1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
14 
15 #include <type_traits>
16 
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
19 #include "mlir/Dialect/Linalg/IR/Linalg.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
23 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
24 #include "mlir/IR/ImplicitLocOpBuilder.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Interfaces/VectorInterfaces.h"
28 
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 #define DEBUG_TYPE "vector-to-vector"
37 
38 using namespace mlir;
39 using namespace mlir::vector;
40 
41 // Helper to find an index in an affine map.
42 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
43   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
44     int64_t idx = map.getDimPosition(i);
45     if (idx == index)
46       return i;
47   }
48   return None;
49 }
50 
51 // Helper to construct iterator types with one index removed.
52 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
53                                             int64_t index) {
54   SmallVector<Attribute, 4> results;
55   for (const auto &it : llvm::enumerate(iteratorTypes)) {
56     int64_t idx = it.index();
57     if (idx == index)
58       continue;
59     results.push_back(it.value());
60   }
61   return results;
62 }
63 
64 // Helper to construct an affine map with one index removed.
65 static AffineMap adjustMap(AffineMap map, int64_t index,
66                            PatternRewriter &rewriter) {
67   auto *ctx = rewriter.getContext();
68   SmallVector<AffineExpr, 4> results;
69   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
70     int64_t idx = map.getDimPosition(i);
71     if (idx == index)
72       continue;
73     // Re-insert remaining indices, but renamed when occurring
74     // after the removed index.
75     auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
76     results.push_back(targetExpr);
77   }
78   return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
79 }
80 
81 // Helper method to possibly drop a dimension in a load.
82 // TODO
83 static Value reshapeLoad(Location loc, Value val, VectorType type,
84                          int64_t index, int64_t pos,
85                          PatternRewriter &rewriter) {
86   if (index == -1)
87     return val;
88   Type lowType = VectorType::Builder(type).dropDim(0);
89   // At extraction dimension?
90   if (index == 0) {
91     auto posAttr = rewriter.getI64ArrayAttr(pos);
92     return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
93   }
94   // Unroll leading dimensions.
95   VectorType vType = lowType.cast<VectorType>();
96   Type resType = VectorType::Builder(type).dropDim(index);
97   auto resVectorType = resType.cast<VectorType>();
98   Value result = rewriter.create<arith::ConstantOp>(
99       loc, resVectorType, rewriter.getZeroAttr(resVectorType));
100   for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
101     auto posAttr = rewriter.getI64ArrayAttr(d);
102     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
103     Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
104     result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
105                                                posAttr);
106   }
107   return result;
108 }
109 
110 // Helper method to possibly drop a dimension in a store.
111 // TODO
112 static Value reshapeStore(Location loc, Value val, Value result,
113                           VectorType type, int64_t index, int64_t pos,
114                           PatternRewriter &rewriter) {
115   // Unmodified?
116   if (index == -1)
117     return val;
118   // At insertion dimension?
119   if (index == 0) {
120     auto posAttr = rewriter.getI64ArrayAttr(pos);
121     return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
122   }
123   // Unroll leading dimensions.
124   Type lowType = VectorType::Builder(type).dropDim(0);
125   VectorType vType = lowType.cast<VectorType>();
126   Type insType = VectorType::Builder(vType).dropDim(0);
127   for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
128     auto posAttr = rewriter.getI64ArrayAttr(d);
129     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
130     Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
131     Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
132     result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
133   }
134   return result;
135 }
136 
137 template <typename IntType>
138 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
139   return llvm::to_vector<4>(llvm::map_range(
140       arrayAttr.getAsRange<IntegerAttr>(),
141       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
142 }
143 
144 namespace {
145 
146 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
147 //
148 // Example:
149 //
150 //  The following MLIR with cancelling ShapeCastOps:
151 //
152 //   %0 = source : vector<5x4x2xf32>
153 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
154 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
155 //   %3 = user %2 : vector<5x4x2xf32>
156 //
157 //  Should canonicalize to the following:
158 //
159 //   %0 = source : vector<5x4x2xf32>
160 //   %1 = user %0 : vector<5x4x2xf32>
161 //
162 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
163   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
164 
165   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
166                                 PatternRewriter &rewriter) const override {
167     // Check if 'shapeCastOp' has vector source/result type.
168     auto sourceVectorType =
169         shapeCastOp.source().getType().dyn_cast_or_null<VectorType>();
170     auto resultVectorType =
171         shapeCastOp.result().getType().dyn_cast_or_null<VectorType>();
172     if (!sourceVectorType || !resultVectorType)
173       return failure();
174 
175     // Check if shape cast op source operand is also a shape cast op.
176     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
177         shapeCastOp.source().getDefiningOp());
178     if (!sourceShapeCastOp)
179       return failure();
180     auto operandSourceVectorType =
181         sourceShapeCastOp.source().getType().cast<VectorType>();
182     auto operandResultVectorType = sourceShapeCastOp.getType();
183 
184     // Check if shape cast operations invert each other.
185     if (operandSourceVectorType != resultVectorType ||
186         operandResultVectorType != sourceVectorType)
187       return failure();
188 
189     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source());
190     return success();
191   }
192 };
193 
194 /// Progressive lowering of BroadcastOp.
195 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
196 public:
197   using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
198 
199   LogicalResult matchAndRewrite(vector::BroadcastOp op,
200                                 PatternRewriter &rewriter) const override {
201     auto loc = op.getLoc();
202     VectorType dstType = op.getVectorType();
203     VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
204     Type eltType = dstType.getElementType();
205 
206     // Scalar to any vector can use splat.
207     if (!srcType) {
208       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.source());
209       return success();
210     }
211 
212     // Determine rank of source and destination.
213     int64_t srcRank = srcType.getRank();
214     int64_t dstRank = dstType.getRank();
215 
216     // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
217     if (srcRank <= 1 && dstRank == 1) {
218       Value ext;
219       if (srcRank == 0)
220         ext = rewriter.create<vector::ExtractElementOp>(loc, op.source());
221       else
222         ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
223       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext);
224       return success();
225     }
226 
227     // Duplicate this rank.
228     // For example:
229     //   %x = broadcast %y  : k-D to n-D, k < n
230     // becomes:
231     //   %b = broadcast %y  : k-D to (n-1)-D
232     //   %x = [%b,%b,%b,%b] : n-D
233     // becomes:
234     //   %b = [%y,%y]       : (n-1)-D
235     //   %x = [%b,%b,%b,%b] : n-D
236     if (srcRank < dstRank) {
237       // Duplication.
238       VectorType resType =
239           VectorType::get(dstType.getShape().drop_front(), eltType);
240       Value bcst =
241           rewriter.create<vector::BroadcastOp>(loc, resType, op.source());
242       Value result = rewriter.create<arith::ConstantOp>(
243           loc, dstType, rewriter.getZeroAttr(dstType));
244       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
245         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
246       rewriter.replaceOp(op, result);
247       return success();
248     }
249 
250     // Find non-matching dimension, if any.
251     assert(srcRank == dstRank);
252     int64_t m = -1;
253     for (int64_t r = 0; r < dstRank; r++)
254       if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
255         m = r;
256         break;
257       }
258 
259     // All trailing dimensions are the same. Simply pass through.
260     if (m == -1) {
261       rewriter.replaceOp(op, op.source());
262       return success();
263     }
264 
265     // Any non-matching dimension forces a stretch along this rank.
266     // For example:
267     //   %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
268     // becomes:
269     //   %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
270     //   %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
271     //   %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
272     //   %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
273     //   %x = [%a,%b,%c,%d]
274     // becomes:
275     //   %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
276     //   %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
277     //   %a = [%u, %v]
278     //   ..
279     //   %x = [%a,%b,%c,%d]
280     VectorType resType =
281         VectorType::get(dstType.getShape().drop_front(), eltType);
282     Value result = rewriter.create<arith::ConstantOp>(
283         loc, dstType, rewriter.getZeroAttr(dstType));
284     if (m == 0) {
285       // Stetch at start.
286       Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
287       Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
288       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
289         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
290     } else {
291       // Stetch not at start.
292       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
293         Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), d);
294         Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
295         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
296       }
297     }
298     rewriter.replaceOp(op, result);
299     return success();
300   }
301 };
302 
303 /// Return the number of leftmost dimensions from the first rightmost transposed
304 /// dimension found in 'transpose'.
305 size_t getNumDimsFromFirstTransposedDim(ArrayRef<int64_t> transpose) {
306   size_t numTransposedDims = transpose.size();
307   for (size_t transpDim : llvm::reverse(transpose)) {
308     if (transpDim != numTransposedDims - 1)
309       break;
310     numTransposedDims--;
311   }
312   return numTransposedDims;
313 }
314 
315 /// Progressive lowering of TransposeOp.
316 /// One:
317 ///   %x = vector.transpose %y, [1, 0]
318 /// is replaced by:
319 ///   %z = arith.constant dense<0.000000e+00>
320 ///   %0 = vector.extract %y[0, 0]
321 ///   %1 = vector.insert %0, %z [0, 0]
322 ///   ..
323 ///   %x = vector.insert .., .. [.., ..]
324 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
325 public:
326   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
327 
328   TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
329                       MLIRContext *context)
330       : OpRewritePattern<vector::TransposeOp>(context),
331         vectorTransformOptions(vectorTransformOptions) {}
332 
333   LogicalResult matchAndRewrite(vector::TransposeOp op,
334                                 PatternRewriter &rewriter) const override {
335     auto loc = op.getLoc();
336 
337     VectorType resType = op.getResultType();
338 
339     // Set up convenience transposition table.
340     SmallVector<int64_t, 4> transp;
341     for (auto attr : op.transp())
342       transp.push_back(attr.cast<IntegerAttr>().getInt());
343 
344     if (vectorTransformOptions.vectorTransposeLowering ==
345             vector::VectorTransposeLowering::Shuffle &&
346         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0)
347       return rewriter.notifyMatchFailure(
348           op, "Options specifies lowering to shuffle");
349 
350     // Handle a true 2-D matrix transpose differently when requested.
351     if (vectorTransformOptions.vectorTransposeLowering ==
352             vector::VectorTransposeLowering::Flat &&
353         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
354       Type flattenedType =
355           VectorType::get(resType.getNumElements(), resType.getElementType());
356       auto matrix =
357           rewriter.create<vector::ShapeCastOp>(loc, flattenedType, op.vector());
358       auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
359       auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
360       Value trans = rewriter.create<vector::FlatTransposeOp>(
361           loc, flattenedType, matrix, rows, columns);
362       rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
363       return success();
364     }
365 
366     // Generate unrolled extract/insert ops. We do not unroll the rightmost
367     // (i.e., highest-order) dimensions that are not transposed and leave them
368     // in vector form to improve performance.
369     size_t numLeftmostTransposedDims = getNumDimsFromFirstTransposedDim(transp);
370 
371     // The type of the extract operation will be scalar if all the dimensions
372     // are unrolled. Otherwise, it will be a vector with the shape of the
373     // dimensions that are not transposed.
374     Type extractType =
375         numLeftmostTransposedDims == transp.size()
376             ? resType.getElementType()
377             : VectorType::Builder(resType).setShape(
378                   resType.getShape().drop_front(numLeftmostTransposedDims));
379 
380     Value result = rewriter.create<arith::ConstantOp>(
381         loc, resType, rewriter.getZeroAttr(resType));
382     SmallVector<int64_t, 4> lhs(numLeftmostTransposedDims, 0);
383     SmallVector<int64_t, 4> rhs(numLeftmostTransposedDims, 0);
384     rewriter.replaceOp(op, expandIndices(loc, resType, extractType, 0,
385                                          numLeftmostTransposedDims, transp, lhs,
386                                          rhs, op.vector(), result, rewriter));
387     return success();
388   }
389 
390 private:
391   // Builds the indices arrays for the lhs and rhs. Generates the extract/insert
392   // operations when all the ranks go over the last dimension being transposed.
393   Value expandIndices(Location loc, VectorType resType, Type extractType,
394                       int64_t pos, int64_t numLeftmostTransposedDims,
395                       SmallVector<int64_t, 4> &transp,
396                       SmallVector<int64_t, 4> &lhs,
397                       SmallVector<int64_t, 4> &rhs, Value input, Value result,
398                       PatternRewriter &rewriter) const {
399     if (pos >= numLeftmostTransposedDims) {
400       auto ridx = rewriter.getI64ArrayAttr(rhs);
401       auto lidx = rewriter.getI64ArrayAttr(lhs);
402       Value e =
403           rewriter.create<vector::ExtractOp>(loc, extractType, input, ridx);
404       return rewriter.create<vector::InsertOp>(loc, resType, e, result, lidx);
405     }
406     for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) {
407       lhs[pos] = d;
408       rhs[transp[pos]] = d;
409       result = expandIndices(loc, resType, extractType, pos + 1,
410                              numLeftmostTransposedDims, transp, lhs, rhs, input,
411                              result, rewriter);
412     }
413     return result;
414   }
415 
416   /// Options to control the vector patterns.
417   vector::VectorTransformsOptions vectorTransformOptions;
418 };
419 
420 /// Rewrite a 2-D vector.transpose as a sequence of:
421 ///   vector.shape_cast 2D -> 1D
422 ///   vector.shuffle
423 ///   vector.shape_cast 1D -> 2D
424 class TransposeOp2DToShuffleLowering
425     : public OpRewritePattern<vector::TransposeOp> {
426 public:
427   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
428 
429   TransposeOp2DToShuffleLowering(
430       vector::VectorTransformsOptions vectorTransformOptions,
431       MLIRContext *context)
432       : OpRewritePattern<vector::TransposeOp>(context),
433         vectorTransformOptions(vectorTransformOptions) {}
434 
435   LogicalResult matchAndRewrite(vector::TransposeOp op,
436                                 PatternRewriter &rewriter) const override {
437     auto loc = op.getLoc();
438 
439     VectorType srcType = op.getVectorType();
440     if (srcType.getRank() != 2)
441       return rewriter.notifyMatchFailure(op, "Not a 2D transpose");
442 
443     SmallVector<int64_t, 4> transp;
444     for (auto attr : op.transp())
445       transp.push_back(attr.cast<IntegerAttr>().getInt());
446     if (transp[0] != 1 && transp[1] != 0)
447       return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation");
448 
449     if (vectorTransformOptions.vectorTransposeLowering !=
450         VectorTransposeLowering::Shuffle)
451       return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle");
452 
453     int64_t m = srcType.getShape().front(), n = srcType.getShape().back();
454     Value casted = rewriter.create<vector::ShapeCastOp>(
455         loc, VectorType::get({m * n}, srcType.getElementType()), op.vector());
456     SmallVector<int64_t> mask;
457     mask.reserve(m * n);
458     for (int64_t j = 0; j < n; ++j)
459       for (int64_t i = 0; i < m; ++i)
460         mask.push_back(i * n + j);
461 
462     Value shuffled =
463         rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask);
464     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(),
465                                                      shuffled);
466 
467     return success();
468   }
469 
470 private:
471   /// Options to control the vector patterns.
472   vector::VectorTransformsOptions vectorTransformOptions;
473 };
474 
475 /// Progressive lowering of OuterProductOp.
476 /// One:
477 ///   %x = vector.outerproduct %lhs, %rhs, %acc
478 /// is replaced by:
479 ///   %z = zero-result
480 ///   %0 = vector.extract %lhs[0]
481 ///   %1 = vector.broadcast %0
482 ///   %2 = vector.extract %acc[0]
483 ///   %3 = vector.fma %1, %rhs, %2
484 ///   %4 = vector.insert %3, %z[0]
485 ///   ..
486 ///   %x = vector.insert %.., %..[N-1]
487 ///
488 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
489 public:
490   using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(vector::OuterProductOp op,
493                                 PatternRewriter &rewriter) const override {
494     auto loc = op.getLoc();
495 
496     VectorType lhsType = op.getOperandVectorTypeLHS();
497     VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
498     VectorType resType = op.getVectorType();
499     Type eltType = resType.getElementType();
500     bool isInt = eltType.isa<IntegerType, IndexType>();
501     Value acc = (op.acc().empty()) ? nullptr : op.acc()[0];
502     vector::CombiningKind kind = op.kind();
503 
504     if (!rhsType) {
505       // Special case: AXPY operation.
506       Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.rhs());
507       Optional<Value> mult =
508           isInt ? genMultI(loc, op.lhs(), b, acc, kind, rewriter)
509                 : genMultF(loc, op.lhs(), b, acc, kind, rewriter);
510       if (!mult.hasValue())
511         return failure();
512       rewriter.replaceOp(op, mult.getValue());
513       return success();
514     }
515 
516     Value result = rewriter.create<arith::ConstantOp>(
517         loc, resType, rewriter.getZeroAttr(resType));
518     for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
519       auto pos = rewriter.getI64ArrayAttr(d);
520       Value x = rewriter.create<vector::ExtractOp>(loc, eltType, op.lhs(), pos);
521       Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
522       Value r = nullptr;
523       if (acc)
524         r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
525       Optional<Value> m = isInt ? genMultI(loc, a, op.rhs(), r, kind, rewriter)
526                                 : genMultF(loc, a, op.rhs(), r, kind, rewriter);
527       if (!m.hasValue())
528         return failure();
529       result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(),
530                                                  result, pos);
531     }
532     rewriter.replaceOp(op, result);
533     return success();
534   }
535 
536 private:
537   static Optional<Value> genMultI(Location loc, Value x, Value y, Value acc,
538                                   vector::CombiningKind kind,
539                                   PatternRewriter &rewriter) {
540     using vector::CombiningKind;
541 
542     auto mul = rewriter.create<arith::MulIOp>(loc, x, y);
543     if (!acc)
544       return Optional<Value>(mul);
545 
546     if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF)
547       // Only valid for floating point types.
548       return Optional<Value>();
549 
550     return makeArithReduction(rewriter, loc, kind, mul, acc);
551   }
552 
553   static Optional<Value> genMultF(Location loc, Value x, Value y, Value acc,
554                                   vector::CombiningKind kind,
555                                   PatternRewriter &rewriter) {
556     using vector::CombiningKind;
557 
558     // Special case for fused multiply-add.
559     if (acc && kind == CombiningKind::ADD) {
560       return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc));
561     }
562 
563     auto mul = rewriter.create<arith::MulFOp>(loc, x, y);
564 
565     if (!acc)
566       return Optional<Value>(mul);
567 
568     if (kind == CombiningKind::ADD || kind == CombiningKind::AND ||
569         kind == CombiningKind::MINUI || kind == CombiningKind::MINSI ||
570         kind == CombiningKind::MAXUI || kind == CombiningKind::MAXSI ||
571         kind == CombiningKind::OR || kind == CombiningKind::XOR)
572       // Already handled or only valid for integer types.
573       return Optional<Value>();
574 
575     return makeArithReduction(rewriter, loc, kind, mul, acc);
576   }
577 };
578 
579 /// Progressive lowering of ConstantMaskOp.
580 /// One:
581 ///   %x = vector.constant_mask [a,b]
582 /// is replaced by:
583 ///   %z = zero-result
584 ///   %l = vector.constant_mask [b]
585 ///   %4 = vector.insert %l, %z[0]
586 ///   ..
587 ///   %x = vector.insert %l, %..[a-1]
588 /// until a one-dimensional vector is reached. All these operations
589 /// will be folded at LLVM IR level.
590 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
591 public:
592   using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
593 
594   LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
595                                 PatternRewriter &rewriter) const override {
596     auto loc = op.getLoc();
597     auto dstType = op.getType();
598     auto eltType = dstType.getElementType();
599     auto dimSizes = op.mask_dim_sizes();
600     int64_t rank = dstType.getRank();
601 
602     if (rank == 0) {
603       assert(dimSizes.size() == 1 &&
604              "Expected exactly one dim size for a 0-D vector");
605       bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1;
606       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
607           op, dstType,
608           DenseIntElementsAttr::get(
609               VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()),
610               ArrayRef<bool>{value}));
611       return success();
612     }
613 
614     int64_t trueDim = std::min(dstType.getDimSize(0),
615                                dimSizes[0].cast<IntegerAttr>().getInt());
616 
617     if (rank == 1) {
618       // Express constant 1-D case in explicit vector form:
619       //   [T,..,T,F,..,F].
620       SmallVector<bool, 4> values(dstType.getDimSize(0));
621       for (int64_t d = 0; d < trueDim; d++)
622         values[d] = true;
623       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
624           op, dstType, rewriter.getBoolVectorAttr(values));
625       return success();
626     }
627 
628     VectorType lowType =
629         VectorType::get(dstType.getShape().drop_front(), eltType);
630     SmallVector<int64_t, 4> newDimSizes;
631     for (int64_t r = 1; r < rank; r++)
632       newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
633     Value trueVal = rewriter.create<vector::ConstantMaskOp>(
634         loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
635     Value result = rewriter.create<arith::ConstantOp>(
636         loc, dstType, rewriter.getZeroAttr(dstType));
637     for (int64_t d = 0; d < trueDim; d++) {
638       auto pos = rewriter.getI64ArrayAttr(d);
639       result =
640           rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
641     }
642     rewriter.replaceOp(op, result);
643     return success();
644   }
645 };
646 
647 /// Progressive lowering of CreateMaskOp.
648 /// One:
649 ///   %x = vector.create_mask %a, ... : vector<dx...>
650 /// is replaced by:
651 ///   %l = vector.create_mask ... : vector<...>  ; one lower rank
652 ///   %0 = arith.cmpi "slt", %ci, %a       |
653 ///   %1 = select %0, %l, %zeroes    |
654 ///   %r = vector.insert %1, %pr [i] | d-times
655 ///   %x = ....
656 /// until a one-dimensional vector is reached.
657 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
658 public:
659   using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
660 
661   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
662                                 PatternRewriter &rewriter) const override {
663     auto dstType = op.getResult().getType().cast<VectorType>();
664     int64_t rank = dstType.getRank();
665     if (rank <= 1)
666       return rewriter.notifyMatchFailure(
667           op, "0-D and 1-D vectors are handled separately");
668 
669     auto loc = op.getLoc();
670     auto eltType = dstType.getElementType();
671     int64_t dim = dstType.getDimSize(0);
672     Value idx = op.getOperand(0);
673 
674     VectorType lowType =
675         VectorType::get(dstType.getShape().drop_front(), eltType);
676     Value trueVal = rewriter.create<vector::CreateMaskOp>(
677         loc, lowType, op.getOperands().drop_front());
678     Value falseVal = rewriter.create<arith::ConstantOp>(
679         loc, lowType, rewriter.getZeroAttr(lowType));
680     Value result = rewriter.create<arith::ConstantOp>(
681         loc, dstType, rewriter.getZeroAttr(dstType));
682     for (int64_t d = 0; d < dim; d++) {
683       Value bnd =
684           rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d));
685       Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
686                                                  bnd, idx);
687       Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal);
688       auto pos = rewriter.getI64ArrayAttr(d);
689       result =
690           rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
691     }
692     rewriter.replaceOp(op, result);
693     return success();
694   }
695 };
696 
697 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
698 /// vectors progressively on the way to target llvm.matrix intrinsics.
699 /// This iterates over the most major dimension of the 2-D vector and performs
700 /// rewrites into:
701 ///   vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
702 class ShapeCastOp2DDownCastRewritePattern
703     : public OpRewritePattern<vector::ShapeCastOp> {
704 public:
705   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
706 
707   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
708                                 PatternRewriter &rewriter) const override {
709     auto sourceVectorType = op.getSourceVectorType();
710     auto resultVectorType = op.getResultVectorType();
711     if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
712       return failure();
713 
714     auto loc = op.getLoc();
715     Value desc = rewriter.create<arith::ConstantOp>(
716         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
717     unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
718     for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
719       Value vec = rewriter.create<vector::ExtractOp>(loc, op.source(), i);
720       desc = rewriter.create<vector::InsertStridedSliceOp>(
721           loc, vec, desc,
722           /*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
723     }
724     rewriter.replaceOp(op, desc);
725     return success();
726   }
727 };
728 
729 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
730 /// vectors progressively.
731 /// This iterates over the most major dimension of the 2-D vector and performs
732 /// rewrites into:
733 ///   vector.extract_strided_slice from 1-D + vector.insert into 2-D
734 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
735 class ShapeCastOp2DUpCastRewritePattern
736     : public OpRewritePattern<vector::ShapeCastOp> {
737 public:
738   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
739 
740   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
741                                 PatternRewriter &rewriter) const override {
742     auto sourceVectorType = op.getSourceVectorType();
743     auto resultVectorType = op.getResultVectorType();
744     if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
745       return failure();
746 
747     auto loc = op.getLoc();
748     Value desc = rewriter.create<arith::ConstantOp>(
749         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
750     unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
751     for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
752       Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
753           loc, op.source(), /*offsets=*/i * mostMinorVectorSize,
754           /*sizes=*/mostMinorVectorSize,
755           /*strides=*/1);
756       desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
757     }
758     rewriter.replaceOp(op, desc);
759     return success();
760   }
761 };
762 
763 // We typically should not lower general shape cast operations into data
764 // movement instructions, since the assumption is that these casts are
765 // optimized away during progressive lowering. For completeness, however,
766 // we fall back to a reference implementation that moves all elements
767 // into the right place if we get here.
768 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
769 public:
770   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
771 
772   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
773                                 PatternRewriter &rewriter) const override {
774     Location loc = op.getLoc();
775     auto sourceVectorType = op.getSourceVectorType();
776     auto resultVectorType = op.getResultVectorType();
777 
778     // Special case 2D/1D lowerings with better implementations.
779     // TODO: make is ND/1D to allow generic ND->1D->MD.
780     int64_t srcRank = sourceVectorType.getRank();
781     int64_t resRank = resultVectorType.getRank();
782     if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
783       return failure();
784 
785     // Generic ShapeCast lowering path goes all the way down to unrolled scalar
786     // extract/insert chains.
787     // TODO: consider evolving the semantics to only allow 1D source or dest and
788     // drop this potentially very expensive lowering.
789     // Compute number of elements involved in the reshape.
790     int64_t numElts = 1;
791     for (int64_t r = 0; r < srcRank; r++)
792       numElts *= sourceVectorType.getDimSize(r);
793     // Replace with data movement operations:
794     //    x[0,0,0] = y[0,0]
795     //    x[0,0,1] = y[0,1]
796     //    x[0,1,0] = y[0,2]
797     // etc., incrementing the two index vectors "row-major"
798     // within the source and result shape.
799     SmallVector<int64_t, 4> srcIdx(srcRank);
800     SmallVector<int64_t, 4> resIdx(resRank);
801     Value result = rewriter.create<arith::ConstantOp>(
802         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
803     for (int64_t i = 0; i < numElts; i++) {
804       if (i != 0) {
805         incIdx(srcIdx, sourceVectorType, srcRank - 1);
806         incIdx(resIdx, resultVectorType, resRank - 1);
807       }
808       Value e = rewriter.create<vector::ExtractOp>(loc, op.source(), srcIdx);
809       result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
810     }
811     rewriter.replaceOp(op, result);
812     return success();
813   }
814 
815 private:
816   static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
817     assert(0 <= r && r < tp.getRank());
818     if (++idx[r] == tp.getDimSize(r)) {
819       idx[r] = 0;
820       incIdx(idx, tp, r - 1);
821     }
822   }
823 };
824 
825 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
826 /// Ex:
827 /// ```
828 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
829 ///   %1 = vector.multi_reduction add, %0 [1]
830 ///     : vector<8x32x16xf32> to vector<8x16xf32>
831 /// ```
832 /// Gets converted to:
833 /// ```
834 ///   %1 = vector.contract {indexing_maps = [
835 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
836 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
837 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
838 ///    iterator_types = ["parallel", "parallel", "reduction"],
839 ///    kind = add} %0, %arg1, %cst_f0
840 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
841 ///  ```
842 struct MultiReduceToContract
843     : public OpRewritePattern<vector::MultiDimReductionOp> {
844   using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern;
845 
846   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
847                                 PatternRewriter &rewriter) const override {
848     if (reduceOp.kind() != vector::CombiningKind::ADD)
849       return failure();
850     Operation *mulOp = reduceOp.source().getDefiningOp();
851     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
852       return failure();
853     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
854     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
855     SmallVector<AffineExpr> exprs;
856     SmallVector<StringRef> iteratorTypes;
857     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
858       if (!isReduceDim.value()) {
859         iteratorTypes.push_back(getParallelIteratorTypeName());
860         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
861       } else {
862         iteratorTypes.push_back(getReductionIteratorTypeName());
863       }
864     }
865     auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
866                                  /*symCount=*/0, exprs, reduceOp.getContext());
867     Value zero = rewriter.create<arith::ConstantOp>(
868         reduceOp.getLoc(), reduceOp.getDestType(),
869         rewriter.getZeroAttr(reduceOp.getDestType()));
870     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
871         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero,
872         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
873         rewriter.getStrArrayAttr(iteratorTypes));
874     return success();
875   }
876 };
877 
878 /// Merge TransposeOp into ContractionOp user.
879 /// Ex:
880 /// ```
881 ///   %0 = vector.transpose %arg0, [2, 0, 1]
882 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
883 ///   %1 = vector.contract {indexing_maps = [
884 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
885 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
886 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
887 ///    iterator_types = ["parallel", "parallel", "reduction"],
888 ///    kind = add} %0, %arg1, %cst_f0
889 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
890 /// ```
891 /// Gets converted to:
892 /// ```
893 ///   %1 = vector.contract {indexing_maps = [
894 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
895 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
896 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
897 ///    iterator_types = ["parallel", "parallel", "reduction"],
898 ///    kind = add} %arg0, %arg1, %cst_f0
899 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
900 ///  ```
901 struct CombineContractTranspose
902     : public OpRewritePattern<vector::ContractionOp> {
903   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
904 
905   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
906                                 PatternRewriter &rewriter) const override {
907     SmallVector<AffineMap, 4> maps =
908         llvm::to_vector<4>(contractOp.getIndexingMaps());
909     Value lhs = contractOp.lhs();
910     Value rhs = contractOp.rhs();
911     size_t index = 0;
912     bool changed = false;
913     for (Value *operand : {&lhs, &rhs}) {
914       AffineMap &map = maps[index++];
915       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
916       if (!transposeOp)
917         continue;
918       SmallVector<int64_t> perm;
919       transposeOp.getTransp(perm);
920       AffineMap permutationMap = AffineMap::getPermutationMap(
921           extractVector<unsigned>(transposeOp.transp()),
922           contractOp.getContext());
923       map = inversePermutation(permutationMap).compose(map);
924       *operand = transposeOp.vector();
925       changed = true;
926     }
927     if (!changed)
928       return failure();
929     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
930         contractOp, lhs, rhs, contractOp.acc(),
931         rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types());
932     return success();
933   }
934 };
935 
936 /// Merge BroadcastOp into ContractionOp user.
937 /// Ex:
938 /// ```
939 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
940 ///   %1 = vector.contract {indexing_maps = [
941 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
942 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
943 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
944 ///    iterator_types = ["parallel", "parallel", "reduction"],
945 ///    kind = add} %0, %arg1, %cst_f0
946 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
947 /// ```
948 /// Gets converted to:
949 /// ```
950 ///   %1 = vector.contract {indexing_maps = [
951 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
952 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
953 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
954 ///    iterator_types = ["parallel", "parallel", "reduction"],
955 ///    kind = add} %arg0, %arg1, %cst_f0
956 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
957 ///  ```
958 struct CombineContractBroadcast
959     : public OpRewritePattern<vector::ContractionOp> {
960   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
961 
962   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
963                                 PatternRewriter &rewriter) const override {
964     SmallVector<AffineMap, 4> maps =
965         llvm::to_vector<4>(contractOp.getIndexingMaps());
966     Value lhs = contractOp.lhs();
967     Value rhs = contractOp.rhs();
968     size_t index = 0;
969     bool changed = false;
970     for (Value *operand : {&lhs, &rhs}) {
971       AffineMap &map = maps[index++];
972       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
973       if (!broadcast)
974         continue;
975       // contractionOp can only take vector as operands.
976       auto srcType = broadcast.getSourceType().dyn_cast<VectorType>();
977       if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank())
978         continue;
979       int64_t rankDiff =
980           broadcast.getVectorType().getRank() - srcType.getRank();
981       bool innerDimBroadcast = false;
982       SmallVector<AffineExpr> originalDims;
983       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
984         if (dim.value() !=
985             broadcast.getVectorType().getDimSize(rankDiff + dim.index())) {
986           innerDimBroadcast = true;
987           break;
988         }
989         originalDims.push_back(
990             rewriter.getAffineDimExpr(dim.index() + rankDiff));
991       }
992       // Contract doesn't support inner dimension broadcast. Once this is
993       // relaxed we can remove this case.
994       if (innerDimBroadcast)
995         continue;
996       AffineMap broadcastMap =
997           AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims,
998                          contractOp.getContext());
999       map = broadcastMap.compose(map);
1000       *operand = broadcast.source();
1001       changed = true;
1002     }
1003     if (!changed)
1004       return failure();
1005     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1006         contractOp, lhs, rhs, contractOp.acc(),
1007         rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types());
1008     return success();
1009   }
1010 };
1011 
1012 } // namespace
1013 
1014 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using
1015 /// operands `x` and `y`.
1016 static Value createAdd(Location loc, Value x, Value y, bool isInt,
1017                        PatternRewriter &rewriter) {
1018   if (isInt)
1019     return rewriter.create<arith::AddIOp>(loc, x, y);
1020   return rewriter.create<arith::AddFOp>(loc, x, y);
1021 }
1022 
1023 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using
1024 /// operands `x and `y`.
1025 static Value createMul(Location loc, Value x, Value y, bool isInt,
1026                        PatternRewriter &rewriter) {
1027   if (isInt)
1028     return rewriter.create<arith::MulIOp>(loc, x, y);
1029   return rewriter.create<arith::MulFOp>(loc, x, y);
1030 }
1031 
1032 namespace mlir {
1033 
1034 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1035 /// semantics to:
1036 /// ```
1037 ///    %mta = maybe_transpose
1038 ///    %mtb = maybe_transpose
1039 ///    %flattened_a = vector.shape_cast %mta
1040 ///    %flattened_b = vector.shape_cast %mtb
1041 ///    %flattened_d = vector.matmul %flattened_a, %flattened_b
1042 ///    %mtd = vector.shape_cast %flattened_d
1043 ///    %d = maybe_untranspose %mtd
1044 ///    %e = add %c, %d
1045 /// ```
1046 /// `vector.matmul` later lowers to `llvm.matrix.multiply`.
1047 //
1048 /// This only kicks in when VectorTransformsOptions is set to `Matmul`.
1049 /// vector.transpose operations are inserted if the vector.contract op is not a
1050 /// row-major matrix multiply.
1051 LogicalResult
1052 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op,
1053                                                  PatternRewriter &rew) const {
1054   // TODO: implement masks
1055   if (llvm::size(op.masks()) != 0)
1056     return failure();
1057   if (vectorTransformOptions.vectorContractLowering !=
1058       vector::VectorContractLowering::Matmul)
1059     return failure();
1060   if (failed(filter(op)))
1061     return failure();
1062 
1063   auto iteratorTypes = op.iterator_types().getValue();
1064   if (!isParallelIterator(iteratorTypes[0]) ||
1065       !isParallelIterator(iteratorTypes[1]) ||
1066       !isReductionIterator(iteratorTypes[2]))
1067     return failure();
1068 
1069   Type elementType = op.getLhsType().getElementType();
1070   if (!elementType.isIntOrFloat())
1071     return failure();
1072 
1073   // Perform lhs + rhs transpositions to conform to matmul row-major semantics.
1074   // Bail out if the contraction cannot be put in this form.
1075   MLIRContext *ctx = op.getContext();
1076   Location loc = op.getLoc();
1077   AffineExpr m, n, k;
1078   bindDims(rew.getContext(), m, n, k);
1079   // LHS must be A(m, k) or A(k, m).
1080   Value lhs = op.lhs();
1081   auto lhsMap = op.indexing_maps()[0];
1082   if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
1083     lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0});
1084   else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
1085     return failure();
1086 
1087   // RHS must be B(k, n) or B(n, k).
1088   Value rhs = op.rhs();
1089   auto rhsMap = op.indexing_maps()[1];
1090   if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
1091     rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0});
1092   else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
1093     return failure();
1094 
1095   // At this point lhs and rhs are in row-major.
1096   VectorType lhsType = lhs.getType().cast<VectorType>();
1097   VectorType rhsType = rhs.getType().cast<VectorType>();
1098   int64_t lhsRows = lhsType.getDimSize(0);
1099   int64_t lhsColumns = lhsType.getDimSize(1);
1100   int64_t rhsColumns = rhsType.getDimSize(1);
1101 
1102   Type flattenedLHSType =
1103       VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
1104   lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs);
1105 
1106   Type flattenedRHSType =
1107       VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
1108   rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs);
1109 
1110   Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns,
1111                                            rhsColumns);
1112   mul = rew.create<vector::ShapeCastOp>(
1113       loc,
1114       VectorType::get({lhsRows, rhsColumns},
1115                       getElementTypeOrSelf(op.acc().getType())),
1116       mul);
1117 
1118   // ACC must be C(m, n) or C(n, m).
1119   auto accMap = op.indexing_maps()[2];
1120   if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
1121     mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0});
1122   else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
1123     llvm_unreachable("invalid contraction semantics");
1124 
1125   Value res =
1126       elementType.isa<IntegerType>()
1127           ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.acc(), mul))
1128           : static_cast<Value>(rew.create<arith::AddFOp>(loc, op.acc(), mul));
1129 
1130   rew.replaceOp(op, res);
1131   return success();
1132 }
1133 
1134 namespace {
1135 struct IteratorType {
1136   IteratorType(StringRef strRef) : strRef(strRef) {}
1137   bool isOfType(Attribute attr) const {
1138     auto sAttr = attr.dyn_cast<StringAttr>();
1139     return sAttr && sAttr.getValue() == strRef;
1140   }
1141   StringRef strRef;
1142 };
1143 struct Par : public IteratorType {
1144   Par() : IteratorType(getParallelIteratorTypeName()) {}
1145 };
1146 struct Red : public IteratorType {
1147   Red() : IteratorType(getReductionIteratorTypeName()) {}
1148 };
1149 
1150 /// Generate a vector implementation for matmat, matvec and tmatvec.
1151 /// This unrolls outer-products along the reduction dimension.
1152 struct UnrolledOuterProductGenerator
1153     : public StructuredGenerator<vector::ContractionOp> {
1154 
1155   UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op)
1156       : StructuredGenerator<vector::ContractionOp>(builder, op),
1157         kind(op.kind()), lhs(op.lhs()), rhs(op.rhs()), res(op.acc()),
1158         lhsType(op.getLhsType()) {}
1159 
1160   Value t(Value v) {
1161     static constexpr std::array<int64_t, 2> perm = {1, 0};
1162     return builder.create<vector::TransposeOp>(loc, v, perm);
1163   }
1164 
1165   Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) {
1166     assert(reductionSize > 0);
1167     for (int64_t k = 0; k < reductionSize; ++k) {
1168       Value a = builder.create<vector::ExtractOp>(loc, lhs, k);
1169       Value b = builder.create<vector::ExtractOp>(loc, rhs, k);
1170       res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b,
1171                                                    res, kind);
1172     }
1173     return res;
1174   }
1175 
1176   /// Two outer parallel, one inner reduction (matmat flavor).
1177   FailureOr<Value> matmat() {
1178     if (!iters({Par(), Par(), Red()}))
1179       return failure();
1180     // Set up the parallel/reduction structure in the right form.
1181     AffineExpr m, n, k;
1182     bindDims(builder.getContext(), m, n, k);
1183     // Classical row-major matmul:  Just permute the lhs.
1184     if (layout({{m, k}, {k, n}, {m, n}}))
1185       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1186     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1187     if (layout({{m, k}, {n, k}, {m, n}})) {
1188       Value tlhs = t(lhs);
1189       return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1));
1190     }
1191     // No need to permute anything.
1192     if (layout({{k, m}, {k, n}, {m, n}}))
1193       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1194     // Just permute the rhs.
1195     if (layout({{k, m}, {n, k}, {m, n}}))
1196       return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0));
1197     // Transposed output: swap RHS and LHS.
1198     // Classical row-major matmul: permute the lhs.
1199     if (layout({{m, k}, {k, n}, {n, m}}))
1200       return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1));
1201     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1202     if (layout({{m, k}, {n, k}, {n, m}})) {
1203       Value trhs = t(rhs);
1204       return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1));
1205     }
1206     if (layout({{k, m}, {k, n}, {n, m}}))
1207       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1208     if (layout({{k, m}, {n, k}, {n, m}}))
1209       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1210     return failure();
1211   }
1212 
1213   /// One outer parallel, one inner reduction (matvec flavor)
1214   FailureOr<Value> matvec() {
1215     if (!iters({Par(), Red()}))
1216       return failure();
1217     AffineExpr m, k;
1218     bindDims(builder.getContext(), m, k);
1219 
1220     // Case mat-vec: transpose.
1221     if (layout({{m, k}, {k}, {m}}))
1222       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1223     // Case mat-trans-vec: ready to go.
1224     if (layout({{k, m}, {k}, {m}}))
1225       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1226     // Case vec-mat: swap and transpose.
1227     if (layout({{k}, {m, k}, {m}}))
1228       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1229     // Case vec-mat-trans: swap and ready to go.
1230     if (layout({{k}, {k, m}, {m}}))
1231       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1232     return failure();
1233   }
1234 
1235   //
1236   // One outer reduction, one inner parallel (tmatvec flavor)
1237   //
1238   FailureOr<Value> tmatvec() {
1239     if (!iters({Red(), Par()}))
1240       return failure();
1241     AffineExpr k, m;
1242     bindDims(builder.getContext(), k, m);
1243 
1244     // Case mat-vec: transpose.
1245     if (layout({{m, k}, {k}, {m}}))
1246       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1247     // Case mat-trans-vec: ready to go.
1248     if (layout({{k, m}, {k}, {m}}))
1249       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1250     // Case vec-mat: swap and transpose.
1251     if (layout({{k}, {m, k}, {m}}))
1252       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1253     // Case vec-mat-trans: swap and ready to go.
1254     if (layout({{k}, {k, m}, {m}}))
1255       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1256     return failure();
1257   }
1258 
1259 private:
1260   vector::CombiningKind kind;
1261   Value lhs, rhs, res;
1262   VectorType lhsType;
1263 };
1264 } // namespace
1265 
1266 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1267 /// semantics to a reduction_size-unrolled sequence:
1268 /// ```
1269 ///    %at = vector.transpose %a, [1, 0]
1270 ///    %bRow0 = vector.extract %b[0]
1271 ///    %atRow0 = vector.extract %at[0]
1272 ///    %c0 = vector.outerproduct %atRow0, %bRow0, %c
1273 ///    ...
1274 ///    %bRowK = vector.extract %b[K]
1275 ///    %atRowK = vector.extract %at[K]
1276 ///    %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
1277 /// ```
1278 ///
1279 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but
1280 /// otherwise supports any layout permutation of the matrix-multiply.
1281 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
1282     vector::ContractionOp op, PatternRewriter &rewriter) const {
1283   // TODO: implement masks
1284   if (llvm::size(op.masks()) != 0)
1285     return failure();
1286 
1287   if (vectorTransformOptions.vectorContractLowering !=
1288       vector::VectorContractLowering::OuterProduct)
1289     return failure();
1290 
1291   if (failed(filter(op)))
1292     return failure();
1293 
1294   UnrolledOuterProductGenerator e(rewriter, op);
1295   FailureOr<Value> matmatRes = e.matmat();
1296   if (succeeded(matmatRes)) {
1297     rewriter.replaceOp(op, *matmatRes);
1298     return success();
1299   }
1300   FailureOr<Value> matvecRes = e.matvec();
1301   if (succeeded(matvecRes)) {
1302     rewriter.replaceOp(op, *matvecRes);
1303     return success();
1304   }
1305   FailureOr<Value> tmatvecRes = e.tmatvec();
1306   if (succeeded(tmatvecRes)) {
1307     rewriter.replaceOp(op, *tmatvecRes);
1308     return success();
1309   }
1310 
1311   return failure();
1312 }
1313 
1314 LogicalResult
1315 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
1316                                             PatternRewriter &rewriter) const {
1317   // TODO: implement masks
1318   if (llvm::size(op.masks()) != 0)
1319     return failure();
1320 
1321   if (failed(filter(op)))
1322     return failure();
1323 
1324   if (vectorTransformOptions.vectorContractLowering !=
1325       vector::VectorContractLowering::Dot)
1326     return failure();
1327 
1328   auto iteratorTypes = op.iterator_types().getValue();
1329   static constexpr std::array<int64_t, 2> perm = {1, 0};
1330   Location loc = op.getLoc();
1331   Value lhs = op.lhs(), rhs = op.rhs();
1332 
1333   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1334   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
1335   AffineExpr m, n, k;
1336   bindDims(rewriter.getContext(), m, n, k);
1337   SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
1338   //
1339   // In the following we wish to make the reduction dimension innermost so we
1340   // can load vectors and just fmul + reduce into a scalar.
1341   //
1342   if (isParallelIterator(iteratorTypes[0]) &&
1343       isParallelIterator(iteratorTypes[1]) &&
1344       isReductionIterator(iteratorTypes[2])) {
1345     //
1346     // Two outer parallel, one inner reduction (matmat flavor).
1347     //
1348     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1349       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1350     } else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
1351       // No need to permute anything.
1352     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1353       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1354       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1355     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1356       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1357     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1358       // This is the classical row-major matmul. Just permute the lhs.
1359       Value tmp = lhs;
1360       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1361       rhs = tmp;
1362     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1363       std::swap(lhs, rhs);
1364     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1365       Value tmp = lhs;
1366       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1367       rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
1368     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1369       Value tmp = rhs;
1370       rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1371       lhs = tmp;
1372     } else {
1373       return failure();
1374     }
1375   } else if (isParallelIterator(iteratorTypes[0]) &&
1376              isReductionIterator(iteratorTypes[1])) {
1377     //
1378     // One outer parallel, one inner reduction (matvec flavor)
1379     //
1380     if (maps == infer({{m, n}, {n}, {m}})) {
1381       // No need to permute anything.
1382     } else if (maps == infer({{n, m}, {n}, {m}})) {
1383       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1384     } else if (maps == infer({{n}, {m, n}, {m}})) {
1385       std::swap(lhs, rhs);
1386     } else if (maps == infer({{n}, {n, m}, {m}})) {
1387       std::swap(lhs, rhs);
1388       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1389     } else {
1390       return failure();
1391     }
1392   } else {
1393     return failure();
1394   }
1395 
1396   VectorType dstType = op.getResultType().cast<VectorType>();
1397   assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
1398          "Expected dst type of rank 1 or 2");
1399 
1400   unsigned rank = dstType.getRank();
1401   unsigned dstRows = dstType.getShape()[0];
1402   unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
1403 
1404   // ExtractOp does not allow dynamic indexing, we must unroll explicitly.
1405   Value res = rewriter.create<arith::ConstantOp>(loc, dstType,
1406                                                  rewriter.getZeroAttr(dstType));
1407   bool isInt = dstType.getElementType().isa<IntegerType>();
1408   for (unsigned r = 0; r < dstRows; ++r) {
1409     Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
1410     for (unsigned c = 0; c < dstColumns; ++c) {
1411       Value b = rank == 1
1412                     ? rhs
1413                     : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
1414       Value m = createMul(op.getLoc(), a, b, isInt, rewriter);
1415       Value reduced = rewriter.create<vector::ReductionOp>(
1416           op.getLoc(), vector::CombiningKind::ADD, m);
1417 
1418       SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
1419                                               : SmallVector<int64_t, 2>{r, c};
1420       res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
1421     }
1422   }
1423   if (auto acc = op.acc())
1424     res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1425   rewriter.replaceOp(op, res);
1426   return success();
1427 }
1428 
1429 /// Progressive lowering of ContractionOp.
1430 /// One:
1431 ///   %x = vector.contract with at least one free/batch dimension
1432 /// is replaced by:
1433 ///   %a = vector.contract with one less free/batch dimension
1434 ///   %b = vector.contract with one less free/batch dimension
1435 ///   ..
1436 ///   %x = combine %a %b ..
1437 /// until a pure contraction is reached (no free/batch dimensions),
1438 /// which is replaced by a dot-product.
1439 ///
1440 /// This only kicks in when either VectorTransformsOptions is set
1441 /// to DOT or when other contraction patterns fail.
1442 //
1443 // TODO: break down into transpose/reshape/cast ops
1444 //               when they become available to avoid code dup
1445 // TODO: investigate lowering order impact on performance
1446 LogicalResult
1447 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
1448                                        PatternRewriter &rewriter) const {
1449   // TODO: implement masks.
1450   if (llvm::size(op.masks()) != 0)
1451     return failure();
1452 
1453   if (failed(filter(op)))
1454     return failure();
1455 
1456   // TODO: support mixed mode contract lowering.
1457   if (op.getLhsType().getElementType() !=
1458           getElementTypeOrSelf(op.getAccType()) ||
1459       op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
1460     return failure();
1461 
1462   // TODO: implement benefits, cost models.
1463   MLIRContext *ctx = op.getContext();
1464   ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx);
1465   if (succeeded(pat1.matchAndRewrite(op, rewriter)))
1466     return success();
1467   ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx);
1468   if (succeeded(pat2.matchAndRewrite(op, rewriter)))
1469     return success();
1470   ContractionOpToDotLowering pat3(vectorTransformOptions, ctx);
1471   if (succeeded(pat3.matchAndRewrite(op, rewriter)))
1472     return success();
1473 
1474   // Find first batch dimension in LHS/RHS, and lower when found.
1475   std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
1476   if (!batchDimMap.empty()) {
1477     int64_t lhsIndex = batchDimMap[0].first;
1478     int64_t rhsIndex = batchDimMap[0].second;
1479     rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
1480     return success();
1481   }
1482 
1483   // Collect contracting dimensions.
1484   std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
1485       op.getContractingDimMap();
1486   DenseSet<int64_t> lhsContractingDimSet;
1487   DenseSet<int64_t> rhsContractingDimSet;
1488   for (auto &dimPair : contractingDimMap) {
1489     lhsContractingDimSet.insert(dimPair.first);
1490     rhsContractingDimSet.insert(dimPair.second);
1491   }
1492 
1493   // Find first free dimension in LHS, and lower when found.
1494   VectorType lhsType = op.getLhsType();
1495   for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
1496     if (lhsContractingDimSet.count(lhsIndex) == 0) {
1497       rewriter.replaceOp(
1498           op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
1499       return success();
1500     }
1501   }
1502 
1503   // Find first free dimension in RHS, and lower when found.
1504   VectorType rhsType = op.getRhsType();
1505   for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
1506     if (rhsContractingDimSet.count(rhsIndex) == 0) {
1507       rewriter.replaceOp(
1508           op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
1509       return success();
1510     }
1511   }
1512 
1513   // Lower the first remaining reduction dimension.
1514   if (!contractingDimMap.empty()) {
1515     rewriter.replaceOp(op, lowerReduction(op, rewriter));
1516     return success();
1517   }
1518 
1519   return failure();
1520 }
1521 
1522 // Lower one parallel dimension.
1523 // TODO: consider reusing existing contract unrolling
1524 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
1525                                            int64_t lhsIndex, int64_t rhsIndex,
1526                                            PatternRewriter &rewriter) const {
1527   VectorType lhsType = op.getLhsType();
1528   VectorType rhsType = op.getRhsType();
1529   VectorType resType = op.getResultType().cast<VectorType>();
1530   // Find the iterator type index and result index.
1531   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1532   int64_t iterIndex = -1;
1533   int64_t dimSize = -1;
1534   if (lhsIndex >= 0) {
1535     iterIndex = iMap[0].getDimPosition(lhsIndex);
1536     assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) &&
1537            "parallel index should be free in LHS or batch in LHS/RHS");
1538     dimSize = lhsType.getDimSize(lhsIndex);
1539   } else {
1540     assert(rhsIndex >= 0 && "missing parallel index");
1541     iterIndex = iMap[1].getDimPosition(rhsIndex);
1542     dimSize = rhsType.getDimSize(rhsIndex);
1543   }
1544   assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
1545   Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
1546   assert(lookup.hasValue() && "parallel index not listed in reduction");
1547   int64_t resIndex = lookup.getValue();
1548   // Construct new iterator types and affine map array attribute.
1549   std::array<AffineMap, 3> lowIndexingMaps = {
1550       adjustMap(iMap[0], iterIndex, rewriter),
1551       adjustMap(iMap[1], iterIndex, rewriter),
1552       adjustMap(iMap[2], iterIndex, rewriter)};
1553   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1554   auto lowIter =
1555       rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
1556   // Unroll into a series of lower dimensional vector.contract ops.
1557   Location loc = op.getLoc();
1558   Value result = rewriter.create<arith::ConstantOp>(
1559       loc, resType, rewriter.getZeroAttr(resType));
1560   for (int64_t d = 0; d < dimSize; ++d) {
1561     auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
1562     auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
1563     auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter);
1564     Value lowContract = rewriter.create<vector::ContractionOp>(
1565         loc, lhs, rhs, acc, lowAffine, lowIter);
1566     result =
1567         reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
1568   }
1569   return result;
1570 }
1571 
1572 // Lower one reduction dimension.
1573 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
1574                                             PatternRewriter &rewriter) const {
1575   auto loc = op.getLoc();
1576   VectorType lhsType = op.getLhsType();
1577   VectorType rhsType = op.getRhsType();
1578   Type resType = op.getResultType();
1579   assert(!resType.isa<VectorType>());
1580   bool isInt = resType.isa<IntegerType>();
1581   // Use iterator index 0.
1582   int64_t iterIndex = 0;
1583   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1584   Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
1585   Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
1586   assert(lookupLhs.hasValue() && "missing LHS parallel index");
1587   assert(lookupRhs.hasValue() && "missing RHS parallel index");
1588   int64_t lhsIndex = lookupLhs.getValue();
1589   int64_t rhsIndex = lookupRhs.getValue();
1590   int64_t dimSize = lhsType.getDimSize(lhsIndex);
1591   assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
1592   // Base case.
1593   if (lhsType.getRank() == 1) {
1594     assert(rhsType.getRank() == 1 && "corrupt contraction");
1595     Value m = createMul(loc, op.lhs(), op.rhs(), isInt, rewriter);
1596     auto kind = vector::CombiningKind::ADD;
1597     Value res = rewriter.create<vector::ReductionOp>(loc, kind, m);
1598     if (auto acc = op.acc())
1599       res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1600     return res;
1601   }
1602   // Construct new iterator types and affine map array attribute.
1603   std::array<AffineMap, 3> lowIndexingMaps = {
1604       adjustMap(iMap[0], iterIndex, rewriter),
1605       adjustMap(iMap[1], iterIndex, rewriter),
1606       adjustMap(iMap[2], iterIndex, rewriter)};
1607   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1608   auto lowIter =
1609       rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
1610   // Unroll into a series of lower dimensional vector.contract ops.
1611   // By feeding the initial accumulator into the first contraction,
1612   // and the result of each contraction into the next, eventually
1613   // the sum of all reductions is computed.
1614   Value result = op.acc();
1615   for (int64_t d = 0; d < dimSize; ++d) {
1616     auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
1617     auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
1618     result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
1619                                                     lowAffine, lowIter);
1620   }
1621   return result;
1622 }
1623 
1624 } // namespace mlir
1625 
1626 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp(
1627     OpBuilder &builder, Operation *op, ArrayRef<Value> ids,
1628     ArrayRef<int64_t> multiplicity, const AffineMap &map) {
1629   OpBuilder::InsertionGuard guard(builder);
1630   builder.setInsertionPointAfter(op);
1631   Location loc = op->getLoc();
1632   if (op->getNumResults() != 1)
1633     return {};
1634   Value result = op->getResult(0);
1635   VectorType type = op->getResult(0).getType().dyn_cast<VectorType>();
1636   if (!type || map.getNumResults() != multiplicity.size())
1637     return {};
1638   // For each dimension being distributed check that the size is a multiple of
1639   // the multiplicity. To handle more sizes we would need to support masking.
1640   unsigned multiplictyCount = 0;
1641   for (auto exp : map.getResults()) {
1642     auto affinExp = exp.dyn_cast<AffineDimExpr>();
1643     if (!affinExp || affinExp.getPosition() >= type.getRank() ||
1644         type.getDimSize(affinExp.getPosition()) %
1645                 multiplicity[multiplictyCount++] !=
1646             0)
1647       return {};
1648   }
1649   DistributeOps ops;
1650   ops.extract =
1651       builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map);
1652   ops.insert =
1653       builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids);
1654   return ops;
1655 }
1656 
1657 /// Progressive lowering of transfer_read. This pattern supports lowering of
1658 /// `vector.transfer_read` to a combination of `vector.load` and
1659 /// `vector.broadcast` if all of the following hold:
1660 /// - Stride of most minor memref dimension must be 1.
1661 /// - Out-of-bounds masking is not required.
1662 /// - If the memref's element type is a vector type then it coincides with the
1663 ///   result type.
1664 /// - The permutation map doesn't perform permutation (broadcasting is allowed).
1665 struct TransferReadToVectorLoadLowering
1666     : public OpRewritePattern<vector::TransferReadOp> {
1667   TransferReadToVectorLoadLowering(MLIRContext *context,
1668                                    llvm::Optional<unsigned> maxRank)
1669       : OpRewritePattern<vector::TransferReadOp>(context),
1670         maxTransferRank(maxRank) {}
1671 
1672   LogicalResult matchAndRewrite(vector::TransferReadOp read,
1673                                 PatternRewriter &rewriter) const override {
1674     if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank)
1675       return failure();
1676 
1677     SmallVector<unsigned, 4> broadcastedDims;
1678     // Permutations are handled by VectorToSCF or
1679     // populateVectorTransferPermutationMapLoweringPatterns.
1680     // We let the 0-d corner case pass-through as it is supported.
1681     if (!read.permutation_map().isMinorIdentityWithBroadcasting(
1682             &broadcastedDims))
1683       return failure();
1684 
1685     auto memRefType = read.getShapedType().dyn_cast<MemRefType>();
1686     if (!memRefType)
1687       return failure();
1688 
1689     // Non-unit strides are handled by VectorToSCF.
1690     if (!vector::isLastMemrefDimUnitStride(memRefType))
1691       return failure();
1692 
1693     // If there is broadcasting involved then we first load the unbroadcasted
1694     // vector, and then broadcast it with `vector.broadcast`.
1695     ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
1696     SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(),
1697                                                      vectorShape.end());
1698     for (unsigned i : broadcastedDims)
1699       unbroadcastedVectorShape[i] = 1;
1700     VectorType unbroadcastedVectorType = VectorType::get(
1701         unbroadcastedVectorShape, read.getVectorType().getElementType());
1702 
1703     // `vector.load` supports vector types as memref's elements only when the
1704     // resulting vector type is the same as the element type.
1705     auto memrefElTy = memRefType.getElementType();
1706     if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType)
1707       return failure();
1708 
1709     // Otherwise, element types of the memref and the vector must match.
1710     if (!memrefElTy.isa<VectorType>() &&
1711         memrefElTy != read.getVectorType().getElementType())
1712       return failure();
1713 
1714     // Out-of-bounds dims are handled by MaterializeTransferMask.
1715     if (read.hasOutOfBoundsDim())
1716       return failure();
1717 
1718     // Create vector load op.
1719     Operation *loadOp;
1720     if (read.mask()) {
1721       Value fill = rewriter.create<vector::SplatOp>(
1722           read.getLoc(), unbroadcastedVectorType, read.padding());
1723       loadOp = rewriter.create<vector::MaskedLoadOp>(
1724           read.getLoc(), unbroadcastedVectorType, read.source(), read.indices(),
1725           read.mask(), fill);
1726     } else {
1727       loadOp = rewriter.create<vector::LoadOp>(read.getLoc(),
1728                                                unbroadcastedVectorType,
1729                                                read.source(), read.indices());
1730     }
1731 
1732     // Insert a broadcasting op if required.
1733     if (!broadcastedDims.empty()) {
1734       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1735           read, read.getVectorType(), loadOp->getResult(0));
1736     } else {
1737       rewriter.replaceOp(read, loadOp->getResult(0));
1738     }
1739 
1740     return success();
1741   }
1742 
1743   llvm::Optional<unsigned> maxTransferRank;
1744 };
1745 
1746 /// Replace a 0-d vector.load with a memref.load + vector.broadcast.
1747 // TODO: we shouldn't cross the vector/scalar domains just for this
1748 // but atm we lack the infra to avoid it. Possible solutions include:
1749 // - go directly to LLVM + bitcast
1750 // - introduce a bitcast op and likely a new pointer dialect
1751 // - let memref.load/store additionally support the 0-d vector case
1752 // There are still deeper data layout issues lingering even in this
1753 // trivial case (for architectures for which this matters).
1754 struct VectorLoadToMemrefLoadLowering
1755     : public OpRewritePattern<vector::LoadOp> {
1756   using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
1757 
1758   LogicalResult matchAndRewrite(vector::LoadOp loadOp,
1759                                 PatternRewriter &rewriter) const override {
1760     auto vecType = loadOp.getVectorType();
1761     if (vecType.getNumElements() != 1)
1762       return failure();
1763     auto memrefLoad = rewriter.create<memref::LoadOp>(
1764         loadOp.getLoc(), loadOp.base(), loadOp.indices());
1765     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
1766                                                      memrefLoad);
1767     return success();
1768   }
1769 };
1770 
1771 /// Replace a 0-d vector.store with a vector.extractelement + memref.store.
1772 struct VectorStoreToMemrefStoreLowering
1773     : public OpRewritePattern<vector::StoreOp> {
1774   using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
1775 
1776   LogicalResult matchAndRewrite(vector::StoreOp storeOp,
1777                                 PatternRewriter &rewriter) const override {
1778     auto vecType = storeOp.getVectorType();
1779     if (vecType.getNumElements() != 1)
1780       return failure();
1781     Value extracted;
1782     if (vecType.getRank() == 0) {
1783       // TODO: Unifiy once ExtractOp supports 0-d vectors.
1784       extracted = rewriter.create<vector::ExtractElementOp>(
1785           storeOp.getLoc(), storeOp.valueToStore());
1786     } else {
1787       SmallVector<int64_t> indices(vecType.getRank(), 0);
1788       extracted = rewriter.create<vector::ExtractOp>(
1789           storeOp.getLoc(), storeOp.valueToStore(), indices);
1790     }
1791 
1792     rewriter.replaceOpWithNewOp<memref::StoreOp>(
1793         storeOp, extracted, storeOp.base(), storeOp.indices());
1794     return success();
1795   }
1796 };
1797 
1798 /// Progressive lowering of transfer_write. This pattern supports lowering of
1799 /// `vector.transfer_write` to `vector.store` if all of the following hold:
1800 /// - Stride of most minor memref dimension must be 1.
1801 /// - Out-of-bounds masking is not required.
1802 /// - If the memref's element type is a vector type then it coincides with the
1803 ///   type of the written value.
1804 /// - The permutation map is the minor identity map (neither permutation nor
1805 ///   broadcasting is allowed).
1806 struct TransferWriteToVectorStoreLowering
1807     : public OpRewritePattern<vector::TransferWriteOp> {
1808   TransferWriteToVectorStoreLowering(MLIRContext *context,
1809                                      llvm::Optional<unsigned> maxRank)
1810       : OpRewritePattern<vector::TransferWriteOp>(context),
1811         maxTransferRank(maxRank) {}
1812 
1813   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
1814                                 PatternRewriter &rewriter) const override {
1815     if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank)
1816       return failure();
1817 
1818     // Permutations are handled by VectorToSCF or
1819     // populateVectorTransferPermutationMapLoweringPatterns.
1820     if ( // pass-through for the 0-d corner case.
1821         !write.permutation_map().isMinorIdentity())
1822       return failure();
1823 
1824     auto memRefType = write.getShapedType().dyn_cast<MemRefType>();
1825     if (!memRefType)
1826       return failure();
1827 
1828     // Non-unit strides are handled by VectorToSCF.
1829     if (!vector::isLastMemrefDimUnitStride(memRefType))
1830       return failure();
1831 
1832     // `vector.store` supports vector types as memref's elements only when the
1833     // type of the vector value being written is the same as the element type.
1834     auto memrefElTy = memRefType.getElementType();
1835     if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType())
1836       return failure();
1837 
1838     // Otherwise, element types of the memref and the vector must match.
1839     if (!memrefElTy.isa<VectorType>() &&
1840         memrefElTy != write.getVectorType().getElementType())
1841       return failure();
1842 
1843     // Out-of-bounds dims are handled by MaterializeTransferMask.
1844     if (write.hasOutOfBoundsDim())
1845       return failure();
1846     if (write.mask()) {
1847       rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
1848           write, write.source(), write.indices(), write.mask(), write.vector());
1849     } else {
1850       rewriter.replaceOpWithNewOp<vector::StoreOp>(
1851           write, write.vector(), write.source(), write.indices());
1852     }
1853     return success();
1854   }
1855 
1856   llvm::Optional<unsigned> maxTransferRank;
1857 };
1858 
1859 // Returns the values in `arrayAttr` as an integer vector.
1860 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
1861   return llvm::to_vector<4>(
1862       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
1863                       [](IntegerAttr attr) { return attr.getInt(); }));
1864 }
1865 
1866 // Shuffles vector.bitcast op after vector.extract op.
1867 //
1868 // This transforms IR like:
1869 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
1870 //   %1 = vector.extract %0[3] : vector<8xf16>
1871 // Into:
1872 //   %0 = vector.extract %src[1] : vector<4xf32>
1873 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
1874 //   %2 = vector.extract %1[1] : vector<2xf16>
1875 struct BubbleDownVectorBitCastForExtract
1876     : public OpRewritePattern<vector::ExtractOp> {
1877   using OpRewritePattern::OpRewritePattern;
1878 
1879   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
1880                                 PatternRewriter &rewriter) const override {
1881     // Only support extracting scalars for now.
1882     if (extractOp.getVectorType().getRank() != 1)
1883       return failure();
1884 
1885     auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>();
1886     if (!castOp)
1887       return failure();
1888 
1889     VectorType castSrcType = castOp.getSourceVectorType();
1890     VectorType castDstType = castOp.getResultVectorType();
1891     assert(castSrcType.getRank() == castDstType.getRank());
1892 
1893     // Fail to match if we only have one element in the cast op source.
1894     // This is to avoid infinite loop given that this pattern can generate
1895     // such cases.
1896     if (castSrcType.getNumElements() == 1)
1897       return failure();
1898 
1899     // Only support casting to a larger number of elements or now.
1900     // E.g., vector<4xf32> -> vector<8xf16>.
1901     if (castSrcType.getNumElements() > castDstType.getNumElements())
1902       return failure();
1903 
1904     unsigned expandRatio =
1905         castDstType.getNumElements() / castSrcType.getNumElements();
1906 
1907     auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
1908       return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
1909     };
1910 
1911     uint64_t index = getFirstIntValue(extractOp.position());
1912 
1913     // Get the single scalar (as a vector) in the source value that packs the
1914     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
1915     VectorType oneScalarType =
1916         VectorType::get({1}, castSrcType.getElementType());
1917     Value packedValue = rewriter.create<vector::ExtractOp>(
1918         extractOp.getLoc(), oneScalarType, castOp.source(),
1919         rewriter.getI64ArrayAttr(index / expandRatio));
1920 
1921     // Cast it to a vector with the desired scalar's type.
1922     // E.g. f32 -> vector<2xf16>
1923     VectorType packedType =
1924         VectorType::get({expandRatio}, castDstType.getElementType());
1925     Value castedValue = rewriter.create<vector::BitCastOp>(
1926         extractOp.getLoc(), packedType, packedValue);
1927 
1928     // Finally extract the desired scalar.
1929     rewriter.replaceOpWithNewOp<vector::ExtractOp>(
1930         extractOp, extractOp.getType(), castedValue,
1931         rewriter.getI64ArrayAttr(index % expandRatio));
1932 
1933     return success();
1934   }
1935 };
1936 
1937 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
1938 //
1939 // This transforms IR like:
1940 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
1941 //     %0 = vector.extract_strided_slice %cast {
1942 //            offsets = [4], sizes = [4], strides = [1]
1943 //          } : vector<8xf16> to vector<4xf16>
1944 // Into:
1945 //   %0 = vector.extract_strided_slice %src {
1946 //          offsets = [2], sizes = [2], strides = [1]
1947 //        } : vector<4xf32> to vector<2xf32>
1948 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
1949 struct BubbleDownBitCastForStridedSliceExtract
1950     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
1951   using OpRewritePattern::OpRewritePattern;
1952 
1953   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
1954                                 PatternRewriter &rewriter) const override {
1955     auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>();
1956     if (!castOp)
1957       return failure();
1958 
1959     VectorType castSrcType = castOp.getSourceVectorType();
1960     VectorType castDstType = castOp.getResultVectorType();
1961     assert(castSrcType.getRank() == castDstType.getRank());
1962 
1963     int64_t castSrcLastDim = castSrcType.getShape().back();
1964     int64_t castDstLastDim = castDstType.getShape().back();
1965     // Require casting to more elements for now; other cases to be implemented.
1966     if (castSrcLastDim > castDstLastDim)
1967       return failure();
1968 
1969     // Only accept all one strides for now.
1970     if (llvm::any_of(extractOp.strides().getAsValueRange<IntegerAttr>(),
1971                      [](const APInt &val) { return !val.isOneValue(); }))
1972       return failure();
1973 
1974     unsigned rank = extractOp.getVectorType().getRank();
1975     assert(castDstLastDim % castSrcLastDim == 0);
1976     int64_t expandRatio = castDstLastDim / castSrcLastDim;
1977 
1978     // If we have a less number of offsets than the rank, then implicitly we
1979     // are selecting the full range for the last bitcasted dimension; other
1980     // dimensions aren't affected. Otherwise, we need to scale down the last
1981     // dimension's offset given we are extracting from less elements now.
1982     ArrayAttr newOffsets = extractOp.offsets();
1983     if (newOffsets.size() == rank) {
1984       SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
1985       if (offsets.back() % expandRatio != 0)
1986         return failure();
1987       offsets.back() = offsets.back() / expandRatio;
1988       newOffsets = rewriter.getI64ArrayAttr(offsets);
1989     }
1990 
1991     // Similarly for sizes.
1992     ArrayAttr newSizes = extractOp.sizes();
1993     if (newSizes.size() == rank) {
1994       SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes);
1995       if (sizes.back() % expandRatio != 0)
1996         return failure();
1997       sizes.back() = sizes.back() / expandRatio;
1998       newSizes = rewriter.getI64ArrayAttr(sizes);
1999     }
2000 
2001     SmallVector<int64_t, 4> dims =
2002         llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape());
2003     dims.back() = dims.back() / expandRatio;
2004     VectorType newExtractType =
2005         VectorType::get(dims, castSrcType.getElementType());
2006 
2007     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
2008         extractOp.getLoc(), newExtractType, castOp.source(), newOffsets,
2009         newSizes, extractOp.strides());
2010 
2011     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
2012         extractOp, extractOp.getType(), newExtractOp);
2013 
2014     return success();
2015   }
2016 };
2017 
2018 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
2019 //
2020 // This transforms IR like:
2021 //   %0 = vector.insert_strided_slice %src, %dst {
2022 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
2023 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
2024 // Into:
2025 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
2026 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
2027 //   %2 = vector.insert_strided_slice %src, %dst {
2028 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
2029 struct BubbleUpBitCastForStridedSliceInsert
2030     : public OpRewritePattern<vector::BitCastOp> {
2031   using OpRewritePattern::OpRewritePattern;
2032   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
2033                                 PatternRewriter &rewriter) const override {
2034     VectorType castSrcType = bitcastOp.getSourceVectorType();
2035     VectorType castDstType = bitcastOp.getResultVectorType();
2036     assert(castSrcType.getRank() == castDstType.getRank());
2037 
2038     int64_t castSrcLastDim = castSrcType.getShape().back();
2039     int64_t castDstLastDim = castDstType.getShape().back();
2040     // Require casting to less elements for now; other cases to be implemented.
2041     if (castSrcLastDim < castDstLastDim)
2042       return failure();
2043 
2044     assert(castSrcLastDim % castDstLastDim == 0);
2045     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
2046 
2047     auto insertOp =
2048         bitcastOp.source().getDefiningOp<vector::InsertStridedSliceOp>();
2049     if (!insertOp)
2050       return failure();
2051 
2052     // Only accept all one strides for now.
2053     if (llvm::any_of(insertOp.strides().getAsValueRange<IntegerAttr>(),
2054                      [](const APInt &val) { return !val.isOneValue(); }))
2055       return failure();
2056 
2057     unsigned rank = insertOp.getSourceVectorType().getRank();
2058     // Require insert op to have the same rank for the source and destination
2059     // vector; other cases to be implemented.
2060     if (rank != insertOp.getDestVectorType().getRank())
2061       return failure();
2062 
2063     ArrayAttr newOffsets = insertOp.offsets();
2064     assert(newOffsets.size() == rank);
2065     SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2066     if (offsets.back() % shrinkRatio != 0)
2067       return failure();
2068     offsets.back() = offsets.back() / shrinkRatio;
2069     newOffsets = rewriter.getI64ArrayAttr(offsets);
2070 
2071     SmallVector<int64_t, 4> srcDims =
2072         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
2073     srcDims.back() = srcDims.back() / shrinkRatio;
2074     VectorType newCastSrcType =
2075         VectorType::get(srcDims, castDstType.getElementType());
2076 
2077     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
2078         bitcastOp.getLoc(), newCastSrcType, insertOp.source());
2079 
2080     SmallVector<int64_t, 4> dstDims =
2081         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
2082     dstDims.back() = dstDims.back() / shrinkRatio;
2083     VectorType newCastDstType =
2084         VectorType::get(dstDims, castDstType.getElementType());
2085 
2086     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
2087         bitcastOp.getLoc(), newCastDstType, insertOp.dest());
2088 
2089     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
2090         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
2091         insertOp.strides());
2092 
2093     return success();
2094   }
2095 };
2096 
2097 static Value createCastToIndexLike(PatternRewriter &rewriter, Location loc,
2098                                    Type targetType, Value value) {
2099   if (targetType == value.getType())
2100     return value;
2101 
2102   bool targetIsIndex = targetType.isIndex();
2103   bool valueIsIndex = value.getType().isIndex();
2104   if (targetIsIndex ^ valueIsIndex)
2105     return rewriter.create<arith::IndexCastOp>(loc, targetType, value);
2106 
2107   auto targetIntegerType = targetType.dyn_cast<IntegerType>();
2108   auto valueIntegerType = value.getType().dyn_cast<IntegerType>();
2109   assert(targetIntegerType && valueIntegerType &&
2110          "unexpected cast between types other than integers and index");
2111   assert(targetIntegerType.getSignedness() == valueIntegerType.getSignedness());
2112 
2113   if (targetIntegerType.getWidth() > valueIntegerType.getWidth())
2114     return rewriter.create<arith::ExtSIOp>(loc, targetIntegerType, value);
2115   return rewriter.create<arith::TruncIOp>(loc, targetIntegerType, value);
2116 }
2117 
2118 // Helper that returns a vector comparison that constructs a mask:
2119 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
2120 //
2121 // If `dim == 0` then the result will be a 0-D vector.
2122 //
2123 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
2124 //       much more compact, IR for this operation, but LLVM eventually
2125 //       generates more elaborate instructions for this intrinsic since it
2126 //       is very conservative on the boundary conditions.
2127 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
2128                                    bool indexOptimizations, int64_t dim,
2129                                    Value b, Value *off = nullptr) {
2130   auto loc = op->getLoc();
2131   // If we can assume all indices fit in 32-bit, we perform the vector
2132   // comparison in 32-bit to get a higher degree of SIMD parallelism.
2133   // Otherwise we perform the vector comparison using 64-bit indices.
2134   Type idxType =
2135       indexOptimizations ? rewriter.getI32Type() : rewriter.getI64Type();
2136   DenseIntElementsAttr indicesAttr;
2137   if (dim == 0 && indexOptimizations) {
2138     indicesAttr = DenseIntElementsAttr::get(
2139         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
2140   } else if (dim == 0) {
2141     indicesAttr = DenseIntElementsAttr::get(
2142         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
2143   } else if (indexOptimizations) {
2144     indicesAttr = rewriter.getI32VectorAttr(
2145         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
2146   } else {
2147     indicesAttr = rewriter.getI64VectorAttr(
2148         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
2149   }
2150   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
2151   // Add in an offset if requested.
2152   if (off) {
2153     Value o = createCastToIndexLike(rewriter, loc, idxType, *off);
2154     Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
2155     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
2156   }
2157   // Construct the vector comparison.
2158   Value bound = createCastToIndexLike(rewriter, loc, idxType, b);
2159   Value bounds =
2160       rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
2161   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
2162                                         bounds);
2163 }
2164 
2165 template <typename ConcreteOp>
2166 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
2167 public:
2168   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt)
2169       : mlir::OpRewritePattern<ConcreteOp>(context),
2170         indexOptimizations(enableIndexOpt) {}
2171 
2172   LogicalResult matchAndRewrite(ConcreteOp xferOp,
2173                                 PatternRewriter &rewriter) const override {
2174     if (!xferOp.hasOutOfBoundsDim())
2175       return failure();
2176 
2177     if (xferOp.getVectorType().getRank() > 1 ||
2178         llvm::size(xferOp.indices()) == 0)
2179       return failure();
2180 
2181     Location loc = xferOp->getLoc();
2182     VectorType vtp = xferOp.getVectorType();
2183 
2184     // * Create a vector with linear indices [ 0 .. vector_length - 1 ].
2185     // * Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
2186     // * Let dim the memref dimension, compute the vector comparison mask
2187     //   (in-bounds mask):
2188     //   [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
2189     //
2190     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
2191     //       dimensions here.
2192     unsigned vecWidth = vtp.getNumElements();
2193     unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
2194     Value off = xferOp.indices()[lastIndex];
2195     Value dim =
2196         vector::createOrFoldDimOp(rewriter, loc, xferOp.source(), lastIndex);
2197     Value mask = buildVectorComparison(rewriter, xferOp, indexOptimizations,
2198                                        vecWidth, dim, &off);
2199 
2200     if (xferOp.mask()) {
2201       // Intersect the in-bounds with the mask specified as an op parameter.
2202       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.mask());
2203     }
2204 
2205     rewriter.updateRootInPlace(xferOp, [&]() {
2206       xferOp.maskMutable().assign(mask);
2207       xferOp.in_boundsAttr(rewriter.getBoolArrayAttr({true}));
2208     });
2209 
2210     return success();
2211   }
2212 
2213 private:
2214   const bool indexOptimizations;
2215 };
2216 
2217 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
2218 class VectorCreateMaskOpConversion
2219     : public OpRewritePattern<vector::CreateMaskOp> {
2220 public:
2221   explicit VectorCreateMaskOpConversion(MLIRContext *context,
2222                                         bool enableIndexOpt)
2223       : mlir::OpRewritePattern<vector::CreateMaskOp>(context),
2224         indexOptimizations(enableIndexOpt) {}
2225 
2226   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
2227                                 PatternRewriter &rewriter) const override {
2228     auto dstType = op.getType();
2229     int64_t rank = dstType.getRank();
2230     if (rank > 1)
2231       return failure();
2232     rewriter.replaceOp(
2233         op, buildVectorComparison(rewriter, op, indexOptimizations,
2234                                   rank == 0 ? 0 : dstType.getDimSize(0),
2235                                   op.getOperand(0)));
2236     return success();
2237   }
2238 
2239 private:
2240   const bool indexOptimizations;
2241 };
2242 
2243 // Drop inner most contiguous unit dimensions from transfer_read operand.
2244 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
2245   using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
2246 
2247   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
2248                                 PatternRewriter &rewriter) const override {
2249     // TODO: support 0-d corner case.
2250     if (readOp.getTransferRank() == 0)
2251       return failure();
2252 
2253     // TODO: support mask.
2254     if (readOp.mask())
2255       return failure();
2256 
2257     auto srcType = readOp.source().getType().dyn_cast<MemRefType>();
2258     if (!srcType || !srcType.hasStaticShape())
2259       return failure();
2260 
2261     if (!readOp.permutation_map().isMinorIdentity())
2262       return failure();
2263 
2264     auto targetType = readOp.getVectorType();
2265     if (targetType.getRank() <= 1)
2266       return failure();
2267 
2268     SmallVector<int64_t> srcStrides;
2269     int64_t srcOffset;
2270     if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
2271       return failure();
2272 
2273     size_t dimsToDrop = 0;
2274     for (size_t i = 1; i < srcStrides.size(); ++i) {
2275       int dim = srcType.getRank() - i - 1;
2276       if (srcStrides[dim] == 1) {
2277         dimsToDrop++;
2278       } else {
2279         break;
2280       }
2281     }
2282     if (dimsToDrop == 0)
2283       return failure();
2284 
2285     auto resultTargetVecType =
2286         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
2287                         targetType.getElementType());
2288 
2289     MemRefType resultMemrefType;
2290     if (srcType.getLayout().getAffineMap().isIdentity()) {
2291       resultMemrefType = MemRefType::get(
2292           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2293           {}, srcType.getMemorySpaceAsInt());
2294     } else {
2295       AffineMap map = srcType.getLayout().getAffineMap();
2296       int numResultDims = map.getNumDims() - dimsToDrop;
2297       int numSymbols = map.getNumSymbols();
2298       for (size_t i = 0; i < dimsToDrop; ++i) {
2299         int dim = srcType.getRank() - i - 1;
2300         map = map.replace(rewriter.getAffineDimExpr(dim),
2301                           rewriter.getAffineConstantExpr(0), numResultDims,
2302                           numSymbols);
2303       }
2304       resultMemrefType = MemRefType::get(
2305           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2306           map, srcType.getMemorySpaceAsInt());
2307     }
2308 
2309     auto loc = readOp.getLoc();
2310     SmallVector<int64_t> offsets(srcType.getRank(), 0);
2311     SmallVector<int64_t> strides(srcType.getRank(), 1);
2312 
2313     ArrayAttr inBoundsAttr =
2314         readOp.in_bounds()
2315             ? rewriter.getArrayAttr(
2316                   readOp.in_boundsAttr().getValue().drop_back(dimsToDrop))
2317             : ArrayAttr();
2318     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
2319         loc, resultMemrefType, readOp.source(), offsets, srcType.getShape(),
2320         strides);
2321     auto permMap = getTransferMinorIdentityMap(
2322         rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType);
2323     Value result = rewriter.create<vector::TransferReadOp>(
2324         loc, resultTargetVecType, rankedReducedView,
2325         readOp.indices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
2326         readOp.padding(),
2327         // TODO: support mask.
2328         /*mask=*/Value(), inBoundsAttr);
2329     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
2330                                                      result);
2331     return success();
2332   }
2333 };
2334 
2335 namespace {
2336 
2337 /// This function checks to see if the vector combining kind
2338 /// is consistent with the integer or float element type.
2339 static bool isValidKind(bool isInt, vector::CombiningKind kind) {
2340   using vector::CombiningKind;
2341   enum class KindType { FLOAT, INT, INVALID };
2342   KindType type{KindType::INVALID};
2343   switch (kind) {
2344   case CombiningKind::MINF:
2345   case CombiningKind::MAXF:
2346     type = KindType::FLOAT;
2347     break;
2348   case CombiningKind::MINUI:
2349   case CombiningKind::MINSI:
2350   case CombiningKind::MAXUI:
2351   case CombiningKind::MAXSI:
2352   case CombiningKind::AND:
2353   case CombiningKind::OR:
2354   case CombiningKind::XOR:
2355     type = KindType::INT;
2356     break;
2357   case CombiningKind::ADD:
2358   case CombiningKind::MUL:
2359     type = isInt ? KindType::INT : KindType::FLOAT;
2360     break;
2361   }
2362   bool isValidIntKind = (type == KindType::INT) && isInt;
2363   bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
2364   return (isValidIntKind || isValidFloatKind);
2365 }
2366 
2367 /// This function constructs the appropriate integer or float
2368 /// operation given the vector combining kind and operands. The
2369 /// supported int operations are : add, mul, min (signed/unsigned),
2370 /// max(signed/unsigned), and, or, xor. The supported float
2371 /// operations are : add, mul, min and max.
2372 static Value genOperator(Location loc, Value x, Value y,
2373                          vector::CombiningKind kind,
2374                          PatternRewriter &rewriter) {
2375   using vector::CombiningKind;
2376 
2377   auto elType = x.getType().cast<VectorType>().getElementType();
2378   bool isInt = elType.isIntOrIndex();
2379 
2380   Value combinedResult{nullptr};
2381   switch (kind) {
2382   case CombiningKind::ADD:
2383     if (isInt)
2384       combinedResult = rewriter.create<arith::AddIOp>(loc, x, y);
2385     else
2386       combinedResult = rewriter.create<arith::AddFOp>(loc, x, y);
2387     break;
2388   case CombiningKind::MUL:
2389     if (isInt)
2390       combinedResult = rewriter.create<arith::MulIOp>(loc, x, y);
2391     else
2392       combinedResult = rewriter.create<arith::MulFOp>(loc, x, y);
2393     break;
2394   case CombiningKind::MINUI:
2395     combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y);
2396     break;
2397   case CombiningKind::MINSI:
2398     combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y);
2399     break;
2400   case CombiningKind::MAXUI:
2401     combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y);
2402     break;
2403   case CombiningKind::MAXSI:
2404     combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y);
2405     break;
2406   case CombiningKind::AND:
2407     combinedResult = rewriter.create<arith::AndIOp>(loc, x, y);
2408     break;
2409   case CombiningKind::OR:
2410     combinedResult = rewriter.create<arith::OrIOp>(loc, x, y);
2411     break;
2412   case CombiningKind::XOR:
2413     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
2414     break;
2415   case CombiningKind::MINF:
2416     combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
2417     break;
2418   case CombiningKind::MAXF:
2419     combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
2420     break;
2421   }
2422   return combinedResult;
2423 }
2424 
2425 /// Convert vector.scan op into arith ops and
2426 /// vector.insert_strided_slice/extract_strided_slice
2427 ///
2428 /// Ex:
2429 /// ```
2430 ///   %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim =
2431 ///   1} :
2432 ///     (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
2433 /// ```
2434 /// Gets converted to:
2435 /// ```
2436 ///   %cst = arith.constant dense<0> : vector<2x3xi32>
2437 ///   %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1],
2438 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 =
2439 ///   vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]}
2440 ///   : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice
2441 ///   %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} :
2442 ///   vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 :
2443 ///   vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1],
2444 ///   strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 =
2445 ///   vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1],
2446 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3,
2447 ///   %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets =
2448 ///   [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 =
2449 ///   vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 :
2450 ///   vector<2x3xi32>, vector<2xi32>
2451 /// ```
2452 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
2453   using OpRewritePattern<vector::ScanOp>::OpRewritePattern;
2454 
2455   LogicalResult matchAndRewrite(vector::ScanOp scanOp,
2456                                 PatternRewriter &rewriter) const override {
2457     auto loc = scanOp.getLoc();
2458     VectorType destType = scanOp.getDestType();
2459     ArrayRef<int64_t> destShape = destType.getShape();
2460     auto elType = destType.getElementType();
2461     bool isInt = elType.isIntOrIndex();
2462     if (!isValidKind(isInt, scanOp.kind()))
2463       return failure();
2464 
2465     VectorType resType = VectorType::get(destShape, elType);
2466     Value result = rewriter.create<arith::ConstantOp>(
2467         loc, resType, rewriter.getZeroAttr(resType));
2468     int64_t reductionDim = scanOp.reduction_dim();
2469     bool inclusive = scanOp.inclusive();
2470     int64_t destRank = destType.getRank();
2471     VectorType initialValueType = scanOp.getInitialValueType();
2472     int64_t initialValueRank = initialValueType.getRank();
2473 
2474     SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end());
2475     reductionShape[reductionDim] = 1;
2476     VectorType reductionType = VectorType::get(reductionShape, elType);
2477     SmallVector<int64_t> offsets(destRank, 0);
2478     SmallVector<int64_t> strides(destRank, 1);
2479     SmallVector<int64_t> sizes(destShape.begin(), destShape.end());
2480     sizes[reductionDim] = 1;
2481     ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
2482     ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
2483 
2484     Value lastOutput, lastInput;
2485     for (int i = 0; i < destShape[reductionDim]; i++) {
2486       offsets[reductionDim] = i;
2487       ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
2488       Value input = rewriter.create<vector::ExtractStridedSliceOp>(
2489           loc, reductionType, scanOp.source(), scanOffsets, scanSizes,
2490           scanStrides);
2491       Value output;
2492       if (i == 0) {
2493         if (inclusive) {
2494           output = input;
2495         } else {
2496           if (initialValueRank == 0) {
2497             // ShapeCastOp cannot handle 0-D vectors
2498             output = rewriter.create<vector::BroadcastOp>(
2499                 loc, input.getType(), scanOp.initial_value());
2500           } else {
2501             output = rewriter.create<vector::ShapeCastOp>(
2502                 loc, input.getType(), scanOp.initial_value());
2503           }
2504         }
2505       } else {
2506         Value y = inclusive ? input : lastInput;
2507         output = genOperator(loc, lastOutput, y, scanOp.kind(), rewriter);
2508         assert(output != nullptr);
2509       }
2510       result = rewriter.create<vector::InsertStridedSliceOp>(
2511           loc, output, result, offsets, strides);
2512       lastOutput = output;
2513       lastInput = input;
2514     }
2515 
2516     Value reduction;
2517     if (initialValueRank == 0) {
2518       Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0);
2519       reduction =
2520           rewriter.create<vector::BroadcastOp>(loc, initialValueType, v);
2521     } else {
2522       reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType,
2523                                                        lastOutput);
2524     }
2525 
2526     rewriter.replaceOp(scanOp, {result, reduction});
2527     return success();
2528   }
2529 };
2530 
2531 } // namespace
2532 
2533 void mlir::vector::populateVectorMaskMaterializationPatterns(
2534     RewritePatternSet &patterns, bool indexOptimizations) {
2535   patterns.add<VectorCreateMaskOpConversion,
2536                MaterializeTransferMask<vector::TransferReadOp>,
2537                MaterializeTransferMask<vector::TransferWriteOp>>(
2538       patterns.getContext(), indexOptimizations);
2539 }
2540 
2541 void mlir::vector::populateShapeCastFoldingPatterns(
2542     RewritePatternSet &patterns) {
2543   patterns.add<ShapeCastOpFolder>(patterns.getContext());
2544 }
2545 
2546 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2547     RewritePatternSet &patterns) {
2548   patterns.add<BubbleDownVectorBitCastForExtract,
2549                BubbleDownBitCastForStridedSliceExtract,
2550                BubbleUpBitCastForStridedSliceInsert>(patterns.getContext());
2551 }
2552 
2553 void mlir::vector::populateVectorBroadcastLoweringPatterns(
2554     RewritePatternSet &patterns) {
2555   patterns.add<BroadcastOpLowering>(patterns.getContext());
2556 }
2557 
2558 void mlir::vector::populateVectorMaskOpLoweringPatterns(
2559     RewritePatternSet &patterns) {
2560   patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>(
2561       patterns.getContext());
2562 }
2563 
2564 void mlir::vector::populateVectorShapeCastLoweringPatterns(
2565     RewritePatternSet &patterns) {
2566   patterns.add<ShapeCastOp2DDownCastRewritePattern,
2567                ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
2568       patterns.getContext());
2569 }
2570 
2571 void mlir::vector::populateVectorContractLoweringPatterns(
2572     RewritePatternSet &patterns, VectorTransformsOptions options) {
2573   patterns.add<OuterProductOpLowering>(patterns.getContext());
2574   patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering,
2575                ContractionOpToOuterProductOpLowering>(options,
2576                                                       patterns.getContext());
2577 }
2578 
2579 void mlir::vector::populateVectorTransposeLoweringPatterns(
2580     RewritePatternSet &patterns, VectorTransformsOptions options) {
2581   patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
2582       options, patterns.getContext());
2583 }
2584 
2585 void mlir::vector::populateVectorReductionToContractPatterns(
2586     RewritePatternSet &patterns) {
2587   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2588                CombineContractTranspose>(patterns.getContext());
2589 }
2590 
2591 void mlir::vector::
2592     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2593         RewritePatternSet &patterns) {
2594   patterns.add<DropInnerMostUnitDims>(patterns.getContext());
2595 }
2596 
2597 void mlir::vector::populateVectorTransferLoweringPatterns(
2598     RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) {
2599   patterns.add<TransferReadToVectorLoadLowering,
2600                TransferWriteToVectorStoreLowering>(patterns.getContext(),
2601                                                    maxTransferRank);
2602   patterns
2603       .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
2604           patterns.getContext());
2605 }
2606 
2607 void mlir::vector::populateVectorScanLoweringPatterns(
2608     RewritePatternSet &patterns) {
2609   patterns.add<ScanToArithOps>(patterns.getContext());
2610 }
2611