1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <fstream> 30 #include <iostream> 31 #include <limits> 32 #include <numeric> 33 #include <vector> 34 35 //===----------------------------------------------------------------------===// 36 // 37 // Internal support for storing and reading sparse tensors. 38 // 39 // The following memory-resident sparse storage schemes are supported: 40 // 41 // (a) A coordinate scheme for temporarily storing and lexicographically 42 // sorting a sparse tensor by index (SparseTensorCOO). 43 // 44 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 45 // per-dimension sparse/dense annnotations together with a dimension 46 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 47 // 48 // The following external formats are supported: 49 // 50 // (1) Matrix Market Exchange (MME): *.mtx 51 // https://math.nist.gov/MatrixMarket/formats.html 52 // 53 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 54 // http://frostt.io/tensors/file-formats.html 55 // 56 // Two public APIs are supported: 57 // 58 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 59 // tensors. These methods should be used exclusively by MLIR 60 // compiler-generated code. 61 // 62 // (II) Methods that accept C-style data structures to interact with sparse 63 // tensors. These methods can be used by any external runtime that wants 64 // to interact with MLIR compiler-generated code. 65 // 66 // In both cases (I) and (II), the SparseTensorStorage format is externally 67 // only visible as an opaque pointer. 68 // 69 //===----------------------------------------------------------------------===// 70 71 namespace { 72 73 static constexpr int kColWidth = 1025; 74 75 /// A version of `operator*` on `uint64_t` which checks for overflows. 76 static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 77 assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 78 "Integer overflow"); 79 return lhs * rhs; 80 } 81 82 /// A sparse tensor element in coordinate scheme (value and indices). 83 /// For example, a rank-1 vector element would look like 84 /// ({i}, a[i]) 85 /// and a rank-5 tensor element like 86 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 87 /// We use pointer to a shared index pool rather than e.g. a direct 88 /// vector since that (1) reduces the per-element memory footprint, and 89 /// (2) centralizes the memory reservation and (re)allocation to one place. 90 template <typename V> 91 struct Element { 92 Element(uint64_t *ind, V val) : indices(ind), value(val){}; 93 uint64_t *indices; // pointer into shared index pool 94 V value; 95 }; 96 97 /// A memory-resident sparse tensor in coordinate scheme (collection of 98 /// elements). This data structure is used to read a sparse tensor from 99 /// any external format into memory and sort the elements lexicographically 100 /// by indices before passing it back to the client (most packed storage 101 /// formats require the elements to appear in lexicographic index order). 102 template <typename V> 103 struct SparseTensorCOO { 104 public: 105 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 106 : sizes(szs) { 107 if (capacity) { 108 elements.reserve(capacity); 109 indices.reserve(capacity * getRank()); 110 } 111 } 112 113 /// Adds element as indices and value. 114 void add(const std::vector<uint64_t> &ind, V val) { 115 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 116 uint64_t *base = indices.data(); 117 uint64_t size = indices.size(); 118 uint64_t rank = getRank(); 119 assert(rank == ind.size()); 120 for (uint64_t r = 0; r < rank; r++) { 121 assert(ind[r] < sizes[r]); // within bounds 122 indices.push_back(ind[r]); 123 } 124 // This base only changes if indices were reallocated. In that case, we 125 // need to correct all previous pointers into the vector. Note that this 126 // only happens if we did not set the initial capacity right, and then only 127 // for every internal vector reallocation (which with the doubling rule 128 // should only incur an amortized linear overhead). 129 uint64_t *new_base = indices.data(); 130 if (new_base != base) { 131 for (uint64_t i = 0, n = elements.size(); i < n; i++) 132 elements[i].indices = new_base + (elements[i].indices - base); 133 base = new_base; 134 } 135 // Add element as (pointer into shared index pool, value) pair. 136 elements.emplace_back(base + size, val); 137 } 138 139 /// Sorts elements lexicographically by index. 140 void sort() { 141 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 142 // TODO: we may want to cache an `isSorted` bit, to avoid 143 // unnecessary/redundant sorting. 144 std::sort(elements.begin(), elements.end(), 145 [this](const Element<V> &e1, const Element<V> &e2) { 146 uint64_t rank = getRank(); 147 for (uint64_t r = 0; r < rank; r++) { 148 if (e1.indices[r] == e2.indices[r]) 149 continue; 150 return e1.indices[r] < e2.indices[r]; 151 } 152 return false; 153 }); 154 } 155 156 /// Returns rank. 157 uint64_t getRank() const { return sizes.size(); } 158 159 /// Getter for sizes array. 160 const std::vector<uint64_t> &getSizes() const { return sizes; } 161 162 /// Getter for elements array. 163 const std::vector<Element<V>> &getElements() const { return elements; } 164 165 /// Switch into iterator mode. 166 void startIterator() { 167 iteratorLocked = true; 168 iteratorPos = 0; 169 } 170 171 /// Get the next element. 172 const Element<V> *getNext() { 173 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 174 if (iteratorPos < elements.size()) 175 return &(elements[iteratorPos++]); 176 iteratorLocked = false; 177 return nullptr; 178 } 179 180 /// Factory method. Permutes the original dimensions according to 181 /// the given ordering and expects subsequent add() calls to honor 182 /// that same ordering for the given indices. The result is a 183 /// fully permuted coordinate scheme. 184 /// 185 /// Precondition: `sizes` and `perm` must be valid for `rank`. 186 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 187 const uint64_t *sizes, 188 const uint64_t *perm, 189 uint64_t capacity = 0) { 190 std::vector<uint64_t> permsz(rank); 191 for (uint64_t r = 0; r < rank; r++) { 192 assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 193 permsz[perm[r]] = sizes[r]; 194 } 195 return new SparseTensorCOO<V>(permsz, capacity); 196 } 197 198 private: 199 const std::vector<uint64_t> sizes; // per-dimension sizes 200 std::vector<Element<V>> elements; // all COO elements 201 std::vector<uint64_t> indices; // shared index pool 202 bool iteratorLocked = false; 203 unsigned iteratorPos = 0; 204 }; 205 206 /// Abstract base class for `SparseTensorStorage<P,I,V>`. This class 207 /// takes responsibility for all the `<P,I,V>`-independent aspects 208 /// of the tensor (e.g., shape, sparsity, permutation). In addition, 209 /// we use function overloading to implement "partial" method 210 /// specialization, which the C-API relies on to catch type errors 211 /// arising from our use of opaque pointers. 212 class SparseTensorStorageBase { 213 public: 214 /// Constructs a new storage object. The `perm` maps the tensor's 215 /// semantic-ordering of dimensions to this object's storage-order. 216 /// The `szs` and `sparsity` arrays are already in storage-order. 217 /// 218 /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 219 SparseTensorStorageBase(const std::vector<uint64_t> &szs, 220 const uint64_t *perm, const DimLevelType *sparsity) 221 : dimSizes(szs), rev(getRank()), 222 dimTypes(sparsity, sparsity + getRank()) { 223 const uint64_t rank = getRank(); 224 // Validate parameters. 225 assert(rank > 0 && "Trivial shape is unsupported"); 226 for (uint64_t r = 0; r < rank; r++) { 227 assert(dimSizes[r] > 0 && "Dimension size zero has trivial storage"); 228 assert((dimTypes[r] == DimLevelType::kDense || 229 dimTypes[r] == DimLevelType::kCompressed) && 230 "Unsupported DimLevelType"); 231 } 232 // Construct the "reverse" (i.e., inverse) permutation. 233 for (uint64_t r = 0; r < rank; r++) 234 rev[perm[r]] = r; 235 } 236 237 virtual ~SparseTensorStorageBase() = default; 238 239 /// Get the rank of the tensor. 240 uint64_t getRank() const { return dimSizes.size(); } 241 242 /// Getter for the dimension-sizes array, in storage-order. 243 const std::vector<uint64_t> &getDimSizes() const { return dimSizes; } 244 245 /// Safely lookup the size of the given (storage-order) dimension. 246 uint64_t getDimSize(uint64_t d) const { 247 assert(d < getRank()); 248 return dimSizes[d]; 249 } 250 251 /// Getter for the "reverse" permutation, which maps this object's 252 /// storage-order to the tensor's semantic-order. 253 const std::vector<uint64_t> &getRev() const { return rev; } 254 255 /// Getter for the dimension-types array, in storage-order. 256 const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; } 257 258 /// Safely check if the (storage-order) dimension uses compressed storage. 259 bool isCompressedDim(uint64_t d) const { 260 assert(d < getRank()); 261 return (dimTypes[d] == DimLevelType::kCompressed); 262 } 263 264 /// Overhead storage. 265 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 266 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 267 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 268 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 269 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 270 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 271 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 272 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 273 274 /// Primary storage. 275 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 276 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 277 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 278 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 279 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 280 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 281 282 /// Element-wise insertion in lexicographic index order. 283 virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 284 virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 285 virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 286 virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 287 virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 288 virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 289 290 /// Expanded insertion. 291 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 292 fatal("expf64"); 293 } 294 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 295 fatal("expf32"); 296 } 297 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 298 fatal("expi64"); 299 } 300 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 301 fatal("expi32"); 302 } 303 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 304 fatal("expi16"); 305 } 306 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 307 fatal("expi8"); 308 } 309 310 /// Finishes insertion. 311 virtual void endInsert() = 0; 312 313 private: 314 static void fatal(const char *tp) { 315 fprintf(stderr, "unsupported %s\n", tp); 316 exit(1); 317 } 318 319 const std::vector<uint64_t> dimSizes; 320 std::vector<uint64_t> rev; 321 const std::vector<DimLevelType> dimTypes; 322 }; 323 324 /// A memory-resident sparse tensor using a storage scheme based on 325 /// per-dimension sparse/dense annotations. This data structure provides a 326 /// bufferized form of a sparse tensor type. In contrast to generating setup 327 /// methods for each differently annotated sparse tensor, this method provides 328 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 329 /// and annotations to implement all required setup in a general manner. 330 template <typename P, typename I, typename V> 331 class SparseTensorStorage : public SparseTensorStorageBase { 332 public: 333 /// Constructs a sparse tensor storage scheme with the given dimensions, 334 /// permutation, and per-dimension dense/sparse annotations, using 335 /// the coordinate scheme tensor for the initial contents if provided. 336 /// 337 /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 338 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 339 const DimLevelType *sparsity, 340 SparseTensorCOO<V> *coo = nullptr) 341 : SparseTensorStorageBase(szs, perm, sparsity), pointers(getRank()), 342 indices(getRank()), idx(getRank()) { 343 // Provide hints on capacity of pointers and indices. 344 // TODO: needs much fine-tuning based on actual sparsity; currently 345 // we reserve pointer/index space based on all previous dense 346 // dimensions, which works well up to first sparse dim; but 347 // we should really use nnz and dense/sparse distribution. 348 bool allDense = true; 349 uint64_t sz = 1; 350 for (uint64_t r = 0, rank = getRank(); r < rank; r++) { 351 if (isCompressedDim(r)) { 352 // TODO: Take a parameter between 1 and `sizes[r]`, and multiply 353 // `sz` by that before reserving. (For now we just use 1.) 354 pointers[r].reserve(sz + 1); 355 pointers[r].push_back(0); 356 indices[r].reserve(sz); 357 sz = 1; 358 allDense = false; 359 } else { // Dense dimension. 360 sz = checkedMul(sz, getDimSizes()[r]); 361 } 362 } 363 // Then assign contents from coordinate scheme tensor if provided. 364 if (coo) { 365 // Ensure both preconditions of `fromCOO`. 366 assert(coo->getSizes() == getDimSizes() && "Tensor size mismatch"); 367 coo->sort(); 368 // Now actually insert the `elements`. 369 const std::vector<Element<V>> &elements = coo->getElements(); 370 uint64_t nnz = elements.size(); 371 values.reserve(nnz); 372 fromCOO(elements, 0, nnz, 0); 373 } else if (allDense) { 374 values.resize(sz, 0); 375 } 376 } 377 378 ~SparseTensorStorage() override = default; 379 380 /// Partially specialize these getter methods based on template types. 381 void getPointers(std::vector<P> **out, uint64_t d) override { 382 assert(d < getRank()); 383 *out = &pointers[d]; 384 } 385 void getIndices(std::vector<I> **out, uint64_t d) override { 386 assert(d < getRank()); 387 *out = &indices[d]; 388 } 389 void getValues(std::vector<V> **out) override { *out = &values; } 390 391 /// Partially specialize lexicographical insertions based on template types. 392 void lexInsert(const uint64_t *cursor, V val) override { 393 // First, wrap up pending insertion path. 394 uint64_t diff = 0; 395 uint64_t top = 0; 396 if (!values.empty()) { 397 diff = lexDiff(cursor); 398 endPath(diff + 1); 399 top = idx[diff] + 1; 400 } 401 // Then continue with insertion path. 402 insPath(cursor, diff, top, val); 403 } 404 405 /// Partially specialize expanded insertions based on template types. 406 /// Note that this method resets the values/filled-switch array back 407 /// to all-zero/false while only iterating over the nonzero elements. 408 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 409 uint64_t count) override { 410 if (count == 0) 411 return; 412 // Sort. 413 std::sort(added, added + count); 414 // Restore insertion path for first insert. 415 const uint64_t lastDim = getRank() - 1; 416 uint64_t index = added[0]; 417 cursor[lastDim] = index; 418 lexInsert(cursor, values[index]); 419 assert(filled[index]); 420 values[index] = 0; 421 filled[index] = false; 422 // Subsequent insertions are quick. 423 for (uint64_t i = 1; i < count; i++) { 424 assert(index < added[i] && "non-lexicographic insertion"); 425 index = added[i]; 426 cursor[lastDim] = index; 427 insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 428 assert(filled[index]); 429 values[index] = 0; 430 filled[index] = false; 431 } 432 } 433 434 /// Finalizes lexicographic insertions. 435 void endInsert() override { 436 if (values.empty()) 437 finalizeSegment(0); 438 else 439 endPath(0); 440 } 441 442 /// Returns this sparse tensor storage scheme as a new memory-resident 443 /// sparse tensor in coordinate scheme with the given dimension order. 444 /// 445 /// Precondition: `perm` must be valid for `getRank()`. 446 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 447 // Restore original order of the dimension sizes and allocate coordinate 448 // scheme with desired new ordering specified in perm. 449 const uint64_t rank = getRank(); 450 const auto &rev = getRev(); 451 const auto &sizes = getDimSizes(); 452 std::vector<uint64_t> orgsz(rank); 453 for (uint64_t r = 0; r < rank; r++) 454 orgsz[rev[r]] = sizes[r]; 455 SparseTensorCOO<V> *coo = SparseTensorCOO<V>::newSparseTensorCOO( 456 rank, orgsz.data(), perm, values.size()); 457 // Populate coordinate scheme restored from old ordering and changed with 458 // new ordering. Rather than applying both reorderings during the recursion, 459 // we compute the combine permutation in advance. 460 std::vector<uint64_t> reord(rank); 461 for (uint64_t r = 0; r < rank; r++) 462 reord[r] = perm[rev[r]]; 463 toCOO(*coo, reord, 0, 0); 464 // TODO: This assertion assumes there are no stored zeros, 465 // or if there are then that we don't filter them out. 466 // Cf., <https://github.com/llvm/llvm-project/issues/54179> 467 assert(coo->getElements().size() == values.size()); 468 return coo; 469 } 470 471 /// Factory method. Constructs a sparse tensor storage scheme with the given 472 /// dimensions, permutation, and per-dimension dense/sparse annotations, 473 /// using the coordinate scheme tensor for the initial contents if provided. 474 /// In the latter case, the coordinate scheme must respect the same 475 /// permutation as is desired for the new sparse tensor storage. 476 /// 477 /// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`. 478 static SparseTensorStorage<P, I, V> * 479 newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 480 const DimLevelType *sparsity, SparseTensorCOO<V> *coo) { 481 SparseTensorStorage<P, I, V> *n = nullptr; 482 if (coo) { 483 assert(coo->getRank() == rank && "Tensor rank mismatch"); 484 const auto &coosz = coo->getSizes(); 485 for (uint64_t r = 0; r < rank; r++) 486 assert(shape[r] == 0 || shape[r] == coosz[perm[r]]); 487 n = new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo); 488 } else { 489 std::vector<uint64_t> permsz(rank); 490 for (uint64_t r = 0; r < rank; r++) { 491 assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 492 permsz[perm[r]] = shape[r]; 493 } 494 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 495 } 496 return n; 497 } 498 499 private: 500 /// Appends an arbitrary new position to `pointers[d]`. This method 501 /// checks that `pos` is representable in the `P` type; however, it 502 /// does not check that `pos` is semantically valid (i.e., larger than 503 /// the previous position and smaller than `indices[d].capacity()`). 504 void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 505 assert(isCompressedDim(d)); 506 assert(pos <= std::numeric_limits<P>::max() && 507 "Pointer value is too large for the P-type"); 508 pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 509 } 510 511 /// Appends index `i` to dimension `d`, in the semantically general 512 /// sense. For non-dense dimensions, that means appending to the 513 /// `indices[d]` array, checking that `i` is representable in the `I` 514 /// type; however, we do not verify other semantic requirements (e.g., 515 /// that `i` is in bounds for `sizes[d]`, and not previously occurring 516 /// in the same segment). For dense dimensions, this method instead 517 /// appends the appropriate number of zeros to the `values` array, 518 /// where `full` is the number of "entries" already written to `values` 519 /// for this segment (aka one after the highest index previously appended). 520 void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 521 if (isCompressedDim(d)) { 522 assert(i <= std::numeric_limits<I>::max() && 523 "Index value is too large for the I-type"); 524 indices[d].push_back(static_cast<I>(i)); 525 } else { // Dense dimension. 526 assert(i >= full && "Index was already filled"); 527 if (i == full) 528 return; // Short-circuit, since it'll be a nop. 529 if (d + 1 == getRank()) 530 values.insert(values.end(), i - full, 0); 531 else 532 finalizeSegment(d + 1, 0, i - full); 533 } 534 } 535 536 /// Initializes sparse tensor storage scheme from a memory-resident sparse 537 /// tensor in coordinate scheme. This method prepares the pointers and 538 /// indices arrays under the given per-dimension dense/sparse annotations. 539 /// 540 /// Preconditions: 541 /// (1) the `elements` must be lexicographically sorted. 542 /// (2) the indices of every element are valid for `sizes` (equal rank 543 /// and pointwise less-than). 544 void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 545 uint64_t hi, uint64_t d) { 546 // Once dimensions are exhausted, insert the numerical values. 547 assert(d <= getRank() && hi <= elements.size()); 548 if (d == getRank()) { 549 assert(lo < hi); 550 values.push_back(elements[lo].value); 551 return; 552 } 553 // Visit all elements in this interval. 554 uint64_t full = 0; 555 while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 556 // Find segment in interval with same index elements in this dimension. 557 uint64_t i = elements[lo].indices[d]; 558 uint64_t seg = lo + 1; 559 while (seg < hi && elements[seg].indices[d] == i) 560 seg++; 561 // Handle segment in interval for sparse or dense dimension. 562 appendIndex(d, full, i); 563 full = i + 1; 564 fromCOO(elements, lo, seg, d + 1); 565 // And move on to next segment in interval. 566 lo = seg; 567 } 568 // Finalize the sparse pointer structure at this dimension. 569 finalizeSegment(d, full); 570 } 571 572 /// Stores the sparse tensor storage scheme into a memory-resident sparse 573 /// tensor in coordinate scheme. 574 void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 575 uint64_t pos, uint64_t d) { 576 assert(d <= getRank()); 577 if (d == getRank()) { 578 assert(pos < values.size()); 579 tensor.add(idx, values[pos]); 580 } else if (isCompressedDim(d)) { 581 // Sparse dimension. 582 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 583 idx[reord[d]] = indices[d][ii]; 584 toCOO(tensor, reord, ii, d + 1); 585 } 586 } else { 587 // Dense dimension. 588 const uint64_t sz = getDimSizes()[d]; 589 const uint64_t off = pos * sz; 590 for (uint64_t i = 0; i < sz; i++) { 591 idx[reord[d]] = i; 592 toCOO(tensor, reord, off + i, d + 1); 593 } 594 } 595 } 596 597 /// Finalize the sparse pointer structure at this dimension. 598 void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 599 if (count == 0) 600 return; // Short-circuit, since it'll be a nop. 601 if (isCompressedDim(d)) { 602 appendPointer(d, indices[d].size(), count); 603 } else { // Dense dimension. 604 const uint64_t sz = getDimSizes()[d]; 605 assert(sz >= full && "Segment is overfull"); 606 count = checkedMul(count, sz - full); 607 // For dense storage we must enumerate all the remaining coordinates 608 // in this dimension (i.e., coordinates after the last non-zero 609 // element), and either fill in their zero values or else recurse 610 // to finalize some deeper dimension. 611 if (d + 1 == getRank()) 612 values.insert(values.end(), count, 0); 613 else 614 finalizeSegment(d + 1, 0, count); 615 } 616 } 617 618 /// Wraps up a single insertion path, inner to outer. 619 void endPath(uint64_t diff) { 620 uint64_t rank = getRank(); 621 assert(diff <= rank); 622 for (uint64_t i = 0; i < rank - diff; i++) { 623 const uint64_t d = rank - i - 1; 624 finalizeSegment(d, idx[d] + 1); 625 } 626 } 627 628 /// Continues a single insertion path, outer to inner. 629 void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 630 uint64_t rank = getRank(); 631 assert(diff < rank); 632 for (uint64_t d = diff; d < rank; d++) { 633 uint64_t i = cursor[d]; 634 appendIndex(d, top, i); 635 top = 0; 636 idx[d] = i; 637 } 638 values.push_back(val); 639 } 640 641 /// Finds the lexicographic differing dimension. 642 uint64_t lexDiff(const uint64_t *cursor) const { 643 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 644 if (cursor[r] > idx[r]) 645 return r; 646 else 647 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 648 assert(0 && "duplication insertion"); 649 return -1u; 650 } 651 652 private: 653 std::vector<std::vector<P>> pointers; 654 std::vector<std::vector<I>> indices; 655 std::vector<V> values; 656 std::vector<uint64_t> idx; // index cursor for lexicographic insertion. 657 }; 658 659 /// Helper to convert string to lower case. 660 static char *toLower(char *token) { 661 for (char *c = token; *c; c++) 662 *c = tolower(*c); 663 return token; 664 } 665 666 /// Read the MME header of a general sparse matrix of type real. 667 static void readMMEHeader(FILE *file, char *filename, char *line, 668 uint64_t *idata, bool *isPattern, bool *isSymmetric) { 669 char header[64]; 670 char object[64]; 671 char format[64]; 672 char field[64]; 673 char symmetry[64]; 674 // Read header line. 675 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 676 symmetry) != 5) { 677 fprintf(stderr, "Corrupt header in %s\n", filename); 678 exit(1); 679 } 680 // Set properties 681 *isPattern = (strcmp(toLower(field), "pattern") == 0); 682 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 683 // Make sure this is a general sparse matrix. 684 if (strcmp(toLower(header), "%%matrixmarket") || 685 strcmp(toLower(object), "matrix") || 686 strcmp(toLower(format), "coordinate") || 687 (strcmp(toLower(field), "real") && !(*isPattern)) || 688 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 689 fprintf(stderr, "Cannot find a general sparse matrix in %s\n", filename); 690 exit(1); 691 } 692 // Skip comments. 693 while (true) { 694 if (!fgets(line, kColWidth, file)) { 695 fprintf(stderr, "Cannot find data in %s\n", filename); 696 exit(1); 697 } 698 if (line[0] != '%') 699 break; 700 } 701 // Next line contains M N NNZ. 702 idata[0] = 2; // rank 703 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 704 idata + 1) != 3) { 705 fprintf(stderr, "Cannot find size in %s\n", filename); 706 exit(1); 707 } 708 } 709 710 /// Read the "extended" FROSTT header. Although not part of the documented 711 /// format, we assume that the file starts with optional comments followed 712 /// by two lines that define the rank, the number of nonzeros, and the 713 /// dimensions sizes (one per rank) of the sparse tensor. 714 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 715 uint64_t *idata) { 716 // Skip comments. 717 while (true) { 718 if (!fgets(line, kColWidth, file)) { 719 fprintf(stderr, "Cannot find data in %s\n", filename); 720 exit(1); 721 } 722 if (line[0] != '#') 723 break; 724 } 725 // Next line contains RANK and NNZ. 726 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 727 fprintf(stderr, "Cannot find metadata in %s\n", filename); 728 exit(1); 729 } 730 // Followed by a line with the dimension sizes (one per rank). 731 for (uint64_t r = 0; r < idata[0]; r++) { 732 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 733 fprintf(stderr, "Cannot find dimension size %s\n", filename); 734 exit(1); 735 } 736 } 737 fgets(line, kColWidth, file); // end of line 738 } 739 740 /// Reads a sparse tensor with the given filename into a memory-resident 741 /// sparse tensor in coordinate scheme. 742 template <typename V> 743 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 744 const uint64_t *shape, 745 const uint64_t *perm) { 746 // Open the file. 747 FILE *file = fopen(filename, "r"); 748 if (!file) { 749 assert(filename && "Received nullptr for filename"); 750 fprintf(stderr, "Cannot find file %s\n", filename); 751 exit(1); 752 } 753 // Perform some file format dependent set up. 754 char line[kColWidth]; 755 uint64_t idata[512]; 756 bool isPattern = false; 757 bool isSymmetric = false; 758 if (strstr(filename, ".mtx")) { 759 readMMEHeader(file, filename, line, idata, &isPattern, &isSymmetric); 760 } else if (strstr(filename, ".tns")) { 761 readExtFROSTTHeader(file, filename, line, idata); 762 } else { 763 fprintf(stderr, "Unknown format %s\n", filename); 764 exit(1); 765 } 766 // Prepare sparse tensor object with per-dimension sizes 767 // and the number of nonzeros as initial capacity. 768 assert(rank == idata[0] && "rank mismatch"); 769 uint64_t nnz = idata[1]; 770 for (uint64_t r = 0; r < rank; r++) 771 assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 772 "dimension size mismatch"); 773 SparseTensorCOO<V> *tensor = 774 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 775 // Read all nonzero elements. 776 std::vector<uint64_t> indices(rank); 777 for (uint64_t k = 0; k < nnz; k++) { 778 if (!fgets(line, kColWidth, file)) { 779 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 780 exit(1); 781 } 782 char *linePtr = line; 783 for (uint64_t r = 0; r < rank; r++) { 784 uint64_t idx = strtoul(linePtr, &linePtr, 10); 785 // Add 0-based index. 786 indices[perm[r]] = idx - 1; 787 } 788 // The external formats always store the numerical values with the type 789 // double, but we cast these values to the sparse tensor object type. 790 // For a pattern tensor, we arbitrarily pick the value 1 for all entries. 791 double value = isPattern ? 1.0 : strtod(linePtr, &linePtr); 792 tensor->add(indices, value); 793 // We currently chose to deal with symmetric matrices by fully constructing 794 // them. In the future, we may want to make symmetry implicit for storage 795 // reasons. 796 if (isSymmetric && indices[0] != indices[1]) 797 tensor->add({indices[1], indices[0]}, value); 798 } 799 // Close the file and return tensor. 800 fclose(file); 801 return tensor; 802 } 803 804 /// Writes the sparse tensor to extended FROSTT format. 805 template <typename V> 806 static void outSparseTensor(void *tensor, void *dest, bool sort) { 807 assert(tensor && dest); 808 auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 809 if (sort) 810 coo->sort(); 811 char *filename = static_cast<char *>(dest); 812 auto &sizes = coo->getSizes(); 813 auto &elements = coo->getElements(); 814 uint64_t rank = coo->getRank(); 815 uint64_t nnz = elements.size(); 816 std::fstream file; 817 file.open(filename, std::ios_base::out | std::ios_base::trunc); 818 assert(file.is_open()); 819 file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 820 for (uint64_t r = 0; r < rank - 1; r++) 821 file << sizes[r] << " "; 822 file << sizes[rank - 1] << std::endl; 823 for (uint64_t i = 0; i < nnz; i++) { 824 auto &idx = elements[i].indices; 825 for (uint64_t r = 0; r < rank; r++) 826 file << (idx[r] + 1) << " "; 827 file << elements[i].value << std::endl; 828 } 829 file.flush(); 830 file.close(); 831 assert(file.good()); 832 } 833 834 /// Initializes sparse tensor from an external COO-flavored format. 835 template <typename V> 836 static SparseTensorStorage<uint64_t, uint64_t, V> * 837 toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 838 uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 839 const DimLevelType *sparsity = (DimLevelType *)(sparse); 840 #ifndef NDEBUG 841 // Verify that perm is a permutation of 0..(rank-1). 842 std::vector<uint64_t> order(perm, perm + rank); 843 std::sort(order.begin(), order.end()); 844 for (uint64_t i = 0; i < rank; ++i) { 845 if (i != order[i]) { 846 fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 847 exit(1); 848 } 849 } 850 851 // Verify that the sparsity values are supported. 852 for (uint64_t i = 0; i < rank; ++i) { 853 if (sparsity[i] != DimLevelType::kDense && 854 sparsity[i] != DimLevelType::kCompressed) { 855 fprintf(stderr, "Unsupported sparsity value %d\n", 856 static_cast<int>(sparsity[i])); 857 exit(1); 858 } 859 } 860 #endif 861 862 // Convert external format to internal COO. 863 auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 864 std::vector<uint64_t> idx(rank); 865 for (uint64_t i = 0, base = 0; i < nse; i++) { 866 for (uint64_t r = 0; r < rank; r++) 867 idx[perm[r]] = indices[base + r]; 868 coo->add(idx, values[i]); 869 base += rank; 870 } 871 // Return sparse tensor storage format as opaque pointer. 872 auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 873 rank, shape, perm, sparsity, coo); 874 delete coo; 875 return tensor; 876 } 877 878 /// Converts a sparse tensor to an external COO-flavored format. 879 template <typename V> 880 static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 881 uint64_t **pShape, V **pValues, 882 uint64_t **pIndices) { 883 auto sparseTensor = 884 static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 885 uint64_t rank = sparseTensor->getRank(); 886 std::vector<uint64_t> perm(rank); 887 std::iota(perm.begin(), perm.end(), 0); 888 SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 889 890 const std::vector<Element<V>> &elements = coo->getElements(); 891 uint64_t nse = elements.size(); 892 893 uint64_t *shape = new uint64_t[rank]; 894 for (uint64_t i = 0; i < rank; i++) 895 shape[i] = coo->getSizes()[i]; 896 897 V *values = new V[nse]; 898 uint64_t *indices = new uint64_t[rank * nse]; 899 900 for (uint64_t i = 0, base = 0; i < nse; i++) { 901 values[i] = elements[i].value; 902 for (uint64_t j = 0; j < rank; j++) 903 indices[base + j] = elements[i].indices[j]; 904 base += rank; 905 } 906 907 delete coo; 908 *pRank = rank; 909 *pNse = nse; 910 *pShape = shape; 911 *pValues = values; 912 *pIndices = indices; 913 } 914 915 } // namespace 916 917 extern "C" { 918 919 //===----------------------------------------------------------------------===// 920 // 921 // Public API with methods that operate on MLIR buffers (memrefs) to interact 922 // with sparse tensors, which are only visible as opaque pointers externally. 923 // These methods should be used exclusively by MLIR compiler-generated code. 924 // 925 // Some macro magic is used to generate implementations for all required type 926 // combinations that can be called from MLIR compiler-generated code. 927 // 928 //===----------------------------------------------------------------------===// 929 930 #define CASE(p, i, v, P, I, V) \ 931 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 932 SparseTensorCOO<V> *coo = nullptr; \ 933 if (action <= Action::kFromCOO) { \ 934 if (action == Action::kFromFile) { \ 935 char *filename = static_cast<char *>(ptr); \ 936 coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 937 } else if (action == Action::kFromCOO) { \ 938 coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 939 } else { \ 940 assert(action == Action::kEmpty); \ 941 } \ 942 auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 943 rank, shape, perm, sparsity, coo); \ 944 if (action == Action::kFromFile) \ 945 delete coo; \ 946 return tensor; \ 947 } \ 948 if (action == Action::kEmptyCOO) \ 949 return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 950 coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 951 if (action == Action::kToIterator) { \ 952 coo->startIterator(); \ 953 } else { \ 954 assert(action == Action::kToCOO); \ 955 } \ 956 return coo; \ 957 } 958 959 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 960 961 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 962 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 963 assert(ref &&tensor); \ 964 std::vector<TYPE> *v; \ 965 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 966 ref->basePtr = ref->data = v->data(); \ 967 ref->offset = 0; \ 968 ref->sizes[0] = v->size(); \ 969 ref->strides[0] = 1; \ 970 } 971 972 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 973 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 974 index_type d) { \ 975 assert(ref &&tensor); \ 976 std::vector<TYPE> *v; \ 977 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 978 ref->basePtr = ref->data = v->data(); \ 979 ref->offset = 0; \ 980 ref->sizes[0] = v->size(); \ 981 ref->strides[0] = 1; \ 982 } 983 984 #define IMPL_ADDELT(NAME, TYPE) \ 985 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 986 StridedMemRefType<index_type, 1> *iref, \ 987 StridedMemRefType<index_type, 1> *pref) { \ 988 assert(tensor &&iref &&pref); \ 989 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 990 assert(iref->sizes[0] == pref->sizes[0]); \ 991 const index_type *indx = iref->data + iref->offset; \ 992 const index_type *perm = pref->data + pref->offset; \ 993 uint64_t isize = iref->sizes[0]; \ 994 std::vector<index_type> indices(isize); \ 995 for (uint64_t r = 0; r < isize; r++) \ 996 indices[perm[r]] = indx[r]; \ 997 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 998 return tensor; \ 999 } 1000 1001 #define IMPL_GETNEXT(NAME, V) \ 1002 bool _mlir_ciface_##NAME(void *tensor, \ 1003 StridedMemRefType<index_type, 1> *iref, \ 1004 StridedMemRefType<V, 0> *vref) { \ 1005 assert(tensor &&iref &&vref); \ 1006 assert(iref->strides[0] == 1); \ 1007 index_type *indx = iref->data + iref->offset; \ 1008 V *value = vref->data + vref->offset; \ 1009 const uint64_t isize = iref->sizes[0]; \ 1010 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 1011 const Element<V> *elem = iter->getNext(); \ 1012 if (elem == nullptr) \ 1013 return false; \ 1014 for (uint64_t r = 0; r < isize; r++) \ 1015 indx[r] = elem->indices[r]; \ 1016 *value = elem->value; \ 1017 return true; \ 1018 } 1019 1020 #define IMPL_LEXINSERT(NAME, V) \ 1021 void _mlir_ciface_##NAME(void *tensor, \ 1022 StridedMemRefType<index_type, 1> *cref, V val) { \ 1023 assert(tensor &&cref); \ 1024 assert(cref->strides[0] == 1); \ 1025 index_type *cursor = cref->data + cref->offset; \ 1026 assert(cursor); \ 1027 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 1028 } 1029 1030 #define IMPL_EXPINSERT(NAME, V) \ 1031 void _mlir_ciface_##NAME( \ 1032 void *tensor, StridedMemRefType<index_type, 1> *cref, \ 1033 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 1034 StridedMemRefType<index_type, 1> *aref, index_type count) { \ 1035 assert(tensor &&cref &&vref &&fref &&aref); \ 1036 assert(cref->strides[0] == 1); \ 1037 assert(vref->strides[0] == 1); \ 1038 assert(fref->strides[0] == 1); \ 1039 assert(aref->strides[0] == 1); \ 1040 assert(vref->sizes[0] == fref->sizes[0]); \ 1041 index_type *cursor = cref->data + cref->offset; \ 1042 V *values = vref->data + vref->offset; \ 1043 bool *filled = fref->data + fref->offset; \ 1044 index_type *added = aref->data + aref->offset; \ 1045 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 1046 cursor, values, filled, added, count); \ 1047 } 1048 1049 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 1050 // can safely rewrite kIndex to kU64. We make this assertion to guarantee 1051 // that this file cannot get out of sync with its header. 1052 static_assert(std::is_same<index_type, uint64_t>::value, 1053 "Expected index_type == uint64_t"); 1054 1055 /// Constructs a new sparse tensor. This is the "swiss army knife" 1056 /// method for materializing sparse tensors into the computation. 1057 /// 1058 /// Action: 1059 /// kEmpty = returns empty storage to fill later 1060 /// kFromFile = returns storage, where ptr contains filename to read 1061 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 1062 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 1063 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 1064 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 1065 void * 1066 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 1067 StridedMemRefType<index_type, 1> *sref, 1068 StridedMemRefType<index_type, 1> *pref, 1069 OverheadType ptrTp, OverheadType indTp, 1070 PrimaryType valTp, Action action, void *ptr) { 1071 assert(aref && sref && pref); 1072 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 1073 pref->strides[0] == 1); 1074 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1075 const DimLevelType *sparsity = aref->data + aref->offset; 1076 const index_type *shape = sref->data + sref->offset; 1077 const index_type *perm = pref->data + pref->offset; 1078 uint64_t rank = aref->sizes[0]; 1079 1080 // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1081 // This is safe because of the static_assert above. 1082 if (ptrTp == OverheadType::kIndex) 1083 ptrTp = OverheadType::kU64; 1084 if (indTp == OverheadType::kIndex) 1085 indTp = OverheadType::kU64; 1086 1087 // Double matrices with all combinations of overhead storage. 1088 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1089 uint64_t, double); 1090 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1091 uint32_t, double); 1092 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1093 uint16_t, double); 1094 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1095 uint8_t, double); 1096 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1097 uint64_t, double); 1098 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1099 uint32_t, double); 1100 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1101 uint16_t, double); 1102 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1103 uint8_t, double); 1104 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1105 uint64_t, double); 1106 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1107 uint32_t, double); 1108 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1109 uint16_t, double); 1110 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1111 uint8_t, double); 1112 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1113 uint64_t, double); 1114 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1115 uint32_t, double); 1116 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1117 uint16_t, double); 1118 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1119 uint8_t, double); 1120 1121 // Float matrices with all combinations of overhead storage. 1122 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1123 uint64_t, float); 1124 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1125 uint32_t, float); 1126 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1127 uint16_t, float); 1128 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1129 uint8_t, float); 1130 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1131 uint64_t, float); 1132 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1133 uint32_t, float); 1134 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1135 uint16_t, float); 1136 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1137 uint8_t, float); 1138 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1139 uint64_t, float); 1140 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1141 uint32_t, float); 1142 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1143 uint16_t, float); 1144 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1145 uint8_t, float); 1146 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1147 uint64_t, float); 1148 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1149 uint32_t, float); 1150 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1151 uint16_t, float); 1152 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1153 uint8_t, float); 1154 1155 // Integral matrices with both overheads of the same type. 1156 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1157 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1158 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1159 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1160 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1161 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1162 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1163 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1164 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1165 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1166 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1167 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1168 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 1169 1170 // Unsupported case (add above if needed). 1171 fputs("unsupported combination of types\n", stderr); 1172 exit(1); 1173 } 1174 1175 /// Methods that provide direct access to pointers. 1176 IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 1177 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 1178 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 1179 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 1180 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 1181 1182 /// Methods that provide direct access to indices. 1183 IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 1184 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 1185 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 1186 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 1187 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 1188 1189 /// Methods that provide direct access to values. 1190 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 1191 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 1192 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 1193 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 1194 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 1195 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 1196 1197 /// Helper to add value to coordinate scheme, one per value type. 1198 IMPL_ADDELT(addEltF64, double) 1199 IMPL_ADDELT(addEltF32, float) 1200 IMPL_ADDELT(addEltI64, int64_t) 1201 IMPL_ADDELT(addEltI32, int32_t) 1202 IMPL_ADDELT(addEltI16, int16_t) 1203 IMPL_ADDELT(addEltI8, int8_t) 1204 1205 /// Helper to enumerate elements of coordinate scheme, one per value type. 1206 IMPL_GETNEXT(getNextF64, double) 1207 IMPL_GETNEXT(getNextF32, float) 1208 IMPL_GETNEXT(getNextI64, int64_t) 1209 IMPL_GETNEXT(getNextI32, int32_t) 1210 IMPL_GETNEXT(getNextI16, int16_t) 1211 IMPL_GETNEXT(getNextI8, int8_t) 1212 1213 /// Insert elements in lexicographical index order, one per value type. 1214 IMPL_LEXINSERT(lexInsertF64, double) 1215 IMPL_LEXINSERT(lexInsertF32, float) 1216 IMPL_LEXINSERT(lexInsertI64, int64_t) 1217 IMPL_LEXINSERT(lexInsertI32, int32_t) 1218 IMPL_LEXINSERT(lexInsertI16, int16_t) 1219 IMPL_LEXINSERT(lexInsertI8, int8_t) 1220 1221 /// Insert using expansion, one per value type. 1222 IMPL_EXPINSERT(expInsertF64, double) 1223 IMPL_EXPINSERT(expInsertF32, float) 1224 IMPL_EXPINSERT(expInsertI64, int64_t) 1225 IMPL_EXPINSERT(expInsertI32, int32_t) 1226 IMPL_EXPINSERT(expInsertI16, int16_t) 1227 IMPL_EXPINSERT(expInsertI8, int8_t) 1228 1229 #undef CASE 1230 #undef IMPL_SPARSEVALUES 1231 #undef IMPL_GETOVERHEAD 1232 #undef IMPL_ADDELT 1233 #undef IMPL_GETNEXT 1234 #undef IMPL_LEXINSERT 1235 #undef IMPL_EXPINSERT 1236 1237 /// Output a sparse tensor, one per value type. 1238 void outSparseTensorF64(void *tensor, void *dest, bool sort) { 1239 return outSparseTensor<double>(tensor, dest, sort); 1240 } 1241 void outSparseTensorF32(void *tensor, void *dest, bool sort) { 1242 return outSparseTensor<float>(tensor, dest, sort); 1243 } 1244 void outSparseTensorI64(void *tensor, void *dest, bool sort) { 1245 return outSparseTensor<int64_t>(tensor, dest, sort); 1246 } 1247 void outSparseTensorI32(void *tensor, void *dest, bool sort) { 1248 return outSparseTensor<int32_t>(tensor, dest, sort); 1249 } 1250 void outSparseTensorI16(void *tensor, void *dest, bool sort) { 1251 return outSparseTensor<int16_t>(tensor, dest, sort); 1252 } 1253 void outSparseTensorI8(void *tensor, void *dest, bool sort) { 1254 return outSparseTensor<int8_t>(tensor, dest, sort); 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // 1259 // Public API with methods that accept C-style data structures to interact 1260 // with sparse tensors, which are only visible as opaque pointers externally. 1261 // These methods can be used both by MLIR compiler-generated code as well as by 1262 // an external runtime that wants to interact with MLIR compiler-generated code. 1263 // 1264 //===----------------------------------------------------------------------===// 1265 1266 /// Helper method to read a sparse tensor filename from the environment, 1267 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1268 char *getTensorFilename(index_type id) { 1269 char var[80]; 1270 sprintf(var, "TENSOR%" PRIu64, id); 1271 char *env = getenv(var); 1272 if (!env) { 1273 fprintf(stderr, "Environment variable %s is not set\n", var); 1274 exit(1); 1275 } 1276 return env; 1277 } 1278 1279 /// Returns size of sparse tensor in given dimension. 1280 index_type sparseDimSize(void *tensor, index_type d) { 1281 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1282 } 1283 1284 /// Finalizes lexicographic insertions. 1285 void endInsert(void *tensor) { 1286 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1287 } 1288 1289 /// Releases sparse tensor storage. 1290 void delSparseTensor(void *tensor) { 1291 delete static_cast<SparseTensorStorageBase *>(tensor); 1292 } 1293 1294 /// Releases sparse tensor coordinate scheme. 1295 #define IMPL_DELCOO(VNAME, V) \ 1296 void delSparseTensorCOO##VNAME(void *coo) { \ 1297 delete static_cast<SparseTensorCOO<V> *>(coo); \ 1298 } 1299 IMPL_DELCOO(F64, double) 1300 IMPL_DELCOO(F32, float) 1301 IMPL_DELCOO(I64, int64_t) 1302 IMPL_DELCOO(I32, int32_t) 1303 IMPL_DELCOO(I16, int16_t) 1304 IMPL_DELCOO(I8, int8_t) 1305 #undef IMPL_DELCOO 1306 1307 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1308 /// data structures. The expected parameters are: 1309 /// 1310 /// rank: rank of tensor 1311 /// nse: number of specified elements (usually the nonzeros) 1312 /// shape: array with dimension size for each rank 1313 /// values: a "nse" array with values for all specified elements 1314 /// indices: a flat "nse x rank" array with indices for all specified elements 1315 /// perm: the permutation of the dimensions in the storage 1316 /// sparse: the sparsity for the dimensions 1317 /// 1318 /// For example, the sparse matrix 1319 /// | 1.0 0.0 0.0 | 1320 /// | 0.0 5.0 3.0 | 1321 /// can be passed as 1322 /// rank = 2 1323 /// nse = 3 1324 /// shape = [2, 3] 1325 /// values = [1.0, 5.0, 3.0] 1326 /// indices = [ 0, 0, 1, 1, 1, 2] 1327 // 1328 // TODO: generalize beyond 64-bit indices. 1329 // 1330 void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 1331 double *values, uint64_t *indices, 1332 uint64_t *perm, uint8_t *sparse) { 1333 return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 1334 sparse); 1335 } 1336 void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 1337 float *values, uint64_t *indices, 1338 uint64_t *perm, uint8_t *sparse) { 1339 return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 1340 sparse); 1341 } 1342 void *convertToMLIRSparseTensorI64(uint64_t rank, uint64_t nse, uint64_t *shape, 1343 int64_t *values, uint64_t *indices, 1344 uint64_t *perm, uint8_t *sparse) { 1345 return toMLIRSparseTensor<int64_t>(rank, nse, shape, values, indices, perm, 1346 sparse); 1347 } 1348 void *convertToMLIRSparseTensorI32(uint64_t rank, uint64_t nse, uint64_t *shape, 1349 int32_t *values, uint64_t *indices, 1350 uint64_t *perm, uint8_t *sparse) { 1351 return toMLIRSparseTensor<int32_t>(rank, nse, shape, values, indices, perm, 1352 sparse); 1353 } 1354 void *convertToMLIRSparseTensorI16(uint64_t rank, uint64_t nse, uint64_t *shape, 1355 int16_t *values, uint64_t *indices, 1356 uint64_t *perm, uint8_t *sparse) { 1357 return toMLIRSparseTensor<int16_t>(rank, nse, shape, values, indices, perm, 1358 sparse); 1359 } 1360 void *convertToMLIRSparseTensorI8(uint64_t rank, uint64_t nse, uint64_t *shape, 1361 int8_t *values, uint64_t *indices, 1362 uint64_t *perm, uint8_t *sparse) { 1363 return toMLIRSparseTensor<int8_t>(rank, nse, shape, values, indices, perm, 1364 sparse); 1365 } 1366 1367 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1368 /// data structures. The expected output parameters are pointers for these 1369 /// values: 1370 /// 1371 /// rank: rank of tensor 1372 /// nse: number of specified elements (usually the nonzeros) 1373 /// shape: array with dimension size for each rank 1374 /// values: a "nse" array with values for all specified elements 1375 /// indices: a flat "nse x rank" array with indices for all specified elements 1376 /// 1377 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1378 /// from convertToMLIRSparseTensor. 1379 /// 1380 // TODO: Currently, values are copied from SparseTensorStorage to 1381 // SparseTensorCOO, then to the output. We may want to reduce the number of 1382 // copies. 1383 // 1384 // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 1385 // compressed 1386 // 1387 void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 1388 uint64_t *pNse, uint64_t **pShape, 1389 double **pValues, uint64_t **pIndices) { 1390 fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 1391 } 1392 void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 1393 uint64_t *pNse, uint64_t **pShape, 1394 float **pValues, uint64_t **pIndices) { 1395 fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 1396 } 1397 void convertFromMLIRSparseTensorI64(void *tensor, uint64_t *pRank, 1398 uint64_t *pNse, uint64_t **pShape, 1399 int64_t **pValues, uint64_t **pIndices) { 1400 fromMLIRSparseTensor<int64_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1401 } 1402 void convertFromMLIRSparseTensorI32(void *tensor, uint64_t *pRank, 1403 uint64_t *pNse, uint64_t **pShape, 1404 int32_t **pValues, uint64_t **pIndices) { 1405 fromMLIRSparseTensor<int32_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1406 } 1407 void convertFromMLIRSparseTensorI16(void *tensor, uint64_t *pRank, 1408 uint64_t *pNse, uint64_t **pShape, 1409 int16_t **pValues, uint64_t **pIndices) { 1410 fromMLIRSparseTensor<int16_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1411 } 1412 void convertFromMLIRSparseTensorI8(void *tensor, uint64_t *pRank, 1413 uint64_t *pNse, uint64_t **pShape, 1414 int8_t **pValues, uint64_t **pIndices) { 1415 fromMLIRSparseTensor<int8_t>(tensor, pRank, pNse, pShape, pValues, pIndices); 1416 } 1417 1418 } // extern "C" 1419 1420 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1421