1 //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a light-weight runtime support library that is useful 10 // for sparse tensor manipulations. The functionality provided in this library 11 // is meant to simplify benchmarking, testing, and debugging MLIR code that 12 // operates on sparse tensors. The provided functionality is **not** part 13 // of core MLIR, however. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 18 #include "mlir/ExecutionEngine/CRunnerUtils.h" 19 20 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 21 22 #include <algorithm> 23 #include <cassert> 24 #include <cctype> 25 #include <cinttypes> 26 #include <cstdio> 27 #include <cstdlib> 28 #include <cstring> 29 #include <numeric> 30 #include <vector> 31 32 //===----------------------------------------------------------------------===// 33 // 34 // Internal support for storing and reading sparse tensors. 35 // 36 // The following memory-resident sparse storage schemes are supported: 37 // 38 // (a) A coordinate scheme for temporarily storing and lexicographically 39 // sorting a sparse tensor by index (SparseTensorCOO). 40 // 41 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 42 // per-dimension sparse/dense annnotations together with a dimension 43 // ordering used by MLIR compiler-generated code (SparseTensorStorage). 44 // 45 // The following external formats are supported: 46 // 47 // (1) Matrix Market Exchange (MME): *.mtx 48 // https://math.nist.gov/MatrixMarket/formats.html 49 // 50 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 51 // http://frostt.io/tensors/file-formats.html 52 // 53 // Two public APIs are supported: 54 // 55 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 56 // tensors. These methods should be used exclusively by MLIR 57 // compiler-generated code. 58 // 59 // (II) Methods that accept C-style data structures to interact with sparse 60 // tensors. These methods can be used by any external runtime that wants 61 // to interact with MLIR compiler-generated code. 62 // 63 // In both cases (I) and (II), the SparseTensorStorage format is externally 64 // only visible as an opaque pointer. 65 // 66 //===----------------------------------------------------------------------===// 67 68 namespace { 69 70 /// A sparse tensor element in coordinate scheme (value and indices). 71 /// For example, a rank-1 vector element would look like 72 /// ({i}, a[i]) 73 /// and a rank-5 tensor element like 74 /// ({i,j,k,l,m}, a[i,j,k,l,m]) 75 template <typename V> 76 struct Element { 77 Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 78 std::vector<uint64_t> indices; 79 V value; 80 }; 81 82 /// A memory-resident sparse tensor in coordinate scheme (collection of 83 /// elements). This data structure is used to read a sparse tensor from 84 /// any external format into memory and sort the elements lexicographically 85 /// by indices before passing it back to the client (most packed storage 86 /// formats require the elements to appear in lexicographic index order). 87 template <typename V> 88 struct SparseTensorCOO { 89 public: 90 SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 91 : sizes(szs), iteratorLocked(false), iteratorPos(0) { 92 if (capacity) 93 elements.reserve(capacity); 94 } 95 /// Adds element as indices and value. 96 void add(const std::vector<uint64_t> &ind, V val) { 97 assert(!iteratorLocked && "Attempt to add() after startIterator()"); 98 uint64_t rank = getRank(); 99 assert(rank == ind.size()); 100 for (uint64_t r = 0; r < rank; r++) 101 assert(ind[r] < sizes[r]); // within bounds 102 elements.emplace_back(ind, val); 103 } 104 /// Sorts elements lexicographically by index. 105 void sort() { 106 assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 107 std::sort(elements.begin(), elements.end(), lexOrder); 108 } 109 /// Returns rank. 110 uint64_t getRank() const { return sizes.size(); } 111 /// Getter for sizes array. 112 const std::vector<uint64_t> &getSizes() const { return sizes; } 113 /// Getter for elements array. 114 const std::vector<Element<V>> &getElements() const { return elements; } 115 116 /// Switch into iterator mode. 117 void startIterator() { 118 iteratorLocked = true; 119 iteratorPos = 0; 120 } 121 /// Get the next element. 122 const Element<V> *getNext() { 123 assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 124 if (iteratorPos < elements.size()) 125 return &(elements[iteratorPos++]); 126 iteratorLocked = false; 127 return nullptr; 128 } 129 130 /// Factory method. Permutes the original dimensions according to 131 /// the given ordering and expects subsequent add() calls to honor 132 /// that same ordering for the given indices. The result is a 133 /// fully permuted coordinate scheme. 134 static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 135 const uint64_t *sizes, 136 const uint64_t *perm, 137 uint64_t capacity = 0) { 138 std::vector<uint64_t> permsz(rank); 139 for (uint64_t r = 0; r < rank; r++) 140 permsz[perm[r]] = sizes[r]; 141 return new SparseTensorCOO<V>(permsz, capacity); 142 } 143 144 private: 145 /// Returns true if indices of e1 < indices of e2. 146 static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 147 uint64_t rank = e1.indices.size(); 148 assert(rank == e2.indices.size()); 149 for (uint64_t r = 0; r < rank; r++) { 150 if (e1.indices[r] == e2.indices[r]) 151 continue; 152 return e1.indices[r] < e2.indices[r]; 153 } 154 return false; 155 } 156 const std::vector<uint64_t> sizes; // per-dimension sizes 157 std::vector<Element<V>> elements; 158 bool iteratorLocked; 159 unsigned iteratorPos; 160 }; 161 162 /// Abstract base class of sparse tensor storage. Note that we use 163 /// function overloading to implement "partial" method specialization. 164 class SparseTensorStorageBase { 165 public: 166 // Dimension size query. 167 virtual uint64_t getDimSize(uint64_t) = 0; 168 169 // Overhead storage. 170 virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 171 virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 172 virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 173 virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 174 virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 175 virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 176 virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 177 virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 178 179 // Primary storage. 180 virtual void getValues(std::vector<double> **) { fatal("valf64"); } 181 virtual void getValues(std::vector<float> **) { fatal("valf32"); } 182 virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 183 virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 184 virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 185 virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 186 187 // Element-wise insertion in lexicographic index order. 188 virtual void lexInsert(uint64_t *, double) { fatal("insf64"); } 189 virtual void lexInsert(uint64_t *, float) { fatal("insf32"); } 190 virtual void lexInsert(uint64_t *, int64_t) { fatal("insi64"); } 191 virtual void lexInsert(uint64_t *, int32_t) { fatal("insi32"); } 192 virtual void lexInsert(uint64_t *, int16_t) { fatal("ins16"); } 193 virtual void lexInsert(uint64_t *, int8_t) { fatal("insi8"); } 194 virtual void endInsert() = 0; 195 196 virtual ~SparseTensorStorageBase() {} 197 198 private: 199 void fatal(const char *tp) { 200 fprintf(stderr, "unsupported %s\n", tp); 201 exit(1); 202 } 203 }; 204 205 /// A memory-resident sparse tensor using a storage scheme based on 206 /// per-dimension sparse/dense annotations. This data structure provides a 207 /// bufferized form of a sparse tensor type. In contrast to generating setup 208 /// methods for each differently annotated sparse tensor, this method provides 209 /// a convenient "one-size-fits-all" solution that simply takes an input tensor 210 /// and annotations to implement all required setup in a general manner. 211 template <typename P, typename I, typename V> 212 class SparseTensorStorage : public SparseTensorStorageBase { 213 public: 214 /// Constructs a sparse tensor storage scheme with the given dimensions, 215 /// permutation, and per-dimension dense/sparse annotations, using 216 /// the coordinate scheme tensor for the initial contents if provided. 217 SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 218 const DimLevelType *sparsity, 219 SparseTensorCOO<V> *tensor = nullptr) 220 : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 221 indices(getRank()) { 222 uint64_t rank = getRank(); 223 // Store "reverse" permutation. 224 for (uint64_t r = 0; r < rank; r++) 225 rev[perm[r]] = r; 226 // Provide hints on capacity of pointers and indices. 227 // TODO: needs fine-tuning based on sparsity 228 bool allDense = true; 229 uint64_t sz = 1; 230 for (uint64_t r = 0; r < rank; r++) { 231 sz *= sizes[r]; 232 if (sparsity[r] == DimLevelType::kCompressed) { 233 pointers[r].reserve(sz + 1); 234 indices[r].reserve(sz); 235 sz = 1; 236 allDense = false; 237 } else { 238 assert(sparsity[r] == DimLevelType::kDense && 239 "singleton not yet supported"); 240 } 241 } 242 // Prepare sparse pointer structures for all dimensions. 243 for (uint64_t r = 0; r < rank; r++) 244 if (sparsity[r] == DimLevelType::kCompressed) 245 pointers[r].push_back(0); 246 // Then assign contents from coordinate scheme tensor if provided. 247 if (tensor) { 248 uint64_t nnz = tensor->getElements().size(); 249 values.reserve(nnz); 250 fromCOO(tensor, 0, nnz, 0); 251 } else if (allDense) { 252 values.resize(sz, 0); 253 } 254 } 255 256 virtual ~SparseTensorStorage() {} 257 258 /// Get the rank of the tensor. 259 uint64_t getRank() const { return sizes.size(); } 260 261 /// Get the size in the given dimension of the tensor. 262 uint64_t getDimSize(uint64_t d) override { 263 assert(d < getRank()); 264 return sizes[d]; 265 } 266 267 /// Partially specialize these getter methods based on template types. 268 void getPointers(std::vector<P> **out, uint64_t d) override { 269 assert(d < getRank()); 270 *out = &pointers[d]; 271 } 272 void getIndices(std::vector<I> **out, uint64_t d) override { 273 assert(d < getRank()); 274 *out = &indices[d]; 275 } 276 void getValues(std::vector<V> **out) override { *out = &values; } 277 278 /// Partially specialize lexicographic insertions based on template types. 279 void lexInsert(uint64_t *cursor, V val) override { 280 // First, wrap up pending insertion path. 281 uint64_t diff = 0; 282 uint64_t top = 0; 283 if (!values.empty()) { 284 diff = lexDiff(cursor); 285 endPath(diff + 1); 286 top = idx[diff] + 1; 287 } 288 // Then continue with insertion path. 289 insPath(cursor, diff, top, val); 290 } 291 292 /// Finalizes lexicographic insertions. 293 void endInsert() override { 294 if (values.empty()) 295 endDim(0); 296 else 297 endPath(0); 298 } 299 300 /// Returns this sparse tensor storage scheme as a new memory-resident 301 /// sparse tensor in coordinate scheme with the given dimension order. 302 SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 303 // Restore original order of the dimension sizes and allocate coordinate 304 // scheme with desired new ordering specified in perm. 305 uint64_t rank = getRank(); 306 std::vector<uint64_t> orgsz(rank); 307 for (uint64_t r = 0; r < rank; r++) 308 orgsz[rev[r]] = sizes[r]; 309 SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 310 rank, orgsz.data(), perm, values.size()); 311 // Populate coordinate scheme restored from old ordering and changed with 312 // new ordering. Rather than applying both reorderings during the recursion, 313 // we compute the combine permutation in advance. 314 std::vector<uint64_t> reord(rank); 315 for (uint64_t r = 0; r < rank; r++) 316 reord[r] = perm[rev[r]]; 317 toCOO(tensor, reord, 0, 0); 318 assert(tensor->getElements().size() == values.size()); 319 return tensor; 320 } 321 322 /// Factory method. Constructs a sparse tensor storage scheme with the given 323 /// dimensions, permutation, and per-dimension dense/sparse annotations, 324 /// using the coordinate scheme tensor for the initial contents if provided. 325 /// In the latter case, the coordinate scheme must respect the same 326 /// permutation as is desired for the new sparse tensor storage. 327 static SparseTensorStorage<P, I, V> * 328 newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 329 const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 330 SparseTensorStorage<P, I, V> *n = nullptr; 331 if (tensor) { 332 assert(tensor->getRank() == rank); 333 for (uint64_t r = 0; r < rank; r++) 334 assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 335 tensor->sort(); // sort lexicographically 336 n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 337 tensor); 338 delete tensor; 339 } else { 340 std::vector<uint64_t> permsz(rank); 341 for (uint64_t r = 0; r < rank; r++) 342 permsz[perm[r]] = sizes[r]; 343 n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 344 } 345 return n; 346 } 347 348 private: 349 /// Initializes sparse tensor storage scheme from a memory-resident sparse 350 /// tensor in coordinate scheme. This method prepares the pointers and 351 /// indices arrays under the given per-dimension dense/sparse annotations. 352 void fromCOO(SparseTensorCOO<V> *tensor, uint64_t lo, uint64_t hi, 353 uint64_t d) { 354 const std::vector<Element<V>> &elements = tensor->getElements(); 355 // Once dimensions are exhausted, insert the numerical values. 356 assert(d <= getRank()); 357 if (d == getRank()) { 358 assert(lo < hi && hi <= elements.size()); 359 values.push_back(elements[lo].value); 360 return; 361 } 362 // Visit all elements in this interval. 363 uint64_t full = 0; 364 while (lo < hi) { 365 assert(lo < elements.size() && hi <= elements.size()); 366 // Find segment in interval with same index elements in this dimension. 367 uint64_t i = elements[lo].indices[d]; 368 uint64_t seg = lo + 1; 369 while (seg < hi && elements[seg].indices[d] == i) 370 seg++; 371 // Handle segment in interval for sparse or dense dimension. 372 if (isCompressedDim(d)) { 373 indices[d].push_back(i); 374 } else { 375 // For dense storage we must fill in all the zero values between 376 // the previous element (when last we ran this for-loop) and the 377 // current element. 378 for (; full < i; full++) 379 endDim(d + 1); 380 full++; 381 } 382 fromCOO(tensor, lo, seg, d + 1); 383 // And move on to next segment in interval. 384 lo = seg; 385 } 386 // Finalize the sparse pointer structure at this dimension. 387 if (isCompressedDim(d)) { 388 pointers[d].push_back(indices[d].size()); 389 } else { 390 // For dense storage we must fill in all the zero values after 391 // the last element. 392 for (uint64_t sz = sizes[d]; full < sz; full++) 393 endDim(d + 1); 394 } 395 } 396 397 /// Stores the sparse tensor storage scheme into a memory-resident sparse 398 /// tensor in coordinate scheme. 399 void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord, 400 uint64_t pos, uint64_t d) { 401 assert(d <= getRank()); 402 if (d == getRank()) { 403 assert(pos < values.size()); 404 tensor->add(idx, values[pos]); 405 } else if (isCompressedDim(d)) { 406 // Sparse dimension. 407 for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 408 idx[reord[d]] = indices[d][ii]; 409 toCOO(tensor, reord, ii, d + 1); 410 } 411 } else { 412 // Dense dimension. 413 for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 414 idx[reord[d]] = i; 415 toCOO(tensor, reord, off + i, d + 1); 416 } 417 } 418 } 419 420 /// Ends a deeper, never seen before dimension. 421 void endDim(uint64_t d) { 422 assert(d <= getRank()); 423 if (d == getRank()) { 424 values.push_back(0); 425 } else if (isCompressedDim(d)) { 426 pointers[d].push_back(indices[d].size()); 427 } else { 428 for (uint64_t full = 0, sz = sizes[d]; full < sz; full++) 429 endDim(d + 1); 430 } 431 } 432 433 /// Wraps up a single insertion path, inner to outer. 434 void endPath(uint64_t diff) { 435 uint64_t rank = getRank(); 436 assert(diff <= rank); 437 for (uint64_t i = 0; i < rank - diff; i++) { 438 uint64_t d = rank - i - 1; 439 if (isCompressedDim(d)) { 440 pointers[d].push_back(indices[d].size()); 441 } else { 442 for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++) 443 endDim(d + 1); 444 } 445 } 446 } 447 448 /// Continues a single insertion path, outer to inner. 449 void insPath(uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 450 uint64_t rank = getRank(); 451 assert(diff < rank); 452 for (uint64_t d = diff; d < rank; d++) { 453 uint64_t i = cursor[d]; 454 if (isCompressedDim(d)) { 455 indices[d].push_back(i); 456 } else { 457 for (uint64_t full = top; full < i; full++) 458 endDim(d + 1); 459 } 460 top = 0; 461 idx[d] = i; 462 } 463 values.push_back(val); 464 } 465 466 /// Finds the lexicographic differing dimension. 467 uint64_t lexDiff(uint64_t *cursor) { 468 for (uint64_t r = 0, rank = getRank(); r < rank; r++) 469 if (cursor[r] > idx[r]) 470 return r; 471 else 472 assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 473 assert(0 && "duplication insertion"); 474 return -1u; 475 } 476 477 /// Returns true if dimension is compressed. 478 inline bool isCompressedDim(uint64_t d) const { 479 return (!pointers[d].empty()); 480 } 481 482 private: 483 std::vector<uint64_t> sizes; // per-dimension sizes 484 std::vector<uint64_t> rev; // "reverse" permutation 485 std::vector<uint64_t> idx; // index cursor 486 std::vector<std::vector<P>> pointers; 487 std::vector<std::vector<I>> indices; 488 std::vector<V> values; 489 }; 490 491 /// Helper to convert string to lower case. 492 static char *toLower(char *token) { 493 for (char *c = token; *c; c++) 494 *c = tolower(*c); 495 return token; 496 } 497 498 /// Read the MME header of a general sparse matrix of type real. 499 static void readMMEHeader(FILE *file, char *name, uint64_t *idata) { 500 char line[1025]; 501 char header[64]; 502 char object[64]; 503 char format[64]; 504 char field[64]; 505 char symmetry[64]; 506 // Read header line. 507 if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 508 symmetry) != 5) { 509 fprintf(stderr, "Corrupt header in %s\n", name); 510 exit(1); 511 } 512 // Make sure this is a general sparse matrix. 513 if (strcmp(toLower(header), "%%matrixmarket") || 514 strcmp(toLower(object), "matrix") || 515 strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 516 strcmp(toLower(symmetry), "general")) { 517 fprintf(stderr, 518 "Cannot find a general sparse matrix with type real in %s\n", name); 519 exit(1); 520 } 521 // Skip comments. 522 while (1) { 523 if (!fgets(line, 1025, file)) { 524 fprintf(stderr, "Cannot find data in %s\n", name); 525 exit(1); 526 } 527 if (line[0] != '%') 528 break; 529 } 530 // Next line contains M N NNZ. 531 idata[0] = 2; // rank 532 if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 533 idata + 1) != 3) { 534 fprintf(stderr, "Cannot find size in %s\n", name); 535 exit(1); 536 } 537 } 538 539 /// Read the "extended" FROSTT header. Although not part of the documented 540 /// format, we assume that the file starts with optional comments followed 541 /// by two lines that define the rank, the number of nonzeros, and the 542 /// dimensions sizes (one per rank) of the sparse tensor. 543 static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) { 544 char line[1025]; 545 // Skip comments. 546 while (1) { 547 if (!fgets(line, 1025, file)) { 548 fprintf(stderr, "Cannot find data in %s\n", name); 549 exit(1); 550 } 551 if (line[0] != '#') 552 break; 553 } 554 // Next line contains RANK and NNZ. 555 if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 556 fprintf(stderr, "Cannot find metadata in %s\n", name); 557 exit(1); 558 } 559 // Followed by a line with the dimension sizes (one per rank). 560 for (uint64_t r = 0; r < idata[0]; r++) { 561 if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 562 fprintf(stderr, "Cannot find dimension size %s\n", name); 563 exit(1); 564 } 565 } 566 } 567 568 /// Reads a sparse tensor with the given filename into a memory-resident 569 /// sparse tensor in coordinate scheme. 570 template <typename V> 571 static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 572 const uint64_t *sizes, 573 const uint64_t *perm) { 574 // Open the file. 575 FILE *file = fopen(filename, "r"); 576 if (!file) { 577 fprintf(stderr, "Cannot find %s\n", filename); 578 exit(1); 579 } 580 // Perform some file format dependent set up. 581 uint64_t idata[512]; 582 if (strstr(filename, ".mtx")) { 583 readMMEHeader(file, filename, idata); 584 } else if (strstr(filename, ".tns")) { 585 readExtFROSTTHeader(file, filename, idata); 586 } else { 587 fprintf(stderr, "Unknown format %s\n", filename); 588 exit(1); 589 } 590 // Prepare sparse tensor object with per-dimension sizes 591 // and the number of nonzeros as initial capacity. 592 assert(rank == idata[0] && "rank mismatch"); 593 uint64_t nnz = idata[1]; 594 for (uint64_t r = 0; r < rank; r++) 595 assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 596 "dimension size mismatch"); 597 SparseTensorCOO<V> *tensor = 598 SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 599 // Read all nonzero elements. 600 std::vector<uint64_t> indices(rank); 601 for (uint64_t k = 0; k < nnz; k++) { 602 uint64_t idx = -1u; 603 for (uint64_t r = 0; r < rank; r++) { 604 if (fscanf(file, "%" PRIu64, &idx) != 1) { 605 fprintf(stderr, "Cannot find next index in %s\n", filename); 606 exit(1); 607 } 608 // Add 0-based index. 609 indices[perm[r]] = idx - 1; 610 } 611 // The external formats always store the numerical values with the type 612 // double, but we cast these values to the sparse tensor object type. 613 double value; 614 if (fscanf(file, "%lg\n", &value) != 1) { 615 fprintf(stderr, "Cannot find next value in %s\n", filename); 616 exit(1); 617 } 618 tensor->add(indices, value); 619 } 620 // Close the file and return tensor. 621 fclose(file); 622 return tensor; 623 } 624 625 } // anonymous namespace 626 627 extern "C" { 628 629 /// This type is used in the public API at all places where MLIR expects 630 /// values with the built-in type "index". For now, we simply assume that 631 /// type is 64-bit, but targets with different "index" bit widths should link 632 /// with an alternatively built runtime support library. 633 // TODO: support such targets? 634 typedef uint64_t index_t; 635 636 //===----------------------------------------------------------------------===// 637 // 638 // Public API with methods that operate on MLIR buffers (memrefs) to interact 639 // with sparse tensors, which are only visible as opaque pointers externally. 640 // These methods should be used exclusively by MLIR compiler-generated code. 641 // 642 // Some macro magic is used to generate implementations for all required type 643 // combinations that can be called from MLIR compiler-generated code. 644 // 645 //===----------------------------------------------------------------------===// 646 647 #define CASE(p, i, v, P, I, V) \ 648 if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 649 SparseTensorCOO<V> *tensor = nullptr; \ 650 if (action <= Action::kFromCOO) { \ 651 if (action == Action::kFromFile) { \ 652 char *filename = static_cast<char *>(ptr); \ 653 tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 654 } else if (action == Action::kFromCOO) { \ 655 tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 656 } else { \ 657 assert(action == Action::kEmpty); \ 658 } \ 659 return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 660 sparsity, tensor); \ 661 } else if (action == Action::kEmptyCOO) { \ 662 return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 663 } else { \ 664 tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 665 if (action == Action::kToIterator) { \ 666 tensor->startIterator(); \ 667 } else { \ 668 assert(action == Action::kToCOO); \ 669 } \ 670 return tensor; \ 671 } \ 672 } 673 674 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 675 676 #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 677 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 678 assert(ref); \ 679 assert(tensor); \ 680 std::vector<TYPE> *v; \ 681 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 682 ref->basePtr = ref->data = v->data(); \ 683 ref->offset = 0; \ 684 ref->sizes[0] = v->size(); \ 685 ref->strides[0] = 1; \ 686 } 687 688 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 689 void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 690 index_t d) { \ 691 assert(ref); \ 692 assert(tensor); \ 693 std::vector<TYPE> *v; \ 694 static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 695 ref->basePtr = ref->data = v->data(); \ 696 ref->offset = 0; \ 697 ref->sizes[0] = v->size(); \ 698 ref->strides[0] = 1; \ 699 } 700 701 #define IMPL_ADDELT(NAME, TYPE) \ 702 void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 703 StridedMemRefType<index_t, 1> *iref, \ 704 StridedMemRefType<index_t, 1> *pref) { \ 705 assert(tensor); \ 706 assert(iref); \ 707 assert(pref); \ 708 assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 709 assert(iref->sizes[0] == pref->sizes[0]); \ 710 const index_t *indx = iref->data + iref->offset; \ 711 const index_t *perm = pref->data + pref->offset; \ 712 uint64_t isize = iref->sizes[0]; \ 713 std::vector<index_t> indices(isize); \ 714 for (uint64_t r = 0; r < isize; r++) \ 715 indices[perm[r]] = indx[r]; \ 716 static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 717 return tensor; \ 718 } 719 720 #define IMPL_GETNEXT(NAME, V) \ 721 bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<uint64_t, 1> *iref, \ 722 StridedMemRefType<V, 0> *vref) { \ 723 assert(iref->strides[0] == 1); \ 724 uint64_t *indx = iref->data + iref->offset; \ 725 V *value = vref->data + vref->offset; \ 726 const uint64_t isize = iref->sizes[0]; \ 727 auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 728 const Element<V> *elem = iter->getNext(); \ 729 if (elem == nullptr) { \ 730 delete iter; \ 731 return false; \ 732 } \ 733 for (uint64_t r = 0; r < isize; r++) \ 734 indx[r] = elem->indices[r]; \ 735 *value = elem->value; \ 736 return true; \ 737 } 738 739 #define IMPL_LEXINSERT(NAME, V) \ 740 void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \ 741 V val) { \ 742 assert(cref->strides[0] == 1); \ 743 uint64_t *cursor = cref->data + cref->offset; \ 744 assert(cursor); \ 745 static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 746 } 747 748 /// Constructs a new sparse tensor. This is the "swiss army knife" 749 /// method for materializing sparse tensors into the computation. 750 /// 751 /// Action: 752 /// kEmpty = returns empty storage to fill later 753 /// kFromFile = returns storage, where ptr contains filename to read 754 /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 755 /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 756 /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 757 /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 758 void * 759 _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 760 StridedMemRefType<index_t, 1> *sref, 761 StridedMemRefType<index_t, 1> *pref, 762 OverheadType ptrTp, OverheadType indTp, 763 PrimaryType valTp, Action action, void *ptr) { 764 assert(aref && sref && pref); 765 assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 766 pref->strides[0] == 1); 767 assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 768 const DimLevelType *sparsity = aref->data + aref->offset; 769 const index_t *sizes = sref->data + sref->offset; 770 const index_t *perm = pref->data + pref->offset; 771 uint64_t rank = aref->sizes[0]; 772 773 // Double matrices with all combinations of overhead storage. 774 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 775 uint64_t, double); 776 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 777 uint32_t, double); 778 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 779 uint16_t, double); 780 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 781 uint8_t, double); 782 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 783 uint64_t, double); 784 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 785 uint32_t, double); 786 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 787 uint16_t, double); 788 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 789 uint8_t, double); 790 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 791 uint64_t, double); 792 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 793 uint32_t, double); 794 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 795 uint16_t, double); 796 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 797 uint8_t, double); 798 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 799 uint64_t, double); 800 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 801 uint32_t, double); 802 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 803 uint16_t, double); 804 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 805 uint8_t, double); 806 807 // Float matrices with all combinations of overhead storage. 808 CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 809 uint64_t, float); 810 CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 811 uint32_t, float); 812 CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 813 uint16_t, float); 814 CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 815 uint8_t, float); 816 CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 817 uint64_t, float); 818 CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 819 uint32_t, float); 820 CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 821 uint16_t, float); 822 CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 823 uint8_t, float); 824 CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 825 uint64_t, float); 826 CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 827 uint32_t, float); 828 CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 829 uint16_t, float); 830 CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 831 uint8_t, float); 832 CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 833 uint64_t, float); 834 CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 835 uint32_t, float); 836 CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 837 uint16_t, float); 838 CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 839 uint8_t, float); 840 841 // Integral matrices with both overheads of the same type. 842 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 843 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 844 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 845 CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 846 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 847 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 848 CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 849 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 850 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 851 CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 852 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 853 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 854 CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 855 856 // Unsupported case (add above if needed). 857 fputs("unsupported combination of types\n", stderr); 858 exit(1); 859 } 860 861 /// Methods that provide direct access to pointers. 862 IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 863 IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 864 IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 865 IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 866 IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 867 868 /// Methods that provide direct access to indices. 869 IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 870 IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 871 IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 872 IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 873 IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 874 875 /// Methods that provide direct access to values. 876 IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 877 IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 878 IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 879 IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 880 IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 881 IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 882 883 /// Helper to add value to coordinate scheme, one per value type. 884 IMPL_ADDELT(addEltF64, double) 885 IMPL_ADDELT(addEltF32, float) 886 IMPL_ADDELT(addEltI64, int64_t) 887 IMPL_ADDELT(addEltI32, int32_t) 888 IMPL_ADDELT(addEltI16, int16_t) 889 IMPL_ADDELT(addEltI8, int8_t) 890 891 /// Helper to enumerate elements of coordinate scheme, one per value type. 892 IMPL_GETNEXT(getNextF64, double) 893 IMPL_GETNEXT(getNextF32, float) 894 IMPL_GETNEXT(getNextI64, int64_t) 895 IMPL_GETNEXT(getNextI32, int32_t) 896 IMPL_GETNEXT(getNextI16, int16_t) 897 IMPL_GETNEXT(getNextI8, int8_t) 898 899 /// Helper to insert elements in lexicograph index order, one per value type. 900 IMPL_LEXINSERT(lexInsertF64, double) 901 IMPL_LEXINSERT(lexInsertF32, float) 902 IMPL_LEXINSERT(lexInsertI64, int64_t) 903 IMPL_LEXINSERT(lexInsertI32, int32_t) 904 IMPL_LEXINSERT(lexInsertI16, int16_t) 905 IMPL_LEXINSERT(lexInsertI8, int8_t) 906 907 #undef CASE 908 #undef IMPL_SPARSEVALUES 909 #undef IMPL_GETOVERHEAD 910 #undef IMPL_ADDELT 911 #undef IMPL_GETNEXT 912 #undef IMPL_INSERTLEX 913 914 //===----------------------------------------------------------------------===// 915 // 916 // Public API with methods that accept C-style data structures to interact 917 // with sparse tensors, which are only visible as opaque pointers externally. 918 // These methods can be used both by MLIR compiler-generated code as well as by 919 // an external runtime that wants to interact with MLIR compiler-generated code. 920 // 921 //===----------------------------------------------------------------------===// 922 923 /// Helper method to read a sparse tensor filename from the environment, 924 /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 925 char *getTensorFilename(index_t id) { 926 char var[80]; 927 sprintf(var, "TENSOR%" PRIu64, id); 928 char *env = getenv(var); 929 return env; 930 } 931 932 /// Returns size of sparse tensor in given dimension. 933 index_t sparseDimSize(void *tensor, index_t d) { 934 return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 935 } 936 937 /// Finalizes lexicographic insertions. 938 void endInsert(void *tensor) { 939 return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 940 } 941 942 /// Releases sparse tensor storage. 943 void delSparseTensor(void *tensor) { 944 delete static_cast<SparseTensorStorageBase *>(tensor); 945 } 946 947 /// Initializes sparse tensor from a COO-flavored format expressed using C-style 948 /// data structures. The expected parameters are: 949 /// 950 /// rank: rank of tensor 951 /// nse: number of specified elements (usually the nonzeros) 952 /// shape: array with dimension size for each rank 953 /// values: a "nse" array with values for all specified elements 954 /// indices: a flat "nse x rank" array with indices for all specified elements 955 /// 956 /// For example, the sparse matrix 957 /// | 1.0 0.0 0.0 | 958 /// | 0.0 5.0 3.0 | 959 /// can be passed as 960 /// rank = 2 961 /// nse = 3 962 /// shape = [2, 3] 963 /// values = [1.0, 5.0, 3.0] 964 /// indices = [ 0, 0, 1, 1, 1, 2] 965 // 966 // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 967 // 968 void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 969 double *values, uint64_t *indices) { 970 // Setup all-dims compressed and default ordering. 971 std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 972 std::vector<uint64_t> perm(rank); 973 std::iota(perm.begin(), perm.end(), 0); 974 // Convert external format to internal COO. 975 SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 976 rank, shape, perm.data(), nse); 977 std::vector<uint64_t> idx(rank); 978 for (uint64_t i = 0, base = 0; i < nse; i++) { 979 for (uint64_t r = 0; r < rank; r++) 980 idx[r] = indices[base + r]; 981 tensor->add(idx, values[i]); 982 base += rank; 983 } 984 // Return sparse tensor storage format as opaque pointer. 985 return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 986 rank, shape, perm.data(), sparse.data(), tensor); 987 } 988 989 } // extern "C" 990 991 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 992