1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/CRunnerUtils.h" 18 19 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 20 21 #include <algorithm> 22 #include <cassert> 23 #include <cctype> 24 #include <cinttypes> 25 #include <cstdio> 26 #include <cstdlib> 27 #include <cstring> 28 #include <numeric> 29 #include <vector> 30 31 //===----------------------------------------------------------------------===// 32 // 33 // Internal support for storing and reading sparse tensors. 34 // 35 // The following memory-resident sparse storage schemes are supported: 36 // 37 // (a) A coordinate scheme for temporarily storing and lexicographically 38 // sorting a sparse tensor by index (SparseTensorCOO). 39 // 40 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 41 // per-dimension sparse/dense annnotations together with a dimension 42 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 43 // 44 // The following external formats are supported: 45 // 46 // (1) Matrix Market Exchange (MME): *.mtx 47 // https://math.nist.gov/MatrixMarket/formats.html 48 // 49 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 50 // http://frostt.io/tensors/file-formats.html 51 // 52 // Two public APIs are supported: 53 // 54 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 55 // tensors. These methods should be used exclusively by MLIR 56 // compiler-generated code. 57 // 58 // (II) Methods that accept C-style data structures to interact with sparse 59 // tensors. These methods can be used by any external runtime that wants 60 // to interact with MLIR compiler-generated code. 61 // 62 // In both cases (I) and (II), the SparseTensorStorage format is externally 63 // only visible as an opaque pointer. 64 // 65 //===----------------------------------------------------------------------===// 66 67 namespace { 68 69 /// A sparse tensor element in coordinate scheme (value and indices). 70 /// For example, a rank-1 vector element would look like 71 /// ({i}, a[i]) 72 /// and a rank-5 tensor element like 73 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 74 template <typename V> 75 struct Element { 76 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 77 std::vector<uint64_t> indices; 78 V value; 79 }; 80 81 /// A memory-resident sparse tensor in coordinate scheme (collection of 82 /// elements). This data structure is used to read a sparse tensor from 83 /// any external format into memory and sort the elements lexicographically 84 /// by indices before passing it back to the client (most packed storage 85 /// formats require the elements to appear in lexicographic index order). 86 template <typename V> 87 struct SparseTensorCOO { 88 public: 89 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 90 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 91 if (capacity) 92 elements.reserve(capacity); 93 } 94 /// Adds element as indices and value. 95 void add(const std::vector<uint64_t> &ind, V val) { 96 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 97 uint64_t rank = getRank(); 98 assert(rank == ind.size()); 99 for (uint64_t r = 0; r < rank; r++) 100 assert(ind[r] < sizes[r]); // within bounds 101 elements.emplace_back(ind, val); 102 } 103 /// Sorts elements lexicographically by index. 104 void sort() { 105 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 106 std::sort(elements.begin(), elements.end(), lexOrder); 107 } 108 /// Returns rank. 109 uint64_t getRank() const { return sizes.size(); } 110 /// Getter for sizes array. 111 const std::vector<uint64_t> &getSizes() const { return sizes; } 112 /// Getter for elements array. 113 const std::vector<Element<V>> &getElements() const { return elements; } 114 115 /// Switch into iterator mode. 116 void startIterator() { 117 iteratorLocked = true; 118 iteratorPos = 0; 119 } 120 /// Get the next element. 121 const Element<V> *getNext() { 122 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 123 if (iteratorPos < elements.size()) 124 return &(elements[iteratorPos++]); 125 iteratorLocked = false; 126 return nullptr; 127 } 128 129 /// Factory method. Permutes the original dimensions according to 130 /// the given ordering and expects subsequent add() calls to honor 131 /// that same ordering for the given indices. The result is a 132 /// fully permuted coordinate scheme. 133 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 134 const uint64_t *sizes, 135 const uint64_t *perm, 136 uint64_t capacity = 0) { 137 std::vector<uint64_t> permsz(rank); 138 for (uint64_t r = 0; r < rank; r++) 139 permsz[perm[r]] = sizes[r]; 140 return new SparseTensorCOO<V>(permsz, capacity); 141 } 142 143 private: 144 /// Returns true if indices of e1 < indices of e2. 145 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 146 uint64_t rank = e1.indices.size(); 147 assert(rank == e2.indices.size()); 148 for (uint64_t r = 0; r < rank; r++) { 149 if (e1.indices[r] == e2.indices[r]) 150 continue; 151 return e1.indices[r] < e2.indices[r]; 152 } 153 return false; 154 } 155 const std::vector<uint64_t> sizes; // per-dimension sizes 156 std::vector<Element<V>> elements; 157 bool iteratorLocked; 158 unsigned iteratorPos; 159 }; 160 161 /// Abstract base class of sparse tensor storage. Note that we use 162 /// function overloading to implement "partial" method specialization. 163 class SparseTensorStorageBase { 164 public: 165 enum DimLevelType : uint8_t { kDense = 0, kCompressed = 1, kSingleton = 2 }; 166 167 virtual uint64_t getDimSize(uint64_t) = 0; 168 169 // Overhead storage. 170 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 171 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 172 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 173 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 174 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 175 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 176 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 177 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 178 179 // Primary storage. 180 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 181 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 182 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 183 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 184 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 185 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 186 187 virtual ~SparseTensorStorageBase() {} 188 189 private: 190 void fatal(const char *tp) { 191 fprintf(stderr, "unsupported %s\n", tp); 192 exit(1); 193 } 194 }; 195 196 /// A memory-resident sparse tensor using a storage scheme based on 197 /// per-dimension sparse/dense annotations. This data structure provides a 198 /// bufferized form of a sparse tensor type. In contrast to generating setup 199 /// methods for each differently annotated sparse tensor, this method provides 200 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 201 /// and annotations to implement all required setup in a general manner. 202 template <typename P, typename I, typename V> 203 class SparseTensorStorage : public SparseTensorStorageBase { 204 public: 205 /// Constructs a sparse tensor storage scheme with the given dimensions, 206 /// permutation, and per-dimension dense/sparse annotations, using 207 /// the coordinate scheme tensor for the initial contents if provided. 208 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 209 const uint8_t *sparsity, SparseTensorCOO<V> *tensor) 210 : sizes(szs), rev(getRank()), pointers(getRank()), indices(getRank()) { 211 uint64_t rank = getRank(); 212 // Store "reverse" permutation. 213 for (uint64_t r = 0; r < rank; r++) 214 rev[perm[r]] = r; 215 // Provide hints on capacity of pointers and indices. 216 // TODO: needs fine-tuning based on sparsity 217 for (uint64_t r = 0, s = 1; r < rank; r++) { 218 s *= sizes[r]; 219 if (sparsity[r] == kCompressed) { 220 pointers[r].reserve(s + 1); 221 indices[r].reserve(s); 222 s = 1; 223 } else { 224 assert(sparsity[r] == kDense && "singleton not yet supported"); 225 } 226 } 227 // Prepare sparse pointer structures for all dimensions. 228 for (uint64_t r = 0; r < rank; r++) 229 if (sparsity[r] == kCompressed) 230 pointers[r].push_back(0); 231 // Then assign contents from coordinate scheme tensor if provided. 232 if (tensor) { 233 uint64_t nnz = tensor->getElements().size(); 234 values.reserve(nnz); 235 fromCOO(tensor, sparsity, 0, nnz, 0); 236 } 237 } 238 239 virtual ~SparseTensorStorage() {} 240 241 /// Get the rank of the tensor. 242 uint64_t getRank() const { return sizes.size(); } 243 244 /// Get the size in the given dimension of the tensor. 245 uint64_t getDimSize(uint64_t d) override { 246 assert(d < getRank()); 247 return sizes[d]; 248 } 249 250 // Partially specialize these three methods based on template types. 251 void getPointers(std::vector<P> **out, uint64_t d) override { 252 assert(d < getRank()); 253 *out = &pointers[d]; 254 } 255 void getIndices(std::vector<I> **out, uint64_t d) override { 256 assert(d < getRank()); 257 *out = &indices[d]; 258 } 259 void getValues(std::vector<V> **out) override { *out = &values; } 260 261 /// Returns this sparse tensor storage scheme as a new memory-resident 262 /// sparse tensor in coordinate scheme with the given dimension order. 263 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 264 // Restore original order of the dimension sizes and allocate coordinate 265 // scheme with desired new ordering specified in perm. 266 uint64_t rank = getRank(); 267 std::vector<uint64_t> orgsz(rank); 268 for (uint64_t r = 0; r < rank; r++) 269 orgsz[rev[r]] = sizes[r]; 270 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 271 rank, orgsz.data(), perm, values.size()); 272 // Populate coordinate scheme restored from old ordering and changed with 273 // new ordering. Rather than applying both reorderings during the recursion, 274 // we compute the combine permutation in advance. 275 std::vector<uint64_t> reord(rank); 276 for (uint64_t r = 0; r < rank; r++) 277 reord[r] = perm[rev[r]]; 278 std::vector<uint64_t> idx(rank); 279 toCOO(tensor, reord, idx, 0, 0); 280 assert(tensor->getElements().size() == values.size()); 281 return tensor; 282 } 283 284 /// Factory method. Constructs a sparse tensor storage scheme with the given 285 /// dimensions, permutation, and per-dimension dense/sparse annotations, 286 /// using the coordinate scheme tensor for the initial contents if provided. 287 /// In the latter case, the coordinate scheme must respect the same 288 /// permutation as is desired for the new sparse tensor storage. 289 static SparseTensorStorage<P, I, V> * 290 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 291 const uint8_t *sparsity, SparseTensorCOO<V> *tensor) { 292 SparseTensorStorage<P, I, V> *n = nullptr; 293 if (tensor) { 294 assert(tensor->getRank() == rank); 295 for (uint64_t r = 0; r < rank; r++) 296 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 297 tensor->sort(); // sort lexicographically 298 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 299 tensor); 300 delete tensor; 301 } else { 302 std::vector<uint64_t> permsz(rank); 303 for (uint64_t r = 0; r < rank; r++) 304 permsz[perm[r]] = sizes[r]; 305 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, tensor); 306 } 307 return n; 308 } 309 310 private: 311 /// Initializes sparse tensor storage scheme from a memory-resident sparse 312 /// tensor in coordinate scheme. This method prepares the pointers and 313 /// indices arrays under the given per-dimension dense/sparse annotations. 314 void fromCOO(SparseTensorCOO<V> *tensor, const uint8_t *sparsity, uint64_t lo, 315 uint64_t hi, uint64_t d) { 316 const std::vector<Element<V>> &elements = tensor->getElements(); 317 // Once dimensions are exhausted, insert the numerical values. 318 if (d == getRank()) { 319 assert(lo >= hi || lo < elements.size()); 320 values.push_back(lo < hi ? elements[lo].value : 0); 321 return; 322 } 323 assert(d < getRank()); 324 // Visit all elements in this interval. 325 uint64_t full = 0; 326 while (lo < hi) { 327 assert(lo < elements.size() && hi <= elements.size()); 328 // Find segment in interval with same index elements in this dimension. 329 uint64_t idx = elements[lo].indices[d]; 330 uint64_t seg = lo + 1; 331 while (seg < hi && elements[seg].indices[d] == idx) 332 seg++; 333 // Handle segment in interval for sparse or dense dimension. 334 if (sparsity[d] == kCompressed) { 335 indices[d].push_back(idx); 336 } else { 337 // For dense storage we must fill in all the zero values between 338 // the previous element (when last we ran this for-loop) and the 339 // current element. 340 for (; full < idx; full++) 341 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 342 full++; 343 } 344 fromCOO(tensor, sparsity, lo, seg, d + 1); 345 // And move on to next segment in interval. 346 lo = seg; 347 } 348 // Finalize the sparse pointer structure at this dimension. 349 if (sparsity[d] == kCompressed) { 350 pointers[d].push_back(indices[d].size()); 351 } else { 352 // For dense storage we must fill in all the zero values after 353 // the last element. 354 for (uint64_t sz = sizes[d]; full < sz; full++) 355 fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty 356 } 357 } 358 359 /// Stores the sparse tensor storage scheme into a memory-resident sparse 360 /// tensor in coordinate scheme. 361 void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord, 362 std::vector<uint64_t> &idx, uint64_t pos, uint64_t d) { 363 assert(d <= getRank()); 364 if (d == getRank()) { 365 assert(pos < values.size()); 366 tensor->add(idx, values[pos]); 367 } else if (pointers[d].empty()) { 368 // Dense dimension. 369 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 370 idx[reord[d]] = i; 371 toCOO(tensor, reord, idx, off + i, d + 1); 372 } 373 } else { 374 // Sparse dimension. 375 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 376 idx[reord[d]] = indices[d][ii]; 377 toCOO(tensor, reord, idx, ii, d + 1); 378 } 379 } 380 } 381 382 private: 383 std::vector<uint64_t> sizes; // per-dimension sizes 384 std::vector<uint64_t> rev; // "reverse" permutation 385 std::vector<std::vector<P>> pointers; 386 std::vector<std::vector<I>> indices; 387 std::vector<V> values; 388 }; 389 390 /// Helper to convert string to lower case. 391 static char *toLower(char *token) { 392 for (char *c = token; *c; c++) 393 *c = tolower(*c); 394 return token; 395 } 396 397 /// Read the MME header of a general sparse matrix of type real. 398 static void readMMEHeader(FILE *file, char *name, uint64_t *idata) { 399 char line[1025]; 400 char header[64]; 401 char object[64]; 402 char format[64]; 403 char field[64]; 404 char symmetry[64]; 405 // Read header line. 406 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 407 symmetry) != 5) { 408 fprintf(stderr, "Corrupt header in %s\n", name); 409 exit(1); 410 } 411 // Make sure this is a general sparse matrix. 412 if (strcmp(toLower(header), "%%matrixmarket") || 413 strcmp(toLower(object), "matrix") || 414 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 415 strcmp(toLower(symmetry), "general")) { 416 fprintf(stderr, 417 "Cannot find a general sparse matrix with type real in %s\n", name); 418 exit(1); 419 } 420 // Skip comments. 421 while (1) { 422 if (!fgets(line, 1025, file)) { 423 fprintf(stderr, "Cannot find data in %s\n", name); 424 exit(1); 425 } 426 if (line[0] != '%') 427 break; 428 } 429 // Next line contains M N NNZ. 430 idata[0] = 2; // rank 431 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 432 idata + 1) != 3) { 433 fprintf(stderr, "Cannot find size in %s\n", name); 434 exit(1); 435 } 436 } 437 438 /// Read the "extended" FROSTT header. Although not part of the documented 439 /// format, we assume that the file starts with optional comments followed 440 /// by two lines that define the rank, the number of nonzeros, and the 441 /// dimensions sizes (one per rank) of the sparse tensor. 442 static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) { 443 char line[1025]; 444 // Skip comments. 445 while (1) { 446 if (!fgets(line, 1025, file)) { 447 fprintf(stderr, "Cannot find data in %s\n", name); 448 exit(1); 449 } 450 if (line[0] != '#') 451 break; 452 } 453 // Next line contains RANK and NNZ. 454 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 455 fprintf(stderr, "Cannot find metadata in %s\n", name); 456 exit(1); 457 } 458 // Followed by a line with the dimension sizes (one per rank). 459 for (uint64_t r = 0; r < idata[0]; r++) { 460 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 461 fprintf(stderr, "Cannot find dimension size %s\n", name); 462 exit(1); 463 } 464 } 465 } 466 467 /// Reads a sparse tensor with the given filename into a memory-resident 468 /// sparse tensor in coordinate scheme. 469 template <typename V> 470 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 471 const uint64_t *sizes, 472 const uint64_t *perm) { 473 // Open the file. 474 FILE *file = fopen(filename, "r"); 475 if (!file) { 476 fprintf(stderr, "Cannot find %s\n", filename); 477 exit(1); 478 } 479 // Perform some file format dependent set up. 480 uint64_t idata[512]; 481 if (strstr(filename, ".mtx")) { 482 readMMEHeader(file, filename, idata); 483 } else if (strstr(filename, ".tns")) { 484 readExtFROSTTHeader(file, filename, idata); 485 } else { 486 fprintf(stderr, "Unknown format %s\n", filename); 487 exit(1); 488 } 489 // Prepare sparse tensor object with per-dimension sizes 490 // and the number of nonzeros as initial capacity. 491 assert(rank == idata[0] && "rank mismatch"); 492 uint64_t nnz = idata[1]; 493 for (uint64_t r = 0; r < rank; r++) 494 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 495 "dimension size mismatch"); 496 SparseTensorCOO<V> *tensor = 497 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 498 // Read all nonzero elements. 499 std::vector<uint64_t> indices(rank); 500 for (uint64_t k = 0; k < nnz; k++) { 501 uint64_t idx = -1; 502 for (uint64_t r = 0; r < rank; r++) { 503 if (fscanf(file, "%" PRIu64, &idx) != 1) { 504 fprintf(stderr, "Cannot find next index in %s\n", filename); 505 exit(1); 506 } 507 // Add 0-based index. 508 indices[perm[r]] = idx - 1; 509 } 510 // The external formats always store the numerical values with the type 511 // double, but we cast these values to the sparse tensor object type. 512 double value; 513 if (fscanf(file, "%lg\n", &value) != 1) { 514 fprintf(stderr, "Cannot find next value in %s\n", filename); 515 exit(1); 516 } 517 tensor->add(indices, value); 518 } 519 // Close the file and return tensor. 520 fclose(file); 521 return tensor; 522 } 523 524 } // anonymous namespace 525 526 extern "C" { 527 528 /// This type is used in the public API at all places where MLIR expects 529 /// values with the built-in type "index". For now, we simply assume that 530 /// type is 64-bit, but targets with different "index" bit widths should link 531 /// with an alternatively built runtime support library. 532 // TODO: support such targets? 533 typedef uint64_t index_t; 534 535 //===----------------------------------------------------------------------===// 536 // 537 // Public API with methods that operate on MLIR buffers (memrefs) to interact 538 // with sparse tensors, which are only visible as opaque pointers externally. 539 // These methods should be used exclusively by MLIR compiler-generated code. 540 // 541 // Some macro magic is used to generate implementations for all required type 542 // combinations that can be called from MLIR compiler-generated code. 543 // 544 //===----------------------------------------------------------------------===// 545 546 enum OverheadTypeEnum : uint32_t { kU64 = 1, kU32 = 2, kU16 = 3, kU8 = 4 }; 547 548 enum PrimaryTypeEnum : uint32_t { 549 kF64 = 1, 550 kF32 = 2, 551 kI64 = 3, 552 kI32 = 4, 553 kI16 = 5, 554 kI8 = 6 555 }; 556 557 enum Action : uint32_t { 558 kEmpty = 0, 559 kFromFile = 1, 560 kFromCOO = 2, 561 kEmptyCOO = 3, 562 kToCOO = 4, 563 kToIter = 5 564 }; 565 566 #define CASE(p, i, v, P, I, V) \ 567 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 568 SparseTensorCOO<V> *tensor = nullptr; \ 569 if (action <= kFromCOO) { \ 570 if (action == kFromFile) { \ 571 char *filename = static_cast<char *>(ptr); \ 572 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 573 } else if (action == kFromCOO) { \ 574 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 575 } else { \ 576 assert(action == kEmpty); \ 577 } \ 578 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 579 sparsity, tensor); \ 580 } else if (action == kEmptyCOO) { \ 581 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 582 } else { \ 583 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 584 if (action == kToIter) { \ 585 tensor->startIterator(); \ 586 } else { \ 587 assert(action == kToCOO); \ 588 } \ 589 return tensor; \ 590 } \ 591 } 592 593 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 594 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 595 assert(ref); \ 596 assert(tensor); \ 597 std::vector<TYPE> *v; \ 598 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 599 ref->basePtr = ref->data = v->data(); \ 600 ref->offset = 0; \ 601 ref->sizes[0] = v->size(); \ 602 ref->strides[0] = 1; \ 603 } 604 605 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 606 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 607 index_t d) { \ 608 assert(ref); \ 609 assert(tensor); \ 610 std::vector<TYPE> *v; \ 611 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 612 ref->basePtr = ref->data = v->data(); \ 613 ref->offset = 0; \ 614 ref->sizes[0] = v->size(); \ 615 ref->strides[0] = 1; \ 616 } 617 618 #define IMPL_ADDELT(NAME, TYPE) \ 619 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 620 StridedMemRefType<index_t, 1> *iref, \ 621 StridedMemRefType<index_t, 1> *pref) { \ 622 assert(tensor); \ 623 assert(iref); \ 624 assert(pref); \ 625 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 626 assert(iref->sizes[0] == pref->sizes[0]); \ 627 const index_t *indx = iref->data + iref->offset; \ 628 const index_t *perm = pref->data + pref->offset; \ 629 uint64_t isize = iref->sizes[0]; \ 630 std::vector<index_t> indices(isize); \ 631 for (uint64_t r = 0; r < isize; r++) \ 632 indices[perm[r]] = indx[r]; \ 633 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 634 return tensor; \ 635 } 636 637 #define IMPL_GETNEXT(NAME, V) \ 638 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<uint64_t, 1> *iref, \ 639 StridedMemRefType<V, 0> *vref) { \ 640 assert(iref->strides[0] == 1); \ 641 uint64_t *indx = iref->data + iref->offset; \ 642 V *value = vref->data + vref->offset; \ 643 const uint64_t isize = iref->sizes[0]; \ 644 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 645 const Element<V> *elem = iter->getNext(); \ 646 if (elem == nullptr) { \ 647 delete iter; \ 648 return false; \ 649 } \ 650 for (uint64_t r = 0; r < isize; r++) \ 651 indx[r] = elem->indices[r]; \ 652 *value = elem->value; \ 653 return true; \ 654 } 655 656 /// Constructs a new sparse tensor. This is the "swiss army knife" 657 /// method for materializing sparse tensors into the computation. 658 /// 659 /// action: 660 /// kEmpty = returns empty storage to fill later 661 /// kFromFile = returns storage, where ptr contains filename to read 662 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 663 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 664 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 665 /// kToIter = returns iterator from storage in ptr (call getNext() to use) 666 void * 667 _mlir_ciface_newSparseTensor(StridedMemRefType<uint8_t, 1> *aref, // NOLINT 668 StridedMemRefType<index_t, 1> *sref, 669 StridedMemRefType<index_t, 1> *pref, 670 uint32_t ptrTp, uint32_t indTp, uint32_t valTp, 671 uint32_t action, void *ptr) { 672 assert(aref && sref && pref); 673 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 674 pref->strides[0] == 1); 675 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 676 const uint8_t *sparsity = aref->data + aref->offset; 677 const index_t *sizes = sref->data + sref->offset; 678 const index_t *perm = pref->data + pref->offset; 679 uint64_t rank = aref->sizes[0]; 680 681 // Double matrices with all combinations of overhead storage. 682 CASE(kU64, kU64, kF64, uint64_t, uint64_t, double); 683 CASE(kU64, kU32, kF64, uint64_t, uint32_t, double); 684 CASE(kU64, kU16, kF64, uint64_t, uint16_t, double); 685 CASE(kU64, kU8, kF64, uint64_t, uint8_t, double); 686 CASE(kU32, kU64, kF64, uint32_t, uint64_t, double); 687 CASE(kU32, kU32, kF64, uint32_t, uint32_t, double); 688 CASE(kU32, kU16, kF64, uint32_t, uint16_t, double); 689 CASE(kU32, kU8, kF64, uint32_t, uint8_t, double); 690 CASE(kU16, kU64, kF64, uint16_t, uint64_t, double); 691 CASE(kU16, kU32, kF64, uint16_t, uint32_t, double); 692 CASE(kU16, kU16, kF64, uint16_t, uint16_t, double); 693 CASE(kU16, kU8, kF64, uint16_t, uint8_t, double); 694 CASE(kU8, kU64, kF64, uint8_t, uint64_t, double); 695 CASE(kU8, kU32, kF64, uint8_t, uint32_t, double); 696 CASE(kU8, kU16, kF64, uint8_t, uint16_t, double); 697 CASE(kU8, kU8, kF64, uint8_t, uint8_t, double); 698 699 // Float matrices with all combinations of overhead storage. 700 CASE(kU64, kU64, kF32, uint64_t, uint64_t, float); 701 CASE(kU64, kU32, kF32, uint64_t, uint32_t, float); 702 CASE(kU64, kU16, kF32, uint64_t, uint16_t, float); 703 CASE(kU64, kU8, kF32, uint64_t, uint8_t, float); 704 CASE(kU32, kU64, kF32, uint32_t, uint64_t, float); 705 CASE(kU32, kU32, kF32, uint32_t, uint32_t, float); 706 CASE(kU32, kU16, kF32, uint32_t, uint16_t, float); 707 CASE(kU32, kU8, kF32, uint32_t, uint8_t, float); 708 CASE(kU16, kU64, kF32, uint16_t, uint64_t, float); 709 CASE(kU16, kU32, kF32, uint16_t, uint32_t, float); 710 CASE(kU16, kU16, kF32, uint16_t, uint16_t, float); 711 CASE(kU16, kU8, kF32, uint16_t, uint8_t, float); 712 CASE(kU8, kU64, kF32, uint8_t, uint64_t, float); 713 CASE(kU8, kU32, kF32, uint8_t, uint32_t, float); 714 CASE(kU8, kU16, kF32, uint8_t, uint16_t, float); 715 CASE(kU8, kU8, kF32, uint8_t, uint8_t, float); 716 717 // Integral matrices with same overhead storage. 718 CASE(kU64, kU64, kI64, uint64_t, uint64_t, int64_t); 719 CASE(kU64, kU64, kI32, uint64_t, uint64_t, int32_t); 720 CASE(kU64, kU64, kI16, uint64_t, uint64_t, int16_t); 721 CASE(kU64, kU64, kI8, uint64_t, uint64_t, int8_t); 722 CASE(kU32, kU32, kI32, uint32_t, uint32_t, int32_t); 723 CASE(kU32, kU32, kI16, uint32_t, uint32_t, int16_t); 724 CASE(kU32, kU32, kI8, uint32_t, uint32_t, int8_t); 725 CASE(kU16, kU16, kI32, uint16_t, uint16_t, int32_t); 726 CASE(kU16, kU16, kI16, uint16_t, uint16_t, int16_t); 727 CASE(kU16, kU16, kI8, uint16_t, uint16_t, int8_t); 728 CASE(kU8, kU8, kI32, uint8_t, uint8_t, int32_t); 729 CASE(kU8, kU8, kI16, uint8_t, uint8_t, int16_t); 730 CASE(kU8, kU8, kI8, uint8_t, uint8_t, int8_t); 731 732 // Unsupported case (add above if needed). 733 fputs("unsupported combination of types\n", stderr); 734 exit(1); 735 } 736 737 /// Methods that provide direct access to pointers. 738 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 739 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 740 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 741 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 742 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 743 744 /// Methods that provide direct access to indices. 745 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 746 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 747 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 748 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 749 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 750 751 /// Methods that provide direct access to values. 752 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 753 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 754 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 755 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 756 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 757 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 758 759 /// Helper to add value to coordinate scheme, one per value type. 760 IMPL_ADDELT(addEltF64, double) 761 IMPL_ADDELT(addEltF32, float) 762 IMPL_ADDELT(addEltI64, int64_t) 763 IMPL_ADDELT(addEltI32, int32_t) 764 IMPL_ADDELT(addEltI16, int16_t) 765 IMPL_ADDELT(addEltI8, int8_t) 766 767 /// Helper to enumerate elements of coordinate scheme, one per value type. 768 IMPL_GETNEXT(getNextF64, double) 769 IMPL_GETNEXT(getNextF32, float) 770 IMPL_GETNEXT(getNextI64, int64_t) 771 IMPL_GETNEXT(getNextI32, int32_t) 772 IMPL_GETNEXT(getNextI16, int16_t) 773 IMPL_GETNEXT(getNextI8, int8_t) 774 775 #undef CASE 776 #undef IMPL_SPARSEVALUES 777 #undef IMPL_GETOVERHEAD 778 #undef IMPL_ADDELT 779 #undef IMPL_GETNEXT 780 781 //===----------------------------------------------------------------------===// 782 // 783 // Public API with methods that accept C-style data structures to interact 784 // with sparse tensors, which are only visible as opaque pointers externally. 785 // These methods can be used both by MLIR compiler-generated code as well as by 786 // an external runtime that wants to interact with MLIR compiler-generated code. 787 // 788 //===----------------------------------------------------------------------===// 789 790 /// Helper method to read a sparse tensor filename from the environment, 791 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 792 char *getTensorFilename(index_t id) { 793 char var[80]; 794 sprintf(var, "TENSOR%" PRIu64, id); 795 char *env = getenv(var); 796 return env; 797 } 798 799 /// Returns size of sparse tensor in given dimension. 800 index_t sparseDimSize(void *tensor, index_t d) { 801 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 802 } 803 804 /// Releases sparse tensor storage. 805 void delSparseTensor(void *tensor) { 806 delete static_cast<SparseTensorStorageBase *>(tensor); 807 } 808 809 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 810 /// data structures. The expected parameters are: 811 /// 812 /// rank: rank of tensor 813 /// nse: number of specified elements (usually the nonzeros) 814 /// shape: array with dimension size for each rank 815 /// values: a "nse" array with values for all specified elements 816 /// indices: a flat "nse x rank" array with indices for all specified elements 817 /// 818 /// For example, the sparse matrix 819 /// | 1.0 0.0 0.0 | 820 /// | 0.0 5.0 3.0 | 821 /// can be passed as 822 /// rank = 2 823 /// nse = 3 824 /// shape = [2, 3] 825 /// values = [1.0, 5.0, 3.0] 826 /// indices = [ 0, 0, 1, 1, 1, 2] 827 // 828 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 829 // 830 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 831 double *values, uint64_t *indices) { 832 // Setup all-dims compressed and default ordering. 833 std::vector<uint8_t> sparse(rank, SparseTensorStorageBase::kCompressed); 834 std::vector<uint64_t> perm(rank); 835 std::iota(perm.begin(), perm.end(), 0); 836 // Convert external format to internal COO. 837 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 838 rank, shape, perm.data(), nse); 839 std::vector<uint64_t> idx(rank); 840 for (uint64_t i = 0, base = 0; i < nse; i++) { 841 for (uint64_t r = 0; r < rank; r++) 842 idx[r] = indices[base + r]; 843 tensor->add(idx, values[i]); 844 base += rank; 845 } 846 // Return sparse tensor storage format as opaque pointer. 847 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 848 rank, shape, perm.data(), sparse.data(), tensor); 849 } 850 851 } // extern "C" 852 853 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 854