size() && 770 "Value position is out of bounds"); 771 // TODO: <https://github.com/llvm/llvm-project/issues/54179> 772 yield(this->cursor, src.values[parentPos]); 773 } else if (src.isCompressedDim(d)) { 774 // Look up the bounds of the `d`-level segment determined by the 775 // `d-1`-level position `parentPos`. 776 const std::vector<P> &pointers_d = src.pointers[d]; 777 assert(parentPos + 1 < pointers_d.size() && 778 "Parent pointer position is out of bounds"); 779 const uint64_t pstart = static_cast<uint64_t>(pointers_d[parentPos]); 780 const uint64_t pstop = static_cast<uint64_t>(pointers_d[parentPos + 1]); 781 // Loop-invariant code for looking up the `d`-level coordinates/indices. 782 const std::vector<I> &indices_d = src.indices[d]; 783 assert(pstop - 1 < indices_d.size() && "Index position is out of bounds"); 784 uint64_t &cursor_reord_d = this->cursor[this->reord[d]]; 785 for (uint64_t pos = pstart; pos < pstop; pos++) { 786 cursor_reord_d = static_cast<uint64_t>(indices_d[pos]); 787 forallElements(yield, pos, d + 1); 788 } 789 } else { // Dense dimension. 790 const uint64_t sz = src.getDimSizes()[d]; 791 const uint64_t pstart = parentPos * sz; 792 uint64_t &cursor_reord_d = this->cursor[this->reord[d]]; 793 for (uint64_t i = 0; i < sz; i++) { 794 cursor_reord_d = i; 795 forallElements(yield, pstart + i, d + 1); 796 } 797 } 798 } 799 }; 800 801 /// Helper to convert string to lower case. 802 static char *toLower(char *token) { 803 for (char *c = token; *c; c++) 804 *c = tolower(*c); 805 return token; 806 } 807 808 /// Read the MME header of a general sparse matrix of type real. 809 static void readMMEHeader(FILE *file, char *filename, char *line, 810 uint64_t *idata, bool *isPattern, bool *isSymmetric) { 811 char header[64]; 812 char object[64]; 813 char format[64]; 814 char field[64]; 815 char symmetry[64]; 816 // Read header line. 817 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 818 symmetry) != 5) { 819 fprintf(stderr, "Corrupt header in %s\n", filename); 820 exit(1); 821 } 822 // Set properties 823 *isPattern = (strcmp(toLower(field), "pattern") == 0); 824 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 825 // Make sure this is a general sparse matrix. 826 if (strcmp(toLower(header), "%%matrixmarket") || 827 strcmp(toLower(object), "matrix") || 828 strcmp(toLower(format), "coordinate") || 829 (strcmp(toLower(field), "real") && !(*isPattern)) || 830 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 831 fprintf(stderr, "Cannot find a general sparse matrix in %s\n", filename); 832 exit(1); 833 } 834 // Skip comments. 835 while (true) { 836 if (!fgets(line, kColWidth, file)) { 837 fprintf(stderr, "Cannot find data in %s\n", filename); 838 exit(1); 839 } 840 if (line[0] != '%') 841 break; 842 } 843 // Next line contains M N NNZ. 844 idata[0] = 2; // rank 845 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 846 idata + 1) != 3) { 847 fprintf(stderr, "Cannot find size in %s\n", filename); 848 exit(1); 849 } 850 } 851 852 /// Read the "extended" FROSTT header. Although not part of the documented 853 /// format, we assume that the file starts with optional comments followed 854 /// by two lines that define the rank, the number of nonzeros, and the 855 /// dimensions sizes (one per rank) of the sparse tensor. 856 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 857 uint64_t *idata) { 858 // Skip comments. 859 while (true) { 860 if (!fgets(line, kColWidth, file)) { 861 fprintf(stderr, "Cannot find data in %s\n", filename); 862 exit(1); 863 } 864 if (line[0] != '#') 865 break; 866 } 867 // Next line contains RANK and NNZ. 868 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 869 fprintf(stderr, "Cannot find metadata in %s\n", filename); 870 exit(1); 871 } 872 // Followed by a line with the dimension sizes (one per rank). 873 for (uint64_t r = 0; r < idata[0]; r++) { 874 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 875 fprintf(stderr, "Cannot find dimension size %s\n", filename); 876 exit(1); 877 } 878 } 879 fgets(line, kColWidth, file); // end of line 880 } 881 882 /// Reads a sparse tensor with the given filename into a memory-resident 883 /// sparse tensor in coordinate scheme. 884 template <typename V> 885 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 886 const uint64_t *shape, 887 const uint64_t *perm) { 888 // Open the file. 889 FILE *file = fopen(filename, "r"); 890 if (!file) { 891 assert(filename && "Received nullptr for filename"); 892 fprintf(stderr, "Cannot find file %s\n", filename); 893 exit(1); 894 } 895 // Perform some file format dependent set up. 896 char line[kColWidth]; 897 uint64_t idata[512]; 898 bool isPattern = false; 899 bool isSymmetric = false; 900 if (strstr(filename, ".mtx")) { 901 readMMEHeader(file, filename, line, idata, &isPattern, &isSymmetric); 902 } else if (strstr(filename, ".tns")) { 903 readExtFROSTTHeader(file, filename, line, idata); 904 } else { 905 fprintf(stderr, "Unknown format %s\n", filename); 906 exit(1); 907 } 908 // Prepare sparse tensor object with per-dimension sizes 909 // and the number of nonzeros as initial capacity. 910 assert(rank == idata[0] && "rank mismatch"); 911 uint64_t nnz = idata[1]; 912 for (uint64_t r = 0; r < rank; r++) 913 assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 914 "dimension size mismatch"); 915 SparseTensorCOO<V> *tensor = 916 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 917 // Read all nonzero elements. 918 std::vector<uint64_t> indices(rank); 919 for (uint64_t k = 0; k < nnz; k++) { 920 if (!fgets(line, kColWidth, file)) { 921 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 922 exit(1); 923 } 924 char *linePtr = line; 925 for (uint64_t r = 0; r < rank; r++) { 926 uint64_t idx = strtoul(linePtr, &linePtr, 10); 927 // Add 0-based index. 928 indices[perm[r]] = idx - 1; 929 } 930 // The external formats always store the numerical values with the type 931 // double, but we cast these values to the sparse tensor object type. 932 // For a pattern tensor, we arbitrarily pick the value 1 for all entries. 933 double value = isPattern ? 1.0 : strtod(linePtr, &linePtr); 934 tensor->add(indices, value); 935 // We currently chose to deal with symmetric matrices by fully constructing 936 // them. In the future, we may want to make symmetry implicit for storage 937 // reasons. 938 if (isSymmetric && indices[0] != indices[1]) 939 tensor->add({indices[1], indices[0]}, value); 940 } 941 // Close the file and return tensor. 942 fclose(file); 943 return tensor; 944 } 945 946 /// Writes the sparse tensor to extended FROSTT format. 947 template <typename V> 948 static void outSparseTensor(void *tensor, void *dest, bool sort) { 949 assert(tensor && dest); 950 auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 951 if (sort) 952 coo->sort(); 953 char *filename = static_cast<char *>(dest); 954 auto &sizes = coo->getSizes(); 955 auto &elements = coo->getElements(); 956 uint64_t rank = coo->getRank(); 957 uint64_t nnz = elements.size(); 958 std::fstream file; 959 file.open(filename, std::ios_base::out | std::ios_base::trunc); 960 assert(file.is_open()); 961 file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 962 for (uint64_t r = 0; r < rank - 1; r++) 963 file << sizes[r] << " "; 964 file << sizes[rank - 1] << std::endl; 965 for (uint64_t i = 0; i < nnz; i++) { 966 auto &idx = elements[i].indices; 967 for (uint64_t r = 0; r < rank; r++) 968 file << (idx[r] + 1) << " "; 969 file << elements[i].value << std::endl; 970 } 971 file.flush(); 972 file.close(); 973 assert(file.good()); 974 } 975 976 /// Initializes sparse tensor from an external COO-flavored format. 977 template <typename V> 978 static SparseTensorStorage<uint64_t, uint64_t, V> * 979 toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 980 uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 981 const DimLevelType *sparsity = (DimLevelType *)(sparse); 982 #ifndef NDEBUG 983 // Verify that perm is a permutation of 0..(rank-1). 984 std::vector<uint64_t> order(perm, perm + rank); 985 std::sort(order.begin(), order.end()); 986 for (uint64_t i = 0; i < rank; ++i) { 987 if (i != order[i]) { 988 fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 989 exit(1); 990 } 991 } 992 993 // Verify that the sparsity values are supported. 994 for (uint64_t i = 0; i < rank; ++i) { 995 if (sparsity[i] != DimLevelType::kDense && 996 sparsity[i] != DimLevelType::kCompressed) { 997 fprintf(stderr, "Unsupported sparsity value %d\n", 998 static_cast<int>(sparsity[i])); 999 exit(1); 1000 } 1001 } 1002 #endif 1003 1004 // Convert external format to internal COO. 1005 auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 1006 std::vector<uint64_t> idx(rank); 1007 for (uint64_t i = 0, base = 0; i < nse; i++) { 1008 for (uint64_t r = 0; r < rank; r++) 1009 idx[perm[r]] = indices[base + r]; 1010 coo->add(idx, values[i]); 1011 base += rank; 1012 } 1013 // Return sparse tensor storage format as opaque pointer. 1014 auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 1015 rank, shape, perm, sparsity, coo); 1016 delete coo; 1017 return tensor; 1018 } 1019 1020 /// Converts a sparse tensor to an external COO-flavored format. 1021 template <typename V> 1022 static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 1023 uint64_t **pShape, V **pValues, 1024 uint64_t **pIndices) { 1025 assert(tensor); 1026 auto sparseTensor = 1027 static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 1028 uint64_t rank = sparseTensor->getRank(); 1029 std::vector<uint64_t> perm(rank); 1030 std::iota(perm.begin(), perm.end(), 0); 1031 SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 1032 1033 const std::vector<Element<V>> &elements = coo->getElements(); 1034 uint64_t nse = elements.size(); 1035 1036 uint64_t *shape = new uint64_t[rank]; 1037 for (uint64_t i = 0; i < rank; i++) 1038 shape[i] = coo->getSizes()[i]; 1039 1040 V *values = new V[nse]; 1041 uint64_t *indices = new uint64_t[rank * nse]; 1042 1043 for (uint64_t i = 0, base = 0; i < nse; i++) { 1044 values[i] = elements[i].value; 1045 for (uint64_t j = 0; j < rank; j++) 1046 indices[base + j] = elements[i].indices[j]; 1047 base += rank; 1048 } 1049 1050 delete coo; 1051 *pRank = rank; 1052 *pNse = nse; 1053 *pShape = shape; 1054 *pValues = values; 1055 *pIndices = indices; 1056 } 1057 1058 } // namespace 1059 1060 extern "C" { 1061 1062 //===----------------------------------------------------------------------===// 1063 // 1064 // Public API with methods that operate on MLIR buffers (memrefs) to interact 1065 // with sparse tensors, which are only visible as opaque pointers externally. 1066 // These methods should be used exclusively by MLIR compiler-generated code. 1067 // 1068 // Some macro magic is used to generate implementations for all required type 1069 // combinations that can be called from MLIR compiler-generated code. 1070 // 1071 //===----------------------------------------------------------------------===// 1072 1073 #define CASE(p, i, v, P, I, V) \ 1074 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 1075 SparseTensorCOO<V> *coo = nullptr; \ 1076 if (action <= Action::kFromCOO) { \ 1077 if (action == Action::kFromFile) { \ 1078 char *filename = static_cast<char *>(ptr); \ 1079 coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 1080 } else if (action == Action::kFromCOO) { \ 1081 coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 1082 } else { \ 1083 assert(action == Action::kEmpty); \ 1084 } \ 1085 auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 1086 rank, shape, perm, sparsity, coo); \ 1087 if (action == Action::kFromFile) \ 1088 delete coo; \ 1089 return tensor; \ 1090 } \ 1091 if (action == Action::kEmptyCOO) \ 1092 return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 1093 coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 1094 if (action == Action::kToIterator) { \ 1095 coo->startIterator(); \ 1096 } else { \ 1097 assert(action == Action::kToCOO); \ 1098 } \ 1099 return coo; \ 1100 } 1101 1102 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 1103 1104 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 1105 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 1106 assert(ref &&tensor); \ 1107 std::vector<TYPE> *v; \ 1108 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 1109 ref->basePtr = ref->data = v->data(); \ 1110 ref->offset = 0; \ 1111 ref->sizes[0] = v->size(); \ 1112 ref->strides[0] = 1; \ 1113 } 1114 1115 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 1116 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 1117 index_type d) { \ 1118 assert(ref &&tensor); \ 1119 std::vector<TYPE> *v; \ 1120 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 1121 ref->basePtr = ref->data = v->data(); \ 1122 ref->offset = 0; \ 1123 ref->sizes[0] = v->size(); \ 1124 ref->strides[0] = 1; \ 1125 } 1126 1127 #define IMPL_ADDELT(NAME, TYPE) \ 1128 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 1129 StridedMemRefType<index_type, 1> *iref, \ 1130 StridedMemRefType<index_type, 1> *pref) { \ 1131 assert(tensor &&iref &&pref); \ 1132 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 1133 assert(iref->sizes[0] == pref->sizes[0]); \ 1134 const index_type *indx = iref->data + iref->offset; \ 1135 const index_type *perm = pref->data + pref->offset; \ 1136 uint64_t isize = iref->sizes[0]; \ 1137 std::vector<index_type> indices(isize); \ 1138 for (uint64_t r = 0; r < isize; r++) \ 1139 indices[perm[r]] = indx[r]; \ 1140 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 1141 return tensor; \ 1142 } 1143 1144 #define IMPL_GETNEXT(NAME, V) \ 1145 bool _mlir_ciface_##NAME(void *tensor, \ 1146 StridedMemRefType<index_type, 1> *iref, \ 1147 StridedMemRefType<V, 0> *vref) { \ 1148 assert(tensor &&iref &&vref); \ 1149 assert(iref->strides[0] == 1); \ 1150 index_type *indx = iref->data + iref->offset; \ 1151 V *value = vref->data + vref->offset; \ 1152 const uint64_t isize = iref->sizes[0]; \ 1153 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 1154 const Element<V> *elem = iter->getNext(); \ 1155 if (elem == nullptr) \ 1156 return false; \ 1157 for (uint64_t r = 0; r < isize; r++) \ 1158 indx[r] = elem->indices[r]; \ 1159 *value = elem->value; \ 1160 return true; \ 1161 } 1162 1163 #define IMPL_LEXINSERT(NAME, V) \ 1164 void _mlir_ciface_##NAME(void *tensor, \ 1165 StridedMemRefType<index_type, 1> *cref, V val) { \ 1166 assert(tensor &&cref); \ 1167 assert(cref->strides[0] == 1); \ 1168 index_type *cursor = cref->data + cref->offset; \ 1169 assert(cursor); \ 1170 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 1171 } 1172 1173 #define IMPL_EXPINSERT(NAME, V) \ 1174 void _mlir_ciface_##NAME( \ 1175 void *tensor, StridedMemRefType<index_type, 1> *cref, \ 1176 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 1177 StridedMemRefType<index_type, 1> *aref, index_type count) { \ 1178 assert(tensor &&cref &&vref &&fref &&aref); \ 1179 assert(cref->strides[0] == 1); \ 1180 assert(vref->strides[0] == 1); \ 1181 assert(fref->strides[0] == 1); \ 1182 assert(aref->strides[0] == 1); \ 1183 assert(vref->sizes[0] == fref->sizes[0]); \ 1184 index_type *cursor = cref->data + cref->offset; \ 1185 V *values = vref->data + vref->offset; \ 1186 bool *filled = fref->data + fref->offset; \ 1187 index_type *added = aref->data + aref->offset; \ 1188 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 1189 cursor, values, filled, added, count); \ 1190 } 1191 1192 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 1193 // can safely rewrite kIndex to kU64. We make this assertion to guarantee 1194 // that this file cannot get out of sync with its header. 1195 static_assert(std::is_same<index_type, uint64_t>::value, 1196 "Expected index_type == uint64_t"); 1197 1198 /// Constructs a new sparse tensor. This is the "swiss army knife" 1199 /// method for materializing sparse tensors into the computation. 1200 /// 1201 /// Action: 1202 /// kEmpty = returns empty storage to fill later 1203 /// kFromFile = returns storage, where ptr contains filename to read 1204 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 1205 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 1206 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 1207 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 1208 void * 1209 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 1210 StridedMemRefType<index_type, 1> *sref, 1211 StridedMemRefType<index_type, 1> *pref, 1212 OverheadType ptrTp, OverheadType indTp, 1213 PrimaryType valTp, Action action, void *ptr) { 1214 assert(aref && sref && pref); 1215 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 1216 pref->strides[0] == 1); 1217 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1218 const DimLevelType *sparsity = aref->data + aref->offset; 1219 const index_type *shape = sref->data + sref->offset; 1220 const index_type *perm = pref->data + pref->offset; 1221 uint64_t rank = aref->sizes[0]; 1222 1223 // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1224 // This is safe because of the static_assert above. 1225 if (ptrTp == OverheadType::kIndex) 1226 ptrTp = OverheadType::kU64; 1227 if (indTp == OverheadType::kIndex) 1228 indTp = OverheadType::kU64; 1229 1230 // Double matrices with all combinations of overhead storage. 1231 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1232 uint64_t, double); 1233 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1234 uint32_t, double); 1235 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1236 uint16_t, double); 1237 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1238 uint8_t, double); 1239 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1240 uint64_t, double); 1241 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1242 uint32_t, double); 1243 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1244 uint16_t, double); 1245 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1246 uint8_t, double); 1247 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1248 uint64_t, double); 1249 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1250 uint32_t, double); 1251 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1252 uint16_t, double); 1253 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1254 uint8_t, double); 1255 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1256 uint64_t, double); 1257 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1258 uint32_t, double); 1259 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1260 uint16_t, double); 1261 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1262 uint8_t, double); 1263 1264 // Float matrices with all combinations of overhead storage. 1265 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1266 uint64_t, float); 1267 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1268 uint32_t, float); 1269 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1270 uint16_t, float); 1271 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1272 uint8_t, float); 1273 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1274 uint64_t, float); 1275 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1276 uint32_t, float); 1277 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1278 uint16_t, float); 1279 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1280 uint8_t, float); 1281 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1282 uint64_t, float); 1283 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1284 uint32_t, float); 1285 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1286 uint16_t, float); 1287 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1288 uint8_t, float); 1289 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1290 uint64_t, float); 1291 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1292 uint32_t, float); 1293 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1294 uint16_t, float); 1295 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1296 uint8_t, float); 1297 1298 // Integral matrices with both overheads of the same type. 1299 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1300 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1301 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1302 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1303 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1304 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1305 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1306 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1307 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1308 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1309 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1310 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1311 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 1312 1313 // Complex matrices with wide overhead. 1314 CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64); 1315 CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32); 1316 1317 // Unsupported case (add above if needed). 1318 fputs("unsupported combination of types\n", stderr); 1319 exit(1); 1320 } 1321 1322 /// Methods that provide direct access to pointers. 1323 IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 1324 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 1325 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 1326 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 1327 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 1328 1329 /// Methods that provide direct access to indices. 1330 IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 1331 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 1332 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 1333 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 1334 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 1335 1336 /// Methods that provide direct access to values. 1337 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 1338 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 1339 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 1340 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 1341 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 1342 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 1343 IMPL_SPARSEVALUES(sparseValuesC64, complex64, getValues) 1344 IMPL_SPARSEVALUES(sparseValuesC32, complex32, getValues) 1345 1346 /// Helper to add value to coordinate scheme, one per value type. 1347 IMPL_ADDELT(addEltF64, double) 1348 IMPL_ADDELT(addEltF32, float) 1349 IMPL_ADDELT(addEltI64, int64_t) 1350 IMPL_ADDELT(addEltI32, int32_t) 1351 IMPL_ADDELT(addEltI16, int16_t) 1352 IMPL_ADDELT(addEltI8, int8_t) 1353 IMPL_ADDELT(addEltC64, complex64) 1354 IMPL_ADDELT(addEltC32ABI, complex32) 1355 // Make prototype explicit to accept the !llvm.struct<(f32, f32)> without 1356 // any padding (which seem to happen for complex32 when passed as scalar; 1357 // all other cases, e.g. pointer to array, work as expected). 1358 // TODO: cleaner way to avoid ABI padding problem? 1359 void *_mlir_ciface_addEltC32(void *tensor, float r, float i, 1360 StridedMemRefType<index_type, 1> *iref, 1361 StridedMemRefType<index_type, 1> *pref) { 1362 return _mlir_ciface_addEltC32ABI(tensor, complex32(r, i), iref, pref); 1363 } 1364 1365 /// Helper to enumerate elements of coordinate scheme, one per value type. 1366 IMPL_GETNEXT(getNextF64, double) 1367 IMPL_GETNEXT(getNextF32, float) 1368 IMPL_GETNEXT(getNextI64, int64_t) 1369 IMPL_GETNEXT(getNextI32, int32_t) 1370 IMPL_GETNEXT(getNextI16, int16_t) 1371 IMPL_GETNEXT(getNextI8, int8_t) 1372 IMPL_GETNEXT(getNextC64, complex64) 1373 IMPL_GETNEXT(getNextC32, complex32) 1374 1375 /// Insert elements in lexicographical index order, one per value type. 1376 IMPL_LEXINSERT(lexInsertF64, double) 1377 IMPL_LEXINSERT(lexInsertF32, float) 1378 IMPL_LEXINSERT(lexInsertI64, int64_t) 1379 IMPL_LEXINSERT(lexInsertI32, int32_t) 1380 IMPL_LEXINSERT(lexInsertI16, int16_t) 1381 IMPL_LEXINSERT(lexInsertI8, int8_t) 1382 IMPL_LEXINSERT(lexInsertC64, complex64) 1383 IMPL_LEXINSERT(lexInsertC32ABI, complex32) 1384 // Make prototype explicit to accept the !llvm.struct<(f32, f32)> without 1385 // any padding (which seem to happen for complex32 when passed as scalar; 1386 // all other cases, e.g. pointer to array, work as expected). 1387 // TODO: cleaner way to avoid ABI padding problem? 1388 void _mlir_ciface_lexInsertC32(void *tensor, 1389 StridedMemRefType<index_type, 1> *cref, float r, 1390 float i) { 1391 _mlir_ciface_lexInsertC32ABI(tensor, cref, complex32(r, i)); 1392 } 1393 1394 /// Insert using expansion, one per value type. 1395 IMPL_EXPINSERT(expInsertF64, double) 1396 IMPL_EXPINSERT(expInsertF32, float) 1397 IMPL_EXPINSERT(expInsertI64, int64_t) 1398 IMPL_EXPINSERT(expInsertI32, int32_t) 1399 IMPL_EXPINSERT(expInsertI16, int16_t) 1400 IMPL_EXPINSERT(expInsertI8, int8_t) 1401 IMPL_EXPINSERT(expInsertC64, complex64) 1402 IMPL_EXPINSERT(expInsertC32, complex32) 1403 1404 #undef CASE 1405 #undef IMPL_SPARSEVALUES 1406 #undef IMPL_GETOVERHEAD 1407 #undef IMPL_ADDELT 1408 #undef IMPL_GETNEXT 1409 #undef IMPL_LEXINSERT 1410 #undef IMPL_EXPINSERT 1411 1412 /// Output a sparse tensor, one per value type. 1413 void outSparseTensorF64(void *tensor, void *dest, bool sort) { 1414 return outSparseTensor<double>(tensor, dest, sort); 1415 } 1416 void outSparseTensorF32(void *tensor, void *dest, bool sort) { 1417 return outSparseTensor<float>(tensor, dest, sort); 1418 } 1419 void outSparseTensorI64(void *tensor, void *dest, bool sort) { 1420 return outSparseTensor<int64_t>(tensor, dest, sort); 1421 } 1422 void outSparseTensorI32(void *tensor, void *dest, bool sort) { 1423 return outSparseTensor<int32_t>(tensor, dest, sort); 1424 } 1425 void outSparseTensorI16(void *tensor, void *dest, bool sort) { 1426 return outSparseTensor<int16_t>(tensor, dest, sort); 1427 } 1428 void outSparseTensorI8(void *tensor, void *dest, bool sort) { 1429 return outSparseTensor<int8_t>(tensor, dest, sort); 1430 } 1431 void outSparseTensorC64(void *tensor, void *dest, bool sort) { 1432 return outSparseTensor<complex64>(tensor, dest, sort); 1433 } 1434 void outSparseTensorC32(void *tensor, void *dest, bool sort) { 1435 return outSparseTensor<complex32>(tensor, dest, sort); 1436 } 1437 1438 //===----------------------------------------------------------------------===// 1439 // 1440 // Public API with methods that accept C-style data structures to interact 1441 // with sparse tensors, which are only visible as opaque pointers externally. 1442 // These methods can be used both by MLIR compiler-generated code as well as by 1443 // an external runtime that wants to interact with MLIR compiler-generated code. 1444 // 1445 //===----------------------------------------------------------------------===// 1446 1447 /// Helper method to read a sparse tensor filename from the environment, 1448 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1449 char *getTensorFilename(index_type id) { 1450 char var[80]; 1451 sprintf(var, "TENSOR%" PRIu64, id); 1452 char *env = getenv(var); 1453 if (!env) { 1454 fprintf(stderr, "Environment variable %s is not set\n", var); 1455 exit(1); 1456 } 1457 return env; 1458 } 1459 1460 /// Returns size of sparse tensor in given dimension. 1461 index_type sparseDimSize(void *tensor, index_type d) { 1462 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1463 } 1464 1465 /// Finalizes lexicographic insertions. 1466 void endInsert(void *tensor) { 1467 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1468 } 1469 1470 /// Releases sparse tensor storage. 1471 void delSparseTensor(void *tensor) { 1472 delete static_cast<SparseTensorStorageBase *>(tensor); 1473 } 1474 1475 /// Releases sparse tensor coordinate scheme. 1476 #define IMPL_DELCOO(VNAME, V) \ 1477 void delSparseTensorCOO##VNAME(void *coo) { \ 1478 delete static_cast<SparseTensorCOO<V> *>(coo); \ 1479 } 1480 IMPL_DELCOO(F64, double) 1481 IMPL_DELCOO(F32, float) 1482 IMPL_DELCOO(I64, int64_t) 1483 IMPL_DELCOO(I32, int32_t) 1484 IMPL_DELCOO(I16, int16_t) 1485 IMPL_DELCOO(I8, int8_t) 1486 IMPL_DELCOO(C64, complex64) 1487 IMPL_DELCOO(C32, complex32) 1488 #undef IMPL_DELCOO 1489 1490 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1491 /// data structures. The expected parameters are: 1492 /// 1493 /// rank: rank of tensor 1494 /// nse: number of specified elements (usually the nonzeros) 1495 /// shape: array with dimension size for each rank 1496 /// values: a "nse" array with values for all specified elements 1497 /// indices: a flat "nse x rank" array with indices for all specified elements 1498 /// perm: the permutation of the dimensions in the storage 1499 /// sparse: the sparsity for the dimensions 1500 /// 1501 /// For example, the sparse matrix 1502 /// | 1.0 0.0 0.0 | 1503 /// | 0.0 5.0 3.0 | 1504 /// can be passed as 1505 /// rank = 2 1506 /// nse = 3 1507 /// shape = [2, 3] 1508 /// values = [1.0, 5.0, 3.0] 1509 /// indices = [ 0, 0, 1, 1, 1, 2] 1510 // 1511 // TODO: generalize beyond 64-bit indices. 1512 // 1513 void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 1514 double *values, uint64_t *indices, 1515 uint64_t *perm, uint8_t *sparse) { 1516 return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 1517 sparse); 1518 } 1519 void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 1520 float *values, uint64_t *indices, 1521 uint64_t *perm, uint8_t *sparse) { 1522 return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 1523 sparse); 1524 } 1525 void *convertToMLIRSparseTensorI64(uint64_t rank, uint64_t nse, uint64_t *shape, 1526 int64_t *values, uint64_t *indices, 1527 uint64_t *perm, uint8_t *sparse) { 1528 return toMLIRSparseTensor<int64_t>(rank, nse, shape, values, indices, perm, 1529 sparse); 1530 } 1531 void *convertToMLIRSparseTensorI32(uint64_t rank, uint64_t nse, uint64_t *shape, 1532 int32_t *values, uint64_t *indices, 1533 uint64_t *perm, uint8_t *sparse) { 1534 return toMLIRSparseTensor<int32_t>(rank, nse, shape, values, indices, perm, 1535 sparse); 1536 } 1537 void *convertToMLIRSparseTensorI16(uint64_t rank, uint64_t nse, uint64_t *shape, 1538 int16_t *values, uint64_t *indices, 1539 uint64_t *perm, uint8_t *sparse) { 1540 return toMLIRSparseTensor<int16_t>(rank, nse, shape, values, indices, perm, 1541 sparse); 1542 } 1543 void *convertToMLIRSparseTensorI8(uint64_t rank, uint64_t nse, uint64_t *shape, 1544 int8_t *values, uint64_t *indices, 1545 uint64_t *perm, uint8_t *sparse) { 1546 return toMLIRSparseTensor<int8_t>(rank, nse, shape, values, indices, perm, 1547 sparse); 1548 } 1549 void *convertToMLIRSparseTensorC64(uint64_t rank, uint64_t nse, uint64_t *shape, 1550 complex64 *values, uint64_t *indices, 1551 uint64_t *perm, uint8_t *sparse) { 1552 return toMLIRSparseTensor<complex64>(rank, nse, shape, values, indices, perm, 1553 sparse); 1554 } 1555 void *convertToMLIRSparseTensorC32(uint64_t rank, uint64_t nse, uint64_t *shape, 1556 complex32 *values, uint64_t *indices, 1557 uint64_t *perm, uint8_t *sparse) { 1558 return toMLIRSparseTensor<complex32>(rank, nse, shape, values, indices, perm, 1559 sparse); 1560 } 1561 1562 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1563 /// data structures. The expected output parameters are pointers for these 1564 /// values: 1565 /// 1566 /// rank: rank of tensor 1567 /// nse: number of specified elements (usually the nonzeros) 1568 /// shape: array with dimension size for each rank 1569 /// values: a "nse" array with values for all specified elements 1570 /// indices: a flat "nse x rank" array with indices for all specified elements 1571 /// 1572 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1573 /// from convertToMLIRSparseTensor. 1574 /// 1575 // TODO: Currently, values are copied from SparseTensorStorage to 1576 // SparseTensorCOO, then to the output. We may want to reduce the number of 1577 // copies. 1578 // 1579 // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 1580 // compressed 1581 // 1582 void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 1583 uint64_t *pNse, uint64_t **pShape, 1584 double **pValues, uint64_t **pIndices) { 1585 fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 1586 } 1587 void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 1588 uint64_t *pNse, uint64_t **pShape, 1589 float **pValues, uint64_t **pIndices) { 1590 fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 1591 } 1592 void convertFromMLIRSparseTensorI64(void *tensor, uint64_t *pRank, 1593 uint64_t *pNse, uint64_t **pShape, 1594 int64_t **pValues, uint64_t **pIndices) { 1595 fromMLIRSparseTensor<int64_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1596 } 1597 void convertFromMLIRSparseTensorI32(void *tensor, uint64_t *pRank, 1598 uint64_t *pNse, uint64_t **pShape, 1599 int32_t **pValues, uint64_t **pIndices) { 1600 fromMLIRSparseTensor<int32_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1601 } 1602 void convertFromMLIRSparseTensorI16(void *tensor, uint64_t *pRank, 1603 uint64_t *pNse, uint64_t **pShape, 1604 int16_t **pValues, uint64_t **pIndices) { 1605 fromMLIRSparseTensor<int16_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1606 } 1607 void convertFromMLIRSparseTensorI8(void *tensor, uint64_t *pRank, 1608 uint64_t *pNse, uint64_t **pShape, 1609 int8_t **pValues, uint64_t **pIndices) { 1610 fromMLIRSparseTensor<int8_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1611 } 1612 void convertFromMLIRSparseTensorC64(void *tensor, uint64_t *pRank, 1613 uint64_t *pNse, uint64_t **pShape, 1614 complex64 **pValues, uint64_t **pIndices) { 1615 fromMLIRSparseTensor<complex64>(tensor, pRank, pNse, pShape, pValues, 1616 pIndices); 1617 } 1618 void convertFromMLIRSparseTensorC32(void *tensor, uint64_t *pRank, 1619 uint64_t *pNse, uint64_t **pShape, 1620 complex32 **pValues, uint64_t **pIndices) { 1621 fromMLIRSparseTensor<complex32>(tensor, pRank, pNse, pShape, pValues, 1622 pIndices); 1623 } 1624 1625 } // extern "C" 1626 1627 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1628