18a91bc7bSHarrietAkot //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 28a91bc7bSHarrietAkot // 38a91bc7bSHarrietAkot // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48a91bc7bSHarrietAkot // See https://llvm.org/LICENSE.txt for license information. 58a91bc7bSHarrietAkot // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68a91bc7bSHarrietAkot // 78a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 88a91bc7bSHarrietAkot // 98a91bc7bSHarrietAkot // This file implements a light-weight runtime support library that is useful 108a91bc7bSHarrietAkot // for sparse tensor manipulations. The functionality provided in this library 118a91bc7bSHarrietAkot // is meant to simplify benchmarking, testing, and debugging MLIR code that 128a91bc7bSHarrietAkot // operates on sparse tensors. The provided functionality is **not** part 138a91bc7bSHarrietAkot // of core MLIR, however. 148a91bc7bSHarrietAkot // 158a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 168a91bc7bSHarrietAkot 17845561ecSwren romano #include "mlir/ExecutionEngine/SparseTensorUtils.h" 188a91bc7bSHarrietAkot #include "mlir/ExecutionEngine/CRunnerUtils.h" 198a91bc7bSHarrietAkot 208a91bc7bSHarrietAkot #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 218a91bc7bSHarrietAkot 228a91bc7bSHarrietAkot #include <algorithm> 238a91bc7bSHarrietAkot #include <cassert> 248a91bc7bSHarrietAkot #include <cctype> 258a91bc7bSHarrietAkot #include <cinttypes> 268a91bc7bSHarrietAkot #include <cstdio> 278a91bc7bSHarrietAkot #include <cstdlib> 288a91bc7bSHarrietAkot #include <cstring> 29efa15f41SAart Bik #include <fstream> 30efa15f41SAart Bik #include <iostream> 314d0a18d0Swren romano #include <limits> 328a91bc7bSHarrietAkot #include <numeric> 338a91bc7bSHarrietAkot #include <vector> 348a91bc7bSHarrietAkot 358a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 368a91bc7bSHarrietAkot // 378a91bc7bSHarrietAkot // Internal support for storing and reading sparse tensors. 388a91bc7bSHarrietAkot // 398a91bc7bSHarrietAkot // The following memory-resident sparse storage schemes are supported: 408a91bc7bSHarrietAkot // 418a91bc7bSHarrietAkot // (a) A coordinate scheme for temporarily storing and lexicographically 428a91bc7bSHarrietAkot // sorting a sparse tensor by index (SparseTensorCOO). 438a91bc7bSHarrietAkot // 448a91bc7bSHarrietAkot // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 458a91bc7bSHarrietAkot // per-dimension sparse/dense annnotations together with a dimension 468a91bc7bSHarrietAkot // ordering used by MLIR compiler-generated code (SparseTensorStorage). 478a91bc7bSHarrietAkot // 488a91bc7bSHarrietAkot // The following external formats are supported: 498a91bc7bSHarrietAkot // 508a91bc7bSHarrietAkot // (1) Matrix Market Exchange (MME): *.mtx 518a91bc7bSHarrietAkot // https://math.nist.gov/MatrixMarket/formats.html 528a91bc7bSHarrietAkot // 538a91bc7bSHarrietAkot // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 548a91bc7bSHarrietAkot // http://frostt.io/tensors/file-formats.html 558a91bc7bSHarrietAkot // 568a91bc7bSHarrietAkot // Two public APIs are supported: 578a91bc7bSHarrietAkot // 588a91bc7bSHarrietAkot // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 598a91bc7bSHarrietAkot // tensors. These methods should be used exclusively by MLIR 608a91bc7bSHarrietAkot // compiler-generated code. 618a91bc7bSHarrietAkot // 628a91bc7bSHarrietAkot // (II) Methods that accept C-style data structures to interact with sparse 638a91bc7bSHarrietAkot // tensors. These methods can be used by any external runtime that wants 648a91bc7bSHarrietAkot // to interact with MLIR compiler-generated code. 658a91bc7bSHarrietAkot // 668a91bc7bSHarrietAkot // In both cases (I) and (II), the SparseTensorStorage format is externally 678a91bc7bSHarrietAkot // only visible as an opaque pointer. 688a91bc7bSHarrietAkot // 698a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 708a91bc7bSHarrietAkot 718a91bc7bSHarrietAkot namespace { 728a91bc7bSHarrietAkot 7303fe15ceSAart Bik static constexpr int kColWidth = 1025; 7403fe15ceSAart Bik 7572ec2f76Swren romano /// A version of `operator*` on `uint64_t` which checks for overflows. 7672ec2f76Swren romano static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 7772ec2f76Swren romano assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 7872ec2f76Swren romano "Integer overflow"); 7972ec2f76Swren romano return lhs * rhs; 8072ec2f76Swren romano } 8172ec2f76Swren romano 828a91bc7bSHarrietAkot /// A sparse tensor element in coordinate scheme (value and indices). 838a91bc7bSHarrietAkot /// For example, a rank-1 vector element would look like 848a91bc7bSHarrietAkot /// ({i}, a[i]) 858a91bc7bSHarrietAkot /// and a rank-5 tensor element like 868a91bc7bSHarrietAkot /// ({i,j,k,l,m}, a[i,j,k,l,m]) 878a91bc7bSHarrietAkot template <typename V> 888a91bc7bSHarrietAkot struct Element { 898a91bc7bSHarrietAkot Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 908a91bc7bSHarrietAkot std::vector<uint64_t> indices; 918a91bc7bSHarrietAkot V value; 92110295ebSwren romano /// Returns true if indices of e1 < indices of e2. 93110295ebSwren romano static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 94110295ebSwren romano uint64_t rank = e1.indices.size(); 95110295ebSwren romano assert(rank == e2.indices.size()); 96110295ebSwren romano for (uint64_t r = 0; r < rank; r++) { 97110295ebSwren romano if (e1.indices[r] == e2.indices[r]) 98110295ebSwren romano continue; 99110295ebSwren romano return e1.indices[r] < e2.indices[r]; 100110295ebSwren romano } 101110295ebSwren romano return false; 102110295ebSwren romano } 1038a91bc7bSHarrietAkot }; 1048a91bc7bSHarrietAkot 1058a91bc7bSHarrietAkot /// A memory-resident sparse tensor in coordinate scheme (collection of 1068a91bc7bSHarrietAkot /// elements). This data structure is used to read a sparse tensor from 1078a91bc7bSHarrietAkot /// any external format into memory and sort the elements lexicographically 1088a91bc7bSHarrietAkot /// by indices before passing it back to the client (most packed storage 1098a91bc7bSHarrietAkot /// formats require the elements to appear in lexicographic index order). 1108a91bc7bSHarrietAkot template <typename V> 1118a91bc7bSHarrietAkot struct SparseTensorCOO { 1128a91bc7bSHarrietAkot public: 1138a91bc7bSHarrietAkot SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 114*db6796dfSMehdi Amini : sizes(szs) { 1158a91bc7bSHarrietAkot if (capacity) 1168a91bc7bSHarrietAkot elements.reserve(capacity); 1178a91bc7bSHarrietAkot } 1188a91bc7bSHarrietAkot /// Adds element as indices and value. 1198a91bc7bSHarrietAkot void add(const std::vector<uint64_t> &ind, V val) { 1208a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to add() after startIterator()"); 1218a91bc7bSHarrietAkot uint64_t rank = getRank(); 1228a91bc7bSHarrietAkot assert(rank == ind.size()); 1238a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 1248a91bc7bSHarrietAkot assert(ind[r] < sizes[r]); // within bounds 1258a91bc7bSHarrietAkot elements.emplace_back(ind, val); 1268a91bc7bSHarrietAkot } 1278a91bc7bSHarrietAkot /// Sorts elements lexicographically by index. 1288a91bc7bSHarrietAkot void sort() { 1298a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 130cf358253Swren romano // TODO: we may want to cache an `isSorted` bit, to avoid 131cf358253Swren romano // unnecessary/redundant sorting. 132110295ebSwren romano std::sort(elements.begin(), elements.end(), Element<V>::lexOrder); 1338a91bc7bSHarrietAkot } 1348a91bc7bSHarrietAkot /// Returns rank. 1358a91bc7bSHarrietAkot uint64_t getRank() const { return sizes.size(); } 1368a91bc7bSHarrietAkot /// Getter for sizes array. 1378a91bc7bSHarrietAkot const std::vector<uint64_t> &getSizes() const { return sizes; } 1388a91bc7bSHarrietAkot /// Getter for elements array. 1398a91bc7bSHarrietAkot const std::vector<Element<V>> &getElements() const { return elements; } 1408a91bc7bSHarrietAkot 1418a91bc7bSHarrietAkot /// Switch into iterator mode. 1428a91bc7bSHarrietAkot void startIterator() { 1438a91bc7bSHarrietAkot iteratorLocked = true; 1448a91bc7bSHarrietAkot iteratorPos = 0; 1458a91bc7bSHarrietAkot } 1468a91bc7bSHarrietAkot /// Get the next element. 1478a91bc7bSHarrietAkot const Element<V> *getNext() { 1488a91bc7bSHarrietAkot assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 1498a91bc7bSHarrietAkot if (iteratorPos < elements.size()) 1508a91bc7bSHarrietAkot return &(elements[iteratorPos++]); 1518a91bc7bSHarrietAkot iteratorLocked = false; 1528a91bc7bSHarrietAkot return nullptr; 1538a91bc7bSHarrietAkot } 1548a91bc7bSHarrietAkot 1558a91bc7bSHarrietAkot /// Factory method. Permutes the original dimensions according to 1568a91bc7bSHarrietAkot /// the given ordering and expects subsequent add() calls to honor 1578a91bc7bSHarrietAkot /// that same ordering for the given indices. The result is a 1588a91bc7bSHarrietAkot /// fully permuted coordinate scheme. 1598d8b566fSwren romano /// 1608d8b566fSwren romano /// Precondition: `sizes` and `perm` must be valid for `rank`. 1618a91bc7bSHarrietAkot static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 1628a91bc7bSHarrietAkot const uint64_t *sizes, 1638a91bc7bSHarrietAkot const uint64_t *perm, 1648a91bc7bSHarrietAkot uint64_t capacity = 0) { 1658a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 166d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 167d83a7068Swren romano assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 1688a91bc7bSHarrietAkot permsz[perm[r]] = sizes[r]; 169d83a7068Swren romano } 1708a91bc7bSHarrietAkot return new SparseTensorCOO<V>(permsz, capacity); 1718a91bc7bSHarrietAkot } 1728a91bc7bSHarrietAkot 1738a91bc7bSHarrietAkot private: 1748a91bc7bSHarrietAkot const std::vector<uint64_t> sizes; // per-dimension sizes 1758a91bc7bSHarrietAkot std::vector<Element<V>> elements; 176*db6796dfSMehdi Amini bool iteratorLocked = false; 177*db6796dfSMehdi Amini unsigned iteratorPos = 0; 1788a91bc7bSHarrietAkot }; 1798a91bc7bSHarrietAkot 1808d8b566fSwren romano /// Abstract base class for `SparseTensorStorage<P,I,V>`. This class 1818d8b566fSwren romano /// takes responsibility for all the `<P,I,V>`-independent aspects 1828d8b566fSwren romano /// of the tensor (e.g., shape, sparsity, permutation). In addition, 1838d8b566fSwren romano /// we use function overloading to implement "partial" method 1848d8b566fSwren romano /// specialization, which the C-API relies on to catch type errors 1858d8b566fSwren romano /// arising from our use of opaque pointers. 1868a91bc7bSHarrietAkot class SparseTensorStorageBase { 1878a91bc7bSHarrietAkot public: 1888d8b566fSwren romano /// Constructs a new storage object. The `perm` maps the tensor's 1898d8b566fSwren romano /// semantic-ordering of dimensions to this object's storage-order. 1908d8b566fSwren romano /// The `szs` and `sparsity` arrays are already in storage-order. 1918d8b566fSwren romano /// 1928d8b566fSwren romano /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 1938d8b566fSwren romano SparseTensorStorageBase(const std::vector<uint64_t> &szs, 1948d8b566fSwren romano const uint64_t *perm, const DimLevelType *sparsity) 1958d8b566fSwren romano : dimSizes(szs), rev(getRank()), 1968d8b566fSwren romano dimTypes(sparsity, sparsity + getRank()) { 1978d8b566fSwren romano const uint64_t rank = getRank(); 1988d8b566fSwren romano // Validate parameters. 1998d8b566fSwren romano assert(rank > 0 && "Trivial shape is unsupported"); 2008d8b566fSwren romano for (uint64_t r = 0; r < rank; r++) { 2018d8b566fSwren romano assert(dimSizes[r] > 0 && "Dimension size zero has trivial storage"); 2028d8b566fSwren romano assert((dimTypes[r] == DimLevelType::kDense || 2038d8b566fSwren romano dimTypes[r] == DimLevelType::kCompressed) && 2048d8b566fSwren romano "Unsupported DimLevelType"); 2058d8b566fSwren romano } 2068d8b566fSwren romano // Construct the "reverse" (i.e., inverse) permutation. 2078d8b566fSwren romano for (uint64_t r = 0; r < rank; r++) 2088d8b566fSwren romano rev[perm[r]] = r; 2098d8b566fSwren romano } 2108d8b566fSwren romano 2118d8b566fSwren romano virtual ~SparseTensorStorageBase() = default; 2128d8b566fSwren romano 2138d8b566fSwren romano /// Get the rank of the tensor. 2148d8b566fSwren romano uint64_t getRank() const { return dimSizes.size(); } 2158d8b566fSwren romano 2168d8b566fSwren romano /// Getter for the dimension-sizes array, in storage-order. 2178d8b566fSwren romano const std::vector<uint64_t> &getDimSizes() const { return dimSizes; } 2188d8b566fSwren romano 2198d8b566fSwren romano /// Safely lookup the size of the given (storage-order) dimension. 2208d8b566fSwren romano uint64_t getDimSize(uint64_t d) const { 2218d8b566fSwren romano assert(d < getRank()); 2228d8b566fSwren romano return dimSizes[d]; 2238d8b566fSwren romano } 2248d8b566fSwren romano 2258d8b566fSwren romano /// Getter for the "reverse" permutation, which maps this object's 2268d8b566fSwren romano /// storage-order to the tensor's semantic-order. 2278d8b566fSwren romano const std::vector<uint64_t> &getRev() const { return rev; } 2288d8b566fSwren romano 2298d8b566fSwren romano /// Getter for the dimension-types array, in storage-order. 2308d8b566fSwren romano const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; } 2318d8b566fSwren romano 2328d8b566fSwren romano /// Safely check if the (storage-order) dimension uses compressed storage. 2338d8b566fSwren romano bool isCompressedDim(uint64_t d) const { 2348d8b566fSwren romano assert(d < getRank()); 2358d8b566fSwren romano return (dimTypes[d] == DimLevelType::kCompressed); 2368d8b566fSwren romano } 2378a91bc7bSHarrietAkot 2384f2ec7f9SAart Bik /// Overhead storage. 2398a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 2408a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 2418a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 2428a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 2438a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 2448a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 2458a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 2468a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 2478a91bc7bSHarrietAkot 2484f2ec7f9SAart Bik /// Primary storage. 2498a91bc7bSHarrietAkot virtual void getValues(std::vector<double> **) { fatal("valf64"); } 2508a91bc7bSHarrietAkot virtual void getValues(std::vector<float> **) { fatal("valf32"); } 2518a91bc7bSHarrietAkot virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 2528a91bc7bSHarrietAkot virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 2538a91bc7bSHarrietAkot virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 2548a91bc7bSHarrietAkot virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 2558a91bc7bSHarrietAkot 2564f2ec7f9SAart Bik /// Element-wise insertion in lexicographic index order. 257c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 258c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 259c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 260c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 261c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 262c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 2634f2ec7f9SAart Bik 2644f2ec7f9SAart Bik /// Expanded insertion. 2654f2ec7f9SAart Bik virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 2664f2ec7f9SAart Bik fatal("expf64"); 2674f2ec7f9SAart Bik } 2684f2ec7f9SAart Bik virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 2694f2ec7f9SAart Bik fatal("expf32"); 2704f2ec7f9SAart Bik } 2714f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 2724f2ec7f9SAart Bik fatal("expi64"); 2734f2ec7f9SAart Bik } 2744f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 2754f2ec7f9SAart Bik fatal("expi32"); 2764f2ec7f9SAart Bik } 2774f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 2784f2ec7f9SAart Bik fatal("expi16"); 2794f2ec7f9SAart Bik } 2804f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 2814f2ec7f9SAart Bik fatal("expi8"); 2824f2ec7f9SAart Bik } 2834f2ec7f9SAart Bik 2844f2ec7f9SAart Bik /// Finishes insertion. 285f66e5769SAart Bik virtual void endInsert() = 0; 286f66e5769SAart Bik 2878a91bc7bSHarrietAkot private: 28846bdacaaSwren romano static void fatal(const char *tp) { 2898a91bc7bSHarrietAkot fprintf(stderr, "unsupported %s\n", tp); 2908a91bc7bSHarrietAkot exit(1); 2918a91bc7bSHarrietAkot } 2928d8b566fSwren romano 2938d8b566fSwren romano const std::vector<uint64_t> dimSizes; 2948d8b566fSwren romano std::vector<uint64_t> rev; 2958d8b566fSwren romano const std::vector<DimLevelType> dimTypes; 2968a91bc7bSHarrietAkot }; 2978a91bc7bSHarrietAkot 2988a91bc7bSHarrietAkot /// A memory-resident sparse tensor using a storage scheme based on 2998a91bc7bSHarrietAkot /// per-dimension sparse/dense annotations. This data structure provides a 3008a91bc7bSHarrietAkot /// bufferized form of a sparse tensor type. In contrast to generating setup 3018a91bc7bSHarrietAkot /// methods for each differently annotated sparse tensor, this method provides 3028a91bc7bSHarrietAkot /// a convenient "one-size-fits-all" solution that simply takes an input tensor 3038a91bc7bSHarrietAkot /// and annotations to implement all required setup in a general manner. 3048a91bc7bSHarrietAkot template <typename P, typename I, typename V> 3058a91bc7bSHarrietAkot class SparseTensorStorage : public SparseTensorStorageBase { 3068a91bc7bSHarrietAkot public: 3078a91bc7bSHarrietAkot /// Constructs a sparse tensor storage scheme with the given dimensions, 3088a91bc7bSHarrietAkot /// permutation, and per-dimension dense/sparse annotations, using 3098a91bc7bSHarrietAkot /// the coordinate scheme tensor for the initial contents if provided. 3108d8b566fSwren romano /// 3118d8b566fSwren romano /// Precondition: `perm` and `sparsity` must be valid for `szs.size()`. 3128a91bc7bSHarrietAkot SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 313f66e5769SAart Bik const DimLevelType *sparsity, 3148d8b566fSwren romano SparseTensorCOO<V> *coo = nullptr) 3158d8b566fSwren romano : SparseTensorStorageBase(szs, perm, sparsity), pointers(getRank()), 3168d8b566fSwren romano indices(getRank()), idx(getRank()) { 3178a91bc7bSHarrietAkot // Provide hints on capacity of pointers and indices. 318175b9af4SAart Bik // TODO: needs much fine-tuning based on actual sparsity; currently 319175b9af4SAart Bik // we reserve pointer/index space based on all previous dense 320175b9af4SAart Bik // dimensions, which works well up to first sparse dim; but 321175b9af4SAart Bik // we should really use nnz and dense/sparse distribution. 322f66e5769SAart Bik bool allDense = true; 323f66e5769SAart Bik uint64_t sz = 1; 3248d8b566fSwren romano for (uint64_t r = 0, rank = getRank(); r < rank; r++) { 3258d8b566fSwren romano if (isCompressedDim(r)) { 3268d8b566fSwren romano // TODO: Take a parameter between 1 and `sizes[r]`, and multiply 3278d8b566fSwren romano // `sz` by that before reserving. (For now we just use 1.) 328f66e5769SAart Bik pointers[r].reserve(sz + 1); 3298d8b566fSwren romano pointers[r].push_back(0); 330f66e5769SAart Bik indices[r].reserve(sz); 331f66e5769SAart Bik sz = 1; 332f66e5769SAart Bik allDense = false; 3338d8b566fSwren romano } else { // Dense dimension. 3348d8b566fSwren romano sz = checkedMul(sz, getDimSizes()[r]); 3358a91bc7bSHarrietAkot } 3368a91bc7bSHarrietAkot } 3378a91bc7bSHarrietAkot // Then assign contents from coordinate scheme tensor if provided. 3388d8b566fSwren romano if (coo) { 3394d0a18d0Swren romano // Ensure both preconditions of `fromCOO`. 3408d8b566fSwren romano assert(coo->getSizes() == getDimSizes() && "Tensor size mismatch"); 3418d8b566fSwren romano coo->sort(); 3424d0a18d0Swren romano // Now actually insert the `elements`. 3438d8b566fSwren romano const std::vector<Element<V>> &elements = coo->getElements(); 344ceda1ae9Swren romano uint64_t nnz = elements.size(); 3458a91bc7bSHarrietAkot values.reserve(nnz); 346ceda1ae9Swren romano fromCOO(elements, 0, nnz, 0); 3471ce77b56SAart Bik } else if (allDense) { 348f66e5769SAart Bik values.resize(sz, 0); 3498a91bc7bSHarrietAkot } 3508a91bc7bSHarrietAkot } 3518a91bc7bSHarrietAkot 3520ae2e958SMehdi Amini ~SparseTensorStorage() override = default; 3538a91bc7bSHarrietAkot 354f66e5769SAart Bik /// Partially specialize these getter methods based on template types. 3558a91bc7bSHarrietAkot void getPointers(std::vector<P> **out, uint64_t d) override { 3568a91bc7bSHarrietAkot assert(d < getRank()); 3578a91bc7bSHarrietAkot *out = &pointers[d]; 3588a91bc7bSHarrietAkot } 3598a91bc7bSHarrietAkot void getIndices(std::vector<I> **out, uint64_t d) override { 3608a91bc7bSHarrietAkot assert(d < getRank()); 3618a91bc7bSHarrietAkot *out = &indices[d]; 3628a91bc7bSHarrietAkot } 3638a91bc7bSHarrietAkot void getValues(std::vector<V> **out) override { *out = &values; } 3648a91bc7bSHarrietAkot 36503fe15ceSAart Bik /// Partially specialize lexicographical insertions based on template types. 366c03fd1e6Swren romano void lexInsert(const uint64_t *cursor, V val) override { 3671ce77b56SAart Bik // First, wrap up pending insertion path. 3681ce77b56SAart Bik uint64_t diff = 0; 3691ce77b56SAart Bik uint64_t top = 0; 3701ce77b56SAart Bik if (!values.empty()) { 3711ce77b56SAart Bik diff = lexDiff(cursor); 3721ce77b56SAart Bik endPath(diff + 1); 3731ce77b56SAart Bik top = idx[diff] + 1; 3741ce77b56SAart Bik } 3751ce77b56SAart Bik // Then continue with insertion path. 3761ce77b56SAart Bik insPath(cursor, diff, top, val); 377f66e5769SAart Bik } 378f66e5769SAart Bik 3794f2ec7f9SAart Bik /// Partially specialize expanded insertions based on template types. 3804f2ec7f9SAart Bik /// Note that this method resets the values/filled-switch array back 3814f2ec7f9SAart Bik /// to all-zero/false while only iterating over the nonzero elements. 3824f2ec7f9SAart Bik void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 3834f2ec7f9SAart Bik uint64_t count) override { 3844f2ec7f9SAart Bik if (count == 0) 3854f2ec7f9SAart Bik return; 3864f2ec7f9SAart Bik // Sort. 3874f2ec7f9SAart Bik std::sort(added, added + count); 3884f2ec7f9SAart Bik // Restore insertion path for first insert. 3893bf2ba3bSwren romano const uint64_t lastDim = getRank() - 1; 3904f2ec7f9SAart Bik uint64_t index = added[0]; 3913bf2ba3bSwren romano cursor[lastDim] = index; 3924f2ec7f9SAart Bik lexInsert(cursor, values[index]); 3934f2ec7f9SAart Bik assert(filled[index]); 3944f2ec7f9SAart Bik values[index] = 0; 3954f2ec7f9SAart Bik filled[index] = false; 3964f2ec7f9SAart Bik // Subsequent insertions are quick. 3974f2ec7f9SAart Bik for (uint64_t i = 1; i < count; i++) { 3984f2ec7f9SAart Bik assert(index < added[i] && "non-lexicographic insertion"); 3994f2ec7f9SAart Bik index = added[i]; 4003bf2ba3bSwren romano cursor[lastDim] = index; 4013bf2ba3bSwren romano insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 4024f2ec7f9SAart Bik assert(filled[index]); 4033bf2ba3bSwren romano values[index] = 0; 4044f2ec7f9SAart Bik filled[index] = false; 4054f2ec7f9SAart Bik } 4064f2ec7f9SAart Bik } 4074f2ec7f9SAart Bik 408f66e5769SAart Bik /// Finalizes lexicographic insertions. 4091ce77b56SAart Bik void endInsert() override { 4101ce77b56SAart Bik if (values.empty()) 41172ec2f76Swren romano finalizeSegment(0); 4121ce77b56SAart Bik else 4131ce77b56SAart Bik endPath(0); 4141ce77b56SAart Bik } 415f66e5769SAart Bik 4168a91bc7bSHarrietAkot /// Returns this sparse tensor storage scheme as a new memory-resident 4178a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme with the given dimension order. 4188d8b566fSwren romano /// 4198d8b566fSwren romano /// Precondition: `perm` must be valid for `getRank()`. 4208a91bc7bSHarrietAkot SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 4218a91bc7bSHarrietAkot // Restore original order of the dimension sizes and allocate coordinate 4228a91bc7bSHarrietAkot // scheme with desired new ordering specified in perm. 4238d8b566fSwren romano const uint64_t rank = getRank(); 4248d8b566fSwren romano const auto &rev = getRev(); 4258d8b566fSwren romano const auto &sizes = getDimSizes(); 4268a91bc7bSHarrietAkot std::vector<uint64_t> orgsz(rank); 4278a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 4288a91bc7bSHarrietAkot orgsz[rev[r]] = sizes[r]; 4298d8b566fSwren romano SparseTensorCOO<V> *coo = SparseTensorCOO<V>::newSparseTensorCOO( 4308a91bc7bSHarrietAkot rank, orgsz.data(), perm, values.size()); 4318a91bc7bSHarrietAkot // Populate coordinate scheme restored from old ordering and changed with 4328a91bc7bSHarrietAkot // new ordering. Rather than applying both reorderings during the recursion, 4338a91bc7bSHarrietAkot // we compute the combine permutation in advance. 4348a91bc7bSHarrietAkot std::vector<uint64_t> reord(rank); 4358a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 4368a91bc7bSHarrietAkot reord[r] = perm[rev[r]]; 4378d8b566fSwren romano toCOO(*coo, reord, 0, 0); 4388d8b566fSwren romano // TODO: This assertion assumes there are no stored zeros, 4398d8b566fSwren romano // or if there are then that we don't filter them out. 4408d8b566fSwren romano // Cf., <https://github.com/llvm/llvm-project/issues/54179> 4418d8b566fSwren romano assert(coo->getElements().size() == values.size()); 4428d8b566fSwren romano return coo; 4438a91bc7bSHarrietAkot } 4448a91bc7bSHarrietAkot 4458a91bc7bSHarrietAkot /// Factory method. Constructs a sparse tensor storage scheme with the given 4468a91bc7bSHarrietAkot /// dimensions, permutation, and per-dimension dense/sparse annotations, 4478a91bc7bSHarrietAkot /// using the coordinate scheme tensor for the initial contents if provided. 4488a91bc7bSHarrietAkot /// In the latter case, the coordinate scheme must respect the same 4498a91bc7bSHarrietAkot /// permutation as is desired for the new sparse tensor storage. 4508d8b566fSwren romano /// 4518d8b566fSwren romano /// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`. 4528a91bc7bSHarrietAkot static SparseTensorStorage<P, I, V> * 453d83a7068Swren romano newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 4548d8b566fSwren romano const DimLevelType *sparsity, SparseTensorCOO<V> *coo) { 4558a91bc7bSHarrietAkot SparseTensorStorage<P, I, V> *n = nullptr; 4568d8b566fSwren romano if (coo) { 4578d8b566fSwren romano assert(coo->getRank() == rank && "Tensor rank mismatch"); 4588d8b566fSwren romano const auto &coosz = coo->getSizes(); 4598a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 4608d8b566fSwren romano assert(shape[r] == 0 || shape[r] == coosz[perm[r]]); 4618d8b566fSwren romano n = new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo); 4628a91bc7bSHarrietAkot } else { 4638a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 464d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 465d83a7068Swren romano assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 466d83a7068Swren romano permsz[perm[r]] = shape[r]; 467d83a7068Swren romano } 468f66e5769SAart Bik n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 4698a91bc7bSHarrietAkot } 4708a91bc7bSHarrietAkot return n; 4718a91bc7bSHarrietAkot } 4728a91bc7bSHarrietAkot 4738a91bc7bSHarrietAkot private: 47472ec2f76Swren romano /// Appends an arbitrary new position to `pointers[d]`. This method 47572ec2f76Swren romano /// checks that `pos` is representable in the `P` type; however, it 47672ec2f76Swren romano /// does not check that `pos` is semantically valid (i.e., larger than 47772ec2f76Swren romano /// the previous position and smaller than `indices[d].capacity()`). 4788d8b566fSwren romano void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 47972ec2f76Swren romano assert(isCompressedDim(d)); 48072ec2f76Swren romano assert(pos <= std::numeric_limits<P>::max() && 4814d0a18d0Swren romano "Pointer value is too large for the P-type"); 48272ec2f76Swren romano pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 4834d0a18d0Swren romano } 4844d0a18d0Swren romano 48572ec2f76Swren romano /// Appends index `i` to dimension `d`, in the semantically general 48672ec2f76Swren romano /// sense. For non-dense dimensions, that means appending to the 48772ec2f76Swren romano /// `indices[d]` array, checking that `i` is representable in the `I` 48872ec2f76Swren romano /// type; however, we do not verify other semantic requirements (e.g., 48972ec2f76Swren romano /// that `i` is in bounds for `sizes[d]`, and not previously occurring 49072ec2f76Swren romano /// in the same segment). For dense dimensions, this method instead 49172ec2f76Swren romano /// appends the appropriate number of zeros to the `values` array, 49272ec2f76Swren romano /// where `full` is the number of "entries" already written to `values` 49372ec2f76Swren romano /// for this segment (aka one after the highest index previously appended). 49472ec2f76Swren romano void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 49572ec2f76Swren romano if (isCompressedDim(d)) { 4964d0a18d0Swren romano assert(i <= std::numeric_limits<I>::max() && 4974d0a18d0Swren romano "Index value is too large for the I-type"); 49872ec2f76Swren romano indices[d].push_back(static_cast<I>(i)); 49972ec2f76Swren romano } else { // Dense dimension. 50072ec2f76Swren romano assert(i >= full && "Index was already filled"); 50172ec2f76Swren romano if (i == full) 50272ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 50372ec2f76Swren romano if (d + 1 == getRank()) 50472ec2f76Swren romano values.insert(values.end(), i - full, 0); 50572ec2f76Swren romano else 50672ec2f76Swren romano finalizeSegment(d + 1, 0, i - full); 50772ec2f76Swren romano } 5084d0a18d0Swren romano } 5094d0a18d0Swren romano 5108a91bc7bSHarrietAkot /// Initializes sparse tensor storage scheme from a memory-resident sparse 5118a91bc7bSHarrietAkot /// tensor in coordinate scheme. This method prepares the pointers and 5128a91bc7bSHarrietAkot /// indices arrays under the given per-dimension dense/sparse annotations. 5134d0a18d0Swren romano /// 5144d0a18d0Swren romano /// Preconditions: 5154d0a18d0Swren romano /// (1) the `elements` must be lexicographically sorted. 5164d0a18d0Swren romano /// (2) the indices of every element are valid for `sizes` (equal rank 5174d0a18d0Swren romano /// and pointwise less-than). 518ceda1ae9Swren romano void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 519ceda1ae9Swren romano uint64_t hi, uint64_t d) { 5208a91bc7bSHarrietAkot // Once dimensions are exhausted, insert the numerical values. 521c4017f9dSwren romano assert(d <= getRank() && hi <= elements.size()); 5228a91bc7bSHarrietAkot if (d == getRank()) { 523c4017f9dSwren romano assert(lo < hi); 5241ce77b56SAart Bik values.push_back(elements[lo].value); 5258a91bc7bSHarrietAkot return; 5268a91bc7bSHarrietAkot } 5278a91bc7bSHarrietAkot // Visit all elements in this interval. 5288a91bc7bSHarrietAkot uint64_t full = 0; 529c4017f9dSwren romano while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 5308a91bc7bSHarrietAkot // Find segment in interval with same index elements in this dimension. 531f66e5769SAart Bik uint64_t i = elements[lo].indices[d]; 5328a91bc7bSHarrietAkot uint64_t seg = lo + 1; 533f66e5769SAart Bik while (seg < hi && elements[seg].indices[d] == i) 5348a91bc7bSHarrietAkot seg++; 5358a91bc7bSHarrietAkot // Handle segment in interval for sparse or dense dimension. 53672ec2f76Swren romano appendIndex(d, full, i); 53772ec2f76Swren romano full = i + 1; 538ceda1ae9Swren romano fromCOO(elements, lo, seg, d + 1); 5398a91bc7bSHarrietAkot // And move on to next segment in interval. 5408a91bc7bSHarrietAkot lo = seg; 5418a91bc7bSHarrietAkot } 5428a91bc7bSHarrietAkot // Finalize the sparse pointer structure at this dimension. 54372ec2f76Swren romano finalizeSegment(d, full); 5448a91bc7bSHarrietAkot } 5458a91bc7bSHarrietAkot 5468a91bc7bSHarrietAkot /// Stores the sparse tensor storage scheme into a memory-resident sparse 5478a91bc7bSHarrietAkot /// tensor in coordinate scheme. 548ceda1ae9Swren romano void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 549f66e5769SAart Bik uint64_t pos, uint64_t d) { 5508a91bc7bSHarrietAkot assert(d <= getRank()); 5518a91bc7bSHarrietAkot if (d == getRank()) { 5528a91bc7bSHarrietAkot assert(pos < values.size()); 553ceda1ae9Swren romano tensor.add(idx, values[pos]); 5541ce77b56SAart Bik } else if (isCompressedDim(d)) { 5558a91bc7bSHarrietAkot // Sparse dimension. 5568a91bc7bSHarrietAkot for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 5578a91bc7bSHarrietAkot idx[reord[d]] = indices[d][ii]; 558f66e5769SAart Bik toCOO(tensor, reord, ii, d + 1); 5598a91bc7bSHarrietAkot } 5601ce77b56SAart Bik } else { 5611ce77b56SAart Bik // Dense dimension. 5628d8b566fSwren romano const uint64_t sz = getDimSizes()[d]; 5638d8b566fSwren romano const uint64_t off = pos * sz; 5648d8b566fSwren romano for (uint64_t i = 0; i < sz; i++) { 5651ce77b56SAart Bik idx[reord[d]] = i; 5661ce77b56SAart Bik toCOO(tensor, reord, off + i, d + 1); 5678a91bc7bSHarrietAkot } 5688a91bc7bSHarrietAkot } 5691ce77b56SAart Bik } 5701ce77b56SAart Bik 57172ec2f76Swren romano /// Finalize the sparse pointer structure at this dimension. 57272ec2f76Swren romano void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 57372ec2f76Swren romano if (count == 0) 57472ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 57572ec2f76Swren romano if (isCompressedDim(d)) { 57672ec2f76Swren romano appendPointer(d, indices[d].size(), count); 57772ec2f76Swren romano } else { // Dense dimension. 5788d8b566fSwren romano const uint64_t sz = getDimSizes()[d]; 57972ec2f76Swren romano assert(sz >= full && "Segment is overfull"); 5808d8b566fSwren romano count = checkedMul(count, sz - full); 58172ec2f76Swren romano // For dense storage we must enumerate all the remaining coordinates 58272ec2f76Swren romano // in this dimension (i.e., coordinates after the last non-zero 58372ec2f76Swren romano // element), and either fill in their zero values or else recurse 58472ec2f76Swren romano // to finalize some deeper dimension. 58572ec2f76Swren romano if (d + 1 == getRank()) 58672ec2f76Swren romano values.insert(values.end(), count, 0); 58772ec2f76Swren romano else 58872ec2f76Swren romano finalizeSegment(d + 1, 0, count); 5891ce77b56SAart Bik } 5901ce77b56SAart Bik } 5911ce77b56SAart Bik 5921ce77b56SAart Bik /// Wraps up a single insertion path, inner to outer. 5931ce77b56SAart Bik void endPath(uint64_t diff) { 5941ce77b56SAart Bik uint64_t rank = getRank(); 5951ce77b56SAart Bik assert(diff <= rank); 5961ce77b56SAart Bik for (uint64_t i = 0; i < rank - diff; i++) { 59772ec2f76Swren romano const uint64_t d = rank - i - 1; 59872ec2f76Swren romano finalizeSegment(d, idx[d] + 1); 5991ce77b56SAart Bik } 6001ce77b56SAart Bik } 6011ce77b56SAart Bik 6021ce77b56SAart Bik /// Continues a single insertion path, outer to inner. 603c03fd1e6Swren romano void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 6041ce77b56SAart Bik uint64_t rank = getRank(); 6051ce77b56SAart Bik assert(diff < rank); 6061ce77b56SAart Bik for (uint64_t d = diff; d < rank; d++) { 6071ce77b56SAart Bik uint64_t i = cursor[d]; 60872ec2f76Swren romano appendIndex(d, top, i); 6091ce77b56SAart Bik top = 0; 6101ce77b56SAart Bik idx[d] = i; 6111ce77b56SAart Bik } 6121ce77b56SAart Bik values.push_back(val); 6131ce77b56SAart Bik } 6141ce77b56SAart Bik 6151ce77b56SAart Bik /// Finds the lexicographic differing dimension. 61646bdacaaSwren romano uint64_t lexDiff(const uint64_t *cursor) const { 6171ce77b56SAart Bik for (uint64_t r = 0, rank = getRank(); r < rank; r++) 6181ce77b56SAart Bik if (cursor[r] > idx[r]) 6191ce77b56SAart Bik return r; 6201ce77b56SAart Bik else 6211ce77b56SAart Bik assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 6221ce77b56SAart Bik assert(0 && "duplication insertion"); 6231ce77b56SAart Bik return -1u; 6241ce77b56SAart Bik } 6251ce77b56SAart Bik 6268a91bc7bSHarrietAkot private: 6278a91bc7bSHarrietAkot std::vector<std::vector<P>> pointers; 6288a91bc7bSHarrietAkot std::vector<std::vector<I>> indices; 6298a91bc7bSHarrietAkot std::vector<V> values; 6308d8b566fSwren romano std::vector<uint64_t> idx; // index cursor for lexicographic insertion. 6318a91bc7bSHarrietAkot }; 6328a91bc7bSHarrietAkot 6338a91bc7bSHarrietAkot /// Helper to convert string to lower case. 6348a91bc7bSHarrietAkot static char *toLower(char *token) { 6358a91bc7bSHarrietAkot for (char *c = token; *c; c++) 6368a91bc7bSHarrietAkot *c = tolower(*c); 6378a91bc7bSHarrietAkot return token; 6388a91bc7bSHarrietAkot } 6398a91bc7bSHarrietAkot 6408a91bc7bSHarrietAkot /// Read the MME header of a general sparse matrix of type real. 64103fe15ceSAart Bik static void readMMEHeader(FILE *file, char *filename, char *line, 642bb56c2b3SMehdi Amini uint64_t *idata, bool *isSymmetric) { 6438a91bc7bSHarrietAkot char header[64]; 6448a91bc7bSHarrietAkot char object[64]; 6458a91bc7bSHarrietAkot char format[64]; 6468a91bc7bSHarrietAkot char field[64]; 6478a91bc7bSHarrietAkot char symmetry[64]; 6488a91bc7bSHarrietAkot // Read header line. 6498a91bc7bSHarrietAkot if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 6508a91bc7bSHarrietAkot symmetry) != 5) { 65103fe15ceSAart Bik fprintf(stderr, "Corrupt header in %s\n", filename); 6528a91bc7bSHarrietAkot exit(1); 6538a91bc7bSHarrietAkot } 654bb56c2b3SMehdi Amini *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 6558a91bc7bSHarrietAkot // Make sure this is a general sparse matrix. 6568a91bc7bSHarrietAkot if (strcmp(toLower(header), "%%matrixmarket") || 6578a91bc7bSHarrietAkot strcmp(toLower(object), "matrix") || 6588a91bc7bSHarrietAkot strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 659bb56c2b3SMehdi Amini (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 6608a91bc7bSHarrietAkot fprintf(stderr, 66103fe15ceSAart Bik "Cannot find a general sparse matrix with type real in %s\n", 66203fe15ceSAart Bik filename); 6638a91bc7bSHarrietAkot exit(1); 6648a91bc7bSHarrietAkot } 6658a91bc7bSHarrietAkot // Skip comments. 666e5639b3fSMehdi Amini while (true) { 66703fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 66803fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6698a91bc7bSHarrietAkot exit(1); 6708a91bc7bSHarrietAkot } 6718a91bc7bSHarrietAkot if (line[0] != '%') 6728a91bc7bSHarrietAkot break; 6738a91bc7bSHarrietAkot } 6748a91bc7bSHarrietAkot // Next line contains M N NNZ. 6758a91bc7bSHarrietAkot idata[0] = 2; // rank 6768a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 6778a91bc7bSHarrietAkot idata + 1) != 3) { 67803fe15ceSAart Bik fprintf(stderr, "Cannot find size in %s\n", filename); 6798a91bc7bSHarrietAkot exit(1); 6808a91bc7bSHarrietAkot } 6818a91bc7bSHarrietAkot } 6828a91bc7bSHarrietAkot 6838a91bc7bSHarrietAkot /// Read the "extended" FROSTT header. Although not part of the documented 6848a91bc7bSHarrietAkot /// format, we assume that the file starts with optional comments followed 6858a91bc7bSHarrietAkot /// by two lines that define the rank, the number of nonzeros, and the 6868a91bc7bSHarrietAkot /// dimensions sizes (one per rank) of the sparse tensor. 68703fe15ceSAart Bik static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 68803fe15ceSAart Bik uint64_t *idata) { 6898a91bc7bSHarrietAkot // Skip comments. 690e5639b3fSMehdi Amini while (true) { 69103fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 69203fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6938a91bc7bSHarrietAkot exit(1); 6948a91bc7bSHarrietAkot } 6958a91bc7bSHarrietAkot if (line[0] != '#') 6968a91bc7bSHarrietAkot break; 6978a91bc7bSHarrietAkot } 6988a91bc7bSHarrietAkot // Next line contains RANK and NNZ. 6998a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 70003fe15ceSAart Bik fprintf(stderr, "Cannot find metadata in %s\n", filename); 7018a91bc7bSHarrietAkot exit(1); 7028a91bc7bSHarrietAkot } 7038a91bc7bSHarrietAkot // Followed by a line with the dimension sizes (one per rank). 7048a91bc7bSHarrietAkot for (uint64_t r = 0; r < idata[0]; r++) { 7058a91bc7bSHarrietAkot if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 70603fe15ceSAart Bik fprintf(stderr, "Cannot find dimension size %s\n", filename); 7078a91bc7bSHarrietAkot exit(1); 7088a91bc7bSHarrietAkot } 7098a91bc7bSHarrietAkot } 71003fe15ceSAart Bik fgets(line, kColWidth, file); // end of line 7118a91bc7bSHarrietAkot } 7128a91bc7bSHarrietAkot 7138a91bc7bSHarrietAkot /// Reads a sparse tensor with the given filename into a memory-resident 7148a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme. 7158a91bc7bSHarrietAkot template <typename V> 7168a91bc7bSHarrietAkot static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 717d83a7068Swren romano const uint64_t *shape, 7188a91bc7bSHarrietAkot const uint64_t *perm) { 7198a91bc7bSHarrietAkot // Open the file. 7208a91bc7bSHarrietAkot FILE *file = fopen(filename, "r"); 7218a91bc7bSHarrietAkot if (!file) { 7223734c078Swren romano assert(filename && "Received nullptr for filename"); 7233734c078Swren romano fprintf(stderr, "Cannot find file %s\n", filename); 7248a91bc7bSHarrietAkot exit(1); 7258a91bc7bSHarrietAkot } 7268a91bc7bSHarrietAkot // Perform some file format dependent set up. 72703fe15ceSAart Bik char line[kColWidth]; 7288a91bc7bSHarrietAkot uint64_t idata[512]; 729bb56c2b3SMehdi Amini bool isSymmetric = false; 7308a91bc7bSHarrietAkot if (strstr(filename, ".mtx")) { 731bb56c2b3SMehdi Amini readMMEHeader(file, filename, line, idata, &isSymmetric); 7328a91bc7bSHarrietAkot } else if (strstr(filename, ".tns")) { 73303fe15ceSAart Bik readExtFROSTTHeader(file, filename, line, idata); 7348a91bc7bSHarrietAkot } else { 7358a91bc7bSHarrietAkot fprintf(stderr, "Unknown format %s\n", filename); 7368a91bc7bSHarrietAkot exit(1); 7378a91bc7bSHarrietAkot } 7388a91bc7bSHarrietAkot // Prepare sparse tensor object with per-dimension sizes 7398a91bc7bSHarrietAkot // and the number of nonzeros as initial capacity. 7408a91bc7bSHarrietAkot assert(rank == idata[0] && "rank mismatch"); 7418a91bc7bSHarrietAkot uint64_t nnz = idata[1]; 7428a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 743d83a7068Swren romano assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 7448a91bc7bSHarrietAkot "dimension size mismatch"); 7458a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = 7468a91bc7bSHarrietAkot SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 7478a91bc7bSHarrietAkot // Read all nonzero elements. 7488a91bc7bSHarrietAkot std::vector<uint64_t> indices(rank); 7498a91bc7bSHarrietAkot for (uint64_t k = 0; k < nnz; k++) { 75003fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 75103fe15ceSAart Bik fprintf(stderr, "Cannot find next line of data in %s\n", filename); 7528a91bc7bSHarrietAkot exit(1); 7538a91bc7bSHarrietAkot } 75403fe15ceSAart Bik char *linePtr = line; 75503fe15ceSAart Bik for (uint64_t r = 0; r < rank; r++) { 75603fe15ceSAart Bik uint64_t idx = strtoul(linePtr, &linePtr, 10); 7578a91bc7bSHarrietAkot // Add 0-based index. 7588a91bc7bSHarrietAkot indices[perm[r]] = idx - 1; 7598a91bc7bSHarrietAkot } 7608a91bc7bSHarrietAkot // The external formats always store the numerical values with the type 7618a91bc7bSHarrietAkot // double, but we cast these values to the sparse tensor object type. 76203fe15ceSAart Bik double value = strtod(linePtr, &linePtr); 7638a91bc7bSHarrietAkot tensor->add(indices, value); 76402710413SBixia Zheng // We currently chose to deal with symmetric matrices by fully constructing 76502710413SBixia Zheng // them. In the future, we may want to make symmetry implicit for storage 76602710413SBixia Zheng // reasons. 767bb56c2b3SMehdi Amini if (isSymmetric && indices[0] != indices[1]) 76802710413SBixia Zheng tensor->add({indices[1], indices[0]}, value); 7698a91bc7bSHarrietAkot } 7708a91bc7bSHarrietAkot // Close the file and return tensor. 7718a91bc7bSHarrietAkot fclose(file); 7728a91bc7bSHarrietAkot return tensor; 7738a91bc7bSHarrietAkot } 7748a91bc7bSHarrietAkot 775efa15f41SAart Bik /// Writes the sparse tensor to extended FROSTT format. 776efa15f41SAart Bik template <typename V> 77746bdacaaSwren romano static void outSparseTensor(void *tensor, void *dest, bool sort) { 7786438783fSAart Bik assert(tensor && dest); 7796438783fSAart Bik auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 7806438783fSAart Bik if (sort) 7816438783fSAart Bik coo->sort(); 7826438783fSAart Bik char *filename = static_cast<char *>(dest); 7836438783fSAart Bik auto &sizes = coo->getSizes(); 7846438783fSAart Bik auto &elements = coo->getElements(); 7856438783fSAart Bik uint64_t rank = coo->getRank(); 786efa15f41SAart Bik uint64_t nnz = elements.size(); 787efa15f41SAart Bik std::fstream file; 788efa15f41SAart Bik file.open(filename, std::ios_base::out | std::ios_base::trunc); 789efa15f41SAart Bik assert(file.is_open()); 790efa15f41SAart Bik file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 791efa15f41SAart Bik for (uint64_t r = 0; r < rank - 1; r++) 792efa15f41SAart Bik file << sizes[r] << " "; 793efa15f41SAart Bik file << sizes[rank - 1] << std::endl; 794efa15f41SAart Bik for (uint64_t i = 0; i < nnz; i++) { 795efa15f41SAart Bik auto &idx = elements[i].indices; 796efa15f41SAart Bik for (uint64_t r = 0; r < rank; r++) 797efa15f41SAart Bik file << (idx[r] + 1) << " "; 798efa15f41SAart Bik file << elements[i].value << std::endl; 799efa15f41SAart Bik } 800efa15f41SAart Bik file.flush(); 801efa15f41SAart Bik file.close(); 802efa15f41SAart Bik assert(file.good()); 8036438783fSAart Bik } 8046438783fSAart Bik 8056438783fSAart Bik /// Initializes sparse tensor from an external COO-flavored format. 8066438783fSAart Bik template <typename V> 80746bdacaaSwren romano static SparseTensorStorage<uint64_t, uint64_t, V> * 8086438783fSAart Bik toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 80920eaa88fSBixia Zheng uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 81020eaa88fSBixia Zheng const DimLevelType *sparsity = (DimLevelType *)(sparse); 81120eaa88fSBixia Zheng #ifndef NDEBUG 81220eaa88fSBixia Zheng // Verify that perm is a permutation of 0..(rank-1). 81320eaa88fSBixia Zheng std::vector<uint64_t> order(perm, perm + rank); 81420eaa88fSBixia Zheng std::sort(order.begin(), order.end()); 8151e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 81620eaa88fSBixia Zheng if (i != order[i]) { 817988d4b0dSAart Bik fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 81820eaa88fSBixia Zheng exit(1); 81920eaa88fSBixia Zheng } 82020eaa88fSBixia Zheng } 82120eaa88fSBixia Zheng 82220eaa88fSBixia Zheng // Verify that the sparsity values are supported. 8231e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 82420eaa88fSBixia Zheng if (sparsity[i] != DimLevelType::kDense && 82520eaa88fSBixia Zheng sparsity[i] != DimLevelType::kCompressed) { 82620eaa88fSBixia Zheng fprintf(stderr, "Unsupported sparsity value %d\n", 82720eaa88fSBixia Zheng static_cast<int>(sparsity[i])); 82820eaa88fSBixia Zheng exit(1); 82920eaa88fSBixia Zheng } 83020eaa88fSBixia Zheng } 83120eaa88fSBixia Zheng #endif 83220eaa88fSBixia Zheng 8336438783fSAart Bik // Convert external format to internal COO. 83463bdcaf9Swren romano auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 8356438783fSAart Bik std::vector<uint64_t> idx(rank); 8366438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 8376438783fSAart Bik for (uint64_t r = 0; r < rank; r++) 838d8b229a1SAart Bik idx[perm[r]] = indices[base + r]; 83963bdcaf9Swren romano coo->add(idx, values[i]); 8406438783fSAart Bik base += rank; 8416438783fSAart Bik } 8426438783fSAart Bik // Return sparse tensor storage format as opaque pointer. 84363bdcaf9Swren romano auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 84463bdcaf9Swren romano rank, shape, perm, sparsity, coo); 84563bdcaf9Swren romano delete coo; 84663bdcaf9Swren romano return tensor; 8476438783fSAart Bik } 8486438783fSAart Bik 8496438783fSAart Bik /// Converts a sparse tensor to an external COO-flavored format. 8506438783fSAart Bik template <typename V> 85146bdacaaSwren romano static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 85246bdacaaSwren romano uint64_t **pShape, V **pValues, 85346bdacaaSwren romano uint64_t **pIndices) { 8546438783fSAart Bik auto sparseTensor = 8556438783fSAart Bik static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 8566438783fSAart Bik uint64_t rank = sparseTensor->getRank(); 8576438783fSAart Bik std::vector<uint64_t> perm(rank); 8586438783fSAart Bik std::iota(perm.begin(), perm.end(), 0); 8596438783fSAart Bik SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 8606438783fSAart Bik 8616438783fSAart Bik const std::vector<Element<V>> &elements = coo->getElements(); 8626438783fSAart Bik uint64_t nse = elements.size(); 8636438783fSAart Bik 8646438783fSAart Bik uint64_t *shape = new uint64_t[rank]; 8656438783fSAart Bik for (uint64_t i = 0; i < rank; i++) 8666438783fSAart Bik shape[i] = coo->getSizes()[i]; 8676438783fSAart Bik 8686438783fSAart Bik V *values = new V[nse]; 8696438783fSAart Bik uint64_t *indices = new uint64_t[rank * nse]; 8706438783fSAart Bik 8716438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 8726438783fSAart Bik values[i] = elements[i].value; 8736438783fSAart Bik for (uint64_t j = 0; j < rank; j++) 8746438783fSAart Bik indices[base + j] = elements[i].indices[j]; 8756438783fSAart Bik base += rank; 8766438783fSAart Bik } 8776438783fSAart Bik 8786438783fSAart Bik delete coo; 8796438783fSAart Bik *pRank = rank; 8806438783fSAart Bik *pNse = nse; 8816438783fSAart Bik *pShape = shape; 8826438783fSAart Bik *pValues = values; 8836438783fSAart Bik *pIndices = indices; 884efa15f41SAart Bik } 885efa15f41SAart Bik 886be0a7e9fSMehdi Amini } // namespace 8878a91bc7bSHarrietAkot 8888a91bc7bSHarrietAkot extern "C" { 8898a91bc7bSHarrietAkot 8908a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 8918a91bc7bSHarrietAkot // 8928a91bc7bSHarrietAkot // Public API with methods that operate on MLIR buffers (memrefs) to interact 8938a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 8948a91bc7bSHarrietAkot // These methods should be used exclusively by MLIR compiler-generated code. 8958a91bc7bSHarrietAkot // 8968a91bc7bSHarrietAkot // Some macro magic is used to generate implementations for all required type 8978a91bc7bSHarrietAkot // combinations that can be called from MLIR compiler-generated code. 8988a91bc7bSHarrietAkot // 8998a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 9008a91bc7bSHarrietAkot 9018a91bc7bSHarrietAkot #define CASE(p, i, v, P, I, V) \ 9028a91bc7bSHarrietAkot if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 90363bdcaf9Swren romano SparseTensorCOO<V> *coo = nullptr; \ 904845561ecSwren romano if (action <= Action::kFromCOO) { \ 905845561ecSwren romano if (action == Action::kFromFile) { \ 9068a91bc7bSHarrietAkot char *filename = static_cast<char *>(ptr); \ 90763bdcaf9Swren romano coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 908845561ecSwren romano } else if (action == Action::kFromCOO) { \ 90963bdcaf9Swren romano coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 9108a91bc7bSHarrietAkot } else { \ 911845561ecSwren romano assert(action == Action::kEmpty); \ 9128a91bc7bSHarrietAkot } \ 91363bdcaf9Swren romano auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 91463bdcaf9Swren romano rank, shape, perm, sparsity, coo); \ 91563bdcaf9Swren romano if (action == Action::kFromFile) \ 91663bdcaf9Swren romano delete coo; \ 91763bdcaf9Swren romano return tensor; \ 918bb56c2b3SMehdi Amini } \ 919bb56c2b3SMehdi Amini if (action == Action::kEmptyCOO) \ 920d83a7068Swren romano return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 92163bdcaf9Swren romano coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 922845561ecSwren romano if (action == Action::kToIterator) { \ 92363bdcaf9Swren romano coo->startIterator(); \ 9248a91bc7bSHarrietAkot } else { \ 925845561ecSwren romano assert(action == Action::kToCOO); \ 9268a91bc7bSHarrietAkot } \ 92763bdcaf9Swren romano return coo; \ 9288a91bc7bSHarrietAkot } 9298a91bc7bSHarrietAkot 930845561ecSwren romano #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 931845561ecSwren romano 9328a91bc7bSHarrietAkot #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 9338a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 9344f2ec7f9SAart Bik assert(ref &&tensor); \ 9358a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 9368a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 9378a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 9388a91bc7bSHarrietAkot ref->offset = 0; \ 9398a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 9408a91bc7bSHarrietAkot ref->strides[0] = 1; \ 9418a91bc7bSHarrietAkot } 9428a91bc7bSHarrietAkot 9438a91bc7bSHarrietAkot #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 9448a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 945d2215e79SRainer Orth index_type d) { \ 9464f2ec7f9SAart Bik assert(ref &&tensor); \ 9478a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 9488a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 9498a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 9508a91bc7bSHarrietAkot ref->offset = 0; \ 9518a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 9528a91bc7bSHarrietAkot ref->strides[0] = 1; \ 9538a91bc7bSHarrietAkot } 9548a91bc7bSHarrietAkot 9558a91bc7bSHarrietAkot #define IMPL_ADDELT(NAME, TYPE) \ 9568a91bc7bSHarrietAkot void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 957d2215e79SRainer Orth StridedMemRefType<index_type, 1> *iref, \ 958d2215e79SRainer Orth StridedMemRefType<index_type, 1> *pref) { \ 9594f2ec7f9SAart Bik assert(tensor &&iref &&pref); \ 9608a91bc7bSHarrietAkot assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 9618a91bc7bSHarrietAkot assert(iref->sizes[0] == pref->sizes[0]); \ 962d2215e79SRainer Orth const index_type *indx = iref->data + iref->offset; \ 963d2215e79SRainer Orth const index_type *perm = pref->data + pref->offset; \ 9648a91bc7bSHarrietAkot uint64_t isize = iref->sizes[0]; \ 965d2215e79SRainer Orth std::vector<index_type> indices(isize); \ 9668a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 9678a91bc7bSHarrietAkot indices[perm[r]] = indx[r]; \ 9688a91bc7bSHarrietAkot static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 9698a91bc7bSHarrietAkot return tensor; \ 9708a91bc7bSHarrietAkot } 9718a91bc7bSHarrietAkot 9728a91bc7bSHarrietAkot #define IMPL_GETNEXT(NAME, V) \ 973d2215e79SRainer Orth bool _mlir_ciface_##NAME(void *tensor, \ 974d2215e79SRainer Orth StridedMemRefType<index_type, 1> *iref, \ 9758a91bc7bSHarrietAkot StridedMemRefType<V, 0> *vref) { \ 9764f2ec7f9SAart Bik assert(tensor &&iref &&vref); \ 9778a91bc7bSHarrietAkot assert(iref->strides[0] == 1); \ 978d2215e79SRainer Orth index_type *indx = iref->data + iref->offset; \ 979c9f2beffSMehdi Amini V *value = vref->data + vref->offset; \ 9808a91bc7bSHarrietAkot const uint64_t isize = iref->sizes[0]; \ 9818a91bc7bSHarrietAkot auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 9828a91bc7bSHarrietAkot const Element<V> *elem = iter->getNext(); \ 98363bdcaf9Swren romano if (elem == nullptr) \ 9848a91bc7bSHarrietAkot return false; \ 9858a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 9868a91bc7bSHarrietAkot indx[r] = elem->indices[r]; \ 9878a91bc7bSHarrietAkot *value = elem->value; \ 9888a91bc7bSHarrietAkot return true; \ 9898a91bc7bSHarrietAkot } 9908a91bc7bSHarrietAkot 991f66e5769SAart Bik #define IMPL_LEXINSERT(NAME, V) \ 992d2215e79SRainer Orth void _mlir_ciface_##NAME(void *tensor, \ 993d2215e79SRainer Orth StridedMemRefType<index_type, 1> *cref, V val) { \ 9944f2ec7f9SAart Bik assert(tensor &&cref); \ 995f66e5769SAart Bik assert(cref->strides[0] == 1); \ 996d2215e79SRainer Orth index_type *cursor = cref->data + cref->offset; \ 997f66e5769SAart Bik assert(cursor); \ 998f66e5769SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 999f66e5769SAart Bik } 1000f66e5769SAart Bik 10014f2ec7f9SAart Bik #define IMPL_EXPINSERT(NAME, V) \ 10024f2ec7f9SAart Bik void _mlir_ciface_##NAME( \ 1003d2215e79SRainer Orth void *tensor, StridedMemRefType<index_type, 1> *cref, \ 10044f2ec7f9SAart Bik StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 1005d2215e79SRainer Orth StridedMemRefType<index_type, 1> *aref, index_type count) { \ 10064f2ec7f9SAart Bik assert(tensor &&cref &&vref &&fref &&aref); \ 10074f2ec7f9SAart Bik assert(cref->strides[0] == 1); \ 10084f2ec7f9SAart Bik assert(vref->strides[0] == 1); \ 10094f2ec7f9SAart Bik assert(fref->strides[0] == 1); \ 10104f2ec7f9SAart Bik assert(aref->strides[0] == 1); \ 10114f2ec7f9SAart Bik assert(vref->sizes[0] == fref->sizes[0]); \ 1012d2215e79SRainer Orth index_type *cursor = cref->data + cref->offset; \ 1013c9f2beffSMehdi Amini V *values = vref->data + vref->offset; \ 10144f2ec7f9SAart Bik bool *filled = fref->data + fref->offset; \ 1015d2215e79SRainer Orth index_type *added = aref->data + aref->offset; \ 10164f2ec7f9SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 10174f2ec7f9SAart Bik cursor, values, filled, added, count); \ 10184f2ec7f9SAart Bik } 10194f2ec7f9SAart Bik 1020d2215e79SRainer Orth // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 1021bc04a470Swren romano // can safely rewrite kIndex to kU64. We make this assertion to guarantee 1022bc04a470Swren romano // that this file cannot get out of sync with its header. 1023d2215e79SRainer Orth static_assert(std::is_same<index_type, uint64_t>::value, 1024d2215e79SRainer Orth "Expected index_type == uint64_t"); 1025bc04a470Swren romano 10268a91bc7bSHarrietAkot /// Constructs a new sparse tensor. This is the "swiss army knife" 10278a91bc7bSHarrietAkot /// method for materializing sparse tensors into the computation. 10288a91bc7bSHarrietAkot /// 1029845561ecSwren romano /// Action: 10308a91bc7bSHarrietAkot /// kEmpty = returns empty storage to fill later 10318a91bc7bSHarrietAkot /// kFromFile = returns storage, where ptr contains filename to read 10328a91bc7bSHarrietAkot /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 10338a91bc7bSHarrietAkot /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 10348a91bc7bSHarrietAkot /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 1035845561ecSwren romano /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 10368a91bc7bSHarrietAkot void * 1037845561ecSwren romano _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 1038d2215e79SRainer Orth StridedMemRefType<index_type, 1> *sref, 1039d2215e79SRainer Orth StridedMemRefType<index_type, 1> *pref, 1040845561ecSwren romano OverheadType ptrTp, OverheadType indTp, 1041845561ecSwren romano PrimaryType valTp, Action action, void *ptr) { 10428a91bc7bSHarrietAkot assert(aref && sref && pref); 10438a91bc7bSHarrietAkot assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 10448a91bc7bSHarrietAkot pref->strides[0] == 1); 10458a91bc7bSHarrietAkot assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1046845561ecSwren romano const DimLevelType *sparsity = aref->data + aref->offset; 1047d83a7068Swren romano const index_type *shape = sref->data + sref->offset; 1048d2215e79SRainer Orth const index_type *perm = pref->data + pref->offset; 10498a91bc7bSHarrietAkot uint64_t rank = aref->sizes[0]; 10508a91bc7bSHarrietAkot 1051bc04a470Swren romano // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1052bc04a470Swren romano // This is safe because of the static_assert above. 1053bc04a470Swren romano if (ptrTp == OverheadType::kIndex) 1054bc04a470Swren romano ptrTp = OverheadType::kU64; 1055bc04a470Swren romano if (indTp == OverheadType::kIndex) 1056bc04a470Swren romano indTp = OverheadType::kU64; 1057bc04a470Swren romano 10588a91bc7bSHarrietAkot // Double matrices with all combinations of overhead storage. 1059845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1060845561ecSwren romano uint64_t, double); 1061845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1062845561ecSwren romano uint32_t, double); 1063845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1064845561ecSwren romano uint16_t, double); 1065845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1066845561ecSwren romano uint8_t, double); 1067845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1068845561ecSwren romano uint64_t, double); 1069845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1070845561ecSwren romano uint32_t, double); 1071845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1072845561ecSwren romano uint16_t, double); 1073845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1074845561ecSwren romano uint8_t, double); 1075845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1076845561ecSwren romano uint64_t, double); 1077845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1078845561ecSwren romano uint32_t, double); 1079845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1080845561ecSwren romano uint16_t, double); 1081845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1082845561ecSwren romano uint8_t, double); 1083845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1084845561ecSwren romano uint64_t, double); 1085845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1086845561ecSwren romano uint32_t, double); 1087845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1088845561ecSwren romano uint16_t, double); 1089845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1090845561ecSwren romano uint8_t, double); 10918a91bc7bSHarrietAkot 10928a91bc7bSHarrietAkot // Float matrices with all combinations of overhead storage. 1093845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1094845561ecSwren romano uint64_t, float); 1095845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1096845561ecSwren romano uint32_t, float); 1097845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1098845561ecSwren romano uint16_t, float); 1099845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1100845561ecSwren romano uint8_t, float); 1101845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1102845561ecSwren romano uint64_t, float); 1103845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1104845561ecSwren romano uint32_t, float); 1105845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1106845561ecSwren romano uint16_t, float); 1107845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1108845561ecSwren romano uint8_t, float); 1109845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1110845561ecSwren romano uint64_t, float); 1111845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1112845561ecSwren romano uint32_t, float); 1113845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1114845561ecSwren romano uint16_t, float); 1115845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1116845561ecSwren romano uint8_t, float); 1117845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1118845561ecSwren romano uint64_t, float); 1119845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1120845561ecSwren romano uint32_t, float); 1121845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1122845561ecSwren romano uint16_t, float); 1123845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1124845561ecSwren romano uint8_t, float); 11258a91bc7bSHarrietAkot 1126845561ecSwren romano // Integral matrices with both overheads of the same type. 1127845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1128845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1129845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1130845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1131845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1132845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1133845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1134845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1135845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1136845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1137845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1138845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1139845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 11408a91bc7bSHarrietAkot 11418a91bc7bSHarrietAkot // Unsupported case (add above if needed). 11428a91bc7bSHarrietAkot fputs("unsupported combination of types\n", stderr); 11438a91bc7bSHarrietAkot exit(1); 11448a91bc7bSHarrietAkot } 11458a91bc7bSHarrietAkot 11468a91bc7bSHarrietAkot /// Methods that provide direct access to pointers. 1147d2215e79SRainer Orth IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 11488a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 11498a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 11508a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 11518a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 11528a91bc7bSHarrietAkot 11538a91bc7bSHarrietAkot /// Methods that provide direct access to indices. 1154d2215e79SRainer Orth IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 11558a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 11568a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 11578a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 11588a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 11598a91bc7bSHarrietAkot 11608a91bc7bSHarrietAkot /// Methods that provide direct access to values. 11618a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 11628a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 11638a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 11648a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 11658a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 11668a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 11678a91bc7bSHarrietAkot 11688a91bc7bSHarrietAkot /// Helper to add value to coordinate scheme, one per value type. 11698a91bc7bSHarrietAkot IMPL_ADDELT(addEltF64, double) 11708a91bc7bSHarrietAkot IMPL_ADDELT(addEltF32, float) 11718a91bc7bSHarrietAkot IMPL_ADDELT(addEltI64, int64_t) 11728a91bc7bSHarrietAkot IMPL_ADDELT(addEltI32, int32_t) 11738a91bc7bSHarrietAkot IMPL_ADDELT(addEltI16, int16_t) 11748a91bc7bSHarrietAkot IMPL_ADDELT(addEltI8, int8_t) 11758a91bc7bSHarrietAkot 11768a91bc7bSHarrietAkot /// Helper to enumerate elements of coordinate scheme, one per value type. 11778a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF64, double) 11788a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF32, float) 11798a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI64, int64_t) 11808a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI32, int32_t) 11818a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI16, int16_t) 11828a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI8, int8_t) 11838a91bc7bSHarrietAkot 11846438783fSAart Bik /// Insert elements in lexicographical index order, one per value type. 1185f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF64, double) 1186f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF32, float) 1187f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI64, int64_t) 1188f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI32, int32_t) 1189f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI16, int16_t) 1190f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI8, int8_t) 1191f66e5769SAart Bik 11926438783fSAart Bik /// Insert using expansion, one per value type. 11934f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF64, double) 11944f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF32, float) 11954f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI64, int64_t) 11964f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI32, int32_t) 11974f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI16, int16_t) 11984f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI8, int8_t) 11994f2ec7f9SAart Bik 12008a91bc7bSHarrietAkot #undef CASE 12018a91bc7bSHarrietAkot #undef IMPL_SPARSEVALUES 12028a91bc7bSHarrietAkot #undef IMPL_GETOVERHEAD 12038a91bc7bSHarrietAkot #undef IMPL_ADDELT 12048a91bc7bSHarrietAkot #undef IMPL_GETNEXT 12054f2ec7f9SAart Bik #undef IMPL_LEXINSERT 12064f2ec7f9SAart Bik #undef IMPL_EXPINSERT 12076438783fSAart Bik 12086438783fSAart Bik /// Output a sparse tensor, one per value type. 12096438783fSAart Bik void outSparseTensorF64(void *tensor, void *dest, bool sort) { 12106438783fSAart Bik return outSparseTensor<double>(tensor, dest, sort); 12116438783fSAart Bik } 12126438783fSAart Bik void outSparseTensorF32(void *tensor, void *dest, bool sort) { 12136438783fSAart Bik return outSparseTensor<float>(tensor, dest, sort); 12146438783fSAart Bik } 12156438783fSAart Bik void outSparseTensorI64(void *tensor, void *dest, bool sort) { 12166438783fSAart Bik return outSparseTensor<int64_t>(tensor, dest, sort); 12176438783fSAart Bik } 12186438783fSAart Bik void outSparseTensorI32(void *tensor, void *dest, bool sort) { 12196438783fSAart Bik return outSparseTensor<int32_t>(tensor, dest, sort); 12206438783fSAart Bik } 12216438783fSAart Bik void outSparseTensorI16(void *tensor, void *dest, bool sort) { 12226438783fSAart Bik return outSparseTensor<int16_t>(tensor, dest, sort); 12236438783fSAart Bik } 12246438783fSAart Bik void outSparseTensorI8(void *tensor, void *dest, bool sort) { 12256438783fSAart Bik return outSparseTensor<int8_t>(tensor, dest, sort); 12266438783fSAart Bik } 12278a91bc7bSHarrietAkot 12288a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 12298a91bc7bSHarrietAkot // 12308a91bc7bSHarrietAkot // Public API with methods that accept C-style data structures to interact 12318a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 12328a91bc7bSHarrietAkot // These methods can be used both by MLIR compiler-generated code as well as by 12338a91bc7bSHarrietAkot // an external runtime that wants to interact with MLIR compiler-generated code. 12348a91bc7bSHarrietAkot // 12358a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 12368a91bc7bSHarrietAkot 12378a91bc7bSHarrietAkot /// Helper method to read a sparse tensor filename from the environment, 12388a91bc7bSHarrietAkot /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1239d2215e79SRainer Orth char *getTensorFilename(index_type id) { 12408a91bc7bSHarrietAkot char var[80]; 12418a91bc7bSHarrietAkot sprintf(var, "TENSOR%" PRIu64, id); 12428a91bc7bSHarrietAkot char *env = getenv(var); 12433734c078Swren romano if (!env) { 12443734c078Swren romano fprintf(stderr, "Environment variable %s is not set\n", var); 12453734c078Swren romano exit(1); 12463734c078Swren romano } 12478a91bc7bSHarrietAkot return env; 12488a91bc7bSHarrietAkot } 12498a91bc7bSHarrietAkot 12508a91bc7bSHarrietAkot /// Returns size of sparse tensor in given dimension. 1251d2215e79SRainer Orth index_type sparseDimSize(void *tensor, index_type d) { 12528a91bc7bSHarrietAkot return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 12538a91bc7bSHarrietAkot } 12548a91bc7bSHarrietAkot 1255f66e5769SAart Bik /// Finalizes lexicographic insertions. 1256f66e5769SAart Bik void endInsert(void *tensor) { 1257f66e5769SAart Bik return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1258f66e5769SAart Bik } 1259f66e5769SAart Bik 12608a91bc7bSHarrietAkot /// Releases sparse tensor storage. 12618a91bc7bSHarrietAkot void delSparseTensor(void *tensor) { 12628a91bc7bSHarrietAkot delete static_cast<SparseTensorStorageBase *>(tensor); 12638a91bc7bSHarrietAkot } 12648a91bc7bSHarrietAkot 126563bdcaf9Swren romano /// Releases sparse tensor coordinate scheme. 126663bdcaf9Swren romano #define IMPL_DELCOO(VNAME, V) \ 126763bdcaf9Swren romano void delSparseTensorCOO##VNAME(void *coo) { \ 126863bdcaf9Swren romano delete static_cast<SparseTensorCOO<V> *>(coo); \ 126963bdcaf9Swren romano } 127063bdcaf9Swren romano IMPL_DELCOO(F64, double) 127163bdcaf9Swren romano IMPL_DELCOO(F32, float) 127263bdcaf9Swren romano IMPL_DELCOO(I64, int64_t) 127363bdcaf9Swren romano IMPL_DELCOO(I32, int32_t) 127463bdcaf9Swren romano IMPL_DELCOO(I16, int16_t) 127563bdcaf9Swren romano IMPL_DELCOO(I8, int8_t) 127663bdcaf9Swren romano #undef IMPL_DELCOO 127763bdcaf9Swren romano 12788a91bc7bSHarrietAkot /// Initializes sparse tensor from a COO-flavored format expressed using C-style 12798a91bc7bSHarrietAkot /// data structures. The expected parameters are: 12808a91bc7bSHarrietAkot /// 12818a91bc7bSHarrietAkot /// rank: rank of tensor 12828a91bc7bSHarrietAkot /// nse: number of specified elements (usually the nonzeros) 12838a91bc7bSHarrietAkot /// shape: array with dimension size for each rank 12848a91bc7bSHarrietAkot /// values: a "nse" array with values for all specified elements 12858a91bc7bSHarrietAkot /// indices: a flat "nse x rank" array with indices for all specified elements 128620eaa88fSBixia Zheng /// perm: the permutation of the dimensions in the storage 128720eaa88fSBixia Zheng /// sparse: the sparsity for the dimensions 12888a91bc7bSHarrietAkot /// 12898a91bc7bSHarrietAkot /// For example, the sparse matrix 12908a91bc7bSHarrietAkot /// | 1.0 0.0 0.0 | 12918a91bc7bSHarrietAkot /// | 0.0 5.0 3.0 | 12928a91bc7bSHarrietAkot /// can be passed as 12938a91bc7bSHarrietAkot /// rank = 2 12948a91bc7bSHarrietAkot /// nse = 3 12958a91bc7bSHarrietAkot /// shape = [2, 3] 12968a91bc7bSHarrietAkot /// values = [1.0, 5.0, 3.0] 12978a91bc7bSHarrietAkot /// indices = [ 0, 0, 1, 1, 1, 2] 12988a91bc7bSHarrietAkot // 129920eaa88fSBixia Zheng // TODO: generalize beyond 64-bit indices. 13008a91bc7bSHarrietAkot // 13016438783fSAart Bik void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 130220eaa88fSBixia Zheng double *values, uint64_t *indices, 130320eaa88fSBixia Zheng uint64_t *perm, uint8_t *sparse) { 130420eaa88fSBixia Zheng return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 130520eaa88fSBixia Zheng sparse); 13068a91bc7bSHarrietAkot } 13076438783fSAart Bik void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 130820eaa88fSBixia Zheng float *values, uint64_t *indices, 130920eaa88fSBixia Zheng uint64_t *perm, uint8_t *sparse) { 131020eaa88fSBixia Zheng return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 131120eaa88fSBixia Zheng sparse); 13128a91bc7bSHarrietAkot } 13138a91bc7bSHarrietAkot 13142f49e6b0SBixia Zheng /// Converts a sparse tensor to COO-flavored format expressed using C-style 13152f49e6b0SBixia Zheng /// data structures. The expected output parameters are pointers for these 13162f49e6b0SBixia Zheng /// values: 13172f49e6b0SBixia Zheng /// 13182f49e6b0SBixia Zheng /// rank: rank of tensor 13192f49e6b0SBixia Zheng /// nse: number of specified elements (usually the nonzeros) 13202f49e6b0SBixia Zheng /// shape: array with dimension size for each rank 13212f49e6b0SBixia Zheng /// values: a "nse" array with values for all specified elements 13222f49e6b0SBixia Zheng /// indices: a flat "nse x rank" array with indices for all specified elements 13232f49e6b0SBixia Zheng /// 13242f49e6b0SBixia Zheng /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 13252f49e6b0SBixia Zheng /// from convertToMLIRSparseTensor. 13262f49e6b0SBixia Zheng /// 13272f49e6b0SBixia Zheng // TODO: Currently, values are copied from SparseTensorStorage to 13282f49e6b0SBixia Zheng // SparseTensorCOO, then to the output. We may want to reduce the number of 13292f49e6b0SBixia Zheng // copies. 13302f49e6b0SBixia Zheng // 13316438783fSAart Bik // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 13326438783fSAart Bik // compressed 13332f49e6b0SBixia Zheng // 13346438783fSAart Bik void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 13356438783fSAart Bik uint64_t *pNse, uint64_t **pShape, 13366438783fSAart Bik double **pValues, uint64_t **pIndices) { 13376438783fSAart Bik fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 13382f49e6b0SBixia Zheng } 13396438783fSAart Bik void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 13406438783fSAart Bik uint64_t *pNse, uint64_t **pShape, 13416438783fSAart Bik float **pValues, uint64_t **pIndices) { 13426438783fSAart Bik fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 13432f49e6b0SBixia Zheng } 1344efa15f41SAart Bik 13458a91bc7bSHarrietAkot } // extern "C" 13468a91bc7bSHarrietAkot 13478a91bc7bSHarrietAkot #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1348