1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
14 
15 #include <type_traits>
16 
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
19 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
20 #include "mlir/Dialect/Linalg/IR/Linalg.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/SCF.h"
23 #include "mlir/Dialect/Utils/IndexingUtils.h"
24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
25 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
26 #include "mlir/IR/BuiltinTypes.h"
27 #include "mlir/IR/ImplicitLocOpBuilder.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/IR/PatternMatch.h"
30 #include "mlir/Interfaces/VectorInterfaces.h"
31 
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 #define DEBUG_TYPE "vector-to-vector"
40 
41 using namespace mlir;
42 using namespace mlir::vector;
43 
44 // Helper to find an index in an affine map.
45 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
46   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
47     int64_t idx = map.getDimPosition(i);
48     if (idx == index)
49       return i;
50   }
51   return None;
52 }
53 
54 // Helper to construct iterator types with one index removed.
55 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
56                                             int64_t index) {
57   SmallVector<Attribute, 4> results;
58   for (const auto &it : llvm::enumerate(iteratorTypes)) {
59     int64_t idx = it.index();
60     if (idx == index)
61       continue;
62     results.push_back(it.value());
63   }
64   return results;
65 }
66 
67 // Helper to construct an affine map with one index removed.
68 static AffineMap adjustMap(AffineMap map, int64_t index,
69                            PatternRewriter &rewriter) {
70   auto *ctx = rewriter.getContext();
71   SmallVector<AffineExpr, 4> results;
72   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
73     int64_t idx = map.getDimPosition(i);
74     if (idx == index)
75       continue;
76     // Re-insert remaining indices, but renamed when occurring
77     // after the removed index.
78     auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
79     results.push_back(targetExpr);
80   }
81   return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
82 }
83 
84 // Helper method to possibly drop a dimension in a load.
85 // TODO
86 static Value reshapeLoad(Location loc, Value val, VectorType type,
87                          int64_t index, int64_t pos,
88                          PatternRewriter &rewriter) {
89   if (index == -1)
90     return val;
91   Type lowType = VectorType::Builder(type).dropDim(0);
92   // At extraction dimension?
93   if (index == 0) {
94     auto posAttr = rewriter.getI64ArrayAttr(pos);
95     return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
96   }
97   // Unroll leading dimensions.
98   VectorType vType = lowType.cast<VectorType>();
99   Type resType = VectorType::Builder(type).dropDim(index);
100   auto resVectorType = resType.cast<VectorType>();
101   Value result = rewriter.create<arith::ConstantOp>(
102       loc, resVectorType, rewriter.getZeroAttr(resVectorType));
103   for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
104     auto posAttr = rewriter.getI64ArrayAttr(d);
105     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
106     Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
107     result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
108                                                posAttr);
109   }
110   return result;
111 }
112 
113 // Helper method to possibly drop a dimension in a store.
114 // TODO
115 static Value reshapeStore(Location loc, Value val, Value result,
116                           VectorType type, int64_t index, int64_t pos,
117                           PatternRewriter &rewriter) {
118   // Unmodified?
119   if (index == -1)
120     return val;
121   // At insertion dimension?
122   if (index == 0) {
123     auto posAttr = rewriter.getI64ArrayAttr(pos);
124     return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
125   }
126   // Unroll leading dimensions.
127   Type lowType = VectorType::Builder(type).dropDim(0);
128   VectorType vType = lowType.cast<VectorType>();
129   Type insType = VectorType::Builder(vType).dropDim(0);
130   for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
131     auto posAttr = rewriter.getI64ArrayAttr(d);
132     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
133     Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
134     Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
135     result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
136   }
137   return result;
138 }
139 
140 template <typename IntType>
141 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
142   return llvm::to_vector<4>(llvm::map_range(
143       arrayAttr.getAsRange<IntegerAttr>(),
144       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
145 }
146 
147 /// Helper to create arithmetic operation associated with a kind of contraction.
148 static Optional<Value> createContractArithOp(Location loc, Value x, Value y,
149                                              Value acc,
150                                              vector::CombiningKind kind,
151                                              PatternRewriter &rewriter,
152                                              bool isInt) {
153   using vector::CombiningKind;
154   Value mul;
155   if (isInt) {
156     if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF)
157       // Only valid for floating point types.
158       return Optional<Value>();
159     mul = rewriter.create<arith::MulIOp>(loc, x, y);
160   } else {
161     // Float case.
162     if (kind == CombiningKind::AND || kind == CombiningKind::MINUI ||
163         kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI ||
164         kind == CombiningKind::MAXSI || kind == CombiningKind::OR ||
165         kind == CombiningKind::XOR)
166       // Only valid for integer types.
167       return Optional<Value>();
168     // Special case for fused multiply-add.
169     if (acc && acc.getType().isa<VectorType>() && kind == CombiningKind::ADD) {
170       return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc));
171     }
172     mul = rewriter.create<arith::MulFOp>(loc, x, y);
173   }
174   if (!acc)
175     return Optional<Value>(mul);
176   return makeArithReduction(rewriter, loc, kind, mul, acc);
177 }
178 
179 /// Return the positions of the reductions in the given map.
180 static SmallVector<int64_t> getReductionIndex(AffineMap map,
181                                               ArrayAttr iteratorTypes) {
182   SmallVector<int64_t> dimsIdx;
183   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
184     if (isReductionIterator(iteratorTypes[map.getDimPosition(i)]))
185       dimsIdx.push_back(i);
186   }
187   return dimsIdx;
188 }
189 
190 /// Look for a given dimension in an affine map and return its position. Return
191 /// llvm::None if the dimension is not in the map results.
192 static llvm::Optional<unsigned> getDimPosition(AffineMap map, unsigned dim) {
193   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
194     if (map.getDimPosition(i) == dim)
195       return i;
196   }
197   return llvm::None;
198 }
199 
200 namespace {
201 
202 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
203 //
204 // Example:
205 //
206 //  The following MLIR with cancelling ShapeCastOps:
207 //
208 //   %0 = source : vector<5x4x2xf32>
209 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
210 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
211 //   %3 = user %2 : vector<5x4x2xf32>
212 //
213 //  Should canonicalize to the following:
214 //
215 //   %0 = source : vector<5x4x2xf32>
216 //   %1 = user %0 : vector<5x4x2xf32>
217 //
218 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
219   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
220 
221   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
222                                 PatternRewriter &rewriter) const override {
223     // Check if 'shapeCastOp' has vector source/result type.
224     auto sourceVectorType =
225         shapeCastOp.getSource().getType().dyn_cast_or_null<VectorType>();
226     auto resultVectorType =
227         shapeCastOp.getResult().getType().dyn_cast_or_null<VectorType>();
228     if (!sourceVectorType || !resultVectorType)
229       return failure();
230 
231     // Check if shape cast op source operand is also a shape cast op.
232     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
233         shapeCastOp.getSource().getDefiningOp());
234     if (!sourceShapeCastOp)
235       return failure();
236     auto operandSourceVectorType =
237         sourceShapeCastOp.getSource().getType().cast<VectorType>();
238     auto operandResultVectorType = sourceShapeCastOp.getType();
239 
240     // Check if shape cast operations invert each other.
241     if (operandSourceVectorType != resultVectorType ||
242         operandResultVectorType != sourceVectorType)
243       return failure();
244 
245     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource());
246     return success();
247   }
248 };
249 
250 /// Progressive lowering of BroadcastOp.
251 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
252 public:
253   using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
254 
255   LogicalResult matchAndRewrite(vector::BroadcastOp op,
256                                 PatternRewriter &rewriter) const override {
257     auto loc = op.getLoc();
258     VectorType dstType = op.getVectorType();
259     VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
260     Type eltType = dstType.getElementType();
261 
262     // Scalar to any vector can use splat.
263     if (!srcType) {
264       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.getSource());
265       return success();
266     }
267 
268     // Determine rank of source and destination.
269     int64_t srcRank = srcType.getRank();
270     int64_t dstRank = dstType.getRank();
271 
272     // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
273     if (srcRank <= 1 && dstRank == 1) {
274       Value ext;
275       if (srcRank == 0)
276         ext = rewriter.create<vector::ExtractElementOp>(loc, op.getSource());
277       else
278         ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
279       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext);
280       return success();
281     }
282 
283     // Duplicate this rank.
284     // For example:
285     //   %x = broadcast %y  : k-D to n-D, k < n
286     // becomes:
287     //   %b = broadcast %y  : k-D to (n-1)-D
288     //   %x = [%b,%b,%b,%b] : n-D
289     // becomes:
290     //   %b = [%y,%y]       : (n-1)-D
291     //   %x = [%b,%b,%b,%b] : n-D
292     if (srcRank < dstRank) {
293       // Duplication.
294       VectorType resType =
295           VectorType::get(dstType.getShape().drop_front(), eltType);
296       Value bcst =
297           rewriter.create<vector::BroadcastOp>(loc, resType, op.getSource());
298       Value result = rewriter.create<arith::ConstantOp>(
299           loc, dstType, rewriter.getZeroAttr(dstType));
300       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
301         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
302       rewriter.replaceOp(op, result);
303       return success();
304     }
305 
306     // Find non-matching dimension, if any.
307     assert(srcRank == dstRank);
308     int64_t m = -1;
309     for (int64_t r = 0; r < dstRank; r++)
310       if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
311         m = r;
312         break;
313       }
314 
315     // All trailing dimensions are the same. Simply pass through.
316     if (m == -1) {
317       rewriter.replaceOp(op, op.getSource());
318       return success();
319     }
320 
321     // Any non-matching dimension forces a stretch along this rank.
322     // For example:
323     //   %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
324     // becomes:
325     //   %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
326     //   %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
327     //   %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
328     //   %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
329     //   %x = [%a,%b,%c,%d]
330     // becomes:
331     //   %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
332     //   %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
333     //   %a = [%u, %v]
334     //   ..
335     //   %x = [%a,%b,%c,%d]
336     VectorType resType =
337         VectorType::get(dstType.getShape().drop_front(), eltType);
338     Value result = rewriter.create<arith::ConstantOp>(
339         loc, dstType, rewriter.getZeroAttr(dstType));
340     if (m == 0) {
341       // Stetch at start.
342       Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
343       Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
344       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
345         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
346     } else {
347       // Stetch not at start.
348       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
349         Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), d);
350         Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
351         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
352       }
353     }
354     rewriter.replaceOp(op, result);
355     return success();
356   }
357 };
358 
359 /// Given a 'transpose' pattern, prune the rightmost dimensions that are not
360 /// transposed.
361 void pruneNonTransposedDims(ArrayRef<int64_t> transpose,
362                             SmallVectorImpl<int64_t> &result) {
363   size_t numTransposedDims = transpose.size();
364   for (size_t transpDim : llvm::reverse(transpose)) {
365     if (transpDim != numTransposedDims - 1)
366       break;
367     numTransposedDims--;
368   }
369 
370   result.append(transpose.begin(), transpose.begin() + numTransposedDims);
371 }
372 
373 /// Progressive lowering of TransposeOp.
374 /// One:
375 ///   %x = vector.transpose %y, [1, 0]
376 /// is replaced by:
377 ///   %z = arith.constant dense<0.000000e+00>
378 ///   %0 = vector.extract %y[0, 0]
379 ///   %1 = vector.insert %0, %z [0, 0]
380 ///   ..
381 ///   %x = vector.insert .., .. [.., ..]
382 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
383 public:
384   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
385 
386   TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
387                       MLIRContext *context)
388       : OpRewritePattern<vector::TransposeOp>(context),
389         vectorTransformOptions(vectorTransformOptions) {}
390 
391   LogicalResult matchAndRewrite(vector::TransposeOp op,
392                                 PatternRewriter &rewriter) const override {
393     auto loc = op.getLoc();
394 
395     Value input = op.getVector();
396     VectorType inputType = op.getVectorType();
397     VectorType resType = op.getResultType();
398 
399     // Set up convenience transposition table.
400     SmallVector<int64_t, 4> transp;
401     for (auto attr : op.getTransp())
402       transp.push_back(attr.cast<IntegerAttr>().getInt());
403 
404     if (vectorTransformOptions.vectorTransposeLowering ==
405             vector::VectorTransposeLowering::Shuffle &&
406         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0)
407       return rewriter.notifyMatchFailure(
408           op, "Options specifies lowering to shuffle");
409 
410     // Handle a true 2-D matrix transpose differently when requested.
411     if (vectorTransformOptions.vectorTransposeLowering ==
412             vector::VectorTransposeLowering::Flat &&
413         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
414       Type flattenedType =
415           VectorType::get(resType.getNumElements(), resType.getElementType());
416       auto matrix =
417           rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input);
418       auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
419       auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
420       Value trans = rewriter.create<vector::FlatTransposeOp>(
421           loc, flattenedType, matrix, rows, columns);
422       rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
423       return success();
424     }
425 
426     // Generate unrolled extract/insert ops. We do not unroll the rightmost
427     // (i.e., highest-order) dimensions that are not transposed and leave them
428     // in vector form to improve performance. Therefore, we prune those
429     // dimensions from the shape/transpose data structures used to generate the
430     // extract/insert ops.
431     SmallVector<int64_t, 4> prunedTransp;
432     pruneNonTransposedDims(transp, prunedTransp);
433     size_t numPrunedDims = transp.size() - prunedTransp.size();
434     auto prunedInShape = inputType.getShape().drop_back(numPrunedDims);
435     SmallVector<int64_t, 4> ones(prunedInShape.size(), 1);
436     auto prunedInStrides = computeStrides(prunedInShape, ones);
437 
438     // Generates the extract/insert operations for every scalar/vector element
439     // of the leftmost transposed dimensions. We traverse every transpose
440     // element using a linearized index that we delinearize to generate the
441     // appropriate indices for the extract/insert operations.
442     Value result = rewriter.create<arith::ConstantOp>(
443         loc, resType, rewriter.getZeroAttr(resType));
444     int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape);
445 
446     for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
447          ++linearIdx) {
448       auto extractIdxs = delinearize(prunedInStrides, linearIdx);
449       SmallVector<int64_t, 4> insertIdxs(extractIdxs);
450       applyPermutationToVector(insertIdxs, prunedTransp);
451       Value extractOp =
452           rewriter.create<vector::ExtractOp>(loc, input, extractIdxs);
453       result =
454           rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs);
455     }
456 
457     rewriter.replaceOp(op, result);
458     return success();
459   }
460 
461 private:
462   /// Options to control the vector patterns.
463   vector::VectorTransformsOptions vectorTransformOptions;
464 };
465 
466 /// Rewrite a 2-D vector.transpose as a sequence of:
467 ///   vector.shape_cast 2D -> 1D
468 ///   vector.shuffle
469 ///   vector.shape_cast 1D -> 2D
470 class TransposeOp2DToShuffleLowering
471     : public OpRewritePattern<vector::TransposeOp> {
472 public:
473   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
474 
475   TransposeOp2DToShuffleLowering(
476       vector::VectorTransformsOptions vectorTransformOptions,
477       MLIRContext *context)
478       : OpRewritePattern<vector::TransposeOp>(context),
479         vectorTransformOptions(vectorTransformOptions) {}
480 
481   LogicalResult matchAndRewrite(vector::TransposeOp op,
482                                 PatternRewriter &rewriter) const override {
483     auto loc = op.getLoc();
484 
485     VectorType srcType = op.getVectorType();
486     if (srcType.getRank() != 2)
487       return rewriter.notifyMatchFailure(op, "Not a 2D transpose");
488 
489     SmallVector<int64_t, 4> transp;
490     for (auto attr : op.getTransp())
491       transp.push_back(attr.cast<IntegerAttr>().getInt());
492     if (transp[0] != 1 && transp[1] != 0)
493       return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation");
494 
495     if (vectorTransformOptions.vectorTransposeLowering !=
496         VectorTransposeLowering::Shuffle)
497       return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle");
498 
499     int64_t m = srcType.getShape().front(), n = srcType.getShape().back();
500     Value casted = rewriter.create<vector::ShapeCastOp>(
501         loc, VectorType::get({m * n}, srcType.getElementType()),
502         op.getVector());
503     SmallVector<int64_t> mask;
504     mask.reserve(m * n);
505     for (int64_t j = 0; j < n; ++j)
506       for (int64_t i = 0; i < m; ++i)
507         mask.push_back(i * n + j);
508 
509     Value shuffled =
510         rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask);
511     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(),
512                                                      shuffled);
513 
514     return success();
515   }
516 
517 private:
518   /// Options to control the vector patterns.
519   vector::VectorTransformsOptions vectorTransformOptions;
520 };
521 
522 /// Progressive lowering of OuterProductOp.
523 /// One:
524 ///   %x = vector.outerproduct %lhs, %rhs, %acc
525 /// is replaced by:
526 ///   %z = zero-result
527 ///   %0 = vector.extract %lhs[0]
528 ///   %1 = vector.broadcast %0
529 ///   %2 = vector.extract %acc[0]
530 ///   %3 = vector.fma %1, %rhs, %2
531 ///   %4 = vector.insert %3, %z[0]
532 ///   ..
533 ///   %x = vector.insert %.., %..[N-1]
534 ///
535 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
536 public:
537   using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
538 
539   LogicalResult matchAndRewrite(vector::OuterProductOp op,
540                                 PatternRewriter &rewriter) const override {
541     auto loc = op.getLoc();
542 
543     VectorType lhsType = op.getOperandVectorTypeLHS();
544     VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
545     VectorType resType = op.getVectorType();
546     Type eltType = resType.getElementType();
547     bool isInt = eltType.isa<IntegerType, IndexType>();
548     Value acc = (op.getAcc().empty()) ? nullptr : op.getAcc()[0];
549     vector::CombiningKind kind = op.getKind();
550 
551     if (!rhsType) {
552       // Special case: AXPY operation.
553       Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs());
554       Optional<Value> mult = createContractArithOp(loc, op.getLhs(), b, acc,
555                                                    kind, rewriter, isInt);
556       if (!mult.hasValue())
557         return failure();
558       rewriter.replaceOp(op, mult.getValue());
559       return success();
560     }
561 
562     Value result = rewriter.create<arith::ConstantOp>(
563         loc, resType, rewriter.getZeroAttr(resType));
564     for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
565       auto pos = rewriter.getI64ArrayAttr(d);
566       Value x =
567           rewriter.create<vector::ExtractOp>(loc, eltType, op.getLhs(), pos);
568       Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
569       Value r = nullptr;
570       if (acc)
571         r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
572       Optional<Value> m =
573           createContractArithOp(loc, a, op.getRhs(), r, kind, rewriter, isInt);
574       if (!m.hasValue())
575         return failure();
576       result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(),
577                                                  result, pos);
578     }
579     rewriter.replaceOp(op, result);
580     return success();
581   }
582 };
583 
584 /// Lower vector.contract with all size one reduction dimensions to
585 /// elementwise ops when possible.
586 struct ContractOpToElementwise
587     : public OpRewritePattern<vector::ContractionOp> {
588   using OpRewritePattern::OpRewritePattern;
589   using FilterConstraintType =
590       std::function<LogicalResult(vector::ContractionOp op)>;
591   static LogicalResult defaultFilter(vector::ContractionOp op) {
592     return success();
593   }
594   ContractOpToElementwise(
595       vector::VectorTransformsOptions vectorTransformOptions,
596       MLIRContext *context,
597       const FilterConstraintType &constraint = defaultFilter)
598       : OpRewritePattern<vector::ContractionOp>(context),
599         vectorTransformOptions(vectorTransformOptions), filter(defaultFilter) {}
600 
601   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
602                                 PatternRewriter &rewriter) const override {
603     // TODO: implement masks
604     if (llvm::size(contractOp.getMasks()) != 0)
605       return failure();
606 
607     if (failed(filter(contractOp)))
608       return failure();
609 
610     if (vectorTransformOptions.vectorContractLowering !=
611         vector::VectorContractLowering::ParallelArith)
612       return failure();
613     ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape();
614     ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape();
615     AffineMap lhsMap = contractOp.getIndexingMaps()[0];
616     AffineMap rhsMap = contractOp.getIndexingMaps()[1];
617     SmallVector<int64_t> lhsReductionDims =
618         getReductionIndex(lhsMap, contractOp.getIteratorTypes());
619     SmallVector<int64_t> rhsReductionDims =
620         getReductionIndex(rhsMap, contractOp.getIteratorTypes());
621     // All the reduction dimensions must be a size 1.
622     for (int64_t dim : lhsReductionDims) {
623       if (lhsShape[dim] != 1)
624         return failure();
625     }
626     for (int64_t dim : rhsReductionDims) {
627       if (rhsShape[dim] != 1)
628         return failure();
629     }
630     AffineMap accMap = contractOp.getIndexingMaps()[2];
631     unsigned numParallelDims = accMap.getNumResults();
632     unsigned numLhsDimToBroadcast =
633         numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size());
634     unsigned numRhsDimToBroadcast =
635         numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size());
636     SmallVector<int64_t> lhsDims;
637     SmallVector<int64_t> lhsTranspose;
638     SmallVector<int64_t> rhsDims;
639     SmallVector<int64_t> rhsTranspose;
640     for (int64_t dim : lhsReductionDims)
641       lhsTranspose.push_back(numLhsDimToBroadcast + dim);
642     for (int64_t dim : rhsReductionDims)
643       rhsTranspose.push_back(numRhsDimToBroadcast + dim);
644     // Loop through the parallel dimensions to calculate the dimensions to
645     // broadcast and to permute in order to extract only parallel dimensions.
646     for (unsigned i = 0; i < numParallelDims; i++) {
647       llvm::Optional<unsigned> lhsDim =
648           getDimPosition(lhsMap, accMap.getDimPosition(i));
649       if (lhsDim) {
650         lhsTranspose.push_back(numLhsDimToBroadcast + *lhsDim);
651       } else {
652         // If the parallel dimension doesn't exist we will have to broadcast it.
653         lhsDims.push_back(
654             contractOp.getResultType().cast<VectorType>().getDimSize(i));
655         lhsTranspose.push_back(lhsDims.size() - 1);
656       }
657       llvm::Optional<unsigned> rhsDim =
658           getDimPosition(rhsMap, accMap.getDimPosition(i));
659       if (rhsDim) {
660         rhsTranspose.push_back(numRhsDimToBroadcast + *rhsDim);
661       } else {
662         // If the parallel dimension doesn't exist we will have to broadcast it.
663         rhsDims.push_back(
664             contractOp.getResultType().cast<VectorType>().getDimSize(i));
665         rhsTranspose.push_back(rhsDims.size() - 1);
666       }
667     }
668     Value newLhs = contractOp.getLhs();
669     Value newRhs = contractOp.getRhs();
670     Location loc = contractOp.getLoc();
671     if (!lhsDims.empty()) {
672       lhsDims.append(lhsShape.begin(), lhsShape.end());
673       auto expandedType =
674           VectorType::get(lhsDims, contractOp.getLhsType().getElementType());
675       newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs);
676     }
677     if (!rhsDims.empty()) {
678       rhsDims.append(rhsShape.begin(), rhsShape.end());
679       auto expandedType =
680           VectorType::get(rhsDims, contractOp.getRhsType().getElementType());
681       newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs);
682     }
683     bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex();
684     newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose);
685     newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose);
686     SmallVector<int64_t, 4> lhsOffsets(lhsReductionDims.size(), 0);
687     SmallVector<int64_t, 4> rhsOffsets(rhsReductionDims.size(), 0);
688     newLhs = rewriter.create<vector::ExtractOp>(
689         loc, newLhs, rewriter.getI64ArrayAttr(lhsOffsets));
690     newRhs = rewriter.create<vector::ExtractOp>(
691         loc, newRhs, rewriter.getI64ArrayAttr(rhsOffsets));
692     Optional<Value> result =
693         createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(),
694                               contractOp.getKind(), rewriter, isInt);
695     rewriter.replaceOp(contractOp, {*result});
696     return success();
697   }
698 
699 private:
700   /// Options to control the vector patterns.
701   vector::VectorTransformsOptions vectorTransformOptions;
702   FilterConstraintType filter;
703 };
704 
705 /// Progressive lowering of ConstantMaskOp.
706 /// One:
707 ///   %x = vector.constant_mask [a,b]
708 /// is replaced by:
709 ///   %z = zero-result
710 ///   %l = vector.constant_mask [b]
711 ///   %4 = vector.insert %l, %z[0]
712 ///   ..
713 ///   %x = vector.insert %l, %..[a-1]
714 /// until a one-dimensional vector is reached. All these operations
715 /// will be folded at LLVM IR level.
716 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
717 public:
718   using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
719 
720   LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
721                                 PatternRewriter &rewriter) const override {
722     auto loc = op.getLoc();
723     auto dstType = op.getType();
724     auto eltType = dstType.getElementType();
725     auto dimSizes = op.getMaskDimSizes();
726     int64_t rank = dstType.getRank();
727 
728     if (rank == 0) {
729       assert(dimSizes.size() == 1 &&
730              "Expected exactly one dim size for a 0-D vector");
731       bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1;
732       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
733           op, dstType,
734           DenseIntElementsAttr::get(
735               VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()),
736               ArrayRef<bool>{value}));
737       return success();
738     }
739 
740     // Scalable constant masks can only be lowered for the "none set" case.
741     if (dstType.cast<VectorType>().isScalable()) {
742       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
743           op, DenseElementsAttr::get(dstType, false));
744       return success();
745     }
746 
747     int64_t trueDim = std::min(dstType.getDimSize(0),
748                                dimSizes[0].cast<IntegerAttr>().getInt());
749 
750     if (rank == 1) {
751       // Express constant 1-D case in explicit vector form:
752       //   [T,..,T,F,..,F].
753       SmallVector<bool, 4> values(dstType.getDimSize(0));
754       for (int64_t d = 0; d < trueDim; d++)
755         values[d] = true;
756       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
757           op, dstType, rewriter.getBoolVectorAttr(values));
758       return success();
759     }
760 
761     VectorType lowType =
762         VectorType::get(dstType.getShape().drop_front(), eltType);
763     SmallVector<int64_t, 4> newDimSizes;
764     for (int64_t r = 1; r < rank; r++)
765       newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
766     Value trueVal = rewriter.create<vector::ConstantMaskOp>(
767         loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
768     Value result = rewriter.create<arith::ConstantOp>(
769         loc, dstType, rewriter.getZeroAttr(dstType));
770     for (int64_t d = 0; d < trueDim; d++) {
771       auto pos = rewriter.getI64ArrayAttr(d);
772       result =
773           rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
774     }
775     rewriter.replaceOp(op, result);
776     return success();
777   }
778 };
779 
780 /// Progressive lowering of CreateMaskOp.
781 /// One:
782 ///   %x = vector.create_mask %a, ... : vector<dx...>
783 /// is replaced by:
784 ///   %l = vector.create_mask ... : vector<...>  ; one lower rank
785 ///   %0 = arith.cmpi "slt", %ci, %a       |
786 ///   %1 = select %0, %l, %zeroes    |
787 ///   %r = vector.insert %1, %pr [i] | d-times
788 ///   %x = ....
789 /// until a one-dimensional vector is reached.
790 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
791 public:
792   using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
793 
794   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
795                                 PatternRewriter &rewriter) const override {
796     auto dstType = op.getResult().getType().cast<VectorType>();
797     int64_t rank = dstType.getRank();
798     if (rank <= 1)
799       return rewriter.notifyMatchFailure(
800           op, "0-D and 1-D vectors are handled separately");
801 
802     auto loc = op.getLoc();
803     auto eltType = dstType.getElementType();
804     int64_t dim = dstType.getDimSize(0);
805     Value idx = op.getOperand(0);
806 
807     VectorType lowType =
808         VectorType::get(dstType.getShape().drop_front(), eltType);
809     Value trueVal = rewriter.create<vector::CreateMaskOp>(
810         loc, lowType, op.getOperands().drop_front());
811     Value falseVal = rewriter.create<arith::ConstantOp>(
812         loc, lowType, rewriter.getZeroAttr(lowType));
813     Value result = rewriter.create<arith::ConstantOp>(
814         loc, dstType, rewriter.getZeroAttr(dstType));
815     for (int64_t d = 0; d < dim; d++) {
816       Value bnd =
817           rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d));
818       Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
819                                                  bnd, idx);
820       Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal);
821       auto pos = rewriter.getI64ArrayAttr(d);
822       result =
823           rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
824     }
825     rewriter.replaceOp(op, result);
826     return success();
827   }
828 };
829 
830 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
831 /// vectors progressively on the way to target llvm.matrix intrinsics.
832 /// This iterates over the most major dimension of the 2-D vector and performs
833 /// rewrites into:
834 ///   vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
835 class ShapeCastOp2DDownCastRewritePattern
836     : public OpRewritePattern<vector::ShapeCastOp> {
837 public:
838   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
839 
840   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
841                                 PatternRewriter &rewriter) const override {
842     auto sourceVectorType = op.getSourceVectorType();
843     auto resultVectorType = op.getResultVectorType();
844     if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
845       return failure();
846 
847     auto loc = op.getLoc();
848     Value desc = rewriter.create<arith::ConstantOp>(
849         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
850     unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
851     for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
852       Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
853       desc = rewriter.create<vector::InsertStridedSliceOp>(
854           loc, vec, desc,
855           /*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
856     }
857     rewriter.replaceOp(op, desc);
858     return success();
859   }
860 };
861 
862 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
863 /// vectors progressively.
864 /// This iterates over the most major dimension of the 2-D vector and performs
865 /// rewrites into:
866 ///   vector.extract_strided_slice from 1-D + vector.insert into 2-D
867 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
868 class ShapeCastOp2DUpCastRewritePattern
869     : public OpRewritePattern<vector::ShapeCastOp> {
870 public:
871   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
872 
873   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
874                                 PatternRewriter &rewriter) const override {
875     auto sourceVectorType = op.getSourceVectorType();
876     auto resultVectorType = op.getResultVectorType();
877     if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
878       return failure();
879 
880     auto loc = op.getLoc();
881     Value desc = rewriter.create<arith::ConstantOp>(
882         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
883     unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
884     for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
885       Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
886           loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
887           /*sizes=*/mostMinorVectorSize,
888           /*strides=*/1);
889       desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
890     }
891     rewriter.replaceOp(op, desc);
892     return success();
893   }
894 };
895 
896 // We typically should not lower general shape cast operations into data
897 // movement instructions, since the assumption is that these casts are
898 // optimized away during progressive lowering. For completeness, however,
899 // we fall back to a reference implementation that moves all elements
900 // into the right place if we get here.
901 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
902 public:
903   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
904 
905   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
906                                 PatternRewriter &rewriter) const override {
907     Location loc = op.getLoc();
908     auto sourceVectorType = op.getSourceVectorType();
909     auto resultVectorType = op.getResultVectorType();
910 
911     // Special case 2D/1D lowerings with better implementations.
912     // TODO: make is ND/1D to allow generic ND->1D->MD.
913     int64_t srcRank = sourceVectorType.getRank();
914     int64_t resRank = resultVectorType.getRank();
915     if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
916       return failure();
917 
918     // Generic ShapeCast lowering path goes all the way down to unrolled scalar
919     // extract/insert chains.
920     // TODO: consider evolving the semantics to only allow 1D source or dest and
921     // drop this potentially very expensive lowering.
922     // Compute number of elements involved in the reshape.
923     int64_t numElts = 1;
924     for (int64_t r = 0; r < srcRank; r++)
925       numElts *= sourceVectorType.getDimSize(r);
926     // Replace with data movement operations:
927     //    x[0,0,0] = y[0,0]
928     //    x[0,0,1] = y[0,1]
929     //    x[0,1,0] = y[0,2]
930     // etc., incrementing the two index vectors "row-major"
931     // within the source and result shape.
932     SmallVector<int64_t, 4> srcIdx(srcRank);
933     SmallVector<int64_t, 4> resIdx(resRank);
934     Value result = rewriter.create<arith::ConstantOp>(
935         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
936     for (int64_t i = 0; i < numElts; i++) {
937       if (i != 0) {
938         incIdx(srcIdx, sourceVectorType, srcRank - 1);
939         incIdx(resIdx, resultVectorType, resRank - 1);
940       }
941       Value e = rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
942       result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
943     }
944     rewriter.replaceOp(op, result);
945     return success();
946   }
947 
948 private:
949   static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
950     assert(0 <= r && r < tp.getRank());
951     if (++idx[r] == tp.getDimSize(r)) {
952       idx[r] = 0;
953       incIdx(idx, tp, r - 1);
954     }
955   }
956 };
957 
958 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
959 /// Ex:
960 /// ```
961 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
962 ///   %1 = vector.multi_reduction add, %0 [1]
963 ///     : vector<8x32x16xf32> to vector<8x16xf32>
964 /// ```
965 /// Gets converted to:
966 /// ```
967 ///   %1 = vector.contract {indexing_maps = [
968 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
969 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
970 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
971 ///    iterator_types = ["parallel", "parallel", "reduction"],
972 ///    kind = add} %0, %arg1, %cst_f0
973 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
974 ///  ```
975 struct MultiReduceToContract
976     : public OpRewritePattern<vector::MultiDimReductionOp> {
977   using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern;
978 
979   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
980                                 PatternRewriter &rewriter) const override {
981     if (reduceOp.getKind() != vector::CombiningKind::ADD)
982       return failure();
983     Operation *mulOp = reduceOp.getSource().getDefiningOp();
984     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
985       return failure();
986     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
987     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
988     SmallVector<AffineExpr> exprs;
989     SmallVector<StringRef> iteratorTypes;
990     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
991       if (!isReduceDim.value()) {
992         iteratorTypes.push_back(getParallelIteratorTypeName());
993         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
994       } else {
995         iteratorTypes.push_back(getReductionIteratorTypeName());
996       }
997     }
998     auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
999                                  /*symCount=*/0, exprs, reduceOp.getContext());
1000     Value zero = rewriter.create<arith::ConstantOp>(
1001         reduceOp.getLoc(), reduceOp.getDestType(),
1002         rewriter.getZeroAttr(reduceOp.getDestType()));
1003     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
1004         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero,
1005         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
1006         rewriter.getStrArrayAttr(iteratorTypes));
1007     return success();
1008   }
1009 };
1010 
1011 /// Merge TransposeOp into ContractionOp user.
1012 /// Ex:
1013 /// ```
1014 ///   %0 = vector.transpose %arg0, [2, 0, 1]
1015 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
1016 ///   %1 = vector.contract {indexing_maps = [
1017 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1018 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1019 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1020 ///    iterator_types = ["parallel", "parallel", "reduction"],
1021 ///    kind = add} %0, %arg1, %cst_f0
1022 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1023 /// ```
1024 /// Gets converted to:
1025 /// ```
1026 ///   %1 = vector.contract {indexing_maps = [
1027 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
1028 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1029 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1030 ///    iterator_types = ["parallel", "parallel", "reduction"],
1031 ///    kind = add} %arg0, %arg1, %cst_f0
1032 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1033 ///  ```
1034 struct CombineContractTranspose
1035     : public OpRewritePattern<vector::ContractionOp> {
1036   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1037 
1038   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1039                                 PatternRewriter &rewriter) const override {
1040     SmallVector<AffineMap, 4> maps =
1041         llvm::to_vector<4>(contractOp.getIndexingMaps());
1042     Value lhs = contractOp.getLhs();
1043     Value rhs = contractOp.getRhs();
1044     size_t index = 0;
1045     bool changed = false;
1046     for (Value *operand : {&lhs, &rhs}) {
1047       AffineMap &map = maps[index++];
1048       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
1049       if (!transposeOp)
1050         continue;
1051       SmallVector<int64_t> perm;
1052       transposeOp.getTransp(perm);
1053       AffineMap permutationMap = AffineMap::getPermutationMap(
1054           extractVector<unsigned>(transposeOp.getTransp()),
1055           contractOp.getContext());
1056       map = inversePermutation(permutationMap).compose(map);
1057       *operand = transposeOp.getVector();
1058       changed = true;
1059     }
1060     if (!changed)
1061       return failure();
1062     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1063         contractOp, lhs, rhs, contractOp.getAcc(),
1064         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
1065     return success();
1066   }
1067 };
1068 
1069 /// Merge BroadcastOp into ContractionOp user.
1070 /// Ex:
1071 /// ```
1072 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
1073 ///   %1 = vector.contract {indexing_maps = [
1074 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1075 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1076 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1077 ///    iterator_types = ["parallel", "parallel", "reduction"],
1078 ///    kind = add} %0, %arg1, %cst_f0
1079 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1080 /// ```
1081 /// Gets converted to:
1082 /// ```
1083 ///   %1 = vector.contract {indexing_maps = [
1084 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
1085 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1086 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1087 ///    iterator_types = ["parallel", "parallel", "reduction"],
1088 ///    kind = add} %arg0, %arg1, %cst_f0
1089 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1090 ///  ```
1091 struct CombineContractBroadcast
1092     : public OpRewritePattern<vector::ContractionOp> {
1093   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1094 
1095   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1096                                 PatternRewriter &rewriter) const override {
1097     SmallVector<AffineMap, 4> maps =
1098         llvm::to_vector<4>(contractOp.getIndexingMaps());
1099     Value lhs = contractOp.getLhs();
1100     Value rhs = contractOp.getRhs();
1101     size_t index = 0;
1102     bool changed = false;
1103     for (Value *operand : {&lhs, &rhs}) {
1104       AffineMap &map = maps[index++];
1105       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
1106       if (!broadcast)
1107         continue;
1108       // contractionOp can only take vector as operands.
1109       auto srcType = broadcast.getSourceType().dyn_cast<VectorType>();
1110       if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank())
1111         continue;
1112       int64_t rankDiff =
1113           broadcast.getVectorType().getRank() - srcType.getRank();
1114       bool innerDimBroadcast = false;
1115       SmallVector<AffineExpr> originalDims;
1116       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
1117         if (dim.value() !=
1118             broadcast.getVectorType().getDimSize(rankDiff + dim.index())) {
1119           innerDimBroadcast = true;
1120           break;
1121         }
1122         originalDims.push_back(
1123             rewriter.getAffineDimExpr(dim.index() + rankDiff));
1124       }
1125       // Contract doesn't support inner dimension broadcast. Once this is
1126       // relaxed we can remove this case.
1127       if (innerDimBroadcast)
1128         continue;
1129       AffineMap broadcastMap =
1130           AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims,
1131                          contractOp.getContext());
1132       map = broadcastMap.compose(map);
1133       *operand = broadcast.getSource();
1134       changed = true;
1135     }
1136     if (!changed)
1137       return failure();
1138     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1139         contractOp, lhs, rhs, contractOp.getAcc(),
1140         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
1141     return success();
1142   }
1143 };
1144 
1145 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and
1146 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when
1147 /// casting ops are around these operations.
1148 /// Ex:
1149 /// ```
1150 ///   %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8>
1151 ///   %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32>
1152 /// ```
1153 /// Gets converted to:
1154 /// ```
1155 ///   %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32>
1156 ///   %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32>
1157 /// ```
1158 struct ReorderCastOpsOnBroadcast
1159     : public OpInterfaceRewritePattern<CastOpInterface> {
1160   using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern;
1161 
1162   LogicalResult matchAndRewrite(CastOpInterface op,
1163                                 PatternRewriter &rewriter) const override {
1164     if (op->getNumOperands() != 1)
1165       return failure();
1166     auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>();
1167     if (!bcastOp)
1168       return failure();
1169 
1170     Type castResTy = getElementTypeOrSelf(op->getResult(0));
1171     if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>())
1172       castResTy = VectorType::get(vecTy.getShape(), castResTy);
1173     auto *castOp =
1174         rewriter.create(op->getLoc(), op->getName().getIdentifier(),
1175                         bcastOp.getSource(), castResTy, op->getAttrs());
1176     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1177         op, op->getResult(0).getType(), castOp->getResult(0));
1178     return success();
1179   }
1180 };
1181 
1182 /// Reorders elementwise(transpose) to transpose(elementwise). This makes
1183 /// transpose ops and contraction ops closer, which kicks in
1184 /// CombineContractTranspose pattern when elementwise ops are between these
1185 /// operations. Ex:
1186 /// ```
1187 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1188 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1189 /// %r = arith.addf %at, %bt : vector<2x4xf32>
1190 /// ```
1191 /// Gets converted to:
1192 /// ```
1193 /// %0 = arith.addf %a, %b : vector<4x2xf32>
1194 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32>
1195 /// ```
1196 struct ReorderElementwiseOpsOnTranspose final
1197     : public OpTraitRewritePattern<OpTrait::Elementwise> {
1198   using OpTraitRewritePattern::OpTraitRewritePattern;
1199   LogicalResult matchAndRewrite(Operation *op,
1200                                 PatternRewriter &rewriter) const override {
1201     if (op->getNumResults() != 1 || op->getNumRegions() != 0)
1202       return failure();
1203 
1204     // Make sure all operands are transpose/constant ops and collect their
1205     // transposition maps.
1206     SmallVector<ArrayAttr, 4> transposeMaps;
1207     transposeMaps.reserve(op->getNumOperands());
1208     // Record the initial type before transposition. We'll use its shape later.
1209     // Any type will do here as we will check all transpose maps are the same.
1210     VectorType srcType;
1211     for (Value operand : op->getOperands()) {
1212       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1213       if (transposeOp) {
1214         transposeMaps.push_back(transposeOp.getTransp());
1215         srcType = transposeOp.getVectorType();
1216       } else if (!matchPattern(operand, m_Constant())) {
1217         return failure();
1218       }
1219     }
1220     if (transposeMaps.empty())
1221       return failure();
1222     // This is an elementwise op, so all transposed operands should have the
1223     // same type. We need to additionally check that all transposes uses the
1224     // same map.
1225     if (!llvm::is_splat(transposeMaps))
1226       return rewriter.notifyMatchFailure(op, "different transpose map");
1227 
1228     SmallVector<Value, 4> srcValues;
1229     srcValues.reserve(op->getNumOperands());
1230 
1231     // If there are constant operands, we need to insert inverse transposes for
1232     // them. Calculate the inverse order first.
1233     auto order = extractVector<unsigned>(transposeMaps.front());
1234     SmallVector<int64_t> invOrder(order.size());
1235     for (int i = 0, e = order.size(); i < e; ++i)
1236       invOrder[order[i]] = i;
1237 
1238     for (Value operand : op->getOperands()) {
1239       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1240       if (transposeOp) {
1241         srcValues.push_back(transposeOp.getVector());
1242       } else {
1243         // This is a constant. Create a reverse transpose op for it.
1244         auto vectorType = VectorType::get(
1245             srcType.getShape(),
1246             operand.getType().cast<VectorType>().getElementType());
1247         srcValues.push_back(rewriter.create<vector::TransposeOp>(
1248             operand.getLoc(), vectorType, operand,
1249             rewriter.getI64ArrayAttr(invOrder)));
1250       }
1251     }
1252 
1253     auto vectorType = VectorType::get(
1254         srcType.getShape(),
1255         op->getResultTypes()[0].cast<VectorType>().getElementType());
1256     Operation *elementwiseOp =
1257         rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
1258                         vectorType, op->getAttrs());
1259     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
1260         op, op->getResultTypes()[0], elementwiseOp->getResult(0),
1261         transposeMaps.front());
1262     return success();
1263   }
1264 };
1265 
1266 } // namespace
1267 
1268 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using
1269 /// operands `x` and `y`.
1270 static Value createAdd(Location loc, Value x, Value y, bool isInt,
1271                        PatternRewriter &rewriter) {
1272   if (isInt)
1273     return rewriter.create<arith::AddIOp>(loc, x, y);
1274   return rewriter.create<arith::AddFOp>(loc, x, y);
1275 }
1276 
1277 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using
1278 /// operands `x and `y`.
1279 static Value createMul(Location loc, Value x, Value y, bool isInt,
1280                        PatternRewriter &rewriter) {
1281   if (isInt)
1282     return rewriter.create<arith::MulIOp>(loc, x, y);
1283   return rewriter.create<arith::MulFOp>(loc, x, y);
1284 }
1285 
1286 namespace mlir {
1287 
1288 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1289 /// semantics to:
1290 /// ```
1291 ///    %mta = maybe_transpose
1292 ///    %mtb = maybe_transpose
1293 ///    %flattened_a = vector.shape_cast %mta
1294 ///    %flattened_b = vector.shape_cast %mtb
1295 ///    %flattened_d = vector.matmul %flattened_a, %flattened_b
1296 ///    %mtd = vector.shape_cast %flattened_d
1297 ///    %d = maybe_untranspose %mtd
1298 ///    %e = add %c, %d
1299 /// ```
1300 /// `vector.matmul` later lowers to `llvm.matrix.multiply`.
1301 //
1302 /// This only kicks in when VectorTransformsOptions is set to `Matmul`.
1303 /// vector.transpose operations are inserted if the vector.contract op is not a
1304 /// row-major matrix multiply.
1305 LogicalResult
1306 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op,
1307                                                  PatternRewriter &rew) const {
1308   // TODO: implement masks
1309   if (llvm::size(op.getMasks()) != 0)
1310     return failure();
1311   if (vectorTransformOptions.vectorContractLowering !=
1312       vector::VectorContractLowering::Matmul)
1313     return failure();
1314   if (failed(filter(op)))
1315     return failure();
1316 
1317   auto iteratorTypes = op.getIteratorTypes().getValue();
1318   if (!isParallelIterator(iteratorTypes[0]) ||
1319       !isParallelIterator(iteratorTypes[1]) ||
1320       !isReductionIterator(iteratorTypes[2]))
1321     return failure();
1322 
1323   Type elementType = op.getLhsType().getElementType();
1324   if (!elementType.isIntOrFloat())
1325     return failure();
1326 
1327   // Perform lhs + rhs transpositions to conform to matmul row-major semantics.
1328   // Bail out if the contraction cannot be put in this form.
1329   MLIRContext *ctx = op.getContext();
1330   Location loc = op.getLoc();
1331   AffineExpr m, n, k;
1332   bindDims(rew.getContext(), m, n, k);
1333   // LHS must be A(m, k) or A(k, m).
1334   Value lhs = op.getLhs();
1335   auto lhsMap = op.getIndexingMaps()[0];
1336   if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
1337     lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0});
1338   else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
1339     return failure();
1340 
1341   // RHS must be B(k, n) or B(n, k).
1342   Value rhs = op.getRhs();
1343   auto rhsMap = op.getIndexingMaps()[1];
1344   if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
1345     rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0});
1346   else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
1347     return failure();
1348 
1349   // At this point lhs and rhs are in row-major.
1350   VectorType lhsType = lhs.getType().cast<VectorType>();
1351   VectorType rhsType = rhs.getType().cast<VectorType>();
1352   int64_t lhsRows = lhsType.getDimSize(0);
1353   int64_t lhsColumns = lhsType.getDimSize(1);
1354   int64_t rhsColumns = rhsType.getDimSize(1);
1355 
1356   Type flattenedLHSType =
1357       VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
1358   lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs);
1359 
1360   Type flattenedRHSType =
1361       VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
1362   rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs);
1363 
1364   Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns,
1365                                            rhsColumns);
1366   mul = rew.create<vector::ShapeCastOp>(
1367       loc,
1368       VectorType::get({lhsRows, rhsColumns},
1369                       getElementTypeOrSelf(op.getAcc().getType())),
1370       mul);
1371 
1372   // ACC must be C(m, n) or C(n, m).
1373   auto accMap = op.getIndexingMaps()[2];
1374   if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
1375     mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0});
1376   else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
1377     llvm_unreachable("invalid contraction semantics");
1378 
1379   Value res =
1380       elementType.isa<IntegerType>()
1381           ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul))
1382           : static_cast<Value>(
1383                 rew.create<arith::AddFOp>(loc, op.getAcc(), mul));
1384 
1385   rew.replaceOp(op, res);
1386   return success();
1387 }
1388 
1389 namespace {
1390 struct IteratorType {
1391   IteratorType(StringRef strRef) : strRef(strRef) {}
1392   bool isOfType(Attribute attr) const {
1393     auto sAttr = attr.dyn_cast<StringAttr>();
1394     return sAttr && sAttr.getValue() == strRef;
1395   }
1396   StringRef strRef;
1397 };
1398 struct Par : public IteratorType {
1399   Par() : IteratorType(getParallelIteratorTypeName()) {}
1400 };
1401 struct Red : public IteratorType {
1402   Red() : IteratorType(getReductionIteratorTypeName()) {}
1403 };
1404 
1405 /// Generate a vector implementation for matmat, matvec and tmatvec.
1406 /// This unrolls outer-products along the reduction dimension.
1407 struct UnrolledOuterProductGenerator
1408     : public StructuredGenerator<vector::ContractionOp> {
1409   UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op)
1410       : StructuredGenerator<vector::ContractionOp>(builder, op),
1411         kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()),
1412         res(op.getAcc()), lhsType(op.getLhsType()) {}
1413 
1414   Value t(Value v) {
1415     static constexpr std::array<int64_t, 2> perm = {1, 0};
1416     return builder.create<vector::TransposeOp>(loc, v, perm);
1417   }
1418 
1419   Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) {
1420     assert(reductionSize > 0);
1421     for (int64_t k = 0; k < reductionSize; ++k) {
1422       Value a = builder.create<vector::ExtractOp>(loc, lhs, k);
1423       Value b = builder.create<vector::ExtractOp>(loc, rhs, k);
1424       res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b,
1425                                                    res, kind);
1426     }
1427     return res;
1428   }
1429 
1430   /// Two outer parallel, one inner reduction (matmat flavor).
1431   FailureOr<Value> matmat() {
1432     if (!iters({Par(), Par(), Red()}))
1433       return failure();
1434     // Set up the parallel/reduction structure in the right form.
1435     AffineExpr m, n, k;
1436     bindDims(builder.getContext(), m, n, k);
1437     // Classical row-major matmul:  Just permute the lhs.
1438     if (layout({{m, k}, {k, n}, {m, n}}))
1439       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1440     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1441     if (layout({{m, k}, {n, k}, {m, n}})) {
1442       Value tlhs = t(lhs);
1443       return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1));
1444     }
1445     // No need to permute anything.
1446     if (layout({{k, m}, {k, n}, {m, n}}))
1447       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1448     // Just permute the rhs.
1449     if (layout({{k, m}, {n, k}, {m, n}}))
1450       return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0));
1451     // Transposed output: swap RHS and LHS.
1452     // Classical row-major matmul: permute the lhs.
1453     if (layout({{m, k}, {k, n}, {n, m}}))
1454       return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1));
1455     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1456     if (layout({{m, k}, {n, k}, {n, m}})) {
1457       Value trhs = t(rhs);
1458       return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1));
1459     }
1460     if (layout({{k, m}, {k, n}, {n, m}}))
1461       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1462     if (layout({{k, m}, {n, k}, {n, m}}))
1463       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1464     return failure();
1465   }
1466 
1467   /// One outer parallel, one inner reduction (matvec flavor)
1468   FailureOr<Value> matvec() {
1469     if (!iters({Par(), Red()}))
1470       return failure();
1471     AffineExpr m, k;
1472     bindDims(builder.getContext(), m, k);
1473 
1474     // Case mat-vec: transpose.
1475     if (layout({{m, k}, {k}, {m}}))
1476       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1477     // Case mat-trans-vec: ready to go.
1478     if (layout({{k, m}, {k}, {m}}))
1479       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1480     // Case vec-mat: swap and transpose.
1481     if (layout({{k}, {m, k}, {m}}))
1482       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1483     // Case vec-mat-trans: swap and ready to go.
1484     if (layout({{k}, {k, m}, {m}}))
1485       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1486     return failure();
1487   }
1488 
1489   //
1490   // One outer reduction, one inner parallel (tmatvec flavor)
1491   //
1492   FailureOr<Value> tmatvec() {
1493     if (!iters({Red(), Par()}))
1494       return failure();
1495     AffineExpr k, m;
1496     bindDims(builder.getContext(), k, m);
1497 
1498     // Case mat-vec: transpose.
1499     if (layout({{m, k}, {k}, {m}}))
1500       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1501     // Case mat-trans-vec: ready to go.
1502     if (layout({{k, m}, {k}, {m}}))
1503       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1504     // Case vec-mat: swap and transpose.
1505     if (layout({{k}, {m, k}, {m}}))
1506       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1507     // Case vec-mat-trans: swap and ready to go.
1508     if (layout({{k}, {k, m}, {m}}))
1509       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1510     return failure();
1511   }
1512 
1513 private:
1514   vector::CombiningKind kind;
1515   Value lhs, rhs, res;
1516   VectorType lhsType;
1517 };
1518 } // namespace
1519 
1520 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1521 /// semantics to a reduction_size-unrolled sequence:
1522 /// ```
1523 ///    %at = vector.transpose %a, [1, 0]
1524 ///    %bRow0 = vector.extract %b[0]
1525 ///    %atRow0 = vector.extract %at[0]
1526 ///    %c0 = vector.outerproduct %atRow0, %bRow0, %c
1527 ///    ...
1528 ///    %bRowK = vector.extract %b[K]
1529 ///    %atRowK = vector.extract %at[K]
1530 ///    %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
1531 /// ```
1532 ///
1533 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but
1534 /// otherwise supports any layout permutation of the matrix-multiply.
1535 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
1536     vector::ContractionOp op, PatternRewriter &rewriter) const {
1537   // TODO: implement masks
1538   if (llvm::size(op.getMasks()) != 0)
1539     return failure();
1540 
1541   if (vectorTransformOptions.vectorContractLowering !=
1542       vector::VectorContractLowering::OuterProduct)
1543     return failure();
1544 
1545   if (failed(filter(op)))
1546     return failure();
1547 
1548   UnrolledOuterProductGenerator e(rewriter, op);
1549   FailureOr<Value> matmatRes = e.matmat();
1550   if (succeeded(matmatRes)) {
1551     rewriter.replaceOp(op, *matmatRes);
1552     return success();
1553   }
1554   FailureOr<Value> matvecRes = e.matvec();
1555   if (succeeded(matvecRes)) {
1556     rewriter.replaceOp(op, *matvecRes);
1557     return success();
1558   }
1559   FailureOr<Value> tmatvecRes = e.tmatvec();
1560   if (succeeded(tmatvecRes)) {
1561     rewriter.replaceOp(op, *tmatvecRes);
1562     return success();
1563   }
1564 
1565   return failure();
1566 }
1567 
1568 LogicalResult
1569 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
1570                                             PatternRewriter &rewriter) const {
1571   // TODO: implement masks
1572   if (llvm::size(op.getMasks()) != 0)
1573     return failure();
1574 
1575   if (failed(filter(op)))
1576     return failure();
1577 
1578   if (vectorTransformOptions.vectorContractLowering !=
1579       vector::VectorContractLowering::Dot)
1580     return failure();
1581 
1582   auto iteratorTypes = op.getIteratorTypes().getValue();
1583   static constexpr std::array<int64_t, 2> perm = {1, 0};
1584   Location loc = op.getLoc();
1585   Value lhs = op.getLhs(), rhs = op.getRhs();
1586 
1587   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1588   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
1589   AffineExpr m, n, k;
1590   bindDims(rewriter.getContext(), m, n, k);
1591   SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
1592   //
1593   // In the following we wish to make the reduction dimension innermost so we
1594   // can load vectors and just fmul + reduce into a scalar.
1595   //
1596   if (isParallelIterator(iteratorTypes[0]) &&
1597       isParallelIterator(iteratorTypes[1]) &&
1598       isReductionIterator(iteratorTypes[2])) {
1599     //
1600     // Two outer parallel, one inner reduction (matmat flavor).
1601     //
1602     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1603       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1604     } else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
1605       // No need to permute anything.
1606     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1607       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1608       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1609     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1610       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1611     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1612       // This is the classical row-major matmul. Just permute the lhs.
1613       Value tmp = lhs;
1614       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1615       rhs = tmp;
1616     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1617       std::swap(lhs, rhs);
1618     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1619       Value tmp = lhs;
1620       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1621       rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
1622     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1623       Value tmp = rhs;
1624       rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1625       lhs = tmp;
1626     } else {
1627       return failure();
1628     }
1629   } else if (isParallelIterator(iteratorTypes[0]) &&
1630              isReductionIterator(iteratorTypes[1])) {
1631     //
1632     // One outer parallel, one inner reduction (matvec flavor)
1633     //
1634     if (maps == infer({{m, n}, {n}, {m}})) {
1635       // No need to permute anything.
1636     } else if (maps == infer({{n, m}, {n}, {m}})) {
1637       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1638     } else if (maps == infer({{n}, {m, n}, {m}})) {
1639       std::swap(lhs, rhs);
1640     } else if (maps == infer({{n}, {n, m}, {m}})) {
1641       std::swap(lhs, rhs);
1642       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1643     } else {
1644       return failure();
1645     }
1646   } else {
1647     return failure();
1648   }
1649 
1650   VectorType dstType = op.getResultType().cast<VectorType>();
1651   assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
1652          "Expected dst type of rank 1 or 2");
1653 
1654   unsigned rank = dstType.getRank();
1655   unsigned dstRows = dstType.getShape()[0];
1656   unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
1657 
1658   // ExtractOp does not allow dynamic indexing, we must unroll explicitly.
1659   Value res = rewriter.create<arith::ConstantOp>(loc, dstType,
1660                                                  rewriter.getZeroAttr(dstType));
1661   bool isInt = dstType.getElementType().isa<IntegerType>();
1662   for (unsigned r = 0; r < dstRows; ++r) {
1663     Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
1664     for (unsigned c = 0; c < dstColumns; ++c) {
1665       Value b = rank == 1
1666                     ? rhs
1667                     : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
1668       Value m = createMul(op.getLoc(), a, b, isInt, rewriter);
1669       Value reduced = rewriter.create<vector::ReductionOp>(
1670           op.getLoc(), vector::CombiningKind::ADD, m);
1671 
1672       SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
1673                                               : SmallVector<int64_t, 2>{r, c};
1674       res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
1675     }
1676   }
1677   if (auto acc = op.getAcc())
1678     res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1679   rewriter.replaceOp(op, res);
1680   return success();
1681 }
1682 
1683 /// Progressive lowering of ContractionOp.
1684 /// One:
1685 ///   %x = vector.contract with at least one free/batch dimension
1686 /// is replaced by:
1687 ///   %a = vector.contract with one less free/batch dimension
1688 ///   %b = vector.contract with one less free/batch dimension
1689 ///   ..
1690 ///   %x = combine %a %b ..
1691 /// until a pure contraction is reached (no free/batch dimensions),
1692 /// which is replaced by a dot-product.
1693 ///
1694 /// This only kicks in when either VectorTransformsOptions is set
1695 /// to DOT or when other contraction patterns fail.
1696 //
1697 // TODO: break down into transpose/reshape/cast ops
1698 //               when they become available to avoid code dup
1699 // TODO: investigate lowering order impact on performance
1700 LogicalResult
1701 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
1702                                        PatternRewriter &rewriter) const {
1703   // TODO: implement masks.
1704   if (llvm::size(op.getMasks()) != 0)
1705     return failure();
1706 
1707   if (failed(filter(op)))
1708     return failure();
1709 
1710   // TODO: support mixed mode contract lowering.
1711   if (op.getLhsType().getElementType() !=
1712           getElementTypeOrSelf(op.getAccType()) ||
1713       op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
1714     return failure();
1715 
1716   // TODO: implement benefits, cost models.
1717   MLIRContext *ctx = op.getContext();
1718   ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx);
1719   if (succeeded(pat1.matchAndRewrite(op, rewriter)))
1720     return success();
1721   ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx);
1722   if (succeeded(pat2.matchAndRewrite(op, rewriter)))
1723     return success();
1724   ContractionOpToDotLowering pat3(vectorTransformOptions, ctx);
1725   if (succeeded(pat3.matchAndRewrite(op, rewriter)))
1726     return success();
1727   ContractOpToElementwise pat4(vectorTransformOptions, ctx);
1728   if (succeeded(pat4.matchAndRewrite(op, rewriter)))
1729     return success();
1730 
1731   // Find first batch dimension in LHS/RHS, and lower when found.
1732   std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
1733   if (!batchDimMap.empty()) {
1734     int64_t lhsIndex = batchDimMap[0].first;
1735     int64_t rhsIndex = batchDimMap[0].second;
1736     rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
1737     return success();
1738   }
1739 
1740   // Collect contracting dimensions.
1741   std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
1742       op.getContractingDimMap();
1743   DenseSet<int64_t> lhsContractingDimSet;
1744   DenseSet<int64_t> rhsContractingDimSet;
1745   for (auto &dimPair : contractingDimMap) {
1746     lhsContractingDimSet.insert(dimPair.first);
1747     rhsContractingDimSet.insert(dimPair.second);
1748   }
1749 
1750   // Find first free dimension in LHS, and lower when found.
1751   VectorType lhsType = op.getLhsType();
1752   for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
1753     if (lhsContractingDimSet.count(lhsIndex) == 0) {
1754       rewriter.replaceOp(
1755           op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
1756       return success();
1757     }
1758   }
1759 
1760   // Find first free dimension in RHS, and lower when found.
1761   VectorType rhsType = op.getRhsType();
1762   for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
1763     if (rhsContractingDimSet.count(rhsIndex) == 0) {
1764       rewriter.replaceOp(
1765           op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
1766       return success();
1767     }
1768   }
1769 
1770   // Lower the first remaining reduction dimension.
1771   if (!contractingDimMap.empty()) {
1772     rewriter.replaceOp(op, lowerReduction(op, rewriter));
1773     return success();
1774   }
1775 
1776   return failure();
1777 }
1778 
1779 // Lower one parallel dimension.
1780 // TODO: consider reusing existing contract unrolling
1781 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
1782                                            int64_t lhsIndex, int64_t rhsIndex,
1783                                            PatternRewriter &rewriter) const {
1784   VectorType lhsType = op.getLhsType();
1785   VectorType rhsType = op.getRhsType();
1786   VectorType resType = op.getResultType().cast<VectorType>();
1787   // Find the iterator type index and result index.
1788   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1789   int64_t iterIndex = -1;
1790   int64_t dimSize = -1;
1791   if (lhsIndex >= 0) {
1792     iterIndex = iMap[0].getDimPosition(lhsIndex);
1793     assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) &&
1794            "parallel index should be free in LHS or batch in LHS/RHS");
1795     dimSize = lhsType.getDimSize(lhsIndex);
1796   } else {
1797     assert(rhsIndex >= 0 && "missing parallel index");
1798     iterIndex = iMap[1].getDimPosition(rhsIndex);
1799     dimSize = rhsType.getDimSize(rhsIndex);
1800   }
1801   assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
1802   Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
1803   assert(lookup.hasValue() && "parallel index not listed in reduction");
1804   int64_t resIndex = lookup.getValue();
1805   // Construct new iterator types and affine map array attribute.
1806   std::array<AffineMap, 3> lowIndexingMaps = {
1807       adjustMap(iMap[0], iterIndex, rewriter),
1808       adjustMap(iMap[1], iterIndex, rewriter),
1809       adjustMap(iMap[2], iterIndex, rewriter)};
1810   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1811   auto lowIter =
1812       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1813   // Unroll into a series of lower dimensional vector.contract ops.
1814   Location loc = op.getLoc();
1815   Value result = rewriter.create<arith::ConstantOp>(
1816       loc, resType, rewriter.getZeroAttr(resType));
1817   for (int64_t d = 0; d < dimSize; ++d) {
1818     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1819     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1820     auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter);
1821     Value lowContract = rewriter.create<vector::ContractionOp>(
1822         loc, lhs, rhs, acc, lowAffine, lowIter);
1823     result =
1824         reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
1825   }
1826   return result;
1827 }
1828 
1829 // Lower one reduction dimension.
1830 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
1831                                             PatternRewriter &rewriter) const {
1832   auto loc = op.getLoc();
1833   VectorType lhsType = op.getLhsType();
1834   VectorType rhsType = op.getRhsType();
1835   Type resType = op.getResultType();
1836   assert(!resType.isa<VectorType>());
1837   bool isInt = resType.isa<IntegerType>();
1838   // Use iterator index 0.
1839   int64_t iterIndex = 0;
1840   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1841   Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
1842   Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
1843   assert(lookupLhs.hasValue() && "missing LHS parallel index");
1844   assert(lookupRhs.hasValue() && "missing RHS parallel index");
1845   int64_t lhsIndex = lookupLhs.getValue();
1846   int64_t rhsIndex = lookupRhs.getValue();
1847   int64_t dimSize = lhsType.getDimSize(lhsIndex);
1848   assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
1849   // Base case.
1850   if (lhsType.getRank() == 1) {
1851     assert(rhsType.getRank() == 1 && "corrupt contraction");
1852     Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter);
1853     auto kind = vector::CombiningKind::ADD;
1854     Value res = rewriter.create<vector::ReductionOp>(loc, kind, m);
1855     if (auto acc = op.getAcc())
1856       res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1857     return res;
1858   }
1859   // Construct new iterator types and affine map array attribute.
1860   std::array<AffineMap, 3> lowIndexingMaps = {
1861       adjustMap(iMap[0], iterIndex, rewriter),
1862       adjustMap(iMap[1], iterIndex, rewriter),
1863       adjustMap(iMap[2], iterIndex, rewriter)};
1864   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1865   auto lowIter =
1866       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1867   // Unroll into a series of lower dimensional vector.contract ops.
1868   // By feeding the initial accumulator into the first contraction,
1869   // and the result of each contraction into the next, eventually
1870   // the sum of all reductions is computed.
1871   Value result = op.getAcc();
1872   for (int64_t d = 0; d < dimSize; ++d) {
1873     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1874     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1875     result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
1876                                                     lowAffine, lowIter);
1877   }
1878   return result;
1879 }
1880 
1881 } // namespace mlir
1882 
1883 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp(
1884     OpBuilder &builder, Operation *op, ArrayRef<Value> ids,
1885     ArrayRef<int64_t> multiplicity, const AffineMap &map) {
1886   OpBuilder::InsertionGuard guard(builder);
1887   builder.setInsertionPointAfter(op);
1888   Location loc = op->getLoc();
1889   if (op->getNumResults() != 1)
1890     return {};
1891   Value result = op->getResult(0);
1892   VectorType type = op->getResult(0).getType().dyn_cast<VectorType>();
1893   if (!type || map.getNumResults() != multiplicity.size())
1894     return {};
1895   // For each dimension being distributed check that the size is a multiple of
1896   // the multiplicity. To handle more sizes we would need to support masking.
1897   unsigned multiplictyCount = 0;
1898   for (auto exp : map.getResults()) {
1899     auto affinExp = exp.dyn_cast<AffineDimExpr>();
1900     if (!affinExp || affinExp.getPosition() >= type.getRank() ||
1901         type.getDimSize(affinExp.getPosition()) %
1902                 multiplicity[multiplictyCount++] !=
1903             0)
1904       return {};
1905   }
1906   DistributeOps ops;
1907   ops.extract =
1908       builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map);
1909   ops.insert =
1910       builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids);
1911   return ops;
1912 }
1913 
1914 /// Progressive lowering of transfer_read. This pattern supports lowering of
1915 /// `vector.transfer_read` to a combination of `vector.load` and
1916 /// `vector.broadcast` if all of the following hold:
1917 /// - Stride of most minor memref dimension must be 1.
1918 /// - Out-of-bounds masking is not required.
1919 /// - If the memref's element type is a vector type then it coincides with the
1920 ///   result type.
1921 /// - The permutation map doesn't perform permutation (broadcasting is allowed).
1922 struct TransferReadToVectorLoadLowering
1923     : public OpRewritePattern<vector::TransferReadOp> {
1924   TransferReadToVectorLoadLowering(MLIRContext *context,
1925                                    llvm::Optional<unsigned> maxRank)
1926       : OpRewritePattern<vector::TransferReadOp>(context),
1927         maxTransferRank(maxRank) {}
1928 
1929   LogicalResult matchAndRewrite(vector::TransferReadOp read,
1930                                 PatternRewriter &rewriter) const override {
1931     if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank)
1932       return failure();
1933 
1934     SmallVector<unsigned, 4> broadcastedDims;
1935     // Permutations are handled by VectorToSCF or
1936     // populateVectorTransferPermutationMapLoweringPatterns.
1937     // We let the 0-d corner case pass-through as it is supported.
1938     if (!read.getPermutationMap().isMinorIdentityWithBroadcasting(
1939             &broadcastedDims))
1940       return failure();
1941 
1942     auto memRefType = read.getShapedType().dyn_cast<MemRefType>();
1943     if (!memRefType)
1944       return failure();
1945 
1946     // Non-unit strides are handled by VectorToSCF.
1947     if (!vector::isLastMemrefDimUnitStride(memRefType))
1948       return failure();
1949 
1950     // If there is broadcasting involved then we first load the unbroadcasted
1951     // vector, and then broadcast it with `vector.broadcast`.
1952     ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
1953     SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(),
1954                                                      vectorShape.end());
1955     for (unsigned i : broadcastedDims)
1956       unbroadcastedVectorShape[i] = 1;
1957     VectorType unbroadcastedVectorType = VectorType::get(
1958         unbroadcastedVectorShape, read.getVectorType().getElementType());
1959 
1960     // `vector.load` supports vector types as memref's elements only when the
1961     // resulting vector type is the same as the element type.
1962     auto memrefElTy = memRefType.getElementType();
1963     if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType)
1964       return failure();
1965 
1966     // Otherwise, element types of the memref and the vector must match.
1967     if (!memrefElTy.isa<VectorType>() &&
1968         memrefElTy != read.getVectorType().getElementType())
1969       return failure();
1970 
1971     // Out-of-bounds dims are handled by MaterializeTransferMask.
1972     if (read.hasOutOfBoundsDim())
1973       return failure();
1974 
1975     // Create vector load op.
1976     Operation *loadOp;
1977     if (read.getMask()) {
1978       Value fill = rewriter.create<vector::SplatOp>(
1979           read.getLoc(), unbroadcastedVectorType, read.getPadding());
1980       loadOp = rewriter.create<vector::MaskedLoadOp>(
1981           read.getLoc(), unbroadcastedVectorType, read.getSource(),
1982           read.getIndices(), read.getMask(), fill);
1983     } else {
1984       loadOp = rewriter.create<vector::LoadOp>(
1985           read.getLoc(), unbroadcastedVectorType, read.getSource(),
1986           read.getIndices());
1987     }
1988 
1989     // Insert a broadcasting op if required.
1990     if (!broadcastedDims.empty()) {
1991       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1992           read, read.getVectorType(), loadOp->getResult(0));
1993     } else {
1994       rewriter.replaceOp(read, loadOp->getResult(0));
1995     }
1996 
1997     return success();
1998   }
1999 
2000   llvm::Optional<unsigned> maxTransferRank;
2001 };
2002 
2003 /// Replace a 0-d vector.load with a memref.load + vector.broadcast.
2004 // TODO: we shouldn't cross the vector/scalar domains just for this
2005 // but atm we lack the infra to avoid it. Possible solutions include:
2006 // - go directly to LLVM + bitcast
2007 // - introduce a bitcast op and likely a new pointer dialect
2008 // - let memref.load/store additionally support the 0-d vector case
2009 // There are still deeper data layout issues lingering even in this
2010 // trivial case (for architectures for which this matters).
2011 struct VectorLoadToMemrefLoadLowering
2012     : public OpRewritePattern<vector::LoadOp> {
2013   using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
2014 
2015   LogicalResult matchAndRewrite(vector::LoadOp loadOp,
2016                                 PatternRewriter &rewriter) const override {
2017     auto vecType = loadOp.getVectorType();
2018     if (vecType.getNumElements() != 1)
2019       return failure();
2020     auto memrefLoad = rewriter.create<memref::LoadOp>(
2021         loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices());
2022     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
2023                                                      memrefLoad);
2024     return success();
2025   }
2026 };
2027 
2028 /// Replace a 0-d vector.store with a vector.extractelement + memref.store.
2029 struct VectorStoreToMemrefStoreLowering
2030     : public OpRewritePattern<vector::StoreOp> {
2031   using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
2032 
2033   LogicalResult matchAndRewrite(vector::StoreOp storeOp,
2034                                 PatternRewriter &rewriter) const override {
2035     auto vecType = storeOp.getVectorType();
2036     if (vecType.getNumElements() != 1)
2037       return failure();
2038     Value extracted;
2039     if (vecType.getRank() == 0) {
2040       // TODO: Unifiy once ExtractOp supports 0-d vectors.
2041       extracted = rewriter.create<vector::ExtractElementOp>(
2042           storeOp.getLoc(), storeOp.getValueToStore());
2043     } else {
2044       SmallVector<int64_t> indices(vecType.getRank(), 0);
2045       extracted = rewriter.create<vector::ExtractOp>(
2046           storeOp.getLoc(), storeOp.getValueToStore(), indices);
2047     }
2048 
2049     rewriter.replaceOpWithNewOp<memref::StoreOp>(
2050         storeOp, extracted, storeOp.getBase(), storeOp.getIndices());
2051     return success();
2052   }
2053 };
2054 
2055 /// Progressive lowering of transfer_write. This pattern supports lowering of
2056 /// `vector.transfer_write` to `vector.store` if all of the following hold:
2057 /// - Stride of most minor memref dimension must be 1.
2058 /// - Out-of-bounds masking is not required.
2059 /// - If the memref's element type is a vector type then it coincides with the
2060 ///   type of the written value.
2061 /// - The permutation map is the minor identity map (neither permutation nor
2062 ///   broadcasting is allowed).
2063 struct TransferWriteToVectorStoreLowering
2064     : public OpRewritePattern<vector::TransferWriteOp> {
2065   TransferWriteToVectorStoreLowering(MLIRContext *context,
2066                                      llvm::Optional<unsigned> maxRank)
2067       : OpRewritePattern<vector::TransferWriteOp>(context),
2068         maxTransferRank(maxRank) {}
2069 
2070   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
2071                                 PatternRewriter &rewriter) const override {
2072     if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank)
2073       return failure();
2074 
2075     // Permutations are handled by VectorToSCF or
2076     // populateVectorTransferPermutationMapLoweringPatterns.
2077     if ( // pass-through for the 0-d corner case.
2078         !write.getPermutationMap().isMinorIdentity())
2079       return failure();
2080 
2081     auto memRefType = write.getShapedType().dyn_cast<MemRefType>();
2082     if (!memRefType)
2083       return failure();
2084 
2085     // Non-unit strides are handled by VectorToSCF.
2086     if (!vector::isLastMemrefDimUnitStride(memRefType))
2087       return failure();
2088 
2089     // `vector.store` supports vector types as memref's elements only when the
2090     // type of the vector value being written is the same as the element type.
2091     auto memrefElTy = memRefType.getElementType();
2092     if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType())
2093       return failure();
2094 
2095     // Otherwise, element types of the memref and the vector must match.
2096     if (!memrefElTy.isa<VectorType>() &&
2097         memrefElTy != write.getVectorType().getElementType())
2098       return failure();
2099 
2100     // Out-of-bounds dims are handled by MaterializeTransferMask.
2101     if (write.hasOutOfBoundsDim())
2102       return failure();
2103     if (write.getMask()) {
2104       rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
2105           write, write.getSource(), write.getIndices(), write.getMask(),
2106           write.getVector());
2107     } else {
2108       rewriter.replaceOpWithNewOp<vector::StoreOp>(
2109           write, write.getVector(), write.getSource(), write.getIndices());
2110     }
2111     return success();
2112   }
2113 
2114   llvm::Optional<unsigned> maxTransferRank;
2115 };
2116 
2117 // Returns the values in `arrayAttr` as an integer vector.
2118 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
2119   return llvm::to_vector<4>(
2120       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
2121                       [](IntegerAttr attr) { return attr.getInt(); }));
2122 }
2123 
2124 // Shuffles vector.bitcast op after vector.extract op.
2125 //
2126 // This transforms IR like:
2127 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
2128 //   %1 = vector.extract %0[3] : vector<8xf16>
2129 // Into:
2130 //   %0 = vector.extract %src[1] : vector<4xf32>
2131 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
2132 //   %2 = vector.extract %1[1] : vector<2xf16>
2133 struct BubbleDownVectorBitCastForExtract
2134     : public OpRewritePattern<vector::ExtractOp> {
2135   using OpRewritePattern::OpRewritePattern;
2136 
2137   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
2138                                 PatternRewriter &rewriter) const override {
2139     // Only support extracting scalars for now.
2140     if (extractOp.getVectorType().getRank() != 1)
2141       return failure();
2142 
2143     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2144     if (!castOp)
2145       return failure();
2146 
2147     VectorType castSrcType = castOp.getSourceVectorType();
2148     VectorType castDstType = castOp.getResultVectorType();
2149     assert(castSrcType.getRank() == castDstType.getRank());
2150 
2151     // Fail to match if we only have one element in the cast op source.
2152     // This is to avoid infinite loop given that this pattern can generate
2153     // such cases.
2154     if (castSrcType.getNumElements() == 1)
2155       return failure();
2156 
2157     // Only support casting to a larger number of elements or now.
2158     // E.g., vector<4xf32> -> vector<8xf16>.
2159     if (castSrcType.getNumElements() > castDstType.getNumElements())
2160       return failure();
2161 
2162     unsigned expandRatio =
2163         castDstType.getNumElements() / castSrcType.getNumElements();
2164 
2165     auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
2166       return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
2167     };
2168 
2169     uint64_t index = getFirstIntValue(extractOp.getPosition());
2170 
2171     // Get the single scalar (as a vector) in the source value that packs the
2172     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
2173     VectorType oneScalarType =
2174         VectorType::get({1}, castSrcType.getElementType());
2175     Value packedValue = rewriter.create<vector::ExtractOp>(
2176         extractOp.getLoc(), oneScalarType, castOp.getSource(),
2177         rewriter.getI64ArrayAttr(index / expandRatio));
2178 
2179     // Cast it to a vector with the desired scalar's type.
2180     // E.g. f32 -> vector<2xf16>
2181     VectorType packedType =
2182         VectorType::get({expandRatio}, castDstType.getElementType());
2183     Value castedValue = rewriter.create<vector::BitCastOp>(
2184         extractOp.getLoc(), packedType, packedValue);
2185 
2186     // Finally extract the desired scalar.
2187     rewriter.replaceOpWithNewOp<vector::ExtractOp>(
2188         extractOp, extractOp.getType(), castedValue,
2189         rewriter.getI64ArrayAttr(index % expandRatio));
2190 
2191     return success();
2192   }
2193 };
2194 
2195 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
2196 //
2197 // This transforms IR like:
2198 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
2199 //     %0 = vector.extract_strided_slice %cast {
2200 //            offsets = [4], sizes = [4], strides = [1]
2201 //          } : vector<8xf16> to vector<4xf16>
2202 // Into:
2203 //   %0 = vector.extract_strided_slice %src {
2204 //          offsets = [2], sizes = [2], strides = [1]
2205 //        } : vector<4xf32> to vector<2xf32>
2206 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
2207 struct BubbleDownBitCastForStridedSliceExtract
2208     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
2209   using OpRewritePattern::OpRewritePattern;
2210 
2211   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
2212                                 PatternRewriter &rewriter) const override {
2213     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2214     if (!castOp)
2215       return failure();
2216 
2217     VectorType castSrcType = castOp.getSourceVectorType();
2218     VectorType castDstType = castOp.getResultVectorType();
2219     assert(castSrcType.getRank() == castDstType.getRank());
2220 
2221     int64_t castSrcLastDim = castSrcType.getShape().back();
2222     int64_t castDstLastDim = castDstType.getShape().back();
2223     // Require casting to more elements for now; other cases to be implemented.
2224     if (castSrcLastDim > castDstLastDim)
2225       return failure();
2226 
2227     // Only accept all one strides for now.
2228     if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(),
2229                      [](const APInt &val) { return !val.isOneValue(); }))
2230       return failure();
2231 
2232     unsigned rank = extractOp.getVectorType().getRank();
2233     assert(castDstLastDim % castSrcLastDim == 0);
2234     int64_t expandRatio = castDstLastDim / castSrcLastDim;
2235 
2236     // If we have a less number of offsets than the rank, then implicitly we
2237     // are selecting the full range for the last bitcasted dimension; other
2238     // dimensions aren't affected. Otherwise, we need to scale down the last
2239     // dimension's offset given we are extracting from less elements now.
2240     ArrayAttr newOffsets = extractOp.getOffsets();
2241     if (newOffsets.size() == rank) {
2242       SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2243       if (offsets.back() % expandRatio != 0)
2244         return failure();
2245       offsets.back() = offsets.back() / expandRatio;
2246       newOffsets = rewriter.getI64ArrayAttr(offsets);
2247     }
2248 
2249     // Similarly for sizes.
2250     ArrayAttr newSizes = extractOp.getSizes();
2251     if (newSizes.size() == rank) {
2252       SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes);
2253       if (sizes.back() % expandRatio != 0)
2254         return failure();
2255       sizes.back() = sizes.back() / expandRatio;
2256       newSizes = rewriter.getI64ArrayAttr(sizes);
2257     }
2258 
2259     SmallVector<int64_t, 4> dims =
2260         llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape());
2261     dims.back() = dims.back() / expandRatio;
2262     VectorType newExtractType =
2263         VectorType::get(dims, castSrcType.getElementType());
2264 
2265     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
2266         extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets,
2267         newSizes, extractOp.getStrides());
2268 
2269     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
2270         extractOp, extractOp.getType(), newExtractOp);
2271 
2272     return success();
2273   }
2274 };
2275 
2276 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
2277 //
2278 // This transforms IR like:
2279 //   %0 = vector.insert_strided_slice %src, %dst {
2280 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
2281 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
2282 // Into:
2283 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
2284 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
2285 //   %2 = vector.insert_strided_slice %src, %dst {
2286 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
2287 struct BubbleUpBitCastForStridedSliceInsert
2288     : public OpRewritePattern<vector::BitCastOp> {
2289   using OpRewritePattern::OpRewritePattern;
2290   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
2291                                 PatternRewriter &rewriter) const override {
2292     VectorType castSrcType = bitcastOp.getSourceVectorType();
2293     VectorType castDstType = bitcastOp.getResultVectorType();
2294     assert(castSrcType.getRank() == castDstType.getRank());
2295 
2296     int64_t castSrcLastDim = castSrcType.getShape().back();
2297     int64_t castDstLastDim = castDstType.getShape().back();
2298     // Require casting to less elements for now; other cases to be implemented.
2299     if (castSrcLastDim < castDstLastDim)
2300       return failure();
2301 
2302     assert(castSrcLastDim % castDstLastDim == 0);
2303     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
2304 
2305     auto insertOp =
2306         bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>();
2307     if (!insertOp)
2308       return failure();
2309 
2310     // Only accept all one strides for now.
2311     if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(),
2312                      [](const APInt &val) { return !val.isOneValue(); }))
2313       return failure();
2314 
2315     unsigned rank = insertOp.getSourceVectorType().getRank();
2316     // Require insert op to have the same rank for the source and destination
2317     // vector; other cases to be implemented.
2318     if (rank != insertOp.getDestVectorType().getRank())
2319       return failure();
2320 
2321     ArrayAttr newOffsets = insertOp.getOffsets();
2322     assert(newOffsets.size() == rank);
2323     SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2324     if (offsets.back() % shrinkRatio != 0)
2325       return failure();
2326     offsets.back() = offsets.back() / shrinkRatio;
2327     newOffsets = rewriter.getI64ArrayAttr(offsets);
2328 
2329     SmallVector<int64_t, 4> srcDims =
2330         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
2331     srcDims.back() = srcDims.back() / shrinkRatio;
2332     VectorType newCastSrcType =
2333         VectorType::get(srcDims, castDstType.getElementType());
2334 
2335     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
2336         bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
2337 
2338     SmallVector<int64_t, 4> dstDims =
2339         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
2340     dstDims.back() = dstDims.back() / shrinkRatio;
2341     VectorType newCastDstType =
2342         VectorType::get(dstDims, castDstType.getElementType());
2343 
2344     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
2345         bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
2346 
2347     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
2348         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
2349         insertOp.getStrides());
2350 
2351     return success();
2352   }
2353 };
2354 
2355 // Helper that returns a vector comparison that constructs a mask:
2356 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
2357 //
2358 // If `dim == 0` then the result will be a 0-D vector.
2359 //
2360 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
2361 //       much more compact, IR for this operation, but LLVM eventually
2362 //       generates more elaborate instructions for this intrinsic since it
2363 //       is very conservative on the boundary conditions.
2364 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
2365                                    bool force32BitVectorIndices, int64_t dim,
2366                                    Value b, Value *off = nullptr) {
2367   auto loc = op->getLoc();
2368   // If we can assume all indices fit in 32-bit, we perform the vector
2369   // comparison in 32-bit to get a higher degree of SIMD parallelism.
2370   // Otherwise we perform the vector comparison using 64-bit indices.
2371   Type idxType =
2372       force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
2373   DenseIntElementsAttr indicesAttr;
2374   if (dim == 0 && force32BitVectorIndices) {
2375     indicesAttr = DenseIntElementsAttr::get(
2376         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
2377   } else if (dim == 0) {
2378     indicesAttr = DenseIntElementsAttr::get(
2379         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
2380   } else if (force32BitVectorIndices) {
2381     indicesAttr = rewriter.getI32VectorAttr(
2382         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
2383   } else {
2384     indicesAttr = rewriter.getI64VectorAttr(
2385         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
2386   }
2387   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
2388   // Add in an offset if requested.
2389   if (off) {
2390     Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off);
2391     Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
2392     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
2393   }
2394   // Construct the vector comparison.
2395   Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b);
2396   Value bounds =
2397       rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
2398   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
2399                                         bounds);
2400 }
2401 
2402 template <typename ConcreteOp>
2403 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
2404 public:
2405   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt)
2406       : mlir::OpRewritePattern<ConcreteOp>(context),
2407         force32BitVectorIndices(enableIndexOpt) {}
2408 
2409   LogicalResult matchAndRewrite(ConcreteOp xferOp,
2410                                 PatternRewriter &rewriter) const override {
2411     if (!xferOp.hasOutOfBoundsDim())
2412       return failure();
2413 
2414     if (xferOp.getVectorType().getRank() > 1 ||
2415         llvm::size(xferOp.getIndices()) == 0)
2416       return failure();
2417 
2418     Location loc = xferOp->getLoc();
2419     VectorType vtp = xferOp.getVectorType();
2420 
2421     // Create the in-bounds mask with all elements between [0 .. dim - offset)
2422     // set and [dim - offset .. vector_length) unset.
2423     //
2424     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
2425     //       dimensions here.
2426     unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1;
2427     Value off = xferOp.getIndices()[lastIndex];
2428     Value dim =
2429         vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex);
2430     Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off);
2431     Value mask = rewriter.create<vector::CreateMaskOp>(
2432         loc,
2433         VectorType::get(vtp.getShape(), rewriter.getI1Type(),
2434                         vtp.getNumScalableDims()),
2435         b);
2436     if (xferOp.getMask()) {
2437       // Intersect the in-bounds with the mask specified as an op parameter.
2438       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask());
2439     }
2440 
2441     rewriter.updateRootInPlace(xferOp, [&]() {
2442       xferOp.getMaskMutable().assign(mask);
2443       xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
2444     });
2445 
2446     return success();
2447   }
2448 
2449 private:
2450   const bool force32BitVectorIndices;
2451 };
2452 
2453 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
2454 class VectorCreateMaskOpConversion
2455     : public OpRewritePattern<vector::CreateMaskOp> {
2456 public:
2457   explicit VectorCreateMaskOpConversion(MLIRContext *context,
2458                                         bool enableIndexOpt)
2459       : mlir::OpRewritePattern<vector::CreateMaskOp>(context),
2460         force32BitVectorIndices(enableIndexOpt) {}
2461 
2462   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
2463                                 PatternRewriter &rewriter) const override {
2464     auto dstType = op.getType();
2465     if (dstType.cast<VectorType>().isScalable())
2466       return failure();
2467     int64_t rank = dstType.getRank();
2468     if (rank > 1)
2469       return failure();
2470     rewriter.replaceOp(
2471         op, buildVectorComparison(rewriter, op, force32BitVectorIndices,
2472                                   rank == 0 ? 0 : dstType.getDimSize(0),
2473                                   op.getOperand(0)));
2474     return success();
2475   }
2476 
2477 private:
2478   const bool force32BitVectorIndices;
2479 };
2480 
2481 // Drop inner most contiguous unit dimensions from transfer_read operand.
2482 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
2483   using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
2484 
2485   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
2486                                 PatternRewriter &rewriter) const override {
2487     // TODO: support 0-d corner case.
2488     if (readOp.getTransferRank() == 0)
2489       return failure();
2490 
2491     // TODO: support mask.
2492     if (readOp.getMask())
2493       return failure();
2494 
2495     auto srcType = readOp.getSource().getType().dyn_cast<MemRefType>();
2496     if (!srcType || !srcType.hasStaticShape())
2497       return failure();
2498 
2499     if (!readOp.getPermutationMap().isMinorIdentity())
2500       return failure();
2501 
2502     auto targetType = readOp.getVectorType();
2503     if (targetType.getRank() <= 1)
2504       return failure();
2505 
2506     SmallVector<int64_t> srcStrides;
2507     int64_t srcOffset;
2508     if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
2509       return failure();
2510 
2511     size_t dimsToDrop = 0;
2512     for (size_t i = 1; i < srcStrides.size(); ++i) {
2513       int dim = srcType.getRank() - i - 1;
2514       if (srcStrides[dim] == 1) {
2515         dimsToDrop++;
2516       } else {
2517         break;
2518       }
2519     }
2520     if (dimsToDrop == 0)
2521       return failure();
2522 
2523     auto resultTargetVecType =
2524         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
2525                         targetType.getElementType());
2526 
2527     MemRefType resultMemrefType;
2528     if (srcType.getLayout().getAffineMap().isIdentity()) {
2529       resultMemrefType = MemRefType::get(
2530           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2531           {}, srcType.getMemorySpaceAsInt());
2532     } else {
2533       AffineMap map = srcType.getLayout().getAffineMap();
2534       int numSymbols = map.getNumSymbols();
2535       for (size_t i = 0; i < dimsToDrop; ++i) {
2536         int dim = srcType.getRank() - i - 1;
2537         map = map.replace(rewriter.getAffineDimExpr(dim),
2538                           rewriter.getAffineConstantExpr(0),
2539                           map.getNumDims() - 1, numSymbols);
2540       }
2541       resultMemrefType = MemRefType::get(
2542           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2543           map, srcType.getMemorySpaceAsInt());
2544     }
2545 
2546     auto loc = readOp.getLoc();
2547     SmallVector<int64_t> offsets(srcType.getRank(), 0);
2548     SmallVector<int64_t> strides(srcType.getRank(), 1);
2549 
2550     ArrayAttr inBoundsAttr =
2551         readOp.getInBounds()
2552             ? rewriter.getArrayAttr(
2553                   readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop))
2554             : ArrayAttr();
2555     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
2556         loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(),
2557         strides);
2558     auto permMap = getTransferMinorIdentityMap(
2559         rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType);
2560     Value result = rewriter.create<vector::TransferReadOp>(
2561         loc, resultTargetVecType, rankedReducedView,
2562         readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
2563         readOp.getPadding(),
2564         // TODO: support mask.
2565         /*mask=*/Value(), inBoundsAttr);
2566     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
2567                                                      result);
2568     return success();
2569   }
2570 };
2571 
2572 namespace {
2573 
2574 /// This function checks to see if the vector combining kind
2575 /// is consistent with the integer or float element type.
2576 static bool isValidKind(bool isInt, vector::CombiningKind kind) {
2577   using vector::CombiningKind;
2578   enum class KindType { FLOAT, INT, INVALID };
2579   KindType type{KindType::INVALID};
2580   switch (kind) {
2581   case CombiningKind::MINF:
2582   case CombiningKind::MAXF:
2583     type = KindType::FLOAT;
2584     break;
2585   case CombiningKind::MINUI:
2586   case CombiningKind::MINSI:
2587   case CombiningKind::MAXUI:
2588   case CombiningKind::MAXSI:
2589   case CombiningKind::AND:
2590   case CombiningKind::OR:
2591   case CombiningKind::XOR:
2592     type = KindType::INT;
2593     break;
2594   case CombiningKind::ADD:
2595   case CombiningKind::MUL:
2596     type = isInt ? KindType::INT : KindType::FLOAT;
2597     break;
2598   }
2599   bool isValidIntKind = (type == KindType::INT) && isInt;
2600   bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
2601   return (isValidIntKind || isValidFloatKind);
2602 }
2603 
2604 /// This function constructs the appropriate integer or float
2605 /// operation given the vector combining kind and operands. The
2606 /// supported int operations are : add, mul, min (signed/unsigned),
2607 /// max(signed/unsigned), and, or, xor. The supported float
2608 /// operations are : add, mul, min and max.
2609 static Value genOperator(Location loc, Value x, Value y,
2610                          vector::CombiningKind kind,
2611                          PatternRewriter &rewriter) {
2612   using vector::CombiningKind;
2613 
2614   auto elType = x.getType().cast<VectorType>().getElementType();
2615   bool isInt = elType.isIntOrIndex();
2616 
2617   Value combinedResult{nullptr};
2618   switch (kind) {
2619   case CombiningKind::ADD:
2620     if (isInt)
2621       combinedResult = rewriter.create<arith::AddIOp>(loc, x, y);
2622     else
2623       combinedResult = rewriter.create<arith::AddFOp>(loc, x, y);
2624     break;
2625   case CombiningKind::MUL:
2626     if (isInt)
2627       combinedResult = rewriter.create<arith::MulIOp>(loc, x, y);
2628     else
2629       combinedResult = rewriter.create<arith::MulFOp>(loc, x, y);
2630     break;
2631   case CombiningKind::MINUI:
2632     combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y);
2633     break;
2634   case CombiningKind::MINSI:
2635     combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y);
2636     break;
2637   case CombiningKind::MAXUI:
2638     combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y);
2639     break;
2640   case CombiningKind::MAXSI:
2641     combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y);
2642     break;
2643   case CombiningKind::AND:
2644     combinedResult = rewriter.create<arith::AndIOp>(loc, x, y);
2645     break;
2646   case CombiningKind::OR:
2647     combinedResult = rewriter.create<arith::OrIOp>(loc, x, y);
2648     break;
2649   case CombiningKind::XOR:
2650     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
2651     break;
2652   case CombiningKind::MINF:
2653     combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
2654     break;
2655   case CombiningKind::MAXF:
2656     combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
2657     break;
2658   }
2659   return combinedResult;
2660 }
2661 
2662 /// Convert vector.scan op into arith ops and
2663 /// vector.insert_strided_slice/extract_strided_slice
2664 ///
2665 /// Ex:
2666 /// ```
2667 ///   %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim =
2668 ///   1} :
2669 ///     (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
2670 /// ```
2671 /// Gets converted to:
2672 /// ```
2673 ///   %cst = arith.constant dense<0> : vector<2x3xi32>
2674 ///   %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1],
2675 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 =
2676 ///   vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]}
2677 ///   : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice
2678 ///   %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} :
2679 ///   vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 :
2680 ///   vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1],
2681 ///   strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 =
2682 ///   vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1],
2683 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3,
2684 ///   %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets =
2685 ///   [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 =
2686 ///   vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 :
2687 ///   vector<2x3xi32>, vector<2xi32>
2688 /// ```
2689 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
2690   using OpRewritePattern<vector::ScanOp>::OpRewritePattern;
2691 
2692   LogicalResult matchAndRewrite(vector::ScanOp scanOp,
2693                                 PatternRewriter &rewriter) const override {
2694     auto loc = scanOp.getLoc();
2695     VectorType destType = scanOp.getDestType();
2696     ArrayRef<int64_t> destShape = destType.getShape();
2697     auto elType = destType.getElementType();
2698     bool isInt = elType.isIntOrIndex();
2699     if (!isValidKind(isInt, scanOp.getKind()))
2700       return failure();
2701 
2702     VectorType resType = VectorType::get(destShape, elType);
2703     Value result = rewriter.create<arith::ConstantOp>(
2704         loc, resType, rewriter.getZeroAttr(resType));
2705     int64_t reductionDim = scanOp.getReductionDim();
2706     bool inclusive = scanOp.getInclusive();
2707     int64_t destRank = destType.getRank();
2708     VectorType initialValueType = scanOp.getInitialValueType();
2709     int64_t initialValueRank = initialValueType.getRank();
2710 
2711     SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end());
2712     reductionShape[reductionDim] = 1;
2713     VectorType reductionType = VectorType::get(reductionShape, elType);
2714     SmallVector<int64_t> offsets(destRank, 0);
2715     SmallVector<int64_t> strides(destRank, 1);
2716     SmallVector<int64_t> sizes(destShape.begin(), destShape.end());
2717     sizes[reductionDim] = 1;
2718     ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
2719     ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
2720 
2721     Value lastOutput, lastInput;
2722     for (int i = 0; i < destShape[reductionDim]; i++) {
2723       offsets[reductionDim] = i;
2724       ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
2725       Value input = rewriter.create<vector::ExtractStridedSliceOp>(
2726           loc, reductionType, scanOp.getSource(), scanOffsets, scanSizes,
2727           scanStrides);
2728       Value output;
2729       if (i == 0) {
2730         if (inclusive) {
2731           output = input;
2732         } else {
2733           if (initialValueRank == 0) {
2734             // ShapeCastOp cannot handle 0-D vectors
2735             output = rewriter.create<vector::BroadcastOp>(
2736                 loc, input.getType(), scanOp.getInitialValue());
2737           } else {
2738             output = rewriter.create<vector::ShapeCastOp>(
2739                 loc, input.getType(), scanOp.getInitialValue());
2740           }
2741         }
2742       } else {
2743         Value y = inclusive ? input : lastInput;
2744         output = genOperator(loc, lastOutput, y, scanOp.getKind(), rewriter);
2745         assert(output != nullptr);
2746       }
2747       result = rewriter.create<vector::InsertStridedSliceOp>(
2748           loc, output, result, offsets, strides);
2749       lastOutput = output;
2750       lastInput = input;
2751     }
2752 
2753     Value reduction;
2754     if (initialValueRank == 0) {
2755       Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0);
2756       reduction =
2757           rewriter.create<vector::BroadcastOp>(loc, initialValueType, v);
2758     } else {
2759       reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType,
2760                                                        lastOutput);
2761     }
2762 
2763     rewriter.replaceOp(scanOp, {result, reduction});
2764     return success();
2765   }
2766 };
2767 
2768 } // namespace
2769 
2770 void mlir::vector::populateVectorMaskMaterializationPatterns(
2771     RewritePatternSet &patterns, bool force32BitVectorIndices) {
2772   patterns.add<VectorCreateMaskOpConversion,
2773                MaterializeTransferMask<vector::TransferReadOp>,
2774                MaterializeTransferMask<vector::TransferWriteOp>>(
2775       patterns.getContext(), force32BitVectorIndices);
2776 }
2777 
2778 void mlir::vector::populateShapeCastFoldingPatterns(
2779     RewritePatternSet &patterns) {
2780   patterns.add<ShapeCastOpFolder>(patterns.getContext());
2781 }
2782 
2783 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2784     RewritePatternSet &patterns) {
2785   patterns.add<BubbleDownVectorBitCastForExtract,
2786                BubbleDownBitCastForStridedSliceExtract,
2787                BubbleUpBitCastForStridedSliceInsert>(patterns.getContext());
2788 }
2789 
2790 void mlir::vector::populateVectorBroadcastLoweringPatterns(
2791     RewritePatternSet &patterns) {
2792   patterns.add<BroadcastOpLowering>(patterns.getContext());
2793 }
2794 
2795 void mlir::vector::populateVectorMaskOpLoweringPatterns(
2796     RewritePatternSet &patterns) {
2797   patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>(
2798       patterns.getContext());
2799 }
2800 
2801 void mlir::vector::populateVectorShapeCastLoweringPatterns(
2802     RewritePatternSet &patterns) {
2803   patterns.add<ShapeCastOp2DDownCastRewritePattern,
2804                ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
2805       patterns.getContext());
2806 }
2807 
2808 void mlir::vector::populateVectorContractLoweringPatterns(
2809     RewritePatternSet &patterns, VectorTransformsOptions options) {
2810   patterns.add<OuterProductOpLowering>(patterns.getContext());
2811   patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering,
2812                ContractionOpToOuterProductOpLowering>(options,
2813                                                       patterns.getContext());
2814 }
2815 
2816 void mlir::vector::populateVectorTransposeLoweringPatterns(
2817     RewritePatternSet &patterns, VectorTransformsOptions options) {
2818   patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
2819       options, patterns.getContext());
2820 }
2821 
2822 void mlir::vector::populateVectorReductionToContractPatterns(
2823     RewritePatternSet &patterns) {
2824   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2825                CombineContractTranspose, ReorderCastOpsOnBroadcast,
2826                ReorderElementwiseOpsOnTranspose>(patterns.getContext());
2827 }
2828 
2829 void mlir::vector::
2830     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2831         RewritePatternSet &patterns) {
2832   patterns.add<DropInnerMostUnitDims>(patterns.getContext());
2833 }
2834 
2835 void mlir::vector::populateVectorTransferLoweringPatterns(
2836     RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) {
2837   patterns.add<TransferReadToVectorLoadLowering,
2838                TransferWriteToVectorStoreLowering>(patterns.getContext(),
2839                                                    maxTransferRank);
2840   patterns
2841       .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
2842           patterns.getContext());
2843 }
2844 
2845 void mlir::vector::populateVectorScanLoweringPatterns(
2846     RewritePatternSet &patterns) {
2847   patterns.add<ScanToArithOps>(patterns.getContext());
2848 }
2849