1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <numeric> 30 #include <vector> 31 32 //===----------------------------------------------------------------------===// 33 // 34 // Internal support for storing and reading sparse tensors. 35 // 36 // The following memory-resident sparse storage schemes are supported: 37 // 38 // (a) A coordinate scheme for temporarily storing and lexicographically 39 // sorting a sparse tensor by index (SparseTensorCOO). 40 // 41 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 42 // per-dimension sparse/dense annnotations together with a dimension 43 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 44 // 45 // The following external formats are supported: 46 // 47 // (1) Matrix Market Exchange (MME): *.mtx 48 // https://math.nist.gov/MatrixMarket/formats.html 49 // 50 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 51 // http://frostt.io/tensors/file-formats.html 52 // 53 // Two public APIs are supported: 54 // 55 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 56 // tensors. These methods should be used exclusively by MLIR 57 // compiler-generated code. 58 // 59 // (II) Methods that accept C-style data structures to interact with sparse 60 // tensors. These methods can be used by any external runtime that wants 61 // to interact with MLIR compiler-generated code. 62 // 63 // In both cases (I) and (II), the SparseTensorStorage format is externally 64 // only visible as an opaque pointer. 65 // 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 70 static constexpr int kColWidth = 1025; 71 72 /// A sparse tensor element in coordinate scheme (value and indices). 73 /// For example, a rank-1 vector element would look like 74 /// ({i}, a[i]) 75 /// and a rank-5 tensor element like 76 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 77 template <typename V> 78 struct Element { 79 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 80 std::vector<uint64_t> indices; 81 V value; 82 }; 83 84 /// A memory-resident sparse tensor in coordinate scheme (collection of 85 /// elements). This data structure is used to read a sparse tensor from 86 /// any external format into memory and sort the elements lexicographically 87 /// by indices before passing it back to the client (most packed storage 88 /// formats require the elements to appear in lexicographic index order). 89 template <typename V> 90 struct SparseTensorCOO { 91 public: 92 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 93 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 94 if (capacity) 95 elements.reserve(capacity); 96 } 97 /// Adds element as indices and value. 98 void add(const std::vector<uint64_t> &ind, V val) { 99 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 100 uint64_t rank = getRank(); 101 assert(rank == ind.size()); 102 for (uint64_t r = 0; r < rank; r++) 103 assert(ind[r] < sizes[r]); // within bounds 104 elements.emplace_back(ind, val); 105 } 106 /// Sorts elements lexicographically by index. 107 void sort() { 108 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 109 std::sort(elements.begin(), elements.end(), lexOrder); 110 } 111 /// Returns rank. 112 uint64_t getRank() const { return sizes.size(); } 113 /// Getter for sizes array. 114 const std::vector<uint64_t> &getSizes() const { return sizes; } 115 /// Getter for elements array. 116 const std::vector<Element<V>> &getElements() const { return elements; } 117 118 /// Switch into iterator mode. 119 void startIterator() { 120 iteratorLocked = true; 121 iteratorPos = 0; 122 } 123 /// Get the next element. 124 const Element<V> *getNext() { 125 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 126 if (iteratorPos < elements.size()) 127 return &(elements[iteratorPos++]); 128 iteratorLocked = false; 129 return nullptr; 130 } 131 132 /// Factory method. Permutes the original dimensions according to 133 /// the given ordering and expects subsequent add() calls to honor 134 /// that same ordering for the given indices. The result is a 135 /// fully permuted coordinate scheme. 136 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 137 const uint64_t *sizes, 138 const uint64_t *perm, 139 uint64_t capacity = 0) { 140 std::vector<uint64_t> permsz(rank); 141 for (uint64_t r = 0; r < rank; r++) 142 permsz[perm[r]] = sizes[r]; 143 return new SparseTensorCOO<V>(permsz, capacity); 144 } 145 146 private: 147 /// Returns true if indices of e1 < indices of e2. 148 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 149 uint64_t rank = e1.indices.size(); 150 assert(rank == e2.indices.size()); 151 for (uint64_t r = 0; r < rank; r++) { 152 if (e1.indices[r] == e2.indices[r]) 153 continue; 154 return e1.indices[r] < e2.indices[r]; 155 } 156 return false; 157 } 158 const std::vector<uint64_t> sizes; // per-dimension sizes 159 std::vector<Element<V>> elements; 160 bool iteratorLocked; 161 unsigned iteratorPos; 162 }; 163 164 /// Abstract base class of sparse tensor storage. Note that we use 165 /// function overloading to implement "partial" method specialization. 166 class SparseTensorStorageBase { 167 public: 168 /// Dimension size query. 169 virtual uint64_t getDimSize(uint64_t) = 0; 170 171 /// Overhead storage. 172 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 173 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 174 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 175 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 176 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 177 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 178 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 179 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 180 181 /// Primary storage. 182 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 183 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 184 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 185 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 186 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 187 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 188 189 /// Element-wise insertion in lexicographic index order. 190 virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 191 virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 192 virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 193 virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 194 virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 195 virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 196 197 /// Expanded insertion. 198 virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 199 fatal("expf64"); 200 } 201 virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 202 fatal("expf32"); 203 } 204 virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 205 fatal("expi64"); 206 } 207 virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 208 fatal("expi32"); 209 } 210 virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 211 fatal("expi16"); 212 } 213 virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 214 fatal("expi8"); 215 } 216 217 /// Finishes insertion. 218 virtual void endInsert() = 0; 219 220 virtual ~SparseTensorStorageBase() = default; 221 222 private: 223 void fatal(const char *tp) { 224 fprintf(stderr, "unsupported %s\n", tp); 225 exit(1); 226 } 227 }; 228 229 /// A memory-resident sparse tensor using a storage scheme based on 230 /// per-dimension sparse/dense annotations. This data structure provides a 231 /// bufferized form of a sparse tensor type. In contrast to generating setup 232 /// methods for each differently annotated sparse tensor, this method provides 233 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 234 /// and annotations to implement all required setup in a general manner. 235 template <typename P, typename I, typename V> 236 class SparseTensorStorage : public SparseTensorStorageBase { 237 public: 238 /// Constructs a sparse tensor storage scheme with the given dimensions, 239 /// permutation, and per-dimension dense/sparse annotations, using 240 /// the coordinate scheme tensor for the initial contents if provided. 241 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 242 const DimLevelType *sparsity, 243 SparseTensorCOO<V> *tensor = nullptr) 244 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 245 indices(getRank()) { 246 uint64_t rank = getRank(); 247 // Store "reverse" permutation. 248 for (uint64_t r = 0; r < rank; r++) 249 rev[perm[r]] = r; 250 // Provide hints on capacity of pointers and indices. 251 // TODO: needs fine-tuning based on sparsity 252 bool allDense = true; 253 uint64_t sz = 1; 254 for (uint64_t r = 0; r < rank; r++) { 255 sz *= sizes[r]; 256 if (sparsity[r] == DimLevelType::kCompressed) { 257 pointers[r].reserve(sz + 1); 258 indices[r].reserve(sz); 259 sz = 1; 260 allDense = false; 261 } else { 262 assert(sparsity[r] == DimLevelType::kDense && 263 "singleton not yet supported"); 264 } 265 } 266 // Prepare sparse pointer structures for all dimensions. 267 for (uint64_t r = 0; r < rank; r++) 268 if (sparsity[r] == DimLevelType::kCompressed) 269 pointers[r].push_back(0); 270 // Then assign contents from coordinate scheme tensor if provided. 271 if (tensor) { 272 const std::vector<Element<V>> &elements = tensor->getElements(); 273 uint64_t nnz = elements.size(); 274 values.reserve(nnz); 275 fromCOO(elements, 0, nnz, 0); 276 } else if (allDense) { 277 values.resize(sz, 0); 278 } 279 } 280 281 ~SparseTensorStorage() override = default; 282 283 /// Get the rank of the tensor. 284 uint64_t getRank() const { return sizes.size(); } 285 286 /// Get the size in the given dimension of the tensor. 287 uint64_t getDimSize(uint64_t d) override { 288 assert(d < getRank()); 289 return sizes[d]; 290 } 291 292 /// Partially specialize these getter methods based on template types. 293 void getPointers(std::vector<P> **out, uint64_t d) override { 294 assert(d < getRank()); 295 *out = &pointers[d]; 296 } 297 void getIndices(std::vector<I> **out, uint64_t d) override { 298 assert(d < getRank()); 299 *out = &indices[d]; 300 } 301 void getValues(std::vector<V> **out) override { *out = &values; } 302 303 /// Partially specialize lexicographical insertions based on template types. 304 void lexInsert(const uint64_t *cursor, V val) override { 305 // First, wrap up pending insertion path. 306 uint64_t diff = 0; 307 uint64_t top = 0; 308 if (!values.empty()) { 309 diff = lexDiff(cursor); 310 endPath(diff + 1); 311 top = idx[diff] + 1; 312 } 313 // Then continue with insertion path. 314 insPath(cursor, diff, top, val); 315 } 316 317 /// Partially specialize expanded insertions based on template types. 318 /// Note that this method resets the values/filled-switch array back 319 /// to all-zero/false while only iterating over the nonzero elements. 320 void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 321 uint64_t count) override { 322 if (count == 0) 323 return; 324 // Sort. 325 std::sort(added, added + count); 326 // Restore insertion path for first insert. 327 uint64_t rank = getRank(); 328 uint64_t index = added[0]; 329 cursor[rank - 1] = index; 330 lexInsert(cursor, values[index]); 331 assert(filled[index]); 332 values[index] = 0; 333 filled[index] = false; 334 // Subsequent insertions are quick. 335 for (uint64_t i = 1; i < count; i++) { 336 assert(index < added[i] && "non-lexicographic insertion"); 337 index = added[i]; 338 cursor[rank - 1] = index; 339 insPath(cursor, rank - 1, added[i - 1] + 1, values[index]); 340 assert(filled[index]); 341 values[index] = 0.0; 342 filled[index] = false; 343 } 344 } 345 346 /// Finalizes lexicographic insertions. 347 void endInsert() override { 348 if (values.empty()) 349 endDim(0); 350 else 351 endPath(0); 352 } 353 354 /// Returns this sparse tensor storage scheme as a new memory-resident 355 /// sparse tensor in coordinate scheme with the given dimension order. 356 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 357 // Restore original order of the dimension sizes and allocate coordinate 358 // scheme with desired new ordering specified in perm. 359 uint64_t rank = getRank(); 360 std::vector<uint64_t> orgsz(rank); 361 for (uint64_t r = 0; r < rank; r++) 362 orgsz[rev[r]] = sizes[r]; 363 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 364 rank, orgsz.data(), perm, values.size()); 365 // Populate coordinate scheme restored from old ordering and changed with 366 // new ordering. Rather than applying both reorderings during the recursion, 367 // we compute the combine permutation in advance. 368 std::vector<uint64_t> reord(rank); 369 for (uint64_t r = 0; r < rank; r++) 370 reord[r] = perm[rev[r]]; 371 toCOO(*tensor, reord, 0, 0); 372 assert(tensor->getElements().size() == values.size()); 373 return tensor; 374 } 375 376 /// Factory method. Constructs a sparse tensor storage scheme with the given 377 /// dimensions, permutation, and per-dimension dense/sparse annotations, 378 /// using the coordinate scheme tensor for the initial contents if provided. 379 /// In the latter case, the coordinate scheme must respect the same 380 /// permutation as is desired for the new sparse tensor storage. 381 static SparseTensorStorage<P, I, V> * 382 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 383 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 384 SparseTensorStorage<P, I, V> *n = nullptr; 385 if (tensor) { 386 assert(tensor->getRank() == rank); 387 for (uint64_t r = 0; r < rank; r++) 388 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 389 tensor->sort(); // sort lexicographically 390 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 391 tensor); 392 delete tensor; 393 } else { 394 std::vector<uint64_t> permsz(rank); 395 for (uint64_t r = 0; r < rank; r++) 396 permsz[perm[r]] = sizes[r]; 397 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 398 } 399 return n; 400 } 401 402 private: 403 /// Initializes sparse tensor storage scheme from a memory-resident sparse 404 /// tensor in coordinate scheme. This method prepares the pointers and 405 /// indices arrays under the given per-dimension dense/sparse annotations. 406 void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 407 uint64_t hi, uint64_t d) { 408 // Once dimensions are exhausted, insert the numerical values. 409 assert(d <= getRank()); 410 if (d == getRank()) { 411 assert(lo < hi && hi <= elements.size()); 412 values.push_back(elements[lo].value); 413 return; 414 } 415 // Visit all elements in this interval. 416 uint64_t full = 0; 417 while (lo < hi) { 418 assert(lo < elements.size() && hi <= elements.size()); 419 // Find segment in interval with same index elements in this dimension. 420 uint64_t i = elements[lo].indices[d]; 421 uint64_t seg = lo + 1; 422 while (seg < hi && elements[seg].indices[d] == i) 423 seg++; 424 // Handle segment in interval for sparse or dense dimension. 425 if (isCompressedDim(d)) { 426 indices[d].push_back(i); 427 } else { 428 // For dense storage we must fill in all the zero values between 429 // the previous element (when last we ran this for-loop) and the 430 // current element. 431 for (; full < i; full++) 432 endDim(d + 1); 433 full++; 434 } 435 fromCOO(elements, lo, seg, d + 1); 436 // And move on to next segment in interval. 437 lo = seg; 438 } 439 // Finalize the sparse pointer structure at this dimension. 440 if (isCompressedDim(d)) { 441 pointers[d].push_back(indices[d].size()); 442 } else { 443 // For dense storage we must fill in all the zero values after 444 // the last element. 445 for (uint64_t sz = sizes[d]; full < sz; full++) 446 endDim(d + 1); 447 } 448 } 449 450 /// Stores the sparse tensor storage scheme into a memory-resident sparse 451 /// tensor in coordinate scheme. 452 void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 453 uint64_t pos, uint64_t d) { 454 assert(d <= getRank()); 455 if (d == getRank()) { 456 assert(pos < values.size()); 457 tensor.add(idx, values[pos]); 458 } else if (isCompressedDim(d)) { 459 // Sparse dimension. 460 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 461 idx[reord[d]] = indices[d][ii]; 462 toCOO(tensor, reord, ii, d + 1); 463 } 464 } else { 465 // Dense dimension. 466 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 467 idx[reord[d]] = i; 468 toCOO(tensor, reord, off + i, d + 1); 469 } 470 } 471 } 472 473 /// Ends a deeper, never seen before dimension. 474 void endDim(uint64_t d) { 475 assert(d <= getRank()); 476 if (d == getRank()) { 477 values.push_back(0); 478 } else if (isCompressedDim(d)) { 479 pointers[d].push_back(indices[d].size()); 480 } else { 481 for (uint64_t full = 0, sz = sizes[d]; full < sz; full++) 482 endDim(d + 1); 483 } 484 } 485 486 /// Wraps up a single insertion path, inner to outer. 487 void endPath(uint64_t diff) { 488 uint64_t rank = getRank(); 489 assert(diff <= rank); 490 for (uint64_t i = 0; i < rank - diff; i++) { 491 uint64_t d = rank - i - 1; 492 if (isCompressedDim(d)) { 493 pointers[d].push_back(indices[d].size()); 494 } else { 495 for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++) 496 endDim(d + 1); 497 } 498 } 499 } 500 501 /// Continues a single insertion path, outer to inner. 502 void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 503 uint64_t rank = getRank(); 504 assert(diff < rank); 505 for (uint64_t d = diff; d < rank; d++) { 506 uint64_t i = cursor[d]; 507 if (isCompressedDim(d)) { 508 indices[d].push_back(i); 509 } else { 510 for (uint64_t full = top; full < i; full++) 511 endDim(d + 1); 512 } 513 top = 0; 514 idx[d] = i; 515 } 516 values.push_back(val); 517 } 518 519 /// Finds the lexicographic differing dimension. 520 uint64_t lexDiff(const uint64_t *cursor) { 521 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 522 if (cursor[r] > idx[r]) 523 return r; 524 else 525 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 526 assert(0 && "duplication insertion"); 527 return -1u; 528 } 529 530 /// Returns true if dimension is compressed. 531 inline bool isCompressedDim(uint64_t d) const { 532 return (!pointers[d].empty()); 533 } 534 535 private: 536 std::vector<uint64_t> sizes; // per-dimension sizes 537 std::vector<uint64_t> rev; // "reverse" permutation 538 std::vector<uint64_t> idx; // index cursor 539 std::vector<std::vector<P>> pointers; 540 std::vector<std::vector<I>> indices; 541 std::vector<V> values; 542 }; 543 544 /// Helper to convert string to lower case. 545 static char *toLower(char *token) { 546 for (char *c = token; *c; c++) 547 *c = tolower(*c); 548 return token; 549 } 550 551 /// Read the MME header of a general sparse matrix of type real. 552 static void readMMEHeader(FILE *file, char *filename, char *line, 553 uint64_t *idata, bool *isSymmetric) { 554 char header[64]; 555 char object[64]; 556 char format[64]; 557 char field[64]; 558 char symmetry[64]; 559 // Read header line. 560 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 561 symmetry) != 5) { 562 fprintf(stderr, "Corrupt header in %s\n", filename); 563 exit(1); 564 } 565 *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 566 // Make sure this is a general sparse matrix. 567 if (strcmp(toLower(header), "%%matrixmarket") || 568 strcmp(toLower(object), "matrix") || 569 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 570 (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 571 fprintf(stderr, 572 "Cannot find a general sparse matrix with type real in %s\n", 573 filename); 574 exit(1); 575 } 576 // Skip comments. 577 while (true) { 578 if (!fgets(line, kColWidth, file)) { 579 fprintf(stderr, "Cannot find data in %s\n", filename); 580 exit(1); 581 } 582 if (line[0] != '%') 583 break; 584 } 585 // Next line contains M N NNZ. 586 idata[0] = 2; // rank 587 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 588 idata + 1) != 3) { 589 fprintf(stderr, "Cannot find size in %s\n", filename); 590 exit(1); 591 } 592 } 593 594 /// Read the "extended" FROSTT header. Although not part of the documented 595 /// format, we assume that the file starts with optional comments followed 596 /// by two lines that define the rank, the number of nonzeros, and the 597 /// dimensions sizes (one per rank) of the sparse tensor. 598 static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 599 uint64_t *idata) { 600 // Skip comments. 601 while (true) { 602 if (!fgets(line, kColWidth, file)) { 603 fprintf(stderr, "Cannot find data in %s\n", filename); 604 exit(1); 605 } 606 if (line[0] != '#') 607 break; 608 } 609 // Next line contains RANK and NNZ. 610 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 611 fprintf(stderr, "Cannot find metadata in %s\n", filename); 612 exit(1); 613 } 614 // Followed by a line with the dimension sizes (one per rank). 615 for (uint64_t r = 0; r < idata[0]; r++) { 616 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 617 fprintf(stderr, "Cannot find dimension size %s\n", filename); 618 exit(1); 619 } 620 } 621 fgets(line, kColWidth, file); // end of line 622 } 623 624 /// Reads a sparse tensor with the given filename into a memory-resident 625 /// sparse tensor in coordinate scheme. 626 template <typename V> 627 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 628 const uint64_t *sizes, 629 const uint64_t *perm) { 630 // Open the file. 631 FILE *file = fopen(filename, "r"); 632 if (!file) { 633 fprintf(stderr, "Cannot find %s\n", filename); 634 exit(1); 635 } 636 // Perform some file format dependent set up. 637 char line[kColWidth]; 638 uint64_t idata[512]; 639 bool isSymmetric = false; 640 if (strstr(filename, ".mtx")) { 641 readMMEHeader(file, filename, line, idata, &isSymmetric); 642 } else if (strstr(filename, ".tns")) { 643 readExtFROSTTHeader(file, filename, line, idata); 644 } else { 645 fprintf(stderr, "Unknown format %s\n", filename); 646 exit(1); 647 } 648 // Prepare sparse tensor object with per-dimension sizes 649 // and the number of nonzeros as initial capacity. 650 assert(rank == idata[0] && "rank mismatch"); 651 uint64_t nnz = idata[1]; 652 for (uint64_t r = 0; r < rank; r++) 653 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 654 "dimension size mismatch"); 655 SparseTensorCOO<V> *tensor = 656 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 657 // Read all nonzero elements. 658 std::vector<uint64_t> indices(rank); 659 for (uint64_t k = 0; k < nnz; k++) { 660 if (!fgets(line, kColWidth, file)) { 661 fprintf(stderr, "Cannot find next line of data in %s\n", filename); 662 exit(1); 663 } 664 char *linePtr = line; 665 for (uint64_t r = 0; r < rank; r++) { 666 uint64_t idx = strtoul(linePtr, &linePtr, 10); 667 // Add 0-based index. 668 indices[perm[r]] = idx - 1; 669 } 670 // The external formats always store the numerical values with the type 671 // double, but we cast these values to the sparse tensor object type. 672 double value = strtod(linePtr, &linePtr); 673 tensor->add(indices, value); 674 // We currently chose to deal with symmetric matrices by fully constructing 675 // them. In the future, we may want to make symmetry implicit for storage 676 // reasons. 677 if (isSymmetric && indices[0] != indices[1]) 678 tensor->add({indices[1], indices[0]}, value); 679 } 680 // Close the file and return tensor. 681 fclose(file); 682 return tensor; 683 } 684 685 } // namespace 686 687 extern "C" { 688 689 //===----------------------------------------------------------------------===// 690 // 691 // Public API with methods that operate on MLIR buffers (memrefs) to interact 692 // with sparse tensors, which are only visible as opaque pointers externally. 693 // These methods should be used exclusively by MLIR compiler-generated code. 694 // 695 // Some macro magic is used to generate implementations for all required type 696 // combinations that can be called from MLIR compiler-generated code. 697 // 698 //===----------------------------------------------------------------------===// 699 700 #define CASE(p, i, v, P, I, V) \ 701 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 702 SparseTensorCOO<V> *tensor = nullptr; \ 703 if (action <= Action::kFromCOO) { \ 704 if (action == Action::kFromFile) { \ 705 char *filename = static_cast<char *>(ptr); \ 706 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 707 } else if (action == Action::kFromCOO) { \ 708 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 709 } else { \ 710 assert(action == Action::kEmpty); \ 711 } \ 712 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 713 sparsity, tensor); \ 714 } \ 715 if (action == Action::kEmptyCOO) \ 716 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 717 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 718 if (action == Action::kToIterator) { \ 719 tensor->startIterator(); \ 720 } else { \ 721 assert(action == Action::kToCOO); \ 722 } \ 723 return tensor; \ 724 } 725 726 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 727 728 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 729 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 730 assert(ref &&tensor); \ 731 std::vector<TYPE> *v; \ 732 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 733 ref->basePtr = ref->data = v->data(); \ 734 ref->offset = 0; \ 735 ref->sizes[0] = v->size(); \ 736 ref->strides[0] = 1; \ 737 } 738 739 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 740 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 741 index_t d) { \ 742 assert(ref &&tensor); \ 743 std::vector<TYPE> *v; \ 744 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 745 ref->basePtr = ref->data = v->data(); \ 746 ref->offset = 0; \ 747 ref->sizes[0] = v->size(); \ 748 ref->strides[0] = 1; \ 749 } 750 751 #define IMPL_ADDELT(NAME, TYPE) \ 752 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 753 StridedMemRefType<index_t, 1> *iref, \ 754 StridedMemRefType<index_t, 1> *pref) { \ 755 assert(tensor &&iref &&pref); \ 756 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 757 assert(iref->sizes[0] == pref->sizes[0]); \ 758 const index_t *indx = iref->data + iref->offset; \ 759 const index_t *perm = pref->data + pref->offset; \ 760 uint64_t isize = iref->sizes[0]; \ 761 std::vector<index_t> indices(isize); \ 762 for (uint64_t r = 0; r < isize; r++) \ 763 indices[perm[r]] = indx[r]; \ 764 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 765 return tensor; \ 766 } 767 768 #define IMPL_GETNEXT(NAME, V) \ 769 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *iref, \ 770 StridedMemRefType<V, 0> *vref) { \ 771 assert(tensor &&iref &&vref); \ 772 assert(iref->strides[0] == 1); \ 773 index_t *indx = iref->data + iref->offset; \ 774 V *value = vref->data + vref->offset; \ 775 const uint64_t isize = iref->sizes[0]; \ 776 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 777 const Element<V> *elem = iter->getNext(); \ 778 if (elem == nullptr) { \ 779 delete iter; \ 780 return false; \ 781 } \ 782 for (uint64_t r = 0; r < isize; r++) \ 783 indx[r] = elem->indices[r]; \ 784 *value = elem->value; \ 785 return true; \ 786 } 787 788 #define IMPL_LEXINSERT(NAME, V) \ 789 void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \ 790 V val) { \ 791 assert(tensor &&cref); \ 792 assert(cref->strides[0] == 1); \ 793 index_t *cursor = cref->data + cref->offset; \ 794 assert(cursor); \ 795 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 796 } 797 798 #define IMPL_EXPINSERT(NAME, V) \ 799 void _mlir_ciface_##NAME( \ 800 void *tensor, StridedMemRefType<index_t, 1> *cref, \ 801 StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 802 StridedMemRefType<index_t, 1> *aref, index_t count) { \ 803 assert(tensor &&cref &&vref &&fref &&aref); \ 804 assert(cref->strides[0] == 1); \ 805 assert(vref->strides[0] == 1); \ 806 assert(fref->strides[0] == 1); \ 807 assert(aref->strides[0] == 1); \ 808 assert(vref->sizes[0] == fref->sizes[0]); \ 809 index_t *cursor = cref->data + cref->offset; \ 810 V *values = vref->data + vref->offset; \ 811 bool *filled = fref->data + fref->offset; \ 812 index_t *added = aref->data + aref->offset; \ 813 static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 814 cursor, values, filled, added, count); \ 815 } 816 817 // Assume index_t is in fact uint64_t, so that _mlir_ciface_newSparseTensor 818 // can safely rewrite kIndex to kU64. We make this assertion to guarantee 819 // that this file cannot get out of sync with its header. 820 static_assert(std::is_same<index_t, uint64_t>::value, 821 "Expected index_t == uint64_t"); 822 823 /// Constructs a new sparse tensor. This is the "swiss army knife" 824 /// method for materializing sparse tensors into the computation. 825 /// 826 /// Action: 827 /// kEmpty = returns empty storage to fill later 828 /// kFromFile = returns storage, where ptr contains filename to read 829 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 830 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 831 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 832 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 833 void * 834 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 835 StridedMemRefType<index_t, 1> *sref, 836 StridedMemRefType<index_t, 1> *pref, 837 OverheadType ptrTp, OverheadType indTp, 838 PrimaryType valTp, Action action, void *ptr) { 839 assert(aref && sref && pref); 840 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 841 pref->strides[0] == 1); 842 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 843 const DimLevelType *sparsity = aref->data + aref->offset; 844 const index_t *sizes = sref->data + sref->offset; 845 const index_t *perm = pref->data + pref->offset; 846 uint64_t rank = aref->sizes[0]; 847 848 // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 849 // This is safe because of the static_assert above. 850 if (ptrTp == OverheadType::kIndex) 851 ptrTp = OverheadType::kU64; 852 if (indTp == OverheadType::kIndex) 853 indTp = OverheadType::kU64; 854 855 // Double matrices with all combinations of overhead storage. 856 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 857 uint64_t, double); 858 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 859 uint32_t, double); 860 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 861 uint16_t, double); 862 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 863 uint8_t, double); 864 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 865 uint64_t, double); 866 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 867 uint32_t, double); 868 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 869 uint16_t, double); 870 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 871 uint8_t, double); 872 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 873 uint64_t, double); 874 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 875 uint32_t, double); 876 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 877 uint16_t, double); 878 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 879 uint8_t, double); 880 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 881 uint64_t, double); 882 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 883 uint32_t, double); 884 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 885 uint16_t, double); 886 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 887 uint8_t, double); 888 889 // Float matrices with all combinations of overhead storage. 890 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 891 uint64_t, float); 892 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 893 uint32_t, float); 894 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 895 uint16_t, float); 896 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 897 uint8_t, float); 898 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 899 uint64_t, float); 900 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 901 uint32_t, float); 902 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 903 uint16_t, float); 904 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 905 uint8_t, float); 906 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 907 uint64_t, float); 908 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 909 uint32_t, float); 910 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 911 uint16_t, float); 912 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 913 uint8_t, float); 914 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 915 uint64_t, float); 916 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 917 uint32_t, float); 918 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 919 uint16_t, float); 920 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 921 uint8_t, float); 922 923 // Integral matrices with both overheads of the same type. 924 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 925 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 926 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 927 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 928 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 929 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 930 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 931 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 932 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 933 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 934 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 935 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 936 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 937 938 // Unsupported case (add above if needed). 939 fputs("unsupported combination of types\n", stderr); 940 exit(1); 941 } 942 943 /// Methods that provide direct access to pointers. 944 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 945 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 946 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 947 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 948 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 949 950 /// Methods that provide direct access to indices. 951 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 952 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 953 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 954 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 955 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 956 957 /// Methods that provide direct access to values. 958 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 959 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 960 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 961 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 962 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 963 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 964 965 /// Helper to add value to coordinate scheme, one per value type. 966 IMPL_ADDELT(addEltF64, double) 967 IMPL_ADDELT(addEltF32, float) 968 IMPL_ADDELT(addEltI64, int64_t) 969 IMPL_ADDELT(addEltI32, int32_t) 970 IMPL_ADDELT(addEltI16, int16_t) 971 IMPL_ADDELT(addEltI8, int8_t) 972 973 /// Helper to enumerate elements of coordinate scheme, one per value type. 974 IMPL_GETNEXT(getNextF64, double) 975 IMPL_GETNEXT(getNextF32, float) 976 IMPL_GETNEXT(getNextI64, int64_t) 977 IMPL_GETNEXT(getNextI32, int32_t) 978 IMPL_GETNEXT(getNextI16, int16_t) 979 IMPL_GETNEXT(getNextI8, int8_t) 980 981 /// Helper to insert elements in lexicographical index order, one per value 982 /// type. 983 IMPL_LEXINSERT(lexInsertF64, double) 984 IMPL_LEXINSERT(lexInsertF32, float) 985 IMPL_LEXINSERT(lexInsertI64, int64_t) 986 IMPL_LEXINSERT(lexInsertI32, int32_t) 987 IMPL_LEXINSERT(lexInsertI16, int16_t) 988 IMPL_LEXINSERT(lexInsertI8, int8_t) 989 990 /// Helper to insert using expansion, one per value type. 991 IMPL_EXPINSERT(expInsertF64, double) 992 IMPL_EXPINSERT(expInsertF32, float) 993 IMPL_EXPINSERT(expInsertI64, int64_t) 994 IMPL_EXPINSERT(expInsertI32, int32_t) 995 IMPL_EXPINSERT(expInsertI16, int16_t) 996 IMPL_EXPINSERT(expInsertI8, int8_t) 997 998 #undef CASE 999 #undef IMPL_SPARSEVALUES 1000 #undef IMPL_GETOVERHEAD 1001 #undef IMPL_ADDELT 1002 #undef IMPL_GETNEXT 1003 #undef IMPL_LEXINSERT 1004 #undef IMPL_EXPINSERT 1005 1006 //===----------------------------------------------------------------------===// 1007 // 1008 // Public API with methods that accept C-style data structures to interact 1009 // with sparse tensors, which are only visible as opaque pointers externally. 1010 // These methods can be used both by MLIR compiler-generated code as well as by 1011 // an external runtime that wants to interact with MLIR compiler-generated code. 1012 // 1013 //===----------------------------------------------------------------------===// 1014 1015 /// Helper method to read a sparse tensor filename from the environment, 1016 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1017 char *getTensorFilename(index_t id) { 1018 char var[80]; 1019 sprintf(var, "TENSOR%" PRIu64, id); 1020 char *env = getenv(var); 1021 return env; 1022 } 1023 1024 /// Returns size of sparse tensor in given dimension. 1025 index_t sparseDimSize(void *tensor, index_t d) { 1026 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 1027 } 1028 1029 /// Finalizes lexicographic insertions. 1030 void endInsert(void *tensor) { 1031 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1032 } 1033 1034 /// Releases sparse tensor storage. 1035 void delSparseTensor(void *tensor) { 1036 delete static_cast<SparseTensorStorageBase *>(tensor); 1037 } 1038 1039 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 1040 /// data structures. The expected parameters are: 1041 /// 1042 /// rank: rank of tensor 1043 /// nse: number of specified elements (usually the nonzeros) 1044 /// shape: array with dimension size for each rank 1045 /// values: a "nse" array with values for all specified elements 1046 /// indices: a flat "nse x rank" array with indices for all specified elements 1047 /// 1048 /// For example, the sparse matrix 1049 /// | 1.0 0.0 0.0 | 1050 /// | 0.0 5.0 3.0 | 1051 /// can be passed as 1052 /// rank = 2 1053 /// nse = 3 1054 /// shape = [2, 3] 1055 /// values = [1.0, 5.0, 3.0] 1056 /// indices = [ 0, 0, 1, 1, 1, 2] 1057 // 1058 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 1059 // 1060 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 1061 double *values, uint64_t *indices) { 1062 // Setup all-dims compressed and default ordering. 1063 std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 1064 std::vector<uint64_t> perm(rank); 1065 std::iota(perm.begin(), perm.end(), 0); 1066 // Convert external format to internal COO. 1067 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 1068 rank, shape, perm.data(), nse); 1069 std::vector<uint64_t> idx(rank); 1070 for (uint64_t i = 0, base = 0; i < nse; i++) { 1071 for (uint64_t r = 0; r < rank; r++) 1072 idx[r] = indices[base + r]; 1073 tensor->add(idx, values[i]); 1074 base += rank; 1075 } 1076 // Return sparse tensor storage format as opaque pointer. 1077 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 1078 rank, shape, perm.data(), sparse.data(), tensor); 1079 } 1080 1081 /// Converts a sparse tensor to COO-flavored format expressed using C-style 1082 /// data structures. The expected output parameters are pointers for these 1083 /// values: 1084 /// 1085 /// rank: rank of tensor 1086 /// nse: number of specified elements (usually the nonzeros) 1087 /// shape: array with dimension size for each rank 1088 /// values: a "nse" array with values for all specified elements 1089 /// indices: a flat "nse x rank" array with indices for all specified elements 1090 /// 1091 /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 1092 /// from convertToMLIRSparseTensor. 1093 /// 1094 // TODO: Currently, values are copied from SparseTensorStorage to 1095 // SparseTensorCOO, then to the output. We may want to reduce the number of 1096 // copies. 1097 // 1098 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 1099 // 1100 void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 1101 uint64_t **pShape, double **pValues, 1102 uint64_t **pIndices) { 1103 SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor = 1104 static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor); 1105 uint64_t rank = sparseTensor->getRank(); 1106 std::vector<uint64_t> perm(rank); 1107 std::iota(perm.begin(), perm.end(), 0); 1108 SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data()); 1109 1110 const std::vector<Element<double>> &elements = coo->getElements(); 1111 uint64_t nse = elements.size(); 1112 1113 uint64_t *shape = new uint64_t[rank]; 1114 for (uint64_t i = 0; i < rank; i++) 1115 shape[i] = coo->getSizes()[i]; 1116 1117 double *values = new double[nse]; 1118 uint64_t *indices = new uint64_t[rank * nse]; 1119 1120 for (uint64_t i = 0, base = 0; i < nse; i++) { 1121 values[i] = elements[i].value; 1122 for (uint64_t j = 0; j < rank; j++) 1123 indices[base + j] = elements[i].indices[j]; 1124 base += rank; 1125 } 1126 1127 delete coo; 1128 *pRank = rank; 1129 *pNse = nse; 1130 *pShape = shape; 1131 *pValues = values; 1132 *pIndices = indices; 1133 } 1134 } // extern "C" 1135 1136 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1137