18a91bc7bSHarrietAkot //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 28a91bc7bSHarrietAkot // 38a91bc7bSHarrietAkot // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48a91bc7bSHarrietAkot // See https://llvm.org/LICENSE.txt for license information. 58a91bc7bSHarrietAkot // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68a91bc7bSHarrietAkot // 78a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 88a91bc7bSHarrietAkot // 98a91bc7bSHarrietAkot // This file implements a light-weight runtime support library that is useful 108a91bc7bSHarrietAkot // for sparse tensor manipulations. The functionality provided in this library 118a91bc7bSHarrietAkot // is meant to simplify benchmarking, testing, and debugging MLIR code that 128a91bc7bSHarrietAkot // operates on sparse tensors. The provided functionality is **not** part 138a91bc7bSHarrietAkot // of core MLIR, however. 148a91bc7bSHarrietAkot // 158a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 168a91bc7bSHarrietAkot 17845561ecSwren romano #include "mlir/ExecutionEngine/SparseTensorUtils.h" 188a91bc7bSHarrietAkot #include "mlir/ExecutionEngine/CRunnerUtils.h" 198a91bc7bSHarrietAkot 208a91bc7bSHarrietAkot #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 218a91bc7bSHarrietAkot 228a91bc7bSHarrietAkot #include <algorithm> 238a91bc7bSHarrietAkot #include <cassert> 24736c1b66SAart Bik #include <complex> 258a91bc7bSHarrietAkot #include <cctype> 268a91bc7bSHarrietAkot #include <cinttypes> 278a91bc7bSHarrietAkot #include <cstdio> 288a91bc7bSHarrietAkot #include <cstdlib> 298a91bc7bSHarrietAkot #include <cstring> 30efa15f41SAart Bik #include <fstream> 31753fe330Swren romano #include <functional> 32efa15f41SAart Bik #include <iostream> 334d0a18d0Swren romano #include <limits> 348a91bc7bSHarrietAkot #include <numeric> 358a91bc7bSHarrietAkot #include <vector> 368a91bc7bSHarrietAkot 37736c1b66SAart Bik using complex64 = std::complex<double>; 38736c1b66SAart Bik using complex32 = std::complex<float>; 39736c1b66SAart Bik 408a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 418a91bc7bSHarrietAkot // 428a91bc7bSHarrietAkot // Internal support for storing and reading sparse tensors. 438a91bc7bSHarrietAkot // 448a91bc7bSHarrietAkot // The following memory-resident sparse storage schemes are supported: 458a91bc7bSHarrietAkot // 468a91bc7bSHarrietAkot // (a) A coordinate scheme for temporarily storing and lexicographically 478a91bc7bSHarrietAkot // sorting a sparse tensor by index (SparseTensorCOO). 488a91bc7bSHarrietAkot // 498a91bc7bSHarrietAkot // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 508a91bc7bSHarrietAkot // per-dimension sparse/dense annnotations together with a dimension 518a91bc7bSHarrietAkot // ordering used by MLIR compiler-generated code (SparseTensorStorage). 528a91bc7bSHarrietAkot // 538a91bc7bSHarrietAkot // The following external formats are supported: 548a91bc7bSHarrietAkot // 558a91bc7bSHarrietAkot // (1) Matrix Market Exchange (MME): *.mtx 568a91bc7bSHarrietAkot // https://math.nist.gov/MatrixMarket/formats.html 578a91bc7bSHarrietAkot // 588a91bc7bSHarrietAkot // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 598a91bc7bSHarrietAkot // http://frostt.io/tensors/file-formats.html 608a91bc7bSHarrietAkot // 618a91bc7bSHarrietAkot // Two public APIs are supported: 628a91bc7bSHarrietAkot // 638a91bc7bSHarrietAkot // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 648a91bc7bSHarrietAkot // tensors. These methods should be used exclusively by MLIR 658a91bc7bSHarrietAkot // compiler-generated code. 668a91bc7bSHarrietAkot // 678a91bc7bSHarrietAkot // (II) Methods that accept C-style data structures to interact with sparse 688a91bc7bSHarrietAkot // tensors. These methods can be used by any external runtime that wants 698a91bc7bSHarrietAkot // to interact with MLIR compiler-generated code. 708a91bc7bSHarrietAkot // 718a91bc7bSHarrietAkot // In both cases (I) and (II), the SparseTensorStorage format is externally 728a91bc7bSHarrietAkot // only visible as an opaque pointer. 738a91bc7bSHarrietAkot // 748a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 758a91bc7bSHarrietAkot 768a91bc7bSHarrietAkot namespace { 778a91bc7bSHarrietAkot 7803fe15ceSAart Bik static constexpr int kColWidth = 1025; 7903fe15ceSAart Bik 8072ec2f76Swren romano /// A version of `operator*` on `uint64_t` which checks for overflows. 8172ec2f76Swren romano static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 8272ec2f76Swren romano assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 8372ec2f76Swren romano "Integer overflow"); 8472ec2f76Swren romano return lhs * rhs; 8572ec2f76Swren romano } 8672ec2f76Swren romano 878cb33240Swren romano // TODO: adjust this so it can be used by `openSparseTensorCOO` too. 88*fa6aed2aSwren romano // That version doesn't have the permutation, and the `dimSizes` are 898cb33240Swren romano // a pointer/C-array rather than `std::vector`. 908cb33240Swren romano // 91*fa6aed2aSwren romano /// Asserts that the `dimSizes` (in target-order) under the `perm` (mapping 928cb33240Swren romano /// semantic-order to target-order) are a refinement of the desired `shape` 938cb33240Swren romano /// (in semantic-order). 948cb33240Swren romano /// 958cb33240Swren romano /// Precondition: `perm` and `shape` must be valid for `rank`. 968cb33240Swren romano static inline void 97*fa6aed2aSwren romano assertPermutedSizesMatchShape(const std::vector<uint64_t> &dimSizes, 98*fa6aed2aSwren romano uint64_t rank, const uint64_t *perm, 99*fa6aed2aSwren romano const uint64_t *shape) { 1008cb33240Swren romano assert(perm && shape); 101*fa6aed2aSwren romano assert(rank == dimSizes.size() && "Rank mismatch"); 1028cb33240Swren romano for (uint64_t r = 0; r < rank; r++) 103*fa6aed2aSwren romano assert((shape[r] == 0 || shape[r] == dimSizes[perm[r]]) && 1048cb33240Swren romano "Dimension size mismatch"); 1058cb33240Swren romano } 1068cb33240Swren romano 1078a91bc7bSHarrietAkot /// A sparse tensor element in coordinate scheme (value and indices). 1088a91bc7bSHarrietAkot /// For example, a rank-1 vector element would look like 1098a91bc7bSHarrietAkot /// ({i}, a[i]) 1108a91bc7bSHarrietAkot /// and a rank-5 tensor element like 1118a91bc7bSHarrietAkot /// ({i,j,k,l,m}, a[i,j,k,l,m]) 112ccd047cbSAart Bik /// We use pointer to a shared index pool rather than e.g. a direct 113ccd047cbSAart Bik /// vector since that (1) reduces the per-element memory footprint, and 114ccd047cbSAart Bik /// (2) centralizes the memory reservation and (re)allocation to one place. 1158a91bc7bSHarrietAkot template <typename V> 11676944420Swren romano struct Element final { 117ccd047cbSAart Bik Element(uint64_t *ind, V val) : indices(ind), value(val){}; 118ccd047cbSAart Bik uint64_t *indices; // pointer into shared index pool 1198a91bc7bSHarrietAkot V value; 1208a91bc7bSHarrietAkot }; 1218a91bc7bSHarrietAkot 122753fe330Swren romano /// The type of callback functions which receive an element. We avoid 123753fe330Swren romano /// packaging the coordinates and value together as an `Element` object 124753fe330Swren romano /// because this helps keep code somewhat cleaner. 125753fe330Swren romano template <typename V> 126753fe330Swren romano using ElementConsumer = 127753fe330Swren romano const std::function<void(const std::vector<uint64_t> &, V)> &; 128753fe330Swren romano 1298a91bc7bSHarrietAkot /// A memory-resident sparse tensor in coordinate scheme (collection of 1308a91bc7bSHarrietAkot /// elements). This data structure is used to read a sparse tensor from 1318a91bc7bSHarrietAkot /// any external format into memory and sort the elements lexicographically 1328a91bc7bSHarrietAkot /// by indices before passing it back to the client (most packed storage 1338a91bc7bSHarrietAkot /// formats require the elements to appear in lexicographic index order). 1348a91bc7bSHarrietAkot template <typename V> 13576944420Swren romano struct SparseTensorCOO final { 1368a91bc7bSHarrietAkot public: 137*fa6aed2aSwren romano SparseTensorCOO(const std::vector<uint64_t> &dimSizes, uint64_t capacity) 138*fa6aed2aSwren romano : dimSizes(dimSizes) { 139ccd047cbSAart Bik if (capacity) { 1408a91bc7bSHarrietAkot elements.reserve(capacity); 141ccd047cbSAart Bik indices.reserve(capacity * getRank()); 1428a91bc7bSHarrietAkot } 143ccd047cbSAart Bik } 144ccd047cbSAart Bik 1458a91bc7bSHarrietAkot /// Adds element as indices and value. 1468a91bc7bSHarrietAkot void add(const std::vector<uint64_t> &ind, V val) { 1478a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to add() after startIterator()"); 148ccd047cbSAart Bik uint64_t *base = indices.data(); 149ccd047cbSAart Bik uint64_t size = indices.size(); 1508a91bc7bSHarrietAkot uint64_t rank = getRank(); 151*fa6aed2aSwren romano assert(ind.size() == rank && "Element rank mismatch"); 152ccd047cbSAart Bik for (uint64_t r = 0; r < rank; r++) { 153*fa6aed2aSwren romano assert(ind[r] < dimSizes[r] && "Index is too large for the dimension"); 154ccd047cbSAart Bik indices.push_back(ind[r]); 1558a91bc7bSHarrietAkot } 156ccd047cbSAart Bik // This base only changes if indices were reallocated. In that case, we 157ccd047cbSAart Bik // need to correct all previous pointers into the vector. Note that this 158ccd047cbSAart Bik // only happens if we did not set the initial capacity right, and then only 159ccd047cbSAart Bik // for every internal vector reallocation (which with the doubling rule 160ccd047cbSAart Bik // should only incur an amortized linear overhead). 161298d2fa1SMehdi Amini uint64_t *newBase = indices.data(); 162298d2fa1SMehdi Amini if (newBase != base) { 163ccd047cbSAart Bik for (uint64_t i = 0, n = elements.size(); i < n; i++) 164298d2fa1SMehdi Amini elements[i].indices = newBase + (elements[i].indices - base); 165298d2fa1SMehdi Amini base = newBase; 166ccd047cbSAart Bik } 167ccd047cbSAart Bik // Add element as (pointer into shared index pool, value) pair. 168ccd047cbSAart Bik elements.emplace_back(base + size, val); 169ccd047cbSAart Bik } 170ccd047cbSAart Bik 1718a91bc7bSHarrietAkot /// Sorts elements lexicographically by index. 1728a91bc7bSHarrietAkot void sort() { 1738a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 174cf358253Swren romano // TODO: we may want to cache an `isSorted` bit, to avoid 175cf358253Swren romano // unnecessary/redundant sorting. 176ccd047cbSAart Bik std::sort(elements.begin(), elements.end(), 177ccd047cbSAart Bik [this](const Element<V> &e1, const Element<V> &e2) { 178ccd047cbSAart Bik uint64_t rank = getRank(); 179ccd047cbSAart Bik for (uint64_t r = 0; r < rank; r++) { 180ccd047cbSAart Bik if (e1.indices[r] == e2.indices[r]) 181ccd047cbSAart Bik continue; 182ccd047cbSAart Bik return e1.indices[r] < e2.indices[r]; 1838a91bc7bSHarrietAkot } 184ccd047cbSAart Bik return false; 185ccd047cbSAart Bik }); 186ccd047cbSAart Bik } 187ccd047cbSAart Bik 188*fa6aed2aSwren romano /// Get the rank of the tensor. 189*fa6aed2aSwren romano uint64_t getRank() const { return dimSizes.size(); } 190ccd047cbSAart Bik 191*fa6aed2aSwren romano /// Getter for the dimension-sizes array. 192*fa6aed2aSwren romano const std::vector<uint64_t> &getDimSizes() const { return dimSizes; } 193ccd047cbSAart Bik 194*fa6aed2aSwren romano /// Getter for the elements array. 1958a91bc7bSHarrietAkot const std::vector<Element<V>> &getElements() const { return elements; } 1968a91bc7bSHarrietAkot 1978a91bc7bSHarrietAkot /// Switch into iterator mode. 1988a91bc7bSHarrietAkot void startIterator() { 1998a91bc7bSHarrietAkot iteratorLocked = true; 2008a91bc7bSHarrietAkot iteratorPos = 0; 2018a91bc7bSHarrietAkot } 202ccd047cbSAart Bik 2038a91bc7bSHarrietAkot /// Get the next element. 2048a91bc7bSHarrietAkot const Element<V> *getNext() { 2058a91bc7bSHarrietAkot assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 2068a91bc7bSHarrietAkot if (iteratorPos < elements.size()) 2078a91bc7bSHarrietAkot return &(elements[iteratorPos++]); 2088a91bc7bSHarrietAkot iteratorLocked = false; 2098a91bc7bSHarrietAkot return nullptr; 2108a91bc7bSHarrietAkot } 2118a91bc7bSHarrietAkot 2128a91bc7bSHarrietAkot /// Factory method. Permutes the original dimensions according to 2138a91bc7bSHarrietAkot /// the given ordering and expects subsequent add() calls to honor 2148a91bc7bSHarrietAkot /// that same ordering for the given indices. The result is a 2158a91bc7bSHarrietAkot /// fully permuted coordinate scheme. 2168d8b566fSwren romano /// 217*fa6aed2aSwren romano /// Precondition: `dimSizes` and `perm` must be valid for `rank`. 2188a91bc7bSHarrietAkot static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 219*fa6aed2aSwren romano const uint64_t *dimSizes, 2208a91bc7bSHarrietAkot const uint64_t *perm, 2218a91bc7bSHarrietAkot uint64_t capacity = 0) { 2228a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 223d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 224*fa6aed2aSwren romano assert(dimSizes[r] > 0 && "Dimension size zero has trivial storage"); 225*fa6aed2aSwren romano permsz[perm[r]] = dimSizes[r]; 226d83a7068Swren romano } 2278a91bc7bSHarrietAkot return new SparseTensorCOO<V>(permsz, capacity); 2288a91bc7bSHarrietAkot } 2298a91bc7bSHarrietAkot 2308a91bc7bSHarrietAkot private: 231*fa6aed2aSwren romano const std::vector<uint64_t> dimSizes; // per-dimension sizes 232ccd047cbSAart Bik std::vector<Element<V>> elements; // all COO elements 233ccd047cbSAart Bik std::vector<uint64_t> indices; // shared index pool 234db6796dfSMehdi Amini bool iteratorLocked = false; 235db6796dfSMehdi Amini unsigned iteratorPos = 0; 2368a91bc7bSHarrietAkot }; 2378a91bc7bSHarrietAkot 2381313f5d3Swren romano // See <https://en.wikipedia.org/wiki/X_Macro> 2391313f5d3Swren romano // 2401313f5d3Swren romano // `FOREVERY_SIMPLEX_V` only specifies the non-complex `V` types, because 2411313f5d3Swren romano // the ABI for complex types has compiler/architecture dependent complexities 2421313f5d3Swren romano // we need to work around. Namely, when a function takes a parameter of 2431313f5d3Swren romano // C/C++ type `complex32` (per se), then there is additional padding that 2441313f5d3Swren romano // causes it not to match the LLVM type `!llvm.struct<(f32, f32)>`. This 2451313f5d3Swren romano // only happens with the `complex32` type itself, not with pointers/arrays 2461313f5d3Swren romano // of complex values. So far `complex64` doesn't exhibit this ABI 2471313f5d3Swren romano // incompatibility, but we exclude it anyways just to be safe. 2481313f5d3Swren romano #define FOREVERY_SIMPLEX_V(DO) \ 2491313f5d3Swren romano DO(F64, double) \ 2501313f5d3Swren romano DO(F32, float) \ 2511313f5d3Swren romano DO(I64, int64_t) \ 2521313f5d3Swren romano DO(I32, int32_t) \ 2531313f5d3Swren romano DO(I16, int16_t) \ 2541313f5d3Swren romano DO(I8, int8_t) 2551313f5d3Swren romano 2561313f5d3Swren romano #define FOREVERY_V(DO) \ 2571313f5d3Swren romano FOREVERY_SIMPLEX_V(DO) \ 2581313f5d3Swren romano DO(C64, complex64) \ 2591313f5d3Swren romano DO(C32, complex32) 2601313f5d3Swren romano 2618cb33240Swren romano // Forward. 2628cb33240Swren romano template <typename V> 2638cb33240Swren romano class SparseTensorEnumeratorBase; 2648cb33240Swren romano 2658d8b566fSwren romano /// Abstract base class for `SparseTensorStorage<P,I,V>`. This class 2668d8b566fSwren romano /// takes responsibility for all the `<P,I,V>`-independent aspects 2678d8b566fSwren romano /// of the tensor (e.g., shape, sparsity, permutation). In addition, 2688d8b566fSwren romano /// we use function overloading to implement "partial" method 2698d8b566fSwren romano /// specialization, which the C-API relies on to catch type errors 2708d8b566fSwren romano /// arising from our use of opaque pointers. 2718a91bc7bSHarrietAkot class SparseTensorStorageBase { 2728a91bc7bSHarrietAkot public: 2738d8b566fSwren romano /// Constructs a new storage object. The `perm` maps the tensor's 2748d8b566fSwren romano /// semantic-ordering of dimensions to this object's storage-order. 275*fa6aed2aSwren romano /// The `dimSizes` and `sparsity` arrays are already in storage-order. 2768d8b566fSwren romano /// 277*fa6aed2aSwren romano /// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`. 278*fa6aed2aSwren romano SparseTensorStorageBase(const std::vector<uint64_t> &dimSizes, 2798d8b566fSwren romano const uint64_t *perm, const DimLevelType *sparsity) 280*fa6aed2aSwren romano : dimSizes(dimSizes), rev(getRank()), 2818d8b566fSwren romano dimTypes(sparsity, sparsity + getRank()) { 282753fe330Swren romano assert(perm && sparsity); 2838d8b566fSwren romano const uint64_t rank = getRank(); 2848d8b566fSwren romano // Validate parameters. 2858d8b566fSwren romano assert(rank > 0 && "Trivial shape is unsupported"); 2868d8b566fSwren romano for (uint64_t r = 0; r < rank; r++) { 2878d8b566fSwren romano assert(dimSizes[r] > 0 && "Dimension size zero has trivial storage"); 2888d8b566fSwren romano assert((dimTypes[r] == DimLevelType::kDense || 2898d8b566fSwren romano dimTypes[r] == DimLevelType::kCompressed) && 2908d8b566fSwren romano "Unsupported DimLevelType"); 2918d8b566fSwren romano } 2928d8b566fSwren romano // Construct the "reverse" (i.e., inverse) permutation. 2938d8b566fSwren romano for (uint64_t r = 0; r < rank; r++) 2948d8b566fSwren romano rev[perm[r]] = r; 2958d8b566fSwren romano } 2968d8b566fSwren romano 2978d8b566fSwren romano virtual ~SparseTensorStorageBase() = default; 2988d8b566fSwren romano 2998d8b566fSwren romano /// Get the rank of the tensor. 3008d8b566fSwren romano uint64_t getRank() const { return dimSizes.size(); } 3018d8b566fSwren romano 3028d8b566fSwren romano /// Getter for the dimension-sizes array, in storage-order. 3038d8b566fSwren romano const std::vector<uint64_t> &getDimSizes() const { return dimSizes; } 3048d8b566fSwren romano 3058d8b566fSwren romano /// Safely lookup the size of the given (storage-order) dimension. 3068d8b566fSwren romano uint64_t getDimSize(uint64_t d) const { 3078d8b566fSwren romano assert(d < getRank()); 3088d8b566fSwren romano return dimSizes[d]; 3098d8b566fSwren romano } 3108d8b566fSwren romano 3118d8b566fSwren romano /// Getter for the "reverse" permutation, which maps this object's 3128d8b566fSwren romano /// storage-order to the tensor's semantic-order. 3138d8b566fSwren romano const std::vector<uint64_t> &getRev() const { return rev; } 3148d8b566fSwren romano 3158d8b566fSwren romano /// Getter for the dimension-types array, in storage-order. 3168d8b566fSwren romano const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; } 3178d8b566fSwren romano 3188d8b566fSwren romano /// Safely check if the (storage-order) dimension uses compressed storage. 3198d8b566fSwren romano bool isCompressedDim(uint64_t d) const { 3208d8b566fSwren romano assert(d < getRank()); 3218d8b566fSwren romano return (dimTypes[d] == DimLevelType::kCompressed); 3228d8b566fSwren romano } 3238a91bc7bSHarrietAkot 3248cb33240Swren romano /// Allocate a new enumerator. 3251313f5d3Swren romano #define DECL_NEWENUMERATOR(VNAME, V) \ 3261313f5d3Swren romano virtual void newEnumerator(SparseTensorEnumeratorBase<V> **, uint64_t, \ 3271313f5d3Swren romano const uint64_t *) const { \ 3281313f5d3Swren romano fatal("newEnumerator" #VNAME); \ 3298cb33240Swren romano } 3301313f5d3Swren romano FOREVERY_V(DECL_NEWENUMERATOR) 3311313f5d3Swren romano #undef DECL_NEWENUMERATOR 3328cb33240Swren romano 3334f2ec7f9SAart Bik /// Overhead storage. 3348a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 3358a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 3368a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 3378a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 3388a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 3398a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 3408a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 3418a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 3428a91bc7bSHarrietAkot 3434f2ec7f9SAart Bik /// Primary storage. 3441313f5d3Swren romano #define DECL_GETVALUES(VNAME, V) \ 3451313f5d3Swren romano virtual void getValues(std::vector<V> **) { fatal("getValues" #VNAME); } 3461313f5d3Swren romano FOREVERY_V(DECL_GETVALUES) 3471313f5d3Swren romano #undef DECL_GETVALUES 3488a91bc7bSHarrietAkot 3494f2ec7f9SAart Bik /// Element-wise insertion in lexicographic index order. 3501313f5d3Swren romano #define DECL_LEXINSERT(VNAME, V) \ 3511313f5d3Swren romano virtual void lexInsert(const uint64_t *, V) { fatal("lexInsert" #VNAME); } 3521313f5d3Swren romano FOREVERY_V(DECL_LEXINSERT) 3531313f5d3Swren romano #undef DECL_LEXINSERT 3544f2ec7f9SAart Bik 3554f2ec7f9SAart Bik /// Expanded insertion. 3561313f5d3Swren romano #define DECL_EXPINSERT(VNAME, V) \ 3571313f5d3Swren romano virtual void expInsert(uint64_t *, V *, bool *, uint64_t *, uint64_t) { \ 3581313f5d3Swren romano fatal("expInsert" #VNAME); \ 3594f2ec7f9SAart Bik } 3601313f5d3Swren romano FOREVERY_V(DECL_EXPINSERT) 3611313f5d3Swren romano #undef DECL_EXPINSERT 3624f2ec7f9SAart Bik 3634f2ec7f9SAart Bik /// Finishes insertion. 364f66e5769SAart Bik virtual void endInsert() = 0; 365f66e5769SAart Bik 366753fe330Swren romano protected: 367753fe330Swren romano // Since this class is virtual, we must disallow public copying in 368753fe330Swren romano // order to avoid "slicing". Since this class has data members, 369753fe330Swren romano // that means making copying protected. 370753fe330Swren romano // <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-copy-virtual> 371753fe330Swren romano SparseTensorStorageBase(const SparseTensorStorageBase &) = default; 372753fe330Swren romano // Copy-assignment would be implicitly deleted (because `dimSizes` 373753fe330Swren romano // is const), so we explicitly delete it for clarity. 374753fe330Swren romano SparseTensorStorageBase &operator=(const SparseTensorStorageBase &) = delete; 375753fe330Swren romano 3768a91bc7bSHarrietAkot private: 37746bdacaaSwren romano static void fatal(const char *tp) { 3788a91bc7bSHarrietAkot fprintf(stderr, "unsupported %s\n", tp); 3798a91bc7bSHarrietAkot exit(1); 3808a91bc7bSHarrietAkot } 3818d8b566fSwren romano 3828d8b566fSwren romano const std::vector<uint64_t> dimSizes; 3838d8b566fSwren romano std::vector<uint64_t> rev; 3848d8b566fSwren romano const std::vector<DimLevelType> dimTypes; 3858a91bc7bSHarrietAkot }; 3868a91bc7bSHarrietAkot 387753fe330Swren romano // Forward. 388753fe330Swren romano template <typename P, typename I, typename V> 389753fe330Swren romano class SparseTensorEnumerator; 390753fe330Swren romano 3918a91bc7bSHarrietAkot /// A memory-resident sparse tensor using a storage scheme based on 3928a91bc7bSHarrietAkot /// per-dimension sparse/dense annotations. This data structure provides a 3938a91bc7bSHarrietAkot /// bufferized form of a sparse tensor type. In contrast to generating setup 3948a91bc7bSHarrietAkot /// methods for each differently annotated sparse tensor, this method provides 3958a91bc7bSHarrietAkot /// a convenient "one-size-fits-all" solution that simply takes an input tensor 3968a91bc7bSHarrietAkot /// and annotations to implement all required setup in a general manner. 3978a91bc7bSHarrietAkot template <typename P, typename I, typename V> 39876944420Swren romano class SparseTensorStorage final : public SparseTensorStorageBase { 3998cb33240Swren romano /// Private constructor to share code between the other constructors. 4008cb33240Swren romano /// Beware that the object is not necessarily guaranteed to be in a 4018cb33240Swren romano /// valid state after this constructor alone; e.g., `isCompressedDim(d)` 4028cb33240Swren romano /// doesn't entail `!(pointers[d].empty())`. 4038cb33240Swren romano /// 404*fa6aed2aSwren romano /// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`. 405*fa6aed2aSwren romano SparseTensorStorage(const std::vector<uint64_t> &dimSizes, 406*fa6aed2aSwren romano const uint64_t *perm, const DimLevelType *sparsity) 407*fa6aed2aSwren romano : SparseTensorStorageBase(dimSizes, perm, sparsity), pointers(getRank()), 4088cb33240Swren romano indices(getRank()), idx(getRank()) {} 4098cb33240Swren romano 4108a91bc7bSHarrietAkot public: 4118a91bc7bSHarrietAkot /// Constructs a sparse tensor storage scheme with the given dimensions, 4128a91bc7bSHarrietAkot /// permutation, and per-dimension dense/sparse annotations, using 4138a91bc7bSHarrietAkot /// the coordinate scheme tensor for the initial contents if provided. 4148d8b566fSwren romano /// 415*fa6aed2aSwren romano /// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`. 416*fa6aed2aSwren romano SparseTensorStorage(const std::vector<uint64_t> &dimSizes, 417*fa6aed2aSwren romano const uint64_t *perm, const DimLevelType *sparsity, 418*fa6aed2aSwren romano SparseTensorCOO<V> *coo) 419*fa6aed2aSwren romano : SparseTensorStorage(dimSizes, perm, sparsity) { 4208a91bc7bSHarrietAkot // Provide hints on capacity of pointers and indices. 421175b9af4SAart Bik // TODO: needs much fine-tuning based on actual sparsity; currently 422175b9af4SAart Bik // we reserve pointer/index space based on all previous dense 423175b9af4SAart Bik // dimensions, which works well up to first sparse dim; but 424175b9af4SAart Bik // we should really use nnz and dense/sparse distribution. 425f66e5769SAart Bik bool allDense = true; 426f66e5769SAart Bik uint64_t sz = 1; 4278d8b566fSwren romano for (uint64_t r = 0, rank = getRank(); r < rank; r++) { 4288d8b566fSwren romano if (isCompressedDim(r)) { 429*fa6aed2aSwren romano // TODO: Take a parameter between 1 and `dimSizes[r]`, and multiply 4308d8b566fSwren romano // `sz` by that before reserving. (For now we just use 1.) 431f66e5769SAart Bik pointers[r].reserve(sz + 1); 4328d8b566fSwren romano pointers[r].push_back(0); 433f66e5769SAart Bik indices[r].reserve(sz); 434f66e5769SAart Bik sz = 1; 435f66e5769SAart Bik allDense = false; 4368d8b566fSwren romano } else { // Dense dimension. 4378d8b566fSwren romano sz = checkedMul(sz, getDimSizes()[r]); 4388a91bc7bSHarrietAkot } 4398a91bc7bSHarrietAkot } 4408a91bc7bSHarrietAkot // Then assign contents from coordinate scheme tensor if provided. 4418d8b566fSwren romano if (coo) { 4424d0a18d0Swren romano // Ensure both preconditions of `fromCOO`. 443*fa6aed2aSwren romano assert(coo->getDimSizes() == getDimSizes() && "Tensor size mismatch"); 4448d8b566fSwren romano coo->sort(); 4454d0a18d0Swren romano // Now actually insert the `elements`. 4468d8b566fSwren romano const std::vector<Element<V>> &elements = coo->getElements(); 447ceda1ae9Swren romano uint64_t nnz = elements.size(); 4488a91bc7bSHarrietAkot values.reserve(nnz); 449ceda1ae9Swren romano fromCOO(elements, 0, nnz, 0); 4501ce77b56SAart Bik } else if (allDense) { 451f66e5769SAart Bik values.resize(sz, 0); 4528a91bc7bSHarrietAkot } 4538a91bc7bSHarrietAkot } 4548a91bc7bSHarrietAkot 4558cb33240Swren romano /// Constructs a sparse tensor storage scheme with the given dimensions, 4568cb33240Swren romano /// permutation, and per-dimension dense/sparse annotations, using 4578cb33240Swren romano /// the given sparse tensor for the initial contents. 4588cb33240Swren romano /// 4598cb33240Swren romano /// Preconditions: 460*fa6aed2aSwren romano /// * `perm` and `sparsity` must be valid for `dimSizes.size()`. 4618cb33240Swren romano /// * The `tensor` must have the same value type `V`. 462*fa6aed2aSwren romano SparseTensorStorage(const std::vector<uint64_t> &dimSizes, 463*fa6aed2aSwren romano const uint64_t *perm, const DimLevelType *sparsity, 4648cb33240Swren romano const SparseTensorStorageBase &tensor); 4658cb33240Swren romano 46676944420Swren romano ~SparseTensorStorage() final override = default; 4678a91bc7bSHarrietAkot 468f66e5769SAart Bik /// Partially specialize these getter methods based on template types. 46976944420Swren romano void getPointers(std::vector<P> **out, uint64_t d) final override { 4708a91bc7bSHarrietAkot assert(d < getRank()); 4718a91bc7bSHarrietAkot *out = &pointers[d]; 4728a91bc7bSHarrietAkot } 47376944420Swren romano void getIndices(std::vector<I> **out, uint64_t d) final override { 4748a91bc7bSHarrietAkot assert(d < getRank()); 4758a91bc7bSHarrietAkot *out = &indices[d]; 4768a91bc7bSHarrietAkot } 47776944420Swren romano void getValues(std::vector<V> **out) final override { *out = &values; } 4788a91bc7bSHarrietAkot 47903fe15ceSAart Bik /// Partially specialize lexicographical insertions based on template types. 48076944420Swren romano void lexInsert(const uint64_t *cursor, V val) final override { 4811ce77b56SAart Bik // First, wrap up pending insertion path. 4821ce77b56SAart Bik uint64_t diff = 0; 4831ce77b56SAart Bik uint64_t top = 0; 4841ce77b56SAart Bik if (!values.empty()) { 4851ce77b56SAart Bik diff = lexDiff(cursor); 4861ce77b56SAart Bik endPath(diff + 1); 4871ce77b56SAart Bik top = idx[diff] + 1; 4881ce77b56SAart Bik } 4891ce77b56SAart Bik // Then continue with insertion path. 4901ce77b56SAart Bik insPath(cursor, diff, top, val); 491f66e5769SAart Bik } 492f66e5769SAart Bik 4934f2ec7f9SAart Bik /// Partially specialize expanded insertions based on template types. 4944f2ec7f9SAart Bik /// Note that this method resets the values/filled-switch array back 4954f2ec7f9SAart Bik /// to all-zero/false while only iterating over the nonzero elements. 4964f2ec7f9SAart Bik void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 49776944420Swren romano uint64_t count) final override { 4984f2ec7f9SAart Bik if (count == 0) 4994f2ec7f9SAart Bik return; 5004f2ec7f9SAart Bik // Sort. 5014f2ec7f9SAart Bik std::sort(added, added + count); 5024f2ec7f9SAart Bik // Restore insertion path for first insert. 5033bf2ba3bSwren romano const uint64_t lastDim = getRank() - 1; 5044f2ec7f9SAart Bik uint64_t index = added[0]; 5053bf2ba3bSwren romano cursor[lastDim] = index; 5064f2ec7f9SAart Bik lexInsert(cursor, values[index]); 5074f2ec7f9SAart Bik assert(filled[index]); 5084f2ec7f9SAart Bik values[index] = 0; 5094f2ec7f9SAart Bik filled[index] = false; 5104f2ec7f9SAart Bik // Subsequent insertions are quick. 5114f2ec7f9SAart Bik for (uint64_t i = 1; i < count; i++) { 5124f2ec7f9SAart Bik assert(index < added[i] && "non-lexicographic insertion"); 5134f2ec7f9SAart Bik index = added[i]; 5143bf2ba3bSwren romano cursor[lastDim] = index; 5153bf2ba3bSwren romano insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 5164f2ec7f9SAart Bik assert(filled[index]); 5173bf2ba3bSwren romano values[index] = 0; 5184f2ec7f9SAart Bik filled[index] = false; 5194f2ec7f9SAart Bik } 5204f2ec7f9SAart Bik } 5214f2ec7f9SAart Bik 522f66e5769SAart Bik /// Finalizes lexicographic insertions. 52376944420Swren romano void endInsert() final override { 5241ce77b56SAart Bik if (values.empty()) 52572ec2f76Swren romano finalizeSegment(0); 5261ce77b56SAart Bik else 5271ce77b56SAart Bik endPath(0); 5281ce77b56SAart Bik } 529f66e5769SAart Bik 5308cb33240Swren romano void newEnumerator(SparseTensorEnumeratorBase<V> **out, uint64_t rank, 53176944420Swren romano const uint64_t *perm) const final override { 5328cb33240Swren romano *out = new SparseTensorEnumerator<P, I, V>(*this, rank, perm); 5338cb33240Swren romano } 5348cb33240Swren romano 5358a91bc7bSHarrietAkot /// Returns this sparse tensor storage scheme as a new memory-resident 5368a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme with the given dimension order. 5378d8b566fSwren romano /// 5388d8b566fSwren romano /// Precondition: `perm` must be valid for `getRank()`. 539753fe330Swren romano SparseTensorCOO<V> *toCOO(const uint64_t *perm) const { 5408cb33240Swren romano SparseTensorEnumeratorBase<V> *enumerator; 5418cb33240Swren romano newEnumerator(&enumerator, getRank(), perm); 542753fe330Swren romano SparseTensorCOO<V> *coo = 5438cb33240Swren romano new SparseTensorCOO<V>(enumerator->permutedSizes(), values.size()); 5448cb33240Swren romano enumerator->forallElements([&coo](const std::vector<uint64_t> &ind, V val) { 545753fe330Swren romano coo->add(ind, val); 546753fe330Swren romano }); 5478d8b566fSwren romano // TODO: This assertion assumes there are no stored zeros, 5488d8b566fSwren romano // or if there are then that we don't filter them out. 5498d8b566fSwren romano // Cf., <https://github.com/llvm/llvm-project/issues/54179> 5508d8b566fSwren romano assert(coo->getElements().size() == values.size()); 5518cb33240Swren romano delete enumerator; 5528d8b566fSwren romano return coo; 5538a91bc7bSHarrietAkot } 5548a91bc7bSHarrietAkot 5558a91bc7bSHarrietAkot /// Factory method. Constructs a sparse tensor storage scheme with the given 5568a91bc7bSHarrietAkot /// dimensions, permutation, and per-dimension dense/sparse annotations, 5578a91bc7bSHarrietAkot /// using the coordinate scheme tensor for the initial contents if provided. 5588a91bc7bSHarrietAkot /// In the latter case, the coordinate scheme must respect the same 5598a91bc7bSHarrietAkot /// permutation as is desired for the new sparse tensor storage. 5608d8b566fSwren romano /// 5618d8b566fSwren romano /// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`. 5628a91bc7bSHarrietAkot static SparseTensorStorage<P, I, V> * 563d83a7068Swren romano newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 5648d8b566fSwren romano const DimLevelType *sparsity, SparseTensorCOO<V> *coo) { 5658a91bc7bSHarrietAkot SparseTensorStorage<P, I, V> *n = nullptr; 5668d8b566fSwren romano if (coo) { 567*fa6aed2aSwren romano const auto &coosz = coo->getDimSizes(); 5688cb33240Swren romano assertPermutedSizesMatchShape(coosz, rank, perm, shape); 5698d8b566fSwren romano n = new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo); 5708a91bc7bSHarrietAkot } else { 5718a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 572d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 573d83a7068Swren romano assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 574d83a7068Swren romano permsz[perm[r]] = shape[r]; 575d83a7068Swren romano } 5768cb33240Swren romano // We pass the null `coo` to ensure we select the intended constructor. 5778cb33240Swren romano n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, coo); 5788a91bc7bSHarrietAkot } 5798a91bc7bSHarrietAkot return n; 5808a91bc7bSHarrietAkot } 5818a91bc7bSHarrietAkot 5828cb33240Swren romano /// Factory method. Constructs a sparse tensor storage scheme with 5838cb33240Swren romano /// the given dimensions, permutation, and per-dimension dense/sparse 5848cb33240Swren romano /// annotations, using the sparse tensor for the initial contents. 5858cb33240Swren romano /// 5868cb33240Swren romano /// Preconditions: 5878cb33240Swren romano /// * `shape`, `perm`, and `sparsity` must be valid for `rank`. 5888cb33240Swren romano /// * The `tensor` must have the same value type `V`. 5898cb33240Swren romano static SparseTensorStorage<P, I, V> * 5908cb33240Swren romano newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 5918cb33240Swren romano const DimLevelType *sparsity, 5928cb33240Swren romano const SparseTensorStorageBase *source) { 5938cb33240Swren romano assert(source && "Got nullptr for source"); 5948cb33240Swren romano SparseTensorEnumeratorBase<V> *enumerator; 5958cb33240Swren romano source->newEnumerator(&enumerator, rank, perm); 5968cb33240Swren romano const auto &permsz = enumerator->permutedSizes(); 5978cb33240Swren romano assertPermutedSizesMatchShape(permsz, rank, perm, shape); 5988cb33240Swren romano auto *tensor = 5998cb33240Swren romano new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, *source); 6008cb33240Swren romano delete enumerator; 6018cb33240Swren romano return tensor; 6028cb33240Swren romano } 6038cb33240Swren romano 6048a91bc7bSHarrietAkot private: 60572ec2f76Swren romano /// Appends an arbitrary new position to `pointers[d]`. This method 60672ec2f76Swren romano /// checks that `pos` is representable in the `P` type; however, it 60772ec2f76Swren romano /// does not check that `pos` is semantically valid (i.e., larger than 60872ec2f76Swren romano /// the previous position and smaller than `indices[d].capacity()`). 6098d8b566fSwren romano void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 61072ec2f76Swren romano assert(isCompressedDim(d)); 61172ec2f76Swren romano assert(pos <= std::numeric_limits<P>::max() && 6124d0a18d0Swren romano "Pointer value is too large for the P-type"); 61372ec2f76Swren romano pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 6144d0a18d0Swren romano } 6154d0a18d0Swren romano 61672ec2f76Swren romano /// Appends index `i` to dimension `d`, in the semantically general 61772ec2f76Swren romano /// sense. For non-dense dimensions, that means appending to the 61872ec2f76Swren romano /// `indices[d]` array, checking that `i` is representable in the `I` 61972ec2f76Swren romano /// type; however, we do not verify other semantic requirements (e.g., 620*fa6aed2aSwren romano /// that `i` is in bounds for `dimSizes[d]`, and not previously occurring 62172ec2f76Swren romano /// in the same segment). For dense dimensions, this method instead 62272ec2f76Swren romano /// appends the appropriate number of zeros to the `values` array, 62372ec2f76Swren romano /// where `full` is the number of "entries" already written to `values` 62472ec2f76Swren romano /// for this segment (aka one after the highest index previously appended). 62572ec2f76Swren romano void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 62672ec2f76Swren romano if (isCompressedDim(d)) { 6274d0a18d0Swren romano assert(i <= std::numeric_limits<I>::max() && 6284d0a18d0Swren romano "Index value is too large for the I-type"); 62972ec2f76Swren romano indices[d].push_back(static_cast<I>(i)); 63072ec2f76Swren romano } else { // Dense dimension. 63172ec2f76Swren romano assert(i >= full && "Index was already filled"); 63272ec2f76Swren romano if (i == full) 63372ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 63472ec2f76Swren romano if (d + 1 == getRank()) 63572ec2f76Swren romano values.insert(values.end(), i - full, 0); 63672ec2f76Swren romano else 63772ec2f76Swren romano finalizeSegment(d + 1, 0, i - full); 63872ec2f76Swren romano } 6394d0a18d0Swren romano } 6404d0a18d0Swren romano 6418cb33240Swren romano /// Writes the given coordinate to `indices[d][pos]`. This method 6428cb33240Swren romano /// checks that `i` is representable in the `I` type; however, it 6438cb33240Swren romano /// does not check that `i` is semantically valid (i.e., in bounds 644*fa6aed2aSwren romano /// for `dimSizes[d]` and not elsewhere occurring in the same segment). 6458cb33240Swren romano void writeIndex(uint64_t d, uint64_t pos, uint64_t i) { 6468cb33240Swren romano assert(isCompressedDim(d)); 6478cb33240Swren romano // Subscript assignment to `std::vector` requires that the `pos`-th 6488cb33240Swren romano // entry has been initialized; thus we must be sure to check `size()` 6498cb33240Swren romano // here, instead of `capacity()` as would be ideal. 6508cb33240Swren romano assert(pos < indices[d].size() && "Index position is out of bounds"); 6518cb33240Swren romano assert(i <= std::numeric_limits<I>::max() && 6528cb33240Swren romano "Index value is too large for the I-type"); 6538cb33240Swren romano indices[d][pos] = static_cast<I>(i); 6548cb33240Swren romano } 6558cb33240Swren romano 6568cb33240Swren romano /// Computes the assembled-size associated with the `d`-th dimension, 6578cb33240Swren romano /// given the assembled-size associated with the `(d-1)`-th dimension. 6588cb33240Swren romano /// "Assembled-sizes" correspond to the (nominal) sizes of overhead 6598cb33240Swren romano /// storage, as opposed to "dimension-sizes" which are the cardinality 6608cb33240Swren romano /// of coordinates for that dimension. 6618cb33240Swren romano /// 6628cb33240Swren romano /// Precondition: the `pointers[d]` array must be fully initialized 6638cb33240Swren romano /// before calling this method. 6648cb33240Swren romano uint64_t assembledSize(uint64_t parentSz, uint64_t d) const { 6658cb33240Swren romano if (isCompressedDim(d)) 6668cb33240Swren romano return pointers[d][parentSz]; 6678cb33240Swren romano // else if dense: 6688cb33240Swren romano return parentSz * getDimSizes()[d]; 6698cb33240Swren romano } 6708cb33240Swren romano 6718a91bc7bSHarrietAkot /// Initializes sparse tensor storage scheme from a memory-resident sparse 6728a91bc7bSHarrietAkot /// tensor in coordinate scheme. This method prepares the pointers and 6738a91bc7bSHarrietAkot /// indices arrays under the given per-dimension dense/sparse annotations. 6744d0a18d0Swren romano /// 6754d0a18d0Swren romano /// Preconditions: 6764d0a18d0Swren romano /// (1) the `elements` must be lexicographically sorted. 677*fa6aed2aSwren romano /// (2) the indices of every element are valid for `dimSizes` (equal rank 6784d0a18d0Swren romano /// and pointwise less-than). 679ceda1ae9Swren romano void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 680ceda1ae9Swren romano uint64_t hi, uint64_t d) { 681753fe330Swren romano uint64_t rank = getRank(); 682753fe330Swren romano assert(d <= rank && hi <= elements.size()); 6838a91bc7bSHarrietAkot // Once dimensions are exhausted, insert the numerical values. 684753fe330Swren romano if (d == rank) { 685c4017f9dSwren romano assert(lo < hi); 6861ce77b56SAart Bik values.push_back(elements[lo].value); 6878a91bc7bSHarrietAkot return; 6888a91bc7bSHarrietAkot } 6898a91bc7bSHarrietAkot // Visit all elements in this interval. 6908a91bc7bSHarrietAkot uint64_t full = 0; 691c4017f9dSwren romano while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 6928a91bc7bSHarrietAkot // Find segment in interval with same index elements in this dimension. 693f66e5769SAart Bik uint64_t i = elements[lo].indices[d]; 6948a91bc7bSHarrietAkot uint64_t seg = lo + 1; 695f66e5769SAart Bik while (seg < hi && elements[seg].indices[d] == i) 6968a91bc7bSHarrietAkot seg++; 6978a91bc7bSHarrietAkot // Handle segment in interval for sparse or dense dimension. 69872ec2f76Swren romano appendIndex(d, full, i); 69972ec2f76Swren romano full = i + 1; 700ceda1ae9Swren romano fromCOO(elements, lo, seg, d + 1); 7018a91bc7bSHarrietAkot // And move on to next segment in interval. 7028a91bc7bSHarrietAkot lo = seg; 7038a91bc7bSHarrietAkot } 7048a91bc7bSHarrietAkot // Finalize the sparse pointer structure at this dimension. 70572ec2f76Swren romano finalizeSegment(d, full); 7068a91bc7bSHarrietAkot } 7078a91bc7bSHarrietAkot 70872ec2f76Swren romano /// Finalize the sparse pointer structure at this dimension. 70972ec2f76Swren romano void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 71072ec2f76Swren romano if (count == 0) 71172ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 71272ec2f76Swren romano if (isCompressedDim(d)) { 71372ec2f76Swren romano appendPointer(d, indices[d].size(), count); 71472ec2f76Swren romano } else { // Dense dimension. 7158d8b566fSwren romano const uint64_t sz = getDimSizes()[d]; 71672ec2f76Swren romano assert(sz >= full && "Segment is overfull"); 7178d8b566fSwren romano count = checkedMul(count, sz - full); 71872ec2f76Swren romano // For dense storage we must enumerate all the remaining coordinates 71972ec2f76Swren romano // in this dimension (i.e., coordinates after the last non-zero 72072ec2f76Swren romano // element), and either fill in their zero values or else recurse 72172ec2f76Swren romano // to finalize some deeper dimension. 72272ec2f76Swren romano if (d + 1 == getRank()) 72372ec2f76Swren romano values.insert(values.end(), count, 0); 72472ec2f76Swren romano else 72572ec2f76Swren romano finalizeSegment(d + 1, 0, count); 7261ce77b56SAart Bik } 7271ce77b56SAart Bik } 7281ce77b56SAart Bik 7291ce77b56SAart Bik /// Wraps up a single insertion path, inner to outer. 7301ce77b56SAart Bik void endPath(uint64_t diff) { 7311ce77b56SAart Bik uint64_t rank = getRank(); 7321ce77b56SAart Bik assert(diff <= rank); 7331ce77b56SAart Bik for (uint64_t i = 0; i < rank - diff; i++) { 73472ec2f76Swren romano const uint64_t d = rank - i - 1; 73572ec2f76Swren romano finalizeSegment(d, idx[d] + 1); 7361ce77b56SAart Bik } 7371ce77b56SAart Bik } 7381ce77b56SAart Bik 7391ce77b56SAart Bik /// Continues a single insertion path, outer to inner. 740c03fd1e6Swren romano void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 7411ce77b56SAart Bik uint64_t rank = getRank(); 7421ce77b56SAart Bik assert(diff < rank); 7431ce77b56SAart Bik for (uint64_t d = diff; d < rank; d++) { 7441ce77b56SAart Bik uint64_t i = cursor[d]; 74572ec2f76Swren romano appendIndex(d, top, i); 7461ce77b56SAart Bik top = 0; 7471ce77b56SAart Bik idx[d] = i; 7481ce77b56SAart Bik } 7491ce77b56SAart Bik values.push_back(val); 7501ce77b56SAart Bik } 7511ce77b56SAart Bik 7521ce77b56SAart Bik /// Finds the lexicographic differing dimension. 75346bdacaaSwren romano uint64_t lexDiff(const uint64_t *cursor) const { 7541ce77b56SAart Bik for (uint64_t r = 0, rank = getRank(); r < rank; r++) 7551ce77b56SAart Bik if (cursor[r] > idx[r]) 7561ce77b56SAart Bik return r; 7571ce77b56SAart Bik else 7581ce77b56SAart Bik assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 7591ce77b56SAart Bik assert(0 && "duplication insertion"); 7601ce77b56SAart Bik return -1u; 7611ce77b56SAart Bik } 7621ce77b56SAart Bik 763753fe330Swren romano // Allow `SparseTensorEnumerator` to access the data-members (to avoid 764753fe330Swren romano // the cost of virtual-function dispatch in inner loops), without 765753fe330Swren romano // making them public to other client code. 766753fe330Swren romano friend class SparseTensorEnumerator<P, I, V>; 767753fe330Swren romano 7688a91bc7bSHarrietAkot std::vector<std::vector<P>> pointers; 7698a91bc7bSHarrietAkot std::vector<std::vector<I>> indices; 7708a91bc7bSHarrietAkot std::vector<V> values; 7718d8b566fSwren romano std::vector<uint64_t> idx; // index cursor for lexicographic insertion. 7728a91bc7bSHarrietAkot }; 7738a91bc7bSHarrietAkot 774753fe330Swren romano /// A (higher-order) function object for enumerating the elements of some 775753fe330Swren romano /// `SparseTensorStorage` under a permutation. That is, the `forallElements` 776753fe330Swren romano /// method encapsulates the loop-nest for enumerating the elements of 777753fe330Swren romano /// the source tensor (in whatever order is best for the source tensor), 778753fe330Swren romano /// and applies a permutation to the coordinates/indices before handing 779753fe330Swren romano /// each element to the callback. A single enumerator object can be 780753fe330Swren romano /// freely reused for several calls to `forallElements`, just so long 781753fe330Swren romano /// as each call is sequential with respect to one another. 782753fe330Swren romano /// 783753fe330Swren romano /// N.B., this class stores a reference to the `SparseTensorStorageBase` 784753fe330Swren romano /// passed to the constructor; thus, objects of this class must not 785753fe330Swren romano /// outlive the sparse tensor they depend on. 786753fe330Swren romano /// 787753fe330Swren romano /// Design Note: The reason we define this class instead of simply using 788753fe330Swren romano /// `SparseTensorEnumerator<P,I,V>` is because we need to hide/generalize 789753fe330Swren romano /// the `<P,I>` template parameters from MLIR client code (to simplify the 790753fe330Swren romano /// type parameters used for direct sparse-to-sparse conversion). And the 791753fe330Swren romano /// reason we define the `SparseTensorEnumerator<P,I,V>` subclasses rather 792753fe330Swren romano /// than simply using this class, is to avoid the cost of virtual-method 793753fe330Swren romano /// dispatch within the loop-nest. 794753fe330Swren romano template <typename V> 795753fe330Swren romano class SparseTensorEnumeratorBase { 796753fe330Swren romano public: 797753fe330Swren romano /// Constructs an enumerator with the given permutation for mapping 798753fe330Swren romano /// the semantic-ordering of dimensions to the desired target-ordering. 799753fe330Swren romano /// 800753fe330Swren romano /// Preconditions: 801753fe330Swren romano /// * the `tensor` must have the same `V` value type. 802753fe330Swren romano /// * `perm` must be valid for `rank`. 803753fe330Swren romano SparseTensorEnumeratorBase(const SparseTensorStorageBase &tensor, 804753fe330Swren romano uint64_t rank, const uint64_t *perm) 805753fe330Swren romano : src(tensor), permsz(src.getRev().size()), reord(getRank()), 806753fe330Swren romano cursor(getRank()) { 807753fe330Swren romano assert(perm && "Received nullptr for permutation"); 808753fe330Swren romano assert(rank == getRank() && "Permutation rank mismatch"); 809*fa6aed2aSwren romano const auto &rev = src.getRev(); // source-order -> semantic-order 810*fa6aed2aSwren romano const auto &dimSizes = src.getDimSizes(); // in source storage-order 811753fe330Swren romano for (uint64_t s = 0; s < rank; s++) { // `s` source storage-order 812753fe330Swren romano uint64_t t = perm[rev[s]]; // `t` target-order 813753fe330Swren romano reord[s] = t; 814*fa6aed2aSwren romano permsz[t] = dimSizes[s]; 815753fe330Swren romano } 816753fe330Swren romano } 817753fe330Swren romano 818753fe330Swren romano virtual ~SparseTensorEnumeratorBase() = default; 819753fe330Swren romano 820753fe330Swren romano // We disallow copying to help avoid leaking the `src` reference. 821753fe330Swren romano // (In addition to avoiding the problem of slicing.) 822753fe330Swren romano SparseTensorEnumeratorBase(const SparseTensorEnumeratorBase &) = delete; 823753fe330Swren romano SparseTensorEnumeratorBase & 824753fe330Swren romano operator=(const SparseTensorEnumeratorBase &) = delete; 825753fe330Swren romano 826753fe330Swren romano /// Returns the source/target tensor's rank. (The source-rank and 827753fe330Swren romano /// target-rank are always equal since we only support permutations. 828753fe330Swren romano /// Though once we add support for other dimension mappings, this 829753fe330Swren romano /// method will have to be split in two.) 830753fe330Swren romano uint64_t getRank() const { return permsz.size(); } 831753fe330Swren romano 832753fe330Swren romano /// Returns the target tensor's dimension sizes. 833753fe330Swren romano const std::vector<uint64_t> &permutedSizes() const { return permsz; } 834753fe330Swren romano 835753fe330Swren romano /// Enumerates all elements of the source tensor, permutes their 836753fe330Swren romano /// indices, and passes the permuted element to the callback. 837753fe330Swren romano /// The callback must not store the cursor reference directly, 838753fe330Swren romano /// since this function reuses the storage. Instead, the callback 839753fe330Swren romano /// must copy it if they want to keep it. 840753fe330Swren romano virtual void forallElements(ElementConsumer<V> yield) = 0; 841753fe330Swren romano 842753fe330Swren romano protected: 843753fe330Swren romano const SparseTensorStorageBase &src; 844753fe330Swren romano std::vector<uint64_t> permsz; // in target order. 845753fe330Swren romano std::vector<uint64_t> reord; // source storage-order -> target order. 846753fe330Swren romano std::vector<uint64_t> cursor; // in target order. 847753fe330Swren romano }; 848753fe330Swren romano 849753fe330Swren romano template <typename P, typename I, typename V> 850753fe330Swren romano class SparseTensorEnumerator final : public SparseTensorEnumeratorBase<V> { 851753fe330Swren romano using Base = SparseTensorEnumeratorBase<V>; 852753fe330Swren romano 853753fe330Swren romano public: 854753fe330Swren romano /// Constructs an enumerator with the given permutation for mapping 855753fe330Swren romano /// the semantic-ordering of dimensions to the desired target-ordering. 856753fe330Swren romano /// 857753fe330Swren romano /// Precondition: `perm` must be valid for `rank`. 858753fe330Swren romano SparseTensorEnumerator(const SparseTensorStorage<P, I, V> &tensor, 859753fe330Swren romano uint64_t rank, const uint64_t *perm) 860753fe330Swren romano : Base(tensor, rank, perm) {} 861753fe330Swren romano 862753fe330Swren romano ~SparseTensorEnumerator() final override = default; 863753fe330Swren romano 864753fe330Swren romano void forallElements(ElementConsumer<V> yield) final override { 865753fe330Swren romano forallElements(yield, 0, 0); 866753fe330Swren romano } 867753fe330Swren romano 868753fe330Swren romano private: 869753fe330Swren romano /// The recursive component of the public `forallElements`. 870753fe330Swren romano void forallElements(ElementConsumer<V> yield, uint64_t parentPos, 871753fe330Swren romano uint64_t d) { 872753fe330Swren romano // Recover the `<P,I,V>` type parameters of `src`. 873753fe330Swren romano const auto &src = 874753fe330Swren romano static_cast<const SparseTensorStorage<P, I, V> &>(this->src); 875753fe330Swren romano if (d == Base::getRank()) { 876753fe330Swren romano assert(parentPos < src.values.size() && 877753fe330Swren romano "Value position is out of bounds"); 878753fe330Swren romano // TODO: <https://github.com/llvm/llvm-project/issues/54179> 879753fe330Swren romano yield(this->cursor, src.values[parentPos]); 880753fe330Swren romano } else if (src.isCompressedDim(d)) { 881753fe330Swren romano // Look up the bounds of the `d`-level segment determined by the 882753fe330Swren romano // `d-1`-level position `parentPos`. 883753fe330Swren romano const std::vector<P> &pointers_d = src.pointers[d]; 884753fe330Swren romano assert(parentPos + 1 < pointers_d.size() && 885753fe330Swren romano "Parent pointer position is out of bounds"); 886753fe330Swren romano const uint64_t pstart = static_cast<uint64_t>(pointers_d[parentPos]); 887753fe330Swren romano const uint64_t pstop = static_cast<uint64_t>(pointers_d[parentPos + 1]); 888753fe330Swren romano // Loop-invariant code for looking up the `d`-level coordinates/indices. 889753fe330Swren romano const std::vector<I> &indices_d = src.indices[d]; 8903b13f880SAart Bik assert(pstop <= indices_d.size() && "Index position is out of bounds"); 891753fe330Swren romano uint64_t &cursor_reord_d = this->cursor[this->reord[d]]; 892753fe330Swren romano for (uint64_t pos = pstart; pos < pstop; pos++) { 893753fe330Swren romano cursor_reord_d = static_cast<uint64_t>(indices_d[pos]); 894753fe330Swren romano forallElements(yield, pos, d + 1); 895753fe330Swren romano } 896753fe330Swren romano } else { // Dense dimension. 897753fe330Swren romano const uint64_t sz = src.getDimSizes()[d]; 898753fe330Swren romano const uint64_t pstart = parentPos * sz; 899753fe330Swren romano uint64_t &cursor_reord_d = this->cursor[this->reord[d]]; 900753fe330Swren romano for (uint64_t i = 0; i < sz; i++) { 901753fe330Swren romano cursor_reord_d = i; 902753fe330Swren romano forallElements(yield, pstart + i, d + 1); 903753fe330Swren romano } 904753fe330Swren romano } 905753fe330Swren romano } 906753fe330Swren romano }; 907753fe330Swren romano 9088cb33240Swren romano /// Statistics regarding the number of nonzero subtensors in 9098cb33240Swren romano /// a source tensor, for direct sparse=>sparse conversion a la 9108cb33240Swren romano /// <https://arxiv.org/abs/2001.02609>. 9118cb33240Swren romano /// 9128cb33240Swren romano /// N.B., this class stores references to the parameters passed to 9138cb33240Swren romano /// the constructor; thus, objects of this class must not outlive 9148cb33240Swren romano /// those parameters. 91576944420Swren romano class SparseTensorNNZ final { 9168cb33240Swren romano public: 9178cb33240Swren romano /// Allocate the statistics structure for the desired sizes and 9188cb33240Swren romano /// sparsity (in the target tensor's storage-order). This constructor 9198cb33240Swren romano /// does not actually populate the statistics, however; for that see 9208cb33240Swren romano /// `initialize`. 9218cb33240Swren romano /// 922*fa6aed2aSwren romano /// Precondition: `dimSizes` must not contain zeros. 923*fa6aed2aSwren romano SparseTensorNNZ(const std::vector<uint64_t> &dimSizes, 9248cb33240Swren romano const std::vector<DimLevelType> &sparsity) 925*fa6aed2aSwren romano : dimSizes(dimSizes), dimTypes(sparsity), nnz(getRank()) { 9268cb33240Swren romano assert(dimSizes.size() == dimTypes.size() && "Rank mismatch"); 9278cb33240Swren romano bool uncompressed = true; 9288cb33240Swren romano uint64_t sz = 1; // the product of all `dimSizes` strictly less than `r`. 9298cb33240Swren romano for (uint64_t rank = getRank(), r = 0; r < rank; r++) { 9308cb33240Swren romano switch (dimTypes[r]) { 9318cb33240Swren romano case DimLevelType::kCompressed: 9328cb33240Swren romano assert(uncompressed && 9338cb33240Swren romano "Multiple compressed layers not currently supported"); 9348cb33240Swren romano uncompressed = false; 9358cb33240Swren romano nnz[r].resize(sz, 0); // Both allocate and zero-initialize. 9368cb33240Swren romano break; 9378cb33240Swren romano case DimLevelType::kDense: 9388cb33240Swren romano assert(uncompressed && 9398cb33240Swren romano "Dense after compressed not currently supported"); 9408cb33240Swren romano break; 9418cb33240Swren romano case DimLevelType::kSingleton: 9428cb33240Swren romano // Singleton after Compressed causes no problems for allocating 9438cb33240Swren romano // `nnz` nor for the yieldPos loop. This remains true even 9448cb33240Swren romano // when adding support for multiple compressed dimensions or 9458cb33240Swren romano // for dense-after-compressed. 9468cb33240Swren romano break; 9478cb33240Swren romano } 9488cb33240Swren romano sz = checkedMul(sz, dimSizes[r]); 9498cb33240Swren romano } 9508cb33240Swren romano } 9518cb33240Swren romano 9528cb33240Swren romano // We disallow copying to help avoid leaking the stored references. 9538cb33240Swren romano SparseTensorNNZ(const SparseTensorNNZ &) = delete; 9548cb33240Swren romano SparseTensorNNZ &operator=(const SparseTensorNNZ &) = delete; 9558cb33240Swren romano 9568cb33240Swren romano /// Returns the rank of the target tensor. 9578cb33240Swren romano uint64_t getRank() const { return dimSizes.size(); } 9588cb33240Swren romano 9598cb33240Swren romano /// Enumerate the source tensor to fill in the statistics. The 9608cb33240Swren romano /// enumerator should already incorporate the permutation (from 9618cb33240Swren romano /// semantic-order to the target storage-order). 9628cb33240Swren romano template <typename V> 9638cb33240Swren romano void initialize(SparseTensorEnumeratorBase<V> &enumerator) { 9648cb33240Swren romano assert(enumerator.getRank() == getRank() && "Tensor rank mismatch"); 9658cb33240Swren romano assert(enumerator.permutedSizes() == dimSizes && "Tensor size mismatch"); 9668cb33240Swren romano enumerator.forallElements( 9678cb33240Swren romano [this](const std::vector<uint64_t> &ind, V) { add(ind); }); 9688cb33240Swren romano } 9698cb33240Swren romano 9708cb33240Swren romano /// The type of callback functions which receive an nnz-statistic. 9718cb33240Swren romano using NNZConsumer = const std::function<void(uint64_t)> &; 9728cb33240Swren romano 9738cb33240Swren romano /// Lexicographically enumerates all indicies for dimensions strictly 9748cb33240Swren romano /// less than `stopDim`, and passes their nnz statistic to the callback. 9758cb33240Swren romano /// Since our use-case only requires the statistic not the coordinates 9768cb33240Swren romano /// themselves, we do not bother to construct those coordinates. 9778cb33240Swren romano void forallIndices(uint64_t stopDim, NNZConsumer yield) const { 9788cb33240Swren romano assert(stopDim < getRank() && "Stopping-dimension is out of bounds"); 9798cb33240Swren romano assert(dimTypes[stopDim] == DimLevelType::kCompressed && 9808cb33240Swren romano "Cannot look up non-compressed dimensions"); 9818cb33240Swren romano forallIndices(yield, stopDim, 0, 0); 9828cb33240Swren romano } 9838cb33240Swren romano 9848cb33240Swren romano private: 9858cb33240Swren romano /// Adds a new element (i.e., increment its statistics). We use 9868cb33240Swren romano /// a method rather than inlining into the lambda in `initialize`, 9878cb33240Swren romano /// to avoid spurious templating over `V`. And this method is private 9888cb33240Swren romano /// to avoid needing to re-assert validity of `ind` (which is guaranteed 9898cb33240Swren romano /// by `forallElements`). 9908cb33240Swren romano void add(const std::vector<uint64_t> &ind) { 9918cb33240Swren romano uint64_t parentPos = 0; 9928cb33240Swren romano for (uint64_t rank = getRank(), r = 0; r < rank; r++) { 9938cb33240Swren romano if (dimTypes[r] == DimLevelType::kCompressed) 9948cb33240Swren romano nnz[r][parentPos]++; 9958cb33240Swren romano parentPos = parentPos * dimSizes[r] + ind[r]; 9968cb33240Swren romano } 9978cb33240Swren romano } 9988cb33240Swren romano 9998cb33240Swren romano /// Recursive component of the public `forallIndices`. 10008cb33240Swren romano void forallIndices(NNZConsumer yield, uint64_t stopDim, uint64_t parentPos, 10018cb33240Swren romano uint64_t d) const { 10028cb33240Swren romano assert(d <= stopDim); 10038cb33240Swren romano if (d == stopDim) { 10048cb33240Swren romano assert(parentPos < nnz[d].size() && "Cursor is out of range"); 10058cb33240Swren romano yield(nnz[d][parentPos]); 10068cb33240Swren romano } else { 10078cb33240Swren romano const uint64_t sz = dimSizes[d]; 10088cb33240Swren romano const uint64_t pstart = parentPos * sz; 10098cb33240Swren romano for (uint64_t i = 0; i < sz; i++) 10108cb33240Swren romano forallIndices(yield, stopDim, pstart + i, d + 1); 10118cb33240Swren romano } 10128cb33240Swren romano } 10138cb33240Swren romano 10148cb33240Swren romano // All of these are in the target storage-order. 10158cb33240Swren romano const std::vector<uint64_t> &dimSizes; 10168cb33240Swren romano const std::vector<DimLevelType> &dimTypes; 10178cb33240Swren romano std::vector<std::vector<uint64_t>> nnz; 10188cb33240Swren romano }; 10198cb33240Swren romano 10208cb33240Swren romano template <typename P, typename I, typename V> 10218cb33240Swren romano SparseTensorStorage<P, I, V>::SparseTensorStorage( 1022*fa6aed2aSwren romano const std::vector<uint64_t> &dimSizes, const uint64_t *perm, 10238cb33240Swren romano const DimLevelType *sparsity, const SparseTensorStorageBase &tensor) 1024*fa6aed2aSwren romano : SparseTensorStorage(dimSizes, perm, sparsity) { 10258cb33240Swren romano SparseTensorEnumeratorBase<V> *enumerator; 10268cb33240Swren romano tensor.newEnumerator(&enumerator, getRank(), perm); 10278cb33240Swren romano { 10288cb33240Swren romano // Initialize the statistics structure. 10298cb33240Swren romano SparseTensorNNZ nnz(getDimSizes(), getDimTypes()); 10308cb33240Swren romano nnz.initialize(*enumerator); 10318cb33240Swren romano // Initialize "pointers" overhead (and allocate "indices", "values"). 10328cb33240Swren romano uint64_t parentSz = 1; // assembled-size (not dimension-size) of `r-1`. 10338cb33240Swren romano for (uint64_t rank = getRank(), r = 0; r < rank; r++) { 10348cb33240Swren romano if (isCompressedDim(r)) { 10358cb33240Swren romano pointers[r].reserve(parentSz + 1); 10368cb33240Swren romano pointers[r].push_back(0); 10378cb33240Swren romano uint64_t currentPos = 0; 10388cb33240Swren romano nnz.forallIndices(r, [this, ¤tPos, r](uint64_t n) { 10398cb33240Swren romano currentPos += n; 10408cb33240Swren romano appendPointer(r, currentPos); 10418cb33240Swren romano }); 10428cb33240Swren romano assert(pointers[r].size() == parentSz + 1 && 10438cb33240Swren romano "Final pointers size doesn't match allocated size"); 10448cb33240Swren romano // That assertion entails `assembledSize(parentSz, r)` 10458cb33240Swren romano // is now in a valid state. That is, `pointers[r][parentSz]` 10468cb33240Swren romano // equals the present value of `currentPos`, which is the 10478cb33240Swren romano // correct assembled-size for `indices[r]`. 10488cb33240Swren romano } 10498cb33240Swren romano // Update assembled-size for the next iteration. 10508cb33240Swren romano parentSz = assembledSize(parentSz, r); 10518cb33240Swren romano // Ideally we need only `indices[r].reserve(parentSz)`, however 10528cb33240Swren romano // the `std::vector` implementation forces us to initialize it too. 10538cb33240Swren romano // That is, in the yieldPos loop we need random-access assignment 10548cb33240Swren romano // to `indices[r]`; however, `std::vector`'s subscript-assignment 10558cb33240Swren romano // only allows assigning to already-initialized positions. 10568cb33240Swren romano if (isCompressedDim(r)) 10578cb33240Swren romano indices[r].resize(parentSz, 0); 10588cb33240Swren romano } 10598cb33240Swren romano values.resize(parentSz, 0); // Both allocate and zero-initialize. 10608cb33240Swren romano } 10618cb33240Swren romano // The yieldPos loop 10628cb33240Swren romano enumerator->forallElements([this](const std::vector<uint64_t> &ind, V val) { 10638cb33240Swren romano uint64_t parentSz = 1, parentPos = 0; 10648cb33240Swren romano for (uint64_t rank = getRank(), r = 0; r < rank; r++) { 10658cb33240Swren romano if (isCompressedDim(r)) { 10668cb33240Swren romano // If `parentPos == parentSz` then it's valid as an array-lookup; 10678cb33240Swren romano // however, it's semantically invalid here since that entry 10688cb33240Swren romano // does not represent a segment of `indices[r]`. Moreover, that 10698cb33240Swren romano // entry must be immutable for `assembledSize` to remain valid. 10708cb33240Swren romano assert(parentPos < parentSz && "Pointers position is out of bounds"); 10718cb33240Swren romano const uint64_t currentPos = pointers[r][parentPos]; 10728cb33240Swren romano // This increment won't overflow the `P` type, since it can't 10738cb33240Swren romano // exceed the original value of `pointers[r][parentPos+1]` 10748cb33240Swren romano // which was already verified to be within bounds for `P` 10758cb33240Swren romano // when it was written to the array. 10768cb33240Swren romano pointers[r][parentPos]++; 10778cb33240Swren romano writeIndex(r, currentPos, ind[r]); 10788cb33240Swren romano parentPos = currentPos; 10798cb33240Swren romano } else { // Dense dimension. 10808cb33240Swren romano parentPos = parentPos * getDimSizes()[r] + ind[r]; 10818cb33240Swren romano } 10828cb33240Swren romano parentSz = assembledSize(parentSz, r); 10838cb33240Swren romano } 10848cb33240Swren romano assert(parentPos < values.size() && "Value position is out of bounds"); 10858cb33240Swren romano values[parentPos] = val; 10868cb33240Swren romano }); 10878cb33240Swren romano // No longer need the enumerator, so we'll delete it ASAP. 10888cb33240Swren romano delete enumerator; 10898cb33240Swren romano // The finalizeYieldPos loop 10908cb33240Swren romano for (uint64_t parentSz = 1, rank = getRank(), r = 0; r < rank; r++) { 10918cb33240Swren romano if (isCompressedDim(r)) { 10928cb33240Swren romano assert(parentSz == pointers[r].size() - 1 && 10938cb33240Swren romano "Actual pointers size doesn't match the expected size"); 10948cb33240Swren romano // Can't check all of them, but at least we can check the last one. 10958cb33240Swren romano assert(pointers[r][parentSz - 1] == pointers[r][parentSz] && 10968cb33240Swren romano "Pointers got corrupted"); 10978cb33240Swren romano // TODO: optimize this by using `memmove` or similar. 10988cb33240Swren romano for (uint64_t n = 0; n < parentSz; n++) { 10998cb33240Swren romano const uint64_t parentPos = parentSz - n; 11008cb33240Swren romano pointers[r][parentPos] = pointers[r][parentPos - 1]; 11018cb33240Swren romano } 11028cb33240Swren romano pointers[r][0] = 0; 11038cb33240Swren romano } 11048cb33240Swren romano parentSz = assembledSize(parentSz, r); 11058cb33240Swren romano } 11068cb33240Swren romano } 11078cb33240Swren romano 11088a91bc7bSHarrietAkot /// Helper to convert string to lower case. 11098a91bc7bSHarrietAkot static char *toLower(char *token) { 11108a91bc7bSHarrietAkot for (char *c = token; *c; c++) 11118a91bc7bSHarrietAkot *c = tolower(*c); 11128a91bc7bSHarrietAkot return token; 11138a91bc7bSHarrietAkot } 11148a91bc7bSHarrietAkot 11158a91bc7bSHarrietAkot /// Read the MME header of a general sparse matrix of type real. 111603fe15ceSAart Bik static void readMMEHeader(FILE *file, char *filename, char *line, 111733e8ab8eSAart Bik uint64_t *idata, bool *isPattern, bool *isSymmetric) { 11188a91bc7bSHarrietAkot char header[64]; 11198a91bc7bSHarrietAkot char object[64]; 11208a91bc7bSHarrietAkot char format[64]; 11218a91bc7bSHarrietAkot char field[64]; 11228a91bc7bSHarrietAkot char symmetry[64]; 11238a91bc7bSHarrietAkot // Read header line. 11248a91bc7bSHarrietAkot if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 11258a91bc7bSHarrietAkot symmetry) != 5) { 112603fe15ceSAart Bik fprintf(stderr, "Corrupt header in %s\n", filename); 11278a91bc7bSHarrietAkot exit(1); 11288a91bc7bSHarrietAkot } 112933e8ab8eSAart Bik // Set properties 113033e8ab8eSAart Bik *isPattern = (strcmp(toLower(field), "pattern") == 0); 1131bb56c2b3SMehdi Amini *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 11328a91bc7bSHarrietAkot // Make sure this is a general sparse matrix. 11338a91bc7bSHarrietAkot if (strcmp(toLower(header), "%%matrixmarket") || 11348a91bc7bSHarrietAkot strcmp(toLower(object), "matrix") || 113533e8ab8eSAart Bik strcmp(toLower(format), "coordinate") || 113633e8ab8eSAart Bik (strcmp(toLower(field), "real") && !(*isPattern)) || 1137bb56c2b3SMehdi Amini (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 113833e8ab8eSAart Bik fprintf(stderr, "Cannot find a general sparse matrix in %s\n", filename); 11398a91bc7bSHarrietAkot exit(1); 11408a91bc7bSHarrietAkot } 11418a91bc7bSHarrietAkot // Skip comments. 1142e5639b3fSMehdi Amini while (true) { 114303fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 114403fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 11458a91bc7bSHarrietAkot exit(1); 11468a91bc7bSHarrietAkot } 11478a91bc7bSHarrietAkot if (line[0] != '%') 11488a91bc7bSHarrietAkot break; 11498a91bc7bSHarrietAkot } 11508a91bc7bSHarrietAkot // Next line contains M N NNZ. 11518a91bc7bSHarrietAkot idata[0] = 2; // rank 11528a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 11538a91bc7bSHarrietAkot idata + 1) != 3) { 115403fe15ceSAart Bik fprintf(stderr, "Cannot find size in %s\n", filename); 11558a91bc7bSHarrietAkot exit(1); 11568a91bc7bSHarrietAkot } 11578a91bc7bSHarrietAkot } 11588a91bc7bSHarrietAkot 11598a91bc7bSHarrietAkot /// Read the "extended" FROSTT header. Although not part of the documented 11608a91bc7bSHarrietAkot /// format, we assume that the file starts with optional comments followed 11618a91bc7bSHarrietAkot /// by two lines that define the rank, the number of nonzeros, and the 11628a91bc7bSHarrietAkot /// dimensions sizes (one per rank) of the sparse tensor. 116303fe15ceSAart Bik static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 116403fe15ceSAart Bik uint64_t *idata) { 11658a91bc7bSHarrietAkot // Skip comments. 1166e5639b3fSMehdi Amini while (true) { 116703fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 116803fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 11698a91bc7bSHarrietAkot exit(1); 11708a91bc7bSHarrietAkot } 11718a91bc7bSHarrietAkot if (line[0] != '#') 11728a91bc7bSHarrietAkot break; 11738a91bc7bSHarrietAkot } 11748a91bc7bSHarrietAkot // Next line contains RANK and NNZ. 11758a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 117603fe15ceSAart Bik fprintf(stderr, "Cannot find metadata in %s\n", filename); 11778a91bc7bSHarrietAkot exit(1); 11788a91bc7bSHarrietAkot } 11798a91bc7bSHarrietAkot // Followed by a line with the dimension sizes (one per rank). 11808a91bc7bSHarrietAkot for (uint64_t r = 0; r < idata[0]; r++) { 11818a91bc7bSHarrietAkot if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 118203fe15ceSAart Bik fprintf(stderr, "Cannot find dimension size %s\n", filename); 11838a91bc7bSHarrietAkot exit(1); 11848a91bc7bSHarrietAkot } 11858a91bc7bSHarrietAkot } 118603fe15ceSAart Bik fgets(line, kColWidth, file); // end of line 11878a91bc7bSHarrietAkot } 11888a91bc7bSHarrietAkot 11898a91bc7bSHarrietAkot /// Reads a sparse tensor with the given filename into a memory-resident 11908a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme. 11918a91bc7bSHarrietAkot template <typename V> 11928a91bc7bSHarrietAkot static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 1193d83a7068Swren romano const uint64_t *shape, 11948a91bc7bSHarrietAkot const uint64_t *perm) { 11958a91bc7bSHarrietAkot // Open the file. 11968a91bc7bSHarrietAkot FILE *file = fopen(filename, "r"); 11978a91bc7bSHarrietAkot if (!file) { 11983734c078Swren romano assert(filename && "Received nullptr for filename"); 11993734c078Swren romano fprintf(stderr, "Cannot find file %s\n", filename); 12008a91bc7bSHarrietAkot exit(1); 12018a91bc7bSHarrietAkot } 12028a91bc7bSHarrietAkot // Perform some file format dependent set up. 120303fe15ceSAart Bik char line[kColWidth]; 12048a91bc7bSHarrietAkot uint64_t idata[512]; 120533e8ab8eSAart Bik bool isPattern = false; 1206bb56c2b3SMehdi Amini bool isSymmetric = false; 12078a91bc7bSHarrietAkot if (strstr(filename, ".mtx")) { 120833e8ab8eSAart Bik readMMEHeader(file, filename, line, idata, &isPattern, &isSymmetric); 12098a91bc7bSHarrietAkot } else if (strstr(filename, ".tns")) { 121003fe15ceSAart Bik readExtFROSTTHeader(file, filename, line, idata); 12118a91bc7bSHarrietAkot } else { 12128a91bc7bSHarrietAkot fprintf(stderr, "Unknown format %s\n", filename); 12138a91bc7bSHarrietAkot exit(1); 12148a91bc7bSHarrietAkot } 12158a91bc7bSHarrietAkot // Prepare sparse tensor object with per-dimension sizes 12168a91bc7bSHarrietAkot // and the number of nonzeros as initial capacity. 12178a91bc7bSHarrietAkot assert(rank == idata[0] && "rank mismatch"); 12188a91bc7bSHarrietAkot uint64_t nnz = idata[1]; 12198a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 1220d83a7068Swren romano assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 12218a91bc7bSHarrietAkot "dimension size mismatch"); 12228a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = 12238a91bc7bSHarrietAkot SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 12248a91bc7bSHarrietAkot // Read all nonzero elements. 12258a91bc7bSHarrietAkot std::vector<uint64_t> indices(rank); 12268a91bc7bSHarrietAkot for (uint64_t k = 0; k < nnz; k++) { 122703fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 122803fe15ceSAart Bik fprintf(stderr, "Cannot find next line of data in %s\n", filename); 12298a91bc7bSHarrietAkot exit(1); 12308a91bc7bSHarrietAkot } 123103fe15ceSAart Bik char *linePtr = line; 123203fe15ceSAart Bik for (uint64_t r = 0; r < rank; r++) { 123303fe15ceSAart Bik uint64_t idx = strtoul(linePtr, &linePtr, 10); 12348a91bc7bSHarrietAkot // Add 0-based index. 12358a91bc7bSHarrietAkot indices[perm[r]] = idx - 1; 12368a91bc7bSHarrietAkot } 12378a91bc7bSHarrietAkot // The external formats always store the numerical values with the type 12388a91bc7bSHarrietAkot // double, but we cast these values to the sparse tensor object type. 123933e8ab8eSAart Bik // For a pattern tensor, we arbitrarily pick the value 1 for all entries. 124033e8ab8eSAart Bik double value = isPattern ? 1.0 : strtod(linePtr, &linePtr); 12418a91bc7bSHarrietAkot tensor->add(indices, value); 124202710413SBixia Zheng // We currently chose to deal with symmetric matrices by fully constructing 124302710413SBixia Zheng // them. In the future, we may want to make symmetry implicit for storage 124402710413SBixia Zheng // reasons. 1245bb56c2b3SMehdi Amini if (isSymmetric && indices[0] != indices[1]) 124602710413SBixia Zheng tensor->add({indices[1], indices[0]}, value); 12478a91bc7bSHarrietAkot } 12488a91bc7bSHarrietAkot // Close the file and return tensor. 12498a91bc7bSHarrietAkot fclose(file); 12508a91bc7bSHarrietAkot return tensor; 12518a91bc7bSHarrietAkot } 12528a91bc7bSHarrietAkot 1253efa15f41SAart Bik /// Writes the sparse tensor to extended FROSTT format. 1254efa15f41SAart Bik template <typename V> 125546bdacaaSwren romano static void outSparseTensor(void *tensor, void *dest, bool sort) { 12566438783fSAart Bik assert(tensor && dest); 12576438783fSAart Bik auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 12586438783fSAart Bik if (sort) 12596438783fSAart Bik coo->sort(); 12606438783fSAart Bik char *filename = static_cast<char *>(dest); 1261*fa6aed2aSwren romano auto &dimSizes = coo->getDimSizes(); 12626438783fSAart Bik auto &elements = coo->getElements(); 12636438783fSAart Bik uint64_t rank = coo->getRank(); 1264efa15f41SAart Bik uint64_t nnz = elements.size(); 1265efa15f41SAart Bik std::fstream file; 1266efa15f41SAart Bik file.open(filename, std::ios_base::out | std::ios_base::trunc); 1267efa15f41SAart Bik assert(file.is_open()); 1268efa15f41SAart Bik file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 1269efa15f41SAart Bik for (uint64_t r = 0; r < rank - 1; r++) 1270*fa6aed2aSwren romano file << dimSizes[r] << " "; 1271*fa6aed2aSwren romano file << dimSizes[rank - 1] << std::endl; 1272efa15f41SAart Bik for (uint64_t i = 0; i < nnz; i++) { 1273efa15f41SAart Bik auto &idx = elements[i].indices; 1274efa15f41SAart Bik for (uint64_t r = 0; r < rank; r++) 1275efa15f41SAart Bik file << (idx[r] + 1) << " "; 1276efa15f41SAart Bik file << elements[i].value << std::endl; 1277efa15f41SAart Bik } 1278efa15f41SAart Bik file.flush(); 1279efa15f41SAart Bik file.close(); 1280efa15f41SAart Bik assert(file.good()); 12816438783fSAart Bik } 12826438783fSAart Bik 12836438783fSAart Bik /// Initializes sparse tensor from an external COO-flavored format. 12846438783fSAart Bik template <typename V> 128546bdacaaSwren romano static SparseTensorStorage<uint64_t, uint64_t, V> * 12866438783fSAart Bik toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 128720eaa88fSBixia Zheng uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 128820eaa88fSBixia Zheng const DimLevelType *sparsity = (DimLevelType *)(sparse); 128920eaa88fSBixia Zheng #ifndef NDEBUG 129020eaa88fSBixia Zheng // Verify that perm is a permutation of 0..(rank-1). 129120eaa88fSBixia Zheng std::vector<uint64_t> order(perm, perm + rank); 129220eaa88fSBixia Zheng std::sort(order.begin(), order.end()); 12931e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 129420eaa88fSBixia Zheng if (i != order[i]) { 1295988d4b0dSAart Bik fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 129620eaa88fSBixia Zheng exit(1); 129720eaa88fSBixia Zheng } 129820eaa88fSBixia Zheng } 129920eaa88fSBixia Zheng 130020eaa88fSBixia Zheng // Verify that the sparsity values are supported. 13011e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 130220eaa88fSBixia Zheng if (sparsity[i] != DimLevelType::kDense && 130320eaa88fSBixia Zheng sparsity[i] != DimLevelType::kCompressed) { 130420eaa88fSBixia Zheng fprintf(stderr, "Unsupported sparsity value %d\n", 130520eaa88fSBixia Zheng static_cast<int>(sparsity[i])); 130620eaa88fSBixia Zheng exit(1); 130720eaa88fSBixia Zheng } 130820eaa88fSBixia Zheng } 130920eaa88fSBixia Zheng #endif 131020eaa88fSBixia Zheng 13116438783fSAart Bik // Convert external format to internal COO. 131263bdcaf9Swren romano auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 13136438783fSAart Bik std::vector<uint64_t> idx(rank); 13146438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 13156438783fSAart Bik for (uint64_t r = 0; r < rank; r++) 1316d8b229a1SAart Bik idx[perm[r]] = indices[base + r]; 131763bdcaf9Swren romano coo->add(idx, values[i]); 13186438783fSAart Bik base += rank; 13196438783fSAart Bik } 13206438783fSAart Bik // Return sparse tensor storage format as opaque pointer. 132163bdcaf9Swren romano auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 132263bdcaf9Swren romano rank, shape, perm, sparsity, coo); 132363bdcaf9Swren romano delete coo; 132463bdcaf9Swren romano return tensor; 13256438783fSAart Bik } 13266438783fSAart Bik 13276438783fSAart Bik /// Converts a sparse tensor to an external COO-flavored format. 13286438783fSAart Bik template <typename V> 132946bdacaaSwren romano static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 133046bdacaaSwren romano uint64_t **pShape, V **pValues, 133146bdacaaSwren romano uint64_t **pIndices) { 1332736c1b66SAart Bik assert(tensor); 13336438783fSAart Bik auto sparseTensor = 13346438783fSAart Bik static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 13356438783fSAart Bik uint64_t rank = sparseTensor->getRank(); 13366438783fSAart Bik std::vector<uint64_t> perm(rank); 13376438783fSAart Bik std::iota(perm.begin(), perm.end(), 0); 13386438783fSAart Bik SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 13396438783fSAart Bik 13406438783fSAart Bik const std::vector<Element<V>> &elements = coo->getElements(); 13416438783fSAart Bik uint64_t nse = elements.size(); 13426438783fSAart Bik 13436438783fSAart Bik uint64_t *shape = new uint64_t[rank]; 13446438783fSAart Bik for (uint64_t i = 0; i < rank; i++) 1345*fa6aed2aSwren romano shape[i] = coo->getDimSizes()[i]; 13466438783fSAart Bik 13476438783fSAart Bik V *values = new V[nse]; 13486438783fSAart Bik uint64_t *indices = new uint64_t[rank * nse]; 13496438783fSAart Bik 13506438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 13516438783fSAart Bik values[i] = elements[i].value; 13526438783fSAart Bik for (uint64_t j = 0; j < rank; j++) 13536438783fSAart Bik indices[base + j] = elements[i].indices[j]; 13546438783fSAart Bik base += rank; 13556438783fSAart Bik } 13566438783fSAart Bik 13576438783fSAart Bik delete coo; 13586438783fSAart Bik *pRank = rank; 13596438783fSAart Bik *pNse = nse; 13606438783fSAart Bik *pShape = shape; 13616438783fSAart Bik *pValues = values; 13626438783fSAart Bik *pIndices = indices; 1363efa15f41SAart Bik } 1364efa15f41SAart Bik 1365be0a7e9fSMehdi Amini } // namespace 13668a91bc7bSHarrietAkot 13678a91bc7bSHarrietAkot extern "C" { 13688a91bc7bSHarrietAkot 13698a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 13708a91bc7bSHarrietAkot // 13718a91bc7bSHarrietAkot // Public API with methods that operate on MLIR buffers (memrefs) to interact 13728a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 13738a91bc7bSHarrietAkot // These methods should be used exclusively by MLIR compiler-generated code. 13748a91bc7bSHarrietAkot // 13758a91bc7bSHarrietAkot // Some macro magic is used to generate implementations for all required type 13768a91bc7bSHarrietAkot // combinations that can be called from MLIR compiler-generated code. 13778a91bc7bSHarrietAkot // 13788a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 13798a91bc7bSHarrietAkot 13808a91bc7bSHarrietAkot #define CASE(p, i, v, P, I, V) \ 13818a91bc7bSHarrietAkot if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 138263bdcaf9Swren romano SparseTensorCOO<V> *coo = nullptr; \ 1383845561ecSwren romano if (action <= Action::kFromCOO) { \ 1384845561ecSwren romano if (action == Action::kFromFile) { \ 13858a91bc7bSHarrietAkot char *filename = static_cast<char *>(ptr); \ 138663bdcaf9Swren romano coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 1387845561ecSwren romano } else if (action == Action::kFromCOO) { \ 138863bdcaf9Swren romano coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 13898a91bc7bSHarrietAkot } else { \ 1390845561ecSwren romano assert(action == Action::kEmpty); \ 13918a91bc7bSHarrietAkot } \ 139263bdcaf9Swren romano auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 139363bdcaf9Swren romano rank, shape, perm, sparsity, coo); \ 139463bdcaf9Swren romano if (action == Action::kFromFile) \ 139563bdcaf9Swren romano delete coo; \ 139663bdcaf9Swren romano return tensor; \ 1397bb56c2b3SMehdi Amini } \ 13988cb33240Swren romano if (action == Action::kSparseToSparse) { \ 13998cb33240Swren romano auto *tensor = static_cast<SparseTensorStorageBase *>(ptr); \ 14008cb33240Swren romano return SparseTensorStorage<P, I, V>::newSparseTensor(rank, shape, perm, \ 14018cb33240Swren romano sparsity, tensor); \ 14028cb33240Swren romano } \ 1403bb56c2b3SMehdi Amini if (action == Action::kEmptyCOO) \ 1404d83a7068Swren romano return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 140563bdcaf9Swren romano coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 1406845561ecSwren romano if (action == Action::kToIterator) { \ 140763bdcaf9Swren romano coo->startIterator(); \ 14088a91bc7bSHarrietAkot } else { \ 1409845561ecSwren romano assert(action == Action::kToCOO); \ 14108a91bc7bSHarrietAkot } \ 141163bdcaf9Swren romano return coo; \ 14128a91bc7bSHarrietAkot } 14138a91bc7bSHarrietAkot 1414845561ecSwren romano #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 14154f2ec7f9SAart Bik 1416d2215e79SRainer Orth // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 1417bc04a470Swren romano // can safely rewrite kIndex to kU64. We make this assertion to guarantee 1418bc04a470Swren romano // that this file cannot get out of sync with its header. 1419d2215e79SRainer Orth static_assert(std::is_same<index_type, uint64_t>::value, 1420d2215e79SRainer Orth "Expected index_type == uint64_t"); 1421bc04a470Swren romano 14228a91bc7bSHarrietAkot /// Constructs a new sparse tensor. This is the "swiss army knife" 14238a91bc7bSHarrietAkot /// method for materializing sparse tensors into the computation. 14248a91bc7bSHarrietAkot /// 1425845561ecSwren romano /// Action: 14268a91bc7bSHarrietAkot /// kEmpty = returns empty storage to fill later 14278a91bc7bSHarrietAkot /// kFromFile = returns storage, where ptr contains filename to read 14288a91bc7bSHarrietAkot /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 14298a91bc7bSHarrietAkot /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 14308a91bc7bSHarrietAkot /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 1431845561ecSwren romano /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 14328a91bc7bSHarrietAkot void * 1433845561ecSwren romano _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 1434d2215e79SRainer Orth StridedMemRefType<index_type, 1> *sref, 1435d2215e79SRainer Orth StridedMemRefType<index_type, 1> *pref, 1436845561ecSwren romano OverheadType ptrTp, OverheadType indTp, 1437845561ecSwren romano PrimaryType valTp, Action action, void *ptr) { 14388a91bc7bSHarrietAkot assert(aref && sref && pref); 14398a91bc7bSHarrietAkot assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 14408a91bc7bSHarrietAkot pref->strides[0] == 1); 14418a91bc7bSHarrietAkot assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1442845561ecSwren romano const DimLevelType *sparsity = aref->data + aref->offset; 1443d83a7068Swren romano const index_type *shape = sref->data + sref->offset; 1444d2215e79SRainer Orth const index_type *perm = pref->data + pref->offset; 14458a91bc7bSHarrietAkot uint64_t rank = aref->sizes[0]; 14468a91bc7bSHarrietAkot 1447bc04a470Swren romano // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1448bc04a470Swren romano // This is safe because of the static_assert above. 1449bc04a470Swren romano if (ptrTp == OverheadType::kIndex) 1450bc04a470Swren romano ptrTp = OverheadType::kU64; 1451bc04a470Swren romano if (indTp == OverheadType::kIndex) 1452bc04a470Swren romano indTp = OverheadType::kU64; 1453bc04a470Swren romano 14548a91bc7bSHarrietAkot // Double matrices with all combinations of overhead storage. 1455845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1456845561ecSwren romano uint64_t, double); 1457845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1458845561ecSwren romano uint32_t, double); 1459845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1460845561ecSwren romano uint16_t, double); 1461845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1462845561ecSwren romano uint8_t, double); 1463845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1464845561ecSwren romano uint64_t, double); 1465845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1466845561ecSwren romano uint32_t, double); 1467845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1468845561ecSwren romano uint16_t, double); 1469845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1470845561ecSwren romano uint8_t, double); 1471845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1472845561ecSwren romano uint64_t, double); 1473845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1474845561ecSwren romano uint32_t, double); 1475845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1476845561ecSwren romano uint16_t, double); 1477845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1478845561ecSwren romano uint8_t, double); 1479845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1480845561ecSwren romano uint64_t, double); 1481845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1482845561ecSwren romano uint32_t, double); 1483845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1484845561ecSwren romano uint16_t, double); 1485845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1486845561ecSwren romano uint8_t, double); 14878a91bc7bSHarrietAkot 14888a91bc7bSHarrietAkot // Float matrices with all combinations of overhead storage. 1489845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1490845561ecSwren romano uint64_t, float); 1491845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1492845561ecSwren romano uint32_t, float); 1493845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1494845561ecSwren romano uint16_t, float); 1495845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1496845561ecSwren romano uint8_t, float); 1497845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1498845561ecSwren romano uint64_t, float); 1499845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1500845561ecSwren romano uint32_t, float); 1501845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1502845561ecSwren romano uint16_t, float); 1503845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1504845561ecSwren romano uint8_t, float); 1505845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1506845561ecSwren romano uint64_t, float); 1507845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1508845561ecSwren romano uint32_t, float); 1509845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1510845561ecSwren romano uint16_t, float); 1511845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1512845561ecSwren romano uint8_t, float); 1513845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1514845561ecSwren romano uint64_t, float); 1515845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1516845561ecSwren romano uint32_t, float); 1517845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1518845561ecSwren romano uint16_t, float); 1519845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1520845561ecSwren romano uint8_t, float); 15218a91bc7bSHarrietAkot 1522845561ecSwren romano // Integral matrices with both overheads of the same type. 1523845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1524845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1525845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1526845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1527845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1528845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1529845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1530845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1531845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1532845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1533845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1534845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1535845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 15368a91bc7bSHarrietAkot 1537736c1b66SAart Bik // Complex matrices with wide overhead. 1538736c1b66SAart Bik CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64); 1539736c1b66SAart Bik CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32); 1540736c1b66SAart Bik 15418a91bc7bSHarrietAkot // Unsupported case (add above if needed). 15428a91bc7bSHarrietAkot fputs("unsupported combination of types\n", stderr); 15438a91bc7bSHarrietAkot exit(1); 15448a91bc7bSHarrietAkot } 15458a91bc7bSHarrietAkot #undef CASE 15461313f5d3Swren romano #undef CASE_SECSAME 15476438783fSAart Bik 1548bfadd13dSwren romano /// Methods that provide direct access to values. 1549bfadd13dSwren romano #define IMPL_SPARSEVALUES(VNAME, V) \ 1550bfadd13dSwren romano void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \ 1551bfadd13dSwren romano void *tensor) { \ 1552bfadd13dSwren romano assert(ref &&tensor); \ 1553bfadd13dSwren romano std::vector<V> *v; \ 1554bfadd13dSwren romano static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \ 1555bfadd13dSwren romano ref->basePtr = ref->data = v->data(); \ 1556bfadd13dSwren romano ref->offset = 0; \ 1557bfadd13dSwren romano ref->sizes[0] = v->size(); \ 1558bfadd13dSwren romano ref->strides[0] = 1; \ 1559bfadd13dSwren romano } 1560bfadd13dSwren romano FOREVERY_V(IMPL_SPARSEVALUES) 1561bfadd13dSwren romano #undef IMPL_SPARSEVALUES 1562bfadd13dSwren romano 1563bfadd13dSwren romano #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 1564bfadd13dSwren romano void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 1565bfadd13dSwren romano index_type d) { \ 1566bfadd13dSwren romano assert(ref &&tensor); \ 1567bfadd13dSwren romano std::vector<TYPE> *v; \ 1568bfadd13dSwren romano static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 1569bfadd13dSwren romano ref->basePtr = ref->data = v->data(); \ 1570bfadd13dSwren romano ref->offset = 0; \ 1571bfadd13dSwren romano ref->sizes[0] = v->size(); \ 1572bfadd13dSwren romano ref->strides[0] = 1; \ 1573bfadd13dSwren romano } 1574bfadd13dSwren romano /// Methods that provide direct access to pointers. 1575bfadd13dSwren romano IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 1576bfadd13dSwren romano IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 1577bfadd13dSwren romano IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 1578bfadd13dSwren romano IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 1579bfadd13dSwren romano IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 1580bfadd13dSwren romano 1581bfadd13dSwren romano /// Methods that provide direct access to indices. 1582bfadd13dSwren romano IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 1583bfadd13dSwren romano IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 1584bfadd13dSwren romano IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 1585bfadd13dSwren romano IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 1586bfadd13dSwren romano IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 1587bfadd13dSwren romano #undef IMPL_GETOVERHEAD 1588bfadd13dSwren romano 1589bfadd13dSwren romano /// Helper to add value to coordinate scheme, one per value type. 1590bfadd13dSwren romano #define IMPL_ADDELT(VNAME, V) \ 1591bfadd13dSwren romano void *_mlir_ciface_addElt##VNAME(void *coo, V value, \ 1592bfadd13dSwren romano StridedMemRefType<index_type, 1> *iref, \ 1593bfadd13dSwren romano StridedMemRefType<index_type, 1> *pref) { \ 1594bfadd13dSwren romano assert(coo &&iref &&pref); \ 1595bfadd13dSwren romano assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 1596bfadd13dSwren romano assert(iref->sizes[0] == pref->sizes[0]); \ 1597bfadd13dSwren romano const index_type *indx = iref->data + iref->offset; \ 1598bfadd13dSwren romano const index_type *perm = pref->data + pref->offset; \ 1599bfadd13dSwren romano uint64_t isize = iref->sizes[0]; \ 1600bfadd13dSwren romano std::vector<index_type> indices(isize); \ 1601bfadd13dSwren romano for (uint64_t r = 0; r < isize; r++) \ 1602bfadd13dSwren romano indices[perm[r]] = indx[r]; \ 1603bfadd13dSwren romano static_cast<SparseTensorCOO<V> *>(coo)->add(indices, value); \ 1604bfadd13dSwren romano return coo; \ 1605bfadd13dSwren romano } 1606bfadd13dSwren romano FOREVERY_SIMPLEX_V(IMPL_ADDELT) 1607bfadd13dSwren romano // `complex64` apparently doesn't encounter any ABI issues (yet). 1608bfadd13dSwren romano IMPL_ADDELT(C64, complex64) 1609bfadd13dSwren romano // TODO: cleaner way to avoid ABI padding problem? 1610bfadd13dSwren romano IMPL_ADDELT(C32ABI, complex32) 1611bfadd13dSwren romano void *_mlir_ciface_addEltC32(void *coo, float r, float i, 1612bfadd13dSwren romano StridedMemRefType<index_type, 1> *iref, 1613bfadd13dSwren romano StridedMemRefType<index_type, 1> *pref) { 1614bfadd13dSwren romano return _mlir_ciface_addEltC32ABI(coo, complex32(r, i), iref, pref); 1615bfadd13dSwren romano } 1616bfadd13dSwren romano #undef IMPL_ADDELT 1617bfadd13dSwren romano 1618bfadd13dSwren romano /// Helper to enumerate elements of coordinate scheme, one per value type. 1619bfadd13dSwren romano #define IMPL_GETNEXT(VNAME, V) \ 1620bfadd13dSwren romano bool _mlir_ciface_getNext##VNAME(void *coo, \ 1621bfadd13dSwren romano StridedMemRefType<index_type, 1> *iref, \ 1622bfadd13dSwren romano StridedMemRefType<V, 0> *vref) { \ 1623bfadd13dSwren romano assert(coo &&iref &&vref); \ 1624bfadd13dSwren romano assert(iref->strides[0] == 1); \ 1625bfadd13dSwren romano index_type *indx = iref->data + iref->offset; \ 1626bfadd13dSwren romano V *value = vref->data + vref->offset; \ 1627bfadd13dSwren romano const uint64_t isize = iref->sizes[0]; \ 1628bfadd13dSwren romano const Element<V> *elem = \ 1629bfadd13dSwren romano static_cast<SparseTensorCOO<V> *>(coo)->getNext(); \ 1630bfadd13dSwren romano if (elem == nullptr) \ 1631bfadd13dSwren romano return false; \ 1632bfadd13dSwren romano for (uint64_t r = 0; r < isize; r++) \ 1633bfadd13dSwren romano indx[r] = elem->indices[r]; \ 1634bfadd13dSwren romano *value = elem->value; \ 1635bfadd13dSwren romano return true; \ 1636bfadd13dSwren romano } 1637bfadd13dSwren romano FOREVERY_V(IMPL_GETNEXT) 1638bfadd13dSwren romano #undef IMPL_GETNEXT 1639bfadd13dSwren romano 1640bfadd13dSwren romano /// Insert elements in lexicographical index order, one per value type. 1641bfadd13dSwren romano #define IMPL_LEXINSERT(VNAME, V) \ 1642bfadd13dSwren romano void _mlir_ciface_lexInsert##VNAME( \ 1643bfadd13dSwren romano void *tensor, StridedMemRefType<index_type, 1> *cref, V val) { \ 1644bfadd13dSwren romano assert(tensor &&cref); \ 1645bfadd13dSwren romano assert(cref->strides[0] == 1); \ 1646bfadd13dSwren romano index_type *cursor = cref->data + cref->offset; \ 1647bfadd13dSwren romano assert(cursor); \ 1648bfadd13dSwren romano static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 1649bfadd13dSwren romano } 1650bfadd13dSwren romano FOREVERY_SIMPLEX_V(IMPL_LEXINSERT) 1651bfadd13dSwren romano // `complex64` apparently doesn't encounter any ABI issues (yet). 1652bfadd13dSwren romano IMPL_LEXINSERT(C64, complex64) 1653bfadd13dSwren romano // TODO: cleaner way to avoid ABI padding problem? 1654bfadd13dSwren romano IMPL_LEXINSERT(C32ABI, complex32) 1655bfadd13dSwren romano void _mlir_ciface_lexInsertC32(void *tensor, 1656bfadd13dSwren romano StridedMemRefType<index_type, 1> *cref, float r, 1657bfadd13dSwren romano float i) { 1658bfadd13dSwren romano _mlir_ciface_lexInsertC32ABI(tensor, cref, complex32(r, i)); 1659bfadd13dSwren romano } 1660bfadd13dSwren romano #undef IMPL_LEXINSERT 1661bfadd13dSwren romano 1662bfadd13dSwren romano /// Insert using expansion, one per value type. 1663bfadd13dSwren romano #define IMPL_EXPINSERT(VNAME, V) \ 1664bfadd13dSwren romano void _mlir_ciface_expInsert##VNAME( \ 1665bfadd13dSwren romano void *tensor, StridedMemRefType<index_type, 1> *cref, \ 1666bfadd13dSwren romano StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 1667bfadd13dSwren romano StridedMemRefType<index_type, 1> *aref, index_type count) { \ 1668bfadd13dSwren romano assert(tensor &&cref &&vref &&fref &&aref); \ 1669bfadd13dSwren romano assert(cref->strides[0] == 1); \ 1670bfadd13dSwren romano assert(vref->strides[0] == 1); \ 1671bfadd13dSwren romano assert(fref->strides[0] == 1); \ 1672bfadd13dSwren romano assert(aref->strides[0] == 1); \ 1673bfadd13dSwren romano assert(vref->sizes[0] == fref->sizes[0]); \ 1674bfadd13dSwren romano index_type *cursor = cref->data + cref->offset; \ 1675bfadd13dSwren romano V *values = vref->data + vref->offset; \ 1676bfadd13dSwren romano bool *filled = fref->data + fref->offset; \ 1677bfadd13dSwren romano index_type *added = aref->data + aref->offset; \ 1678bfadd13dSwren romano static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 1679bfadd13dSwren romano cursor, values, filled, added, count); \ 1680bfadd13dSwren romano } 1681bfadd13dSwren romano FOREVERY_V(IMPL_EXPINSERT) 1682bfadd13dSwren romano #undef IMPL_EXPINSERT 1683bfadd13dSwren romano 16846438783fSAart Bik /// Output a sparse tensor, one per value type. 16851313f5d3Swren romano #define IMPL_OUTSPARSETENSOR(VNAME, V) \ 16861313f5d3Swren romano void outSparseTensor##VNAME(void *coo, void *dest, bool sort) { \ 16871313f5d3Swren romano return outSparseTensor<V>(coo, dest, sort); \ 16886438783fSAart Bik } 16891313f5d3Swren romano FOREVERY_V(IMPL_OUTSPARSETENSOR) 16901313f5d3Swren romano #undef IMPL_OUTSPARSETENSOR 16918a91bc7bSHarrietAkot 16928a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 16938a91bc7bSHarrietAkot // 16948a91bc7bSHarrietAkot // Public API with methods that accept C-style data structures to interact 16958a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 16968a91bc7bSHarrietAkot // These methods can be used both by MLIR compiler-generated code as well as by 16978a91bc7bSHarrietAkot // an external runtime that wants to interact with MLIR compiler-generated code. 16988a91bc7bSHarrietAkot // 16998a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 17008a91bc7bSHarrietAkot 17018a91bc7bSHarrietAkot /// Helper method to read a sparse tensor filename from the environment, 17028a91bc7bSHarrietAkot /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1703d2215e79SRainer Orth char *getTensorFilename(index_type id) { 17048a91bc7bSHarrietAkot char var[80]; 17058a91bc7bSHarrietAkot sprintf(var, "TENSOR%" PRIu64, id); 17068a91bc7bSHarrietAkot char *env = getenv(var); 17073734c078Swren romano if (!env) { 17083734c078Swren romano fprintf(stderr, "Environment variable %s is not set\n", var); 17093734c078Swren romano exit(1); 17103734c078Swren romano } 17118a91bc7bSHarrietAkot return env; 17128a91bc7bSHarrietAkot } 17138a91bc7bSHarrietAkot 17148a91bc7bSHarrietAkot /// Returns size of sparse tensor in given dimension. 1715d2215e79SRainer Orth index_type sparseDimSize(void *tensor, index_type d) { 17168a91bc7bSHarrietAkot return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 17178a91bc7bSHarrietAkot } 17188a91bc7bSHarrietAkot 1719f66e5769SAart Bik /// Finalizes lexicographic insertions. 1720f66e5769SAart Bik void endInsert(void *tensor) { 1721f66e5769SAart Bik return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1722f66e5769SAart Bik } 1723f66e5769SAart Bik 17248a91bc7bSHarrietAkot /// Releases sparse tensor storage. 17258a91bc7bSHarrietAkot void delSparseTensor(void *tensor) { 17268a91bc7bSHarrietAkot delete static_cast<SparseTensorStorageBase *>(tensor); 17278a91bc7bSHarrietAkot } 17288a91bc7bSHarrietAkot 172963bdcaf9Swren romano /// Releases sparse tensor coordinate scheme. 173063bdcaf9Swren romano #define IMPL_DELCOO(VNAME, V) \ 173163bdcaf9Swren romano void delSparseTensorCOO##VNAME(void *coo) { \ 173263bdcaf9Swren romano delete static_cast<SparseTensorCOO<V> *>(coo); \ 173363bdcaf9Swren romano } 17341313f5d3Swren romano FOREVERY_V(IMPL_DELCOO) 173563bdcaf9Swren romano #undef IMPL_DELCOO 173663bdcaf9Swren romano 17378a91bc7bSHarrietAkot /// Initializes sparse tensor from a COO-flavored format expressed using C-style 17388a91bc7bSHarrietAkot /// data structures. The expected parameters are: 17398a91bc7bSHarrietAkot /// 17408a91bc7bSHarrietAkot /// rank: rank of tensor 17418a91bc7bSHarrietAkot /// nse: number of specified elements (usually the nonzeros) 17428a91bc7bSHarrietAkot /// shape: array with dimension size for each rank 17438a91bc7bSHarrietAkot /// values: a "nse" array with values for all specified elements 17448a91bc7bSHarrietAkot /// indices: a flat "nse x rank" array with indices for all specified elements 174520eaa88fSBixia Zheng /// perm: the permutation of the dimensions in the storage 174620eaa88fSBixia Zheng /// sparse: the sparsity for the dimensions 17478a91bc7bSHarrietAkot /// 17488a91bc7bSHarrietAkot /// For example, the sparse matrix 17498a91bc7bSHarrietAkot /// | 1.0 0.0 0.0 | 17508a91bc7bSHarrietAkot /// | 0.0 5.0 3.0 | 17518a91bc7bSHarrietAkot /// can be passed as 17528a91bc7bSHarrietAkot /// rank = 2 17538a91bc7bSHarrietAkot /// nse = 3 17548a91bc7bSHarrietAkot /// shape = [2, 3] 17558a91bc7bSHarrietAkot /// values = [1.0, 5.0, 3.0] 17568a91bc7bSHarrietAkot /// indices = [ 0, 0, 1, 1, 1, 2] 17578a91bc7bSHarrietAkot // 175820eaa88fSBixia Zheng // TODO: generalize beyond 64-bit indices. 17598a91bc7bSHarrietAkot // 17601313f5d3Swren romano #define IMPL_CONVERTTOMLIRSPARSETENSOR(VNAME, V) \ 17611313f5d3Swren romano void *convertToMLIRSparseTensor##VNAME( \ 17621313f5d3Swren romano uint64_t rank, uint64_t nse, uint64_t *shape, V *values, \ 17631313f5d3Swren romano uint64_t *indices, uint64_t *perm, uint8_t *sparse) { \ 17641313f5d3Swren romano return toMLIRSparseTensor<V>(rank, nse, shape, values, indices, perm, \ 17651313f5d3Swren romano sparse); \ 17668a91bc7bSHarrietAkot } 17671313f5d3Swren romano FOREVERY_V(IMPL_CONVERTTOMLIRSPARSETENSOR) 17681313f5d3Swren romano #undef IMPL_CONVERTTOMLIRSPARSETENSOR 17698a91bc7bSHarrietAkot 17702f49e6b0SBixia Zheng /// Converts a sparse tensor to COO-flavored format expressed using C-style 17712f49e6b0SBixia Zheng /// data structures. The expected output parameters are pointers for these 17722f49e6b0SBixia Zheng /// values: 17732f49e6b0SBixia Zheng /// 17742f49e6b0SBixia Zheng /// rank: rank of tensor 17752f49e6b0SBixia Zheng /// nse: number of specified elements (usually the nonzeros) 17762f49e6b0SBixia Zheng /// shape: array with dimension size for each rank 17772f49e6b0SBixia Zheng /// values: a "nse" array with values for all specified elements 17782f49e6b0SBixia Zheng /// indices: a flat "nse x rank" array with indices for all specified elements 17792f49e6b0SBixia Zheng /// 17802f49e6b0SBixia Zheng /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 17812f49e6b0SBixia Zheng /// from convertToMLIRSparseTensor. 17822f49e6b0SBixia Zheng /// 17832f49e6b0SBixia Zheng // TODO: Currently, values are copied from SparseTensorStorage to 17842f49e6b0SBixia Zheng // SparseTensorCOO, then to the output. We may want to reduce the number of 17852f49e6b0SBixia Zheng // copies. 17862f49e6b0SBixia Zheng // 17876438783fSAart Bik // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 17886438783fSAart Bik // compressed 17892f49e6b0SBixia Zheng // 17901313f5d3Swren romano #define IMPL_CONVERTFROMMLIRSPARSETENSOR(VNAME, V) \ 17911313f5d3Swren romano void convertFromMLIRSparseTensor##VNAME(void *tensor, uint64_t *pRank, \ 17921313f5d3Swren romano uint64_t *pNse, uint64_t **pShape, \ 17931313f5d3Swren romano V **pValues, uint64_t **pIndices) { \ 17941313f5d3Swren romano fromMLIRSparseTensor<V>(tensor, pRank, pNse, pShape, pValues, pIndices); \ 17952f49e6b0SBixia Zheng } 17961313f5d3Swren romano FOREVERY_V(IMPL_CONVERTFROMMLIRSPARSETENSOR) 17971313f5d3Swren romano #undef IMPL_CONVERTFROMMLIRSPARSETENSOR 1798efa15f41SAart Bik 17998a91bc7bSHarrietAkot } // extern "C" 18008a91bc7bSHarrietAkot 18018a91bc7bSHarrietAkot #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1802