18a91bc7bSHarrietAkot //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===// 28a91bc7bSHarrietAkot // 38a91bc7bSHarrietAkot // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48a91bc7bSHarrietAkot // See https://llvm.org/LICENSE.txt for license information. 58a91bc7bSHarrietAkot // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68a91bc7bSHarrietAkot // 78a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 88a91bc7bSHarrietAkot // 98a91bc7bSHarrietAkot // This file implements a light-weight runtime support library that is useful 108a91bc7bSHarrietAkot // for sparse tensor manipulations. The functionality provided in this library 118a91bc7bSHarrietAkot // is meant to simplify benchmarking, testing, and debugging MLIR code that 128a91bc7bSHarrietAkot // operates on sparse tensors. The provided functionality is **not** part 138a91bc7bSHarrietAkot // of core MLIR, however. 148a91bc7bSHarrietAkot // 158a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 168a91bc7bSHarrietAkot 17845561ecSwren romano #include "mlir/ExecutionEngine/SparseTensorUtils.h" 188a91bc7bSHarrietAkot #include "mlir/ExecutionEngine/CRunnerUtils.h" 198a91bc7bSHarrietAkot 208a91bc7bSHarrietAkot #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 218a91bc7bSHarrietAkot 228a91bc7bSHarrietAkot #include <algorithm> 238a91bc7bSHarrietAkot #include <cassert> 248a91bc7bSHarrietAkot #include <cctype> 258a91bc7bSHarrietAkot #include <cinttypes> 268a91bc7bSHarrietAkot #include <cstdio> 278a91bc7bSHarrietAkot #include <cstdlib> 288a91bc7bSHarrietAkot #include <cstring> 29efa15f41SAart Bik #include <fstream> 30efa15f41SAart Bik #include <iostream> 314d0a18d0Swren romano #include <limits> 328a91bc7bSHarrietAkot #include <numeric> 338a91bc7bSHarrietAkot #include <vector> 348a91bc7bSHarrietAkot 358a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 368a91bc7bSHarrietAkot // 378a91bc7bSHarrietAkot // Internal support for storing and reading sparse tensors. 388a91bc7bSHarrietAkot // 398a91bc7bSHarrietAkot // The following memory-resident sparse storage schemes are supported: 408a91bc7bSHarrietAkot // 418a91bc7bSHarrietAkot // (a) A coordinate scheme for temporarily storing and lexicographically 428a91bc7bSHarrietAkot // sorting a sparse tensor by index (SparseTensorCOO). 438a91bc7bSHarrietAkot // 448a91bc7bSHarrietAkot // (b) A "one-size-fits-all" sparse tensor storage scheme defined by 458a91bc7bSHarrietAkot // per-dimension sparse/dense annnotations together with a dimension 468a91bc7bSHarrietAkot // ordering used by MLIR compiler-generated code (SparseTensorStorage). 478a91bc7bSHarrietAkot // 488a91bc7bSHarrietAkot // The following external formats are supported: 498a91bc7bSHarrietAkot // 508a91bc7bSHarrietAkot // (1) Matrix Market Exchange (MME): *.mtx 518a91bc7bSHarrietAkot // https://math.nist.gov/MatrixMarket/formats.html 528a91bc7bSHarrietAkot // 538a91bc7bSHarrietAkot // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns 548a91bc7bSHarrietAkot // http://frostt.io/tensors/file-formats.html 558a91bc7bSHarrietAkot // 568a91bc7bSHarrietAkot // Two public APIs are supported: 578a91bc7bSHarrietAkot // 588a91bc7bSHarrietAkot // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse 598a91bc7bSHarrietAkot // tensors. These methods should be used exclusively by MLIR 608a91bc7bSHarrietAkot // compiler-generated code. 618a91bc7bSHarrietAkot // 628a91bc7bSHarrietAkot // (II) Methods that accept C-style data structures to interact with sparse 638a91bc7bSHarrietAkot // tensors. These methods can be used by any external runtime that wants 648a91bc7bSHarrietAkot // to interact with MLIR compiler-generated code. 658a91bc7bSHarrietAkot // 668a91bc7bSHarrietAkot // In both cases (I) and (II), the SparseTensorStorage format is externally 678a91bc7bSHarrietAkot // only visible as an opaque pointer. 688a91bc7bSHarrietAkot // 698a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 708a91bc7bSHarrietAkot 718a91bc7bSHarrietAkot namespace { 728a91bc7bSHarrietAkot 7303fe15ceSAart Bik static constexpr int kColWidth = 1025; 7403fe15ceSAart Bik 75*72ec2f76Swren romano /// A version of `operator*` on `uint64_t` which checks for overflows. 76*72ec2f76Swren romano static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) { 77*72ec2f76Swren romano assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) && 78*72ec2f76Swren romano "Integer overflow"); 79*72ec2f76Swren romano return lhs * rhs; 80*72ec2f76Swren romano } 81*72ec2f76Swren romano 828a91bc7bSHarrietAkot /// A sparse tensor element in coordinate scheme (value and indices). 838a91bc7bSHarrietAkot /// For example, a rank-1 vector element would look like 848a91bc7bSHarrietAkot /// ({i}, a[i]) 858a91bc7bSHarrietAkot /// and a rank-5 tensor element like 868a91bc7bSHarrietAkot /// ({i,j,k,l,m}, a[i,j,k,l,m]) 878a91bc7bSHarrietAkot template <typename V> 888a91bc7bSHarrietAkot struct Element { 898a91bc7bSHarrietAkot Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){}; 908a91bc7bSHarrietAkot std::vector<uint64_t> indices; 918a91bc7bSHarrietAkot V value; 92110295ebSwren romano /// Returns true if indices of e1 < indices of e2. 93110295ebSwren romano static bool lexOrder(const Element<V> &e1, const Element<V> &e2) { 94110295ebSwren romano uint64_t rank = e1.indices.size(); 95110295ebSwren romano assert(rank == e2.indices.size()); 96110295ebSwren romano for (uint64_t r = 0; r < rank; r++) { 97110295ebSwren romano if (e1.indices[r] == e2.indices[r]) 98110295ebSwren romano continue; 99110295ebSwren romano return e1.indices[r] < e2.indices[r]; 100110295ebSwren romano } 101110295ebSwren romano return false; 102110295ebSwren romano } 1038a91bc7bSHarrietAkot }; 1048a91bc7bSHarrietAkot 1058a91bc7bSHarrietAkot /// A memory-resident sparse tensor in coordinate scheme (collection of 1068a91bc7bSHarrietAkot /// elements). This data structure is used to read a sparse tensor from 1078a91bc7bSHarrietAkot /// any external format into memory and sort the elements lexicographically 1088a91bc7bSHarrietAkot /// by indices before passing it back to the client (most packed storage 1098a91bc7bSHarrietAkot /// formats require the elements to appear in lexicographic index order). 1108a91bc7bSHarrietAkot template <typename V> 1118a91bc7bSHarrietAkot struct SparseTensorCOO { 1128a91bc7bSHarrietAkot public: 1138a91bc7bSHarrietAkot SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity) 1148a91bc7bSHarrietAkot : sizes(szs), iteratorLocked(false), iteratorPos(0) { 1158a91bc7bSHarrietAkot if (capacity) 1168a91bc7bSHarrietAkot elements.reserve(capacity); 1178a91bc7bSHarrietAkot } 1188a91bc7bSHarrietAkot /// Adds element as indices and value. 1198a91bc7bSHarrietAkot void add(const std::vector<uint64_t> &ind, V val) { 1208a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to add() after startIterator()"); 1218a91bc7bSHarrietAkot uint64_t rank = getRank(); 1228a91bc7bSHarrietAkot assert(rank == ind.size()); 1238a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 1248a91bc7bSHarrietAkot assert(ind[r] < sizes[r]); // within bounds 1258a91bc7bSHarrietAkot elements.emplace_back(ind, val); 1268a91bc7bSHarrietAkot } 1278a91bc7bSHarrietAkot /// Sorts elements lexicographically by index. 1288a91bc7bSHarrietAkot void sort() { 1298a91bc7bSHarrietAkot assert(!iteratorLocked && "Attempt to sort() after startIterator()"); 130cf358253Swren romano // TODO: we may want to cache an `isSorted` bit, to avoid 131cf358253Swren romano // unnecessary/redundant sorting. 132110295ebSwren romano std::sort(elements.begin(), elements.end(), Element<V>::lexOrder); 1338a91bc7bSHarrietAkot } 1348a91bc7bSHarrietAkot /// Returns rank. 1358a91bc7bSHarrietAkot uint64_t getRank() const { return sizes.size(); } 1368a91bc7bSHarrietAkot /// Getter for sizes array. 1378a91bc7bSHarrietAkot const std::vector<uint64_t> &getSizes() const { return sizes; } 1388a91bc7bSHarrietAkot /// Getter for elements array. 1398a91bc7bSHarrietAkot const std::vector<Element<V>> &getElements() const { return elements; } 1408a91bc7bSHarrietAkot 1418a91bc7bSHarrietAkot /// Switch into iterator mode. 1428a91bc7bSHarrietAkot void startIterator() { 1438a91bc7bSHarrietAkot iteratorLocked = true; 1448a91bc7bSHarrietAkot iteratorPos = 0; 1458a91bc7bSHarrietAkot } 1468a91bc7bSHarrietAkot /// Get the next element. 1478a91bc7bSHarrietAkot const Element<V> *getNext() { 1488a91bc7bSHarrietAkot assert(iteratorLocked && "Attempt to getNext() before startIterator()"); 1498a91bc7bSHarrietAkot if (iteratorPos < elements.size()) 1508a91bc7bSHarrietAkot return &(elements[iteratorPos++]); 1518a91bc7bSHarrietAkot iteratorLocked = false; 1528a91bc7bSHarrietAkot return nullptr; 1538a91bc7bSHarrietAkot } 1548a91bc7bSHarrietAkot 1558a91bc7bSHarrietAkot /// Factory method. Permutes the original dimensions according to 1568a91bc7bSHarrietAkot /// the given ordering and expects subsequent add() calls to honor 1578a91bc7bSHarrietAkot /// that same ordering for the given indices. The result is a 1588a91bc7bSHarrietAkot /// fully permuted coordinate scheme. 1598a91bc7bSHarrietAkot static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank, 1608a91bc7bSHarrietAkot const uint64_t *sizes, 1618a91bc7bSHarrietAkot const uint64_t *perm, 1628a91bc7bSHarrietAkot uint64_t capacity = 0) { 1638a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 164d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 165d83a7068Swren romano assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 1668a91bc7bSHarrietAkot permsz[perm[r]] = sizes[r]; 167d83a7068Swren romano } 1688a91bc7bSHarrietAkot return new SparseTensorCOO<V>(permsz, capacity); 1698a91bc7bSHarrietAkot } 1708a91bc7bSHarrietAkot 1718a91bc7bSHarrietAkot private: 1728a91bc7bSHarrietAkot const std::vector<uint64_t> sizes; // per-dimension sizes 1738a91bc7bSHarrietAkot std::vector<Element<V>> elements; 1748a91bc7bSHarrietAkot bool iteratorLocked; 1758a91bc7bSHarrietAkot unsigned iteratorPos; 1768a91bc7bSHarrietAkot }; 1778a91bc7bSHarrietAkot 1788a91bc7bSHarrietAkot /// Abstract base class of sparse tensor storage. Note that we use 1798a91bc7bSHarrietAkot /// function overloading to implement "partial" method specialization. 1808a91bc7bSHarrietAkot class SparseTensorStorageBase { 1818a91bc7bSHarrietAkot public: 1824f2ec7f9SAart Bik /// Dimension size query. 18346bdacaaSwren romano virtual uint64_t getDimSize(uint64_t) const = 0; 1848a91bc7bSHarrietAkot 1854f2ec7f9SAart Bik /// Overhead storage. 1868a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); } 1878a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); } 1888a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); } 1898a91bc7bSHarrietAkot virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); } 1908a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); } 1918a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); } 1928a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); } 1938a91bc7bSHarrietAkot virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); } 1948a91bc7bSHarrietAkot 1954f2ec7f9SAart Bik /// Primary storage. 1968a91bc7bSHarrietAkot virtual void getValues(std::vector<double> **) { fatal("valf64"); } 1978a91bc7bSHarrietAkot virtual void getValues(std::vector<float> **) { fatal("valf32"); } 1988a91bc7bSHarrietAkot virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); } 1998a91bc7bSHarrietAkot virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); } 2008a91bc7bSHarrietAkot virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); } 2018a91bc7bSHarrietAkot virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); } 2028a91bc7bSHarrietAkot 2034f2ec7f9SAart Bik /// Element-wise insertion in lexicographic index order. 204c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); } 205c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); } 206c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); } 207c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); } 208c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); } 209c03fd1e6Swren romano virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); } 2104f2ec7f9SAart Bik 2114f2ec7f9SAart Bik /// Expanded insertion. 2124f2ec7f9SAart Bik virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) { 2134f2ec7f9SAart Bik fatal("expf64"); 2144f2ec7f9SAart Bik } 2154f2ec7f9SAart Bik virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) { 2164f2ec7f9SAart Bik fatal("expf32"); 2174f2ec7f9SAart Bik } 2184f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) { 2194f2ec7f9SAart Bik fatal("expi64"); 2204f2ec7f9SAart Bik } 2214f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) { 2224f2ec7f9SAart Bik fatal("expi32"); 2234f2ec7f9SAart Bik } 2244f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) { 2254f2ec7f9SAart Bik fatal("expi16"); 2264f2ec7f9SAart Bik } 2274f2ec7f9SAart Bik virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) { 2284f2ec7f9SAart Bik fatal("expi8"); 2294f2ec7f9SAart Bik } 2304f2ec7f9SAart Bik 2314f2ec7f9SAart Bik /// Finishes insertion. 232f66e5769SAart Bik virtual void endInsert() = 0; 233f66e5769SAart Bik 234e5639b3fSMehdi Amini virtual ~SparseTensorStorageBase() = default; 2358a91bc7bSHarrietAkot 2368a91bc7bSHarrietAkot private: 23746bdacaaSwren romano static void fatal(const char *tp) { 2388a91bc7bSHarrietAkot fprintf(stderr, "unsupported %s\n", tp); 2398a91bc7bSHarrietAkot exit(1); 2408a91bc7bSHarrietAkot } 2418a91bc7bSHarrietAkot }; 2428a91bc7bSHarrietAkot 2438a91bc7bSHarrietAkot /// A memory-resident sparse tensor using a storage scheme based on 2448a91bc7bSHarrietAkot /// per-dimension sparse/dense annotations. This data structure provides a 2458a91bc7bSHarrietAkot /// bufferized form of a sparse tensor type. In contrast to generating setup 2468a91bc7bSHarrietAkot /// methods for each differently annotated sparse tensor, this method provides 2478a91bc7bSHarrietAkot /// a convenient "one-size-fits-all" solution that simply takes an input tensor 2488a91bc7bSHarrietAkot /// and annotations to implement all required setup in a general manner. 2498a91bc7bSHarrietAkot template <typename P, typename I, typename V> 2508a91bc7bSHarrietAkot class SparseTensorStorage : public SparseTensorStorageBase { 2518a91bc7bSHarrietAkot public: 2528a91bc7bSHarrietAkot /// Constructs a sparse tensor storage scheme with the given dimensions, 2538a91bc7bSHarrietAkot /// permutation, and per-dimension dense/sparse annotations, using 2548a91bc7bSHarrietAkot /// the coordinate scheme tensor for the initial contents if provided. 2558a91bc7bSHarrietAkot SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm, 256f66e5769SAart Bik const DimLevelType *sparsity, 257f66e5769SAart Bik SparseTensorCOO<V> *tensor = nullptr) 258f66e5769SAart Bik : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()), 259f66e5769SAart Bik indices(getRank()) { 2608a91bc7bSHarrietAkot uint64_t rank = getRank(); 2618a91bc7bSHarrietAkot // Store "reverse" permutation. 2628a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 2638a91bc7bSHarrietAkot rev[perm[r]] = r; 2648a91bc7bSHarrietAkot // Provide hints on capacity of pointers and indices. 2658a91bc7bSHarrietAkot // TODO: needs fine-tuning based on sparsity 266f66e5769SAart Bik bool allDense = true; 267f66e5769SAart Bik uint64_t sz = 1; 268f66e5769SAart Bik for (uint64_t r = 0; r < rank; r++) { 2694d0a18d0Swren romano assert(sizes[r] > 0 && "Dimension size zero has trivial storage"); 270*72ec2f76Swren romano sz = checkedMul(sz, sizes[r]); 271845561ecSwren romano if (sparsity[r] == DimLevelType::kCompressed) { 272f66e5769SAart Bik pointers[r].reserve(sz + 1); 273f66e5769SAart Bik indices[r].reserve(sz); 274f66e5769SAart Bik sz = 1; 275f66e5769SAart Bik allDense = false; 276289f84a4Swren romano // Prepare the pointer structure. We cannot use `appendPointer` 2774d0a18d0Swren romano // here, because `isCompressedDim` won't work until after this 2784d0a18d0Swren romano // preparation has been done. 2794d0a18d0Swren romano pointers[r].push_back(0); 2808a91bc7bSHarrietAkot } else { 281845561ecSwren romano assert(sparsity[r] == DimLevelType::kDense && 282845561ecSwren romano "singleton not yet supported"); 2838a91bc7bSHarrietAkot } 2848a91bc7bSHarrietAkot } 2858a91bc7bSHarrietAkot // Then assign contents from coordinate scheme tensor if provided. 2868a91bc7bSHarrietAkot if (tensor) { 2874d0a18d0Swren romano // Ensure both preconditions of `fromCOO`. 2884d0a18d0Swren romano assert(tensor->getSizes() == sizes && "Tensor size mismatch"); 289cf358253Swren romano tensor->sort(); 2904d0a18d0Swren romano // Now actually insert the `elements`. 291ceda1ae9Swren romano const std::vector<Element<V>> &elements = tensor->getElements(); 292ceda1ae9Swren romano uint64_t nnz = elements.size(); 2938a91bc7bSHarrietAkot values.reserve(nnz); 294ceda1ae9Swren romano fromCOO(elements, 0, nnz, 0); 2951ce77b56SAart Bik } else if (allDense) { 296f66e5769SAart Bik values.resize(sz, 0); 2978a91bc7bSHarrietAkot } 2988a91bc7bSHarrietAkot } 2998a91bc7bSHarrietAkot 3000ae2e958SMehdi Amini ~SparseTensorStorage() override = default; 3018a91bc7bSHarrietAkot 3028a91bc7bSHarrietAkot /// Get the rank of the tensor. 3038a91bc7bSHarrietAkot uint64_t getRank() const { return sizes.size(); } 3048a91bc7bSHarrietAkot 30546bdacaaSwren romano /// Get the size of the given dimension of the tensor. 30646bdacaaSwren romano uint64_t getDimSize(uint64_t d) const override { 3078a91bc7bSHarrietAkot assert(d < getRank()); 3088a91bc7bSHarrietAkot return sizes[d]; 3098a91bc7bSHarrietAkot } 3108a91bc7bSHarrietAkot 311f66e5769SAart Bik /// Partially specialize these getter methods based on template types. 3128a91bc7bSHarrietAkot void getPointers(std::vector<P> **out, uint64_t d) override { 3138a91bc7bSHarrietAkot assert(d < getRank()); 3148a91bc7bSHarrietAkot *out = &pointers[d]; 3158a91bc7bSHarrietAkot } 3168a91bc7bSHarrietAkot void getIndices(std::vector<I> **out, uint64_t d) override { 3178a91bc7bSHarrietAkot assert(d < getRank()); 3188a91bc7bSHarrietAkot *out = &indices[d]; 3198a91bc7bSHarrietAkot } 3208a91bc7bSHarrietAkot void getValues(std::vector<V> **out) override { *out = &values; } 3218a91bc7bSHarrietAkot 32203fe15ceSAart Bik /// Partially specialize lexicographical insertions based on template types. 323c03fd1e6Swren romano void lexInsert(const uint64_t *cursor, V val) override { 3241ce77b56SAart Bik // First, wrap up pending insertion path. 3251ce77b56SAart Bik uint64_t diff = 0; 3261ce77b56SAart Bik uint64_t top = 0; 3271ce77b56SAart Bik if (!values.empty()) { 3281ce77b56SAart Bik diff = lexDiff(cursor); 3291ce77b56SAart Bik endPath(diff + 1); 3301ce77b56SAart Bik top = idx[diff] + 1; 3311ce77b56SAart Bik } 3321ce77b56SAart Bik // Then continue with insertion path. 3331ce77b56SAart Bik insPath(cursor, diff, top, val); 334f66e5769SAart Bik } 335f66e5769SAart Bik 3364f2ec7f9SAart Bik /// Partially specialize expanded insertions based on template types. 3374f2ec7f9SAart Bik /// Note that this method resets the values/filled-switch array back 3384f2ec7f9SAart Bik /// to all-zero/false while only iterating over the nonzero elements. 3394f2ec7f9SAart Bik void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added, 3404f2ec7f9SAart Bik uint64_t count) override { 3414f2ec7f9SAart Bik if (count == 0) 3424f2ec7f9SAart Bik return; 3434f2ec7f9SAart Bik // Sort. 3444f2ec7f9SAart Bik std::sort(added, added + count); 3454f2ec7f9SAart Bik // Restore insertion path for first insert. 3463bf2ba3bSwren romano const uint64_t lastDim = getRank() - 1; 3474f2ec7f9SAart Bik uint64_t index = added[0]; 3483bf2ba3bSwren romano cursor[lastDim] = index; 3494f2ec7f9SAart Bik lexInsert(cursor, values[index]); 3504f2ec7f9SAart Bik assert(filled[index]); 3514f2ec7f9SAart Bik values[index] = 0; 3524f2ec7f9SAart Bik filled[index] = false; 3534f2ec7f9SAart Bik // Subsequent insertions are quick. 3544f2ec7f9SAart Bik for (uint64_t i = 1; i < count; i++) { 3554f2ec7f9SAart Bik assert(index < added[i] && "non-lexicographic insertion"); 3564f2ec7f9SAart Bik index = added[i]; 3573bf2ba3bSwren romano cursor[lastDim] = index; 3583bf2ba3bSwren romano insPath(cursor, lastDim, added[i - 1] + 1, values[index]); 3594f2ec7f9SAart Bik assert(filled[index]); 3603bf2ba3bSwren romano values[index] = 0; 3614f2ec7f9SAart Bik filled[index] = false; 3624f2ec7f9SAart Bik } 3634f2ec7f9SAart Bik } 3644f2ec7f9SAart Bik 365f66e5769SAart Bik /// Finalizes lexicographic insertions. 3661ce77b56SAart Bik void endInsert() override { 3671ce77b56SAart Bik if (values.empty()) 368*72ec2f76Swren romano finalizeSegment(0); 3691ce77b56SAart Bik else 3701ce77b56SAart Bik endPath(0); 3711ce77b56SAart Bik } 372f66e5769SAart Bik 3738a91bc7bSHarrietAkot /// Returns this sparse tensor storage scheme as a new memory-resident 3748a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme with the given dimension order. 3758a91bc7bSHarrietAkot SparseTensorCOO<V> *toCOO(const uint64_t *perm) { 3768a91bc7bSHarrietAkot // Restore original order of the dimension sizes and allocate coordinate 3778a91bc7bSHarrietAkot // scheme with desired new ordering specified in perm. 3788a91bc7bSHarrietAkot uint64_t rank = getRank(); 3798a91bc7bSHarrietAkot std::vector<uint64_t> orgsz(rank); 3808a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 3818a91bc7bSHarrietAkot orgsz[rev[r]] = sizes[r]; 3828a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO( 3838a91bc7bSHarrietAkot rank, orgsz.data(), perm, values.size()); 3848a91bc7bSHarrietAkot // Populate coordinate scheme restored from old ordering and changed with 3858a91bc7bSHarrietAkot // new ordering. Rather than applying both reorderings during the recursion, 3868a91bc7bSHarrietAkot // we compute the combine permutation in advance. 3878a91bc7bSHarrietAkot std::vector<uint64_t> reord(rank); 3888a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 3898a91bc7bSHarrietAkot reord[r] = perm[rev[r]]; 390ceda1ae9Swren romano toCOO(*tensor, reord, 0, 0); 3918a91bc7bSHarrietAkot assert(tensor->getElements().size() == values.size()); 3928a91bc7bSHarrietAkot return tensor; 3938a91bc7bSHarrietAkot } 3948a91bc7bSHarrietAkot 3958a91bc7bSHarrietAkot /// Factory method. Constructs a sparse tensor storage scheme with the given 3968a91bc7bSHarrietAkot /// dimensions, permutation, and per-dimension dense/sparse annotations, 3978a91bc7bSHarrietAkot /// using the coordinate scheme tensor for the initial contents if provided. 3988a91bc7bSHarrietAkot /// In the latter case, the coordinate scheme must respect the same 3998a91bc7bSHarrietAkot /// permutation as is desired for the new sparse tensor storage. 4008a91bc7bSHarrietAkot static SparseTensorStorage<P, I, V> * 401d83a7068Swren romano newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm, 402845561ecSwren romano const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) { 4038a91bc7bSHarrietAkot SparseTensorStorage<P, I, V> *n = nullptr; 4048a91bc7bSHarrietAkot if (tensor) { 4058a91bc7bSHarrietAkot assert(tensor->getRank() == rank); 4068a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 407d83a7068Swren romano assert(shape[r] == 0 || shape[r] == tensor->getSizes()[perm[r]]); 4088a91bc7bSHarrietAkot n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity, 4098a91bc7bSHarrietAkot tensor); 4108a91bc7bSHarrietAkot } else { 4118a91bc7bSHarrietAkot std::vector<uint64_t> permsz(rank); 412d83a7068Swren romano for (uint64_t r = 0; r < rank; r++) { 413d83a7068Swren romano assert(shape[r] > 0 && "Dimension size zero has trivial storage"); 414d83a7068Swren romano permsz[perm[r]] = shape[r]; 415d83a7068Swren romano } 416f66e5769SAart Bik n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity); 4178a91bc7bSHarrietAkot } 4188a91bc7bSHarrietAkot return n; 4198a91bc7bSHarrietAkot } 4208a91bc7bSHarrietAkot 4218a91bc7bSHarrietAkot private: 422*72ec2f76Swren romano /// Appends an arbitrary new position to `pointers[d]`. This method 423*72ec2f76Swren romano /// checks that `pos` is representable in the `P` type; however, it 424*72ec2f76Swren romano /// does not check that `pos` is semantically valid (i.e., larger than 425*72ec2f76Swren romano /// the previous position and smaller than `indices[d].capacity()`). 426*72ec2f76Swren romano inline void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) { 427*72ec2f76Swren romano assert(isCompressedDim(d)); 428*72ec2f76Swren romano assert(pos <= std::numeric_limits<P>::max() && 4294d0a18d0Swren romano "Pointer value is too large for the P-type"); 430*72ec2f76Swren romano pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos)); 4314d0a18d0Swren romano } 4324d0a18d0Swren romano 433*72ec2f76Swren romano /// Appends index `i` to dimension `d`, in the semantically general 434*72ec2f76Swren romano /// sense. For non-dense dimensions, that means appending to the 435*72ec2f76Swren romano /// `indices[d]` array, checking that `i` is representable in the `I` 436*72ec2f76Swren romano /// type; however, we do not verify other semantic requirements (e.g., 437*72ec2f76Swren romano /// that `i` is in bounds for `sizes[d]`, and not previously occurring 438*72ec2f76Swren romano /// in the same segment). For dense dimensions, this method instead 439*72ec2f76Swren romano /// appends the appropriate number of zeros to the `values` array, 440*72ec2f76Swren romano /// where `full` is the number of "entries" already written to `values` 441*72ec2f76Swren romano /// for this segment (aka one after the highest index previously appended). 442*72ec2f76Swren romano void appendIndex(uint64_t d, uint64_t full, uint64_t i) { 443*72ec2f76Swren romano if (isCompressedDim(d)) { 4444d0a18d0Swren romano assert(i <= std::numeric_limits<I>::max() && 4454d0a18d0Swren romano "Index value is too large for the I-type"); 446*72ec2f76Swren romano indices[d].push_back(static_cast<I>(i)); 447*72ec2f76Swren romano } else { // Dense dimension. 448*72ec2f76Swren romano assert(i >= full && "Index was already filled"); 449*72ec2f76Swren romano if (i == full) 450*72ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 451*72ec2f76Swren romano if (d + 1 == getRank()) 452*72ec2f76Swren romano values.insert(values.end(), i - full, 0); 453*72ec2f76Swren romano else 454*72ec2f76Swren romano finalizeSegment(d + 1, 0, i - full); 455*72ec2f76Swren romano } 4564d0a18d0Swren romano } 4574d0a18d0Swren romano 4588a91bc7bSHarrietAkot /// Initializes sparse tensor storage scheme from a memory-resident sparse 4598a91bc7bSHarrietAkot /// tensor in coordinate scheme. This method prepares the pointers and 4608a91bc7bSHarrietAkot /// indices arrays under the given per-dimension dense/sparse annotations. 4614d0a18d0Swren romano /// 4624d0a18d0Swren romano /// Preconditions: 4634d0a18d0Swren romano /// (1) the `elements` must be lexicographically sorted. 4644d0a18d0Swren romano /// (2) the indices of every element are valid for `sizes` (equal rank 4654d0a18d0Swren romano /// and pointwise less-than). 466ceda1ae9Swren romano void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo, 467ceda1ae9Swren romano uint64_t hi, uint64_t d) { 4688a91bc7bSHarrietAkot // Once dimensions are exhausted, insert the numerical values. 469c4017f9dSwren romano assert(d <= getRank() && hi <= elements.size()); 4708a91bc7bSHarrietAkot if (d == getRank()) { 471c4017f9dSwren romano assert(lo < hi); 4721ce77b56SAart Bik values.push_back(elements[lo].value); 4738a91bc7bSHarrietAkot return; 4748a91bc7bSHarrietAkot } 4758a91bc7bSHarrietAkot // Visit all elements in this interval. 4768a91bc7bSHarrietAkot uint64_t full = 0; 477c4017f9dSwren romano while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`. 4788a91bc7bSHarrietAkot // Find segment in interval with same index elements in this dimension. 479f66e5769SAart Bik uint64_t i = elements[lo].indices[d]; 4808a91bc7bSHarrietAkot uint64_t seg = lo + 1; 481f66e5769SAart Bik while (seg < hi && elements[seg].indices[d] == i) 4828a91bc7bSHarrietAkot seg++; 4838a91bc7bSHarrietAkot // Handle segment in interval for sparse or dense dimension. 484*72ec2f76Swren romano appendIndex(d, full, i); 485*72ec2f76Swren romano full = i + 1; 486ceda1ae9Swren romano fromCOO(elements, lo, seg, d + 1); 4878a91bc7bSHarrietAkot // And move on to next segment in interval. 4888a91bc7bSHarrietAkot lo = seg; 4898a91bc7bSHarrietAkot } 4908a91bc7bSHarrietAkot // Finalize the sparse pointer structure at this dimension. 491*72ec2f76Swren romano finalizeSegment(d, full); 4928a91bc7bSHarrietAkot } 4938a91bc7bSHarrietAkot 4948a91bc7bSHarrietAkot /// Stores the sparse tensor storage scheme into a memory-resident sparse 4958a91bc7bSHarrietAkot /// tensor in coordinate scheme. 496ceda1ae9Swren romano void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord, 497f66e5769SAart Bik uint64_t pos, uint64_t d) { 4988a91bc7bSHarrietAkot assert(d <= getRank()); 4998a91bc7bSHarrietAkot if (d == getRank()) { 5008a91bc7bSHarrietAkot assert(pos < values.size()); 501ceda1ae9Swren romano tensor.add(idx, values[pos]); 5021ce77b56SAart Bik } else if (isCompressedDim(d)) { 5038a91bc7bSHarrietAkot // Sparse dimension. 5048a91bc7bSHarrietAkot for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) { 5058a91bc7bSHarrietAkot idx[reord[d]] = indices[d][ii]; 506f66e5769SAart Bik toCOO(tensor, reord, ii, d + 1); 5078a91bc7bSHarrietAkot } 5081ce77b56SAart Bik } else { 5091ce77b56SAart Bik // Dense dimension. 5101ce77b56SAart Bik for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) { 5111ce77b56SAart Bik idx[reord[d]] = i; 5121ce77b56SAart Bik toCOO(tensor, reord, off + i, d + 1); 5138a91bc7bSHarrietAkot } 5148a91bc7bSHarrietAkot } 5151ce77b56SAart Bik } 5161ce77b56SAart Bik 517*72ec2f76Swren romano /// Finalize the sparse pointer structure at this dimension. 518*72ec2f76Swren romano void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) { 519*72ec2f76Swren romano if (count == 0) 520*72ec2f76Swren romano return; // Short-circuit, since it'll be a nop. 521*72ec2f76Swren romano if (isCompressedDim(d)) { 522*72ec2f76Swren romano appendPointer(d, indices[d].size(), count); 523*72ec2f76Swren romano } else { // Dense dimension. 524*72ec2f76Swren romano const uint64_t sz = sizes[d]; 525*72ec2f76Swren romano assert(sz >= full && "Segment is overfull"); 526*72ec2f76Swren romano // Assuming we checked for overflows in the constructor, then this 527*72ec2f76Swren romano // multiply will never overflow. 528*72ec2f76Swren romano count *= (sz - full); 529*72ec2f76Swren romano // For dense storage we must enumerate all the remaining coordinates 530*72ec2f76Swren romano // in this dimension (i.e., coordinates after the last non-zero 531*72ec2f76Swren romano // element), and either fill in their zero values or else recurse 532*72ec2f76Swren romano // to finalize some deeper dimension. 533*72ec2f76Swren romano if (d + 1 == getRank()) 534*72ec2f76Swren romano values.insert(values.end(), count, 0); 535*72ec2f76Swren romano else 536*72ec2f76Swren romano finalizeSegment(d + 1, 0, count); 5371ce77b56SAart Bik } 5381ce77b56SAart Bik } 5391ce77b56SAart Bik 5401ce77b56SAart Bik /// Wraps up a single insertion path, inner to outer. 5411ce77b56SAart Bik void endPath(uint64_t diff) { 5421ce77b56SAart Bik uint64_t rank = getRank(); 5431ce77b56SAart Bik assert(diff <= rank); 5441ce77b56SAart Bik for (uint64_t i = 0; i < rank - diff; i++) { 545*72ec2f76Swren romano const uint64_t d = rank - i - 1; 546*72ec2f76Swren romano finalizeSegment(d, idx[d] + 1); 5471ce77b56SAart Bik } 5481ce77b56SAart Bik } 5491ce77b56SAart Bik 5501ce77b56SAart Bik /// Continues a single insertion path, outer to inner. 551c03fd1e6Swren romano void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) { 5521ce77b56SAart Bik uint64_t rank = getRank(); 5531ce77b56SAart Bik assert(diff < rank); 5541ce77b56SAart Bik for (uint64_t d = diff; d < rank; d++) { 5551ce77b56SAart Bik uint64_t i = cursor[d]; 556*72ec2f76Swren romano appendIndex(d, top, i); 5571ce77b56SAart Bik top = 0; 5581ce77b56SAart Bik idx[d] = i; 5591ce77b56SAart Bik } 5601ce77b56SAart Bik values.push_back(val); 5611ce77b56SAart Bik } 5621ce77b56SAart Bik 5631ce77b56SAart Bik /// Finds the lexicographic differing dimension. 56446bdacaaSwren romano uint64_t lexDiff(const uint64_t *cursor) const { 5651ce77b56SAart Bik for (uint64_t r = 0, rank = getRank(); r < rank; r++) 5661ce77b56SAart Bik if (cursor[r] > idx[r]) 5671ce77b56SAart Bik return r; 5681ce77b56SAart Bik else 5691ce77b56SAart Bik assert(cursor[r] == idx[r] && "non-lexicographic insertion"); 5701ce77b56SAart Bik assert(0 && "duplication insertion"); 5711ce77b56SAart Bik return -1u; 5721ce77b56SAart Bik } 5731ce77b56SAart Bik 5741ce77b56SAart Bik /// Returns true if dimension is compressed. 5751ce77b56SAart Bik inline bool isCompressedDim(uint64_t d) const { 5764d0a18d0Swren romano assert(d < getRank()); 5771ce77b56SAart Bik return (!pointers[d].empty()); 5781ce77b56SAart Bik } 5798a91bc7bSHarrietAkot 5808a91bc7bSHarrietAkot private: 58146bdacaaSwren romano const std::vector<uint64_t> sizes; // per-dimension sizes 5828a91bc7bSHarrietAkot std::vector<uint64_t> rev; // "reverse" permutation 583f66e5769SAart Bik std::vector<uint64_t> idx; // index cursor 5848a91bc7bSHarrietAkot std::vector<std::vector<P>> pointers; 5858a91bc7bSHarrietAkot std::vector<std::vector<I>> indices; 5868a91bc7bSHarrietAkot std::vector<V> values; 5878a91bc7bSHarrietAkot }; 5888a91bc7bSHarrietAkot 5898a91bc7bSHarrietAkot /// Helper to convert string to lower case. 5908a91bc7bSHarrietAkot static char *toLower(char *token) { 5918a91bc7bSHarrietAkot for (char *c = token; *c; c++) 5928a91bc7bSHarrietAkot *c = tolower(*c); 5938a91bc7bSHarrietAkot return token; 5948a91bc7bSHarrietAkot } 5958a91bc7bSHarrietAkot 5968a91bc7bSHarrietAkot /// Read the MME header of a general sparse matrix of type real. 59703fe15ceSAart Bik static void readMMEHeader(FILE *file, char *filename, char *line, 598bb56c2b3SMehdi Amini uint64_t *idata, bool *isSymmetric) { 5998a91bc7bSHarrietAkot char header[64]; 6008a91bc7bSHarrietAkot char object[64]; 6018a91bc7bSHarrietAkot char format[64]; 6028a91bc7bSHarrietAkot char field[64]; 6038a91bc7bSHarrietAkot char symmetry[64]; 6048a91bc7bSHarrietAkot // Read header line. 6058a91bc7bSHarrietAkot if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field, 6068a91bc7bSHarrietAkot symmetry) != 5) { 60703fe15ceSAart Bik fprintf(stderr, "Corrupt header in %s\n", filename); 6088a91bc7bSHarrietAkot exit(1); 6098a91bc7bSHarrietAkot } 610bb56c2b3SMehdi Amini *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0); 6118a91bc7bSHarrietAkot // Make sure this is a general sparse matrix. 6128a91bc7bSHarrietAkot if (strcmp(toLower(header), "%%matrixmarket") || 6138a91bc7bSHarrietAkot strcmp(toLower(object), "matrix") || 6148a91bc7bSHarrietAkot strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") || 615bb56c2b3SMehdi Amini (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) { 6168a91bc7bSHarrietAkot fprintf(stderr, 61703fe15ceSAart Bik "Cannot find a general sparse matrix with type real in %s\n", 61803fe15ceSAart Bik filename); 6198a91bc7bSHarrietAkot exit(1); 6208a91bc7bSHarrietAkot } 6218a91bc7bSHarrietAkot // Skip comments. 622e5639b3fSMehdi Amini while (true) { 62303fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 62403fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6258a91bc7bSHarrietAkot exit(1); 6268a91bc7bSHarrietAkot } 6278a91bc7bSHarrietAkot if (line[0] != '%') 6288a91bc7bSHarrietAkot break; 6298a91bc7bSHarrietAkot } 6308a91bc7bSHarrietAkot // Next line contains M N NNZ. 6318a91bc7bSHarrietAkot idata[0] = 2; // rank 6328a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3, 6338a91bc7bSHarrietAkot idata + 1) != 3) { 63403fe15ceSAart Bik fprintf(stderr, "Cannot find size in %s\n", filename); 6358a91bc7bSHarrietAkot exit(1); 6368a91bc7bSHarrietAkot } 6378a91bc7bSHarrietAkot } 6388a91bc7bSHarrietAkot 6398a91bc7bSHarrietAkot /// Read the "extended" FROSTT header. Although not part of the documented 6408a91bc7bSHarrietAkot /// format, we assume that the file starts with optional comments followed 6418a91bc7bSHarrietAkot /// by two lines that define the rank, the number of nonzeros, and the 6428a91bc7bSHarrietAkot /// dimensions sizes (one per rank) of the sparse tensor. 64303fe15ceSAart Bik static void readExtFROSTTHeader(FILE *file, char *filename, char *line, 64403fe15ceSAart Bik uint64_t *idata) { 6458a91bc7bSHarrietAkot // Skip comments. 646e5639b3fSMehdi Amini while (true) { 64703fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 64803fe15ceSAart Bik fprintf(stderr, "Cannot find data in %s\n", filename); 6498a91bc7bSHarrietAkot exit(1); 6508a91bc7bSHarrietAkot } 6518a91bc7bSHarrietAkot if (line[0] != '#') 6528a91bc7bSHarrietAkot break; 6538a91bc7bSHarrietAkot } 6548a91bc7bSHarrietAkot // Next line contains RANK and NNZ. 6558a91bc7bSHarrietAkot if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) { 65603fe15ceSAart Bik fprintf(stderr, "Cannot find metadata in %s\n", filename); 6578a91bc7bSHarrietAkot exit(1); 6588a91bc7bSHarrietAkot } 6598a91bc7bSHarrietAkot // Followed by a line with the dimension sizes (one per rank). 6608a91bc7bSHarrietAkot for (uint64_t r = 0; r < idata[0]; r++) { 6618a91bc7bSHarrietAkot if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) { 66203fe15ceSAart Bik fprintf(stderr, "Cannot find dimension size %s\n", filename); 6638a91bc7bSHarrietAkot exit(1); 6648a91bc7bSHarrietAkot } 6658a91bc7bSHarrietAkot } 66603fe15ceSAart Bik fgets(line, kColWidth, file); // end of line 6678a91bc7bSHarrietAkot } 6688a91bc7bSHarrietAkot 6698a91bc7bSHarrietAkot /// Reads a sparse tensor with the given filename into a memory-resident 6708a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme. 6718a91bc7bSHarrietAkot template <typename V> 6728a91bc7bSHarrietAkot static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank, 673d83a7068Swren romano const uint64_t *shape, 6748a91bc7bSHarrietAkot const uint64_t *perm) { 6758a91bc7bSHarrietAkot // Open the file. 6768a91bc7bSHarrietAkot FILE *file = fopen(filename, "r"); 6778a91bc7bSHarrietAkot if (!file) { 6783734c078Swren romano assert(filename && "Received nullptr for filename"); 6793734c078Swren romano fprintf(stderr, "Cannot find file %s\n", filename); 6808a91bc7bSHarrietAkot exit(1); 6818a91bc7bSHarrietAkot } 6828a91bc7bSHarrietAkot // Perform some file format dependent set up. 68303fe15ceSAart Bik char line[kColWidth]; 6848a91bc7bSHarrietAkot uint64_t idata[512]; 685bb56c2b3SMehdi Amini bool isSymmetric = false; 6868a91bc7bSHarrietAkot if (strstr(filename, ".mtx")) { 687bb56c2b3SMehdi Amini readMMEHeader(file, filename, line, idata, &isSymmetric); 6888a91bc7bSHarrietAkot } else if (strstr(filename, ".tns")) { 68903fe15ceSAart Bik readExtFROSTTHeader(file, filename, line, idata); 6908a91bc7bSHarrietAkot } else { 6918a91bc7bSHarrietAkot fprintf(stderr, "Unknown format %s\n", filename); 6928a91bc7bSHarrietAkot exit(1); 6938a91bc7bSHarrietAkot } 6948a91bc7bSHarrietAkot // Prepare sparse tensor object with per-dimension sizes 6958a91bc7bSHarrietAkot // and the number of nonzeros as initial capacity. 6968a91bc7bSHarrietAkot assert(rank == idata[0] && "rank mismatch"); 6978a91bc7bSHarrietAkot uint64_t nnz = idata[1]; 6988a91bc7bSHarrietAkot for (uint64_t r = 0; r < rank; r++) 699d83a7068Swren romano assert((shape[r] == 0 || shape[r] == idata[2 + r]) && 7008a91bc7bSHarrietAkot "dimension size mismatch"); 7018a91bc7bSHarrietAkot SparseTensorCOO<V> *tensor = 7028a91bc7bSHarrietAkot SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz); 7038a91bc7bSHarrietAkot // Read all nonzero elements. 7048a91bc7bSHarrietAkot std::vector<uint64_t> indices(rank); 7058a91bc7bSHarrietAkot for (uint64_t k = 0; k < nnz; k++) { 70603fe15ceSAart Bik if (!fgets(line, kColWidth, file)) { 70703fe15ceSAart Bik fprintf(stderr, "Cannot find next line of data in %s\n", filename); 7088a91bc7bSHarrietAkot exit(1); 7098a91bc7bSHarrietAkot } 71003fe15ceSAart Bik char *linePtr = line; 71103fe15ceSAart Bik for (uint64_t r = 0; r < rank; r++) { 71203fe15ceSAart Bik uint64_t idx = strtoul(linePtr, &linePtr, 10); 7138a91bc7bSHarrietAkot // Add 0-based index. 7148a91bc7bSHarrietAkot indices[perm[r]] = idx - 1; 7158a91bc7bSHarrietAkot } 7168a91bc7bSHarrietAkot // The external formats always store the numerical values with the type 7178a91bc7bSHarrietAkot // double, but we cast these values to the sparse tensor object type. 71803fe15ceSAart Bik double value = strtod(linePtr, &linePtr); 7198a91bc7bSHarrietAkot tensor->add(indices, value); 72002710413SBixia Zheng // We currently chose to deal with symmetric matrices by fully constructing 72102710413SBixia Zheng // them. In the future, we may want to make symmetry implicit for storage 72202710413SBixia Zheng // reasons. 723bb56c2b3SMehdi Amini if (isSymmetric && indices[0] != indices[1]) 72402710413SBixia Zheng tensor->add({indices[1], indices[0]}, value); 7258a91bc7bSHarrietAkot } 7268a91bc7bSHarrietAkot // Close the file and return tensor. 7278a91bc7bSHarrietAkot fclose(file); 7288a91bc7bSHarrietAkot return tensor; 7298a91bc7bSHarrietAkot } 7308a91bc7bSHarrietAkot 731efa15f41SAart Bik /// Writes the sparse tensor to extended FROSTT format. 732efa15f41SAart Bik template <typename V> 73346bdacaaSwren romano static void outSparseTensor(void *tensor, void *dest, bool sort) { 7346438783fSAart Bik assert(tensor && dest); 7356438783fSAart Bik auto coo = static_cast<SparseTensorCOO<V> *>(tensor); 7366438783fSAart Bik if (sort) 7376438783fSAart Bik coo->sort(); 7386438783fSAart Bik char *filename = static_cast<char *>(dest); 7396438783fSAart Bik auto &sizes = coo->getSizes(); 7406438783fSAart Bik auto &elements = coo->getElements(); 7416438783fSAart Bik uint64_t rank = coo->getRank(); 742efa15f41SAart Bik uint64_t nnz = elements.size(); 743efa15f41SAart Bik std::fstream file; 744efa15f41SAart Bik file.open(filename, std::ios_base::out | std::ios_base::trunc); 745efa15f41SAart Bik assert(file.is_open()); 746efa15f41SAart Bik file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl; 747efa15f41SAart Bik for (uint64_t r = 0; r < rank - 1; r++) 748efa15f41SAart Bik file << sizes[r] << " "; 749efa15f41SAart Bik file << sizes[rank - 1] << std::endl; 750efa15f41SAart Bik for (uint64_t i = 0; i < nnz; i++) { 751efa15f41SAart Bik auto &idx = elements[i].indices; 752efa15f41SAart Bik for (uint64_t r = 0; r < rank; r++) 753efa15f41SAart Bik file << (idx[r] + 1) << " "; 754efa15f41SAart Bik file << elements[i].value << std::endl; 755efa15f41SAart Bik } 756efa15f41SAart Bik file.flush(); 757efa15f41SAart Bik file.close(); 758efa15f41SAart Bik assert(file.good()); 7596438783fSAart Bik } 7606438783fSAart Bik 7616438783fSAart Bik /// Initializes sparse tensor from an external COO-flavored format. 7626438783fSAart Bik template <typename V> 76346bdacaaSwren romano static SparseTensorStorage<uint64_t, uint64_t, V> * 7646438783fSAart Bik toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values, 76520eaa88fSBixia Zheng uint64_t *indices, uint64_t *perm, uint8_t *sparse) { 76620eaa88fSBixia Zheng const DimLevelType *sparsity = (DimLevelType *)(sparse); 76720eaa88fSBixia Zheng #ifndef NDEBUG 76820eaa88fSBixia Zheng // Verify that perm is a permutation of 0..(rank-1). 76920eaa88fSBixia Zheng std::vector<uint64_t> order(perm, perm + rank); 77020eaa88fSBixia Zheng std::sort(order.begin(), order.end()); 7711e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 77220eaa88fSBixia Zheng if (i != order[i]) { 773988d4b0dSAart Bik fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank); 77420eaa88fSBixia Zheng exit(1); 77520eaa88fSBixia Zheng } 77620eaa88fSBixia Zheng } 77720eaa88fSBixia Zheng 77820eaa88fSBixia Zheng // Verify that the sparsity values are supported. 7791e47888dSAart Bik for (uint64_t i = 0; i < rank; ++i) { 78020eaa88fSBixia Zheng if (sparsity[i] != DimLevelType::kDense && 78120eaa88fSBixia Zheng sparsity[i] != DimLevelType::kCompressed) { 78220eaa88fSBixia Zheng fprintf(stderr, "Unsupported sparsity value %d\n", 78320eaa88fSBixia Zheng static_cast<int>(sparsity[i])); 78420eaa88fSBixia Zheng exit(1); 78520eaa88fSBixia Zheng } 78620eaa88fSBixia Zheng } 78720eaa88fSBixia Zheng #endif 78820eaa88fSBixia Zheng 7896438783fSAart Bik // Convert external format to internal COO. 79063bdcaf9Swren romano auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse); 7916438783fSAart Bik std::vector<uint64_t> idx(rank); 7926438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 7936438783fSAart Bik for (uint64_t r = 0; r < rank; r++) 794d8b229a1SAart Bik idx[perm[r]] = indices[base + r]; 79563bdcaf9Swren romano coo->add(idx, values[i]); 7966438783fSAart Bik base += rank; 7976438783fSAart Bik } 7986438783fSAart Bik // Return sparse tensor storage format as opaque pointer. 79963bdcaf9Swren romano auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor( 80063bdcaf9Swren romano rank, shape, perm, sparsity, coo); 80163bdcaf9Swren romano delete coo; 80263bdcaf9Swren romano return tensor; 8036438783fSAart Bik } 8046438783fSAart Bik 8056438783fSAart Bik /// Converts a sparse tensor to an external COO-flavored format. 8066438783fSAart Bik template <typename V> 80746bdacaaSwren romano static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse, 80846bdacaaSwren romano uint64_t **pShape, V **pValues, 80946bdacaaSwren romano uint64_t **pIndices) { 8106438783fSAart Bik auto sparseTensor = 8116438783fSAart Bik static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor); 8126438783fSAart Bik uint64_t rank = sparseTensor->getRank(); 8136438783fSAart Bik std::vector<uint64_t> perm(rank); 8146438783fSAart Bik std::iota(perm.begin(), perm.end(), 0); 8156438783fSAart Bik SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data()); 8166438783fSAart Bik 8176438783fSAart Bik const std::vector<Element<V>> &elements = coo->getElements(); 8186438783fSAart Bik uint64_t nse = elements.size(); 8196438783fSAart Bik 8206438783fSAart Bik uint64_t *shape = new uint64_t[rank]; 8216438783fSAart Bik for (uint64_t i = 0; i < rank; i++) 8226438783fSAart Bik shape[i] = coo->getSizes()[i]; 8236438783fSAart Bik 8246438783fSAart Bik V *values = new V[nse]; 8256438783fSAart Bik uint64_t *indices = new uint64_t[rank * nse]; 8266438783fSAart Bik 8276438783fSAart Bik for (uint64_t i = 0, base = 0; i < nse; i++) { 8286438783fSAart Bik values[i] = elements[i].value; 8296438783fSAart Bik for (uint64_t j = 0; j < rank; j++) 8306438783fSAart Bik indices[base + j] = elements[i].indices[j]; 8316438783fSAart Bik base += rank; 8326438783fSAart Bik } 8336438783fSAart Bik 8346438783fSAart Bik delete coo; 8356438783fSAart Bik *pRank = rank; 8366438783fSAart Bik *pNse = nse; 8376438783fSAart Bik *pShape = shape; 8386438783fSAart Bik *pValues = values; 8396438783fSAart Bik *pIndices = indices; 840efa15f41SAart Bik } 841efa15f41SAart Bik 842be0a7e9fSMehdi Amini } // namespace 8438a91bc7bSHarrietAkot 8448a91bc7bSHarrietAkot extern "C" { 8458a91bc7bSHarrietAkot 8468a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 8478a91bc7bSHarrietAkot // 8488a91bc7bSHarrietAkot // Public API with methods that operate on MLIR buffers (memrefs) to interact 8498a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 8508a91bc7bSHarrietAkot // These methods should be used exclusively by MLIR compiler-generated code. 8518a91bc7bSHarrietAkot // 8528a91bc7bSHarrietAkot // Some macro magic is used to generate implementations for all required type 8538a91bc7bSHarrietAkot // combinations that can be called from MLIR compiler-generated code. 8548a91bc7bSHarrietAkot // 8558a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 8568a91bc7bSHarrietAkot 8578a91bc7bSHarrietAkot #define CASE(p, i, v, P, I, V) \ 8588a91bc7bSHarrietAkot if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \ 85963bdcaf9Swren romano SparseTensorCOO<V> *coo = nullptr; \ 860845561ecSwren romano if (action <= Action::kFromCOO) { \ 861845561ecSwren romano if (action == Action::kFromFile) { \ 8628a91bc7bSHarrietAkot char *filename = static_cast<char *>(ptr); \ 86363bdcaf9Swren romano coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \ 864845561ecSwren romano } else if (action == Action::kFromCOO) { \ 86563bdcaf9Swren romano coo = static_cast<SparseTensorCOO<V> *>(ptr); \ 8668a91bc7bSHarrietAkot } else { \ 867845561ecSwren romano assert(action == Action::kEmpty); \ 8688a91bc7bSHarrietAkot } \ 86963bdcaf9Swren romano auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \ 87063bdcaf9Swren romano rank, shape, perm, sparsity, coo); \ 87163bdcaf9Swren romano if (action == Action::kFromFile) \ 87263bdcaf9Swren romano delete coo; \ 87363bdcaf9Swren romano return tensor; \ 874bb56c2b3SMehdi Amini } \ 875bb56c2b3SMehdi Amini if (action == Action::kEmptyCOO) \ 876d83a7068Swren romano return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \ 87763bdcaf9Swren romano coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \ 878845561ecSwren romano if (action == Action::kToIterator) { \ 87963bdcaf9Swren romano coo->startIterator(); \ 8808a91bc7bSHarrietAkot } else { \ 881845561ecSwren romano assert(action == Action::kToCOO); \ 8828a91bc7bSHarrietAkot } \ 88363bdcaf9Swren romano return coo; \ 8848a91bc7bSHarrietAkot } 8858a91bc7bSHarrietAkot 886845561ecSwren romano #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V) 887845561ecSwren romano 8888a91bc7bSHarrietAkot #define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \ 8898a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \ 8904f2ec7f9SAart Bik assert(ref &&tensor); \ 8918a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 8928a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \ 8938a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 8948a91bc7bSHarrietAkot ref->offset = 0; \ 8958a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 8968a91bc7bSHarrietAkot ref->strides[0] = 1; \ 8978a91bc7bSHarrietAkot } 8988a91bc7bSHarrietAkot 8998a91bc7bSHarrietAkot #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \ 9008a91bc7bSHarrietAkot void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \ 901d2215e79SRainer Orth index_type d) { \ 9024f2ec7f9SAart Bik assert(ref &&tensor); \ 9038a91bc7bSHarrietAkot std::vector<TYPE> *v; \ 9048a91bc7bSHarrietAkot static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \ 9058a91bc7bSHarrietAkot ref->basePtr = ref->data = v->data(); \ 9068a91bc7bSHarrietAkot ref->offset = 0; \ 9078a91bc7bSHarrietAkot ref->sizes[0] = v->size(); \ 9088a91bc7bSHarrietAkot ref->strides[0] = 1; \ 9098a91bc7bSHarrietAkot } 9108a91bc7bSHarrietAkot 9118a91bc7bSHarrietAkot #define IMPL_ADDELT(NAME, TYPE) \ 9128a91bc7bSHarrietAkot void *_mlir_ciface_##NAME(void *tensor, TYPE value, \ 913d2215e79SRainer Orth StridedMemRefType<index_type, 1> *iref, \ 914d2215e79SRainer Orth StridedMemRefType<index_type, 1> *pref) { \ 9154f2ec7f9SAart Bik assert(tensor &&iref &&pref); \ 9168a91bc7bSHarrietAkot assert(iref->strides[0] == 1 && pref->strides[0] == 1); \ 9178a91bc7bSHarrietAkot assert(iref->sizes[0] == pref->sizes[0]); \ 918d2215e79SRainer Orth const index_type *indx = iref->data + iref->offset; \ 919d2215e79SRainer Orth const index_type *perm = pref->data + pref->offset; \ 9208a91bc7bSHarrietAkot uint64_t isize = iref->sizes[0]; \ 921d2215e79SRainer Orth std::vector<index_type> indices(isize); \ 9228a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 9238a91bc7bSHarrietAkot indices[perm[r]] = indx[r]; \ 9248a91bc7bSHarrietAkot static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \ 9258a91bc7bSHarrietAkot return tensor; \ 9268a91bc7bSHarrietAkot } 9278a91bc7bSHarrietAkot 9288a91bc7bSHarrietAkot #define IMPL_GETNEXT(NAME, V) \ 929d2215e79SRainer Orth bool _mlir_ciface_##NAME(void *tensor, \ 930d2215e79SRainer Orth StridedMemRefType<index_type, 1> *iref, \ 9318a91bc7bSHarrietAkot StridedMemRefType<V, 0> *vref) { \ 9324f2ec7f9SAart Bik assert(tensor &&iref &&vref); \ 9338a91bc7bSHarrietAkot assert(iref->strides[0] == 1); \ 934d2215e79SRainer Orth index_type *indx = iref->data + iref->offset; \ 935c9f2beffSMehdi Amini V *value = vref->data + vref->offset; \ 9368a91bc7bSHarrietAkot const uint64_t isize = iref->sizes[0]; \ 9378a91bc7bSHarrietAkot auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \ 9388a91bc7bSHarrietAkot const Element<V> *elem = iter->getNext(); \ 93963bdcaf9Swren romano if (elem == nullptr) \ 9408a91bc7bSHarrietAkot return false; \ 9418a91bc7bSHarrietAkot for (uint64_t r = 0; r < isize; r++) \ 9428a91bc7bSHarrietAkot indx[r] = elem->indices[r]; \ 9438a91bc7bSHarrietAkot *value = elem->value; \ 9448a91bc7bSHarrietAkot return true; \ 9458a91bc7bSHarrietAkot } 9468a91bc7bSHarrietAkot 947f66e5769SAart Bik #define IMPL_LEXINSERT(NAME, V) \ 948d2215e79SRainer Orth void _mlir_ciface_##NAME(void *tensor, \ 949d2215e79SRainer Orth StridedMemRefType<index_type, 1> *cref, V val) { \ 9504f2ec7f9SAart Bik assert(tensor &&cref); \ 951f66e5769SAart Bik assert(cref->strides[0] == 1); \ 952d2215e79SRainer Orth index_type *cursor = cref->data + cref->offset; \ 953f66e5769SAart Bik assert(cursor); \ 954f66e5769SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \ 955f66e5769SAart Bik } 956f66e5769SAart Bik 9574f2ec7f9SAart Bik #define IMPL_EXPINSERT(NAME, V) \ 9584f2ec7f9SAart Bik void _mlir_ciface_##NAME( \ 959d2215e79SRainer Orth void *tensor, StridedMemRefType<index_type, 1> *cref, \ 9604f2ec7f9SAart Bik StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \ 961d2215e79SRainer Orth StridedMemRefType<index_type, 1> *aref, index_type count) { \ 9624f2ec7f9SAart Bik assert(tensor &&cref &&vref &&fref &&aref); \ 9634f2ec7f9SAart Bik assert(cref->strides[0] == 1); \ 9644f2ec7f9SAart Bik assert(vref->strides[0] == 1); \ 9654f2ec7f9SAart Bik assert(fref->strides[0] == 1); \ 9664f2ec7f9SAart Bik assert(aref->strides[0] == 1); \ 9674f2ec7f9SAart Bik assert(vref->sizes[0] == fref->sizes[0]); \ 968d2215e79SRainer Orth index_type *cursor = cref->data + cref->offset; \ 969c9f2beffSMehdi Amini V *values = vref->data + vref->offset; \ 9704f2ec7f9SAart Bik bool *filled = fref->data + fref->offset; \ 971d2215e79SRainer Orth index_type *added = aref->data + aref->offset; \ 9724f2ec7f9SAart Bik static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \ 9734f2ec7f9SAart Bik cursor, values, filled, added, count); \ 9744f2ec7f9SAart Bik } 9754f2ec7f9SAart Bik 976d2215e79SRainer Orth // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor 977bc04a470Swren romano // can safely rewrite kIndex to kU64. We make this assertion to guarantee 978bc04a470Swren romano // that this file cannot get out of sync with its header. 979d2215e79SRainer Orth static_assert(std::is_same<index_type, uint64_t>::value, 980d2215e79SRainer Orth "Expected index_type == uint64_t"); 981bc04a470Swren romano 9828a91bc7bSHarrietAkot /// Constructs a new sparse tensor. This is the "swiss army knife" 9838a91bc7bSHarrietAkot /// method for materializing sparse tensors into the computation. 9848a91bc7bSHarrietAkot /// 985845561ecSwren romano /// Action: 9868a91bc7bSHarrietAkot /// kEmpty = returns empty storage to fill later 9878a91bc7bSHarrietAkot /// kFromFile = returns storage, where ptr contains filename to read 9888a91bc7bSHarrietAkot /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign 9898a91bc7bSHarrietAkot /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO 9908a91bc7bSHarrietAkot /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO 991845561ecSwren romano /// kToIterator = returns iterator from storage in ptr (call getNext() to use) 9928a91bc7bSHarrietAkot void * 993845561ecSwren romano _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT 994d2215e79SRainer Orth StridedMemRefType<index_type, 1> *sref, 995d2215e79SRainer Orth StridedMemRefType<index_type, 1> *pref, 996845561ecSwren romano OverheadType ptrTp, OverheadType indTp, 997845561ecSwren romano PrimaryType valTp, Action action, void *ptr) { 9988a91bc7bSHarrietAkot assert(aref && sref && pref); 9998a91bc7bSHarrietAkot assert(aref->strides[0] == 1 && sref->strides[0] == 1 && 10008a91bc7bSHarrietAkot pref->strides[0] == 1); 10018a91bc7bSHarrietAkot assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]); 1002845561ecSwren romano const DimLevelType *sparsity = aref->data + aref->offset; 1003d83a7068Swren romano const index_type *shape = sref->data + sref->offset; 1004d2215e79SRainer Orth const index_type *perm = pref->data + pref->offset; 10058a91bc7bSHarrietAkot uint64_t rank = aref->sizes[0]; 10068a91bc7bSHarrietAkot 1007bc04a470Swren romano // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases. 1008bc04a470Swren romano // This is safe because of the static_assert above. 1009bc04a470Swren romano if (ptrTp == OverheadType::kIndex) 1010bc04a470Swren romano ptrTp = OverheadType::kU64; 1011bc04a470Swren romano if (indTp == OverheadType::kIndex) 1012bc04a470Swren romano indTp = OverheadType::kU64; 1013bc04a470Swren romano 10148a91bc7bSHarrietAkot // Double matrices with all combinations of overhead storage. 1015845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t, 1016845561ecSwren romano uint64_t, double); 1017845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t, 1018845561ecSwren romano uint32_t, double); 1019845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t, 1020845561ecSwren romano uint16_t, double); 1021845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t, 1022845561ecSwren romano uint8_t, double); 1023845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t, 1024845561ecSwren romano uint64_t, double); 1025845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t, 1026845561ecSwren romano uint32_t, double); 1027845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t, 1028845561ecSwren romano uint16_t, double); 1029845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t, 1030845561ecSwren romano uint8_t, double); 1031845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t, 1032845561ecSwren romano uint64_t, double); 1033845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t, 1034845561ecSwren romano uint32_t, double); 1035845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t, 1036845561ecSwren romano uint16_t, double); 1037845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t, 1038845561ecSwren romano uint8_t, double); 1039845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t, 1040845561ecSwren romano uint64_t, double); 1041845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t, 1042845561ecSwren romano uint32_t, double); 1043845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t, 1044845561ecSwren romano uint16_t, double); 1045845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t, 1046845561ecSwren romano uint8_t, double); 10478a91bc7bSHarrietAkot 10488a91bc7bSHarrietAkot // Float matrices with all combinations of overhead storage. 1049845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t, 1050845561ecSwren romano uint64_t, float); 1051845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t, 1052845561ecSwren romano uint32_t, float); 1053845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t, 1054845561ecSwren romano uint16_t, float); 1055845561ecSwren romano CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t, 1056845561ecSwren romano uint8_t, float); 1057845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t, 1058845561ecSwren romano uint64_t, float); 1059845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t, 1060845561ecSwren romano uint32_t, float); 1061845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t, 1062845561ecSwren romano uint16_t, float); 1063845561ecSwren romano CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t, 1064845561ecSwren romano uint8_t, float); 1065845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t, 1066845561ecSwren romano uint64_t, float); 1067845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t, 1068845561ecSwren romano uint32_t, float); 1069845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t, 1070845561ecSwren romano uint16_t, float); 1071845561ecSwren romano CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t, 1072845561ecSwren romano uint8_t, float); 1073845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t, 1074845561ecSwren romano uint64_t, float); 1075845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t, 1076845561ecSwren romano uint32_t, float); 1077845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t, 1078845561ecSwren romano uint16_t, float); 1079845561ecSwren romano CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t, 1080845561ecSwren romano uint8_t, float); 10818a91bc7bSHarrietAkot 1082845561ecSwren romano // Integral matrices with both overheads of the same type. 1083845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t); 1084845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t); 1085845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t); 1086845561ecSwren romano CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t); 1087845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t); 1088845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t); 1089845561ecSwren romano CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t); 1090845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t); 1091845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t); 1092845561ecSwren romano CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t); 1093845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t); 1094845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t); 1095845561ecSwren romano CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t); 10968a91bc7bSHarrietAkot 10978a91bc7bSHarrietAkot // Unsupported case (add above if needed). 10988a91bc7bSHarrietAkot fputs("unsupported combination of types\n", stderr); 10998a91bc7bSHarrietAkot exit(1); 11008a91bc7bSHarrietAkot } 11018a91bc7bSHarrietAkot 11028a91bc7bSHarrietAkot /// Methods that provide direct access to pointers. 1103d2215e79SRainer Orth IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers) 11048a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers) 11058a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers) 11068a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers) 11078a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers) 11088a91bc7bSHarrietAkot 11098a91bc7bSHarrietAkot /// Methods that provide direct access to indices. 1110d2215e79SRainer Orth IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices) 11118a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices) 11128a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices) 11138a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices) 11148a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices) 11158a91bc7bSHarrietAkot 11168a91bc7bSHarrietAkot /// Methods that provide direct access to values. 11178a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF64, double, getValues) 11188a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF32, float, getValues) 11198a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues) 11208a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues) 11218a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues) 11228a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues) 11238a91bc7bSHarrietAkot 11248a91bc7bSHarrietAkot /// Helper to add value to coordinate scheme, one per value type. 11258a91bc7bSHarrietAkot IMPL_ADDELT(addEltF64, double) 11268a91bc7bSHarrietAkot IMPL_ADDELT(addEltF32, float) 11278a91bc7bSHarrietAkot IMPL_ADDELT(addEltI64, int64_t) 11288a91bc7bSHarrietAkot IMPL_ADDELT(addEltI32, int32_t) 11298a91bc7bSHarrietAkot IMPL_ADDELT(addEltI16, int16_t) 11308a91bc7bSHarrietAkot IMPL_ADDELT(addEltI8, int8_t) 11318a91bc7bSHarrietAkot 11328a91bc7bSHarrietAkot /// Helper to enumerate elements of coordinate scheme, one per value type. 11338a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF64, double) 11348a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF32, float) 11358a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI64, int64_t) 11368a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI32, int32_t) 11378a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI16, int16_t) 11388a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI8, int8_t) 11398a91bc7bSHarrietAkot 11406438783fSAart Bik /// Insert elements in lexicographical index order, one per value type. 1141f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF64, double) 1142f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF32, float) 1143f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI64, int64_t) 1144f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI32, int32_t) 1145f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI16, int16_t) 1146f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI8, int8_t) 1147f66e5769SAart Bik 11486438783fSAart Bik /// Insert using expansion, one per value type. 11494f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF64, double) 11504f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF32, float) 11514f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI64, int64_t) 11524f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI32, int32_t) 11534f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI16, int16_t) 11544f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI8, int8_t) 11554f2ec7f9SAart Bik 11568a91bc7bSHarrietAkot #undef CASE 11578a91bc7bSHarrietAkot #undef IMPL_SPARSEVALUES 11588a91bc7bSHarrietAkot #undef IMPL_GETOVERHEAD 11598a91bc7bSHarrietAkot #undef IMPL_ADDELT 11608a91bc7bSHarrietAkot #undef IMPL_GETNEXT 11614f2ec7f9SAart Bik #undef IMPL_LEXINSERT 11624f2ec7f9SAart Bik #undef IMPL_EXPINSERT 11636438783fSAart Bik 11646438783fSAart Bik /// Output a sparse tensor, one per value type. 11656438783fSAart Bik void outSparseTensorF64(void *tensor, void *dest, bool sort) { 11666438783fSAart Bik return outSparseTensor<double>(tensor, dest, sort); 11676438783fSAart Bik } 11686438783fSAart Bik void outSparseTensorF32(void *tensor, void *dest, bool sort) { 11696438783fSAart Bik return outSparseTensor<float>(tensor, dest, sort); 11706438783fSAart Bik } 11716438783fSAart Bik void outSparseTensorI64(void *tensor, void *dest, bool sort) { 11726438783fSAart Bik return outSparseTensor<int64_t>(tensor, dest, sort); 11736438783fSAart Bik } 11746438783fSAart Bik void outSparseTensorI32(void *tensor, void *dest, bool sort) { 11756438783fSAart Bik return outSparseTensor<int32_t>(tensor, dest, sort); 11766438783fSAart Bik } 11776438783fSAart Bik void outSparseTensorI16(void *tensor, void *dest, bool sort) { 11786438783fSAart Bik return outSparseTensor<int16_t>(tensor, dest, sort); 11796438783fSAart Bik } 11806438783fSAart Bik void outSparseTensorI8(void *tensor, void *dest, bool sort) { 11816438783fSAart Bik return outSparseTensor<int8_t>(tensor, dest, sort); 11826438783fSAart Bik } 11838a91bc7bSHarrietAkot 11848a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 11858a91bc7bSHarrietAkot // 11868a91bc7bSHarrietAkot // Public API with methods that accept C-style data structures to interact 11878a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally. 11888a91bc7bSHarrietAkot // These methods can be used both by MLIR compiler-generated code as well as by 11898a91bc7bSHarrietAkot // an external runtime that wants to interact with MLIR compiler-generated code. 11908a91bc7bSHarrietAkot // 11918a91bc7bSHarrietAkot //===----------------------------------------------------------------------===// 11928a91bc7bSHarrietAkot 11938a91bc7bSHarrietAkot /// Helper method to read a sparse tensor filename from the environment, 11948a91bc7bSHarrietAkot /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc. 1195d2215e79SRainer Orth char *getTensorFilename(index_type id) { 11968a91bc7bSHarrietAkot char var[80]; 11978a91bc7bSHarrietAkot sprintf(var, "TENSOR%" PRIu64, id); 11988a91bc7bSHarrietAkot char *env = getenv(var); 11993734c078Swren romano if (!env) { 12003734c078Swren romano fprintf(stderr, "Environment variable %s is not set\n", var); 12013734c078Swren romano exit(1); 12023734c078Swren romano } 12038a91bc7bSHarrietAkot return env; 12048a91bc7bSHarrietAkot } 12058a91bc7bSHarrietAkot 12068a91bc7bSHarrietAkot /// Returns size of sparse tensor in given dimension. 1207d2215e79SRainer Orth index_type sparseDimSize(void *tensor, index_type d) { 12088a91bc7bSHarrietAkot return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d); 12098a91bc7bSHarrietAkot } 12108a91bc7bSHarrietAkot 1211f66e5769SAart Bik /// Finalizes lexicographic insertions. 1212f66e5769SAart Bik void endInsert(void *tensor) { 1213f66e5769SAart Bik return static_cast<SparseTensorStorageBase *>(tensor)->endInsert(); 1214f66e5769SAart Bik } 1215f66e5769SAart Bik 12168a91bc7bSHarrietAkot /// Releases sparse tensor storage. 12178a91bc7bSHarrietAkot void delSparseTensor(void *tensor) { 12188a91bc7bSHarrietAkot delete static_cast<SparseTensorStorageBase *>(tensor); 12198a91bc7bSHarrietAkot } 12208a91bc7bSHarrietAkot 122163bdcaf9Swren romano /// Releases sparse tensor coordinate scheme. 122263bdcaf9Swren romano #define IMPL_DELCOO(VNAME, V) \ 122363bdcaf9Swren romano void delSparseTensorCOO##VNAME(void *coo) { \ 122463bdcaf9Swren romano delete static_cast<SparseTensorCOO<V> *>(coo); \ 122563bdcaf9Swren romano } 122663bdcaf9Swren romano IMPL_DELCOO(F64, double) 122763bdcaf9Swren romano IMPL_DELCOO(F32, float) 122863bdcaf9Swren romano IMPL_DELCOO(I64, int64_t) 122963bdcaf9Swren romano IMPL_DELCOO(I32, int32_t) 123063bdcaf9Swren romano IMPL_DELCOO(I16, int16_t) 123163bdcaf9Swren romano IMPL_DELCOO(I8, int8_t) 123263bdcaf9Swren romano #undef IMPL_DELCOO 123363bdcaf9Swren romano 12348a91bc7bSHarrietAkot /// Initializes sparse tensor from a COO-flavored format expressed using C-style 12358a91bc7bSHarrietAkot /// data structures. The expected parameters are: 12368a91bc7bSHarrietAkot /// 12378a91bc7bSHarrietAkot /// rank: rank of tensor 12388a91bc7bSHarrietAkot /// nse: number of specified elements (usually the nonzeros) 12398a91bc7bSHarrietAkot /// shape: array with dimension size for each rank 12408a91bc7bSHarrietAkot /// values: a "nse" array with values for all specified elements 12418a91bc7bSHarrietAkot /// indices: a flat "nse x rank" array with indices for all specified elements 124220eaa88fSBixia Zheng /// perm: the permutation of the dimensions in the storage 124320eaa88fSBixia Zheng /// sparse: the sparsity for the dimensions 12448a91bc7bSHarrietAkot /// 12458a91bc7bSHarrietAkot /// For example, the sparse matrix 12468a91bc7bSHarrietAkot /// | 1.0 0.0 0.0 | 12478a91bc7bSHarrietAkot /// | 0.0 5.0 3.0 | 12488a91bc7bSHarrietAkot /// can be passed as 12498a91bc7bSHarrietAkot /// rank = 2 12508a91bc7bSHarrietAkot /// nse = 3 12518a91bc7bSHarrietAkot /// shape = [2, 3] 12528a91bc7bSHarrietAkot /// values = [1.0, 5.0, 3.0] 12538a91bc7bSHarrietAkot /// indices = [ 0, 0, 1, 1, 1, 2] 12548a91bc7bSHarrietAkot // 125520eaa88fSBixia Zheng // TODO: generalize beyond 64-bit indices. 12568a91bc7bSHarrietAkot // 12576438783fSAart Bik void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape, 125820eaa88fSBixia Zheng double *values, uint64_t *indices, 125920eaa88fSBixia Zheng uint64_t *perm, uint8_t *sparse) { 126020eaa88fSBixia Zheng return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm, 126120eaa88fSBixia Zheng sparse); 12628a91bc7bSHarrietAkot } 12636438783fSAart Bik void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape, 126420eaa88fSBixia Zheng float *values, uint64_t *indices, 126520eaa88fSBixia Zheng uint64_t *perm, uint8_t *sparse) { 126620eaa88fSBixia Zheng return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm, 126720eaa88fSBixia Zheng sparse); 12688a91bc7bSHarrietAkot } 12698a91bc7bSHarrietAkot 12702f49e6b0SBixia Zheng /// Converts a sparse tensor to COO-flavored format expressed using C-style 12712f49e6b0SBixia Zheng /// data structures. The expected output parameters are pointers for these 12722f49e6b0SBixia Zheng /// values: 12732f49e6b0SBixia Zheng /// 12742f49e6b0SBixia Zheng /// rank: rank of tensor 12752f49e6b0SBixia Zheng /// nse: number of specified elements (usually the nonzeros) 12762f49e6b0SBixia Zheng /// shape: array with dimension size for each rank 12772f49e6b0SBixia Zheng /// values: a "nse" array with values for all specified elements 12782f49e6b0SBixia Zheng /// indices: a flat "nse x rank" array with indices for all specified elements 12792f49e6b0SBixia Zheng /// 12802f49e6b0SBixia Zheng /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned 12812f49e6b0SBixia Zheng /// from convertToMLIRSparseTensor. 12822f49e6b0SBixia Zheng /// 12832f49e6b0SBixia Zheng // TODO: Currently, values are copied from SparseTensorStorage to 12842f49e6b0SBixia Zheng // SparseTensorCOO, then to the output. We may want to reduce the number of 12852f49e6b0SBixia Zheng // copies. 12862f49e6b0SBixia Zheng // 12876438783fSAart Bik // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions 12886438783fSAart Bik // compressed 12892f49e6b0SBixia Zheng // 12906438783fSAart Bik void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank, 12916438783fSAart Bik uint64_t *pNse, uint64_t **pShape, 12926438783fSAart Bik double **pValues, uint64_t **pIndices) { 12936438783fSAart Bik fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices); 12942f49e6b0SBixia Zheng } 12956438783fSAart Bik void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank, 12966438783fSAart Bik uint64_t *pNse, uint64_t **pShape, 12976438783fSAart Bik float **pValues, uint64_t **pIndices) { 12986438783fSAart Bik fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices); 12992f49e6b0SBixia Zheng } 1300efa15f41SAart Bik 13018a91bc7bSHarrietAkot } // extern "C" 13028a91bc7bSHarrietAkot 13038a91bc7bSHarrietAkot #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS 1304