18a91bc7bSHarrietAkot //===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===//
28a91bc7bSHarrietAkot //
38a91bc7bSHarrietAkot // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
48a91bc7bSHarrietAkot // See https://llvm.org/LICENSE.txt for license information.
58a91bc7bSHarrietAkot // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68a91bc7bSHarrietAkot //
78a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
88a91bc7bSHarrietAkot //
98a91bc7bSHarrietAkot // This file implements a light-weight runtime support library that is useful
108a91bc7bSHarrietAkot // for sparse tensor manipulations. The functionality provided in this library
118a91bc7bSHarrietAkot // is meant to simplify benchmarking, testing, and debugging MLIR code that
128a91bc7bSHarrietAkot // operates on sparse tensors. The provided functionality is **not** part
138a91bc7bSHarrietAkot // of core MLIR, however.
148a91bc7bSHarrietAkot //
158a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
168a91bc7bSHarrietAkot 
17845561ecSwren romano #include "mlir/ExecutionEngine/SparseTensorUtils.h"
188a91bc7bSHarrietAkot #include "mlir/ExecutionEngine/CRunnerUtils.h"
198a91bc7bSHarrietAkot 
208a91bc7bSHarrietAkot #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
218a91bc7bSHarrietAkot 
228a91bc7bSHarrietAkot #include <algorithm>
238a91bc7bSHarrietAkot #include <cassert>
248a91bc7bSHarrietAkot #include <cctype>
258a91bc7bSHarrietAkot #include <cinttypes>
268a91bc7bSHarrietAkot #include <cstdio>
278a91bc7bSHarrietAkot #include <cstdlib>
288a91bc7bSHarrietAkot #include <cstring>
29efa15f41SAart Bik #include <fstream>
30efa15f41SAart Bik #include <iostream>
314d0a18d0Swren romano #include <limits>
328a91bc7bSHarrietAkot #include <numeric>
338a91bc7bSHarrietAkot #include <vector>
348a91bc7bSHarrietAkot 
358a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
368a91bc7bSHarrietAkot //
378a91bc7bSHarrietAkot // Internal support for storing and reading sparse tensors.
388a91bc7bSHarrietAkot //
398a91bc7bSHarrietAkot // The following memory-resident sparse storage schemes are supported:
408a91bc7bSHarrietAkot //
418a91bc7bSHarrietAkot // (a) A coordinate scheme for temporarily storing and lexicographically
428a91bc7bSHarrietAkot //     sorting a sparse tensor by index (SparseTensorCOO).
438a91bc7bSHarrietAkot //
448a91bc7bSHarrietAkot // (b) A "one-size-fits-all" sparse tensor storage scheme defined by
458a91bc7bSHarrietAkot //     per-dimension sparse/dense annnotations together with a dimension
468a91bc7bSHarrietAkot //     ordering used by MLIR compiler-generated code (SparseTensorStorage).
478a91bc7bSHarrietAkot //
488a91bc7bSHarrietAkot // The following external formats are supported:
498a91bc7bSHarrietAkot //
508a91bc7bSHarrietAkot // (1) Matrix Market Exchange (MME): *.mtx
518a91bc7bSHarrietAkot //     https://math.nist.gov/MatrixMarket/formats.html
528a91bc7bSHarrietAkot //
538a91bc7bSHarrietAkot // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
548a91bc7bSHarrietAkot //     http://frostt.io/tensors/file-formats.html
558a91bc7bSHarrietAkot //
568a91bc7bSHarrietAkot // Two public APIs are supported:
578a91bc7bSHarrietAkot //
588a91bc7bSHarrietAkot // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
598a91bc7bSHarrietAkot //     tensors. These methods should be used exclusively by MLIR
608a91bc7bSHarrietAkot //     compiler-generated code.
618a91bc7bSHarrietAkot //
628a91bc7bSHarrietAkot // (II) Methods that accept C-style data structures to interact with sparse
638a91bc7bSHarrietAkot //      tensors. These methods can be used by any external runtime that wants
648a91bc7bSHarrietAkot //      to interact with MLIR compiler-generated code.
658a91bc7bSHarrietAkot //
668a91bc7bSHarrietAkot // In both cases (I) and (II), the SparseTensorStorage format is externally
678a91bc7bSHarrietAkot // only visible as an opaque pointer.
688a91bc7bSHarrietAkot //
698a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
708a91bc7bSHarrietAkot 
718a91bc7bSHarrietAkot namespace {
728a91bc7bSHarrietAkot 
7303fe15ceSAart Bik static constexpr int kColWidth = 1025;
7403fe15ceSAart Bik 
758a91bc7bSHarrietAkot /// A sparse tensor element in coordinate scheme (value and indices).
768a91bc7bSHarrietAkot /// For example, a rank-1 vector element would look like
778a91bc7bSHarrietAkot ///   ({i}, a[i])
788a91bc7bSHarrietAkot /// and a rank-5 tensor element like
798a91bc7bSHarrietAkot ///   ({i,j,k,l,m}, a[i,j,k,l,m])
808a91bc7bSHarrietAkot template <typename V>
818a91bc7bSHarrietAkot struct Element {
828a91bc7bSHarrietAkot   Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
838a91bc7bSHarrietAkot   std::vector<uint64_t> indices;
848a91bc7bSHarrietAkot   V value;
858a91bc7bSHarrietAkot };
868a91bc7bSHarrietAkot 
878a91bc7bSHarrietAkot /// A memory-resident sparse tensor in coordinate scheme (collection of
888a91bc7bSHarrietAkot /// elements). This data structure is used to read a sparse tensor from
898a91bc7bSHarrietAkot /// any external format into memory and sort the elements lexicographically
908a91bc7bSHarrietAkot /// by indices before passing it back to the client (most packed storage
918a91bc7bSHarrietAkot /// formats require the elements to appear in lexicographic index order).
928a91bc7bSHarrietAkot template <typename V>
938a91bc7bSHarrietAkot struct SparseTensorCOO {
948a91bc7bSHarrietAkot public:
958a91bc7bSHarrietAkot   SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
968a91bc7bSHarrietAkot       : sizes(szs), iteratorLocked(false), iteratorPos(0) {
978a91bc7bSHarrietAkot     if (capacity)
988a91bc7bSHarrietAkot       elements.reserve(capacity);
998a91bc7bSHarrietAkot   }
1008a91bc7bSHarrietAkot   /// Adds element as indices and value.
1018a91bc7bSHarrietAkot   void add(const std::vector<uint64_t> &ind, V val) {
1028a91bc7bSHarrietAkot     assert(!iteratorLocked && "Attempt to add() after startIterator()");
1038a91bc7bSHarrietAkot     uint64_t rank = getRank();
1048a91bc7bSHarrietAkot     assert(rank == ind.size());
1058a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++)
1068a91bc7bSHarrietAkot       assert(ind[r] < sizes[r]); // within bounds
1078a91bc7bSHarrietAkot     elements.emplace_back(ind, val);
1088a91bc7bSHarrietAkot   }
1098a91bc7bSHarrietAkot   /// Sorts elements lexicographically by index.
1108a91bc7bSHarrietAkot   void sort() {
1118a91bc7bSHarrietAkot     assert(!iteratorLocked && "Attempt to sort() after startIterator()");
112cf358253Swren romano     // TODO: we may want to cache an `isSorted` bit, to avoid
113cf358253Swren romano     // unnecessary/redundant sorting.
1148a91bc7bSHarrietAkot     std::sort(elements.begin(), elements.end(), lexOrder);
1158a91bc7bSHarrietAkot   }
1168a91bc7bSHarrietAkot   /// Returns rank.
1178a91bc7bSHarrietAkot   uint64_t getRank() const { return sizes.size(); }
1188a91bc7bSHarrietAkot   /// Getter for sizes array.
1198a91bc7bSHarrietAkot   const std::vector<uint64_t> &getSizes() const { return sizes; }
1208a91bc7bSHarrietAkot   /// Getter for elements array.
1218a91bc7bSHarrietAkot   const std::vector<Element<V>> &getElements() const { return elements; }
1228a91bc7bSHarrietAkot 
1238a91bc7bSHarrietAkot   /// Switch into iterator mode.
1248a91bc7bSHarrietAkot   void startIterator() {
1258a91bc7bSHarrietAkot     iteratorLocked = true;
1268a91bc7bSHarrietAkot     iteratorPos = 0;
1278a91bc7bSHarrietAkot   }
1288a91bc7bSHarrietAkot   /// Get the next element.
1298a91bc7bSHarrietAkot   const Element<V> *getNext() {
1308a91bc7bSHarrietAkot     assert(iteratorLocked && "Attempt to getNext() before startIterator()");
1318a91bc7bSHarrietAkot     if (iteratorPos < elements.size())
1328a91bc7bSHarrietAkot       return &(elements[iteratorPos++]);
1338a91bc7bSHarrietAkot     iteratorLocked = false;
1348a91bc7bSHarrietAkot     return nullptr;
1358a91bc7bSHarrietAkot   }
1368a91bc7bSHarrietAkot 
1378a91bc7bSHarrietAkot   /// Factory method. Permutes the original dimensions according to
1388a91bc7bSHarrietAkot   /// the given ordering and expects subsequent add() calls to honor
1398a91bc7bSHarrietAkot   /// that same ordering for the given indices. The result is a
1408a91bc7bSHarrietAkot   /// fully permuted coordinate scheme.
1418a91bc7bSHarrietAkot   static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
1428a91bc7bSHarrietAkot                                                 const uint64_t *sizes,
1438a91bc7bSHarrietAkot                                                 const uint64_t *perm,
1448a91bc7bSHarrietAkot                                                 uint64_t capacity = 0) {
1458a91bc7bSHarrietAkot     std::vector<uint64_t> permsz(rank);
1468a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++)
1478a91bc7bSHarrietAkot       permsz[perm[r]] = sizes[r];
1488a91bc7bSHarrietAkot     return new SparseTensorCOO<V>(permsz, capacity);
1498a91bc7bSHarrietAkot   }
1508a91bc7bSHarrietAkot 
1518a91bc7bSHarrietAkot private:
1528a91bc7bSHarrietAkot   /// Returns true if indices of e1 < indices of e2.
1538a91bc7bSHarrietAkot   static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
1548a91bc7bSHarrietAkot     uint64_t rank = e1.indices.size();
1558a91bc7bSHarrietAkot     assert(rank == e2.indices.size());
1568a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++) {
1578a91bc7bSHarrietAkot       if (e1.indices[r] == e2.indices[r])
1588a91bc7bSHarrietAkot         continue;
1598a91bc7bSHarrietAkot       return e1.indices[r] < e2.indices[r];
1608a91bc7bSHarrietAkot     }
1618a91bc7bSHarrietAkot     return false;
1628a91bc7bSHarrietAkot   }
1638a91bc7bSHarrietAkot   const std::vector<uint64_t> sizes; // per-dimension sizes
1648a91bc7bSHarrietAkot   std::vector<Element<V>> elements;
1658a91bc7bSHarrietAkot   bool iteratorLocked;
1668a91bc7bSHarrietAkot   unsigned iteratorPos;
1678a91bc7bSHarrietAkot };
1688a91bc7bSHarrietAkot 
1698a91bc7bSHarrietAkot /// Abstract base class of sparse tensor storage. Note that we use
1708a91bc7bSHarrietAkot /// function overloading to implement "partial" method specialization.
1718a91bc7bSHarrietAkot class SparseTensorStorageBase {
1728a91bc7bSHarrietAkot public:
1734f2ec7f9SAart Bik   /// Dimension size query.
174*46bdacaaSwren romano   virtual uint64_t getDimSize(uint64_t) const = 0;
1758a91bc7bSHarrietAkot 
1764f2ec7f9SAart Bik   /// Overhead storage.
1778a91bc7bSHarrietAkot   virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
1788a91bc7bSHarrietAkot   virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
1798a91bc7bSHarrietAkot   virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
1808a91bc7bSHarrietAkot   virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
1818a91bc7bSHarrietAkot   virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
1828a91bc7bSHarrietAkot   virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
1838a91bc7bSHarrietAkot   virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
1848a91bc7bSHarrietAkot   virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
1858a91bc7bSHarrietAkot 
1864f2ec7f9SAart Bik   /// Primary storage.
1878a91bc7bSHarrietAkot   virtual void getValues(std::vector<double> **) { fatal("valf64"); }
1888a91bc7bSHarrietAkot   virtual void getValues(std::vector<float> **) { fatal("valf32"); }
1898a91bc7bSHarrietAkot   virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
1908a91bc7bSHarrietAkot   virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
1918a91bc7bSHarrietAkot   virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
1928a91bc7bSHarrietAkot   virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
1938a91bc7bSHarrietAkot 
1944f2ec7f9SAart Bik   /// Element-wise insertion in lexicographic index order.
195c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); }
196c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); }
197c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); }
198c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); }
199c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); }
200c03fd1e6Swren romano   virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); }
2014f2ec7f9SAart Bik 
2024f2ec7f9SAart Bik   /// Expanded insertion.
2034f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) {
2044f2ec7f9SAart Bik     fatal("expf64");
2054f2ec7f9SAart Bik   }
2064f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) {
2074f2ec7f9SAart Bik     fatal("expf32");
2084f2ec7f9SAart Bik   }
2094f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) {
2104f2ec7f9SAart Bik     fatal("expi64");
2114f2ec7f9SAart Bik   }
2124f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) {
2134f2ec7f9SAart Bik     fatal("expi32");
2144f2ec7f9SAart Bik   }
2154f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) {
2164f2ec7f9SAart Bik     fatal("expi16");
2174f2ec7f9SAart Bik   }
2184f2ec7f9SAart Bik   virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) {
2194f2ec7f9SAart Bik     fatal("expi8");
2204f2ec7f9SAart Bik   }
2214f2ec7f9SAart Bik 
2224f2ec7f9SAart Bik   /// Finishes insertion.
223f66e5769SAart Bik   virtual void endInsert() = 0;
224f66e5769SAart Bik 
225e5639b3fSMehdi Amini   virtual ~SparseTensorStorageBase() = default;
2268a91bc7bSHarrietAkot 
2278a91bc7bSHarrietAkot private:
228*46bdacaaSwren romano   static void fatal(const char *tp) {
2298a91bc7bSHarrietAkot     fprintf(stderr, "unsupported %s\n", tp);
2308a91bc7bSHarrietAkot     exit(1);
2318a91bc7bSHarrietAkot   }
2328a91bc7bSHarrietAkot };
2338a91bc7bSHarrietAkot 
2348a91bc7bSHarrietAkot /// A memory-resident sparse tensor using a storage scheme based on
2358a91bc7bSHarrietAkot /// per-dimension sparse/dense annotations. This data structure provides a
2368a91bc7bSHarrietAkot /// bufferized form of a sparse tensor type. In contrast to generating setup
2378a91bc7bSHarrietAkot /// methods for each differently annotated sparse tensor, this method provides
2388a91bc7bSHarrietAkot /// a convenient "one-size-fits-all" solution that simply takes an input tensor
2398a91bc7bSHarrietAkot /// and annotations to implement all required setup in a general manner.
2408a91bc7bSHarrietAkot template <typename P, typename I, typename V>
2418a91bc7bSHarrietAkot class SparseTensorStorage : public SparseTensorStorageBase {
2428a91bc7bSHarrietAkot public:
2438a91bc7bSHarrietAkot   /// Constructs a sparse tensor storage scheme with the given dimensions,
2448a91bc7bSHarrietAkot   /// permutation, and per-dimension dense/sparse annotations, using
2458a91bc7bSHarrietAkot   /// the coordinate scheme tensor for the initial contents if provided.
2468a91bc7bSHarrietAkot   SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
247f66e5769SAart Bik                       const DimLevelType *sparsity,
248f66e5769SAart Bik                       SparseTensorCOO<V> *tensor = nullptr)
249f66e5769SAart Bik       : sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()),
250f66e5769SAart Bik         indices(getRank()) {
2518a91bc7bSHarrietAkot     uint64_t rank = getRank();
2528a91bc7bSHarrietAkot     // Store "reverse" permutation.
2538a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++)
2548a91bc7bSHarrietAkot       rev[perm[r]] = r;
2558a91bc7bSHarrietAkot     // Provide hints on capacity of pointers and indices.
2568a91bc7bSHarrietAkot     // TODO: needs fine-tuning based on sparsity
257f66e5769SAart Bik     bool allDense = true;
258f66e5769SAart Bik     uint64_t sz = 1;
259f66e5769SAart Bik     for (uint64_t r = 0; r < rank; r++) {
2604d0a18d0Swren romano       assert(sizes[r] > 0 && "Dimension size zero has trivial storage");
261f66e5769SAart Bik       sz *= sizes[r];
262845561ecSwren romano       if (sparsity[r] == DimLevelType::kCompressed) {
263f66e5769SAart Bik         pointers[r].reserve(sz + 1);
264f66e5769SAart Bik         indices[r].reserve(sz);
265f66e5769SAart Bik         sz = 1;
266f66e5769SAart Bik         allDense = false;
267289f84a4Swren romano         // Prepare the pointer structure.  We cannot use `appendPointer`
2684d0a18d0Swren romano         // here, because `isCompressedDim` won't work until after this
2694d0a18d0Swren romano         // preparation has been done.
2704d0a18d0Swren romano         pointers[r].push_back(0);
2718a91bc7bSHarrietAkot       } else {
272845561ecSwren romano         assert(sparsity[r] == DimLevelType::kDense &&
273845561ecSwren romano                "singleton not yet supported");
2748a91bc7bSHarrietAkot       }
2758a91bc7bSHarrietAkot     }
2768a91bc7bSHarrietAkot     // Then assign contents from coordinate scheme tensor if provided.
2778a91bc7bSHarrietAkot     if (tensor) {
2784d0a18d0Swren romano       // Ensure both preconditions of `fromCOO`.
2794d0a18d0Swren romano       assert(tensor->getSizes() == sizes && "Tensor size mismatch");
280cf358253Swren romano       tensor->sort();
2814d0a18d0Swren romano       // Now actually insert the `elements`.
282ceda1ae9Swren romano       const std::vector<Element<V>> &elements = tensor->getElements();
283ceda1ae9Swren romano       uint64_t nnz = elements.size();
2848a91bc7bSHarrietAkot       values.reserve(nnz);
285ceda1ae9Swren romano       fromCOO(elements, 0, nnz, 0);
2861ce77b56SAart Bik     } else if (allDense) {
287f66e5769SAart Bik       values.resize(sz, 0);
2888a91bc7bSHarrietAkot     }
2898a91bc7bSHarrietAkot   }
2908a91bc7bSHarrietAkot 
2910ae2e958SMehdi Amini   ~SparseTensorStorage() override = default;
2928a91bc7bSHarrietAkot 
2938a91bc7bSHarrietAkot   /// Get the rank of the tensor.
2948a91bc7bSHarrietAkot   uint64_t getRank() const { return sizes.size(); }
2958a91bc7bSHarrietAkot 
296*46bdacaaSwren romano   /// Get the size of the given dimension of the tensor.
297*46bdacaaSwren romano   uint64_t getDimSize(uint64_t d) const override {
2988a91bc7bSHarrietAkot     assert(d < getRank());
2998a91bc7bSHarrietAkot     return sizes[d];
3008a91bc7bSHarrietAkot   }
3018a91bc7bSHarrietAkot 
302f66e5769SAart Bik   /// Partially specialize these getter methods based on template types.
3038a91bc7bSHarrietAkot   void getPointers(std::vector<P> **out, uint64_t d) override {
3048a91bc7bSHarrietAkot     assert(d < getRank());
3058a91bc7bSHarrietAkot     *out = &pointers[d];
3068a91bc7bSHarrietAkot   }
3078a91bc7bSHarrietAkot   void getIndices(std::vector<I> **out, uint64_t d) override {
3088a91bc7bSHarrietAkot     assert(d < getRank());
3098a91bc7bSHarrietAkot     *out = &indices[d];
3108a91bc7bSHarrietAkot   }
3118a91bc7bSHarrietAkot   void getValues(std::vector<V> **out) override { *out = &values; }
3128a91bc7bSHarrietAkot 
31303fe15ceSAart Bik   /// Partially specialize lexicographical insertions based on template types.
314c03fd1e6Swren romano   void lexInsert(const uint64_t *cursor, V val) override {
3151ce77b56SAart Bik     // First, wrap up pending insertion path.
3161ce77b56SAart Bik     uint64_t diff = 0;
3171ce77b56SAart Bik     uint64_t top = 0;
3181ce77b56SAart Bik     if (!values.empty()) {
3191ce77b56SAart Bik       diff = lexDiff(cursor);
3201ce77b56SAart Bik       endPath(diff + 1);
3211ce77b56SAart Bik       top = idx[diff] + 1;
3221ce77b56SAart Bik     }
3231ce77b56SAart Bik     // Then continue with insertion path.
3241ce77b56SAart Bik     insPath(cursor, diff, top, val);
325f66e5769SAart Bik   }
326f66e5769SAart Bik 
3274f2ec7f9SAart Bik   /// Partially specialize expanded insertions based on template types.
3284f2ec7f9SAart Bik   /// Note that this method resets the values/filled-switch array back
3294f2ec7f9SAart Bik   /// to all-zero/false while only iterating over the nonzero elements.
3304f2ec7f9SAart Bik   void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
3314f2ec7f9SAart Bik                  uint64_t count) override {
3324f2ec7f9SAart Bik     if (count == 0)
3334f2ec7f9SAart Bik       return;
3344f2ec7f9SAart Bik     // Sort.
3354f2ec7f9SAart Bik     std::sort(added, added + count);
3364f2ec7f9SAart Bik     // Restore insertion path for first insert.
3374f2ec7f9SAart Bik     uint64_t rank = getRank();
3384f2ec7f9SAart Bik     uint64_t index = added[0];
3394f2ec7f9SAart Bik     cursor[rank - 1] = index;
3404f2ec7f9SAart Bik     lexInsert(cursor, values[index]);
3414f2ec7f9SAart Bik     assert(filled[index]);
3424f2ec7f9SAart Bik     values[index] = 0;
3434f2ec7f9SAart Bik     filled[index] = false;
3444f2ec7f9SAart Bik     // Subsequent insertions are quick.
3454f2ec7f9SAart Bik     for (uint64_t i = 1; i < count; i++) {
3464f2ec7f9SAart Bik       assert(index < added[i] && "non-lexicographic insertion");
3474f2ec7f9SAart Bik       index = added[i];
3484f2ec7f9SAart Bik       cursor[rank - 1] = index;
3494f2ec7f9SAart Bik       insPath(cursor, rank - 1, added[i - 1] + 1, values[index]);
3504f2ec7f9SAart Bik       assert(filled[index]);
3514f2ec7f9SAart Bik       values[index] = 0.0;
3524f2ec7f9SAart Bik       filled[index] = false;
3534f2ec7f9SAart Bik     }
3544f2ec7f9SAart Bik   }
3554f2ec7f9SAart Bik 
356f66e5769SAart Bik   /// Finalizes lexicographic insertions.
3571ce77b56SAart Bik   void endInsert() override {
3581ce77b56SAart Bik     if (values.empty())
3591ce77b56SAart Bik       endDim(0);
3601ce77b56SAart Bik     else
3611ce77b56SAart Bik       endPath(0);
3621ce77b56SAart Bik   }
363f66e5769SAart Bik 
3648a91bc7bSHarrietAkot   /// Returns this sparse tensor storage scheme as a new memory-resident
3658a91bc7bSHarrietAkot   /// sparse tensor in coordinate scheme with the given dimension order.
3668a91bc7bSHarrietAkot   SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
3678a91bc7bSHarrietAkot     // Restore original order of the dimension sizes and allocate coordinate
3688a91bc7bSHarrietAkot     // scheme with desired new ordering specified in perm.
3698a91bc7bSHarrietAkot     uint64_t rank = getRank();
3708a91bc7bSHarrietAkot     std::vector<uint64_t> orgsz(rank);
3718a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++)
3728a91bc7bSHarrietAkot       orgsz[rev[r]] = sizes[r];
3738a91bc7bSHarrietAkot     SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
3748a91bc7bSHarrietAkot         rank, orgsz.data(), perm, values.size());
3758a91bc7bSHarrietAkot     // Populate coordinate scheme restored from old ordering and changed with
3768a91bc7bSHarrietAkot     // new ordering. Rather than applying both reorderings during the recursion,
3778a91bc7bSHarrietAkot     // we compute the combine permutation in advance.
3788a91bc7bSHarrietAkot     std::vector<uint64_t> reord(rank);
3798a91bc7bSHarrietAkot     for (uint64_t r = 0; r < rank; r++)
3808a91bc7bSHarrietAkot       reord[r] = perm[rev[r]];
381ceda1ae9Swren romano     toCOO(*tensor, reord, 0, 0);
3828a91bc7bSHarrietAkot     assert(tensor->getElements().size() == values.size());
3838a91bc7bSHarrietAkot     return tensor;
3848a91bc7bSHarrietAkot   }
3858a91bc7bSHarrietAkot 
3868a91bc7bSHarrietAkot   /// Factory method. Constructs a sparse tensor storage scheme with the given
3878a91bc7bSHarrietAkot   /// dimensions, permutation, and per-dimension dense/sparse annotations,
3888a91bc7bSHarrietAkot   /// using the coordinate scheme tensor for the initial contents if provided.
3898a91bc7bSHarrietAkot   /// In the latter case, the coordinate scheme must respect the same
3908a91bc7bSHarrietAkot   /// permutation as is desired for the new sparse tensor storage.
3918a91bc7bSHarrietAkot   static SparseTensorStorage<P, I, V> *
3928a91bc7bSHarrietAkot   newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm,
393845561ecSwren romano                   const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) {
3948a91bc7bSHarrietAkot     SparseTensorStorage<P, I, V> *n = nullptr;
3958a91bc7bSHarrietAkot     if (tensor) {
3968a91bc7bSHarrietAkot       assert(tensor->getRank() == rank);
3978a91bc7bSHarrietAkot       for (uint64_t r = 0; r < rank; r++)
3988a91bc7bSHarrietAkot         assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]);
3998a91bc7bSHarrietAkot       n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
4008a91bc7bSHarrietAkot                                            tensor);
4018a91bc7bSHarrietAkot       delete tensor;
4028a91bc7bSHarrietAkot     } else {
4038a91bc7bSHarrietAkot       std::vector<uint64_t> permsz(rank);
4048a91bc7bSHarrietAkot       for (uint64_t r = 0; r < rank; r++)
4058a91bc7bSHarrietAkot         permsz[perm[r]] = sizes[r];
406f66e5769SAart Bik       n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity);
4078a91bc7bSHarrietAkot     }
4088a91bc7bSHarrietAkot     return n;
4098a91bc7bSHarrietAkot   }
4108a91bc7bSHarrietAkot 
4118a91bc7bSHarrietAkot private:
4124d0a18d0Swren romano   /// Appends the next free position of `indices[d]` to `pointers[d]`.
4134d0a18d0Swren romano   /// Thus, when called after inserting the last element of a segment,
4144d0a18d0Swren romano   /// it will append the position where the next segment begins.
415289f84a4Swren romano   inline void appendPointer(uint64_t d) {
4164d0a18d0Swren romano     assert(isCompressedDim(d)); // Entails `d < getRank()`.
4174d0a18d0Swren romano     uint64_t p = indices[d].size();
4184d0a18d0Swren romano     assert(p <= std::numeric_limits<P>::max() &&
4194d0a18d0Swren romano            "Pointer value is too large for the P-type");
4204d0a18d0Swren romano     pointers[d].push_back(p); // Here is where we convert to `P`.
4214d0a18d0Swren romano   }
4224d0a18d0Swren romano 
4234d0a18d0Swren romano   /// Appends the given index to `indices[d]`.
424289f84a4Swren romano   inline void appendIndex(uint64_t d, uint64_t i) {
4254d0a18d0Swren romano     assert(isCompressedDim(d)); // Entails `d < getRank()`.
4264d0a18d0Swren romano     assert(i <= std::numeric_limits<I>::max() &&
4274d0a18d0Swren romano            "Index value is too large for the I-type");
4284d0a18d0Swren romano     indices[d].push_back(i); // Here is where we convert to `I`.
4294d0a18d0Swren romano   }
4304d0a18d0Swren romano 
4318a91bc7bSHarrietAkot   /// Initializes sparse tensor storage scheme from a memory-resident sparse
4328a91bc7bSHarrietAkot   /// tensor in coordinate scheme. This method prepares the pointers and
4338a91bc7bSHarrietAkot   /// indices arrays under the given per-dimension dense/sparse annotations.
4344d0a18d0Swren romano   ///
4354d0a18d0Swren romano   /// Preconditions:
4364d0a18d0Swren romano   /// (1) the `elements` must be lexicographically sorted.
4374d0a18d0Swren romano   /// (2) the indices of every element are valid for `sizes` (equal rank
4384d0a18d0Swren romano   ///     and pointwise less-than).
439ceda1ae9Swren romano   void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
440ceda1ae9Swren romano                uint64_t hi, uint64_t d) {
4418a91bc7bSHarrietAkot     // Once dimensions are exhausted, insert the numerical values.
442c4017f9dSwren romano     assert(d <= getRank() && hi <= elements.size());
4438a91bc7bSHarrietAkot     if (d == getRank()) {
444c4017f9dSwren romano       assert(lo < hi);
4451ce77b56SAart Bik       values.push_back(elements[lo].value);
4468a91bc7bSHarrietAkot       return;
4478a91bc7bSHarrietAkot     }
4488a91bc7bSHarrietAkot     // Visit all elements in this interval.
4498a91bc7bSHarrietAkot     uint64_t full = 0;
450c4017f9dSwren romano     while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`.
4518a91bc7bSHarrietAkot       // Find segment in interval with same index elements in this dimension.
452f66e5769SAart Bik       uint64_t i = elements[lo].indices[d];
4538a91bc7bSHarrietAkot       uint64_t seg = lo + 1;
454f66e5769SAart Bik       while (seg < hi && elements[seg].indices[d] == i)
4558a91bc7bSHarrietAkot         seg++;
4568a91bc7bSHarrietAkot       // Handle segment in interval for sparse or dense dimension.
4571ce77b56SAart Bik       if (isCompressedDim(d)) {
458289f84a4Swren romano         appendIndex(d, i);
4598a91bc7bSHarrietAkot       } else {
4608a91bc7bSHarrietAkot         // For dense storage we must fill in all the zero values between
4618a91bc7bSHarrietAkot         // the previous element (when last we ran this for-loop) and the
4628a91bc7bSHarrietAkot         // current element.
463f66e5769SAart Bik         for (; full < i; full++)
4641ce77b56SAart Bik           endDim(d + 1);
4658a91bc7bSHarrietAkot         full++;
4668a91bc7bSHarrietAkot       }
467ceda1ae9Swren romano       fromCOO(elements, lo, seg, d + 1);
4688a91bc7bSHarrietAkot       // And move on to next segment in interval.
4698a91bc7bSHarrietAkot       lo = seg;
4708a91bc7bSHarrietAkot     }
4718a91bc7bSHarrietAkot     // Finalize the sparse pointer structure at this dimension.
4721ce77b56SAart Bik     if (isCompressedDim(d)) {
473289f84a4Swren romano       appendPointer(d);
4748a91bc7bSHarrietAkot     } else {
4758a91bc7bSHarrietAkot       // For dense storage we must fill in all the zero values after
4768a91bc7bSHarrietAkot       // the last element.
4778a91bc7bSHarrietAkot       for (uint64_t sz = sizes[d]; full < sz; full++)
4781ce77b56SAart Bik         endDim(d + 1);
4798a91bc7bSHarrietAkot     }
4808a91bc7bSHarrietAkot   }
4818a91bc7bSHarrietAkot 
4828a91bc7bSHarrietAkot   /// Stores the sparse tensor storage scheme into a memory-resident sparse
4838a91bc7bSHarrietAkot   /// tensor in coordinate scheme.
484ceda1ae9Swren romano   void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord,
485f66e5769SAart Bik              uint64_t pos, uint64_t d) {
4868a91bc7bSHarrietAkot     assert(d <= getRank());
4878a91bc7bSHarrietAkot     if (d == getRank()) {
4888a91bc7bSHarrietAkot       assert(pos < values.size());
489ceda1ae9Swren romano       tensor.add(idx, values[pos]);
4901ce77b56SAart Bik     } else if (isCompressedDim(d)) {
4918a91bc7bSHarrietAkot       // Sparse dimension.
4928a91bc7bSHarrietAkot       for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
4938a91bc7bSHarrietAkot         idx[reord[d]] = indices[d][ii];
494f66e5769SAart Bik         toCOO(tensor, reord, ii, d + 1);
4958a91bc7bSHarrietAkot       }
4961ce77b56SAart Bik     } else {
4971ce77b56SAart Bik       // Dense dimension.
4981ce77b56SAart Bik       for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
4991ce77b56SAart Bik         idx[reord[d]] = i;
5001ce77b56SAart Bik         toCOO(tensor, reord, off + i, d + 1);
5018a91bc7bSHarrietAkot       }
5028a91bc7bSHarrietAkot     }
5031ce77b56SAart Bik   }
5041ce77b56SAart Bik 
5051ce77b56SAart Bik   /// Ends a deeper, never seen before dimension.
5061ce77b56SAart Bik   void endDim(uint64_t d) {
5071ce77b56SAart Bik     assert(d <= getRank());
5081ce77b56SAart Bik     if (d == getRank()) {
5091ce77b56SAart Bik       values.push_back(0);
5101ce77b56SAart Bik     } else if (isCompressedDim(d)) {
511289f84a4Swren romano       appendPointer(d);
5121ce77b56SAart Bik     } else {
5131ce77b56SAart Bik       for (uint64_t full = 0, sz = sizes[d]; full < sz; full++)
5141ce77b56SAart Bik         endDim(d + 1);
5151ce77b56SAart Bik     }
5161ce77b56SAart Bik   }
5171ce77b56SAart Bik 
5181ce77b56SAart Bik   /// Wraps up a single insertion path, inner to outer.
5191ce77b56SAart Bik   void endPath(uint64_t diff) {
5201ce77b56SAart Bik     uint64_t rank = getRank();
5211ce77b56SAart Bik     assert(diff <= rank);
5221ce77b56SAart Bik     for (uint64_t i = 0; i < rank - diff; i++) {
5231ce77b56SAart Bik       uint64_t d = rank - i - 1;
5241ce77b56SAart Bik       if (isCompressedDim(d)) {
525289f84a4Swren romano         appendPointer(d);
5261ce77b56SAart Bik       } else {
5271ce77b56SAart Bik         for (uint64_t full = idx[d] + 1, sz = sizes[d]; full < sz; full++)
5281ce77b56SAart Bik           endDim(d + 1);
5291ce77b56SAart Bik       }
5301ce77b56SAart Bik     }
5311ce77b56SAart Bik   }
5321ce77b56SAart Bik 
5331ce77b56SAart Bik   /// Continues a single insertion path, outer to inner.
534c03fd1e6Swren romano   void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
5351ce77b56SAart Bik     uint64_t rank = getRank();
5361ce77b56SAart Bik     assert(diff < rank);
5371ce77b56SAart Bik     for (uint64_t d = diff; d < rank; d++) {
5381ce77b56SAart Bik       uint64_t i = cursor[d];
5391ce77b56SAart Bik       if (isCompressedDim(d)) {
540289f84a4Swren romano         appendIndex(d, i);
5411ce77b56SAart Bik       } else {
5421ce77b56SAart Bik         for (uint64_t full = top; full < i; full++)
5431ce77b56SAart Bik           endDim(d + 1);
5441ce77b56SAart Bik       }
5451ce77b56SAart Bik       top = 0;
5461ce77b56SAart Bik       idx[d] = i;
5471ce77b56SAart Bik     }
5481ce77b56SAart Bik     values.push_back(val);
5491ce77b56SAart Bik   }
5501ce77b56SAart Bik 
5511ce77b56SAart Bik   /// Finds the lexicographic differing dimension.
552*46bdacaaSwren romano   uint64_t lexDiff(const uint64_t *cursor) const {
5531ce77b56SAart Bik     for (uint64_t r = 0, rank = getRank(); r < rank; r++)
5541ce77b56SAart Bik       if (cursor[r] > idx[r])
5551ce77b56SAart Bik         return r;
5561ce77b56SAart Bik       else
5571ce77b56SAart Bik         assert(cursor[r] == idx[r] && "non-lexicographic insertion");
5581ce77b56SAart Bik     assert(0 && "duplication insertion");
5591ce77b56SAart Bik     return -1u;
5601ce77b56SAart Bik   }
5611ce77b56SAart Bik 
5621ce77b56SAart Bik   /// Returns true if dimension is compressed.
5631ce77b56SAart Bik   inline bool isCompressedDim(uint64_t d) const {
5644d0a18d0Swren romano     assert(d < getRank());
5651ce77b56SAart Bik     return (!pointers[d].empty());
5661ce77b56SAart Bik   }
5678a91bc7bSHarrietAkot 
5688a91bc7bSHarrietAkot private:
569*46bdacaaSwren romano   const std::vector<uint64_t> sizes; // per-dimension sizes
5708a91bc7bSHarrietAkot   std::vector<uint64_t> rev;   // "reverse" permutation
571f66e5769SAart Bik   std::vector<uint64_t> idx;   // index cursor
5728a91bc7bSHarrietAkot   std::vector<std::vector<P>> pointers;
5738a91bc7bSHarrietAkot   std::vector<std::vector<I>> indices;
5748a91bc7bSHarrietAkot   std::vector<V> values;
5758a91bc7bSHarrietAkot };
5768a91bc7bSHarrietAkot 
5778a91bc7bSHarrietAkot /// Helper to convert string to lower case.
5788a91bc7bSHarrietAkot static char *toLower(char *token) {
5798a91bc7bSHarrietAkot   for (char *c = token; *c; c++)
5808a91bc7bSHarrietAkot     *c = tolower(*c);
5818a91bc7bSHarrietAkot   return token;
5828a91bc7bSHarrietAkot }
5838a91bc7bSHarrietAkot 
5848a91bc7bSHarrietAkot /// Read the MME header of a general sparse matrix of type real.
58503fe15ceSAart Bik static void readMMEHeader(FILE *file, char *filename, char *line,
586bb56c2b3SMehdi Amini                           uint64_t *idata, bool *isSymmetric) {
5878a91bc7bSHarrietAkot   char header[64];
5888a91bc7bSHarrietAkot   char object[64];
5898a91bc7bSHarrietAkot   char format[64];
5908a91bc7bSHarrietAkot   char field[64];
5918a91bc7bSHarrietAkot   char symmetry[64];
5928a91bc7bSHarrietAkot   // Read header line.
5938a91bc7bSHarrietAkot   if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
5948a91bc7bSHarrietAkot              symmetry) != 5) {
59503fe15ceSAart Bik     fprintf(stderr, "Corrupt header in %s\n", filename);
5968a91bc7bSHarrietAkot     exit(1);
5978a91bc7bSHarrietAkot   }
598bb56c2b3SMehdi Amini   *isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0);
5998a91bc7bSHarrietAkot   // Make sure this is a general sparse matrix.
6008a91bc7bSHarrietAkot   if (strcmp(toLower(header), "%%matrixmarket") ||
6018a91bc7bSHarrietAkot       strcmp(toLower(object), "matrix") ||
6028a91bc7bSHarrietAkot       strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
603bb56c2b3SMehdi Amini       (strcmp(toLower(symmetry), "general") && !(*isSymmetric))) {
6048a91bc7bSHarrietAkot     fprintf(stderr,
60503fe15ceSAart Bik             "Cannot find a general sparse matrix with type real in %s\n",
60603fe15ceSAart Bik             filename);
6078a91bc7bSHarrietAkot     exit(1);
6088a91bc7bSHarrietAkot   }
6098a91bc7bSHarrietAkot   // Skip comments.
610e5639b3fSMehdi Amini   while (true) {
61103fe15ceSAart Bik     if (!fgets(line, kColWidth, file)) {
61203fe15ceSAart Bik       fprintf(stderr, "Cannot find data in %s\n", filename);
6138a91bc7bSHarrietAkot       exit(1);
6148a91bc7bSHarrietAkot     }
6158a91bc7bSHarrietAkot     if (line[0] != '%')
6168a91bc7bSHarrietAkot       break;
6178a91bc7bSHarrietAkot   }
6188a91bc7bSHarrietAkot   // Next line contains M N NNZ.
6198a91bc7bSHarrietAkot   idata[0] = 2; // rank
6208a91bc7bSHarrietAkot   if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
6218a91bc7bSHarrietAkot              idata + 1) != 3) {
62203fe15ceSAart Bik     fprintf(stderr, "Cannot find size in %s\n", filename);
6238a91bc7bSHarrietAkot     exit(1);
6248a91bc7bSHarrietAkot   }
6258a91bc7bSHarrietAkot }
6268a91bc7bSHarrietAkot 
6278a91bc7bSHarrietAkot /// Read the "extended" FROSTT header. Although not part of the documented
6288a91bc7bSHarrietAkot /// format, we assume that the file starts with optional comments followed
6298a91bc7bSHarrietAkot /// by two lines that define the rank, the number of nonzeros, and the
6308a91bc7bSHarrietAkot /// dimensions sizes (one per rank) of the sparse tensor.
63103fe15ceSAart Bik static void readExtFROSTTHeader(FILE *file, char *filename, char *line,
63203fe15ceSAart Bik                                 uint64_t *idata) {
6338a91bc7bSHarrietAkot   // Skip comments.
634e5639b3fSMehdi Amini   while (true) {
63503fe15ceSAart Bik     if (!fgets(line, kColWidth, file)) {
63603fe15ceSAart Bik       fprintf(stderr, "Cannot find data in %s\n", filename);
6378a91bc7bSHarrietAkot       exit(1);
6388a91bc7bSHarrietAkot     }
6398a91bc7bSHarrietAkot     if (line[0] != '#')
6408a91bc7bSHarrietAkot       break;
6418a91bc7bSHarrietAkot   }
6428a91bc7bSHarrietAkot   // Next line contains RANK and NNZ.
6438a91bc7bSHarrietAkot   if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
64403fe15ceSAart Bik     fprintf(stderr, "Cannot find metadata in %s\n", filename);
6458a91bc7bSHarrietAkot     exit(1);
6468a91bc7bSHarrietAkot   }
6478a91bc7bSHarrietAkot   // Followed by a line with the dimension sizes (one per rank).
6488a91bc7bSHarrietAkot   for (uint64_t r = 0; r < idata[0]; r++) {
6498a91bc7bSHarrietAkot     if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
65003fe15ceSAart Bik       fprintf(stderr, "Cannot find dimension size %s\n", filename);
6518a91bc7bSHarrietAkot       exit(1);
6528a91bc7bSHarrietAkot     }
6538a91bc7bSHarrietAkot   }
65403fe15ceSAart Bik   fgets(line, kColWidth, file); // end of line
6558a91bc7bSHarrietAkot }
6568a91bc7bSHarrietAkot 
6578a91bc7bSHarrietAkot /// Reads a sparse tensor with the given filename into a memory-resident
6588a91bc7bSHarrietAkot /// sparse tensor in coordinate scheme.
6598a91bc7bSHarrietAkot template <typename V>
6608a91bc7bSHarrietAkot static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
6618a91bc7bSHarrietAkot                                                const uint64_t *sizes,
6628a91bc7bSHarrietAkot                                                const uint64_t *perm) {
6638a91bc7bSHarrietAkot   // Open the file.
6648a91bc7bSHarrietAkot   FILE *file = fopen(filename, "r");
6658a91bc7bSHarrietAkot   if (!file) {
6663734c078Swren romano     assert(filename && "Received nullptr for filename");
6673734c078Swren romano     fprintf(stderr, "Cannot find file %s\n", filename);
6688a91bc7bSHarrietAkot     exit(1);
6698a91bc7bSHarrietAkot   }
6708a91bc7bSHarrietAkot   // Perform some file format dependent set up.
67103fe15ceSAart Bik   char line[kColWidth];
6728a91bc7bSHarrietAkot   uint64_t idata[512];
673bb56c2b3SMehdi Amini   bool isSymmetric = false;
6748a91bc7bSHarrietAkot   if (strstr(filename, ".mtx")) {
675bb56c2b3SMehdi Amini     readMMEHeader(file, filename, line, idata, &isSymmetric);
6768a91bc7bSHarrietAkot   } else if (strstr(filename, ".tns")) {
67703fe15ceSAart Bik     readExtFROSTTHeader(file, filename, line, idata);
6788a91bc7bSHarrietAkot   } else {
6798a91bc7bSHarrietAkot     fprintf(stderr, "Unknown format %s\n", filename);
6808a91bc7bSHarrietAkot     exit(1);
6818a91bc7bSHarrietAkot   }
6828a91bc7bSHarrietAkot   // Prepare sparse tensor object with per-dimension sizes
6838a91bc7bSHarrietAkot   // and the number of nonzeros as initial capacity.
6848a91bc7bSHarrietAkot   assert(rank == idata[0] && "rank mismatch");
6858a91bc7bSHarrietAkot   uint64_t nnz = idata[1];
6868a91bc7bSHarrietAkot   for (uint64_t r = 0; r < rank; r++)
6878a91bc7bSHarrietAkot     assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) &&
6888a91bc7bSHarrietAkot            "dimension size mismatch");
6898a91bc7bSHarrietAkot   SparseTensorCOO<V> *tensor =
6908a91bc7bSHarrietAkot       SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
6918a91bc7bSHarrietAkot   //  Read all nonzero elements.
6928a91bc7bSHarrietAkot   std::vector<uint64_t> indices(rank);
6938a91bc7bSHarrietAkot   for (uint64_t k = 0; k < nnz; k++) {
69403fe15ceSAart Bik     if (!fgets(line, kColWidth, file)) {
69503fe15ceSAart Bik       fprintf(stderr, "Cannot find next line of data in %s\n", filename);
6968a91bc7bSHarrietAkot       exit(1);
6978a91bc7bSHarrietAkot     }
69803fe15ceSAart Bik     char *linePtr = line;
69903fe15ceSAart Bik     for (uint64_t r = 0; r < rank; r++) {
70003fe15ceSAart Bik       uint64_t idx = strtoul(linePtr, &linePtr, 10);
7018a91bc7bSHarrietAkot       // Add 0-based index.
7028a91bc7bSHarrietAkot       indices[perm[r]] = idx - 1;
7038a91bc7bSHarrietAkot     }
7048a91bc7bSHarrietAkot     // The external formats always store the numerical values with the type
7058a91bc7bSHarrietAkot     // double, but we cast these values to the sparse tensor object type.
70603fe15ceSAart Bik     double value = strtod(linePtr, &linePtr);
7078a91bc7bSHarrietAkot     tensor->add(indices, value);
70802710413SBixia Zheng     // We currently chose to deal with symmetric matrices by fully constructing
70902710413SBixia Zheng     // them. In the future, we may want to make symmetry implicit for storage
71002710413SBixia Zheng     // reasons.
711bb56c2b3SMehdi Amini     if (isSymmetric && indices[0] != indices[1])
71202710413SBixia Zheng       tensor->add({indices[1], indices[0]}, value);
7138a91bc7bSHarrietAkot   }
7148a91bc7bSHarrietAkot   // Close the file and return tensor.
7158a91bc7bSHarrietAkot   fclose(file);
7168a91bc7bSHarrietAkot   return tensor;
7178a91bc7bSHarrietAkot }
7188a91bc7bSHarrietAkot 
719efa15f41SAart Bik /// Writes the sparse tensor to extended FROSTT format.
720efa15f41SAart Bik template <typename V>
721*46bdacaaSwren romano static void outSparseTensor(void *tensor, void *dest, bool sort) {
7226438783fSAart Bik   assert(tensor && dest);
7236438783fSAart Bik   auto coo = static_cast<SparseTensorCOO<V> *>(tensor);
7246438783fSAart Bik   if (sort)
7256438783fSAart Bik     coo->sort();
7266438783fSAart Bik   char *filename = static_cast<char *>(dest);
7276438783fSAart Bik   auto &sizes = coo->getSizes();
7286438783fSAart Bik   auto &elements = coo->getElements();
7296438783fSAart Bik   uint64_t rank = coo->getRank();
730efa15f41SAart Bik   uint64_t nnz = elements.size();
731efa15f41SAart Bik   std::fstream file;
732efa15f41SAart Bik   file.open(filename, std::ios_base::out | std::ios_base::trunc);
733efa15f41SAart Bik   assert(file.is_open());
734efa15f41SAart Bik   file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl;
735efa15f41SAart Bik   for (uint64_t r = 0; r < rank - 1; r++)
736efa15f41SAart Bik     file << sizes[r] << " ";
737efa15f41SAart Bik   file << sizes[rank - 1] << std::endl;
738efa15f41SAart Bik   for (uint64_t i = 0; i < nnz; i++) {
739efa15f41SAart Bik     auto &idx = elements[i].indices;
740efa15f41SAart Bik     for (uint64_t r = 0; r < rank; r++)
741efa15f41SAart Bik       file << (idx[r] + 1) << " ";
742efa15f41SAart Bik     file << elements[i].value << std::endl;
743efa15f41SAart Bik   }
744efa15f41SAart Bik   file.flush();
745efa15f41SAart Bik   file.close();
746efa15f41SAart Bik   assert(file.good());
7476438783fSAart Bik   delete coo;
7486438783fSAart Bik }
7496438783fSAart Bik 
7506438783fSAart Bik /// Initializes sparse tensor from an external COO-flavored format.
7516438783fSAart Bik template <typename V>
752*46bdacaaSwren romano static SparseTensorStorage<uint64_t, uint64_t, V> *
7536438783fSAart Bik toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values,
75420eaa88fSBixia Zheng                    uint64_t *indices, uint64_t *perm, uint8_t *sparse) {
75520eaa88fSBixia Zheng   const DimLevelType *sparsity = (DimLevelType *)(sparse);
75620eaa88fSBixia Zheng #ifndef NDEBUG
75720eaa88fSBixia Zheng   // Verify that perm is a permutation of 0..(rank-1).
75820eaa88fSBixia Zheng   std::vector<uint64_t> order(perm, perm + rank);
75920eaa88fSBixia Zheng   std::sort(order.begin(), order.end());
7601e47888dSAart Bik   for (uint64_t i = 0; i < rank; ++i) {
76120eaa88fSBixia Zheng     if (i != order[i]) {
762988d4b0dSAart Bik       fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank);
76320eaa88fSBixia Zheng       exit(1);
76420eaa88fSBixia Zheng     }
76520eaa88fSBixia Zheng   }
76620eaa88fSBixia Zheng 
76720eaa88fSBixia Zheng   // Verify that the sparsity values are supported.
7681e47888dSAart Bik   for (uint64_t i = 0; i < rank; ++i) {
76920eaa88fSBixia Zheng     if (sparsity[i] != DimLevelType::kDense &&
77020eaa88fSBixia Zheng         sparsity[i] != DimLevelType::kCompressed) {
77120eaa88fSBixia Zheng       fprintf(stderr, "Unsupported sparsity value %d\n",
77220eaa88fSBixia Zheng               static_cast<int>(sparsity[i]));
77320eaa88fSBixia Zheng       exit(1);
77420eaa88fSBixia Zheng     }
77520eaa88fSBixia Zheng   }
77620eaa88fSBixia Zheng #endif
77720eaa88fSBixia Zheng 
7786438783fSAart Bik   // Convert external format to internal COO.
77920eaa88fSBixia Zheng   auto *tensor = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse);
7806438783fSAart Bik   std::vector<uint64_t> idx(rank);
7816438783fSAart Bik   for (uint64_t i = 0, base = 0; i < nse; i++) {
7826438783fSAart Bik     for (uint64_t r = 0; r < rank; r++)
783d8b229a1SAart Bik       idx[perm[r]] = indices[base + r];
7846438783fSAart Bik     tensor->add(idx, values[i]);
7856438783fSAart Bik     base += rank;
7866438783fSAart Bik   }
7876438783fSAart Bik   // Return sparse tensor storage format as opaque pointer.
7886438783fSAart Bik   return SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor(
78920eaa88fSBixia Zheng       rank, shape, perm, sparsity, tensor);
7906438783fSAart Bik }
7916438783fSAart Bik 
7926438783fSAart Bik /// Converts a sparse tensor to an external COO-flavored format.
7936438783fSAart Bik template <typename V>
794*46bdacaaSwren romano static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse,
795*46bdacaaSwren romano                                  uint64_t **pShape, V **pValues,
796*46bdacaaSwren romano                                  uint64_t **pIndices) {
7976438783fSAart Bik   auto sparseTensor =
7986438783fSAart Bik       static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor);
7996438783fSAart Bik   uint64_t rank = sparseTensor->getRank();
8006438783fSAart Bik   std::vector<uint64_t> perm(rank);
8016438783fSAart Bik   std::iota(perm.begin(), perm.end(), 0);
8026438783fSAart Bik   SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data());
8036438783fSAart Bik 
8046438783fSAart Bik   const std::vector<Element<V>> &elements = coo->getElements();
8056438783fSAart Bik   uint64_t nse = elements.size();
8066438783fSAart Bik 
8076438783fSAart Bik   uint64_t *shape = new uint64_t[rank];
8086438783fSAart Bik   for (uint64_t i = 0; i < rank; i++)
8096438783fSAart Bik     shape[i] = coo->getSizes()[i];
8106438783fSAart Bik 
8116438783fSAart Bik   V *values = new V[nse];
8126438783fSAart Bik   uint64_t *indices = new uint64_t[rank * nse];
8136438783fSAart Bik 
8146438783fSAart Bik   for (uint64_t i = 0, base = 0; i < nse; i++) {
8156438783fSAart Bik     values[i] = elements[i].value;
8166438783fSAart Bik     for (uint64_t j = 0; j < rank; j++)
8176438783fSAart Bik       indices[base + j] = elements[i].indices[j];
8186438783fSAart Bik     base += rank;
8196438783fSAart Bik   }
8206438783fSAart Bik 
8216438783fSAart Bik   delete coo;
8226438783fSAart Bik   *pRank = rank;
8236438783fSAart Bik   *pNse = nse;
8246438783fSAart Bik   *pShape = shape;
8256438783fSAart Bik   *pValues = values;
8266438783fSAart Bik   *pIndices = indices;
827efa15f41SAart Bik }
828efa15f41SAart Bik 
829be0a7e9fSMehdi Amini } // namespace
8308a91bc7bSHarrietAkot 
8318a91bc7bSHarrietAkot extern "C" {
8328a91bc7bSHarrietAkot 
8338a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
8348a91bc7bSHarrietAkot //
8358a91bc7bSHarrietAkot // Public API with methods that operate on MLIR buffers (memrefs) to interact
8368a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally.
8378a91bc7bSHarrietAkot // These methods should be used exclusively by MLIR compiler-generated code.
8388a91bc7bSHarrietAkot //
8398a91bc7bSHarrietAkot // Some macro magic is used to generate implementations for all required type
8408a91bc7bSHarrietAkot // combinations that can be called from MLIR compiler-generated code.
8418a91bc7bSHarrietAkot //
8428a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
8438a91bc7bSHarrietAkot 
8448a91bc7bSHarrietAkot #define CASE(p, i, v, P, I, V)                                                 \
8458a91bc7bSHarrietAkot   if (ptrTp == (p) && indTp == (i) && valTp == (v)) {                          \
8468a91bc7bSHarrietAkot     SparseTensorCOO<V> *tensor = nullptr;                                      \
847845561ecSwren romano     if (action <= Action::kFromCOO) {                                          \
848845561ecSwren romano       if (action == Action::kFromFile) {                                       \
8498a91bc7bSHarrietAkot         char *filename = static_cast<char *>(ptr);                             \
8508a91bc7bSHarrietAkot         tensor = openSparseTensorCOO<V>(filename, rank, sizes, perm);          \
851845561ecSwren romano       } else if (action == Action::kFromCOO) {                                 \
8528a91bc7bSHarrietAkot         tensor = static_cast<SparseTensorCOO<V> *>(ptr);                       \
8538a91bc7bSHarrietAkot       } else {                                                                 \
854845561ecSwren romano         assert(action == Action::kEmpty);                                      \
8558a91bc7bSHarrietAkot       }                                                                        \
8568a91bc7bSHarrietAkot       return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm,  \
8578a91bc7bSHarrietAkot                                                            sparsity, tensor);  \
858bb56c2b3SMehdi Amini     }                                                                          \
859bb56c2b3SMehdi Amini     if (action == Action::kEmptyCOO)                                           \
8608a91bc7bSHarrietAkot       return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm);        \
8618a91bc7bSHarrietAkot     tensor = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm);    \
862845561ecSwren romano     if (action == Action::kToIterator) {                                       \
8638a91bc7bSHarrietAkot       tensor->startIterator();                                                 \
8648a91bc7bSHarrietAkot     } else {                                                                   \
865845561ecSwren romano       assert(action == Action::kToCOO);                                        \
8668a91bc7bSHarrietAkot     }                                                                          \
8678a91bc7bSHarrietAkot     return tensor;                                                             \
8688a91bc7bSHarrietAkot   }
8698a91bc7bSHarrietAkot 
870845561ecSwren romano #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
871845561ecSwren romano 
8728a91bc7bSHarrietAkot #define IMPL_SPARSEVALUES(NAME, TYPE, LIB)                                     \
8738a91bc7bSHarrietAkot   void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) {    \
8744f2ec7f9SAart Bik     assert(ref &&tensor);                                                      \
8758a91bc7bSHarrietAkot     std::vector<TYPE> *v;                                                      \
8768a91bc7bSHarrietAkot     static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v);                   \
8778a91bc7bSHarrietAkot     ref->basePtr = ref->data = v->data();                                      \
8788a91bc7bSHarrietAkot     ref->offset = 0;                                                           \
8798a91bc7bSHarrietAkot     ref->sizes[0] = v->size();                                                 \
8808a91bc7bSHarrietAkot     ref->strides[0] = 1;                                                       \
8818a91bc7bSHarrietAkot   }
8828a91bc7bSHarrietAkot 
8838a91bc7bSHarrietAkot #define IMPL_GETOVERHEAD(NAME, TYPE, LIB)                                      \
8848a91bc7bSHarrietAkot   void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor,      \
885d2215e79SRainer Orth                            index_type d) {                                     \
8864f2ec7f9SAart Bik     assert(ref &&tensor);                                                      \
8878a91bc7bSHarrietAkot     std::vector<TYPE> *v;                                                      \
8888a91bc7bSHarrietAkot     static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d);                \
8898a91bc7bSHarrietAkot     ref->basePtr = ref->data = v->data();                                      \
8908a91bc7bSHarrietAkot     ref->offset = 0;                                                           \
8918a91bc7bSHarrietAkot     ref->sizes[0] = v->size();                                                 \
8928a91bc7bSHarrietAkot     ref->strides[0] = 1;                                                       \
8938a91bc7bSHarrietAkot   }
8948a91bc7bSHarrietAkot 
8958a91bc7bSHarrietAkot #define IMPL_ADDELT(NAME, TYPE)                                                \
8968a91bc7bSHarrietAkot   void *_mlir_ciface_##NAME(void *tensor, TYPE value,                          \
897d2215e79SRainer Orth                             StridedMemRefType<index_type, 1> *iref,            \
898d2215e79SRainer Orth                             StridedMemRefType<index_type, 1> *pref) {          \
8994f2ec7f9SAart Bik     assert(tensor &&iref &&pref);                                              \
9008a91bc7bSHarrietAkot     assert(iref->strides[0] == 1 && pref->strides[0] == 1);                    \
9018a91bc7bSHarrietAkot     assert(iref->sizes[0] == pref->sizes[0]);                                  \
902d2215e79SRainer Orth     const index_type *indx = iref->data + iref->offset;                        \
903d2215e79SRainer Orth     const index_type *perm = pref->data + pref->offset;                        \
9048a91bc7bSHarrietAkot     uint64_t isize = iref->sizes[0];                                           \
905d2215e79SRainer Orth     std::vector<index_type> indices(isize);                                    \
9068a91bc7bSHarrietAkot     for (uint64_t r = 0; r < isize; r++)                                       \
9078a91bc7bSHarrietAkot       indices[perm[r]] = indx[r];                                              \
9088a91bc7bSHarrietAkot     static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value);         \
9098a91bc7bSHarrietAkot     return tensor;                                                             \
9108a91bc7bSHarrietAkot   }
9118a91bc7bSHarrietAkot 
9128a91bc7bSHarrietAkot #define IMPL_GETNEXT(NAME, V)                                                  \
913d2215e79SRainer Orth   bool _mlir_ciface_##NAME(void *tensor,                                       \
914d2215e79SRainer Orth                            StridedMemRefType<index_type, 1> *iref,             \
9158a91bc7bSHarrietAkot                            StridedMemRefType<V, 0> *vref) {                    \
9164f2ec7f9SAart Bik     assert(tensor &&iref &&vref);                                              \
9178a91bc7bSHarrietAkot     assert(iref->strides[0] == 1);                                             \
918d2215e79SRainer Orth     index_type *indx = iref->data + iref->offset;                              \
919c9f2beffSMehdi Amini     V *value = vref->data + vref->offset;                                      \
9208a91bc7bSHarrietAkot     const uint64_t isize = iref->sizes[0];                                     \
9218a91bc7bSHarrietAkot     auto iter = static_cast<SparseTensorCOO<V> *>(tensor);                     \
9228a91bc7bSHarrietAkot     const Element<V> *elem = iter->getNext();                                  \
9238a91bc7bSHarrietAkot     if (elem == nullptr) {                                                     \
9248a91bc7bSHarrietAkot       delete iter;                                                             \
9258a91bc7bSHarrietAkot       return false;                                                            \
9268a91bc7bSHarrietAkot     }                                                                          \
9278a91bc7bSHarrietAkot     for (uint64_t r = 0; r < isize; r++)                                       \
9288a91bc7bSHarrietAkot       indx[r] = elem->indices[r];                                              \
9298a91bc7bSHarrietAkot     *value = elem->value;                                                      \
9308a91bc7bSHarrietAkot     return true;                                                               \
9318a91bc7bSHarrietAkot   }
9328a91bc7bSHarrietAkot 
933f66e5769SAart Bik #define IMPL_LEXINSERT(NAME, V)                                                \
934d2215e79SRainer Orth   void _mlir_ciface_##NAME(void *tensor,                                       \
935d2215e79SRainer Orth                            StridedMemRefType<index_type, 1> *cref, V val) {    \
9364f2ec7f9SAart Bik     assert(tensor &&cref);                                                     \
937f66e5769SAart Bik     assert(cref->strides[0] == 1);                                             \
938d2215e79SRainer Orth     index_type *cursor = cref->data + cref->offset;                            \
939f66e5769SAart Bik     assert(cursor);                                                            \
940f66e5769SAart Bik     static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val);    \
941f66e5769SAart Bik   }
942f66e5769SAart Bik 
9434f2ec7f9SAart Bik #define IMPL_EXPINSERT(NAME, V)                                                \
9444f2ec7f9SAart Bik   void _mlir_ciface_##NAME(                                                    \
945d2215e79SRainer Orth       void *tensor, StridedMemRefType<index_type, 1> *cref,                    \
9464f2ec7f9SAart Bik       StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref,         \
947d2215e79SRainer Orth       StridedMemRefType<index_type, 1> *aref, index_type count) {              \
9484f2ec7f9SAart Bik     assert(tensor &&cref &&vref &&fref &&aref);                                \
9494f2ec7f9SAart Bik     assert(cref->strides[0] == 1);                                             \
9504f2ec7f9SAart Bik     assert(vref->strides[0] == 1);                                             \
9514f2ec7f9SAart Bik     assert(fref->strides[0] == 1);                                             \
9524f2ec7f9SAart Bik     assert(aref->strides[0] == 1);                                             \
9534f2ec7f9SAart Bik     assert(vref->sizes[0] == fref->sizes[0]);                                  \
954d2215e79SRainer Orth     index_type *cursor = cref->data + cref->offset;                            \
955c9f2beffSMehdi Amini     V *values = vref->data + vref->offset;                                     \
9564f2ec7f9SAart Bik     bool *filled = fref->data + fref->offset;                                  \
957d2215e79SRainer Orth     index_type *added = aref->data + aref->offset;                             \
9584f2ec7f9SAart Bik     static_cast<SparseTensorStorageBase *>(tensor)->expInsert(                 \
9594f2ec7f9SAart Bik         cursor, values, filled, added, count);                                 \
9604f2ec7f9SAart Bik   }
9614f2ec7f9SAart Bik 
962d2215e79SRainer Orth // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
963bc04a470Swren romano // can safely rewrite kIndex to kU64.  We make this assertion to guarantee
964bc04a470Swren romano // that this file cannot get out of sync with its header.
965d2215e79SRainer Orth static_assert(std::is_same<index_type, uint64_t>::value,
966d2215e79SRainer Orth               "Expected index_type == uint64_t");
967bc04a470Swren romano 
9688a91bc7bSHarrietAkot /// Constructs a new sparse tensor. This is the "swiss army knife"
9698a91bc7bSHarrietAkot /// method for materializing sparse tensors into the computation.
9708a91bc7bSHarrietAkot ///
971845561ecSwren romano /// Action:
9728a91bc7bSHarrietAkot /// kEmpty = returns empty storage to fill later
9738a91bc7bSHarrietAkot /// kFromFile = returns storage, where ptr contains filename to read
9748a91bc7bSHarrietAkot /// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
9758a91bc7bSHarrietAkot /// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
9768a91bc7bSHarrietAkot /// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
977845561ecSwren romano /// kToIterator = returns iterator from storage in ptr (call getNext() to use)
9788a91bc7bSHarrietAkot void *
979845561ecSwren romano _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
980d2215e79SRainer Orth                              StridedMemRefType<index_type, 1> *sref,
981d2215e79SRainer Orth                              StridedMemRefType<index_type, 1> *pref,
982845561ecSwren romano                              OverheadType ptrTp, OverheadType indTp,
983845561ecSwren romano                              PrimaryType valTp, Action action, void *ptr) {
9848a91bc7bSHarrietAkot   assert(aref && sref && pref);
9858a91bc7bSHarrietAkot   assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
9868a91bc7bSHarrietAkot          pref->strides[0] == 1);
9878a91bc7bSHarrietAkot   assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
988845561ecSwren romano   const DimLevelType *sparsity = aref->data + aref->offset;
989d2215e79SRainer Orth   const index_type *sizes = sref->data + sref->offset;
990d2215e79SRainer Orth   const index_type *perm = pref->data + pref->offset;
9918a91bc7bSHarrietAkot   uint64_t rank = aref->sizes[0];
9928a91bc7bSHarrietAkot 
993bc04a470Swren romano   // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
994bc04a470Swren romano   // This is safe because of the static_assert above.
995bc04a470Swren romano   if (ptrTp == OverheadType::kIndex)
996bc04a470Swren romano     ptrTp = OverheadType::kU64;
997bc04a470Swren romano   if (indTp == OverheadType::kIndex)
998bc04a470Swren romano     indTp = OverheadType::kU64;
999bc04a470Swren romano 
10008a91bc7bSHarrietAkot   // Double matrices with all combinations of overhead storage.
1001845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
1002845561ecSwren romano        uint64_t, double);
1003845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
1004845561ecSwren romano        uint32_t, double);
1005845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
1006845561ecSwren romano        uint16_t, double);
1007845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
1008845561ecSwren romano        uint8_t, double);
1009845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
1010845561ecSwren romano        uint64_t, double);
1011845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
1012845561ecSwren romano        uint32_t, double);
1013845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
1014845561ecSwren romano        uint16_t, double);
1015845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
1016845561ecSwren romano        uint8_t, double);
1017845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
1018845561ecSwren romano        uint64_t, double);
1019845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
1020845561ecSwren romano        uint32_t, double);
1021845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
1022845561ecSwren romano        uint16_t, double);
1023845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
1024845561ecSwren romano        uint8_t, double);
1025845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
1026845561ecSwren romano        uint64_t, double);
1027845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
1028845561ecSwren romano        uint32_t, double);
1029845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
1030845561ecSwren romano        uint16_t, double);
1031845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
1032845561ecSwren romano        uint8_t, double);
10338a91bc7bSHarrietAkot 
10348a91bc7bSHarrietAkot   // Float matrices with all combinations of overhead storage.
1035845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
1036845561ecSwren romano        uint64_t, float);
1037845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
1038845561ecSwren romano        uint32_t, float);
1039845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
1040845561ecSwren romano        uint16_t, float);
1041845561ecSwren romano   CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
1042845561ecSwren romano        uint8_t, float);
1043845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
1044845561ecSwren romano        uint64_t, float);
1045845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
1046845561ecSwren romano        uint32_t, float);
1047845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
1048845561ecSwren romano        uint16_t, float);
1049845561ecSwren romano   CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
1050845561ecSwren romano        uint8_t, float);
1051845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
1052845561ecSwren romano        uint64_t, float);
1053845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
1054845561ecSwren romano        uint32_t, float);
1055845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
1056845561ecSwren romano        uint16_t, float);
1057845561ecSwren romano   CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
1058845561ecSwren romano        uint8_t, float);
1059845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
1060845561ecSwren romano        uint64_t, float);
1061845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
1062845561ecSwren romano        uint32_t, float);
1063845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
1064845561ecSwren romano        uint16_t, float);
1065845561ecSwren romano   CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
1066845561ecSwren romano        uint8_t, float);
10678a91bc7bSHarrietAkot 
1068845561ecSwren romano   // Integral matrices with both overheads of the same type.
1069845561ecSwren romano   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
1070845561ecSwren romano   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
1071845561ecSwren romano   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
1072845561ecSwren romano   CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
1073845561ecSwren romano   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
1074845561ecSwren romano   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
1075845561ecSwren romano   CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
1076845561ecSwren romano   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
1077845561ecSwren romano   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
1078845561ecSwren romano   CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
1079845561ecSwren romano   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
1080845561ecSwren romano   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
1081845561ecSwren romano   CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
10828a91bc7bSHarrietAkot 
10838a91bc7bSHarrietAkot   // Unsupported case (add above if needed).
10848a91bc7bSHarrietAkot   fputs("unsupported combination of types\n", stderr);
10858a91bc7bSHarrietAkot   exit(1);
10868a91bc7bSHarrietAkot }
10878a91bc7bSHarrietAkot 
10888a91bc7bSHarrietAkot /// Methods that provide direct access to pointers.
1089d2215e79SRainer Orth IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers)
10908a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers)
10918a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers)
10928a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers)
10938a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers)
10948a91bc7bSHarrietAkot 
10958a91bc7bSHarrietAkot /// Methods that provide direct access to indices.
1096d2215e79SRainer Orth IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices)
10978a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices)
10988a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices)
10998a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices)
11008a91bc7bSHarrietAkot IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices)
11018a91bc7bSHarrietAkot 
11028a91bc7bSHarrietAkot /// Methods that provide direct access to values.
11038a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF64, double, getValues)
11048a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesF32, float, getValues)
11058a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues)
11068a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues)
11078a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues)
11088a91bc7bSHarrietAkot IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues)
11098a91bc7bSHarrietAkot 
11108a91bc7bSHarrietAkot /// Helper to add value to coordinate scheme, one per value type.
11118a91bc7bSHarrietAkot IMPL_ADDELT(addEltF64, double)
11128a91bc7bSHarrietAkot IMPL_ADDELT(addEltF32, float)
11138a91bc7bSHarrietAkot IMPL_ADDELT(addEltI64, int64_t)
11148a91bc7bSHarrietAkot IMPL_ADDELT(addEltI32, int32_t)
11158a91bc7bSHarrietAkot IMPL_ADDELT(addEltI16, int16_t)
11168a91bc7bSHarrietAkot IMPL_ADDELT(addEltI8, int8_t)
11178a91bc7bSHarrietAkot 
11188a91bc7bSHarrietAkot /// Helper to enumerate elements of coordinate scheme, one per value type.
11198a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF64, double)
11208a91bc7bSHarrietAkot IMPL_GETNEXT(getNextF32, float)
11218a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI64, int64_t)
11228a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI32, int32_t)
11238a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI16, int16_t)
11248a91bc7bSHarrietAkot IMPL_GETNEXT(getNextI8, int8_t)
11258a91bc7bSHarrietAkot 
11266438783fSAart Bik /// Insert elements in lexicographical index order, one per value type.
1127f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF64, double)
1128f66e5769SAart Bik IMPL_LEXINSERT(lexInsertF32, float)
1129f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI64, int64_t)
1130f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI32, int32_t)
1131f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI16, int16_t)
1132f66e5769SAart Bik IMPL_LEXINSERT(lexInsertI8, int8_t)
1133f66e5769SAart Bik 
11346438783fSAart Bik /// Insert using expansion, one per value type.
11354f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF64, double)
11364f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertF32, float)
11374f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI64, int64_t)
11384f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI32, int32_t)
11394f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI16, int16_t)
11404f2ec7f9SAart Bik IMPL_EXPINSERT(expInsertI8, int8_t)
11414f2ec7f9SAart Bik 
11428a91bc7bSHarrietAkot #undef CASE
11438a91bc7bSHarrietAkot #undef IMPL_SPARSEVALUES
11448a91bc7bSHarrietAkot #undef IMPL_GETOVERHEAD
11458a91bc7bSHarrietAkot #undef IMPL_ADDELT
11468a91bc7bSHarrietAkot #undef IMPL_GETNEXT
11474f2ec7f9SAart Bik #undef IMPL_LEXINSERT
11484f2ec7f9SAart Bik #undef IMPL_EXPINSERT
11496438783fSAart Bik 
11506438783fSAart Bik /// Output a sparse tensor, one per value type.
11516438783fSAart Bik void outSparseTensorF64(void *tensor, void *dest, bool sort) {
11526438783fSAart Bik   return outSparseTensor<double>(tensor, dest, sort);
11536438783fSAart Bik }
11546438783fSAart Bik void outSparseTensorF32(void *tensor, void *dest, bool sort) {
11556438783fSAart Bik   return outSparseTensor<float>(tensor, dest, sort);
11566438783fSAart Bik }
11576438783fSAart Bik void outSparseTensorI64(void *tensor, void *dest, bool sort) {
11586438783fSAart Bik   return outSparseTensor<int64_t>(tensor, dest, sort);
11596438783fSAart Bik }
11606438783fSAart Bik void outSparseTensorI32(void *tensor, void *dest, bool sort) {
11616438783fSAart Bik   return outSparseTensor<int32_t>(tensor, dest, sort);
11626438783fSAart Bik }
11636438783fSAart Bik void outSparseTensorI16(void *tensor, void *dest, bool sort) {
11646438783fSAart Bik   return outSparseTensor<int16_t>(tensor, dest, sort);
11656438783fSAart Bik }
11666438783fSAart Bik void outSparseTensorI8(void *tensor, void *dest, bool sort) {
11676438783fSAart Bik   return outSparseTensor<int8_t>(tensor, dest, sort);
11686438783fSAart Bik }
11698a91bc7bSHarrietAkot 
11708a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
11718a91bc7bSHarrietAkot //
11728a91bc7bSHarrietAkot // Public API with methods that accept C-style data structures to interact
11738a91bc7bSHarrietAkot // with sparse tensors, which are only visible as opaque pointers externally.
11748a91bc7bSHarrietAkot // These methods can be used both by MLIR compiler-generated code as well as by
11758a91bc7bSHarrietAkot // an external runtime that wants to interact with MLIR compiler-generated code.
11768a91bc7bSHarrietAkot //
11778a91bc7bSHarrietAkot //===----------------------------------------------------------------------===//
11788a91bc7bSHarrietAkot 
11798a91bc7bSHarrietAkot /// Helper method to read a sparse tensor filename from the environment,
11808a91bc7bSHarrietAkot /// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
1181d2215e79SRainer Orth char *getTensorFilename(index_type id) {
11828a91bc7bSHarrietAkot   char var[80];
11838a91bc7bSHarrietAkot   sprintf(var, "TENSOR%" PRIu64, id);
11848a91bc7bSHarrietAkot   char *env = getenv(var);
11853734c078Swren romano   if (!env) {
11863734c078Swren romano     fprintf(stderr, "Environment variable %s is not set\n", var);
11873734c078Swren romano     exit(1);
11883734c078Swren romano   }
11898a91bc7bSHarrietAkot   return env;
11908a91bc7bSHarrietAkot }
11918a91bc7bSHarrietAkot 
11928a91bc7bSHarrietAkot /// Returns size of sparse tensor in given dimension.
1193d2215e79SRainer Orth index_type sparseDimSize(void *tensor, index_type d) {
11948a91bc7bSHarrietAkot   return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
11958a91bc7bSHarrietAkot }
11968a91bc7bSHarrietAkot 
1197f66e5769SAart Bik /// Finalizes lexicographic insertions.
1198f66e5769SAart Bik void endInsert(void *tensor) {
1199f66e5769SAart Bik   return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
1200f66e5769SAart Bik }
1201f66e5769SAart Bik 
12028a91bc7bSHarrietAkot /// Releases sparse tensor storage.
12038a91bc7bSHarrietAkot void delSparseTensor(void *tensor) {
12048a91bc7bSHarrietAkot   delete static_cast<SparseTensorStorageBase *>(tensor);
12058a91bc7bSHarrietAkot }
12068a91bc7bSHarrietAkot 
12078a91bc7bSHarrietAkot /// Initializes sparse tensor from a COO-flavored format expressed using C-style
12088a91bc7bSHarrietAkot /// data structures. The expected parameters are:
12098a91bc7bSHarrietAkot ///
12108a91bc7bSHarrietAkot ///   rank:    rank of tensor
12118a91bc7bSHarrietAkot ///   nse:     number of specified elements (usually the nonzeros)
12128a91bc7bSHarrietAkot ///   shape:   array with dimension size for each rank
12138a91bc7bSHarrietAkot ///   values:  a "nse" array with values for all specified elements
12148a91bc7bSHarrietAkot ///   indices: a flat "nse x rank" array with indices for all specified elements
121520eaa88fSBixia Zheng ///   perm:    the permutation of the dimensions in the storage
121620eaa88fSBixia Zheng ///   sparse:  the sparsity for the dimensions
12178a91bc7bSHarrietAkot ///
12188a91bc7bSHarrietAkot /// For example, the sparse matrix
12198a91bc7bSHarrietAkot ///     | 1.0 0.0 0.0 |
12208a91bc7bSHarrietAkot ///     | 0.0 5.0 3.0 |
12218a91bc7bSHarrietAkot /// can be passed as
12228a91bc7bSHarrietAkot ///      rank    = 2
12238a91bc7bSHarrietAkot ///      nse     = 3
12248a91bc7bSHarrietAkot ///      shape   = [2, 3]
12258a91bc7bSHarrietAkot ///      values  = [1.0, 5.0, 3.0]
12268a91bc7bSHarrietAkot ///      indices = [ 0, 0,  1, 1,  1, 2]
12278a91bc7bSHarrietAkot //
122820eaa88fSBixia Zheng // TODO: generalize beyond 64-bit indices.
12298a91bc7bSHarrietAkot //
12306438783fSAart Bik void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape,
123120eaa88fSBixia Zheng                                    double *values, uint64_t *indices,
123220eaa88fSBixia Zheng                                    uint64_t *perm, uint8_t *sparse) {
123320eaa88fSBixia Zheng   return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm,
123420eaa88fSBixia Zheng                                     sparse);
12358a91bc7bSHarrietAkot }
12366438783fSAart Bik void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape,
123720eaa88fSBixia Zheng                                    float *values, uint64_t *indices,
123820eaa88fSBixia Zheng                                    uint64_t *perm, uint8_t *sparse) {
123920eaa88fSBixia Zheng   return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm,
124020eaa88fSBixia Zheng                                    sparse);
12418a91bc7bSHarrietAkot }
12428a91bc7bSHarrietAkot 
12432f49e6b0SBixia Zheng /// Converts a sparse tensor to COO-flavored format expressed using C-style
12442f49e6b0SBixia Zheng /// data structures. The expected output parameters are pointers for these
12452f49e6b0SBixia Zheng /// values:
12462f49e6b0SBixia Zheng ///
12472f49e6b0SBixia Zheng ///   rank:    rank of tensor
12482f49e6b0SBixia Zheng ///   nse:     number of specified elements (usually the nonzeros)
12492f49e6b0SBixia Zheng ///   shape:   array with dimension size for each rank
12502f49e6b0SBixia Zheng ///   values:  a "nse" array with values for all specified elements
12512f49e6b0SBixia Zheng ///   indices: a flat "nse x rank" array with indices for all specified elements
12522f49e6b0SBixia Zheng ///
12532f49e6b0SBixia Zheng /// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
12542f49e6b0SBixia Zheng /// from convertToMLIRSparseTensor.
12552f49e6b0SBixia Zheng ///
12562f49e6b0SBixia Zheng //  TODO: Currently, values are copied from SparseTensorStorage to
12572f49e6b0SBixia Zheng //  SparseTensorCOO, then to the output. We may want to reduce the number of
12582f49e6b0SBixia Zheng //  copies.
12592f49e6b0SBixia Zheng //
12606438783fSAart Bik // TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions
12616438783fSAart Bik // compressed
12622f49e6b0SBixia Zheng //
12636438783fSAart Bik void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank,
12646438783fSAart Bik                                     uint64_t *pNse, uint64_t **pShape,
12656438783fSAart Bik                                     double **pValues, uint64_t **pIndices) {
12666438783fSAart Bik   fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices);
12672f49e6b0SBixia Zheng }
12686438783fSAart Bik void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank,
12696438783fSAart Bik                                     uint64_t *pNse, uint64_t **pShape,
12706438783fSAart Bik                                     float **pValues, uint64_t **pIndices) {
12716438783fSAart Bik   fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices);
12722f49e6b0SBixia Zheng }
1273efa15f41SAart Bik 
12748a91bc7bSHarrietAkot } // extern "C"
12758a91bc7bSHarrietAkot 
12768a91bc7bSHarrietAkot #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
1277