18a91bc7bSHarrietAkot //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 28a91bc7bSHarrietAkot // 38a91bc7bSHarrietAkot // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48a91bc7bSHarrietAkot // See https://llvm.org/LICENSE.txt for license information. 58a91bc7bSHarrietAkot // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68a91bc7bSHarrietAkot // 78a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 88a91bc7bSHarrietAkot // 98a91bc7bSHarrietAkot // This file implements a light-weight runtime support library that is useful 108a91bc7bSHarrietAkot // for sparse tensor manipulations. The functionality provided in this library 118a91bc7bSHarrietAkot // is meant to simplify benchmarking, testing, and debugging MLIR code that 128a91bc7bSHarrietAkot // operates on sparse tensors. The provided functionality is **not** part 138a91bc7bSHarrietAkot // of core MLIR, however. 148a91bc7bSHarrietAkot // 158a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 168a91bc7bSHarrietAkot 17845561ecSwren romano #include "mlir/ExecutionEngine/SparseTensorUtils.h" 188a91bc7bSHarrietAkot #include "mlir/ExecutionEngine/CRunnerUtils.h" 198a91bc7bSHarrietAkot 208a91bc7bSHarrietAkot #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 218a91bc7bSHarrietAkot 228a91bc7bSHarrietAkot #include <algorithm> 238a91bc7bSHarrietAkot #include <cassert> 248a91bc7bSHarrietAkot #include <cctype> 258a91bc7bSHarrietAkot #include <cinttypes> 268a91bc7bSHarrietAkot #include <cstdio> 278a91bc7bSHarrietAkot #include <cstdlib> 288a91bc7bSHarrietAkot #include <cstring> 29*efa15f41SAart Bik #include <fstream> 30*efa15f41SAart Bik #include <iostream> 314d0a18d0Swren romano #include <limits> 328a91bc7bSHarrietAkot #include <numeric> 338a91bc7bSHarrietAkot #include <vector> 348a91bc7bSHarrietAkot 358a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 368a91bc7bSHarrietAkot // 378a91bc7bSHarrietAkot // Internal support for storing and reading sparse tensors. 388a91bc7bSHarrietAkot // 398a91bc7bSHarrietAkot // The following memory-resident sparse storage schemes are supported: 408a91bc7bSHarrietAkot // 418a91bc7bSHarrietAkot // (a) A coordinate scheme for temporarily storing and lexicographically 428a91bc7bSHarrietAkot // sorting a sparse tensor by index (SparseTensorCOO). 438a91bc7bSHarrietAkot // 448a91bc7bSHarrietAkot // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 458a91bc7bSHarrietAkot // per-dimension sparse/dense annnotations together with a dimension 468a91bc7bSHarrietAkot // ordering used by MLIR compiler-generated code (SparseTensorStorage). 478a91bc7bSHarrietAkot // 488a91bc7bSHarrietAkot // The following external formats are supported: 498a91bc7bSHarrietAkot // 508a91bc7bSHarrietAkot // (1) Matrix Market Exchange (MME): *.mtx 518a91bc7bSHarrietAkot // https://math.nist.gov/MatrixMarket/formats.html 528a91bc7bSHarrietAkot // 538a91bc7bSHarrietAkot // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 548a91bc7bSHarrietAkot // http://frostt.io/tensors/file-formats.html 558a91bc7bSHarrietAkot // 568a91bc7bSHarrietAkot // Two public APIs are supported: 578a91bc7bSHarrietAkot // 588a91bc7bSHarrietAkot // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 598a91bc7bSHarrietAkot // tensors. These methods should be used exclusively by MLIR 608a91bc7bSHarrietAkot // compiler-generated code. 618a91bc7bSHarrietAkot // 628a91bc7bSHarrietAkot // (II) Methods that accept C-style data structures to interact with sparse 638a91bc7bSHarrietAkot // tensors. These methods can be used by any external runtime that wants 648a91bc7bSHarrietAkot // to interact with MLIR compiler-generated code. 658a91bc7bSHarrietAkot // 668a91bc7bSHarrietAkot // In both cases (I) and (II), the SparseTensorStorage format is externally 678a91bc7bSHarrietAkot // only visible as an opaque pointer. 688a91bc7bSHarrietAkot // 698a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 708a91bc7bSHarrietAkot 718a91bc7bSHarrietAkot namespace { 728a91bc7bSHarrietAkot 7303fe15ceSAart Bik static constexpr int kColWidth = 1025; 7403fe15ceSAart Bik 758a91bc7bSHarrietAkot /// A sparse tensor element in coordinate scheme (value and indices). 768a91bc7bSHarrietAkot /// For example, a rank-1 vector element would look like 778a91bc7bSHarrietAkot /// ({i}, a[i]) 788a91bc7bSHarrietAkot /// and a rank-5 tensor element like 798a91bc7bSHarrietAkot /// ({i,j,k,l,m}, a[i,j,k,l,m]) 808a91bc7bSHarrietAkot template <typename V> 818a91bc7bSHarrietAkot struct Element { 828a91bc7bSHarrietAkot Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 838a91bc7bSHarrietAkot std::vector<uint64_t> indices; 848a91bc7bSHarrietAkot V value; 858a91bc7bSHarrietAkot }; 868a91bc7bSHarrietAkot 878a91bc7bSHarrietAkot /// A memory-resident sparse tensor in coordinate scheme (collection of 888a91bc7bSHarrietAkot /// elements). This data structure is used to read a sparse tensor from 898a91bc7bSHarrietAkot /// any external format into memory and sort the elements lexicographically 908a91bc7bSHarrietAkot /// by indices before passing it back to the client (most packed storage 918a91bc7bSHarrietAkot /// formats require the elements to appear in lexicographic index order). 928a91bc7bSHarrietAkot template <typename V> 938a91bc7bSHarrietAkot struct SparseTensorCOO { 948a91bc7bSHarrietAkot public: 958a91bc7bSHarrietAkot SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 968a91bc7bSHarrietAkot : sizes(szs), iteratorLocked(false), iteratorPos(0) { 978a91bc7bSHarrietAkot if (capacity) 988a91bc7bSHarrietAkot elements.reserve(capacity); 998a91bc7bSHarrietAkot } 1008a91bc7bSHarrietAkot /// Adds element as indices and value. 1018a91bc7bSHarrietAkot void add(const std::vector<uint64_t> &ind, V val) { 1028a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to add() after startIterator()"); 1038a91bc7bSHarrietAkot uint64_t rank = getRank(); 1048a91bc7bSHarrietAkot assert(rank == ind.size()); 1058a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 1068a91bc7bSHarrietAkot assert(ind[r] < sizes[r]); // within bounds 1078a91bc7bSHarrietAkot elements.emplace_back(ind, val); 1088a91bc7bSHarrietAkot } 1098a91bc7bSHarrietAkot /// Sorts elements lexicographically by index. 1108a91bc7bSHarrietAkot void sort() { 1118a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 112cf358253Swren romano // TODO: we may want to cache an `isSorted` bit, to avoid 113cf358253Swren romano // unnecessary/redundant sorting. 1148a91bc7bSHarrietAkot std::sort(elements.begin(), elements.end(), lexOrder); 1158a91bc7bSHarrietAkot } 1168a91bc7bSHarrietAkot /// Returns rank. 1178a91bc7bSHarrietAkot uint64_t getRank() const { return sizes.size(); } 1188a91bc7bSHarrietAkot /// Getter for sizes array. 1198a91bc7bSHarrietAkot const std::vector<uint64_t> &getSizes() const { return sizes; } 1208a91bc7bSHarrietAkot /// Getter for elements array. 1218a91bc7bSHarrietAkot const std::vector<Element<V>> &getElements() const { return elements; } 1228a91bc7bSHarrietAkot 1238a91bc7bSHarrietAkot /// Switch into iterator mode. 1248a91bc7bSHarrietAkot void startIterator() { 1258a91bc7bSHarrietAkot iteratorLocked = true; 1268a91bc7bSHarrietAkot iteratorPos = 0; 1278a91bc7bSHarrietAkot } 1288a91bc7bSHarrietAkot /// Get the next element. 1298a91bc7bSHarrietAkot const Element<V> *getNext() { 1308a91bc7bSHarrietAkot assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 1318a91bc7bSHarrietAkot if (iteratorPos < elements.size()) 1328a91bc7bSHarrietAkot return &(elements[iteratorPos++]); 1338a91bc7bSHarrietAkot iteratorLocked = false; 1348a91bc7bSHarrietAkot return nullptr; 1358a91bc7bSHarrietAkot } 1368a91bc7bSHarrietAkot 1378a91bc7bSHarrietAkot /// Factory method. Permutes the original dimensions according to 1388a91bc7bSHarrietAkot /// the given ordering and expects subsequent add() calls to honor 1398a91bc7bSHarrietAkot /// that same ordering for the given indices. The result is a 1408a91bc7bSHarrietAkot /// fully permuted coordinate scheme. 1418a91bc7bSHarrietAkot static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 1428a91bc7bSHarrietAkot const uint64_t *sizes, 1438a91bc7bSHarrietAkot const uint64_t *perm, 1448a91bc7bSHarrietAkot uint64_t capacity = 0) { 1458a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 1468a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 1478a91bc7bSHarrietAkot permsz[perm[r]] = sizes[r]; 1488a91bc7bSHarrietAkot return new SparseTensorCOO<V>(permsz, capacity); 1498a91bc7bSHarrietAkot } 1508a91bc7bSHarrietAkot 1518a91bc7bSHarrietAkot private: 1528a91bc7bSHarrietAkot /// Returns true if indices of e1 < indices of e2. 1538a91bc7bSHarrietAkot static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 1548a91bc7bSHarrietAkot uint64_t rank = e1.indices.size(); 1558a91bc7bSHarrietAkot assert(rank == e2.indices.size()); 1568a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) { 1578a91bc7bSHarrietAkot if (e1.indices[r] == e2.indices[r]) 1588a91bc7bSHarrietAkot continue; 1598a91bc7bSHarrietAkot return e1.indices[r] < e2.indices[r]; 1608a91bc7bSHarrietAkot } 1618a91bc7bSHarrietAkot return false; 1628a91bc7bSHarrietAkot } 1638a91bc7bSHarrietAkot const std::vector<uint64_t> sizes; // per-dimension sizes 1648a91bc7bSHarrietAkot std::vector<Element<V>> elements; 1658a91bc7bSHarrietAkot bool iteratorLocked; 1668a91bc7bSHarrietAkot unsigned iteratorPos; 1678a91bc7bSHarrietAkot }; 1688a91bc7bSHarrietAkot 1698a91bc7bSHarrietAkot /// Abstract base class of sparse tensor storage. Note that we use 1708a91bc7bSHarrietAkot /// function overloading to implement "partial" method specialization. 1718a91bc7bSHarrietAkot class SparseTensorStorageBase { 1728a91bc7bSHarrietAkot public: 1734f2ec7f9SAart Bik /// Dimension size query. 1748a91bc7bSHarrietAkot virtual uint64_t getDimSize(uint64_t) = 0; 1758a91bc7bSHarrietAkot 1764f2ec7f9SAart Bik /// Overhead storage. 1778a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 1788a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 1798a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 1808a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 1818a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 1828a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 1838a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 1848a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 1858a91bc7bSHarrietAkot 1864f2ec7f9SAart Bik /// Primary storage. 1878a91bc7bSHarrietAkot virtual void getValues(std::vector<double> **) { fatal("valf64"); } 1888a91bc7bSHarrietAkot virtual void getValues(std::vector<float> **) { fatal("valf32"); } 1898a91bc7bSHarrietAkot virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 1908a91bc7bSHarrietAkot virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 1918a91bc7bSHarrietAkot virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 1928a91bc7bSHarrietAkot virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 1938a91bc7bSHarrietAkot 1944f2ec7f9SAart Bik /// Element-wise insertion in lexicographic index order. 195c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 196c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 197c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 198c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 199c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 200c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 2014f2ec7f9SAart Bik 2024f2ec7f9SAart Bik /// Expanded insertion. 2034f2ec7f9SAart Bik virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 2044f2ec7f9SAart Bik fatal("expf64"); 2054f2ec7f9SAart Bik } 2064f2ec7f9SAart Bik virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 2074f2ec7f9SAart Bik fatal("expf32"); 2084f2ec7f9SAart Bik } 2094f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 2104f2ec7f9SAart Bik fatal("expi64"); 2114f2ec7f9SAart Bik } 2124f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 2134f2ec7f9SAart Bik fatal("expi32"); 2144f2ec7f9SAart Bik } 2154f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 2164f2ec7f9SAart Bik fatal("expi16"); 2174f2ec7f9SAart Bik } 2184f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 2194f2ec7f9SAart Bik fatal("expi8"); 2204f2ec7f9SAart Bik } 2214f2ec7f9SAart Bik 2224f2ec7f9SAart Bik /// Finishes insertion. 223f66e5769SAart Bik virtual void endInsert() = 0; 224f66e5769SAart Bik 225e5639b3fSMehdi Amini virtual ~SparseTensorStorageBase() = default; 2268a91bc7bSHarrietAkot 2278a91bc7bSHarrietAkot private: 2288a91bc7bSHarrietAkot void fatal(const char *tp) { 2298a91bc7bSHarrietAkot fprintf(stderr, "unsupported %s\n", tp); 2308a91bc7bSHarrietAkot exit(1); 2318a91bc7bSHarrietAkot } 2328a91bc7bSHarrietAkot }; 2338a91bc7bSHarrietAkot 2348a91bc7bSHarrietAkot /// A memory-resident sparse tensor using a storage scheme based on 2358a91bc7bSHarrietAkot /// per-dimension sparse/dense annotations. This data structure provides a 2368a91bc7bSHarrietAkot /// bufferized form of a sparse tensor type. In contrast to generating setup 2378a91bc7bSHarrietAkot /// methods for each differently annotated sparse tensor, this method provides 2388a91bc7bSHarrietAkot /// a convenient "one-size-fits-all" solution that simply takes an input tensor 2398a91bc7bSHarrietAkot /// and annotations to implement all required setup in a general manner. 2408a91bc7bSHarrietAkot template <typename P, typename I, typename V> 2418a91bc7bSHarrietAkot class SparseTensorStorage : public SparseTensorStorageBase { 2428a91bc7bSHarrietAkot public: 2438a91bc7bSHarrietAkot /// Constructs a sparse tensor storage scheme with the given dimensions, 2448a91bc7bSHarrietAkot /// permutation, and per-dimension dense/sparse annotations, using 2458a91bc7bSHarrietAkot /// the coordinate scheme tensor for the initial contents if provided. 2468a91bc7bSHarrietAkot SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 247f66e5769SAart Bik const DimLevelType *sparsity, 248f66e5769SAart Bik SparseTensorCOO<V> *tensor = nullptr) 249f66e5769SAart Bik : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 250f66e5769SAart Bik indices(getRank()) { 2518a91bc7bSHarrietAkot uint64_t rank = getRank(); 2528a91bc7bSHarrietAkot // Store "reverse" permutation. 2538a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 2548a91bc7bSHarrietAkot rev[perm[r]] = r; 2558a91bc7bSHarrietAkot // Provide hints on capacity of pointers and indices. 2568a91bc7bSHarrietAkot // TODO: needs fine-tuning based on sparsity 257f66e5769SAart Bik bool allDense = true; 258f66e5769SAart Bik uint64_t sz = 1; 259f66e5769SAart Bik for (uint64_t r = 0; r < rank; r++) { 2604d0a18d0Swren romano assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 261f66e5769SAart Bik sz *= sizes[r]; 262845561ecSwren romano if (sparsity[r] == DimLevelType::kCompressed) { 263f66e5769SAart Bik pointers[r].reserve(sz + 1); 264f66e5769SAart Bik indices[r].reserve(sz); 265f66e5769SAart Bik sz = 1; 266f66e5769SAart Bik allDense = false; 2674d0a18d0Swren romano // Prepare the pointer structure. We cannot use `addPointer` 2684d0a18d0Swren romano // here, because `isCompressedDim` won't work until after this 2694d0a18d0Swren romano // preparation has been done. 2704d0a18d0Swren romano pointers[r].push_back(0); 2718a91bc7bSHarrietAkot } else { 272845561ecSwren romano assert(sparsity[r] == DimLevelType::kDense && 273845561ecSwren romano "singleton not yet supported"); 2748a91bc7bSHarrietAkot } 2758a91bc7bSHarrietAkot } 2768a91bc7bSHarrietAkot // Then assign contents from coordinate scheme tensor if provided. 2778a91bc7bSHarrietAkot if (tensor) { 2784d0a18d0Swren romano // Ensure both preconditions of `fromCOO`. 2794d0a18d0Swren romano assert(tensor->getSizes() == sizes && "Tensor size mismatch"); 280cf358253Swren romano tensor->sort(); 2814d0a18d0Swren romano // Now actually insert the `elements`. 282ceda1ae9Swren romano const std::vector<Element<V>> &elements = tensor->getElements(); 283ceda1ae9Swren romano uint64_t nnz = elements.size(); 2848a91bc7bSHarrietAkot values.reserve(nnz); 285ceda1ae9Swren romano fromCOO(elements, 0, nnz, 0); 2861ce77b56SAart Bik } else if (allDense) { 287f66e5769SAart Bik values.resize(sz, 0); 2888a91bc7bSHarrietAkot } 2898a91bc7bSHarrietAkot } 2908a91bc7bSHarrietAkot 2910ae2e958SMehdi Amini ~SparseTensorStorage() override = default; 2928a91bc7bSHarrietAkot 2938a91bc7bSHarrietAkot /// Get the rank of the tensor. 2948a91bc7bSHarrietAkot uint64_t getRank() const { return sizes.size(); } 2958a91bc7bSHarrietAkot 2968a91bc7bSHarrietAkot /// Get the size in the given dimension of the tensor. 2978a91bc7bSHarrietAkot uint64_t getDimSize(uint64_t d) override { 2988a91bc7bSHarrietAkot assert(d < getRank()); 2998a91bc7bSHarrietAkot return sizes[d]; 3008a91bc7bSHarrietAkot } 3018a91bc7bSHarrietAkot 302f66e5769SAart Bik /// Partially specialize these getter methods based on template types. 3038a91bc7bSHarrietAkot void getPointers(std::vector<P> **out, uint64_t d) override { 3048a91bc7bSHarrietAkot assert(d < getRank()); 3058a91bc7bSHarrietAkot *out = &pointers[d]; 3068a91bc7bSHarrietAkot } 3078a91bc7bSHarrietAkot void getIndices(std::vector<I> **out, uint64_t d) override { 3088a91bc7bSHarrietAkot assert(d < getRank()); 3098a91bc7bSHarrietAkot *out = &indices[d]; 3108a91bc7bSHarrietAkot } 3118a91bc7bSHarrietAkot void getValues(std::vector<V> **out) override { *out = &values; } 3128a91bc7bSHarrietAkot 31303fe15ceSAart Bik /// Partially specialize lexicographical insertions based on template types. 314c03fd1e6Swren romano void lexInsert(const uint64_t *cursor, V val) override { 3151ce77b56SAart Bik // First, wrap up pending insertion path. 3161ce77b56SAart Bik uint64_t diff = 0; 3171ce77b56SAart Bik uint64_t top = 0; 3181ce77b56SAart Bik if (!values.empty()) { 3191ce77b56SAart Bik diff = lexDiff(cursor); 3201ce77b56SAart Bik endPath(diff + 1); 3211ce77b56SAart Bik top = idx[diff] + 1; 3221ce77b56SAart Bik } 3231ce77b56SAart Bik // Then continue with insertion path. 3241ce77b56SAart Bik insPath(cursor, diff, top, val); 325f66e5769SAart Bik } 326f66e5769SAart Bik 3274f2ec7f9SAart Bik /// Partially specialize expanded insertions based on template types. 3284f2ec7f9SAart Bik /// Note that this method resets the values/filled-switch array back 3294f2ec7f9SAart Bik /// to all-zero/false while only iterating over the nonzero elements. 3304f2ec7f9SAart Bik void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 3314f2ec7f9SAart Bik uint64_t count) override { 3324f2ec7f9SAart Bik if (count == 0) 3334f2ec7f9SAart Bik return; 3344f2ec7f9SAart Bik // Sort. 3354f2ec7f9SAart Bik std::sort(added, added + count); 3364f2ec7f9SAart Bik // Restore insertion path for first insert. 3374f2ec7f9SAart Bik uint64_t rank = getRank(); 3384f2ec7f9SAart Bik uint64_t index = added[0]; 3394f2ec7f9SAart Bik cursor[rank - 1] = index; 3404f2ec7f9SAart Bik lexInsert(cursor, values[index]); 3414f2ec7f9SAart Bik assert(filled[index]); 3424f2ec7f9SAart Bik values[index] = 0; 3434f2ec7f9SAart Bik filled[index] = false; 3444f2ec7f9SAart Bik // Subsequent insertions are quick. 3454f2ec7f9SAart Bik for (uint64_t i = 1; i < count; i++) { 3464f2ec7f9SAart Bik assert(index < added[i] && "non-lexicographic insertion"); 3474f2ec7f9SAart Bik index = added[i]; 3484f2ec7f9SAart Bik cursor[rank - 1] = index; 3494f2ec7f9SAart Bik insPath(cursor, rank - 1, added[i - 1] + 1, values[index]); 3504f2ec7f9SAart Bik assert(filled[index]); 3514f2ec7f9SAart Bik values[index] = 0.0; 3524f2ec7f9SAart Bik filled[index] = false; 3534f2ec7f9SAart Bik } 3544f2ec7f9SAart Bik } 3554f2ec7f9SAart Bik 356f66e5769SAart Bik /// Finalizes lexicographic insertions. 3571ce77b56SAart Bik void endInsert() override { 3581ce77b56SAart Bik if (values.empty()) 3591ce77b56SAart Bik endDim(0); 3601ce77b56SAart Bik else 3611ce77b56SAart Bik endPath(0); 3621ce77b56SAart Bik } 363f66e5769SAart Bik 3648a91bc7bSHarrietAkot /// Returns this sparse tensor storage scheme as a new memory-resident 3658a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme with the given dimension order. 3668a91bc7bSHarrietAkot SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 3678a91bc7bSHarrietAkot // Restore original order of the dimension sizes and allocate coordinate 3688a91bc7bSHarrietAkot // scheme with desired new ordering specified in perm. 3698a91bc7bSHarrietAkot uint64_t rank = getRank(); 3708a91bc7bSHarrietAkot std::vector<uint64_t> orgsz(rank); 3718a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 3728a91bc7bSHarrietAkot orgsz[rev[r]] = sizes[r]; 3738a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 3748a91bc7bSHarrietAkot rank, orgsz.data(), perm, values.size()); 3758a91bc7bSHarrietAkot // Populate coordinate scheme restored from old ordering and changed with 3768a91bc7bSHarrietAkot // new ordering. Rather than applying both reorderings during the recursion, 3778a91bc7bSHarrietAkot // we compute the combine permutation in advance. 3788a91bc7bSHarrietAkot std::vector<uint64_t> reord(rank); 3798a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 3808a91bc7bSHarrietAkot reord[r] = perm[rev[r]]; 381ceda1ae9Swren romano toCOO(*tensor, reord, 0, 0); 3828a91bc7bSHarrietAkot assert(tensor->getElements().size() == values.size()); 3838a91bc7bSHarrietAkot return tensor; 3848a91bc7bSHarrietAkot } 3858a91bc7bSHarrietAkot 3868a91bc7bSHarrietAkot /// Factory method. Constructs a sparse tensor storage scheme with the given 3878a91bc7bSHarrietAkot /// dimensions, permutation, and per-dimension dense/sparse annotations, 3888a91bc7bSHarrietAkot /// using the coordinate scheme tensor for the initial contents if provided. 3898a91bc7bSHarrietAkot /// In the latter case, the coordinate scheme must respect the same 3908a91bc7bSHarrietAkot /// permutation as is desired for the new sparse tensor storage. 3918a91bc7bSHarrietAkot static SparseTensorStorage<P, I, V> * 3928a91bc7bSHarrietAkot newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm, 393845561ecSwren romano const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 3948a91bc7bSHarrietAkot SparseTensorStorage<P, I, V> *n = nullptr; 3958a91bc7bSHarrietAkot if (tensor) { 3968a91bc7bSHarrietAkot assert(tensor->getRank() == rank); 3978a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 3988a91bc7bSHarrietAkot assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]); 3998a91bc7bSHarrietAkot n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 4008a91bc7bSHarrietAkot tensor); 4018a91bc7bSHarrietAkot delete tensor; 4028a91bc7bSHarrietAkot } else { 4038a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 4048a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 4058a91bc7bSHarrietAkot permsz[perm[r]] = sizes[r]; 406f66e5769SAart Bik n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 4078a91bc7bSHarrietAkot } 4088a91bc7bSHarrietAkot return n; 4098a91bc7bSHarrietAkot } 4108a91bc7bSHarrietAkot 4118a91bc7bSHarrietAkot private: 4124d0a18d0Swren romano /// Appends the next free position of `indices[d]` to `pointers[d]`. 4134d0a18d0Swren romano /// Thus, when called after inserting the last element of a segment, 4144d0a18d0Swren romano /// it will append the position where the next segment begins. 4154d0a18d0Swren romano inline void addPointer(uint64_t d) { 4164d0a18d0Swren romano assert(isCompressedDim(d)); // Entails `d < getRank()`. 4174d0a18d0Swren romano uint64_t p = indices[d].size(); 4184d0a18d0Swren romano assert(p <= std::numeric_limits<P>::max() && 4194d0a18d0Swren romano "Pointer value is too large for the P-type"); 4204d0a18d0Swren romano pointers[d].push_back(p); // Here is where we convert to `P`. 4214d0a18d0Swren romano } 4224d0a18d0Swren romano 4234d0a18d0Swren romano /// Appends the given index to `indices[d]`. 4244d0a18d0Swren romano inline void addIndex(uint64_t d, uint64_t i) { 4254d0a18d0Swren romano assert(isCompressedDim(d)); // Entails `d < getRank()`. 4264d0a18d0Swren romano assert(i <= std::numeric_limits<I>::max() && 4274d0a18d0Swren romano "Index value is too large for the I-type"); 4284d0a18d0Swren romano indices[d].push_back(i); // Here is where we convert to `I`. 4294d0a18d0Swren romano } 4304d0a18d0Swren romano 4318a91bc7bSHarrietAkot /// Initializes sparse tensor storage scheme from a memory-resident sparse 4328a91bc7bSHarrietAkot /// tensor in coordinate scheme. This method prepares the pointers and 4338a91bc7bSHarrietAkot /// indices arrays under the given per-dimension dense/sparse annotations. 4344d0a18d0Swren romano /// 4354d0a18d0Swren romano /// Preconditions: 4364d0a18d0Swren romano /// (1) the `elements` must be lexicographically sorted. 4374d0a18d0Swren romano /// (2) the indices of every element are valid for `sizes` (equal rank 4384d0a18d0Swren romano /// and pointwise less-than). 439ceda1ae9Swren romano void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 440ceda1ae9Swren romano uint64_t hi, uint64_t d) { 4418a91bc7bSHarrietAkot // Once dimensions are exhausted, insert the numerical values. 442c4017f9dSwren romano assert(d <= getRank() && hi <= elements.size()); 4438a91bc7bSHarrietAkot if (d == getRank()) { 444c4017f9dSwren romano assert(lo < hi); 4451ce77b56SAart Bik values.push_back(elements[lo].value); 4468a91bc7bSHarrietAkot return; 4478a91bc7bSHarrietAkot } 4488a91bc7bSHarrietAkot // Visit all elements in this interval. 4498a91bc7bSHarrietAkot uint64_t full = 0; 450c4017f9dSwren romano while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 4518a91bc7bSHarrietAkot // Find segment in interval with same index elements in this dimension. 452f66e5769SAart Bik uint64_t i = elements[lo].indices[d]; 4538a91bc7bSHarrietAkot uint64_t seg = lo + 1; 454f66e5769SAart Bik while (seg < hi && elements[seg].indices[d] == i) 4558a91bc7bSHarrietAkot seg++; 4568a91bc7bSHarrietAkot // Handle segment in interval for sparse or dense dimension. 4571ce77b56SAart Bik if (isCompressedDim(d)) { 4584d0a18d0Swren romano addIndex(d, i); 4598a91bc7bSHarrietAkot } else { 4608a91bc7bSHarrietAkot // For dense storage we must fill in all the zero values between 4618a91bc7bSHarrietAkot // the previous element (when last we ran this for-loop) and the 4628a91bc7bSHarrietAkot // current element. 463f66e5769SAart Bik for (; full < i; full++) 4641ce77b56SAart Bik endDim(d + 1); 4658a91bc7bSHarrietAkot full++; 4668a91bc7bSHarrietAkot } 467ceda1ae9Swren romano fromCOO(elements, lo, seg, d + 1); 4688a91bc7bSHarrietAkot // And move on to next segment in interval. 4698a91bc7bSHarrietAkot lo = seg; 4708a91bc7bSHarrietAkot } 4718a91bc7bSHarrietAkot // Finalize the sparse pointer structure at this dimension. 4721ce77b56SAart Bik if (isCompressedDim(d)) { 4734d0a18d0Swren romano addPointer(d); 4748a91bc7bSHarrietAkot } else { 4758a91bc7bSHarrietAkot // For dense storage we must fill in all the zero values after 4768a91bc7bSHarrietAkot // the last element. 4778a91bc7bSHarrietAkot for (uint64_t sz = sizes[d]; full < sz; full++) 4781ce77b56SAart Bik endDim(d + 1); 4798a91bc7bSHarrietAkot } 4808a91bc7bSHarrietAkot } 4818a91bc7bSHarrietAkot 4828a91bc7bSHarrietAkot /// Stores the sparse tensor storage scheme into a memory-resident sparse 4838a91bc7bSHarrietAkot /// tensor in coordinate scheme. 484ceda1ae9Swren romano void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 485f66e5769SAart Bik uint64_t pos, uint64_t d) { 4868a91bc7bSHarrietAkot assert(d <= getRank()); 4878a91bc7bSHarrietAkot if (d == getRank()) { 4888a91bc7bSHarrietAkot assert(pos < values.size()); 489ceda1ae9Swren romano tensor.add(idx, values[pos]); 4901ce77b56SAart Bik } else if (isCompressedDim(d)) { 4918a91bc7bSHarrietAkot // Sparse dimension. 4928a91bc7bSHarrietAkot for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 4938a91bc7bSHarrietAkot idx[reord[d]] = indices[d][ii]; 494f66e5769SAart Bik toCOO(tensor, reord, ii, d + 1); 4958a91bc7bSHarrietAkot } 4961ce77b56SAart Bik } else { 4971ce77b56SAart Bik // Dense dimension. 4981ce77b56SAart Bik for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 4991ce77b56SAart Bik idx[reord[d]] = i; 5001ce77b56SAart Bik toCOO(tensor, reord, off + i, d + 1); 5018a91bc7bSHarrietAkot } 5028a91bc7bSHarrietAkot } 5031ce77b56SAart Bik } 5041ce77b56SAart Bik 5051ce77b56SAart Bik /// Ends a deeper, never seen before dimension. 5061ce77b56SAart Bik void endDim(uint64_t d) { 5071ce77b56SAart Bik assert(d <= getRank()); 5081ce77b56SAart Bik if (d == getRank()) { 5091ce77b56SAart Bik values.push_back(0); 5101ce77b56SAart Bik } else if (isCompressedDim(d)) { 5114d0a18d0Swren romano addPointer(d); 5121ce77b56SAart Bik } else { 5131ce77b56SAart Bik for (uint64_t full = 0, sz = sizes[d]; full < sz; full++) 5141ce77b56SAart Bik endDim(d + 1); 5151ce77b56SAart Bik } 5161ce77b56SAart Bik } 5171ce77b56SAart Bik 5181ce77b56SAart Bik /// Wraps up a single insertion path, inner to outer. 5191ce77b56SAart Bik void endPath(uint64_t diff) { 5201ce77b56SAart Bik uint64_t rank = getRank(); 5211ce77b56SAart Bik assert(diff <= rank); 5221ce77b56SAart Bik for (uint64_t i = 0; i < rank - diff; i++) { 5231ce77b56SAart Bik uint64_t d = rank - i - 1; 5241ce77b56SAart Bik if (isCompressedDim(d)) { 5254d0a18d0Swren romano addPointer(d); 5261ce77b56SAart Bik } else { 5271ce77b56SAart Bik for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++) 5281ce77b56SAart Bik endDim(d + 1); 5291ce77b56SAart Bik } 5301ce77b56SAart Bik } 5311ce77b56SAart Bik } 5321ce77b56SAart Bik 5331ce77b56SAart Bik /// Continues a single insertion path, outer to inner. 534c03fd1e6Swren romano void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 5351ce77b56SAart Bik uint64_t rank = getRank(); 5361ce77b56SAart Bik assert(diff < rank); 5371ce77b56SAart Bik for (uint64_t d = diff; d < rank; d++) { 5381ce77b56SAart Bik uint64_t i = cursor[d]; 5391ce77b56SAart Bik if (isCompressedDim(d)) { 5404d0a18d0Swren romano addIndex(d, i); 5411ce77b56SAart Bik } else { 5421ce77b56SAart Bik for (uint64_t full = top; full < i; full++) 5431ce77b56SAart Bik endDim(d + 1); 5441ce77b56SAart Bik } 5451ce77b56SAart Bik top = 0; 5461ce77b56SAart Bik idx[d] = i; 5471ce77b56SAart Bik } 5481ce77b56SAart Bik values.push_back(val); 5491ce77b56SAart Bik } 5501ce77b56SAart Bik 5511ce77b56SAart Bik /// Finds the lexicographic differing dimension. 552c03fd1e6Swren romano uint64_t lexDiff(const uint64_t *cursor) { 5531ce77b56SAart Bik for (uint64_t r = 0, rank = getRank(); r < rank; r++) 5541ce77b56SAart Bik if (cursor[r] > idx[r]) 5551ce77b56SAart Bik return r; 5561ce77b56SAart Bik else 5571ce77b56SAart Bik assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 5581ce77b56SAart Bik assert(0 && "duplication insertion"); 5591ce77b56SAart Bik return -1u; 5601ce77b56SAart Bik } 5611ce77b56SAart Bik 5621ce77b56SAart Bik /// Returns true if dimension is compressed. 5631ce77b56SAart Bik inline bool isCompressedDim(uint64_t d) const { 5644d0a18d0Swren romano assert(d < getRank()); 5651ce77b56SAart Bik return (!pointers[d].empty()); 5661ce77b56SAart Bik } 5678a91bc7bSHarrietAkot 5688a91bc7bSHarrietAkot private: 5698a91bc7bSHarrietAkot std::vector<uint64_t> sizes; // per-dimension sizes 5708a91bc7bSHarrietAkot std::vector<uint64_t> rev; // "reverse" permutation 571f66e5769SAart Bik std::vector<uint64_t> idx; // index cursor 5728a91bc7bSHarrietAkot std::vector<std::vector<P>> pointers; 5738a91bc7bSHarrietAkot std::vector<std::vector<I>> indices; 5748a91bc7bSHarrietAkot std::vector<V> values; 5758a91bc7bSHarrietAkot }; 5768a91bc7bSHarrietAkot 5778a91bc7bSHarrietAkot /// Helper to convert string to lower case. 5788a91bc7bSHarrietAkot static char *toLower(char *token) { 5798a91bc7bSHarrietAkot for (char *c = token; *c; c++) 5808a91bc7bSHarrietAkot *c = tolower(*c); 5818a91bc7bSHarrietAkot return token; 5828a91bc7bSHarrietAkot } 5838a91bc7bSHarrietAkot 5848a91bc7bSHarrietAkot /// Read the MME header of a general sparse matrix of type real. 58503fe15ceSAart Bik static void readMMEHeader(FILE *file, char *filename, char *line, 586bb56c2b3SMehdi Amini uint64_t *idata, bool *isSymmetric) { 5878a91bc7bSHarrietAkot char header[64]; 5888a91bc7bSHarrietAkot char object[64]; 5898a91bc7bSHarrietAkot char format[64]; 5908a91bc7bSHarrietAkot char field[64]; 5918a91bc7bSHarrietAkot char symmetry[64]; 5928a91bc7bSHarrietAkot // Read header line. 5938a91bc7bSHarrietAkot if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 5948a91bc7bSHarrietAkot symmetry) != 5) { 59503fe15ceSAart Bik fprintf(stderr, "Corrupt header in %s\n", filename); 5968a91bc7bSHarrietAkot exit(1); 5978a91bc7bSHarrietAkot } 598bb56c2b3SMehdi Amini *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 5998a91bc7bSHarrietAkot // Make sure this is a general sparse matrix. 6008a91bc7bSHarrietAkot if (strcmp(toLower(header), "%%matrixmarket") || 6018a91bc7bSHarrietAkot strcmp(toLower(object), "matrix") || 6028a91bc7bSHarrietAkot strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 603bb56c2b3SMehdi Amini (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 6048a91bc7bSHarrietAkot fprintf(stderr, 60503fe15ceSAart Bik "Cannot find a general sparse matrix with type real in %s\n", 60603fe15ceSAart Bik filename); 6078a91bc7bSHarrietAkot exit(1); 6088a91bc7bSHarrietAkot } 6098a91bc7bSHarrietAkot // Skip comments. 610e5639b3fSMehdi Amini while (true) { 61103fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 61203fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6138a91bc7bSHarrietAkot exit(1); 6148a91bc7bSHarrietAkot } 6158a91bc7bSHarrietAkot if (line[0] != '%') 6168a91bc7bSHarrietAkot break; 6178a91bc7bSHarrietAkot } 6188a91bc7bSHarrietAkot // Next line contains M N NNZ. 6198a91bc7bSHarrietAkot idata[0] = 2; // rank 6208a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 6218a91bc7bSHarrietAkot idata + 1) != 3) { 62203fe15ceSAart Bik fprintf(stderr, "Cannot find size in %s\n", filename); 6238a91bc7bSHarrietAkot exit(1); 6248a91bc7bSHarrietAkot } 6258a91bc7bSHarrietAkot } 6268a91bc7bSHarrietAkot 6278a91bc7bSHarrietAkot /// Read the "extended" FROSTT header. Although not part of the documented 6288a91bc7bSHarrietAkot /// format, we assume that the file starts with optional comments followed 6298a91bc7bSHarrietAkot /// by two lines that define the rank, the number of nonzeros, and the 6308a91bc7bSHarrietAkot /// dimensions sizes (one per rank) of the sparse tensor. 63103fe15ceSAart Bik static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 63203fe15ceSAart Bik uint64_t *idata) { 6338a91bc7bSHarrietAkot // Skip comments. 634e5639b3fSMehdi Amini while (true) { 63503fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 63603fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6378a91bc7bSHarrietAkot exit(1); 6388a91bc7bSHarrietAkot } 6398a91bc7bSHarrietAkot if (line[0] != '#') 6408a91bc7bSHarrietAkot break; 6418a91bc7bSHarrietAkot } 6428a91bc7bSHarrietAkot // Next line contains RANK and NNZ. 6438a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 64403fe15ceSAart Bik fprintf(stderr, "Cannot find metadata in %s\n", filename); 6458a91bc7bSHarrietAkot exit(1); 6468a91bc7bSHarrietAkot } 6478a91bc7bSHarrietAkot // Followed by a line with the dimension sizes (one per rank). 6488a91bc7bSHarrietAkot for (uint64_t r = 0; r < idata[0]; r++) { 6498a91bc7bSHarrietAkot if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 65003fe15ceSAart Bik fprintf(stderr, "Cannot find dimension size %s\n", filename); 6518a91bc7bSHarrietAkot exit(1); 6528a91bc7bSHarrietAkot } 6538a91bc7bSHarrietAkot } 65403fe15ceSAart Bik fgets(line, kColWidth, file); // end of line 6558a91bc7bSHarrietAkot } 6568a91bc7bSHarrietAkot 6578a91bc7bSHarrietAkot /// Reads a sparse tensor with the given filename into a memory-resident 6588a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme. 6598a91bc7bSHarrietAkot template <typename V> 6608a91bc7bSHarrietAkot static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 6618a91bc7bSHarrietAkot const uint64_t *sizes, 6628a91bc7bSHarrietAkot const uint64_t *perm) { 6638a91bc7bSHarrietAkot // Open the file. 6648a91bc7bSHarrietAkot FILE *file = fopen(filename, "r"); 6658a91bc7bSHarrietAkot if (!file) { 6668a91bc7bSHarrietAkot fprintf(stderr, "Cannot find %s\n", filename); 6678a91bc7bSHarrietAkot exit(1); 6688a91bc7bSHarrietAkot } 6698a91bc7bSHarrietAkot // Perform some file format dependent set up. 67003fe15ceSAart Bik char line[kColWidth]; 6718a91bc7bSHarrietAkot uint64_t idata[512]; 672bb56c2b3SMehdi Amini bool isSymmetric = false; 6738a91bc7bSHarrietAkot if (strstr(filename, ".mtx")) { 674bb56c2b3SMehdi Amini readMMEHeader(file, filename, line, idata, &isSymmetric); 6758a91bc7bSHarrietAkot } else if (strstr(filename, ".tns")) { 67603fe15ceSAart Bik readExtFROSTTHeader(file, filename, line, idata); 6778a91bc7bSHarrietAkot } else { 6788a91bc7bSHarrietAkot fprintf(stderr, "Unknown format %s\n", filename); 6798a91bc7bSHarrietAkot exit(1); 6808a91bc7bSHarrietAkot } 6818a91bc7bSHarrietAkot // Prepare sparse tensor object with per-dimension sizes 6828a91bc7bSHarrietAkot // and the number of nonzeros as initial capacity. 6838a91bc7bSHarrietAkot assert(rank == idata[0] && "rank mismatch"); 6848a91bc7bSHarrietAkot uint64_t nnz = idata[1]; 6858a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 6868a91bc7bSHarrietAkot assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) && 6878a91bc7bSHarrietAkot "dimension size mismatch"); 6888a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = 6898a91bc7bSHarrietAkot SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 6908a91bc7bSHarrietAkot // Read all nonzero elements. 6918a91bc7bSHarrietAkot std::vector<uint64_t> indices(rank); 6928a91bc7bSHarrietAkot for (uint64_t k = 0; k < nnz; k++) { 69303fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 69403fe15ceSAart Bik fprintf(stderr, "Cannot find next line of data in %s\n", filename); 6958a91bc7bSHarrietAkot exit(1); 6968a91bc7bSHarrietAkot } 69703fe15ceSAart Bik char *linePtr = line; 69803fe15ceSAart Bik for (uint64_t r = 0; r < rank; r++) { 69903fe15ceSAart Bik uint64_t idx = strtoul(linePtr, &linePtr, 10); 7008a91bc7bSHarrietAkot // Add 0-based index. 7018a91bc7bSHarrietAkot indices[perm[r]] = idx - 1; 7028a91bc7bSHarrietAkot } 7038a91bc7bSHarrietAkot // The external formats always store the numerical values with the type 7048a91bc7bSHarrietAkot // double, but we cast these values to the sparse tensor object type. 70503fe15ceSAart Bik double value = strtod(linePtr, &linePtr); 7068a91bc7bSHarrietAkot tensor->add(indices, value); 70702710413SBixia Zheng // We currently chose to deal with symmetric matrices by fully constructing 70802710413SBixia Zheng // them. In the future, we may want to make symmetry implicit for storage 70902710413SBixia Zheng // reasons. 710bb56c2b3SMehdi Amini if (isSymmetric && indices[0] != indices[1]) 71102710413SBixia Zheng tensor->add({indices[1], indices[0]}, value); 7128a91bc7bSHarrietAkot } 7138a91bc7bSHarrietAkot // Close the file and return tensor. 7148a91bc7bSHarrietAkot fclose(file); 7158a91bc7bSHarrietAkot return tensor; 7168a91bc7bSHarrietAkot } 7178a91bc7bSHarrietAkot 718*efa15f41SAart Bik /// Writes the sparse tensor to extended FROSTT format. 719*efa15f41SAart Bik template <typename V> 720*efa15f41SAart Bik void outSparseTensor(const SparseTensorCOO<V> &tensor, char *filename) { 721*efa15f41SAart Bik auto &sizes = tensor.getSizes(); 722*efa15f41SAart Bik auto &elements = tensor.getElements(); 723*efa15f41SAart Bik uint64_t rank = tensor.getRank(); 724*efa15f41SAart Bik uint64_t nnz = elements.size(); 725*efa15f41SAart Bik std::fstream file; 726*efa15f41SAart Bik file.open(filename, std::ios_base::out | std::ios_base::trunc); 727*efa15f41SAart Bik assert(file.is_open()); 728*efa15f41SAart Bik file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 729*efa15f41SAart Bik for (uint64_t r = 0; r < rank - 1; r++) 730*efa15f41SAart Bik file << sizes[r] << " "; 731*efa15f41SAart Bik file << sizes[rank - 1] << std::endl; 732*efa15f41SAart Bik for (uint64_t i = 0; i < nnz; i++) { 733*efa15f41SAart Bik auto &idx = elements[i].indices; 734*efa15f41SAart Bik for (uint64_t r = 0; r < rank; r++) 735*efa15f41SAart Bik file << (idx[r] + 1) << " "; 736*efa15f41SAart Bik file << elements[i].value << std::endl; 737*efa15f41SAart Bik } 738*efa15f41SAart Bik file.flush(); 739*efa15f41SAart Bik file.close(); 740*efa15f41SAart Bik assert(file.good()); 741*efa15f41SAart Bik } 742*efa15f41SAart Bik 743be0a7e9fSMehdi Amini } // namespace 7448a91bc7bSHarrietAkot 7458a91bc7bSHarrietAkot extern "C" { 7468a91bc7bSHarrietAkot 7478a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 7488a91bc7bSHarrietAkot // 7498a91bc7bSHarrietAkot // Public API with methods that operate on MLIR buffers (memrefs) to interact 7508a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 7518a91bc7bSHarrietAkot // These methods should be used exclusively by MLIR compiler-generated code. 7528a91bc7bSHarrietAkot // 7538a91bc7bSHarrietAkot // Some macro magic is used to generate implementations for all required type 7548a91bc7bSHarrietAkot // combinations that can be called from MLIR compiler-generated code. 7558a91bc7bSHarrietAkot // 7568a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 7578a91bc7bSHarrietAkot 7588a91bc7bSHarrietAkot #define CASE(p, i, v, P, I, V) \ 7598a91bc7bSHarrietAkot if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 7608a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = nullptr; \ 761845561ecSwren romano if (action <= Action::kFromCOO) { \ 762845561ecSwren romano if (action == Action::kFromFile) { \ 7638a91bc7bSHarrietAkot char *filename = static_cast<char *>(ptr); \ 7648a91bc7bSHarrietAkot tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm); \ 765845561ecSwren romano } else if (action == Action::kFromCOO) { \ 7668a91bc7bSHarrietAkot tensor = static_cast<SparseTensorCOO<V> *>(ptr); \ 7678a91bc7bSHarrietAkot } else { \ 768845561ecSwren romano assert(action == Action::kEmpty); \ 7698a91bc7bSHarrietAkot } \ 7708a91bc7bSHarrietAkot return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \ 7718a91bc7bSHarrietAkot sparsity, tensor); \ 772bb56c2b3SMehdi Amini } \ 773bb56c2b3SMehdi Amini if (action == Action::kEmptyCOO) \ 7748a91bc7bSHarrietAkot return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \ 7758a91bc7bSHarrietAkot tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 776845561ecSwren romano if (action == Action::kToIterator) { \ 7778a91bc7bSHarrietAkot tensor->startIterator(); \ 7788a91bc7bSHarrietAkot } else { \ 779845561ecSwren romano assert(action == Action::kToCOO); \ 7808a91bc7bSHarrietAkot } \ 7818a91bc7bSHarrietAkot return tensor; \ 7828a91bc7bSHarrietAkot } 7838a91bc7bSHarrietAkot 784845561ecSwren romano #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 785845561ecSwren romano 7868a91bc7bSHarrietAkot #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 7878a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 7884f2ec7f9SAart Bik assert(ref &&tensor); \ 7898a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 7908a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 7918a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 7928a91bc7bSHarrietAkot ref->offset = 0; \ 7938a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 7948a91bc7bSHarrietAkot ref->strides[0] = 1; \ 7958a91bc7bSHarrietAkot } 7968a91bc7bSHarrietAkot 7978a91bc7bSHarrietAkot #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 7988a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 7998a91bc7bSHarrietAkot index_t d) { \ 8004f2ec7f9SAart Bik assert(ref &&tensor); \ 8018a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 8028a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 8038a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 8048a91bc7bSHarrietAkot ref->offset = 0; \ 8058a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 8068a91bc7bSHarrietAkot ref->strides[0] = 1; \ 8078a91bc7bSHarrietAkot } 8088a91bc7bSHarrietAkot 8098a91bc7bSHarrietAkot #define IMPL_ADDELT(NAME, TYPE) \ 8108a91bc7bSHarrietAkot void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 8118a91bc7bSHarrietAkot StridedMemRefType<index_t, 1> *iref, \ 8128a91bc7bSHarrietAkot StridedMemRefType<index_t, 1> *pref) { \ 8134f2ec7f9SAart Bik assert(tensor &&iref &&pref); \ 8148a91bc7bSHarrietAkot assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 8158a91bc7bSHarrietAkot assert(iref->sizes[0] == pref->sizes[0]); \ 8168a91bc7bSHarrietAkot const index_t *indx = iref->data + iref->offset; \ 8178a91bc7bSHarrietAkot const index_t *perm = pref->data + pref->offset; \ 8188a91bc7bSHarrietAkot uint64_t isize = iref->sizes[0]; \ 8198a91bc7bSHarrietAkot std::vector<index_t> indices(isize); \ 8208a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 8218a91bc7bSHarrietAkot indices[perm[r]] = indx[r]; \ 8228a91bc7bSHarrietAkot static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 8238a91bc7bSHarrietAkot return tensor; \ 8248a91bc7bSHarrietAkot } 8258a91bc7bSHarrietAkot 8268a91bc7bSHarrietAkot #define IMPL_GETNEXT(NAME, V) \ 8274f2ec7f9SAart Bik bool _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *iref, \ 8288a91bc7bSHarrietAkot StridedMemRefType<V, 0> *vref) { \ 8294f2ec7f9SAart Bik assert(tensor &&iref &&vref); \ 8308a91bc7bSHarrietAkot assert(iref->strides[0] == 1); \ 8314f2ec7f9SAart Bik index_t *indx = iref->data + iref->offset; \ 8328a91bc7bSHarrietAkot V *value = vref->data + vref->offset; \ 8338a91bc7bSHarrietAkot const uint64_t isize = iref->sizes[0]; \ 8348a91bc7bSHarrietAkot auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 8358a91bc7bSHarrietAkot const Element<V> *elem = iter->getNext(); \ 8368a91bc7bSHarrietAkot if (elem == nullptr) { \ 8378a91bc7bSHarrietAkot delete iter; \ 8388a91bc7bSHarrietAkot return false; \ 8398a91bc7bSHarrietAkot } \ 8408a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 8418a91bc7bSHarrietAkot indx[r] = elem->indices[r]; \ 8428a91bc7bSHarrietAkot *value = elem->value; \ 8438a91bc7bSHarrietAkot return true; \ 8448a91bc7bSHarrietAkot } 8458a91bc7bSHarrietAkot 846f66e5769SAart Bik #define IMPL_LEXINSERT(NAME, V) \ 847f66e5769SAart Bik void _mlir_ciface_##NAME(void *tensor, StridedMemRefType<index_t, 1> *cref, \ 848f66e5769SAart Bik V val) { \ 8494f2ec7f9SAart Bik assert(tensor &&cref); \ 850f66e5769SAart Bik assert(cref->strides[0] == 1); \ 8514f2ec7f9SAart Bik index_t *cursor = cref->data + cref->offset; \ 852f66e5769SAart Bik assert(cursor); \ 853f66e5769SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 854f66e5769SAart Bik } 855f66e5769SAart Bik 8564f2ec7f9SAart Bik #define IMPL_EXPINSERT(NAME, V) \ 8574f2ec7f9SAart Bik void _mlir_ciface_##NAME( \ 8584f2ec7f9SAart Bik void *tensor, StridedMemRefType<index_t, 1> *cref, \ 8594f2ec7f9SAart Bik StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 8604f2ec7f9SAart Bik StridedMemRefType<index_t, 1> *aref, index_t count) { \ 8614f2ec7f9SAart Bik assert(tensor &&cref &&vref &&fref &&aref); \ 8624f2ec7f9SAart Bik assert(cref->strides[0] == 1); \ 8634f2ec7f9SAart Bik assert(vref->strides[0] == 1); \ 8644f2ec7f9SAart Bik assert(fref->strides[0] == 1); \ 8654f2ec7f9SAart Bik assert(aref->strides[0] == 1); \ 8664f2ec7f9SAart Bik assert(vref->sizes[0] == fref->sizes[0]); \ 8674f2ec7f9SAart Bik index_t *cursor = cref->data + cref->offset; \ 8684f2ec7f9SAart Bik V *values = vref->data + vref->offset; \ 8694f2ec7f9SAart Bik bool *filled = fref->data + fref->offset; \ 8704f2ec7f9SAart Bik index_t *added = aref->data + aref->offset; \ 8714f2ec7f9SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 8724f2ec7f9SAart Bik cursor, values, filled, added, count); \ 8734f2ec7f9SAart Bik } 8744f2ec7f9SAart Bik 875*efa15f41SAart Bik #define IMPL_OUT(NAME, V) \ 876*efa15f41SAart Bik void NAME(void *tensor, void *dest, bool sort) { \ 877*efa15f41SAart Bik assert(tensor &&dest); \ 878*efa15f41SAart Bik auto coo = static_cast<SparseTensorCOO<V> *>(tensor); \ 879*efa15f41SAart Bik if (sort) \ 880*efa15f41SAart Bik coo->sort(); \ 881*efa15f41SAart Bik char *filename = static_cast<char *>(dest); \ 882*efa15f41SAart Bik outSparseTensor<V>(*coo, filename); \ 883*efa15f41SAart Bik delete coo; \ 884*efa15f41SAart Bik } 885*efa15f41SAart Bik 886bc04a470Swren romano // Assume index_t is in fact uint64_t, so that _mlir_ciface_newSparseTensor 887bc04a470Swren romano // can safely rewrite kIndex to kU64. We make this assertion to guarantee 888bc04a470Swren romano // that this file cannot get out of sync with its header. 889bc04a470Swren romano static_assert(std::is_same<index_t, uint64_t>::value, 890bc04a470Swren romano "Expected index_t == uint64_t"); 891bc04a470Swren romano 8928a91bc7bSHarrietAkot /// Constructs a new sparse tensor. This is the "swiss army knife" 8938a91bc7bSHarrietAkot /// method for materializing sparse tensors into the computation. 8948a91bc7bSHarrietAkot /// 895845561ecSwren romano /// Action: 8968a91bc7bSHarrietAkot /// kEmpty = returns empty storage to fill later 8978a91bc7bSHarrietAkot /// kFromFile = returns storage, where ptr contains filename to read 8988a91bc7bSHarrietAkot /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 8998a91bc7bSHarrietAkot /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 9008a91bc7bSHarrietAkot /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 901845561ecSwren romano /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 9028a91bc7bSHarrietAkot void * 903845561ecSwren romano _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 9048a91bc7bSHarrietAkot StridedMemRefType<index_t, 1> *sref, 9058a91bc7bSHarrietAkot StridedMemRefType<index_t, 1> *pref, 906845561ecSwren romano OverheadType ptrTp, OverheadType indTp, 907845561ecSwren romano PrimaryType valTp, Action action, void *ptr) { 9088a91bc7bSHarrietAkot assert(aref && sref && pref); 9098a91bc7bSHarrietAkot assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 9108a91bc7bSHarrietAkot pref->strides[0] == 1); 9118a91bc7bSHarrietAkot assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 912845561ecSwren romano const DimLevelType *sparsity = aref->data + aref->offset; 9138a91bc7bSHarrietAkot const index_t *sizes = sref->data + sref->offset; 9148a91bc7bSHarrietAkot const index_t *perm = pref->data + pref->offset; 9158a91bc7bSHarrietAkot uint64_t rank = aref->sizes[0]; 9168a91bc7bSHarrietAkot 917bc04a470Swren romano // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 918bc04a470Swren romano // This is safe because of the static_assert above. 919bc04a470Swren romano if (ptrTp == OverheadType::kIndex) 920bc04a470Swren romano ptrTp = OverheadType::kU64; 921bc04a470Swren romano if (indTp == OverheadType::kIndex) 922bc04a470Swren romano indTp = OverheadType::kU64; 923bc04a470Swren romano 9248a91bc7bSHarrietAkot // Double matrices with all combinations of overhead storage. 925845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 926845561ecSwren romano uint64_t, double); 927845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 928845561ecSwren romano uint32_t, double); 929845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 930845561ecSwren romano uint16_t, double); 931845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 932845561ecSwren romano uint8_t, double); 933845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 934845561ecSwren romano uint64_t, double); 935845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 936845561ecSwren romano uint32_t, double); 937845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 938845561ecSwren romano uint16_t, double); 939845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 940845561ecSwren romano uint8_t, double); 941845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 942845561ecSwren romano uint64_t, double); 943845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 944845561ecSwren romano uint32_t, double); 945845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 946845561ecSwren romano uint16_t, double); 947845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 948845561ecSwren romano uint8_t, double); 949845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 950845561ecSwren romano uint64_t, double); 951845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 952845561ecSwren romano uint32_t, double); 953845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 954845561ecSwren romano uint16_t, double); 955845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 956845561ecSwren romano uint8_t, double); 9578a91bc7bSHarrietAkot 9588a91bc7bSHarrietAkot // Float matrices with all combinations of overhead storage. 959845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 960845561ecSwren romano uint64_t, float); 961845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 962845561ecSwren romano uint32_t, float); 963845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 964845561ecSwren romano uint16_t, float); 965845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 966845561ecSwren romano uint8_t, float); 967845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 968845561ecSwren romano uint64_t, float); 969845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 970845561ecSwren romano uint32_t, float); 971845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 972845561ecSwren romano uint16_t, float); 973845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 974845561ecSwren romano uint8_t, float); 975845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 976845561ecSwren romano uint64_t, float); 977845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 978845561ecSwren romano uint32_t, float); 979845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 980845561ecSwren romano uint16_t, float); 981845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 982845561ecSwren romano uint8_t, float); 983845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 984845561ecSwren romano uint64_t, float); 985845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 986845561ecSwren romano uint32_t, float); 987845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 988845561ecSwren romano uint16_t, float); 989845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 990845561ecSwren romano uint8_t, float); 9918a91bc7bSHarrietAkot 992845561ecSwren romano // Integral matrices with both overheads of the same type. 993845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 994845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 995845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 996845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 997845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 998845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 999845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1000845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1001845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1002845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1003845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1004845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1005845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 10068a91bc7bSHarrietAkot 10078a91bc7bSHarrietAkot // Unsupported case (add above if needed). 10088a91bc7bSHarrietAkot fputs("unsupported combination of types\n", stderr); 10098a91bc7bSHarrietAkot exit(1); 10108a91bc7bSHarrietAkot } 10118a91bc7bSHarrietAkot 10128a91bc7bSHarrietAkot /// Methods that provide direct access to pointers. 10138a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers, index_t, getPointers) 10148a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 10158a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 10168a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 10178a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 10188a91bc7bSHarrietAkot 10198a91bc7bSHarrietAkot /// Methods that provide direct access to indices. 10208a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices, index_t, getIndices) 10218a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 10228a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 10238a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 10248a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 10258a91bc7bSHarrietAkot 10268a91bc7bSHarrietAkot /// Methods that provide direct access to values. 10278a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 10288a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 10298a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 10308a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 10318a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 10328a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 10338a91bc7bSHarrietAkot 10348a91bc7bSHarrietAkot /// Helper to add value to coordinate scheme, one per value type. 10358a91bc7bSHarrietAkot IMPL_ADDELT(addEltF64, double) 10368a91bc7bSHarrietAkot IMPL_ADDELT(addEltF32, float) 10378a91bc7bSHarrietAkot IMPL_ADDELT(addEltI64, int64_t) 10388a91bc7bSHarrietAkot IMPL_ADDELT(addEltI32, int32_t) 10398a91bc7bSHarrietAkot IMPL_ADDELT(addEltI16, int16_t) 10408a91bc7bSHarrietAkot IMPL_ADDELT(addEltI8, int8_t) 10418a91bc7bSHarrietAkot 10428a91bc7bSHarrietAkot /// Helper to enumerate elements of coordinate scheme, one per value type. 10438a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF64, double) 10448a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF32, float) 10458a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI64, int64_t) 10468a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI32, int32_t) 10478a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI16, int16_t) 10488a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI8, int8_t) 10498a91bc7bSHarrietAkot 105003fe15ceSAart Bik /// Helper to insert elements in lexicographical index order, one per value 105103fe15ceSAart Bik /// type. 1052f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF64, double) 1053f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF32, float) 1054f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI64, int64_t) 1055f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI32, int32_t) 1056f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI16, int16_t) 1057f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI8, int8_t) 1058f66e5769SAart Bik 10594f2ec7f9SAart Bik /// Helper to insert using expansion, one per value type. 10604f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF64, double) 10614f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF32, float) 10624f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI64, int64_t) 10634f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI32, int32_t) 10644f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI16, int16_t) 10654f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI8, int8_t) 10664f2ec7f9SAart Bik 1067*efa15f41SAart Bik /// Helper to output a sparse tensor, one per value type. 1068*efa15f41SAart Bik IMPL_OUT(outSparseTensorF64, double) 1069*efa15f41SAart Bik IMPL_OUT(outSparseTensorF32, float) 1070*efa15f41SAart Bik IMPL_OUT(outSparseTensorI64, int64_t) 1071*efa15f41SAart Bik IMPL_OUT(outSparseTensorI32, int32_t) 1072*efa15f41SAart Bik IMPL_OUT(outSparseTensorI16, int16_t) 1073*efa15f41SAart Bik IMPL_OUT(outSparseTensorI8, int8_t) 1074*efa15f41SAart Bik 10758a91bc7bSHarrietAkot #undef CASE 10768a91bc7bSHarrietAkot #undef IMPL_SPARSEVALUES 10778a91bc7bSHarrietAkot #undef IMPL_GETOVERHEAD 10788a91bc7bSHarrietAkot #undef IMPL_ADDELT 10798a91bc7bSHarrietAkot #undef IMPL_GETNEXT 10804f2ec7f9SAart Bik #undef IMPL_LEXINSERT 10814f2ec7f9SAart Bik #undef IMPL_EXPINSERT 1082*efa15f41SAart Bik #undef IMPL_OUT 10838a91bc7bSHarrietAkot 10848a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 10858a91bc7bSHarrietAkot // 10868a91bc7bSHarrietAkot // Public API with methods that accept C-style data structures to interact 10878a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 10888a91bc7bSHarrietAkot // These methods can be used both by MLIR compiler-generated code as well as by 10898a91bc7bSHarrietAkot // an external runtime that wants to interact with MLIR compiler-generated code. 10908a91bc7bSHarrietAkot // 10918a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 10928a91bc7bSHarrietAkot 10938a91bc7bSHarrietAkot /// Helper method to read a sparse tensor filename from the environment, 10948a91bc7bSHarrietAkot /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 10958a91bc7bSHarrietAkot char *getTensorFilename(index_t id) { 10968a91bc7bSHarrietAkot char var[80]; 10978a91bc7bSHarrietAkot sprintf(var, "TENSOR%" PRIu64, id); 10988a91bc7bSHarrietAkot char *env = getenv(var); 10998a91bc7bSHarrietAkot return env; 11008a91bc7bSHarrietAkot } 11018a91bc7bSHarrietAkot 11028a91bc7bSHarrietAkot /// Returns size of sparse tensor in given dimension. 11038a91bc7bSHarrietAkot index_t sparseDimSize(void *tensor, index_t d) { 11048a91bc7bSHarrietAkot return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 11058a91bc7bSHarrietAkot } 11068a91bc7bSHarrietAkot 1107f66e5769SAart Bik /// Finalizes lexicographic insertions. 1108f66e5769SAart Bik void endInsert(void *tensor) { 1109f66e5769SAart Bik return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1110f66e5769SAart Bik } 1111f66e5769SAart Bik 11128a91bc7bSHarrietAkot /// Releases sparse tensor storage. 11138a91bc7bSHarrietAkot void delSparseTensor(void *tensor) { 11148a91bc7bSHarrietAkot delete static_cast<SparseTensorStorageBase *>(tensor); 11158a91bc7bSHarrietAkot } 11168a91bc7bSHarrietAkot 11178a91bc7bSHarrietAkot /// Initializes sparse tensor from a COO-flavored format expressed using C-style 11188a91bc7bSHarrietAkot /// data structures. The expected parameters are: 11198a91bc7bSHarrietAkot /// 11208a91bc7bSHarrietAkot /// rank: rank of tensor 11218a91bc7bSHarrietAkot /// nse: number of specified elements (usually the nonzeros) 11228a91bc7bSHarrietAkot /// shape: array with dimension size for each rank 11238a91bc7bSHarrietAkot /// values: a "nse" array with values for all specified elements 11248a91bc7bSHarrietAkot /// indices: a flat "nse x rank" array with indices for all specified elements 11258a91bc7bSHarrietAkot /// 11268a91bc7bSHarrietAkot /// For example, the sparse matrix 11278a91bc7bSHarrietAkot /// | 1.0 0.0 0.0 | 11288a91bc7bSHarrietAkot /// | 0.0 5.0 3.0 | 11298a91bc7bSHarrietAkot /// can be passed as 11308a91bc7bSHarrietAkot /// rank = 2 11318a91bc7bSHarrietAkot /// nse = 3 11328a91bc7bSHarrietAkot /// shape = [2, 3] 11338a91bc7bSHarrietAkot /// values = [1.0, 5.0, 3.0] 11348a91bc7bSHarrietAkot /// indices = [ 0, 0, 1, 1, 1, 2] 11358a91bc7bSHarrietAkot // 11368a91bc7bSHarrietAkot // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 11378a91bc7bSHarrietAkot // 11388a91bc7bSHarrietAkot void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, 11398a91bc7bSHarrietAkot double *values, uint64_t *indices) { 11408a91bc7bSHarrietAkot // Setup all-dims compressed and default ordering. 1141845561ecSwren romano std::vector<DimLevelType> sparse(rank, DimLevelType::kCompressed); 11428a91bc7bSHarrietAkot std::vector<uint64_t> perm(rank); 11438a91bc7bSHarrietAkot std::iota(perm.begin(), perm.end(), 0); 11448a91bc7bSHarrietAkot // Convert external format to internal COO. 11458a91bc7bSHarrietAkot SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO( 11468a91bc7bSHarrietAkot rank, shape, perm.data(), nse); 11478a91bc7bSHarrietAkot std::vector<uint64_t> idx(rank); 11488a91bc7bSHarrietAkot for (uint64_t i = 0, base = 0; i < nse; i++) { 11498a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 11508a91bc7bSHarrietAkot idx[r] = indices[base + r]; 11518a91bc7bSHarrietAkot tensor->add(idx, values[i]); 11528a91bc7bSHarrietAkot base += rank; 11538a91bc7bSHarrietAkot } 11548a91bc7bSHarrietAkot // Return sparse tensor storage format as opaque pointer. 11558a91bc7bSHarrietAkot return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor( 11568a91bc7bSHarrietAkot rank, shape, perm.data(), sparse.data(), tensor); 11578a91bc7bSHarrietAkot } 11588a91bc7bSHarrietAkot 11592f49e6b0SBixia Zheng /// Converts a sparse tensor to COO-flavored format expressed using C-style 11602f49e6b0SBixia Zheng /// data structures. The expected output parameters are pointers for these 11612f49e6b0SBixia Zheng /// values: 11622f49e6b0SBixia Zheng /// 11632f49e6b0SBixia Zheng /// rank: rank of tensor 11642f49e6b0SBixia Zheng /// nse: number of specified elements (usually the nonzeros) 11652f49e6b0SBixia Zheng /// shape: array with dimension size for each rank 11662f49e6b0SBixia Zheng /// values: a "nse" array with values for all specified elements 11672f49e6b0SBixia Zheng /// indices: a flat "nse x rank" array with indices for all specified elements 11682f49e6b0SBixia Zheng /// 11692f49e6b0SBixia Zheng /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 11702f49e6b0SBixia Zheng /// from convertToMLIRSparseTensor. 11712f49e6b0SBixia Zheng /// 11722f49e6b0SBixia Zheng // TODO: Currently, values are copied from SparseTensorStorage to 11732f49e6b0SBixia Zheng // SparseTensorCOO, then to the output. We may want to reduce the number of 11742f49e6b0SBixia Zheng // copies. 11752f49e6b0SBixia Zheng // 11762f49e6b0SBixia Zheng // TODO: for now f64 tensors only, no dim ordering, all dimensions compressed 11772f49e6b0SBixia Zheng // 1178bb56c2b3SMehdi Amini void convertFromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 1179bb56c2b3SMehdi Amini uint64_t **pShape, double **pValues, 1180bb56c2b3SMehdi Amini uint64_t **pIndices) { 1181bb56c2b3SMehdi Amini SparseTensorStorage<uint64_t, uint64_t, double> *sparseTensor = 11822f49e6b0SBixia Zheng static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor); 1183bb56c2b3SMehdi Amini uint64_t rank = sparseTensor->getRank(); 11842f49e6b0SBixia Zheng std::vector<uint64_t> perm(rank); 11852f49e6b0SBixia Zheng std::iota(perm.begin(), perm.end(), 0); 1186bb56c2b3SMehdi Amini SparseTensorCOO<double> *coo = sparseTensor->toCOO(perm.data()); 11872f49e6b0SBixia Zheng 11882f49e6b0SBixia Zheng const std::vector<Element<double>> &elements = coo->getElements(); 11892f49e6b0SBixia Zheng uint64_t nse = elements.size(); 11902f49e6b0SBixia Zheng 11912f49e6b0SBixia Zheng uint64_t *shape = new uint64_t[rank]; 11922f49e6b0SBixia Zheng for (uint64_t i = 0; i < rank; i++) 11932f49e6b0SBixia Zheng shape[i] = coo->getSizes()[i]; 11942f49e6b0SBixia Zheng 11952f49e6b0SBixia Zheng double *values = new double[nse]; 11962f49e6b0SBixia Zheng uint64_t *indices = new uint64_t[rank * nse]; 11972f49e6b0SBixia Zheng 11982f49e6b0SBixia Zheng for (uint64_t i = 0, base = 0; i < nse; i++) { 11992f49e6b0SBixia Zheng values[i] = elements[i].value; 12002f49e6b0SBixia Zheng for (uint64_t j = 0; j < rank; j++) 12012f49e6b0SBixia Zheng indices[base + j] = elements[i].indices[j]; 12022f49e6b0SBixia Zheng base += rank; 12032f49e6b0SBixia Zheng } 12042f49e6b0SBixia Zheng 12052f49e6b0SBixia Zheng delete coo; 1206bb56c2b3SMehdi Amini *pRank = rank; 1207bb56c2b3SMehdi Amini *pNse = nse; 1208bb56c2b3SMehdi Amini *pShape = shape; 1209bb56c2b3SMehdi Amini *pValues = values; 1210bb56c2b3SMehdi Amini *pIndices = indices; 12112f49e6b0SBixia Zheng } 1212*efa15f41SAart Bik 12138a91bc7bSHarrietAkot } // extern "C" 12148a91bc7bSHarrietAkot 12158a91bc7bSHarrietAkot #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1216