1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <numeric> 30 #include <vector> 31 32 //===----------------------------------------------------------------------===// 33 // 34 // Internal support for storing and reading sparse tensors. 35 // 36 // The following memory-resident sparse storage schemes are supported: 37 // 38 // (a) A coordinate scheme for temporarily storing and lexicographically 39 // sorting a sparse tensor by index (SparseTensorCOO). 40 // 41 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 42 // per-dimension sparse/dense annnotations together with a dimension 43 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 44 // 45 // The following external formats are supported: 46 // 47 // (1) Matrix Market Exchange (MME): *.mtx 48 // https://math.nist.gov/MatrixMarket/formats.html 49 // 50 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 51 // http://frostt.io/tensors/file-formats.html 52 // 53 // Two public APIs are supported: 54 // 55 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 56 // tensors. These methods should be used exclusively by MLIR 57 // compiler-generated code. 58 // 59 // (II) Methods that accept C-style data structures to interact with sparse 60 // tensors. These methods can be used by any external runtime that wants 61 // to interact with MLIR compiler-generated code. 62 // 63 // In both cases (I) and (II), the SparseTensorStorage format is externally 64 // only visible as an opaque pointer. 65 // 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 70 static constexpr int kColWidth = 1025; 71 72 /// A sparse tensor element in coordinate scheme (value and indices). 73 /// For example, a rank-1 vector element would look like 74 /// ({i}, a[i]) 75 /// and a rank-5 tensor element like 76 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 77 template <typename V> 78 struct Element { 79 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 80 std::vector<uint64_t> indices; 81 V value; 82 }; 83 84 /// A memory-resident sparse tensor in coordinate scheme (collection of 85 /// elements). This data structure is used to read a sparse tensor from 86 /// any external format into memory and sort the elements lexicographically 87 /// by indices before passing it back to the client (most packed storage 88 /// formats require the elements to appear in lexicographic index order). 89 template <typename V> 90 struct SparseTensorCOO { 91 public: 92 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 93 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 94 if (capacity) 95 elements.reserve(capacity); 96 } 97 /// Adds element as indices and value. 98 void add(const std::vector<uint64_t> &ind, V val) { 99 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 100 uint64_t rank = getRank(); 101 assert(rank == ind.size()); 102 for (uint64_t r = 0; r < rank; r++) 103 assert(ind[r] < sizes[r]); // within bounds 104 elements.emplace_back(ind, val); 105 } 106 /// Sorts elements lexicographically by index. 107 void sort() { 108 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 109 std::sort(elements.begin(), elements.end(), lexOrder); 110 } 111 /// Returns rank. 112 uint64_t getRank() const { return sizes.size(); } 113 /// Getter for sizes array. 114 const std::vector<uint64_t> &getSizes() const { return sizes; } 115 /// Getter for elements array. 116 const std::vector<Element<V>> &getElements() const { return elements; } 117 118 /// Switch into iterator mode. 119 void startIterator() { 120 iteratorLocked = true; 121 iteratorPos = 0; 122 } 123 /// Get the next element. 124 const Element<V> *getNext() { 125 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 126 if (iteratorPos < elements.size()) 127 return &(elements[iteratorPos++]); 128 iteratorLocked = false; 129 return nullptr; 130 } 131 132 /// Factory method. Permutes the original dimensions according to 133 /// the given ordering and expects subsequent add() calls to honor 134 /// that same ordering for the given indices. The result is a 135 /// fully permuted coordinate scheme. 136 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 137 const uint64_t *sizes, 138 const uint64_t *perm, 139 uint64_t capacity = 0) { 140 std::vector<uint64_t> permsz(rank); 141 for (uint64_t r = 0; r < rank; r++) 142 permsz[perm[r]] = sizes[r]; 143 return new SparseTensorCOO<V>(permsz, capacity); 144 } 145 146 private: 147 /// Returns true if indices of e1 < indices of e2. 148 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 149 uint64_t rank = e1.indices.size(); 150 assert(rank == e2.indices.size()); 151 for (uint64_t r = 0; r < rank; r++) { 152 if (e1.indices[r] == e2.indices[r]) 153 continue; 154 return e1.indices[r] < e2.indices[r]; 155 } 156 return false; 157 } 158 const std::vector<uint64_t> sizes; // per-dimension sizes 159 std::vector<Element<V>> elements; 160 bool iteratorLocked; 161 unsigned iteratorPos; 162 }; 163 164 /// Abstract base class of sparse tensor storage. Note that we use 165 /// function overloading to implement "partial" method specialization. 166 class SparseTensorStorageBase { 167 public: 168 /// Dimension size query. 169 virtual uint64_t getDimSize(uint64_t) = 0; 170 171 /// Overhead storage. 172 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 173 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 174 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 175 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 176 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 177 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 178 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 179 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 180 181 /// Primary storage. 182 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 183 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 184 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 185 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 186 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 187 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 188 189 /// Element-wise insertion in lexicographic index order. 190 virtual void lexInsert(uint64_t *, double) { fatal("insf64"); } 191 virtual void lexInsert(uint64_t *, float) { fatal("insf32"); } 192 virtual void lexInsert(uint64_t *, int64_t) { fatal("insi64"); } 193 virtual void lexInsert(uint64_t *, int32_t) { fatal("insi32"); } 194 virtual void lexInsert(uint64_t *, int16_t) { fatal("ins16"); } 195 virtual void lexInsert(uint64_t *, int8_t) { fatal("insi8"); } 196 197 /// Expanded insertion. 198 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 199 fatal("expf64"); 200 } 201 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 202 fatal("expf32"); 203 } 204 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 205 fatal("expi64"); 206 } 207 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 208 fatal("expi32"); 209 } 210 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 211 fatal("expi16"); 212 } 213 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 214 fatal("expi8"); 215 } 216 217 /// Finishes insertion. 218 virtual void endInsert() = 0; 219 220 virtual ~SparseTensorStorageBase() = default; 221 222 private: 223 void fatal(const char *tp) { 224 fprintf(stderr, "unsupported %s\n", tp); 225 exit(1); 226 } 227 }; 228 229 /// A memory-resident sparse tensor using a storage scheme based on 230 /// per-dimension sparse/dense annotations. This data structure provides a 231 /// bufferized form of a sparse tensor type. In contrast to generating setup 232 /// methods for each differently annotated sparse tensor, this method provides 233 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 234 /// and annotations to implement all required setup in a general manner. 235 template <typename P, typename I, typename V> 236 class SparseTensorStorage : public SparseTensorStorageBase { 237 public: 238 /// Constructs a sparse tensor storage scheme with the given dimensions, 239 /// permutation, and per-dimension dense/sparse annotations, using 240 /// the coordinate scheme tensor for the initial contents if provided. 241 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 242 const DimLevelType *sparsity, 243 SparseTensorCOO<V> *tensor = nullptr) 244 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 245 indices(getRank()) { 246 uint64_t rank = getRank(); 247 // Store "reverse" permutation. 248 for (uint64_t r = 0; r < rank; r++) 249 rev[perm[r]] = r; 250 // Provide hints on capacity of pointers and indices. 251 // TODO: needs fine-tuning based on sparsity 252 bool allDense = true; 253 uint64_t sz = 1; 254 for (uint64_t r = 0; r < rank; r++) { 255 sz *= sizes[r]; 256 if (sparsity[r] == DimLevelType::kCompressed) { 257 pointers[r].reserve(sz + 1); 258 indices[r].reserve(sz); 259 sz = 1; 260 allDense = false; 261 } else { 262 assert(sparsity[r] == DimLevelType::kDense && 263 "singleton not yet supported"); 264 } 265 } 266 // Prepare sparse pointer structures for all dimensions. 267 for (uint64_t r = 0; r < rank; r++) 268 if (sparsity[r] == DimLevelType::kCompressed) 269 pointers[r].push_back(0); 270 // Then assign contents from coordinate scheme tensor if provided. 271 if (tensor) { 272 uint64_t nnz = tensor->getElements().size(); 273 values.reserve(nnz); 274 fromCOO(tensor, 0, nnz, 0); 275 } else if (allDense) { 276 values.resize(sz, 0); 277 } 278 } 279 280 virtual ~SparseTensorStorage() = default; 281 282 /// Get the rank of the tensor. 283 uint64_t getRank() const { return sizes.size(); } 284 285 /// Get the size in the given dimension of the tensor. 286 uint64_t getDimSize(uint64_t d) override { 287 assert(d < getRank()); 288 return sizes[d]; 289 } 290 291 /// Partially specialize these getter methods based on template types. 292 void getPointers(std::vector<P> **out, uint64_t d) override { 293 assert(d < getRank()); 294 *out = &pointers[d]; 295 } 296 void getIndices(std::vector<I> **out, uint64_t d) override { 297 assert(d < getRank()); 298 *out = &indices[d]; 299 } 300 void getValues(std::vector<V> **out) override { *out = &values; } 301 302 /// Partially specialize lexicographical insertions based on template types. 303 void lexInsert(uint64_t *cursor, V val) override { 304 // First, wrap up pending insertion path. 305 uint64_t diff = 0; 306 uint64_t top = 0; 307 if (!values.empty()) { 308 diff = lexDiff(cursor); 309 endPath(diff + 1); 310 top = idx[diff] + 1; 311 } 312 // Then continue with insertion path. 313 insPath(cursor, diff, top, val); 314 } 315 316 /// Partially specialize expanded insertions based on template types. 317 /// Note that this method resets the values/filled-switch array back 318 /// to all-zero/false while only iterating over the nonzero elements. 319 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 320 uint64_t count) override { 321 if (count == 0) 322 return; 323 // Sort. 324 std::sort(added, added + count); 325 // Restore insertion path for first insert. 326 uint64_t rank = getRank(); 327 uint64_t index = added[0]; 328 cursor[rank - 1] = index; 329 lexInsert(cursor, values[index]); 330 assert(filled[index]); 331 values[index] = 0; 332 filled[index] = false; 333 // Subsequent insertions are quick. 334 for (uint64_t i = 1; i < count; i++) { 335 assert(index < added[i] && "non-lexicographic insertion"); 336 index = added[i]; 337 cursor[rank - 1] = index; 338 insPath(cursor, rank - 1, added[i - 1] + 1, values[index]); 339 assert(filled[index]); 340 values[index] = 0.0; 341 filled[index] = false; 342 } 343 } 344 345 /// Finalizes lexicographic insertions. 346 void endInsert() override { 347 if (values.empty()) 348 endDim(0); 349 else 350 endPath(0); 351 } 352 353 /// Returns this sparse tensor storage scheme as a new memory-resident 354 /// sparse tensor in coordinate scheme with the given dimension order. 355 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 356 // Restore original order of the dimension sizes and allocate coordinate 357 // scheme with desired new ordering specified in perm. 358 uint64_t rank = getRank(); 359 std::vector<uint64_t> orgsz(rank); 360 for (uint64_t r = 0; r < rank; r++) 361 orgsz[rev[r]] = sizes[r]; 362 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 363 rank, orgsz.data(), perm, values.size()); 364 // Populate coordinate scheme restored from old ordering and changed with 365 // new ordering. Rather than applying both reorderings during the recursion, 366 // we compute the combine permutation in advance. 367 std::vector<uint64_t> reord(rank); 368 for (uint64_t r = 0; r < rank; r++) 369 reord[r] = perm[rev[r]]; 370 toCOO(tensor, reord, 0, 0); 371 assert(tensor->getElements().size() == values.size()); 372 return tensor; 373 } 374 375 /// Factory method. Constructs a sparse tensor storage scheme with the given 376 /// dimensions, permutation, and per-dimension dense/sparse annotations, 377 /// using the coordinate scheme tensor for the initial contents if provided. 378 /// In the latter case, the coordinate scheme must respect the same 379 /// permutation as is desired for the new sparse tensor storage. 380 static SparseTensorStorage<P, I, V> * 381 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 382 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 383 SparseTensorStorage<P, I, V> *n = nullptr; 384 if (tensor) { 385 assert(tensor->getRank() == rank); 386 for (uint64_t r = 0; r < rank; r++) 387 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 388 tensor->sort(); // sort lexicographically 389 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 390 tensor); 391 delete tensor; 392 } else { 393 std::vector<uint64_t> permsz(rank); 394 for (uint64_t r = 0; r < rank; r++) 395 permsz[perm[r]] = sizes[r]; 396 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 397 } 398 return n; 399 } 400 401 private: 402 /// Initializes sparse tensor storage scheme from a memory-resident sparse 403 /// tensor in coordinate scheme. This method prepares the pointers and 404 /// indices arrays under the given per-dimension dense/sparse annotations. 405 void fromCOO(SparseTensorCOO<V> *tensor, uint64_t lo, uint64_t hi, 406 uint64_t d) { 407 const std::vector<Element<V>> &elements = tensor->getElements(); 408 // Once dimensions are exhausted, insert the numerical values. 409 assert(d <= getRank()); 410 if (d == getRank()) { 411 assert(lo < hi && hi <= elements.size()); 412 values.push_back(elements[lo].value); 413 return; 414 } 415 // Visit all elements in this interval. 416 uint64_t full = 0; 417 while (lo < hi) { 418 assert(lo < elements.size() && hi <= elements.size()); 419 // Find segment in interval with same index elements in this dimension. 420 uint64_t i = elements[lo].indices[d]; 421 uint64_t seg = lo + 1; 422 while (seg < hi && elements[seg].indices[d] == i) 423 seg++; 424 // Handle segment in interval for sparse or dense dimension. 425 if (isCompressedDim(d)) { 426 indices[d].push_back(i); 427 } else { 428 // For dense storage we must fill in all the zero values between 429 // the previous element (when last we ran this for-loop) and the 430 // current element. 431 for (; full < i; full++) 432 endDim(d + 1); 433 full++; 434 } 435 fromCOO(tensor, lo, seg, d + 1); 436 // And move on to next segment in interval. 437 lo = seg; 438 } 439 // Finalize the sparse pointer structure at this dimension. 440 if (isCompressedDim(d)) { 441 pointers[d].push_back(indices[d].size()); 442 } else { 443 // For dense storage we must fill in all the zero values after 444 // the last element. 445 for (uint64_t sz = sizes[d]; full < sz; full++) 446 endDim(d + 1); 447 } 448 } 449 450 /// Stores the sparse tensor storage scheme into a memory-resident sparse 451 /// tensor in coordinate scheme. 452 void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord, 453 uint64_t pos, uint64_t d) { 454 assert(d <= getRank()); 455 if (d == getRank()) { 456 assert(pos < values.size()); 457 tensor->add(idx, values[pos]); 458 } else if (isCompressedDim(d)) { 459 // Sparse dimension. 460 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 461 idx[reord[d]] = indices[d][ii]; 462 toCOO(tensor, reord, ii, d + 1); 463 } 464 } else { 465 // Dense dimension. 466 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 467 idx[reord[d]] = i; 468 toCOO(tensor, reord, off + i, d + 1); 469 } 470 } 471 } 472 473 /// Ends a deeper, never seen before dimension. 474 void endDim(uint64_t d) { 475 assert(d <= getRank()); 476 if (d == getRank()) { 477 values.push_back(0); 478 } else if (isCompressedDim(d)) { 479 pointers[d].push_back(indices[d].size()); 480 } else { 481 for (uint64_t full = 0, sz = sizes[d]; full < sz; full++) 482 endDim(d + 1); 483 } 484 } 485 486 /// Wraps up a single insertion path, inner to outer. 487 void endPath(uint64_t diff) { 488 uint64_t rank = getRank(); 489 assert(diff <= rank); 490 for (uint64_t i = 0; i < rank - diff; i++) { 491 uint64_t d = rank - i - 1; 492 if (isCompressedDim(d)) { 493 pointers[d].push_back(indices[d].size()); 494 } else { 495 for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++) 496 endDim(d + 1); 497 } 498 } 499 } 500 501 /// Continues a single insertion path, outer to inner. 502 void insPath(uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 503 uint64_t rank = getRank(); 504 assert(diff < rank); 505 for (uint64_t d = diff; d < rank; d++) { 506 uint64_t i = cursor[d]; 507 if (isCompressedDim(d)) { 508 indices[d].push_back(i); 509 } else { 510 for (uint64_t full = top; full < i; full++) 511 endDim(d + 1); 512 } 513 top = 0; 514 idx[d] = i; 515 } 516 values.push_back(val); 517 } 518 519 /// Finds the lexicographic differing dimension. 520 uint64_t lexDiff(uint64_t *cursor) { 521 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 522 if (cursor[r] > idx[r]) 523 return r; 524 else 525 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 526 assert(0 && "duplication insertion"); 527 return -1u; 528 } 529 530 /// Returns true if dimension is compressed. 531 inline bool isCompressedDim(uint64_t d) const { 532 return (!pointers[d].empty()); 533 } 534 535 private: 536 std::vector<uint64_t> sizes; // per-dimension sizes 537 std::vector<uint64_t> rev; // "reverse" permutation 538 std::vector<uint64_t> idx; // index cursor 539 std::vector<std::vector<P>> pointers; 540 std::vector<std::vector<I>> indices; 541 std::vector<V> values; 542 }; 543 544 /// Helper to convert string to lower case. 545 static char *toLower(char *token) { 546 for (char *c = token; *c; c++) 547 *c = tolower(*c); 548 return token; 549 } 550 551 /// Read the MME header of a general sparse matrix of type real. 552 static void readMMEHeader(FILE *file, char *filename, char *line, 553 uint64_t *idata, bool *isSymmetric) { 554 char header[64]; 555 char object[64]; 556 char format[64]; 557 char field[64]; 558 char symmetry[64]; 559 // Read header line. 560 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 561 symmetry) != 5) { 562 fprintf(stderr, "Corrupt header in %s\n", filename); 563 exit(1); 564 } 565 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 566 // Make sure this is a general sparse matrix. 567 if (strcmp(toLower(header), "%%matrixmarket") || 568 strcmp(toLower(object), "matrix") || 569 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 570 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 571 fprintf(stderr, 572 "Cannot find a general sparse matrix with type real in %s\n", 573 filename); 574 exit(1); 575 } 576 // Skip comments. 577 while (true) { 578 if (!fgets(line, kColWidth, file)) { 579 fprintf(stderr, "Cannot find data in %s\n", filename); 580 exit(1); 581 } 582 if (line[0] != '%') 583 break; 584 } 585 // Next line contains M N NNZ. 586 idata[0] = 2; // rank 587 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 588 idata + 1) != 3) { 589 fprintf(stderr, "Cannot find size in %s\n", filename); 590 exit(1); 591 } 592 } 593 594 /// Read the "extended" FROSTT header. Although not part of the documented 595 /// format, we assume that the file starts with optional comments followed 596 /// by two lines that define the rank, the number of nonzeros, and the 597 /// dimensions sizes (one per rank) of the sparse tensor. 598 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 599 uint64_t *idata) { 600 // Skip comments. 601 while (true) { 602 if (!fgets(line, kColWidth, file)) { 603 fprintf(stderr, "Cannot find data in %s\n", filename); 604 exit(1); 605 } 606 if (line[0] != '#') 607 break; 608 } 609 // Next line contains RANK and NNZ. 610 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 611 fprintf(stderr, "Cannot find metadata in %s\n", filename); 612 exit(1); 613 } 614 // Followed by a line with the dimension sizes (one per rank). 615 for (uint64_t r = 0; r < idata[0]; r++) { 616 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 617 fprintf(stderr, "Cannot find dimension size %s\n", filename); 618 exit(1); 619 } 620 } 621 fgets(line, kColWidth, file); // end of line 622 } 623 624 /// Reads a sparse tensor with the given filename into a memory-resident 625 /// sparse tensor in coordinate scheme. 626 template <typename V> 627 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 628 const uint64_t *sizes, 629 const uint64_t *perm) { 630 // Open the file. 631 FILE *file = fopen(filename, "r"); 632 if (!file) { 633 fprintf(stderr, "Cannot find %s\n", filename); 634 exit(1); 635 } 636 // Perform some file format dependent set up. 637 char line[kColWidth]; 638 uint64_t idata[512]; 639 bool isSymmetric = false; 640 if (strstr(filename, ".mtx")) { 641 readMMEHeader(file, filename, line, idata, &isSymmetric); 642 } else if (strstr(filename, ".tns")) { 643 readExtFROSTTHeader(file, filename, line, idata); 644 } else { 645 fprintf(stderr, "Unknown format %s\n", filename); 646 exit(1); 647 } 648 // Prepare sparse tensor object with per-dimension sizes 649 // and the number of nonzeros as initial capacity. 650 assert(rank == idata[0] && "rank mismatch"); 651 uint64_t nnz = idata[1]; 652 for (uint64_t r = 0; r < rank; r++) 653 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 654 "dimension size mismatch"); 655 SparseTensorCOO<V> *tensor = 656 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 657 // Read all nonzero elements. 658 std::vector<uint64_t> indices(rank); 659 for (uint64_t k = 0; k < nnz; k++) { 660 if (!fgets(line, kColWidth, file)) { 661 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 662 exit(1); 663 } 664 char *linePtr = line; 665 for (uint64_t r = 0; r < rank; r++) { 666 uint64_t idx = strtoul(linePtr, &linePtr, 10); 667 // Add 0-based index. 668 indices[perm[r]] = idx - 1; 669 } 670 // The external formats always store the numerical values with the type 671 // double, but we cast these values to the sparse tensor object type. 672 double value = strtod(linePtr, &linePtr); 673 tensor->add(indices, value); 674 // We currently chose to deal with symmetric matrices by fully constructing 675 // them. In the future, we may want to make symmetry implicit for storage 676 // reasons. 677 if (isSymmetric && indices[0] != indices[1]) 678 tensor->add({indices[1], indices[0]}, value); 679 } 680 // Close the file and return tensor. 681 fclose(file); 682 return tensor; 683 } 684 685 } // namespace 686 687 extern "C" { 688 689 /// This type is used in the public API at all places where MLIR expects 690 /// values with the built-in type "index". For now, we simply assume that 691 /// type is 64-bit, but targets with different "index" bit widths should link 692 /// with an alternatively built runtime support library. 693 // TODO: support such targets? 694 typedef uint64_t index_t; 695 696 //===----------------------------------------------------------------------===// 697 // 698 // Public API with methods that operate on MLIR buffers (memrefs) to interact 699 // with sparse tensors, which are only visible as opaque pointers externally. 700 // These methods should be used exclusively by MLIR compiler-generated code. 701 // 702 // Some macro magic is used to generate implementations for all required type 703 // combinations that can be called from MLIR compiler-generated code. 704 // 705 //===----------------------------------------------------------------------===// 706 707 #define CASE(p, i, v, P, I, V) \ 708 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 709 SparseTensorCOO<V> *tensor = nullptr; \ 710 if (action <= Action::kFromCOO) { \ 711 if (action == Action::kFromFile) { \ 712 char *filename = static_cast<char *>(ptr); \ 713 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 714 } else if (action == Action::kFromCOO) { \ 715 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 716 } else { \ 717 assert(action == Action::kEmpty); \ 718 } \ 719 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 720 sparsity, tensor); \ 721 } \ 722 if (action == Action::kEmptyCOO) \ 723 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 724 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 725 if (action == Action::kToIterator) { \ 726 tensor->startIterator(); \ 727 } else { \ 728 assert(action == Action::kToCOO); \ 729 } \ 730 return tensor; \ 731 } 732 733 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 734 735 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 736 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 737 assert(ref &&tensor); \ 738 std::vector<TYPE> *v; \ 739 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 740 ref->basePtr = ref->data = v->data(); \ 741 ref->offset = 0; \ 742 ref->sizes[0] = v->size(); \ 743 ref->strides[0] = 1; \ 744 } 745 746 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 747 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 748 index_t d) { \ 749 assert(ref &&tensor); \ 750 std::vector<TYPE> *v; \ 751 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 752 ref->basePtr = ref->data = v->data(); \ 753 ref->offset = 0; \ 754 ref->sizes[0] = v->size(); \ 755 ref->strides[0] = 1; \ 756 } 757 758 #define IMPL_ADDELT(NAME, TYPE) \ 759 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 760 StridedMemRefType<index_t, 1> *iref, \ 761 StridedMemRefType<index_t, 1> *pref) { \ 762 assert(tensor &&iref &&pref); \ 763 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 764 assert(iref->sizes[0] == pref->sizes[0]); \ 765 const index_t *indx = iref->data + iref->offset; \ 766 const index_t *perm = pref->data + pref->offset; \ 767 uint64_t isize = iref->sizes[0]; \ 768 std::vector<index_t> indices(isize); \ 769 for (uint64_t r = 0; r < isize; r++) \ 770 indices[perm[r]] = indx[r]; \ 771 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 772 return tensor; \ 773 } 774 775 #define IMPL_GETNEXT(NAME, V) \ 776 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *iref, \ 777 StridedMemRefType<V, 0> *vref) { \ 778 assert(tensor &&iref &&vref); \ 779 assert(iref->strides[0] == 1); \ 780 index_t *indx = iref->data + iref->offset; \ 781 V *value = vref->data + vref->offset; \ 782 const uint64_t isize = iref->sizes[0]; \ 783 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 784 const Element<V> *elem = iter->getNext(); \ 785 if (elem == nullptr) { \ 786 delete iter; \ 787 return false; \ 788 } \ 789 for (uint64_t r = 0; r < isize; r++) \ 790 indx[r] = elem->indices[r]; \ 791 *value = elem->value; \ 792 return true; \ 793 } 794 795 #define IMPL_LEXINSERT(NAME, V) \ 796 void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \ 797 V val) { \ 798 assert(tensor &&cref); \ 799 assert(cref->strides[0] == 1); \ 800 index_t *cursor = cref->data + cref->offset; \ 801 assert(cursor); \ 802 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 803 } 804 805 #define IMPL_EXPINSERT(NAME, V) \ 806 void _mlir_ciface_##NAME( \ 807 void *tensor, StridedMemRefType<index_t, 1> *cref, \ 808 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 809 StridedMemRefType<index_t, 1> *aref, index_t count) { \ 810 assert(tensor &&cref &&vref &&fref &&aref); \ 811 assert(cref->strides[0] == 1); \ 812 assert(vref->strides[0] == 1); \ 813 assert(fref->strides[0] == 1); \ 814 assert(aref->strides[0] == 1); \ 815 assert(vref->sizes[0] == fref->sizes[0]); \ 816 index_t *cursor = cref->data + cref->offset; \ 817 V *values = vref->data + vref->offset; \ 818 bool *filled = fref->data + fref->offset; \ 819 index_t *added = aref->data + aref->offset; \ 820 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 821 cursor, values, filled, added, count); \ 822 } 823 824 /// Constructs a new sparse tensor. This is the "swiss army knife" 825 /// method for materializing sparse tensors into the computation. 826 /// 827 /// Action: 828 /// kEmpty = returns empty storage to fill later 829 /// kFromFile = returns storage, where ptr contains filename to read 830 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 831 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 832 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 833 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 834 void * 835 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 836 StridedMemRefType<index_t, 1> *sref, 837 StridedMemRefType<index_t, 1> *pref, 838 OverheadType ptrTp, OverheadType indTp, 839 PrimaryType valTp, Action action, void *ptr) { 840 assert(aref && sref && pref); 841 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 842 pref->strides[0] == 1); 843 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 844 const DimLevelType *sparsity = aref->data + aref->offset; 845 const index_t *sizes = sref->data + sref->offset; 846 const index_t *perm = pref->data + pref->offset; 847 uint64_t rank = aref->sizes[0]; 848 849 // Double matrices with all combinations of overhead storage. 850 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 851 uint64_t, double); 852 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 853 uint32_t, double); 854 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 855 uint16_t, double); 856 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 857 uint8_t, double); 858 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 859 uint64_t, double); 860 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 861 uint32_t, double); 862 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 863 uint16_t, double); 864 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 865 uint8_t, double); 866 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 867 uint64_t, double); 868 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 869 uint32_t, double); 870 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 871 uint16_t, double); 872 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 873 uint8_t, double); 874 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 875 uint64_t, double); 876 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 877 uint32_t, double); 878 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 879 uint16_t, double); 880 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 881 uint8_t, double); 882 883 // Float matrices with all combinations of overhead storage. 884 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 885 uint64_t, float); 886 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 887 uint32_t, float); 888 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 889 uint16_t, float); 890 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 891 uint8_t, float); 892 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 893 uint64_t, float); 894 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 895 uint32_t, float); 896 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 897 uint16_t, float); 898 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 899 uint8_t, float); 900 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 901 uint64_t, float); 902 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 903 uint32_t, float); 904 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 905 uint16_t, float); 906 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 907 uint8_t, float); 908 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 909 uint64_t, float); 910 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 911 uint32_t, float); 912 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 913 uint16_t, float); 914 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 915 uint8_t, float); 916 917 // Integral matrices with both overheads of the same type. 918 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 919 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 920 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 921 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 922 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 923 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 924 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 925 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 926 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 927 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 928 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 929 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 930 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 931 932 // Unsupported case (add above if needed). 933 fputs("unsupported combination of types\n", stderr); 934 exit(1); 935 } 936 937 /// Methods that provide direct access to pointers. 938 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 939 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 940 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 941 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 942 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 943 944 /// Methods that provide direct access to indices. 945 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 946 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 947 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 948 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 949 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 950 951 /// Methods that provide direct access to values. 952 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 953 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 954 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 955 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 956 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 957 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 958 959 /// Helper to add value to coordinate scheme, one per value type. 960 IMPL_ADDELT(addEltF64, double) 961 IMPL_ADDELT(addEltF32, float) 962 IMPL_ADDELT(addEltI64, int64_t) 963 IMPL_ADDELT(addEltI32, int32_t) 964 IMPL_ADDELT(addEltI16, int16_t) 965 IMPL_ADDELT(addEltI8, int8_t) 966 967 /// Helper to enumerate elements of coordinate scheme, one per value type. 968 IMPL_GETNEXT(getNextF64, double) 969 IMPL_GETNEXT(getNextF32, float) 970 IMPL_GETNEXT(getNextI64, int64_t) 971 IMPL_GETNEXT(getNextI32, int32_t) 972 IMPL_GETNEXT(getNextI16, int16_t) 973 IMPL_GETNEXT(getNextI8, int8_t) 974 975 /// Helper to insert elements in lexicographical index order, one per value 976 /// type. 977 IMPL_LEXINSERT(lexInsertF64, double) 978 IMPL_LEXINSERT(lexInsertF32, float) 979 IMPL_LEXINSERT(lexInsertI64, int64_t) 980 IMPL_LEXINSERT(lexInsertI32, int32_t) 981 IMPL_LEXINSERT(lexInsertI16, int16_t) 982 IMPL_LEXINSERT(lexInsertI8, int8_t) 983 984 /// Helper to insert using expansion, one per value type. 985 IMPL_EXPINSERT(expInsertF64, double) 986 IMPL_EXPINSERT(expInsertF32, float) 987 IMPL_EXPINSERT(expInsertI64, int64_t) 988 IMPL_EXPINSERT(expInsertI32, int32_t) 989 IMPL_EXPINSERT(expInsertI16, int16_t) 990 IMPL_EXPINSERT(expInsertI8, int8_t) 991 992 #undef CASE 993 #undef IMPL_SPARSEVALUES 994 #undef IMPL_GETOVERHEAD 995 #undef IMPL_ADDELT 996 #undef IMPL_GETNEXT 997 #undef IMPL_LEXINSERT 998 #undef IMPL_EXPINSERT 999 1000 //===----------------------------------------------------------------------===// 1001 // 1002 // Public API with methods that accept C-style data structures to interact 1003 // with sparse tensors, which are only visible as opaque pointers externally. 1004 // These methods can be used both by MLIR compiler-generated code as well as by 1005 // an external runtime that wants to interact with MLIR compiler-generated code. 1006 // 1007 //===----------------------------------------------------------------------===// 1008 1009 /// Helper method to read a sparse tensor filename from the environment, 1010 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1011 char *getTensorFilename(index_t id) { 1012 char var[80]; 1013 sprintf(var, "TENSOR%" PRIu64, id); 1014 char *env = getenv(var); 1015 return env; 1016 } 1017 1018 /// Returns size of sparse tensor in given dimension. 1019 index_t sparseDimSize(void *tensor, index_t d) { 1020 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1021 } 1022 1023 /// Finalizes lexicographic insertions. 1024 void endInsert(void *tensor) { 1025 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1026 } 1027 1028 /// Releases sparse tensor storage. 1029 void delSparseTensor(void *tensor) { 1030 delete static_cast<SparseTensorStorageBase *>(tensor); 1031 } 1032 1033 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1034 /// data structures. The expected parameters are: 1035 /// 1036 /// rank: rank of tensor 1037 /// nse: number of specified elements (usually the nonzeros) 1038 /// shape: array with dimension size for each rank 1039 /// values: a "nse" array with values for all specified elements 1040 /// indices: a flat "nse x rank" array with indices for all specified elements 1041 /// 1042 /// For example, the sparse matrix 1043 /// | 1.0 0.0 0.0 | 1044 /// | 0.0 5.0 3.0 | 1045 /// can be passed as 1046 /// rank = 2 1047 /// nse = 3 1048 /// shape = [2, 3] 1049 /// values = [1.0, 5.0, 3.0] 1050 /// indices = [ 0, 0, 1, 1, 1, 2] 1051 // 1052 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 1053 // 1054 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 1055 double *values, uint64_t *indices) { 1056 // Setup all-dims compressed and default ordering. 1057 std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 1058 std::vector<uint64_t> perm(rank); 1059 std::iota(perm.begin(), perm.end(), 0); 1060 // Convert external format to internal COO. 1061 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 1062 rank, shape, perm.data(), nse); 1063 std::vector<uint64_t> idx(rank); 1064 for (uint64_t i = 0, base = 0; i < nse; i++) { 1065 for (uint64_t r = 0; r < rank; r++) 1066 idx[r] = indices[base + r]; 1067 tensor->add(idx, values[i]); 1068 base += rank; 1069 } 1070 // Return sparse tensor storage format as opaque pointer. 1071 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 1072 rank, shape, perm.data(), sparse.data(), tensor); 1073 } 1074 1075 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1076 /// data structures. The expected output parameters are pointers for these 1077 /// values: 1078 /// 1079 /// rank: rank of tensor 1080 /// nse: number of specified elements (usually the nonzeros) 1081 /// shape: array with dimension size for each rank 1082 /// values: a "nse" array with values for all specified elements 1083 /// indices: a flat "nse x rank" array with indices for all specified elements 1084 /// 1085 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1086 /// from convertToMLIRSparseTensor. 1087 /// 1088 // TODO: Currently, values are copied from SparseTensorStorage to 1089 // SparseTensorCOO, then to the output. We may want to reduce the number of 1090 // copies. 1091 // 1092 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 1093 // 1094 void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 1095 uint64_t **pShape, double **pValues, 1096 uint64_t **pIndices) { 1097 SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor = 1098 static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor); 1099 uint64_t rank = sparseTensor->getRank(); 1100 std::vector<uint64_t> perm(rank); 1101 std::iota(perm.begin(), perm.end(), 0); 1102 SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data()); 1103 1104 const std::vector<Element<double>> &elements = coo->getElements(); 1105 uint64_t nse = elements.size(); 1106 1107 uint64_t *shape = new uint64_t[rank]; 1108 for (uint64_t i = 0; i < rank; i++) 1109 shape[i] = coo->getSizes()[i]; 1110 1111 double *values = new double[nse]; 1112 uint64_t *indices = new uint64_t[rank * nse]; 1113 1114 for (uint64_t i = 0, base = 0; i < nse; i++) { 1115 values[i] = elements[i].value; 1116 for (uint64_t j = 0; j < rank; j++) 1117 indices[base + j] = elements[i].indices[j]; 1118 base += rank; 1119 } 1120 1121 delete coo; 1122 *pRank = rank; 1123 *pNse = nse; 1124 *pShape = shape; 1125 *pValues = values; 1126 *pIndices = indices; 1127 } 1128 } // extern "C" 1129 1130 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1131