1 //===- AsyncRuntime.cpp - Async runtime reference implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic Async runtime API for supporting Async dialect 10 // to LLVM dialect lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/ExecutionEngine/AsyncRuntime.h" 15 16 #ifdef MLIR_ASYNCRUNTIME_DEFINE_FUNCTIONS 17 18 #include <atomic> 19 #include <cassert> 20 #include <condition_variable> 21 #include <functional> 22 #include <iostream> 23 #include <mutex> 24 #include <thread> 25 #include <vector> 26 27 //===----------------------------------------------------------------------===// 28 // Async runtime API. 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 33 // Forward declare class defined below. 34 class RefCounted; 35 36 // -------------------------------------------------------------------------- // 37 // AsyncRuntime orchestrates all async operations and Async runtime API is built 38 // on top of the default runtime instance. 39 // -------------------------------------------------------------------------- // 40 41 class AsyncRuntime { 42 public: 43 AsyncRuntime() : numRefCountedObjects(0) {} 44 45 ~AsyncRuntime() { 46 assert(getNumRefCountedObjects() == 0 && 47 "all ref counted objects must be destroyed"); 48 } 49 50 int32_t getNumRefCountedObjects() { 51 return numRefCountedObjects.load(std::memory_order_relaxed); 52 } 53 54 private: 55 friend class RefCounted; 56 57 // Count the total number of reference counted objects in this instance 58 // of an AsyncRuntime. For debugging purposes only. 59 void addNumRefCountedObjects() { 60 numRefCountedObjects.fetch_add(1, std::memory_order_relaxed); 61 } 62 void dropNumRefCountedObjects() { 63 numRefCountedObjects.fetch_sub(1, std::memory_order_relaxed); 64 } 65 66 std::atomic<int32_t> numRefCountedObjects; 67 }; 68 69 // Returns the default per-process instance of an async runtime. 70 AsyncRuntime *getDefaultAsyncRuntimeInstance() { 71 static auto runtime = std::make_unique<AsyncRuntime>(); 72 return runtime.get(); 73 } 74 75 // -------------------------------------------------------------------------- // 76 // A base class for all reference counted objects created by the async runtime. 77 // -------------------------------------------------------------------------- // 78 79 class RefCounted { 80 public: 81 RefCounted(AsyncRuntime *runtime, int32_t refCount = 1) 82 : runtime(runtime), refCount(refCount) { 83 runtime->addNumRefCountedObjects(); 84 } 85 86 virtual ~RefCounted() { 87 assert(refCount.load() == 0 && "reference count must be zero"); 88 runtime->dropNumRefCountedObjects(); 89 } 90 91 RefCounted(const RefCounted &) = delete; 92 RefCounted &operator=(const RefCounted &) = delete; 93 94 void addRef(int32_t count = 1) { refCount.fetch_add(count); } 95 96 void dropRef(int32_t count = 1) { 97 int32_t previous = refCount.fetch_sub(count); 98 assert(previous >= count && "reference count should not go below zero"); 99 if (previous == count) 100 destroy(); 101 } 102 103 protected: 104 virtual void destroy() { delete this; } 105 106 private: 107 AsyncRuntime *runtime; 108 std::atomic<int32_t> refCount; 109 }; 110 111 } // namespace 112 113 struct AsyncToken : public RefCounted { 114 // AsyncToken created with a reference count of 2 because it will be returned 115 // to the `async.execute` caller and also will be later on emplaced by the 116 // asynchronously executed task. If the caller immediately will drop its 117 // reference we must ensure that the token will be alive until the 118 // asynchronous operation is completed. 119 AsyncToken(AsyncRuntime *runtime) : RefCounted(runtime, /*count=*/2) {} 120 121 // Internal state below guarded by a mutex. 122 std::mutex mu; 123 std::condition_variable cv; 124 125 bool ready = false; 126 std::vector<std::function<void()>> awaiters; 127 }; 128 129 struct AsyncGroup : public RefCounted { 130 AsyncGroup(AsyncRuntime *runtime) 131 : RefCounted(runtime), pendingTokens(0), rank(0) {} 132 133 std::atomic<int> pendingTokens; 134 std::atomic<int> rank; 135 136 // Internal state below guarded by a mutex. 137 std::mutex mu; 138 std::condition_variable cv; 139 140 std::vector<std::function<void()>> awaiters; 141 }; 142 143 // Adds references to reference counted runtime object. 144 extern "C" void mlirAsyncRuntimeAddRef(RefCountedObjPtr ptr, int32_t count) { 145 RefCounted *refCounted = static_cast<RefCounted *>(ptr); 146 refCounted->addRef(count); 147 } 148 149 // Drops references from reference counted runtime object. 150 extern "C" void mlirAsyncRuntimeDropRef(RefCountedObjPtr ptr, int32_t count) { 151 RefCounted *refCounted = static_cast<RefCounted *>(ptr); 152 refCounted->dropRef(count); 153 } 154 155 // Create a new `async.token` in not-ready state. 156 extern "C" AsyncToken *mlirAsyncRuntimeCreateToken() { 157 AsyncToken *token = new AsyncToken(getDefaultAsyncRuntimeInstance()); 158 return token; 159 } 160 161 // Create a new `async.group` in empty state. 162 extern "C" AsyncGroup *mlirAsyncRuntimeCreateGroup() { 163 AsyncGroup *group = new AsyncGroup(getDefaultAsyncRuntimeInstance()); 164 return group; 165 } 166 167 extern "C" int64_t mlirAsyncRuntimeAddTokenToGroup(AsyncToken *token, 168 AsyncGroup *group) { 169 std::unique_lock<std::mutex> lockToken(token->mu); 170 std::unique_lock<std::mutex> lockGroup(group->mu); 171 172 // Get the rank of the token inside the group before we drop the reference. 173 int rank = group->rank.fetch_add(1); 174 group->pendingTokens.fetch_add(1); 175 176 auto onTokenReady = [group]() { 177 // Run all group awaiters if it was the last token in the group. 178 if (group->pendingTokens.fetch_sub(1) == 1) { 179 group->cv.notify_all(); 180 for (auto &awaiter : group->awaiters) 181 awaiter(); 182 } 183 }; 184 185 if (token->ready) { 186 // Update group pending tokens immediately and maybe run awaiters. 187 onTokenReady(); 188 189 } else { 190 // Update group pending tokens when token will become ready. Because this 191 // will happen asynchronously we must ensure that `group` is alive until 192 // then, and re-ackquire the lock. 193 group->addRef(); 194 195 token->awaiters.push_back([group, onTokenReady]() { 196 // Make sure that `dropRef` does not destroy the mutex owned by the lock. 197 { 198 std::unique_lock<std::mutex> lockGroup(group->mu); 199 onTokenReady(); 200 } 201 group->dropRef(); 202 }); 203 } 204 205 return rank; 206 } 207 208 // Switches `async.token` to ready state and runs all awaiters. 209 extern "C" void mlirAsyncRuntimeEmplaceToken(AsyncToken *token) { 210 // Make sure that `dropRef` does not destroy the mutex owned by the lock. 211 { 212 std::unique_lock<std::mutex> lock(token->mu); 213 token->ready = true; 214 token->cv.notify_all(); 215 for (auto &awaiter : token->awaiters) 216 awaiter(); 217 } 218 219 // Async tokens created with a ref count `2` to keep token alive until the 220 // async task completes. Drop this reference explicitly when token emplaced. 221 token->dropRef(); 222 } 223 224 extern "C" void mlirAsyncRuntimeAwaitToken(AsyncToken *token) { 225 std::unique_lock<std::mutex> lock(token->mu); 226 if (!token->ready) 227 token->cv.wait(lock, [token] { return token->ready; }); 228 } 229 230 extern "C" void mlirAsyncRuntimeAwaitAllInGroup(AsyncGroup *group) { 231 std::unique_lock<std::mutex> lock(group->mu); 232 if (group->pendingTokens != 0) 233 group->cv.wait(lock, [group] { return group->pendingTokens == 0; }); 234 } 235 236 extern "C" void mlirAsyncRuntimeExecute(CoroHandle handle, CoroResume resume) { 237 (*resume)(handle); 238 } 239 240 extern "C" void mlirAsyncRuntimeAwaitTokenAndExecute(AsyncToken *token, 241 CoroHandle handle, 242 CoroResume resume) { 243 std::unique_lock<std::mutex> lock(token->mu); 244 auto execute = [handle, resume]() { (*resume)(handle); }; 245 if (token->ready) 246 execute(); 247 else 248 token->awaiters.push_back([execute]() { execute(); }); 249 } 250 251 extern "C" void mlirAsyncRuntimeAwaitAllInGroupAndExecute(AsyncGroup *group, 252 CoroHandle handle, 253 CoroResume resume) { 254 std::unique_lock<std::mutex> lock(group->mu); 255 auto execute = [handle, resume]() { (*resume)(handle); }; 256 if (group->pendingTokens == 0) 257 execute(); 258 else 259 group->awaiters.push_back([execute]() { execute(); }); 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Small async runtime support library for testing. 264 //===----------------------------------------------------------------------===// 265 266 extern "C" void mlirAsyncRuntimePrintCurrentThreadId() { 267 static thread_local std::thread::id thisId = std::this_thread::get_id(); 268 std::cout << "Current thread id: " << thisId << std::endl; 269 } 270 271 #endif // MLIR_ASYNCRUNTIME_DEFINE_FUNCTIONS 272