1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-independent rewrites as 1->N patterns. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 14 15 #include <type_traits> 16 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 19 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 20 #include "mlir/Dialect/Linalg/IR/Linalg.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/SCF.h" 23 #include "mlir/Dialect/Utils/IndexingUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 26 #include "mlir/IR/BuiltinTypes.h" 27 #include "mlir/IR/ImplicitLocOpBuilder.h" 28 #include "mlir/IR/Matchers.h" 29 #include "mlir/IR/PatternMatch.h" 30 #include "mlir/Interfaces/VectorInterfaces.h" 31 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 #define DEBUG_TYPE "vector-to-vector" 40 41 using namespace mlir; 42 using namespace mlir::vector; 43 44 // Helper to find an index in an affine map. 45 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) { 46 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 47 int64_t idx = map.getDimPosition(i); 48 if (idx == index) 49 return i; 50 } 51 return None; 52 } 53 54 // Helper to construct iterator types with one index removed. 55 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes, 56 int64_t index) { 57 SmallVector<Attribute, 4> results; 58 for (const auto &it : llvm::enumerate(iteratorTypes)) { 59 int64_t idx = it.index(); 60 if (idx == index) 61 continue; 62 results.push_back(it.value()); 63 } 64 return results; 65 } 66 67 // Helper to construct an affine map with one index removed. 68 static AffineMap adjustMap(AffineMap map, int64_t index, 69 PatternRewriter &rewriter) { 70 auto *ctx = rewriter.getContext(); 71 SmallVector<AffineExpr, 4> results; 72 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 73 int64_t idx = map.getDimPosition(i); 74 if (idx == index) 75 continue; 76 // Re-insert remaining indices, but renamed when occurring 77 // after the removed index. 78 auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx); 79 results.push_back(targetExpr); 80 } 81 return AffineMap::get(map.getNumDims() - 1, 0, results, ctx); 82 } 83 84 // Helper method to possibly drop a dimension in a load. 85 // TODO 86 static Value reshapeLoad(Location loc, Value val, VectorType type, 87 int64_t index, int64_t pos, 88 PatternRewriter &rewriter) { 89 if (index == -1) 90 return val; 91 Type lowType = VectorType::Builder(type).dropDim(0); 92 // At extraction dimension? 93 if (index == 0) { 94 auto posAttr = rewriter.getI64ArrayAttr(pos); 95 return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr); 96 } 97 // Unroll leading dimensions. 98 VectorType vType = lowType.cast<VectorType>(); 99 Type resType = VectorType::Builder(type).dropDim(index); 100 auto resVectorType = resType.cast<VectorType>(); 101 Value result = rewriter.create<arith::ConstantOp>( 102 loc, resVectorType, rewriter.getZeroAttr(resVectorType)); 103 for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) { 104 auto posAttr = rewriter.getI64ArrayAttr(d); 105 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr); 106 Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); 107 result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result, 108 posAttr); 109 } 110 return result; 111 } 112 113 // Helper method to possibly drop a dimension in a store. 114 // TODO 115 static Value reshapeStore(Location loc, Value val, Value result, 116 VectorType type, int64_t index, int64_t pos, 117 PatternRewriter &rewriter) { 118 // Unmodified? 119 if (index == -1) 120 return val; 121 // At insertion dimension? 122 if (index == 0) { 123 auto posAttr = rewriter.getI64ArrayAttr(pos); 124 return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr); 125 } 126 // Unroll leading dimensions. 127 Type lowType = VectorType::Builder(type).dropDim(0); 128 VectorType vType = lowType.cast<VectorType>(); 129 Type insType = VectorType::Builder(vType).dropDim(0); 130 for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { 131 auto posAttr = rewriter.getI64ArrayAttr(d); 132 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr); 133 Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr); 134 Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); 135 result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr); 136 } 137 return result; 138 } 139 140 template <typename IntType> 141 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) { 142 return llvm::to_vector<4>(llvm::map_range( 143 arrayAttr.getAsRange<IntegerAttr>(), 144 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 145 } 146 147 /// Helper to create arithmetic operation associated with a kind of contraction. 148 static Optional<Value> createContractArithOp(Location loc, Value x, Value y, 149 Value acc, 150 vector::CombiningKind kind, 151 PatternRewriter &rewriter, 152 bool isInt) { 153 using vector::CombiningKind; 154 Value mul; 155 if (isInt) { 156 if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF) 157 // Only valid for floating point types. 158 return Optional<Value>(); 159 mul = rewriter.create<arith::MulIOp>(loc, x, y); 160 } else { 161 // Float case. 162 if (kind == CombiningKind::AND || kind == CombiningKind::MINUI || 163 kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI || 164 kind == CombiningKind::MAXSI || kind == CombiningKind::OR || 165 kind == CombiningKind::XOR) 166 // Only valid for integer types. 167 return Optional<Value>(); 168 // Special case for fused multiply-add. 169 if (acc && acc.getType().isa<VectorType>() && kind == CombiningKind::ADD) { 170 return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc)); 171 } 172 mul = rewriter.create<arith::MulFOp>(loc, x, y); 173 } 174 if (!acc) 175 return Optional<Value>(mul); 176 return makeArithReduction(rewriter, loc, kind, mul, acc); 177 } 178 179 /// Return the positions of the reductions in the given map. 180 static SmallVector<int64_t> getReductionIndex(AffineMap map, 181 ArrayAttr iteratorTypes) { 182 SmallVector<int64_t> dimsIdx; 183 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 184 if (isReductionIterator(iteratorTypes[map.getDimPosition(i)])) 185 dimsIdx.push_back(i); 186 } 187 return dimsIdx; 188 } 189 190 /// Look for a given dimension in an affine map and return its position. Return 191 /// llvm::None if the dimension is not in the map results. 192 static llvm::Optional<unsigned> getDimPosition(AffineMap map, unsigned dim) { 193 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 194 if (map.getDimPosition(i) == dim) 195 return i; 196 } 197 return llvm::None; 198 } 199 200 namespace { 201 202 /// ShapeCastOpFolder folds cancelling ShapeCastOps away. 203 // 204 // Example: 205 // 206 // The following MLIR with cancelling ShapeCastOps: 207 // 208 // %0 = source : vector<5x4x2xf32> 209 // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> 210 // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> 211 // %3 = user %2 : vector<5x4x2xf32> 212 // 213 // Should canonicalize to the following: 214 // 215 // %0 = source : vector<5x4x2xf32> 216 // %1 = user %0 : vector<5x4x2xf32> 217 // 218 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> { 219 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 220 221 LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, 222 PatternRewriter &rewriter) const override { 223 // Check if 'shapeCastOp' has vector source/result type. 224 auto sourceVectorType = 225 shapeCastOp.getSource().getType().dyn_cast_or_null<VectorType>(); 226 auto resultVectorType = 227 shapeCastOp.getResult().getType().dyn_cast_or_null<VectorType>(); 228 if (!sourceVectorType || !resultVectorType) 229 return failure(); 230 231 // Check if shape cast op source operand is also a shape cast op. 232 auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>( 233 shapeCastOp.getSource().getDefiningOp()); 234 if (!sourceShapeCastOp) 235 return failure(); 236 auto operandSourceVectorType = 237 sourceShapeCastOp.getSource().getType().cast<VectorType>(); 238 auto operandResultVectorType = sourceShapeCastOp.getType(); 239 240 // Check if shape cast operations invert each other. 241 if (operandSourceVectorType != resultVectorType || 242 operandResultVectorType != sourceVectorType) 243 return failure(); 244 245 rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource()); 246 return success(); 247 } 248 }; 249 250 /// Progressive lowering of BroadcastOp. 251 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> { 252 public: 253 using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern; 254 255 LogicalResult matchAndRewrite(vector::BroadcastOp op, 256 PatternRewriter &rewriter) const override { 257 auto loc = op.getLoc(); 258 VectorType dstType = op.getVectorType(); 259 VectorType srcType = op.getSourceType().dyn_cast<VectorType>(); 260 Type eltType = dstType.getElementType(); 261 262 // Scalar to any vector can use splat. 263 if (!srcType) { 264 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.getSource()); 265 return success(); 266 } 267 268 // Determine rank of source and destination. 269 int64_t srcRank = srcType.getRank(); 270 int64_t dstRank = dstType.getRank(); 271 272 // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat. 273 if (srcRank <= 1 && dstRank == 1) { 274 Value ext; 275 if (srcRank == 0) 276 ext = rewriter.create<vector::ExtractElementOp>(loc, op.getSource()); 277 else 278 ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0); 279 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext); 280 return success(); 281 } 282 283 // Duplicate this rank. 284 // For example: 285 // %x = broadcast %y : k-D to n-D, k < n 286 // becomes: 287 // %b = broadcast %y : k-D to (n-1)-D 288 // %x = [%b,%b,%b,%b] : n-D 289 // becomes: 290 // %b = [%y,%y] : (n-1)-D 291 // %x = [%b,%b,%b,%b] : n-D 292 if (srcRank < dstRank) { 293 // Duplication. 294 VectorType resType = 295 VectorType::get(dstType.getShape().drop_front(), eltType); 296 Value bcst = 297 rewriter.create<vector::BroadcastOp>(loc, resType, op.getSource()); 298 Value result = rewriter.create<arith::ConstantOp>( 299 loc, dstType, rewriter.getZeroAttr(dstType)); 300 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 301 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 302 rewriter.replaceOp(op, result); 303 return success(); 304 } 305 306 // Find non-matching dimension, if any. 307 assert(srcRank == dstRank); 308 int64_t m = -1; 309 for (int64_t r = 0; r < dstRank; r++) 310 if (srcType.getDimSize(r) != dstType.getDimSize(r)) { 311 m = r; 312 break; 313 } 314 315 // All trailing dimensions are the same. Simply pass through. 316 if (m == -1) { 317 rewriter.replaceOp(op, op.getSource()); 318 return success(); 319 } 320 321 // Any non-matching dimension forces a stretch along this rank. 322 // For example: 323 // %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32> 324 // becomes: 325 // %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32> 326 // %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32> 327 // %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32> 328 // %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32> 329 // %x = [%a,%b,%c,%d] 330 // becomes: 331 // %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32> 332 // %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32> 333 // %a = [%u, %v] 334 // .. 335 // %x = [%a,%b,%c,%d] 336 VectorType resType = 337 VectorType::get(dstType.getShape().drop_front(), eltType); 338 Value result = rewriter.create<arith::ConstantOp>( 339 loc, dstType, rewriter.getZeroAttr(dstType)); 340 if (m == 0) { 341 // Stetch at start. 342 Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0); 343 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 344 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 345 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 346 } else { 347 // Stetch not at start. 348 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) { 349 Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), d); 350 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 351 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 352 } 353 } 354 rewriter.replaceOp(op, result); 355 return success(); 356 } 357 }; 358 359 /// Given a 'transpose' pattern, prune the rightmost dimensions that are not 360 /// transposed. 361 void pruneNonTransposedDims(ArrayRef<int64_t> transpose, 362 SmallVectorImpl<int64_t> &result) { 363 size_t numTransposedDims = transpose.size(); 364 for (size_t transpDim : llvm::reverse(transpose)) { 365 if (transpDim != numTransposedDims - 1) 366 break; 367 numTransposedDims--; 368 } 369 370 result.append(transpose.begin(), transpose.begin() + numTransposedDims); 371 } 372 373 /// Progressive lowering of TransposeOp. 374 /// One: 375 /// %x = vector.transpose %y, [1, 0] 376 /// is replaced by: 377 /// %z = arith.constant dense<0.000000e+00> 378 /// %0 = vector.extract %y[0, 0] 379 /// %1 = vector.insert %0, %z [0, 0] 380 /// .. 381 /// %x = vector.insert .., .. [.., ..] 382 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> { 383 public: 384 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 385 386 TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions, 387 MLIRContext *context) 388 : OpRewritePattern<vector::TransposeOp>(context), 389 vectorTransformOptions(vectorTransformOptions) {} 390 391 LogicalResult matchAndRewrite(vector::TransposeOp op, 392 PatternRewriter &rewriter) const override { 393 auto loc = op.getLoc(); 394 395 Value input = op.getVector(); 396 VectorType inputType = op.getVectorType(); 397 VectorType resType = op.getResultType(); 398 399 // Set up convenience transposition table. 400 SmallVector<int64_t, 4> transp; 401 for (auto attr : op.getTransp()) 402 transp.push_back(attr.cast<IntegerAttr>().getInt()); 403 404 if (vectorTransformOptions.vectorTransposeLowering == 405 vector::VectorTransposeLowering::Shuffle && 406 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) 407 return rewriter.notifyMatchFailure( 408 op, "Options specifies lowering to shuffle"); 409 410 // Handle a true 2-D matrix transpose differently when requested. 411 if (vectorTransformOptions.vectorTransposeLowering == 412 vector::VectorTransposeLowering::Flat && 413 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) { 414 Type flattenedType = 415 VectorType::get(resType.getNumElements(), resType.getElementType()); 416 auto matrix = 417 rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input); 418 auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]); 419 auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]); 420 Value trans = rewriter.create<vector::FlatTransposeOp>( 421 loc, flattenedType, matrix, rows, columns); 422 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans); 423 return success(); 424 } 425 426 // Generate unrolled extract/insert ops. We do not unroll the rightmost 427 // (i.e., highest-order) dimensions that are not transposed and leave them 428 // in vector form to improve performance. Therefore, we prune those 429 // dimensions from the shape/transpose data structures used to generate the 430 // extract/insert ops. 431 SmallVector<int64_t, 4> prunedTransp; 432 pruneNonTransposedDims(transp, prunedTransp); 433 size_t numPrunedDims = transp.size() - prunedTransp.size(); 434 auto prunedInShape = inputType.getShape().drop_back(numPrunedDims); 435 SmallVector<int64_t, 4> ones(prunedInShape.size(), 1); 436 auto prunedInStrides = computeStrides(prunedInShape, ones); 437 438 // Generates the extract/insert operations for every scalar/vector element 439 // of the leftmost transposed dimensions. We traverse every transpose 440 // element using a linearized index that we delinearize to generate the 441 // appropriate indices for the extract/insert operations. 442 Value result = rewriter.create<arith::ConstantOp>( 443 loc, resType, rewriter.getZeroAttr(resType)); 444 int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape); 445 446 for (int64_t linearIdx = 0; linearIdx < numTransposedElements; 447 ++linearIdx) { 448 auto extractIdxs = delinearize(prunedInStrides, linearIdx); 449 SmallVector<int64_t, 4> insertIdxs(extractIdxs); 450 applyPermutationToVector(insertIdxs, prunedTransp); 451 Value extractOp = 452 rewriter.create<vector::ExtractOp>(loc, input, extractIdxs); 453 result = 454 rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs); 455 } 456 457 rewriter.replaceOp(op, result); 458 return success(); 459 } 460 461 private: 462 /// Options to control the vector patterns. 463 vector::VectorTransformsOptions vectorTransformOptions; 464 }; 465 466 /// Rewrite a 2-D vector.transpose as a sequence of: 467 /// vector.shape_cast 2D -> 1D 468 /// vector.shuffle 469 /// vector.shape_cast 1D -> 2D 470 class TransposeOp2DToShuffleLowering 471 : public OpRewritePattern<vector::TransposeOp> { 472 public: 473 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 474 475 TransposeOp2DToShuffleLowering( 476 vector::VectorTransformsOptions vectorTransformOptions, 477 MLIRContext *context) 478 : OpRewritePattern<vector::TransposeOp>(context), 479 vectorTransformOptions(vectorTransformOptions) {} 480 481 LogicalResult matchAndRewrite(vector::TransposeOp op, 482 PatternRewriter &rewriter) const override { 483 auto loc = op.getLoc(); 484 485 VectorType srcType = op.getVectorType(); 486 if (srcType.getRank() != 2) 487 return rewriter.notifyMatchFailure(op, "Not a 2D transpose"); 488 489 SmallVector<int64_t, 4> transp; 490 for (auto attr : op.getTransp()) 491 transp.push_back(attr.cast<IntegerAttr>().getInt()); 492 if (transp[0] != 1 && transp[1] != 0) 493 return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation"); 494 495 if (vectorTransformOptions.vectorTransposeLowering != 496 VectorTransposeLowering::Shuffle) 497 return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle"); 498 499 int64_t m = srcType.getShape().front(), n = srcType.getShape().back(); 500 Value casted = rewriter.create<vector::ShapeCastOp>( 501 loc, VectorType::get({m * n}, srcType.getElementType()), 502 op.getVector()); 503 SmallVector<int64_t> mask; 504 mask.reserve(m * n); 505 for (int64_t j = 0; j < n; ++j) 506 for (int64_t i = 0; i < m; ++i) 507 mask.push_back(i * n + j); 508 509 Value shuffled = 510 rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask); 511 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(), 512 shuffled); 513 514 return success(); 515 } 516 517 private: 518 /// Options to control the vector patterns. 519 vector::VectorTransformsOptions vectorTransformOptions; 520 }; 521 522 /// Progressive lowering of OuterProductOp. 523 /// One: 524 /// %x = vector.outerproduct %lhs, %rhs, %acc 525 /// is replaced by: 526 /// %z = zero-result 527 /// %0 = vector.extract %lhs[0] 528 /// %1 = vector.broadcast %0 529 /// %2 = vector.extract %acc[0] 530 /// %3 = vector.fma %1, %rhs, %2 531 /// %4 = vector.insert %3, %z[0] 532 /// .. 533 /// %x = vector.insert %.., %..[N-1] 534 /// 535 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> { 536 public: 537 using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern; 538 539 LogicalResult matchAndRewrite(vector::OuterProductOp op, 540 PatternRewriter &rewriter) const override { 541 auto loc = op.getLoc(); 542 543 VectorType lhsType = op.getOperandVectorTypeLHS(); 544 VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>(); 545 VectorType resType = op.getVectorType(); 546 Type eltType = resType.getElementType(); 547 bool isInt = eltType.isa<IntegerType, IndexType>(); 548 Value acc = (op.getAcc().empty()) ? nullptr : op.getAcc()[0]; 549 vector::CombiningKind kind = op.getKind(); 550 551 if (!rhsType) { 552 // Special case: AXPY operation. 553 Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs()); 554 Optional<Value> mult = createContractArithOp(loc, op.getLhs(), b, acc, 555 kind, rewriter, isInt); 556 if (!mult.hasValue()) 557 return failure(); 558 rewriter.replaceOp(op, mult.getValue()); 559 return success(); 560 } 561 562 Value result = rewriter.create<arith::ConstantOp>( 563 loc, resType, rewriter.getZeroAttr(resType)); 564 for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { 565 auto pos = rewriter.getI64ArrayAttr(d); 566 Value x = 567 rewriter.create<vector::ExtractOp>(loc, eltType, op.getLhs(), pos); 568 Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x); 569 Value r = nullptr; 570 if (acc) 571 r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos); 572 Optional<Value> m = 573 createContractArithOp(loc, a, op.getRhs(), r, kind, rewriter, isInt); 574 if (!m.hasValue()) 575 return failure(); 576 result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(), 577 result, pos); 578 } 579 rewriter.replaceOp(op, result); 580 return success(); 581 } 582 }; 583 584 /// Lower vector.contract with all size one reduction dimensions to 585 /// elementwise ops when possible. 586 struct ContractOpToElementwise 587 : public OpRewritePattern<vector::ContractionOp> { 588 using OpRewritePattern::OpRewritePattern; 589 using FilterConstraintType = 590 std::function<LogicalResult(vector::ContractionOp op)>; 591 static LogicalResult defaultFilter(vector::ContractionOp op) { 592 return success(); 593 } 594 ContractOpToElementwise( 595 vector::VectorTransformsOptions vectorTransformOptions, 596 MLIRContext *context, 597 const FilterConstraintType &constraint = defaultFilter) 598 : OpRewritePattern<vector::ContractionOp>(context), 599 vectorTransformOptions(vectorTransformOptions), filter(defaultFilter) {} 600 601 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 602 PatternRewriter &rewriter) const override { 603 // TODO: implement masks 604 if (llvm::size(contractOp.getMasks()) != 0) 605 return failure(); 606 607 if (failed(filter(contractOp))) 608 return failure(); 609 610 if (vectorTransformOptions.vectorContractLowering != 611 vector::VectorContractLowering::ParallelArith) 612 return failure(); 613 ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape(); 614 ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape(); 615 AffineMap lhsMap = contractOp.getIndexingMaps()[0]; 616 AffineMap rhsMap = contractOp.getIndexingMaps()[1]; 617 SmallVector<int64_t> lhsReductionDims = 618 getReductionIndex(lhsMap, contractOp.getIteratorTypes()); 619 SmallVector<int64_t> rhsReductionDims = 620 getReductionIndex(rhsMap, contractOp.getIteratorTypes()); 621 // All the reduction dimensions must be a size 1. 622 for (int64_t dim : lhsReductionDims) { 623 if (lhsShape[dim] != 1) 624 return failure(); 625 } 626 for (int64_t dim : rhsReductionDims) { 627 if (rhsShape[dim] != 1) 628 return failure(); 629 } 630 AffineMap accMap = contractOp.getIndexingMaps()[2]; 631 unsigned numParallelDims = accMap.getNumResults(); 632 unsigned numLhsDimToBroadcast = 633 numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size()); 634 unsigned numRhsDimToBroadcast = 635 numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size()); 636 SmallVector<int64_t> lhsDims; 637 SmallVector<int64_t> lhsTranspose; 638 SmallVector<int64_t> rhsDims; 639 SmallVector<int64_t> rhsTranspose; 640 for (int64_t dim : lhsReductionDims) 641 lhsTranspose.push_back(numLhsDimToBroadcast + dim); 642 for (int64_t dim : rhsReductionDims) 643 rhsTranspose.push_back(numRhsDimToBroadcast + dim); 644 // Loop through the parallel dimensions to calculate the dimensions to 645 // broadcast and to permute in order to extract only parallel dimensions. 646 for (unsigned i = 0; i < numParallelDims; i++) { 647 llvm::Optional<unsigned> lhsDim = 648 getDimPosition(lhsMap, accMap.getDimPosition(i)); 649 if (lhsDim) { 650 lhsTranspose.push_back(numLhsDimToBroadcast + *lhsDim); 651 } else { 652 // If the parallel dimension doesn't exist we will have to broadcast it. 653 lhsDims.push_back( 654 contractOp.getResultType().cast<VectorType>().getDimSize(i)); 655 lhsTranspose.push_back(lhsDims.size() - 1); 656 } 657 llvm::Optional<unsigned> rhsDim = 658 getDimPosition(rhsMap, accMap.getDimPosition(i)); 659 if (rhsDim) { 660 rhsTranspose.push_back(numRhsDimToBroadcast + *rhsDim); 661 } else { 662 // If the parallel dimension doesn't exist we will have to broadcast it. 663 rhsDims.push_back( 664 contractOp.getResultType().cast<VectorType>().getDimSize(i)); 665 rhsTranspose.push_back(rhsDims.size() - 1); 666 } 667 } 668 Value newLhs = contractOp.getLhs(); 669 Value newRhs = contractOp.getRhs(); 670 Location loc = contractOp.getLoc(); 671 if (!lhsDims.empty()) { 672 lhsDims.append(lhsShape.begin(), lhsShape.end()); 673 auto expandedType = 674 VectorType::get(lhsDims, contractOp.getLhsType().getElementType()); 675 newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs); 676 } 677 if (!rhsDims.empty()) { 678 rhsDims.append(rhsShape.begin(), rhsShape.end()); 679 auto expandedType = 680 VectorType::get(rhsDims, contractOp.getRhsType().getElementType()); 681 newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs); 682 } 683 bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex(); 684 newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose); 685 newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose); 686 SmallVector<int64_t, 4> lhsOffsets(lhsReductionDims.size(), 0); 687 SmallVector<int64_t, 4> rhsOffsets(rhsReductionDims.size(), 0); 688 newLhs = rewriter.create<vector::ExtractOp>( 689 loc, newLhs, rewriter.getI64ArrayAttr(lhsOffsets)); 690 newRhs = rewriter.create<vector::ExtractOp>( 691 loc, newRhs, rewriter.getI64ArrayAttr(rhsOffsets)); 692 Optional<Value> result = 693 createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(), 694 contractOp.getKind(), rewriter, isInt); 695 rewriter.replaceOp(contractOp, {*result}); 696 return success(); 697 } 698 699 private: 700 /// Options to control the vector patterns. 701 vector::VectorTransformsOptions vectorTransformOptions; 702 FilterConstraintType filter; 703 }; 704 705 /// Progressive lowering of ConstantMaskOp. 706 /// One: 707 /// %x = vector.constant_mask [a,b] 708 /// is replaced by: 709 /// %z = zero-result 710 /// %l = vector.constant_mask [b] 711 /// %4 = vector.insert %l, %z[0] 712 /// .. 713 /// %x = vector.insert %l, %..[a-1] 714 /// until a one-dimensional vector is reached. All these operations 715 /// will be folded at LLVM IR level. 716 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> { 717 public: 718 using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern; 719 720 LogicalResult matchAndRewrite(vector::ConstantMaskOp op, 721 PatternRewriter &rewriter) const override { 722 auto loc = op.getLoc(); 723 auto dstType = op.getType(); 724 auto eltType = dstType.getElementType(); 725 auto dimSizes = op.getMaskDimSizes(); 726 int64_t rank = dstType.getRank(); 727 728 if (rank == 0) { 729 assert(dimSizes.size() == 1 && 730 "Expected exactly one dim size for a 0-D vector"); 731 bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1; 732 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 733 op, dstType, 734 DenseIntElementsAttr::get( 735 VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()), 736 ArrayRef<bool>{value})); 737 return success(); 738 } 739 740 // Scalable constant masks can only be lowered for the "none set" case. 741 if (dstType.cast<VectorType>().isScalable()) { 742 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 743 op, DenseElementsAttr::get(dstType, false)); 744 return success(); 745 } 746 747 int64_t trueDim = std::min(dstType.getDimSize(0), 748 dimSizes[0].cast<IntegerAttr>().getInt()); 749 750 if (rank == 1) { 751 // Express constant 1-D case in explicit vector form: 752 // [T,..,T,F,..,F]. 753 SmallVector<bool, 4> values(dstType.getDimSize(0)); 754 for (int64_t d = 0; d < trueDim; d++) 755 values[d] = true; 756 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 757 op, dstType, rewriter.getBoolVectorAttr(values)); 758 return success(); 759 } 760 761 VectorType lowType = 762 VectorType::get(dstType.getShape().drop_front(), eltType); 763 SmallVector<int64_t, 4> newDimSizes; 764 for (int64_t r = 1; r < rank; r++) 765 newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt()); 766 Value trueVal = rewriter.create<vector::ConstantMaskOp>( 767 loc, lowType, rewriter.getI64ArrayAttr(newDimSizes)); 768 Value result = rewriter.create<arith::ConstantOp>( 769 loc, dstType, rewriter.getZeroAttr(dstType)); 770 for (int64_t d = 0; d < trueDim; d++) { 771 auto pos = rewriter.getI64ArrayAttr(d); 772 result = 773 rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos); 774 } 775 rewriter.replaceOp(op, result); 776 return success(); 777 } 778 }; 779 780 /// Progressive lowering of CreateMaskOp. 781 /// One: 782 /// %x = vector.create_mask %a, ... : vector<dx...> 783 /// is replaced by: 784 /// %l = vector.create_mask ... : vector<...> ; one lower rank 785 /// %0 = arith.cmpi "slt", %ci, %a | 786 /// %1 = select %0, %l, %zeroes | 787 /// %r = vector.insert %1, %pr [i] | d-times 788 /// %x = .... 789 /// until a one-dimensional vector is reached. 790 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> { 791 public: 792 using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern; 793 794 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 795 PatternRewriter &rewriter) const override { 796 auto dstType = op.getResult().getType().cast<VectorType>(); 797 int64_t rank = dstType.getRank(); 798 if (rank <= 1) 799 return rewriter.notifyMatchFailure( 800 op, "0-D and 1-D vectors are handled separately"); 801 802 auto loc = op.getLoc(); 803 auto eltType = dstType.getElementType(); 804 int64_t dim = dstType.getDimSize(0); 805 Value idx = op.getOperand(0); 806 807 VectorType lowType = 808 VectorType::get(dstType.getShape().drop_front(), eltType); 809 Value trueVal = rewriter.create<vector::CreateMaskOp>( 810 loc, lowType, op.getOperands().drop_front()); 811 Value falseVal = rewriter.create<arith::ConstantOp>( 812 loc, lowType, rewriter.getZeroAttr(lowType)); 813 Value result = rewriter.create<arith::ConstantOp>( 814 loc, dstType, rewriter.getZeroAttr(dstType)); 815 for (int64_t d = 0; d < dim; d++) { 816 Value bnd = 817 rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d)); 818 Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 819 bnd, idx); 820 Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal); 821 auto pos = rewriter.getI64ArrayAttr(d); 822 result = 823 rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos); 824 } 825 rewriter.replaceOp(op, result); 826 return success(); 827 } 828 }; 829 830 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D 831 /// vectors progressively on the way to target llvm.matrix intrinsics. 832 /// This iterates over the most major dimension of the 2-D vector and performs 833 /// rewrites into: 834 /// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D 835 class ShapeCastOp2DDownCastRewritePattern 836 : public OpRewritePattern<vector::ShapeCastOp> { 837 public: 838 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 839 840 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 841 PatternRewriter &rewriter) const override { 842 auto sourceVectorType = op.getSourceVectorType(); 843 auto resultVectorType = op.getResultVectorType(); 844 if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1) 845 return failure(); 846 847 auto loc = op.getLoc(); 848 Value desc = rewriter.create<arith::ConstantOp>( 849 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 850 unsigned mostMinorVectorSize = sourceVectorType.getShape()[1]; 851 for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) { 852 Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i); 853 desc = rewriter.create<vector::InsertStridedSliceOp>( 854 loc, vec, desc, 855 /*offsets=*/i * mostMinorVectorSize, /*strides=*/1); 856 } 857 rewriter.replaceOp(op, desc); 858 return success(); 859 } 860 }; 861 862 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D 863 /// vectors progressively. 864 /// This iterates over the most major dimension of the 2-D vector and performs 865 /// rewrites into: 866 /// vector.extract_strided_slice from 1-D + vector.insert into 2-D 867 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle. 868 class ShapeCastOp2DUpCastRewritePattern 869 : public OpRewritePattern<vector::ShapeCastOp> { 870 public: 871 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 872 873 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 874 PatternRewriter &rewriter) const override { 875 auto sourceVectorType = op.getSourceVectorType(); 876 auto resultVectorType = op.getResultVectorType(); 877 if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2) 878 return failure(); 879 880 auto loc = op.getLoc(); 881 Value desc = rewriter.create<arith::ConstantOp>( 882 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 883 unsigned mostMinorVectorSize = resultVectorType.getShape()[1]; 884 for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) { 885 Value vec = rewriter.create<vector::ExtractStridedSliceOp>( 886 loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize, 887 /*sizes=*/mostMinorVectorSize, 888 /*strides=*/1); 889 desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i); 890 } 891 rewriter.replaceOp(op, desc); 892 return success(); 893 } 894 }; 895 896 // We typically should not lower general shape cast operations into data 897 // movement instructions, since the assumption is that these casts are 898 // optimized away during progressive lowering. For completeness, however, 899 // we fall back to a reference implementation that moves all elements 900 // into the right place if we get here. 901 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> { 902 public: 903 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 904 905 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 906 PatternRewriter &rewriter) const override { 907 Location loc = op.getLoc(); 908 auto sourceVectorType = op.getSourceVectorType(); 909 auto resultVectorType = op.getResultVectorType(); 910 911 // Special case 2D/1D lowerings with better implementations. 912 // TODO: make is ND/1D to allow generic ND->1D->MD. 913 int64_t srcRank = sourceVectorType.getRank(); 914 int64_t resRank = resultVectorType.getRank(); 915 if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2)) 916 return failure(); 917 918 // Generic ShapeCast lowering path goes all the way down to unrolled scalar 919 // extract/insert chains. 920 // TODO: consider evolving the semantics to only allow 1D source or dest and 921 // drop this potentially very expensive lowering. 922 // Compute number of elements involved in the reshape. 923 int64_t numElts = 1; 924 for (int64_t r = 0; r < srcRank; r++) 925 numElts *= sourceVectorType.getDimSize(r); 926 // Replace with data movement operations: 927 // x[0,0,0] = y[0,0] 928 // x[0,0,1] = y[0,1] 929 // x[0,1,0] = y[0,2] 930 // etc., incrementing the two index vectors "row-major" 931 // within the source and result shape. 932 SmallVector<int64_t, 4> srcIdx(srcRank); 933 SmallVector<int64_t, 4> resIdx(resRank); 934 Value result = rewriter.create<arith::ConstantOp>( 935 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 936 for (int64_t i = 0; i < numElts; i++) { 937 if (i != 0) { 938 incIdx(srcIdx, sourceVectorType, srcRank - 1); 939 incIdx(resIdx, resultVectorType, resRank - 1); 940 } 941 Value e = rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx); 942 result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx); 943 } 944 rewriter.replaceOp(op, result); 945 return success(); 946 } 947 948 private: 949 static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) { 950 assert(0 <= r && r < tp.getRank()); 951 if (++idx[r] == tp.getDimSize(r)) { 952 idx[r] = 0; 953 incIdx(idx, tp, r - 1); 954 } 955 } 956 }; 957 958 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. 959 /// Ex: 960 /// ``` 961 /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> 962 /// %1 = vector.multi_reduction add, %0 [1] 963 /// : vector<8x32x16xf32> to vector<8x16xf32> 964 /// ``` 965 /// Gets converted to: 966 /// ``` 967 /// %1 = vector.contract {indexing_maps = [ 968 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 969 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 970 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 971 /// iterator_types = ["parallel", "parallel", "reduction"], 972 /// kind = add} %0, %arg1, %cst_f0 973 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 974 /// ``` 975 struct MultiReduceToContract 976 : public OpRewritePattern<vector::MultiDimReductionOp> { 977 using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern; 978 979 LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, 980 PatternRewriter &rewriter) const override { 981 if (reduceOp.getKind() != vector::CombiningKind::ADD) 982 return failure(); 983 Operation *mulOp = reduceOp.getSource().getDefiningOp(); 984 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 985 return failure(); 986 SmallVector<bool> reductionMask = reduceOp.getReductionMask(); 987 auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); 988 SmallVector<AffineExpr> exprs; 989 SmallVector<StringRef> iteratorTypes; 990 for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { 991 if (!isReduceDim.value()) { 992 iteratorTypes.push_back(getParallelIteratorTypeName()); 993 exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); 994 } else { 995 iteratorTypes.push_back(getReductionIteratorTypeName()); 996 } 997 } 998 auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(), 999 /*symCount=*/0, exprs, reduceOp.getContext()); 1000 Value zero = rewriter.create<arith::ConstantOp>( 1001 reduceOp.getLoc(), reduceOp.getDestType(), 1002 rewriter.getZeroAttr(reduceOp.getDestType())); 1003 rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( 1004 reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero, 1005 rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), 1006 rewriter.getStrArrayAttr(iteratorTypes)); 1007 return success(); 1008 } 1009 }; 1010 1011 /// Merge TransposeOp into ContractionOp user. 1012 /// Ex: 1013 /// ``` 1014 /// %0 = vector.transpose %arg0, [2, 0, 1] 1015 /// : vector<32x16x8xf32> to vector<8x32x16xf32> 1016 /// %1 = vector.contract {indexing_maps = [ 1017 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1018 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1019 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1020 /// iterator_types = ["parallel", "parallel", "reduction"], 1021 /// kind = add} %0, %arg1, %cst_f0 1022 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1023 /// ``` 1024 /// Gets converted to: 1025 /// ``` 1026 /// %1 = vector.contract {indexing_maps = [ 1027 /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, 1028 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1029 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1030 /// iterator_types = ["parallel", "parallel", "reduction"], 1031 /// kind = add} %arg0, %arg1, %cst_f0 1032 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1033 /// ``` 1034 struct CombineContractTranspose 1035 : public OpRewritePattern<vector::ContractionOp> { 1036 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 1037 1038 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 1039 PatternRewriter &rewriter) const override { 1040 SmallVector<AffineMap, 4> maps = 1041 llvm::to_vector<4>(contractOp.getIndexingMaps()); 1042 Value lhs = contractOp.getLhs(); 1043 Value rhs = contractOp.getRhs(); 1044 size_t index = 0; 1045 bool changed = false; 1046 for (Value *operand : {&lhs, &rhs}) { 1047 AffineMap &map = maps[index++]; 1048 auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); 1049 if (!transposeOp) 1050 continue; 1051 SmallVector<int64_t> perm; 1052 transposeOp.getTransp(perm); 1053 AffineMap permutationMap = AffineMap::getPermutationMap( 1054 extractVector<unsigned>(transposeOp.getTransp()), 1055 contractOp.getContext()); 1056 map = inversePermutation(permutationMap).compose(map); 1057 *operand = transposeOp.getVector(); 1058 changed = true; 1059 } 1060 if (!changed) 1061 return failure(); 1062 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1063 contractOp, lhs, rhs, contractOp.getAcc(), 1064 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 1065 return success(); 1066 } 1067 }; 1068 1069 /// Merge BroadcastOp into ContractionOp user. 1070 /// Ex: 1071 /// ``` 1072 /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> 1073 /// %1 = vector.contract {indexing_maps = [ 1074 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1075 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1076 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1077 /// iterator_types = ["parallel", "parallel", "reduction"], 1078 /// kind = add} %0, %arg1, %cst_f0 1079 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1080 /// ``` 1081 /// Gets converted to: 1082 /// ``` 1083 /// %1 = vector.contract {indexing_maps = [ 1084 /// affine_map<(d0, d1, d2) -> (d1, d2)>, 1085 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1086 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1087 /// iterator_types = ["parallel", "parallel", "reduction"], 1088 /// kind = add} %arg0, %arg1, %cst_f0 1089 /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1090 /// ``` 1091 struct CombineContractBroadcast 1092 : public OpRewritePattern<vector::ContractionOp> { 1093 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 1094 1095 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 1096 PatternRewriter &rewriter) const override { 1097 SmallVector<AffineMap, 4> maps = 1098 llvm::to_vector<4>(contractOp.getIndexingMaps()); 1099 Value lhs = contractOp.getLhs(); 1100 Value rhs = contractOp.getRhs(); 1101 size_t index = 0; 1102 bool changed = false; 1103 for (Value *operand : {&lhs, &rhs}) { 1104 AffineMap &map = maps[index++]; 1105 auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); 1106 if (!broadcast) 1107 continue; 1108 // contractionOp can only take vector as operands. 1109 auto srcType = broadcast.getSourceType().dyn_cast<VectorType>(); 1110 if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank()) 1111 continue; 1112 int64_t rankDiff = 1113 broadcast.getVectorType().getRank() - srcType.getRank(); 1114 bool innerDimBroadcast = false; 1115 SmallVector<AffineExpr> originalDims; 1116 for (const auto &dim : llvm::enumerate(srcType.getShape())) { 1117 if (dim.value() != 1118 broadcast.getVectorType().getDimSize(rankDiff + dim.index())) { 1119 innerDimBroadcast = true; 1120 break; 1121 } 1122 originalDims.push_back( 1123 rewriter.getAffineDimExpr(dim.index() + rankDiff)); 1124 } 1125 // Contract doesn't support inner dimension broadcast. Once this is 1126 // relaxed we can remove this case. 1127 if (innerDimBroadcast) 1128 continue; 1129 AffineMap broadcastMap = 1130 AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims, 1131 contractOp.getContext()); 1132 map = broadcastMap.compose(map); 1133 *operand = broadcast.getSource(); 1134 changed = true; 1135 } 1136 if (!changed) 1137 return failure(); 1138 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1139 contractOp, lhs, rhs, contractOp.getAcc(), 1140 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 1141 return success(); 1142 } 1143 }; 1144 1145 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and 1146 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when 1147 /// casting ops are around these operations. 1148 /// Ex: 1149 /// ``` 1150 /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> 1151 /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> 1152 /// ``` 1153 /// Gets converted to: 1154 /// ``` 1155 /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> 1156 /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> 1157 /// ``` 1158 struct ReorderCastOpsOnBroadcast 1159 : public OpInterfaceRewritePattern<CastOpInterface> { 1160 using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; 1161 1162 LogicalResult matchAndRewrite(CastOpInterface op, 1163 PatternRewriter &rewriter) const override { 1164 if (op->getNumOperands() != 1) 1165 return failure(); 1166 auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); 1167 if (!bcastOp) 1168 return failure(); 1169 1170 Type castResTy = getElementTypeOrSelf(op->getResult(0)); 1171 if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>()) 1172 castResTy = VectorType::get(vecTy.getShape(), castResTy); 1173 auto *castOp = 1174 rewriter.create(op->getLoc(), op->getName().getIdentifier(), 1175 bcastOp.getSource(), castResTy, op->getAttrs()); 1176 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1177 op, op->getResult(0).getType(), castOp->getResult(0)); 1178 return success(); 1179 } 1180 }; 1181 1182 /// Reorders elementwise(transpose) to transpose(elementwise). This makes 1183 /// transpose ops and contraction ops closer, which kicks in 1184 /// CombineContractTranspose pattern when elementwise ops are between these 1185 /// operations. Ex: 1186 /// ``` 1187 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 1188 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 1189 /// %r = arith.addf %at, %bt : vector<2x4xf32> 1190 /// ``` 1191 /// Gets converted to: 1192 /// ``` 1193 /// %0 = arith.addf %a, %b : vector<4x2xf32> 1194 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> 1195 /// ``` 1196 struct ReorderElementwiseOpsOnTranspose final 1197 : public OpTraitRewritePattern<OpTrait::Elementwise> { 1198 using OpTraitRewritePattern::OpTraitRewritePattern; 1199 LogicalResult matchAndRewrite(Operation *op, 1200 PatternRewriter &rewriter) const override { 1201 if (op->getNumResults() != 1 || op->getNumRegions() != 0) 1202 return failure(); 1203 1204 // Make sure all operands are transpose/constant ops and collect their 1205 // transposition maps. 1206 SmallVector<ArrayAttr, 4> transposeMaps; 1207 transposeMaps.reserve(op->getNumOperands()); 1208 // Record the initial type before transposition. We'll use its shape later. 1209 // Any type will do here as we will check all transpose maps are the same. 1210 VectorType srcType; 1211 for (Value operand : op->getOperands()) { 1212 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 1213 if (transposeOp) { 1214 transposeMaps.push_back(transposeOp.getTransp()); 1215 srcType = transposeOp.getVectorType(); 1216 } else if (!matchPattern(operand, m_Constant())) { 1217 return failure(); 1218 } 1219 } 1220 if (transposeMaps.empty()) 1221 return failure(); 1222 // This is an elementwise op, so all transposed operands should have the 1223 // same type. We need to additionally check that all transposes uses the 1224 // same map. 1225 if (!llvm::is_splat(transposeMaps)) 1226 return rewriter.notifyMatchFailure(op, "different transpose map"); 1227 1228 SmallVector<Value, 4> srcValues; 1229 srcValues.reserve(op->getNumOperands()); 1230 1231 // If there are constant operands, we need to insert inverse transposes for 1232 // them. Calculate the inverse order first. 1233 auto order = extractVector<unsigned>(transposeMaps.front()); 1234 SmallVector<int64_t> invOrder(order.size()); 1235 for (int i = 0, e = order.size(); i < e; ++i) 1236 invOrder[order[i]] = i; 1237 1238 for (Value operand : op->getOperands()) { 1239 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 1240 if (transposeOp) { 1241 srcValues.push_back(transposeOp.getVector()); 1242 } else { 1243 // This is a constant. Create a reverse transpose op for it. 1244 auto vectorType = VectorType::get( 1245 srcType.getShape(), 1246 operand.getType().cast<VectorType>().getElementType()); 1247 srcValues.push_back(rewriter.create<vector::TransposeOp>( 1248 operand.getLoc(), vectorType, operand, 1249 rewriter.getI64ArrayAttr(invOrder))); 1250 } 1251 } 1252 1253 auto vectorType = VectorType::get( 1254 srcType.getShape(), 1255 op->getResultTypes()[0].cast<VectorType>().getElementType()); 1256 Operation *elementwiseOp = 1257 rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, 1258 vectorType, op->getAttrs()); 1259 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 1260 op, op->getResultTypes()[0], elementwiseOp->getResult(0), 1261 transposeMaps.front()); 1262 return success(); 1263 } 1264 }; 1265 1266 } // namespace 1267 1268 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using 1269 /// operands `x` and `y`. 1270 static Value createAdd(Location loc, Value x, Value y, bool isInt, 1271 PatternRewriter &rewriter) { 1272 if (isInt) 1273 return rewriter.create<arith::AddIOp>(loc, x, y); 1274 return rewriter.create<arith::AddFOp>(loc, x, y); 1275 } 1276 1277 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using 1278 /// operands `x and `y`. 1279 static Value createMul(Location loc, Value x, Value y, bool isInt, 1280 PatternRewriter &rewriter) { 1281 if (isInt) 1282 return rewriter.create<arith::MulIOp>(loc, x, y); 1283 return rewriter.create<arith::MulFOp>(loc, x, y); 1284 } 1285 1286 namespace mlir { 1287 1288 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1289 /// semantics to: 1290 /// ``` 1291 /// %mta = maybe_transpose 1292 /// %mtb = maybe_transpose 1293 /// %flattened_a = vector.shape_cast %mta 1294 /// %flattened_b = vector.shape_cast %mtb 1295 /// %flattened_d = vector.matmul %flattened_a, %flattened_b 1296 /// %mtd = vector.shape_cast %flattened_d 1297 /// %d = maybe_untranspose %mtd 1298 /// %e = add %c, %d 1299 /// ``` 1300 /// `vector.matmul` later lowers to `llvm.matrix.multiply`. 1301 // 1302 /// This only kicks in when VectorTransformsOptions is set to `Matmul`. 1303 /// vector.transpose operations are inserted if the vector.contract op is not a 1304 /// row-major matrix multiply. 1305 LogicalResult 1306 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op, 1307 PatternRewriter &rew) const { 1308 // TODO: implement masks 1309 if (llvm::size(op.getMasks()) != 0) 1310 return failure(); 1311 if (vectorTransformOptions.vectorContractLowering != 1312 vector::VectorContractLowering::Matmul) 1313 return failure(); 1314 if (failed(filter(op))) 1315 return failure(); 1316 1317 auto iteratorTypes = op.getIteratorTypes().getValue(); 1318 if (!isParallelIterator(iteratorTypes[0]) || 1319 !isParallelIterator(iteratorTypes[1]) || 1320 !isReductionIterator(iteratorTypes[2])) 1321 return failure(); 1322 1323 Type elementType = op.getLhsType().getElementType(); 1324 if (!elementType.isIntOrFloat()) 1325 return failure(); 1326 1327 // Perform lhs + rhs transpositions to conform to matmul row-major semantics. 1328 // Bail out if the contraction cannot be put in this form. 1329 MLIRContext *ctx = op.getContext(); 1330 Location loc = op.getLoc(); 1331 AffineExpr m, n, k; 1332 bindDims(rew.getContext(), m, n, k); 1333 // LHS must be A(m, k) or A(k, m). 1334 Value lhs = op.getLhs(); 1335 auto lhsMap = op.getIndexingMaps()[0]; 1336 if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx)) 1337 lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0}); 1338 else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx)) 1339 return failure(); 1340 1341 // RHS must be B(k, n) or B(n, k). 1342 Value rhs = op.getRhs(); 1343 auto rhsMap = op.getIndexingMaps()[1]; 1344 if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx)) 1345 rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0}); 1346 else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx)) 1347 return failure(); 1348 1349 // At this point lhs and rhs are in row-major. 1350 VectorType lhsType = lhs.getType().cast<VectorType>(); 1351 VectorType rhsType = rhs.getType().cast<VectorType>(); 1352 int64_t lhsRows = lhsType.getDimSize(0); 1353 int64_t lhsColumns = lhsType.getDimSize(1); 1354 int64_t rhsColumns = rhsType.getDimSize(1); 1355 1356 Type flattenedLHSType = 1357 VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); 1358 lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs); 1359 1360 Type flattenedRHSType = 1361 VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); 1362 rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs); 1363 1364 Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns, 1365 rhsColumns); 1366 mul = rew.create<vector::ShapeCastOp>( 1367 loc, 1368 VectorType::get({lhsRows, rhsColumns}, 1369 getElementTypeOrSelf(op.getAcc().getType())), 1370 mul); 1371 1372 // ACC must be C(m, n) or C(n, m). 1373 auto accMap = op.getIndexingMaps()[2]; 1374 if (accMap == AffineMap::get(3, 0, {n, m}, ctx)) 1375 mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0}); 1376 else if (accMap != AffineMap::get(3, 0, {m, n}, ctx)) 1377 llvm_unreachable("invalid contraction semantics"); 1378 1379 Value res = 1380 elementType.isa<IntegerType>() 1381 ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul)) 1382 : static_cast<Value>( 1383 rew.create<arith::AddFOp>(loc, op.getAcc(), mul)); 1384 1385 rew.replaceOp(op, res); 1386 return success(); 1387 } 1388 1389 namespace { 1390 struct IteratorType { 1391 IteratorType(StringRef strRef) : strRef(strRef) {} 1392 bool isOfType(Attribute attr) const { 1393 auto sAttr = attr.dyn_cast<StringAttr>(); 1394 return sAttr && sAttr.getValue() == strRef; 1395 } 1396 StringRef strRef; 1397 }; 1398 struct Par : public IteratorType { 1399 Par() : IteratorType(getParallelIteratorTypeName()) {} 1400 }; 1401 struct Red : public IteratorType { 1402 Red() : IteratorType(getReductionIteratorTypeName()) {} 1403 }; 1404 1405 /// Generate a vector implementation for matmat, matvec and tmatvec. 1406 /// This unrolls outer-products along the reduction dimension. 1407 struct UnrolledOuterProductGenerator 1408 : public StructuredGenerator<vector::ContractionOp> { 1409 UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op) 1410 : StructuredGenerator<vector::ContractionOp>(builder, op), 1411 kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()), 1412 res(op.getAcc()), lhsType(op.getLhsType()) {} 1413 1414 Value t(Value v) { 1415 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1416 return builder.create<vector::TransposeOp>(loc, v, perm); 1417 } 1418 1419 Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) { 1420 assert(reductionSize > 0); 1421 for (int64_t k = 0; k < reductionSize; ++k) { 1422 Value a = builder.create<vector::ExtractOp>(loc, lhs, k); 1423 Value b = builder.create<vector::ExtractOp>(loc, rhs, k); 1424 res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b, 1425 res, kind); 1426 } 1427 return res; 1428 } 1429 1430 /// Two outer parallel, one inner reduction (matmat flavor). 1431 FailureOr<Value> matmat() { 1432 if (!iters({Par(), Par(), Red()})) 1433 return failure(); 1434 // Set up the parallel/reduction structure in the right form. 1435 AffineExpr m, n, k; 1436 bindDims(builder.getContext(), m, n, k); 1437 // Classical row-major matmul: Just permute the lhs. 1438 if (layout({{m, k}, {k, n}, {m, n}})) 1439 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1440 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1441 if (layout({{m, k}, {n, k}, {m, n}})) { 1442 Value tlhs = t(lhs); 1443 return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1)); 1444 } 1445 // No need to permute anything. 1446 if (layout({{k, m}, {k, n}, {m, n}})) 1447 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1448 // Just permute the rhs. 1449 if (layout({{k, m}, {n, k}, {m, n}})) 1450 return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0)); 1451 // Transposed output: swap RHS and LHS. 1452 // Classical row-major matmul: permute the lhs. 1453 if (layout({{m, k}, {k, n}, {n, m}})) 1454 return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1)); 1455 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1456 if (layout({{m, k}, {n, k}, {n, m}})) { 1457 Value trhs = t(rhs); 1458 return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1)); 1459 } 1460 if (layout({{k, m}, {k, n}, {n, m}})) 1461 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1462 if (layout({{k, m}, {n, k}, {n, m}})) 1463 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1464 return failure(); 1465 } 1466 1467 /// One outer parallel, one inner reduction (matvec flavor) 1468 FailureOr<Value> matvec() { 1469 if (!iters({Par(), Red()})) 1470 return failure(); 1471 AffineExpr m, k; 1472 bindDims(builder.getContext(), m, k); 1473 1474 // Case mat-vec: transpose. 1475 if (layout({{m, k}, {k}, {m}})) 1476 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1477 // Case mat-trans-vec: ready to go. 1478 if (layout({{k, m}, {k}, {m}})) 1479 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1480 // Case vec-mat: swap and transpose. 1481 if (layout({{k}, {m, k}, {m}})) 1482 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1483 // Case vec-mat-trans: swap and ready to go. 1484 if (layout({{k}, {k, m}, {m}})) 1485 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1486 return failure(); 1487 } 1488 1489 // 1490 // One outer reduction, one inner parallel (tmatvec flavor) 1491 // 1492 FailureOr<Value> tmatvec() { 1493 if (!iters({Red(), Par()})) 1494 return failure(); 1495 AffineExpr k, m; 1496 bindDims(builder.getContext(), k, m); 1497 1498 // Case mat-vec: transpose. 1499 if (layout({{m, k}, {k}, {m}})) 1500 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1501 // Case mat-trans-vec: ready to go. 1502 if (layout({{k, m}, {k}, {m}})) 1503 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1504 // Case vec-mat: swap and transpose. 1505 if (layout({{k}, {m, k}, {m}})) 1506 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1507 // Case vec-mat-trans: swap and ready to go. 1508 if (layout({{k}, {k, m}, {m}})) 1509 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1510 return failure(); 1511 } 1512 1513 private: 1514 vector::CombiningKind kind; 1515 Value lhs, rhs, res; 1516 VectorType lhsType; 1517 }; 1518 } // namespace 1519 1520 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1521 /// semantics to a reduction_size-unrolled sequence: 1522 /// ``` 1523 /// %at = vector.transpose %a, [1, 0] 1524 /// %bRow0 = vector.extract %b[0] 1525 /// %atRow0 = vector.extract %at[0] 1526 /// %c0 = vector.outerproduct %atRow0, %bRow0, %c 1527 /// ... 1528 /// %bRowK = vector.extract %b[K] 1529 /// %atRowK = vector.extract %at[K] 1530 /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 1531 /// ``` 1532 /// 1533 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but 1534 /// otherwise supports any layout permutation of the matrix-multiply. 1535 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite( 1536 vector::ContractionOp op, PatternRewriter &rewriter) const { 1537 // TODO: implement masks 1538 if (llvm::size(op.getMasks()) != 0) 1539 return failure(); 1540 1541 if (vectorTransformOptions.vectorContractLowering != 1542 vector::VectorContractLowering::OuterProduct) 1543 return failure(); 1544 1545 if (failed(filter(op))) 1546 return failure(); 1547 1548 UnrolledOuterProductGenerator e(rewriter, op); 1549 FailureOr<Value> matmatRes = e.matmat(); 1550 if (succeeded(matmatRes)) { 1551 rewriter.replaceOp(op, *matmatRes); 1552 return success(); 1553 } 1554 FailureOr<Value> matvecRes = e.matvec(); 1555 if (succeeded(matvecRes)) { 1556 rewriter.replaceOp(op, *matvecRes); 1557 return success(); 1558 } 1559 FailureOr<Value> tmatvecRes = e.tmatvec(); 1560 if (succeeded(tmatvecRes)) { 1561 rewriter.replaceOp(op, *tmatvecRes); 1562 return success(); 1563 } 1564 1565 return failure(); 1566 } 1567 1568 LogicalResult 1569 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op, 1570 PatternRewriter &rewriter) const { 1571 // TODO: implement masks 1572 if (llvm::size(op.getMasks()) != 0) 1573 return failure(); 1574 1575 if (failed(filter(op))) 1576 return failure(); 1577 1578 if (vectorTransformOptions.vectorContractLowering != 1579 vector::VectorContractLowering::Dot) 1580 return failure(); 1581 1582 auto iteratorTypes = op.getIteratorTypes().getValue(); 1583 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1584 Location loc = op.getLoc(); 1585 Value lhs = op.getLhs(), rhs = op.getRhs(); 1586 1587 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 1588 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 1589 AffineExpr m, n, k; 1590 bindDims(rewriter.getContext(), m, n, k); 1591 SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 1592 // 1593 // In the following we wish to make the reduction dimension innermost so we 1594 // can load vectors and just fmul + reduce into a scalar. 1595 // 1596 if (isParallelIterator(iteratorTypes[0]) && 1597 isParallelIterator(iteratorTypes[1]) && 1598 isReductionIterator(iteratorTypes[2])) { 1599 // 1600 // Two outer parallel, one inner reduction (matmat flavor). 1601 // 1602 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 1603 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1604 } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { 1605 // No need to permute anything. 1606 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 1607 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1608 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1609 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 1610 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1611 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 1612 // This is the classical row-major matmul. Just permute the lhs. 1613 Value tmp = lhs; 1614 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1615 rhs = tmp; 1616 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 1617 std::swap(lhs, rhs); 1618 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 1619 Value tmp = lhs; 1620 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1621 rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm); 1622 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 1623 Value tmp = rhs; 1624 rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1625 lhs = tmp; 1626 } else { 1627 return failure(); 1628 } 1629 } else if (isParallelIterator(iteratorTypes[0]) && 1630 isReductionIterator(iteratorTypes[1])) { 1631 // 1632 // One outer parallel, one inner reduction (matvec flavor) 1633 // 1634 if (maps == infer({{m, n}, {n}, {m}})) { 1635 // No need to permute anything. 1636 } else if (maps == infer({{n, m}, {n}, {m}})) { 1637 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1638 } else if (maps == infer({{n}, {m, n}, {m}})) { 1639 std::swap(lhs, rhs); 1640 } else if (maps == infer({{n}, {n, m}, {m}})) { 1641 std::swap(lhs, rhs); 1642 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1643 } else { 1644 return failure(); 1645 } 1646 } else { 1647 return failure(); 1648 } 1649 1650 VectorType dstType = op.getResultType().cast<VectorType>(); 1651 assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && 1652 "Expected dst type of rank 1 or 2"); 1653 1654 unsigned rank = dstType.getRank(); 1655 unsigned dstRows = dstType.getShape()[0]; 1656 unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; 1657 1658 // ExtractOp does not allow dynamic indexing, we must unroll explicitly. 1659 Value res = rewriter.create<arith::ConstantOp>(loc, dstType, 1660 rewriter.getZeroAttr(dstType)); 1661 bool isInt = dstType.getElementType().isa<IntegerType>(); 1662 for (unsigned r = 0; r < dstRows; ++r) { 1663 Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r); 1664 for (unsigned c = 0; c < dstColumns; ++c) { 1665 Value b = rank == 1 1666 ? rhs 1667 : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c); 1668 Value m = createMul(op.getLoc(), a, b, isInt, rewriter); 1669 Value reduced = rewriter.create<vector::ReductionOp>( 1670 op.getLoc(), vector::CombiningKind::ADD, m); 1671 1672 SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r} 1673 : SmallVector<int64_t, 2>{r, c}; 1674 res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos); 1675 } 1676 } 1677 if (auto acc = op.getAcc()) 1678 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1679 rewriter.replaceOp(op, res); 1680 return success(); 1681 } 1682 1683 /// Progressive lowering of ContractionOp. 1684 /// One: 1685 /// %x = vector.contract with at least one free/batch dimension 1686 /// is replaced by: 1687 /// %a = vector.contract with one less free/batch dimension 1688 /// %b = vector.contract with one less free/batch dimension 1689 /// .. 1690 /// %x = combine %a %b .. 1691 /// until a pure contraction is reached (no free/batch dimensions), 1692 /// which is replaced by a dot-product. 1693 /// 1694 /// This only kicks in when either VectorTransformsOptions is set 1695 /// to DOT or when other contraction patterns fail. 1696 // 1697 // TODO: break down into transpose/reshape/cast ops 1698 // when they become available to avoid code dup 1699 // TODO: investigate lowering order impact on performance 1700 LogicalResult 1701 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op, 1702 PatternRewriter &rewriter) const { 1703 // TODO: implement masks. 1704 if (llvm::size(op.getMasks()) != 0) 1705 return failure(); 1706 1707 if (failed(filter(op))) 1708 return failure(); 1709 1710 // TODO: support mixed mode contract lowering. 1711 if (op.getLhsType().getElementType() != 1712 getElementTypeOrSelf(op.getAccType()) || 1713 op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) 1714 return failure(); 1715 1716 // TODO: implement benefits, cost models. 1717 MLIRContext *ctx = op.getContext(); 1718 ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx); 1719 if (succeeded(pat1.matchAndRewrite(op, rewriter))) 1720 return success(); 1721 ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx); 1722 if (succeeded(pat2.matchAndRewrite(op, rewriter))) 1723 return success(); 1724 ContractionOpToDotLowering pat3(vectorTransformOptions, ctx); 1725 if (succeeded(pat3.matchAndRewrite(op, rewriter))) 1726 return success(); 1727 ContractOpToElementwise pat4(vectorTransformOptions, ctx); 1728 if (succeeded(pat4.matchAndRewrite(op, rewriter))) 1729 return success(); 1730 1731 // Find first batch dimension in LHS/RHS, and lower when found. 1732 std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap(); 1733 if (!batchDimMap.empty()) { 1734 int64_t lhsIndex = batchDimMap[0].first; 1735 int64_t rhsIndex = batchDimMap[0].second; 1736 rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter)); 1737 return success(); 1738 } 1739 1740 // Collect contracting dimensions. 1741 std::vector<std::pair<int64_t, int64_t>> contractingDimMap = 1742 op.getContractingDimMap(); 1743 DenseSet<int64_t> lhsContractingDimSet; 1744 DenseSet<int64_t> rhsContractingDimSet; 1745 for (auto &dimPair : contractingDimMap) { 1746 lhsContractingDimSet.insert(dimPair.first); 1747 rhsContractingDimSet.insert(dimPair.second); 1748 } 1749 1750 // Find first free dimension in LHS, and lower when found. 1751 VectorType lhsType = op.getLhsType(); 1752 for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { 1753 if (lhsContractingDimSet.count(lhsIndex) == 0) { 1754 rewriter.replaceOp( 1755 op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter)); 1756 return success(); 1757 } 1758 } 1759 1760 // Find first free dimension in RHS, and lower when found. 1761 VectorType rhsType = op.getRhsType(); 1762 for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { 1763 if (rhsContractingDimSet.count(rhsIndex) == 0) { 1764 rewriter.replaceOp( 1765 op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter)); 1766 return success(); 1767 } 1768 } 1769 1770 // Lower the first remaining reduction dimension. 1771 if (!contractingDimMap.empty()) { 1772 rewriter.replaceOp(op, lowerReduction(op, rewriter)); 1773 return success(); 1774 } 1775 1776 return failure(); 1777 } 1778 1779 // Lower one parallel dimension. 1780 // TODO: consider reusing existing contract unrolling 1781 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op, 1782 int64_t lhsIndex, int64_t rhsIndex, 1783 PatternRewriter &rewriter) const { 1784 VectorType lhsType = op.getLhsType(); 1785 VectorType rhsType = op.getRhsType(); 1786 VectorType resType = op.getResultType().cast<VectorType>(); 1787 // Find the iterator type index and result index. 1788 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1789 int64_t iterIndex = -1; 1790 int64_t dimSize = -1; 1791 if (lhsIndex >= 0) { 1792 iterIndex = iMap[0].getDimPosition(lhsIndex); 1793 assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) && 1794 "parallel index should be free in LHS or batch in LHS/RHS"); 1795 dimSize = lhsType.getDimSize(lhsIndex); 1796 } else { 1797 assert(rhsIndex >= 0 && "missing parallel index"); 1798 iterIndex = iMap[1].getDimPosition(rhsIndex); 1799 dimSize = rhsType.getDimSize(rhsIndex); 1800 } 1801 assert(iterIndex >= 0 && "parallel index not listed in operand mapping"); 1802 Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex); 1803 assert(lookup.hasValue() && "parallel index not listed in reduction"); 1804 int64_t resIndex = lookup.getValue(); 1805 // Construct new iterator types and affine map array attribute. 1806 std::array<AffineMap, 3> lowIndexingMaps = { 1807 adjustMap(iMap[0], iterIndex, rewriter), 1808 adjustMap(iMap[1], iterIndex, rewriter), 1809 adjustMap(iMap[2], iterIndex, rewriter)}; 1810 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1811 auto lowIter = 1812 rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex)); 1813 // Unroll into a series of lower dimensional vector.contract ops. 1814 Location loc = op.getLoc(); 1815 Value result = rewriter.create<arith::ConstantOp>( 1816 loc, resType, rewriter.getZeroAttr(resType)); 1817 for (int64_t d = 0; d < dimSize; ++d) { 1818 auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); 1819 auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); 1820 auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter); 1821 Value lowContract = rewriter.create<vector::ContractionOp>( 1822 loc, lhs, rhs, acc, lowAffine, lowIter); 1823 result = 1824 reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter); 1825 } 1826 return result; 1827 } 1828 1829 // Lower one reduction dimension. 1830 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op, 1831 PatternRewriter &rewriter) const { 1832 auto loc = op.getLoc(); 1833 VectorType lhsType = op.getLhsType(); 1834 VectorType rhsType = op.getRhsType(); 1835 Type resType = op.getResultType(); 1836 assert(!resType.isa<VectorType>()); 1837 bool isInt = resType.isa<IntegerType>(); 1838 // Use iterator index 0. 1839 int64_t iterIndex = 0; 1840 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1841 Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex); 1842 Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex); 1843 assert(lookupLhs.hasValue() && "missing LHS parallel index"); 1844 assert(lookupRhs.hasValue() && "missing RHS parallel index"); 1845 int64_t lhsIndex = lookupLhs.getValue(); 1846 int64_t rhsIndex = lookupRhs.getValue(); 1847 int64_t dimSize = lhsType.getDimSize(lhsIndex); 1848 assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape"); 1849 // Base case. 1850 if (lhsType.getRank() == 1) { 1851 assert(rhsType.getRank() == 1 && "corrupt contraction"); 1852 Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter); 1853 auto kind = vector::CombiningKind::ADD; 1854 Value res = rewriter.create<vector::ReductionOp>(loc, kind, m); 1855 if (auto acc = op.getAcc()) 1856 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1857 return res; 1858 } 1859 // Construct new iterator types and affine map array attribute. 1860 std::array<AffineMap, 3> lowIndexingMaps = { 1861 adjustMap(iMap[0], iterIndex, rewriter), 1862 adjustMap(iMap[1], iterIndex, rewriter), 1863 adjustMap(iMap[2], iterIndex, rewriter)}; 1864 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1865 auto lowIter = 1866 rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex)); 1867 // Unroll into a series of lower dimensional vector.contract ops. 1868 // By feeding the initial accumulator into the first contraction, 1869 // and the result of each contraction into the next, eventually 1870 // the sum of all reductions is computed. 1871 Value result = op.getAcc(); 1872 for (int64_t d = 0; d < dimSize; ++d) { 1873 auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); 1874 auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); 1875 result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result, 1876 lowAffine, lowIter); 1877 } 1878 return result; 1879 } 1880 1881 } // namespace mlir 1882 1883 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp( 1884 OpBuilder &builder, Operation *op, ArrayRef<Value> ids, 1885 ArrayRef<int64_t> multiplicity, const AffineMap &map) { 1886 OpBuilder::InsertionGuard guard(builder); 1887 builder.setInsertionPointAfter(op); 1888 Location loc = op->getLoc(); 1889 if (op->getNumResults() != 1) 1890 return {}; 1891 Value result = op->getResult(0); 1892 VectorType type = op->getResult(0).getType().dyn_cast<VectorType>(); 1893 if (!type || map.getNumResults() != multiplicity.size()) 1894 return {}; 1895 // For each dimension being distributed check that the size is a multiple of 1896 // the multiplicity. To handle more sizes we would need to support masking. 1897 unsigned multiplictyCount = 0; 1898 for (auto exp : map.getResults()) { 1899 auto affinExp = exp.dyn_cast<AffineDimExpr>(); 1900 if (!affinExp || affinExp.getPosition() >= type.getRank() || 1901 type.getDimSize(affinExp.getPosition()) % 1902 multiplicity[multiplictyCount++] != 1903 0) 1904 return {}; 1905 } 1906 DistributeOps ops; 1907 ops.extract = 1908 builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map); 1909 ops.insert = 1910 builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids); 1911 return ops; 1912 } 1913 1914 /// Progressive lowering of transfer_read. This pattern supports lowering of 1915 /// `vector.transfer_read` to a combination of `vector.load` and 1916 /// `vector.broadcast` if all of the following hold: 1917 /// - Stride of most minor memref dimension must be 1. 1918 /// - Out-of-bounds masking is not required. 1919 /// - If the memref's element type is a vector type then it coincides with the 1920 /// result type. 1921 /// - The permutation map doesn't perform permutation (broadcasting is allowed). 1922 struct TransferReadToVectorLoadLowering 1923 : public OpRewritePattern<vector::TransferReadOp> { 1924 TransferReadToVectorLoadLowering(MLIRContext *context, 1925 llvm::Optional<unsigned> maxRank) 1926 : OpRewritePattern<vector::TransferReadOp>(context), 1927 maxTransferRank(maxRank) {} 1928 1929 LogicalResult matchAndRewrite(vector::TransferReadOp read, 1930 PatternRewriter &rewriter) const override { 1931 if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) 1932 return failure(); 1933 1934 SmallVector<unsigned, 4> broadcastedDims; 1935 // Permutations are handled by VectorToSCF or 1936 // populateVectorTransferPermutationMapLoweringPatterns. 1937 // We let the 0-d corner case pass-through as it is supported. 1938 if (!read.getPermutationMap().isMinorIdentityWithBroadcasting( 1939 &broadcastedDims)) 1940 return failure(); 1941 1942 auto memRefType = read.getShapedType().dyn_cast<MemRefType>(); 1943 if (!memRefType) 1944 return failure(); 1945 1946 // Non-unit strides are handled by VectorToSCF. 1947 if (!vector::isLastMemrefDimUnitStride(memRefType)) 1948 return failure(); 1949 1950 // If there is broadcasting involved then we first load the unbroadcasted 1951 // vector, and then broadcast it with `vector.broadcast`. 1952 ArrayRef<int64_t> vectorShape = read.getVectorType().getShape(); 1953 SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(), 1954 vectorShape.end()); 1955 for (unsigned i : broadcastedDims) 1956 unbroadcastedVectorShape[i] = 1; 1957 VectorType unbroadcastedVectorType = VectorType::get( 1958 unbroadcastedVectorShape, read.getVectorType().getElementType()); 1959 1960 // `vector.load` supports vector types as memref's elements only when the 1961 // resulting vector type is the same as the element type. 1962 auto memrefElTy = memRefType.getElementType(); 1963 if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType) 1964 return failure(); 1965 1966 // Otherwise, element types of the memref and the vector must match. 1967 if (!memrefElTy.isa<VectorType>() && 1968 memrefElTy != read.getVectorType().getElementType()) 1969 return failure(); 1970 1971 // Out-of-bounds dims are handled by MaterializeTransferMask. 1972 if (read.hasOutOfBoundsDim()) 1973 return failure(); 1974 1975 // Create vector load op. 1976 Operation *loadOp; 1977 if (read.getMask()) { 1978 Value fill = rewriter.create<vector::SplatOp>( 1979 read.getLoc(), unbroadcastedVectorType, read.getPadding()); 1980 loadOp = rewriter.create<vector::MaskedLoadOp>( 1981 read.getLoc(), unbroadcastedVectorType, read.getSource(), 1982 read.getIndices(), read.getMask(), fill); 1983 } else { 1984 loadOp = rewriter.create<vector::LoadOp>( 1985 read.getLoc(), unbroadcastedVectorType, read.getSource(), 1986 read.getIndices()); 1987 } 1988 1989 // Insert a broadcasting op if required. 1990 if (!broadcastedDims.empty()) { 1991 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1992 read, read.getVectorType(), loadOp->getResult(0)); 1993 } else { 1994 rewriter.replaceOp(read, loadOp->getResult(0)); 1995 } 1996 1997 return success(); 1998 } 1999 2000 llvm::Optional<unsigned> maxTransferRank; 2001 }; 2002 2003 /// Replace a 0-d vector.load with a memref.load + vector.broadcast. 2004 // TODO: we shouldn't cross the vector/scalar domains just for this 2005 // but atm we lack the infra to avoid it. Possible solutions include: 2006 // - go directly to LLVM + bitcast 2007 // - introduce a bitcast op and likely a new pointer dialect 2008 // - let memref.load/store additionally support the 0-d vector case 2009 // There are still deeper data layout issues lingering even in this 2010 // trivial case (for architectures for which this matters). 2011 struct VectorLoadToMemrefLoadLowering 2012 : public OpRewritePattern<vector::LoadOp> { 2013 using OpRewritePattern<vector::LoadOp>::OpRewritePattern; 2014 2015 LogicalResult matchAndRewrite(vector::LoadOp loadOp, 2016 PatternRewriter &rewriter) const override { 2017 auto vecType = loadOp.getVectorType(); 2018 if (vecType.getNumElements() != 1) 2019 return failure(); 2020 auto memrefLoad = rewriter.create<memref::LoadOp>( 2021 loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices()); 2022 rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType, 2023 memrefLoad); 2024 return success(); 2025 } 2026 }; 2027 2028 /// Replace a 0-d vector.store with a vector.extractelement + memref.store. 2029 struct VectorStoreToMemrefStoreLowering 2030 : public OpRewritePattern<vector::StoreOp> { 2031 using OpRewritePattern<vector::StoreOp>::OpRewritePattern; 2032 2033 LogicalResult matchAndRewrite(vector::StoreOp storeOp, 2034 PatternRewriter &rewriter) const override { 2035 auto vecType = storeOp.getVectorType(); 2036 if (vecType.getNumElements() != 1) 2037 return failure(); 2038 Value extracted; 2039 if (vecType.getRank() == 0) { 2040 // TODO: Unifiy once ExtractOp supports 0-d vectors. 2041 extracted = rewriter.create<vector::ExtractElementOp>( 2042 storeOp.getLoc(), storeOp.getValueToStore()); 2043 } else { 2044 SmallVector<int64_t> indices(vecType.getRank(), 0); 2045 extracted = rewriter.create<vector::ExtractOp>( 2046 storeOp.getLoc(), storeOp.getValueToStore(), indices); 2047 } 2048 2049 rewriter.replaceOpWithNewOp<memref::StoreOp>( 2050 storeOp, extracted, storeOp.getBase(), storeOp.getIndices()); 2051 return success(); 2052 } 2053 }; 2054 2055 /// Progressive lowering of transfer_write. This pattern supports lowering of 2056 /// `vector.transfer_write` to `vector.store` if all of the following hold: 2057 /// - Stride of most minor memref dimension must be 1. 2058 /// - Out-of-bounds masking is not required. 2059 /// - If the memref's element type is a vector type then it coincides with the 2060 /// type of the written value. 2061 /// - The permutation map is the minor identity map (neither permutation nor 2062 /// broadcasting is allowed). 2063 struct TransferWriteToVectorStoreLowering 2064 : public OpRewritePattern<vector::TransferWriteOp> { 2065 TransferWriteToVectorStoreLowering(MLIRContext *context, 2066 llvm::Optional<unsigned> maxRank) 2067 : OpRewritePattern<vector::TransferWriteOp>(context), 2068 maxTransferRank(maxRank) {} 2069 2070 LogicalResult matchAndRewrite(vector::TransferWriteOp write, 2071 PatternRewriter &rewriter) const override { 2072 if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) 2073 return failure(); 2074 2075 // Permutations are handled by VectorToSCF or 2076 // populateVectorTransferPermutationMapLoweringPatterns. 2077 if ( // pass-through for the 0-d corner case. 2078 !write.getPermutationMap().isMinorIdentity()) 2079 return failure(); 2080 2081 auto memRefType = write.getShapedType().dyn_cast<MemRefType>(); 2082 if (!memRefType) 2083 return failure(); 2084 2085 // Non-unit strides are handled by VectorToSCF. 2086 if (!vector::isLastMemrefDimUnitStride(memRefType)) 2087 return failure(); 2088 2089 // `vector.store` supports vector types as memref's elements only when the 2090 // type of the vector value being written is the same as the element type. 2091 auto memrefElTy = memRefType.getElementType(); 2092 if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType()) 2093 return failure(); 2094 2095 // Otherwise, element types of the memref and the vector must match. 2096 if (!memrefElTy.isa<VectorType>() && 2097 memrefElTy != write.getVectorType().getElementType()) 2098 return failure(); 2099 2100 // Out-of-bounds dims are handled by MaterializeTransferMask. 2101 if (write.hasOutOfBoundsDim()) 2102 return failure(); 2103 if (write.getMask()) { 2104 rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>( 2105 write, write.getSource(), write.getIndices(), write.getMask(), 2106 write.getVector()); 2107 } else { 2108 rewriter.replaceOpWithNewOp<vector::StoreOp>( 2109 write, write.getVector(), write.getSource(), write.getIndices()); 2110 } 2111 return success(); 2112 } 2113 2114 llvm::Optional<unsigned> maxTransferRank; 2115 }; 2116 2117 // Returns the values in `arrayAttr` as an integer vector. 2118 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) { 2119 return llvm::to_vector<4>( 2120 llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), 2121 [](IntegerAttr attr) { return attr.getInt(); })); 2122 } 2123 2124 // Shuffles vector.bitcast op after vector.extract op. 2125 // 2126 // This transforms IR like: 2127 // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> 2128 // %1 = vector.extract %0[3] : vector<8xf16> 2129 // Into: 2130 // %0 = vector.extract %src[1] : vector<4xf32> 2131 // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> 2132 // %2 = vector.extract %1[1] : vector<2xf16> 2133 struct BubbleDownVectorBitCastForExtract 2134 : public OpRewritePattern<vector::ExtractOp> { 2135 using OpRewritePattern::OpRewritePattern; 2136 2137 LogicalResult matchAndRewrite(vector::ExtractOp extractOp, 2138 PatternRewriter &rewriter) const override { 2139 // Only support extracting scalars for now. 2140 if (extractOp.getVectorType().getRank() != 1) 2141 return failure(); 2142 2143 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 2144 if (!castOp) 2145 return failure(); 2146 2147 VectorType castSrcType = castOp.getSourceVectorType(); 2148 VectorType castDstType = castOp.getResultVectorType(); 2149 assert(castSrcType.getRank() == castDstType.getRank()); 2150 2151 // Fail to match if we only have one element in the cast op source. 2152 // This is to avoid infinite loop given that this pattern can generate 2153 // such cases. 2154 if (castSrcType.getNumElements() == 1) 2155 return failure(); 2156 2157 // Only support casting to a larger number of elements or now. 2158 // E.g., vector<4xf32> -> vector<8xf16>. 2159 if (castSrcType.getNumElements() > castDstType.getNumElements()) 2160 return failure(); 2161 2162 unsigned expandRatio = 2163 castDstType.getNumElements() / castSrcType.getNumElements(); 2164 2165 auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t { 2166 return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue(); 2167 }; 2168 2169 uint64_t index = getFirstIntValue(extractOp.getPosition()); 2170 2171 // Get the single scalar (as a vector) in the source value that packs the 2172 // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> 2173 VectorType oneScalarType = 2174 VectorType::get({1}, castSrcType.getElementType()); 2175 Value packedValue = rewriter.create<vector::ExtractOp>( 2176 extractOp.getLoc(), oneScalarType, castOp.getSource(), 2177 rewriter.getI64ArrayAttr(index / expandRatio)); 2178 2179 // Cast it to a vector with the desired scalar's type. 2180 // E.g. f32 -> vector<2xf16> 2181 VectorType packedType = 2182 VectorType::get({expandRatio}, castDstType.getElementType()); 2183 Value castedValue = rewriter.create<vector::BitCastOp>( 2184 extractOp.getLoc(), packedType, packedValue); 2185 2186 // Finally extract the desired scalar. 2187 rewriter.replaceOpWithNewOp<vector::ExtractOp>( 2188 extractOp, extractOp.getType(), castedValue, 2189 rewriter.getI64ArrayAttr(index % expandRatio)); 2190 2191 return success(); 2192 } 2193 }; 2194 2195 // Shuffles vector.bitcast op after vector.extract_strided_slice op. 2196 // 2197 // This transforms IR like: 2198 // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> 2199 // %0 = vector.extract_strided_slice %cast { 2200 // offsets = [4], sizes = [4], strides = [1] 2201 // } : vector<8xf16> to vector<4xf16> 2202 // Into: 2203 // %0 = vector.extract_strided_slice %src { 2204 // offsets = [2], sizes = [2], strides = [1] 2205 // } : vector<4xf32> to vector<2xf32> 2206 // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> 2207 struct BubbleDownBitCastForStridedSliceExtract 2208 : public OpRewritePattern<vector::ExtractStridedSliceOp> { 2209 using OpRewritePattern::OpRewritePattern; 2210 2211 LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, 2212 PatternRewriter &rewriter) const override { 2213 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 2214 if (!castOp) 2215 return failure(); 2216 2217 VectorType castSrcType = castOp.getSourceVectorType(); 2218 VectorType castDstType = castOp.getResultVectorType(); 2219 assert(castSrcType.getRank() == castDstType.getRank()); 2220 2221 int64_t castSrcLastDim = castSrcType.getShape().back(); 2222 int64_t castDstLastDim = castDstType.getShape().back(); 2223 // Require casting to more elements for now; other cases to be implemented. 2224 if (castSrcLastDim > castDstLastDim) 2225 return failure(); 2226 2227 // Only accept all one strides for now. 2228 if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), 2229 [](const APInt &val) { return !val.isOneValue(); })) 2230 return failure(); 2231 2232 unsigned rank = extractOp.getVectorType().getRank(); 2233 assert(castDstLastDim % castSrcLastDim == 0); 2234 int64_t expandRatio = castDstLastDim / castSrcLastDim; 2235 2236 // If we have a less number of offsets than the rank, then implicitly we 2237 // are selecting the full range for the last bitcasted dimension; other 2238 // dimensions aren't affected. Otherwise, we need to scale down the last 2239 // dimension's offset given we are extracting from less elements now. 2240 ArrayAttr newOffsets = extractOp.getOffsets(); 2241 if (newOffsets.size() == rank) { 2242 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2243 if (offsets.back() % expandRatio != 0) 2244 return failure(); 2245 offsets.back() = offsets.back() / expandRatio; 2246 newOffsets = rewriter.getI64ArrayAttr(offsets); 2247 } 2248 2249 // Similarly for sizes. 2250 ArrayAttr newSizes = extractOp.getSizes(); 2251 if (newSizes.size() == rank) { 2252 SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes); 2253 if (sizes.back() % expandRatio != 0) 2254 return failure(); 2255 sizes.back() = sizes.back() / expandRatio; 2256 newSizes = rewriter.getI64ArrayAttr(sizes); 2257 } 2258 2259 SmallVector<int64_t, 4> dims = 2260 llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape()); 2261 dims.back() = dims.back() / expandRatio; 2262 VectorType newExtractType = 2263 VectorType::get(dims, castSrcType.getElementType()); 2264 2265 auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( 2266 extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, 2267 newSizes, extractOp.getStrides()); 2268 2269 rewriter.replaceOpWithNewOp<vector::BitCastOp>( 2270 extractOp, extractOp.getType(), newExtractOp); 2271 2272 return success(); 2273 } 2274 }; 2275 2276 // Shuffles vector.bitcast op before vector.insert_strided_slice op. 2277 // 2278 // This transforms IR like: 2279 // %0 = vector.insert_strided_slice %src, %dst { 2280 // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> 2281 // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> 2282 // Into: 2283 // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> 2284 // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> 2285 // %2 = vector.insert_strided_slice %src, %dst { 2286 // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> 2287 struct BubbleUpBitCastForStridedSliceInsert 2288 : public OpRewritePattern<vector::BitCastOp> { 2289 using OpRewritePattern::OpRewritePattern; 2290 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 2291 PatternRewriter &rewriter) const override { 2292 VectorType castSrcType = bitcastOp.getSourceVectorType(); 2293 VectorType castDstType = bitcastOp.getResultVectorType(); 2294 assert(castSrcType.getRank() == castDstType.getRank()); 2295 2296 int64_t castSrcLastDim = castSrcType.getShape().back(); 2297 int64_t castDstLastDim = castDstType.getShape().back(); 2298 // Require casting to less elements for now; other cases to be implemented. 2299 if (castSrcLastDim < castDstLastDim) 2300 return failure(); 2301 2302 assert(castSrcLastDim % castDstLastDim == 0); 2303 int64_t shrinkRatio = castSrcLastDim / castDstLastDim; 2304 2305 auto insertOp = 2306 bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); 2307 if (!insertOp) 2308 return failure(); 2309 2310 // Only accept all one strides for now. 2311 if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), 2312 [](const APInt &val) { return !val.isOneValue(); })) 2313 return failure(); 2314 2315 unsigned rank = insertOp.getSourceVectorType().getRank(); 2316 // Require insert op to have the same rank for the source and destination 2317 // vector; other cases to be implemented. 2318 if (rank != insertOp.getDestVectorType().getRank()) 2319 return failure(); 2320 2321 ArrayAttr newOffsets = insertOp.getOffsets(); 2322 assert(newOffsets.size() == rank); 2323 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2324 if (offsets.back() % shrinkRatio != 0) 2325 return failure(); 2326 offsets.back() = offsets.back() / shrinkRatio; 2327 newOffsets = rewriter.getI64ArrayAttr(offsets); 2328 2329 SmallVector<int64_t, 4> srcDims = 2330 llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); 2331 srcDims.back() = srcDims.back() / shrinkRatio; 2332 VectorType newCastSrcType = 2333 VectorType::get(srcDims, castDstType.getElementType()); 2334 2335 auto newCastSrcOp = rewriter.create<vector::BitCastOp>( 2336 bitcastOp.getLoc(), newCastSrcType, insertOp.getSource()); 2337 2338 SmallVector<int64_t, 4> dstDims = 2339 llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); 2340 dstDims.back() = dstDims.back() / shrinkRatio; 2341 VectorType newCastDstType = 2342 VectorType::get(dstDims, castDstType.getElementType()); 2343 2344 auto newCastDstOp = rewriter.create<vector::BitCastOp>( 2345 bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); 2346 2347 rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( 2348 bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, 2349 insertOp.getStrides()); 2350 2351 return success(); 2352 } 2353 }; 2354 2355 // Helper that returns a vector comparison that constructs a mask: 2356 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 2357 // 2358 // If `dim == 0` then the result will be a 0-D vector. 2359 // 2360 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 2361 // much more compact, IR for this operation, but LLVM eventually 2362 // generates more elaborate instructions for this intrinsic since it 2363 // is very conservative on the boundary conditions. 2364 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, 2365 bool force32BitVectorIndices, int64_t dim, 2366 Value b, Value *off = nullptr) { 2367 auto loc = op->getLoc(); 2368 // If we can assume all indices fit in 32-bit, we perform the vector 2369 // comparison in 32-bit to get a higher degree of SIMD parallelism. 2370 // Otherwise we perform the vector comparison using 64-bit indices. 2371 Type idxType = 2372 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 2373 DenseIntElementsAttr indicesAttr; 2374 if (dim == 0 && force32BitVectorIndices) { 2375 indicesAttr = DenseIntElementsAttr::get( 2376 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); 2377 } else if (dim == 0) { 2378 indicesAttr = DenseIntElementsAttr::get( 2379 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); 2380 } else if (force32BitVectorIndices) { 2381 indicesAttr = rewriter.getI32VectorAttr( 2382 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); 2383 } else { 2384 indicesAttr = rewriter.getI64VectorAttr( 2385 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); 2386 } 2387 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 2388 // Add in an offset if requested. 2389 if (off) { 2390 Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off); 2391 Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); 2392 indices = rewriter.create<arith::AddIOp>(loc, ov, indices); 2393 } 2394 // Construct the vector comparison. 2395 Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b); 2396 Value bounds = 2397 rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); 2398 return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, 2399 bounds); 2400 } 2401 2402 template <typename ConcreteOp> 2403 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { 2404 public: 2405 explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt) 2406 : mlir::OpRewritePattern<ConcreteOp>(context), 2407 force32BitVectorIndices(enableIndexOpt) {} 2408 2409 LogicalResult matchAndRewrite(ConcreteOp xferOp, 2410 PatternRewriter &rewriter) const override { 2411 if (!xferOp.hasOutOfBoundsDim()) 2412 return failure(); 2413 2414 if (xferOp.getVectorType().getRank() > 1 || 2415 llvm::size(xferOp.getIndices()) == 0) 2416 return failure(); 2417 2418 Location loc = xferOp->getLoc(); 2419 VectorType vtp = xferOp.getVectorType(); 2420 2421 // Create the in-bounds mask with all elements between [0 .. dim - offset) 2422 // set and [dim - offset .. vector_length) unset. 2423 // 2424 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 2425 // dimensions here. 2426 unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; 2427 Value off = xferOp.getIndices()[lastIndex]; 2428 Value dim = 2429 vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex); 2430 Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); 2431 Value mask = rewriter.create<vector::CreateMaskOp>( 2432 loc, 2433 VectorType::get(vtp.getShape(), rewriter.getI1Type(), 2434 vtp.getNumScalableDims()), 2435 b); 2436 if (xferOp.getMask()) { 2437 // Intersect the in-bounds with the mask specified as an op parameter. 2438 mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); 2439 } 2440 2441 rewriter.updateRootInPlace(xferOp, [&]() { 2442 xferOp.getMaskMutable().assign(mask); 2443 xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); 2444 }); 2445 2446 return success(); 2447 } 2448 2449 private: 2450 const bool force32BitVectorIndices; 2451 }; 2452 2453 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). 2454 class VectorCreateMaskOpConversion 2455 : public OpRewritePattern<vector::CreateMaskOp> { 2456 public: 2457 explicit VectorCreateMaskOpConversion(MLIRContext *context, 2458 bool enableIndexOpt) 2459 : mlir::OpRewritePattern<vector::CreateMaskOp>(context), 2460 force32BitVectorIndices(enableIndexOpt) {} 2461 2462 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 2463 PatternRewriter &rewriter) const override { 2464 auto dstType = op.getType(); 2465 if (dstType.cast<VectorType>().isScalable()) 2466 return failure(); 2467 int64_t rank = dstType.getRank(); 2468 if (rank > 1) 2469 return failure(); 2470 rewriter.replaceOp( 2471 op, buildVectorComparison(rewriter, op, force32BitVectorIndices, 2472 rank == 0 ? 0 : dstType.getDimSize(0), 2473 op.getOperand(0))); 2474 return success(); 2475 } 2476 2477 private: 2478 const bool force32BitVectorIndices; 2479 }; 2480 2481 // Drop inner most contiguous unit dimensions from transfer_read operand. 2482 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> { 2483 using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern; 2484 2485 LogicalResult matchAndRewrite(vector::TransferReadOp readOp, 2486 PatternRewriter &rewriter) const override { 2487 // TODO: support 0-d corner case. 2488 if (readOp.getTransferRank() == 0) 2489 return failure(); 2490 2491 // TODO: support mask. 2492 if (readOp.getMask()) 2493 return failure(); 2494 2495 auto srcType = readOp.getSource().getType().dyn_cast<MemRefType>(); 2496 if (!srcType || !srcType.hasStaticShape()) 2497 return failure(); 2498 2499 if (!readOp.getPermutationMap().isMinorIdentity()) 2500 return failure(); 2501 2502 auto targetType = readOp.getVectorType(); 2503 if (targetType.getRank() <= 1) 2504 return failure(); 2505 2506 SmallVector<int64_t> srcStrides; 2507 int64_t srcOffset; 2508 if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) 2509 return failure(); 2510 2511 size_t dimsToDrop = 0; 2512 for (size_t i = 1; i < srcStrides.size(); ++i) { 2513 int dim = srcType.getRank() - i - 1; 2514 if (srcStrides[dim] == 1) { 2515 dimsToDrop++; 2516 } else { 2517 break; 2518 } 2519 } 2520 if (dimsToDrop == 0) 2521 return failure(); 2522 2523 auto resultTargetVecType = 2524 VectorType::get(targetType.getShape().drop_back(dimsToDrop), 2525 targetType.getElementType()); 2526 2527 MemRefType resultMemrefType; 2528 if (srcType.getLayout().getAffineMap().isIdentity()) { 2529 resultMemrefType = MemRefType::get( 2530 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2531 {}, srcType.getMemorySpaceAsInt()); 2532 } else { 2533 AffineMap map = srcType.getLayout().getAffineMap(); 2534 int numSymbols = map.getNumSymbols(); 2535 for (size_t i = 0; i < dimsToDrop; ++i) { 2536 int dim = srcType.getRank() - i - 1; 2537 map = map.replace(rewriter.getAffineDimExpr(dim), 2538 rewriter.getAffineConstantExpr(0), 2539 map.getNumDims() - 1, numSymbols); 2540 } 2541 resultMemrefType = MemRefType::get( 2542 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2543 map, srcType.getMemorySpaceAsInt()); 2544 } 2545 2546 auto loc = readOp.getLoc(); 2547 SmallVector<int64_t> offsets(srcType.getRank(), 0); 2548 SmallVector<int64_t> strides(srcType.getRank(), 1); 2549 2550 ArrayAttr inBoundsAttr = 2551 readOp.getInBounds() 2552 ? rewriter.getArrayAttr( 2553 readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)) 2554 : ArrayAttr(); 2555 Value rankedReducedView = rewriter.create<memref::SubViewOp>( 2556 loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(), 2557 strides); 2558 auto permMap = getTransferMinorIdentityMap( 2559 rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType); 2560 Value result = rewriter.create<vector::TransferReadOp>( 2561 loc, resultTargetVecType, rankedReducedView, 2562 readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), 2563 readOp.getPadding(), 2564 // TODO: support mask. 2565 /*mask=*/Value(), inBoundsAttr); 2566 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, 2567 result); 2568 return success(); 2569 } 2570 }; 2571 2572 namespace { 2573 2574 /// This function checks to see if the vector combining kind 2575 /// is consistent with the integer or float element type. 2576 static bool isValidKind(bool isInt, vector::CombiningKind kind) { 2577 using vector::CombiningKind; 2578 enum class KindType { FLOAT, INT, INVALID }; 2579 KindType type{KindType::INVALID}; 2580 switch (kind) { 2581 case CombiningKind::MINF: 2582 case CombiningKind::MAXF: 2583 type = KindType::FLOAT; 2584 break; 2585 case CombiningKind::MINUI: 2586 case CombiningKind::MINSI: 2587 case CombiningKind::MAXUI: 2588 case CombiningKind::MAXSI: 2589 case CombiningKind::AND: 2590 case CombiningKind::OR: 2591 case CombiningKind::XOR: 2592 type = KindType::INT; 2593 break; 2594 case CombiningKind::ADD: 2595 case CombiningKind::MUL: 2596 type = isInt ? KindType::INT : KindType::FLOAT; 2597 break; 2598 } 2599 bool isValidIntKind = (type == KindType::INT) && isInt; 2600 bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt); 2601 return (isValidIntKind || isValidFloatKind); 2602 } 2603 2604 /// This function constructs the appropriate integer or float 2605 /// operation given the vector combining kind and operands. The 2606 /// supported int operations are : add, mul, min (signed/unsigned), 2607 /// max(signed/unsigned), and, or, xor. The supported float 2608 /// operations are : add, mul, min and max. 2609 static Value genOperator(Location loc, Value x, Value y, 2610 vector::CombiningKind kind, 2611 PatternRewriter &rewriter) { 2612 using vector::CombiningKind; 2613 2614 auto elType = x.getType().cast<VectorType>().getElementType(); 2615 bool isInt = elType.isIntOrIndex(); 2616 2617 Value combinedResult{nullptr}; 2618 switch (kind) { 2619 case CombiningKind::ADD: 2620 if (isInt) 2621 combinedResult = rewriter.create<arith::AddIOp>(loc, x, y); 2622 else 2623 combinedResult = rewriter.create<arith::AddFOp>(loc, x, y); 2624 break; 2625 case CombiningKind::MUL: 2626 if (isInt) 2627 combinedResult = rewriter.create<arith::MulIOp>(loc, x, y); 2628 else 2629 combinedResult = rewriter.create<arith::MulFOp>(loc, x, y); 2630 break; 2631 case CombiningKind::MINUI: 2632 combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y); 2633 break; 2634 case CombiningKind::MINSI: 2635 combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y); 2636 break; 2637 case CombiningKind::MAXUI: 2638 combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y); 2639 break; 2640 case CombiningKind::MAXSI: 2641 combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y); 2642 break; 2643 case CombiningKind::AND: 2644 combinedResult = rewriter.create<arith::AndIOp>(loc, x, y); 2645 break; 2646 case CombiningKind::OR: 2647 combinedResult = rewriter.create<arith::OrIOp>(loc, x, y); 2648 break; 2649 case CombiningKind::XOR: 2650 combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y); 2651 break; 2652 case CombiningKind::MINF: 2653 combinedResult = rewriter.create<arith::MinFOp>(loc, x, y); 2654 break; 2655 case CombiningKind::MAXF: 2656 combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y); 2657 break; 2658 } 2659 return combinedResult; 2660 } 2661 2662 /// Convert vector.scan op into arith ops and 2663 /// vector.insert_strided_slice/extract_strided_slice 2664 /// 2665 /// Ex: 2666 /// ``` 2667 /// %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim = 2668 /// 1} : 2669 /// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>) 2670 /// ``` 2671 /// Gets converted to: 2672 /// ``` 2673 /// %cst = arith.constant dense<0> : vector<2x3xi32> 2674 /// %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1], 2675 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 = 2676 /// vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]} 2677 /// : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice 2678 /// %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} : 2679 /// vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 : 2680 /// vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1], 2681 /// strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 = 2682 /// vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1], 2683 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3, 2684 /// %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets = 2685 /// [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 = 2686 /// vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 : 2687 /// vector<2x3xi32>, vector<2xi32> 2688 /// ``` 2689 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> { 2690 using OpRewritePattern<vector::ScanOp>::OpRewritePattern; 2691 2692 LogicalResult matchAndRewrite(vector::ScanOp scanOp, 2693 PatternRewriter &rewriter) const override { 2694 auto loc = scanOp.getLoc(); 2695 VectorType destType = scanOp.getDestType(); 2696 ArrayRef<int64_t> destShape = destType.getShape(); 2697 auto elType = destType.getElementType(); 2698 bool isInt = elType.isIntOrIndex(); 2699 if (!isValidKind(isInt, scanOp.getKind())) 2700 return failure(); 2701 2702 VectorType resType = VectorType::get(destShape, elType); 2703 Value result = rewriter.create<arith::ConstantOp>( 2704 loc, resType, rewriter.getZeroAttr(resType)); 2705 int64_t reductionDim = scanOp.getReductionDim(); 2706 bool inclusive = scanOp.getInclusive(); 2707 int64_t destRank = destType.getRank(); 2708 VectorType initialValueType = scanOp.getInitialValueType(); 2709 int64_t initialValueRank = initialValueType.getRank(); 2710 2711 SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end()); 2712 reductionShape[reductionDim] = 1; 2713 VectorType reductionType = VectorType::get(reductionShape, elType); 2714 SmallVector<int64_t> offsets(destRank, 0); 2715 SmallVector<int64_t> strides(destRank, 1); 2716 SmallVector<int64_t> sizes(destShape.begin(), destShape.end()); 2717 sizes[reductionDim] = 1; 2718 ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes); 2719 ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides); 2720 2721 Value lastOutput, lastInput; 2722 for (int i = 0; i < destShape[reductionDim]; i++) { 2723 offsets[reductionDim] = i; 2724 ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets); 2725 Value input = rewriter.create<vector::ExtractStridedSliceOp>( 2726 loc, reductionType, scanOp.getSource(), scanOffsets, scanSizes, 2727 scanStrides); 2728 Value output; 2729 if (i == 0) { 2730 if (inclusive) { 2731 output = input; 2732 } else { 2733 if (initialValueRank == 0) { 2734 // ShapeCastOp cannot handle 0-D vectors 2735 output = rewriter.create<vector::BroadcastOp>( 2736 loc, input.getType(), scanOp.getInitialValue()); 2737 } else { 2738 output = rewriter.create<vector::ShapeCastOp>( 2739 loc, input.getType(), scanOp.getInitialValue()); 2740 } 2741 } 2742 } else { 2743 Value y = inclusive ? input : lastInput; 2744 output = genOperator(loc, lastOutput, y, scanOp.getKind(), rewriter); 2745 assert(output != nullptr); 2746 } 2747 result = rewriter.create<vector::InsertStridedSliceOp>( 2748 loc, output, result, offsets, strides); 2749 lastOutput = output; 2750 lastInput = input; 2751 } 2752 2753 Value reduction; 2754 if (initialValueRank == 0) { 2755 Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0); 2756 reduction = 2757 rewriter.create<vector::BroadcastOp>(loc, initialValueType, v); 2758 } else { 2759 reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType, 2760 lastOutput); 2761 } 2762 2763 rewriter.replaceOp(scanOp, {result, reduction}); 2764 return success(); 2765 } 2766 }; 2767 2768 } // namespace 2769 2770 void mlir::vector::populateVectorMaskMaterializationPatterns( 2771 RewritePatternSet &patterns, bool force32BitVectorIndices) { 2772 patterns.add<VectorCreateMaskOpConversion, 2773 MaterializeTransferMask<vector::TransferReadOp>, 2774 MaterializeTransferMask<vector::TransferWriteOp>>( 2775 patterns.getContext(), force32BitVectorIndices); 2776 } 2777 2778 void mlir::vector::populateShapeCastFoldingPatterns( 2779 RewritePatternSet &patterns) { 2780 patterns.add<ShapeCastOpFolder>(patterns.getContext()); 2781 } 2782 2783 void mlir::vector::populateBubbleVectorBitCastOpPatterns( 2784 RewritePatternSet &patterns) { 2785 patterns.add<BubbleDownVectorBitCastForExtract, 2786 BubbleDownBitCastForStridedSliceExtract, 2787 BubbleUpBitCastForStridedSliceInsert>(patterns.getContext()); 2788 } 2789 2790 void mlir::vector::populateVectorBroadcastLoweringPatterns( 2791 RewritePatternSet &patterns) { 2792 patterns.add<BroadcastOpLowering>(patterns.getContext()); 2793 } 2794 2795 void mlir::vector::populateVectorMaskOpLoweringPatterns( 2796 RewritePatternSet &patterns) { 2797 patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>( 2798 patterns.getContext()); 2799 } 2800 2801 void mlir::vector::populateVectorShapeCastLoweringPatterns( 2802 RewritePatternSet &patterns) { 2803 patterns.add<ShapeCastOp2DDownCastRewritePattern, 2804 ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>( 2805 patterns.getContext()); 2806 } 2807 2808 void mlir::vector::populateVectorContractLoweringPatterns( 2809 RewritePatternSet &patterns, VectorTransformsOptions options) { 2810 patterns.add<OuterProductOpLowering>(patterns.getContext()); 2811 patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering, 2812 ContractionOpToOuterProductOpLowering>(options, 2813 patterns.getContext()); 2814 } 2815 2816 void mlir::vector::populateVectorTransposeLoweringPatterns( 2817 RewritePatternSet &patterns, VectorTransformsOptions options) { 2818 patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>( 2819 options, patterns.getContext()); 2820 } 2821 2822 void mlir::vector::populateVectorReductionToContractPatterns( 2823 RewritePatternSet &patterns) { 2824 patterns.add<MultiReduceToContract, CombineContractBroadcast, 2825 CombineContractTranspose, ReorderCastOpsOnBroadcast, 2826 ReorderElementwiseOpsOnTranspose>(patterns.getContext()); 2827 } 2828 2829 void mlir::vector:: 2830 populateVectorTransferCollapseInnerMostContiguousDimsPatterns( 2831 RewritePatternSet &patterns) { 2832 patterns.add<DropInnerMostUnitDims>(patterns.getContext()); 2833 } 2834 2835 void mlir::vector::populateVectorTransferLoweringPatterns( 2836 RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) { 2837 patterns.add<TransferReadToVectorLoadLowering, 2838 TransferWriteToVectorStoreLowering>(patterns.getContext(), 2839 maxTransferRank); 2840 patterns 2841 .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>( 2842 patterns.getContext()); 2843 } 2844 2845 void mlir::vector::populateVectorScanLoweringPatterns( 2846 RewritePatternSet &patterns) { 2847 patterns.add<ScanToArithOps>(patterns.getContext()); 2848 } 2849