1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
14 
15 #include <type_traits>
16 
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
19 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
20 #include "mlir/Dialect/Linalg/IR/Linalg.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/IR/SCF.h"
23 #include "mlir/Dialect/Utils/IndexingUtils.h"
24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
25 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
26 #include "mlir/IR/BuiltinTypes.h"
27 #include "mlir/IR/ImplicitLocOpBuilder.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/IR/PatternMatch.h"
30 #include "mlir/Interfaces/VectorInterfaces.h"
31 
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 #define DEBUG_TYPE "vector-to-vector"
40 
41 using namespace mlir;
42 using namespace mlir::vector;
43 
44 // Helper to find an index in an affine map.
45 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
46   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
47     int64_t idx = map.getDimPosition(i);
48     if (idx == index)
49       return i;
50   }
51   return None;
52 }
53 
54 // Helper to construct iterator types with one index removed.
55 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
56                                             int64_t index) {
57   SmallVector<Attribute, 4> results;
58   for (const auto &it : llvm::enumerate(iteratorTypes)) {
59     int64_t idx = it.index();
60     if (idx == index)
61       continue;
62     results.push_back(it.value());
63   }
64   return results;
65 }
66 
67 // Helper to construct an affine map with one index removed.
68 static AffineMap adjustMap(AffineMap map, int64_t index,
69                            PatternRewriter &rewriter) {
70   auto *ctx = rewriter.getContext();
71   SmallVector<AffineExpr, 4> results;
72   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
73     int64_t idx = map.getDimPosition(i);
74     if (idx == index)
75       continue;
76     // Re-insert remaining indices, but renamed when occurring
77     // after the removed index.
78     auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
79     results.push_back(targetExpr);
80   }
81   return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
82 }
83 
84 // Helper method to possibly drop a dimension in a load.
85 // TODO
86 static Value reshapeLoad(Location loc, Value val, VectorType type,
87                          int64_t index, int64_t pos,
88                          PatternRewriter &rewriter) {
89   if (index == -1)
90     return val;
91   Type lowType = VectorType::Builder(type).dropDim(0);
92   // At extraction dimension?
93   if (index == 0) {
94     auto posAttr = rewriter.getI64ArrayAttr(pos);
95     return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
96   }
97   // Unroll leading dimensions.
98   VectorType vType = lowType.cast<VectorType>();
99   Type resType = VectorType::Builder(type).dropDim(index);
100   auto resVectorType = resType.cast<VectorType>();
101   Value result = rewriter.create<arith::ConstantOp>(
102       loc, resVectorType, rewriter.getZeroAttr(resVectorType));
103   for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
104     auto posAttr = rewriter.getI64ArrayAttr(d);
105     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
106     Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
107     result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
108                                                posAttr);
109   }
110   return result;
111 }
112 
113 // Helper method to possibly drop a dimension in a store.
114 // TODO
115 static Value reshapeStore(Location loc, Value val, Value result,
116                           VectorType type, int64_t index, int64_t pos,
117                           PatternRewriter &rewriter) {
118   // Unmodified?
119   if (index == -1)
120     return val;
121   // At insertion dimension?
122   if (index == 0) {
123     auto posAttr = rewriter.getI64ArrayAttr(pos);
124     return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
125   }
126   // Unroll leading dimensions.
127   Type lowType = VectorType::Builder(type).dropDim(0);
128   VectorType vType = lowType.cast<VectorType>();
129   Type insType = VectorType::Builder(vType).dropDim(0);
130   for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
131     auto posAttr = rewriter.getI64ArrayAttr(d);
132     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
133     Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
134     Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
135     result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
136   }
137   return result;
138 }
139 
140 template <typename IntType>
141 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
142   return llvm::to_vector<4>(llvm::map_range(
143       arrayAttr.getAsRange<IntegerAttr>(),
144       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
145 }
146 
147 /// Helper to create arithmetic operation associated with a kind of contraction.
148 static Optional<Value> createContractArithOp(Location loc, Value x, Value y,
149                                              Value acc,
150                                              vector::CombiningKind kind,
151                                              PatternRewriter &rewriter,
152                                              bool isInt) {
153   using vector::CombiningKind;
154   Value mul;
155   if (isInt) {
156     if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF)
157       // Only valid for floating point types.
158       return Optional<Value>();
159     mul = rewriter.create<arith::MulIOp>(loc, x, y);
160   } else {
161     // Float case.
162     if (kind == CombiningKind::AND || kind == CombiningKind::MINUI ||
163         kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI ||
164         kind == CombiningKind::MAXSI || kind == CombiningKind::OR ||
165         kind == CombiningKind::XOR)
166       // Only valid for integer types.
167       return Optional<Value>();
168     // Special case for fused multiply-add.
169     if (acc && acc.getType().isa<VectorType>() && kind == CombiningKind::ADD) {
170       return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc));
171     }
172     mul = rewriter.create<arith::MulFOp>(loc, x, y);
173   }
174   if (!acc)
175     return Optional<Value>(mul);
176   return makeArithReduction(rewriter, loc, kind, mul, acc);
177 }
178 
179 /// Return the positions of the reductions in the given map.
180 static SmallVector<int64_t> getReductionIndex(AffineMap map,
181                                               ArrayAttr iteratorTypes) {
182   SmallVector<int64_t> dimsIdx;
183   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
184     if (isReductionIterator(iteratorTypes[map.getDimPosition(i)]))
185       dimsIdx.push_back(i);
186   }
187   return dimsIdx;
188 }
189 
190 /// Look for a given dimension in an affine map and return its position. Return
191 /// llvm::None if the dimension is not in the map results.
192 static llvm::Optional<unsigned> getDimPosition(AffineMap map, unsigned dim) {
193   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
194     if (map.getDimPosition(i) == dim)
195       return i;
196   }
197   return llvm::None;
198 }
199 
200 namespace {
201 
202 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
203 //
204 // Example:
205 //
206 //  The following MLIR with cancelling ShapeCastOps:
207 //
208 //   %0 = source : vector<5x4x2xf32>
209 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
210 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
211 //   %3 = user %2 : vector<5x4x2xf32>
212 //
213 //  Should canonicalize to the following:
214 //
215 //   %0 = source : vector<5x4x2xf32>
216 //   %1 = user %0 : vector<5x4x2xf32>
217 //
218 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
219   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
220 
221   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
222                                 PatternRewriter &rewriter) const override {
223     // Check if 'shapeCastOp' has vector source/result type.
224     auto sourceVectorType =
225         shapeCastOp.getSource().getType().dyn_cast_or_null<VectorType>();
226     auto resultVectorType =
227         shapeCastOp.getResult().getType().dyn_cast_or_null<VectorType>();
228     if (!sourceVectorType || !resultVectorType)
229       return failure();
230 
231     // Check if shape cast op source operand is also a shape cast op.
232     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
233         shapeCastOp.getSource().getDefiningOp());
234     if (!sourceShapeCastOp)
235       return failure();
236     auto operandSourceVectorType =
237         sourceShapeCastOp.getSource().getType().cast<VectorType>();
238     auto operandResultVectorType = sourceShapeCastOp.getType();
239 
240     // Check if shape cast operations invert each other.
241     if (operandSourceVectorType != resultVectorType ||
242         operandResultVectorType != sourceVectorType)
243       return failure();
244 
245     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource());
246     return success();
247   }
248 };
249 
250 /// Progressive lowering of BroadcastOp.
251 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
252 public:
253   using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
254 
255   LogicalResult matchAndRewrite(vector::BroadcastOp op,
256                                 PatternRewriter &rewriter) const override {
257     auto loc = op.getLoc();
258     VectorType dstType = op.getVectorType();
259     VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
260     Type eltType = dstType.getElementType();
261 
262     // Scalar to any vector can use splat.
263     if (!srcType) {
264       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.getSource());
265       return success();
266     }
267 
268     // Determine rank of source and destination.
269     int64_t srcRank = srcType.getRank();
270     int64_t dstRank = dstType.getRank();
271 
272     // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
273     if (srcRank <= 1 && dstRank == 1) {
274       Value ext;
275       if (srcRank == 0)
276         ext = rewriter.create<vector::ExtractElementOp>(loc, op.getSource());
277       else
278         ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
279       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext);
280       return success();
281     }
282 
283     // Duplicate this rank.
284     // For example:
285     //   %x = broadcast %y  : k-D to n-D, k < n
286     // becomes:
287     //   %b = broadcast %y  : k-D to (n-1)-D
288     //   %x = [%b,%b,%b,%b] : n-D
289     // becomes:
290     //   %b = [%y,%y]       : (n-1)-D
291     //   %x = [%b,%b,%b,%b] : n-D
292     if (srcRank < dstRank) {
293       // Duplication.
294       VectorType resType =
295           VectorType::get(dstType.getShape().drop_front(), eltType);
296       Value bcst =
297           rewriter.create<vector::BroadcastOp>(loc, resType, op.getSource());
298       Value result = rewriter.create<arith::ConstantOp>(
299           loc, dstType, rewriter.getZeroAttr(dstType));
300       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
301         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
302       rewriter.replaceOp(op, result);
303       return success();
304     }
305 
306     // Find non-matching dimension, if any.
307     assert(srcRank == dstRank);
308     int64_t m = -1;
309     for (int64_t r = 0; r < dstRank; r++)
310       if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
311         m = r;
312         break;
313       }
314 
315     // All trailing dimensions are the same. Simply pass through.
316     if (m == -1) {
317       rewriter.replaceOp(op, op.getSource());
318       return success();
319     }
320 
321     // Any non-matching dimension forces a stretch along this rank.
322     // For example:
323     //   %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
324     // becomes:
325     //   %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
326     //   %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
327     //   %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
328     //   %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
329     //   %x = [%a,%b,%c,%d]
330     // becomes:
331     //   %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
332     //   %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
333     //   %a = [%u, %v]
334     //   ..
335     //   %x = [%a,%b,%c,%d]
336     VectorType resType =
337         VectorType::get(dstType.getShape().drop_front(), eltType);
338     Value result = rewriter.create<arith::ConstantOp>(
339         loc, dstType, rewriter.getZeroAttr(dstType));
340     if (m == 0) {
341       // Stetch at start.
342       Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
343       Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
344       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
345         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
346     } else {
347       // Stetch not at start.
348       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
349         Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), d);
350         Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
351         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
352       }
353     }
354     rewriter.replaceOp(op, result);
355     return success();
356   }
357 };
358 
359 /// Given a 'transpose' pattern, prune the rightmost dimensions that are not
360 /// transposed.
361 void pruneNonTransposedDims(ArrayRef<int64_t> transpose,
362                             SmallVectorImpl<int64_t> &result) {
363   size_t numTransposedDims = transpose.size();
364   for (size_t transpDim : llvm::reverse(transpose)) {
365     if (transpDim != numTransposedDims - 1)
366       break;
367     numTransposedDims--;
368   }
369 
370   result.append(transpose.begin(), transpose.begin() + numTransposedDims);
371 }
372 
373 /// Progressive lowering of TransposeOp.
374 /// One:
375 ///   %x = vector.transpose %y, [1, 0]
376 /// is replaced by:
377 ///   %z = arith.constant dense<0.000000e+00>
378 ///   %0 = vector.extract %y[0, 0]
379 ///   %1 = vector.insert %0, %z [0, 0]
380 ///   ..
381 ///   %x = vector.insert .., .. [.., ..]
382 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
383 public:
384   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
385 
386   TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
387                       MLIRContext *context)
388       : OpRewritePattern<vector::TransposeOp>(context),
389         vectorTransformOptions(vectorTransformOptions) {}
390 
391   LogicalResult matchAndRewrite(vector::TransposeOp op,
392                                 PatternRewriter &rewriter) const override {
393     auto loc = op.getLoc();
394 
395     Value input = op.getVector();
396     VectorType inputType = op.getVectorType();
397     VectorType resType = op.getResultType();
398 
399     // Set up convenience transposition table.
400     SmallVector<int64_t, 4> transp;
401     for (auto attr : op.getTransp())
402       transp.push_back(attr.cast<IntegerAttr>().getInt());
403 
404     if (vectorTransformOptions.vectorTransposeLowering ==
405             vector::VectorTransposeLowering::Shuffle &&
406         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0)
407       return rewriter.notifyMatchFailure(
408           op, "Options specifies lowering to shuffle");
409 
410     // Handle a true 2-D matrix transpose differently when requested.
411     if (vectorTransformOptions.vectorTransposeLowering ==
412             vector::VectorTransposeLowering::Flat &&
413         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
414       Type flattenedType =
415           VectorType::get(resType.getNumElements(), resType.getElementType());
416       auto matrix =
417           rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input);
418       auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
419       auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
420       Value trans = rewriter.create<vector::FlatTransposeOp>(
421           loc, flattenedType, matrix, rows, columns);
422       rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
423       return success();
424     }
425 
426     // Generate unrolled extract/insert ops. We do not unroll the rightmost
427     // (i.e., highest-order) dimensions that are not transposed and leave them
428     // in vector form to improve performance. Therefore, we prune those
429     // dimensions from the shape/transpose data structures used to generate the
430     // extract/insert ops.
431     SmallVector<int64_t, 4> prunedTransp;
432     pruneNonTransposedDims(transp, prunedTransp);
433     size_t numPrunedDims = transp.size() - prunedTransp.size();
434     auto prunedInShape = inputType.getShape().drop_back(numPrunedDims);
435     SmallVector<int64_t, 4> ones(prunedInShape.size(), 1);
436     auto prunedInStrides = computeStrides(prunedInShape, ones);
437 
438     // Generates the extract/insert operations for every scalar/vector element
439     // of the leftmost transposed dimensions. We traverse every transpose
440     // element using a linearized index that we delinearize to generate the
441     // appropriate indices for the extract/insert operations.
442     Value result = rewriter.create<arith::ConstantOp>(
443         loc, resType, rewriter.getZeroAttr(resType));
444     int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape);
445 
446     for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
447          ++linearIdx) {
448       auto extractIdxs = delinearize(prunedInStrides, linearIdx);
449       SmallVector<int64_t, 4> insertIdxs(extractIdxs);
450       applyPermutationToVector(insertIdxs, prunedTransp);
451       Value extractOp =
452           rewriter.create<vector::ExtractOp>(loc, input, extractIdxs);
453       result =
454           rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs);
455     }
456 
457     rewriter.replaceOp(op, result);
458     return success();
459   }
460 
461 private:
462   /// Options to control the vector patterns.
463   vector::VectorTransformsOptions vectorTransformOptions;
464 };
465 
466 /// Rewrite a 2-D vector.transpose as a sequence of:
467 ///   vector.shape_cast 2D -> 1D
468 ///   vector.shuffle
469 ///   vector.shape_cast 1D -> 2D
470 class TransposeOp2DToShuffleLowering
471     : public OpRewritePattern<vector::TransposeOp> {
472 public:
473   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
474 
475   TransposeOp2DToShuffleLowering(
476       vector::VectorTransformsOptions vectorTransformOptions,
477       MLIRContext *context)
478       : OpRewritePattern<vector::TransposeOp>(context),
479         vectorTransformOptions(vectorTransformOptions) {}
480 
481   LogicalResult matchAndRewrite(vector::TransposeOp op,
482                                 PatternRewriter &rewriter) const override {
483     auto loc = op.getLoc();
484 
485     VectorType srcType = op.getVectorType();
486     if (srcType.getRank() != 2)
487       return rewriter.notifyMatchFailure(op, "Not a 2D transpose");
488 
489     SmallVector<int64_t, 4> transp;
490     for (auto attr : op.getTransp())
491       transp.push_back(attr.cast<IntegerAttr>().getInt());
492     if (transp[0] != 1 && transp[1] != 0)
493       return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation");
494 
495     if (vectorTransformOptions.vectorTransposeLowering !=
496         VectorTransposeLowering::Shuffle)
497       return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle");
498 
499     int64_t m = srcType.getShape().front(), n = srcType.getShape().back();
500     Value casted = rewriter.create<vector::ShapeCastOp>(
501         loc, VectorType::get({m * n}, srcType.getElementType()),
502         op.getVector());
503     SmallVector<int64_t> mask;
504     mask.reserve(m * n);
505     for (int64_t j = 0; j < n; ++j)
506       for (int64_t i = 0; i < m; ++i)
507         mask.push_back(i * n + j);
508 
509     Value shuffled =
510         rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask);
511     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(),
512                                                      shuffled);
513 
514     return success();
515   }
516 
517 private:
518   /// Options to control the vector patterns.
519   vector::VectorTransformsOptions vectorTransformOptions;
520 };
521 
522 /// Progressive lowering of OuterProductOp.
523 /// One:
524 ///   %x = vector.outerproduct %lhs, %rhs, %acc
525 /// is replaced by:
526 ///   %z = zero-result
527 ///   %0 = vector.extract %lhs[0]
528 ///   %1 = vector.broadcast %0
529 ///   %2 = vector.extract %acc[0]
530 ///   %3 = vector.fma %1, %rhs, %2
531 ///   %4 = vector.insert %3, %z[0]
532 ///   ..
533 ///   %x = vector.insert %.., %..[N-1]
534 ///
535 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
536 public:
537   using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
538 
539   LogicalResult matchAndRewrite(vector::OuterProductOp op,
540                                 PatternRewriter &rewriter) const override {
541     auto loc = op.getLoc();
542 
543     VectorType lhsType = op.getOperandVectorTypeLHS();
544     VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
545     VectorType resType = op.getVectorType();
546     Type eltType = resType.getElementType();
547     bool isInt = eltType.isa<IntegerType, IndexType>();
548     Value acc = (op.getAcc().empty()) ? nullptr : op.getAcc()[0];
549     vector::CombiningKind kind = op.getKind();
550 
551     if (!rhsType) {
552       // Special case: AXPY operation.
553       Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs());
554       Optional<Value> mult = createContractArithOp(loc, op.getLhs(), b, acc,
555                                                    kind, rewriter, isInt);
556       if (!mult.has_value())
557         return failure();
558       rewriter.replaceOp(op, mult.value());
559       return success();
560     }
561 
562     Value result = rewriter.create<arith::ConstantOp>(
563         loc, resType, rewriter.getZeroAttr(resType));
564     for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
565       auto pos = rewriter.getI64ArrayAttr(d);
566       Value x =
567           rewriter.create<vector::ExtractOp>(loc, eltType, op.getLhs(), pos);
568       Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
569       Value r = nullptr;
570       if (acc)
571         r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
572       Optional<Value> m =
573           createContractArithOp(loc, a, op.getRhs(), r, kind, rewriter, isInt);
574       if (!m.has_value())
575         return failure();
576       result = rewriter.create<vector::InsertOp>(loc, resType, m.value(),
577                                                  result, pos);
578     }
579     rewriter.replaceOp(op, result);
580     return success();
581   }
582 };
583 
584 /// Lower vector.contract with all size one reduction dimensions to
585 /// elementwise ops when possible.
586 struct ContractOpToElementwise
587     : public OpRewritePattern<vector::ContractionOp> {
588   using OpRewritePattern::OpRewritePattern;
589   using FilterConstraintType =
590       std::function<LogicalResult(vector::ContractionOp op)>;
591   static LogicalResult defaultFilter(vector::ContractionOp op) {
592     return success();
593   }
594   ContractOpToElementwise(
595       vector::VectorTransformsOptions vectorTransformOptions,
596       MLIRContext *context,
597       const FilterConstraintType &constraint = defaultFilter)
598       : OpRewritePattern<vector::ContractionOp>(context),
599         vectorTransformOptions(vectorTransformOptions), filter(defaultFilter) {}
600 
601   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
602                                 PatternRewriter &rewriter) const override {
603     // TODO: implement masks
604     if (llvm::size(contractOp.getMasks()) != 0)
605       return failure();
606 
607     if (failed(filter(contractOp)))
608       return failure();
609 
610     if (vectorTransformOptions.vectorContractLowering !=
611         vector::VectorContractLowering::ParallelArith)
612       return failure();
613     ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape();
614     ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape();
615     AffineMap lhsMap = contractOp.getIndexingMaps()[0];
616     AffineMap rhsMap = contractOp.getIndexingMaps()[1];
617     SmallVector<int64_t> lhsReductionDims =
618         getReductionIndex(lhsMap, contractOp.getIteratorTypes());
619     SmallVector<int64_t> rhsReductionDims =
620         getReductionIndex(rhsMap, contractOp.getIteratorTypes());
621     // All the reduction dimensions must be a size 1.
622     for (int64_t dim : lhsReductionDims) {
623       if (lhsShape[dim] != 1)
624         return failure();
625     }
626     for (int64_t dim : rhsReductionDims) {
627       if (rhsShape[dim] != 1)
628         return failure();
629     }
630     AffineMap accMap = contractOp.getIndexingMaps()[2];
631     unsigned numParallelDims = accMap.getNumResults();
632     unsigned numLhsDimToBroadcast =
633         numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size());
634     unsigned numRhsDimToBroadcast =
635         numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size());
636     SmallVector<int64_t> lhsDims;
637     SmallVector<int64_t> lhsTranspose;
638     SmallVector<int64_t> rhsDims;
639     SmallVector<int64_t> rhsTranspose;
640     for (int64_t dim : lhsReductionDims)
641       lhsTranspose.push_back(numLhsDimToBroadcast + dim);
642     for (int64_t dim : rhsReductionDims)
643       rhsTranspose.push_back(numRhsDimToBroadcast + dim);
644     // Loop through the parallel dimensions to calculate the dimensions to
645     // broadcast and to permute in order to extract only parallel dimensions.
646     for (unsigned i = 0; i < numParallelDims; i++) {
647       llvm::Optional<unsigned> lhsDim =
648           getDimPosition(lhsMap, accMap.getDimPosition(i));
649       if (lhsDim) {
650         lhsTranspose.push_back(numLhsDimToBroadcast + *lhsDim);
651       } else {
652         // If the parallel dimension doesn't exist we will have to broadcast it.
653         lhsDims.push_back(
654             contractOp.getResultType().cast<VectorType>().getDimSize(i));
655         lhsTranspose.push_back(lhsDims.size() - 1);
656       }
657       llvm::Optional<unsigned> rhsDim =
658           getDimPosition(rhsMap, accMap.getDimPosition(i));
659       if (rhsDim) {
660         rhsTranspose.push_back(numRhsDimToBroadcast + *rhsDim);
661       } else {
662         // If the parallel dimension doesn't exist we will have to broadcast it.
663         rhsDims.push_back(
664             contractOp.getResultType().cast<VectorType>().getDimSize(i));
665         rhsTranspose.push_back(rhsDims.size() - 1);
666       }
667     }
668     Value newLhs = contractOp.getLhs();
669     Value newRhs = contractOp.getRhs();
670     Location loc = contractOp.getLoc();
671     if (!lhsDims.empty()) {
672       lhsDims.append(lhsShape.begin(), lhsShape.end());
673       auto expandedType =
674           VectorType::get(lhsDims, contractOp.getLhsType().getElementType());
675       newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs);
676     }
677     if (!rhsDims.empty()) {
678       rhsDims.append(rhsShape.begin(), rhsShape.end());
679       auto expandedType =
680           VectorType::get(rhsDims, contractOp.getRhsType().getElementType());
681       newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs);
682     }
683     bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex();
684     newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose);
685     newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose);
686     SmallVector<int64_t, 4> lhsOffsets(lhsReductionDims.size(), 0);
687     SmallVector<int64_t, 4> rhsOffsets(rhsReductionDims.size(), 0);
688     newLhs = rewriter.create<vector::ExtractOp>(
689         loc, newLhs, rewriter.getI64ArrayAttr(lhsOffsets));
690     newRhs = rewriter.create<vector::ExtractOp>(
691         loc, newRhs, rewriter.getI64ArrayAttr(rhsOffsets));
692     Optional<Value> result =
693         createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(),
694                               contractOp.getKind(), rewriter, isInt);
695     rewriter.replaceOp(contractOp, {*result});
696     return success();
697   }
698 
699 private:
700   /// Options to control the vector patterns.
701   vector::VectorTransformsOptions vectorTransformOptions;
702   FilterConstraintType filter;
703 };
704 
705 /// Progressive lowering of ConstantMaskOp.
706 /// One:
707 ///   %x = vector.constant_mask [a,b]
708 /// is replaced by:
709 ///   %z = zero-result
710 ///   %l = vector.constant_mask [b]
711 ///   %4 = vector.insert %l, %z[0]
712 ///   ..
713 ///   %x = vector.insert %l, %..[a-1]
714 /// until a one-dimensional vector is reached. All these operations
715 /// will be folded at LLVM IR level.
716 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
717 public:
718   using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
719 
720   LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
721                                 PatternRewriter &rewriter) const override {
722     auto loc = op.getLoc();
723     auto dstType = op.getType();
724     auto eltType = dstType.getElementType();
725     auto dimSizes = op.getMaskDimSizes();
726     int64_t rank = dstType.getRank();
727 
728     if (rank == 0) {
729       assert(dimSizes.size() == 1 &&
730              "Expected exactly one dim size for a 0-D vector");
731       bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1;
732       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
733           op, dstType,
734           DenseIntElementsAttr::get(
735               VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()),
736               ArrayRef<bool>{value}));
737       return success();
738     }
739 
740     // Scalable constant masks can only be lowered for the "none set" case.
741     if (dstType.cast<VectorType>().isScalable()) {
742       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
743           op, DenseElementsAttr::get(dstType, false));
744       return success();
745     }
746 
747     int64_t trueDim = std::min(dstType.getDimSize(0),
748                                dimSizes[0].cast<IntegerAttr>().getInt());
749 
750     if (rank == 1) {
751       // Express constant 1-D case in explicit vector form:
752       //   [T,..,T,F,..,F].
753       SmallVector<bool, 4> values(dstType.getDimSize(0));
754       for (int64_t d = 0; d < trueDim; d++)
755         values[d] = true;
756       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
757           op, dstType, rewriter.getBoolVectorAttr(values));
758       return success();
759     }
760 
761     VectorType lowType =
762         VectorType::get(dstType.getShape().drop_front(), eltType);
763     SmallVector<int64_t, 4> newDimSizes;
764     for (int64_t r = 1; r < rank; r++)
765       newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
766     Value trueVal = rewriter.create<vector::ConstantMaskOp>(
767         loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
768     Value result = rewriter.create<arith::ConstantOp>(
769         loc, dstType, rewriter.getZeroAttr(dstType));
770     for (int64_t d = 0; d < trueDim; d++) {
771       auto pos = rewriter.getI64ArrayAttr(d);
772       result =
773           rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
774     }
775     rewriter.replaceOp(op, result);
776     return success();
777   }
778 };
779 
780 /// Progressive lowering of CreateMaskOp.
781 /// One:
782 ///   %x = vector.create_mask %a, ... : vector<dx...>
783 /// is replaced by:
784 ///   %l = vector.create_mask ... : vector<...>  ; one lower rank
785 ///   %0 = arith.cmpi "slt", %ci, %a       |
786 ///   %1 = select %0, %l, %zeroes    |
787 ///   %r = vector.insert %1, %pr [i] | d-times
788 ///   %x = ....
789 /// until a one-dimensional vector is reached.
790 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
791 public:
792   using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
793 
794   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
795                                 PatternRewriter &rewriter) const override {
796     auto dstType = op.getResult().getType().cast<VectorType>();
797     int64_t rank = dstType.getRank();
798     if (rank <= 1)
799       return rewriter.notifyMatchFailure(
800           op, "0-D and 1-D vectors are handled separately");
801 
802     auto loc = op.getLoc();
803     auto eltType = dstType.getElementType();
804     int64_t dim = dstType.getDimSize(0);
805     Value idx = op.getOperand(0);
806 
807     VectorType lowType =
808         VectorType::get(dstType.getShape().drop_front(), eltType);
809     Value trueVal = rewriter.create<vector::CreateMaskOp>(
810         loc, lowType, op.getOperands().drop_front());
811     Value falseVal = rewriter.create<arith::ConstantOp>(
812         loc, lowType, rewriter.getZeroAttr(lowType));
813     Value result = rewriter.create<arith::ConstantOp>(
814         loc, dstType, rewriter.getZeroAttr(dstType));
815     for (int64_t d = 0; d < dim; d++) {
816       Value bnd =
817           rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d));
818       Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
819                                                  bnd, idx);
820       Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal);
821       auto pos = rewriter.getI64ArrayAttr(d);
822       result =
823           rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
824     }
825     rewriter.replaceOp(op, result);
826     return success();
827   }
828 };
829 
830 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
831 /// vectors progressively on the way to target llvm.matrix intrinsics.
832 /// This iterates over the most major dimension of the 2-D vector and performs
833 /// rewrites into:
834 ///   vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
835 class ShapeCastOp2DDownCastRewritePattern
836     : public OpRewritePattern<vector::ShapeCastOp> {
837 public:
838   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
839 
840   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
841                                 PatternRewriter &rewriter) const override {
842     auto sourceVectorType = op.getSourceVectorType();
843     auto resultVectorType = op.getResultVectorType();
844     if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
845       return failure();
846 
847     auto loc = op.getLoc();
848     Value desc = rewriter.create<arith::ConstantOp>(
849         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
850     unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
851     for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
852       Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
853       desc = rewriter.create<vector::InsertStridedSliceOp>(
854           loc, vec, desc,
855           /*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
856     }
857     rewriter.replaceOp(op, desc);
858     return success();
859   }
860 };
861 
862 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
863 /// vectors progressively.
864 /// This iterates over the most major dimension of the 2-D vector and performs
865 /// rewrites into:
866 ///   vector.extract_strided_slice from 1-D + vector.insert into 2-D
867 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
868 class ShapeCastOp2DUpCastRewritePattern
869     : public OpRewritePattern<vector::ShapeCastOp> {
870 public:
871   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
872 
873   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
874                                 PatternRewriter &rewriter) const override {
875     auto sourceVectorType = op.getSourceVectorType();
876     auto resultVectorType = op.getResultVectorType();
877     if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
878       return failure();
879 
880     auto loc = op.getLoc();
881     Value desc = rewriter.create<arith::ConstantOp>(
882         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
883     unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
884     for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
885       Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
886           loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
887           /*sizes=*/mostMinorVectorSize,
888           /*strides=*/1);
889       desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
890     }
891     rewriter.replaceOp(op, desc);
892     return success();
893   }
894 };
895 
896 // We typically should not lower general shape cast operations into data
897 // movement instructions, since the assumption is that these casts are
898 // optimized away during progressive lowering. For completeness, however,
899 // we fall back to a reference implementation that moves all elements
900 // into the right place if we get here.
901 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
902 public:
903   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
904 
905   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
906                                 PatternRewriter &rewriter) const override {
907     Location loc = op.getLoc();
908     auto sourceVectorType = op.getSourceVectorType();
909     auto resultVectorType = op.getResultVectorType();
910 
911     // Special case 2D/1D lowerings with better implementations.
912     // TODO: make is ND/1D to allow generic ND->1D->MD.
913     int64_t srcRank = sourceVectorType.getRank();
914     int64_t resRank = resultVectorType.getRank();
915     if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
916       return failure();
917 
918     // Generic ShapeCast lowering path goes all the way down to unrolled scalar
919     // extract/insert chains.
920     // TODO: consider evolving the semantics to only allow 1D source or dest and
921     // drop this potentially very expensive lowering.
922     // Compute number of elements involved in the reshape.
923     int64_t numElts = 1;
924     for (int64_t r = 0; r < srcRank; r++)
925       numElts *= sourceVectorType.getDimSize(r);
926     // Replace with data movement operations:
927     //    x[0,0,0] = y[0,0]
928     //    x[0,0,1] = y[0,1]
929     //    x[0,1,0] = y[0,2]
930     // etc., incrementing the two index vectors "row-major"
931     // within the source and result shape.
932     SmallVector<int64_t, 4> srcIdx(srcRank);
933     SmallVector<int64_t, 4> resIdx(resRank);
934     Value result = rewriter.create<arith::ConstantOp>(
935         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
936     for (int64_t i = 0; i < numElts; i++) {
937       if (i != 0) {
938         incIdx(srcIdx, sourceVectorType, srcRank - 1);
939         incIdx(resIdx, resultVectorType, resRank - 1);
940       }
941       Value e = rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
942       result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
943     }
944     rewriter.replaceOp(op, result);
945     return success();
946   }
947 
948 private:
949   static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
950     assert(0 <= r && r < tp.getRank());
951     if (++idx[r] == tp.getDimSize(r)) {
952       idx[r] = 0;
953       incIdx(idx, tp, r - 1);
954     }
955   }
956 };
957 
958 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
959 /// Ex:
960 /// ```
961 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
962 ///   %1 = vector.multi_reduction add, %0 [1]
963 ///     : vector<8x32x16xf32> to vector<8x16xf32>
964 /// ```
965 /// Gets converted to:
966 /// ```
967 ///   %1 = vector.contract {indexing_maps = [
968 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
969 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
970 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
971 ///    iterator_types = ["parallel", "parallel", "reduction"],
972 ///    kind = add} %0, %arg1, %cst_f0
973 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
974 ///  ```
975 struct MultiReduceToContract
976     : public OpRewritePattern<vector::MultiDimReductionOp> {
977   using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern;
978 
979   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
980                                 PatternRewriter &rewriter) const override {
981     if (reduceOp.getKind() != vector::CombiningKind::ADD)
982       return failure();
983     Operation *mulOp = reduceOp.getSource().getDefiningOp();
984     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
985       return failure();
986     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
987     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
988     SmallVector<AffineExpr> exprs;
989     SmallVector<StringRef> iteratorTypes;
990     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
991       if (!isReduceDim.value()) {
992         iteratorTypes.push_back(getParallelIteratorTypeName());
993         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
994       } else {
995         iteratorTypes.push_back(getReductionIteratorTypeName());
996       }
997     }
998     auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
999                                  /*symCount=*/0, exprs, reduceOp.getContext());
1000     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
1001         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(),
1002         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
1003         rewriter.getStrArrayAttr(iteratorTypes));
1004     return success();
1005   }
1006 };
1007 
1008 /// Merge TransposeOp into ContractionOp user.
1009 /// Ex:
1010 /// ```
1011 ///   %0 = vector.transpose %arg0, [2, 0, 1]
1012 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
1013 ///   %1 = vector.contract {indexing_maps = [
1014 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1015 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1016 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1017 ///    iterator_types = ["parallel", "parallel", "reduction"],
1018 ///    kind = add} %0, %arg1, %cst_f0
1019 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1020 /// ```
1021 /// Gets converted to:
1022 /// ```
1023 ///   %1 = vector.contract {indexing_maps = [
1024 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
1025 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1026 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1027 ///    iterator_types = ["parallel", "parallel", "reduction"],
1028 ///    kind = add} %arg0, %arg1, %cst_f0
1029 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1030 ///  ```
1031 struct CombineContractTranspose
1032     : public OpRewritePattern<vector::ContractionOp> {
1033   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1034 
1035   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1036                                 PatternRewriter &rewriter) const override {
1037     SmallVector<AffineMap, 4> maps =
1038         llvm::to_vector<4>(contractOp.getIndexingMaps());
1039     Value lhs = contractOp.getLhs();
1040     Value rhs = contractOp.getRhs();
1041     size_t index = 0;
1042     bool changed = false;
1043     for (Value *operand : {&lhs, &rhs}) {
1044       AffineMap &map = maps[index++];
1045       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
1046       if (!transposeOp)
1047         continue;
1048       SmallVector<int64_t> perm;
1049       transposeOp.getTransp(perm);
1050       AffineMap permutationMap = AffineMap::getPermutationMap(
1051           extractVector<unsigned>(transposeOp.getTransp()),
1052           contractOp.getContext());
1053       map = inversePermutation(permutationMap).compose(map);
1054       *operand = transposeOp.getVector();
1055       changed = true;
1056     }
1057     if (!changed)
1058       return failure();
1059     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1060         contractOp, lhs, rhs, contractOp.getAcc(),
1061         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
1062     return success();
1063   }
1064 };
1065 
1066 /// Merge BroadcastOp into ContractionOp user.
1067 /// Ex:
1068 /// ```
1069 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
1070 ///   %1 = vector.contract {indexing_maps = [
1071 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1072 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1073 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1074 ///    iterator_types = ["parallel", "parallel", "reduction"],
1075 ///    kind = add} %0, %arg1, %cst_f0
1076 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1077 /// ```
1078 /// Gets converted to:
1079 /// ```
1080 ///   %1 = vector.contract {indexing_maps = [
1081 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
1082 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1083 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1084 ///    iterator_types = ["parallel", "parallel", "reduction"],
1085 ///    kind = add} %arg0, %arg1, %cst_f0
1086 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1087 ///  ```
1088 struct CombineContractBroadcast
1089     : public OpRewritePattern<vector::ContractionOp> {
1090   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1091 
1092   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1093                                 PatternRewriter &rewriter) const override {
1094     SmallVector<AffineMap, 4> maps =
1095         llvm::to_vector<4>(contractOp.getIndexingMaps());
1096     Value lhs = contractOp.getLhs();
1097     Value rhs = contractOp.getRhs();
1098     size_t index = 0;
1099     bool changed = false;
1100     for (Value *operand : {&lhs, &rhs}) {
1101       AffineMap &map = maps[index++];
1102       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
1103       if (!broadcast)
1104         continue;
1105       // contractionOp can only take vector as operands.
1106       auto srcType = broadcast.getSourceType().dyn_cast<VectorType>();
1107       if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank())
1108         continue;
1109       int64_t rankDiff =
1110           broadcast.getVectorType().getRank() - srcType.getRank();
1111       bool innerDimBroadcast = false;
1112       SmallVector<AffineExpr> originalDims;
1113       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
1114         if (dim.value() !=
1115             broadcast.getVectorType().getDimSize(rankDiff + dim.index())) {
1116           innerDimBroadcast = true;
1117           break;
1118         }
1119         originalDims.push_back(
1120             rewriter.getAffineDimExpr(dim.index() + rankDiff));
1121       }
1122       // Contract doesn't support inner dimension broadcast. Once this is
1123       // relaxed we can remove this case.
1124       if (innerDimBroadcast)
1125         continue;
1126 
1127       // It would be incorrect to fold a broadcast onto a reduction dimension
1128       // of non-unit size.
1129       bool nonUnitDimReductionBroadcast = false;
1130       for (int64_t i = 0; i < rankDiff; ++i) {
1131         if (broadcast.getVectorType().getDimSize(i) != 1 &&
1132             isReductionIterator(contractOp.getIteratorTypes()
1133                                     .getValue()[map.getDimPosition(i)])) {
1134           nonUnitDimReductionBroadcast = true;
1135           break;
1136         }
1137       }
1138       if (nonUnitDimReductionBroadcast)
1139         continue;
1140 
1141       AffineMap broadcastMap =
1142           AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims,
1143                          contractOp.getContext());
1144       map = broadcastMap.compose(map);
1145       *operand = broadcast.getSource();
1146       changed = true;
1147     }
1148 
1149     if (!changed)
1150       return failure();
1151 
1152     // Determine which dims are usused, now that the maps have been composed
1153     // with the broadcast maps.
1154     llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps);
1155     // Compress unused dims.
1156     for (auto &m : maps)
1157       m = compressDims(m, unusedDimsBitVector);
1158     // Compute the combined iterators.
1159     SmallVector<Attribute, 4> iterators;
1160     for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) {
1161       if (!unusedDimsBitVector.test(i))
1162         iterators.push_back(contractOp.getIteratorTypes().getValue()[i]);
1163     }
1164     // Check that compressing unused dims isn't removing all reduction
1165     // iterators. For example, if the vector.contract had only one reduction
1166     // iterator and that was a unit-dimension created by a broadcast,
1167     // then we should bail here, otherwise we would create a contract without
1168     // a reduction iterator.
1169     if (!llvm::any_of(iterators, isReductionIterator))
1170       return failure();
1171     // If the compressed maps have a dimension that is not used by either LHS or
1172     // RHS then the ContractionOp verifier would fail.
1173     if (getUnusedDimsBitVector({maps[0], maps[1]}).any())
1174       return failure();
1175     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1176         contractOp, lhs, rhs, contractOp.getAcc(),
1177         rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators));
1178     return success();
1179   }
1180 };
1181 
1182 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and
1183 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when
1184 /// casting ops are around these operations.
1185 /// Ex:
1186 /// ```
1187 ///   %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8>
1188 ///   %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32>
1189 /// ```
1190 /// Gets converted to:
1191 /// ```
1192 ///   %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32>
1193 ///   %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32>
1194 /// ```
1195 struct ReorderCastOpsOnBroadcast
1196     : public OpInterfaceRewritePattern<CastOpInterface> {
1197   using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern;
1198 
1199   LogicalResult matchAndRewrite(CastOpInterface op,
1200                                 PatternRewriter &rewriter) const override {
1201     if (op->getNumOperands() != 1)
1202       return failure();
1203     auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>();
1204     if (!bcastOp)
1205       return failure();
1206 
1207     Type castResTy = getElementTypeOrSelf(op->getResult(0));
1208     if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>())
1209       castResTy = VectorType::get(vecTy.getShape(), castResTy);
1210     auto *castOp =
1211         rewriter.create(op->getLoc(), op->getName().getIdentifier(),
1212                         bcastOp.getSource(), castResTy, op->getAttrs());
1213     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1214         op, op->getResult(0).getType(), castOp->getResult(0));
1215     return success();
1216   }
1217 };
1218 
1219 /// Reorders elementwise(transpose) to transpose(elementwise). This makes
1220 /// transpose ops and contraction ops closer, which kicks in
1221 /// CombineContractTranspose pattern when elementwise ops are between these
1222 /// operations. Ex:
1223 /// ```
1224 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1225 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1226 /// %r = arith.addf %at, %bt : vector<2x4xf32>
1227 /// ```
1228 /// Gets converted to:
1229 /// ```
1230 /// %0 = arith.addf %a, %b : vector<4x2xf32>
1231 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32>
1232 /// ```
1233 struct ReorderElementwiseOpsOnTranspose final
1234     : public OpTraitRewritePattern<OpTrait::Elementwise> {
1235   using OpTraitRewritePattern::OpTraitRewritePattern;
1236   LogicalResult matchAndRewrite(Operation *op,
1237                                 PatternRewriter &rewriter) const override {
1238     if (op->getNumResults() != 1 || op->getNumRegions() != 0)
1239       return failure();
1240 
1241     // Make sure all operands are transpose/constant ops and collect their
1242     // transposition maps.
1243     SmallVector<ArrayAttr, 4> transposeMaps;
1244     transposeMaps.reserve(op->getNumOperands());
1245     // Record the initial type before transposition. We'll use its shape later.
1246     // Any type will do here as we will check all transpose maps are the same.
1247     VectorType srcType;
1248     for (Value operand : op->getOperands()) {
1249       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1250       if (transposeOp) {
1251         transposeMaps.push_back(transposeOp.getTransp());
1252         srcType = transposeOp.getVectorType();
1253       } else if (!matchPattern(operand, m_Constant())) {
1254         return failure();
1255       }
1256     }
1257     if (transposeMaps.empty())
1258       return failure();
1259     // This is an elementwise op, so all transposed operands should have the
1260     // same type. We need to additionally check that all transposes uses the
1261     // same map.
1262     if (!llvm::is_splat(transposeMaps))
1263       return rewriter.notifyMatchFailure(op, "different transpose map");
1264 
1265     SmallVector<Value, 4> srcValues;
1266     srcValues.reserve(op->getNumOperands());
1267 
1268     // If there are constant operands, we need to insert inverse transposes for
1269     // them. Calculate the inverse order first.
1270     auto order = extractVector<unsigned>(transposeMaps.front());
1271     SmallVector<int64_t> invOrder(order.size());
1272     for (int i = 0, e = order.size(); i < e; ++i)
1273       invOrder[order[i]] = i;
1274 
1275     for (Value operand : op->getOperands()) {
1276       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1277       if (transposeOp) {
1278         srcValues.push_back(transposeOp.getVector());
1279       } else {
1280         // This is a constant. Create a reverse transpose op for it.
1281         auto vectorType = VectorType::get(
1282             srcType.getShape(),
1283             operand.getType().cast<VectorType>().getElementType());
1284         srcValues.push_back(rewriter.create<vector::TransposeOp>(
1285             operand.getLoc(), vectorType, operand,
1286             rewriter.getI64ArrayAttr(invOrder)));
1287       }
1288     }
1289 
1290     auto vectorType = VectorType::get(
1291         srcType.getShape(),
1292         op->getResultTypes()[0].cast<VectorType>().getElementType());
1293     Operation *elementwiseOp =
1294         rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
1295                         vectorType, op->getAttrs());
1296     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
1297         op, op->getResultTypes()[0], elementwiseOp->getResult(0),
1298         transposeMaps.front());
1299     return success();
1300   }
1301 };
1302 
1303 } // namespace
1304 
1305 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using
1306 /// operands `x` and `y`.
1307 static Value createAdd(Location loc, Value x, Value y, bool isInt,
1308                        PatternRewriter &rewriter) {
1309   if (isInt)
1310     return rewriter.create<arith::AddIOp>(loc, x, y);
1311   return rewriter.create<arith::AddFOp>(loc, x, y);
1312 }
1313 
1314 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using
1315 /// operands `x and `y`.
1316 static Value createMul(Location loc, Value x, Value y, bool isInt,
1317                        PatternRewriter &rewriter) {
1318   if (isInt)
1319     return rewriter.create<arith::MulIOp>(loc, x, y);
1320   return rewriter.create<arith::MulFOp>(loc, x, y);
1321 }
1322 
1323 namespace mlir {
1324 
1325 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1326 /// semantics to:
1327 /// ```
1328 ///    %mta = maybe_transpose
1329 ///    %mtb = maybe_transpose
1330 ///    %flattened_a = vector.shape_cast %mta
1331 ///    %flattened_b = vector.shape_cast %mtb
1332 ///    %flattened_d = vector.matmul %flattened_a, %flattened_b
1333 ///    %mtd = vector.shape_cast %flattened_d
1334 ///    %d = maybe_untranspose %mtd
1335 ///    %e = add %c, %d
1336 /// ```
1337 /// `vector.matmul` later lowers to `llvm.matrix.multiply`.
1338 //
1339 /// This only kicks in when VectorTransformsOptions is set to `Matmul`.
1340 /// vector.transpose operations are inserted if the vector.contract op is not a
1341 /// row-major matrix multiply.
1342 LogicalResult
1343 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op,
1344                                                  PatternRewriter &rew) const {
1345   // TODO: implement masks
1346   if (llvm::size(op.getMasks()) != 0)
1347     return failure();
1348   if (vectorTransformOptions.vectorContractLowering !=
1349       vector::VectorContractLowering::Matmul)
1350     return failure();
1351   if (failed(filter(op)))
1352     return failure();
1353 
1354   auto iteratorTypes = op.getIteratorTypes().getValue();
1355   if (!isParallelIterator(iteratorTypes[0]) ||
1356       !isParallelIterator(iteratorTypes[1]) ||
1357       !isReductionIterator(iteratorTypes[2]))
1358     return failure();
1359 
1360   Type elementType = op.getLhsType().getElementType();
1361   if (!elementType.isIntOrFloat())
1362     return failure();
1363 
1364   Type dstElementType = op.getType();
1365   if (auto vecType = dstElementType.dyn_cast<VectorType>())
1366     dstElementType = vecType.getElementType();
1367   if (elementType != dstElementType)
1368     return failure();
1369 
1370   // Perform lhs + rhs transpositions to conform to matmul row-major semantics.
1371   // Bail out if the contraction cannot be put in this form.
1372   MLIRContext *ctx = op.getContext();
1373   Location loc = op.getLoc();
1374   AffineExpr m, n, k;
1375   bindDims(rew.getContext(), m, n, k);
1376   // LHS must be A(m, k) or A(k, m).
1377   Value lhs = op.getLhs();
1378   auto lhsMap = op.getIndexingMaps()[0];
1379   if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
1380     lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0});
1381   else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
1382     return failure();
1383 
1384   // RHS must be B(k, n) or B(n, k).
1385   Value rhs = op.getRhs();
1386   auto rhsMap = op.getIndexingMaps()[1];
1387   if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
1388     rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0});
1389   else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
1390     return failure();
1391 
1392   // At this point lhs and rhs are in row-major.
1393   VectorType lhsType = lhs.getType().cast<VectorType>();
1394   VectorType rhsType = rhs.getType().cast<VectorType>();
1395   int64_t lhsRows = lhsType.getDimSize(0);
1396   int64_t lhsColumns = lhsType.getDimSize(1);
1397   int64_t rhsColumns = rhsType.getDimSize(1);
1398 
1399   Type flattenedLHSType =
1400       VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
1401   lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs);
1402 
1403   Type flattenedRHSType =
1404       VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
1405   rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs);
1406 
1407   Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns,
1408                                            rhsColumns);
1409   mul = rew.create<vector::ShapeCastOp>(
1410       loc,
1411       VectorType::get({lhsRows, rhsColumns},
1412                       getElementTypeOrSelf(op.getAcc().getType())),
1413       mul);
1414 
1415   // ACC must be C(m, n) or C(n, m).
1416   auto accMap = op.getIndexingMaps()[2];
1417   if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
1418     mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0});
1419   else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
1420     llvm_unreachable("invalid contraction semantics");
1421 
1422   Value res =
1423       elementType.isa<IntegerType>()
1424           ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul))
1425           : static_cast<Value>(
1426                 rew.create<arith::AddFOp>(loc, op.getAcc(), mul));
1427 
1428   rew.replaceOp(op, res);
1429   return success();
1430 }
1431 
1432 namespace {
1433 struct IteratorType {
1434   IteratorType(StringRef strRef) : strRef(strRef) {}
1435   bool isOfType(Attribute attr) const {
1436     auto sAttr = attr.dyn_cast<StringAttr>();
1437     return sAttr && sAttr.getValue() == strRef;
1438   }
1439   StringRef strRef;
1440 };
1441 struct Par : public IteratorType {
1442   Par() : IteratorType(getParallelIteratorTypeName()) {}
1443 };
1444 struct Red : public IteratorType {
1445   Red() : IteratorType(getReductionIteratorTypeName()) {}
1446 };
1447 
1448 /// Generate a vector implementation for matmat, matvec and tmatvec.
1449 /// This unrolls outer-products along the reduction dimension.
1450 struct UnrolledOuterProductGenerator
1451     : public StructuredGenerator<vector::ContractionOp> {
1452   UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op)
1453       : StructuredGenerator<vector::ContractionOp>(builder, op),
1454         kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()),
1455         res(op.getAcc()), lhsType(op.getLhsType()) {}
1456 
1457   Value t(Value v) {
1458     static constexpr std::array<int64_t, 2> perm = {1, 0};
1459     return builder.create<vector::TransposeOp>(loc, v, perm);
1460   }
1461 
1462   Value promote(Value v, Type dstElementType) {
1463     Type elementType = v.getType();
1464     auto vecType = elementType.dyn_cast<VectorType>();
1465     if (vecType)
1466       elementType = vecType.getElementType();
1467     if (elementType == dstElementType)
1468       return v;
1469     Type promotedType = dstElementType;
1470     if (vecType)
1471       promotedType = VectorType::get(vecType.getShape(), promotedType);
1472     if (dstElementType.isa<FloatType>())
1473       return builder.create<arith::ExtFOp>(loc, promotedType, v);
1474     return builder.create<arith::ExtSIOp>(loc, promotedType, v);
1475   }
1476 
1477   Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) {
1478     assert(reductionSize > 0);
1479     Type resElementType = res.getType().cast<VectorType>().getElementType();
1480     for (int64_t k = 0; k < reductionSize; ++k) {
1481       Value a = builder.create<vector::ExtractOp>(loc, lhs, k);
1482       Value b = builder.create<vector::ExtractOp>(loc, rhs, k);
1483       a = promote(a, resElementType);
1484       b = promote(b, resElementType);
1485       res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b,
1486                                                    res, kind);
1487     }
1488     return res;
1489   }
1490 
1491   /// Two outer parallel, one inner reduction (matmat flavor).
1492   FailureOr<Value> matmat() {
1493     if (!iters({Par(), Par(), Red()}))
1494       return failure();
1495     // Set up the parallel/reduction structure in the right form.
1496     AffineExpr m, n, k;
1497     bindDims(builder.getContext(), m, n, k);
1498     // Classical row-major matmul:  Just permute the lhs.
1499     if (layout({{m, k}, {k, n}, {m, n}}))
1500       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1501     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1502     if (layout({{m, k}, {n, k}, {m, n}})) {
1503       Value tlhs = t(lhs);
1504       return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1));
1505     }
1506     // No need to permute anything.
1507     if (layout({{k, m}, {k, n}, {m, n}}))
1508       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1509     // Just permute the rhs.
1510     if (layout({{k, m}, {n, k}, {m, n}}))
1511       return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0));
1512     // Transposed output: swap RHS and LHS.
1513     // Classical row-major matmul: permute the lhs.
1514     if (layout({{m, k}, {k, n}, {n, m}}))
1515       return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1));
1516     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1517     if (layout({{m, k}, {n, k}, {n, m}})) {
1518       Value trhs = t(rhs);
1519       return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1));
1520     }
1521     if (layout({{k, m}, {k, n}, {n, m}}))
1522       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1523     if (layout({{k, m}, {n, k}, {n, m}}))
1524       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1525     return failure();
1526   }
1527 
1528   /// One outer parallel, one inner reduction (matvec flavor)
1529   FailureOr<Value> matvec() {
1530     if (!iters({Par(), Red()}))
1531       return failure();
1532     AffineExpr m, k;
1533     bindDims(builder.getContext(), m, k);
1534 
1535     // Case mat-vec: transpose.
1536     if (layout({{m, k}, {k}, {m}}))
1537       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1538     // Case mat-trans-vec: ready to go.
1539     if (layout({{k, m}, {k}, {m}}))
1540       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1541     // Case vec-mat: swap and transpose.
1542     if (layout({{k}, {m, k}, {m}}))
1543       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1544     // Case vec-mat-trans: swap and ready to go.
1545     if (layout({{k}, {k, m}, {m}}))
1546       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1547     return failure();
1548   }
1549 
1550   //
1551   // One outer reduction, one inner parallel (tmatvec flavor)
1552   //
1553   FailureOr<Value> tmatvec() {
1554     if (!iters({Red(), Par()}))
1555       return failure();
1556     AffineExpr k, m;
1557     bindDims(builder.getContext(), k, m);
1558 
1559     // Case mat-vec: transpose.
1560     if (layout({{m, k}, {k}, {m}}))
1561       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1562     // Case mat-trans-vec: ready to go.
1563     if (layout({{k, m}, {k}, {m}}))
1564       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1565     // Case vec-mat: swap and transpose.
1566     if (layout({{k}, {m, k}, {m}}))
1567       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1568     // Case vec-mat-trans: swap and ready to go.
1569     if (layout({{k}, {k, m}, {m}}))
1570       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1571     return failure();
1572   }
1573 
1574 private:
1575   vector::CombiningKind kind;
1576   Value lhs, rhs, res;
1577   VectorType lhsType;
1578 };
1579 } // namespace
1580 
1581 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1582 /// semantics to a reduction_size-unrolled sequence:
1583 /// ```
1584 ///    %at = vector.transpose %a, [1, 0]
1585 ///    %bRow0 = vector.extract %b[0]
1586 ///    %atRow0 = vector.extract %at[0]
1587 ///    %c0 = vector.outerproduct %atRow0, %bRow0, %c
1588 ///    ...
1589 ///    %bRowK = vector.extract %b[K]
1590 ///    %atRowK = vector.extract %at[K]
1591 ///    %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
1592 /// ```
1593 ///
1594 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but
1595 /// otherwise supports any layout permutation of the matrix-multiply.
1596 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
1597     vector::ContractionOp op, PatternRewriter &rewriter) const {
1598   // TODO: implement masks
1599   if (llvm::size(op.getMasks()) != 0)
1600     return failure();
1601 
1602   if (vectorTransformOptions.vectorContractLowering !=
1603       vector::VectorContractLowering::OuterProduct)
1604     return failure();
1605 
1606   if (failed(filter(op)))
1607     return failure();
1608 
1609   UnrolledOuterProductGenerator e(rewriter, op);
1610   FailureOr<Value> matmatRes = e.matmat();
1611   if (succeeded(matmatRes)) {
1612     rewriter.replaceOp(op, *matmatRes);
1613     return success();
1614   }
1615   FailureOr<Value> matvecRes = e.matvec();
1616   if (succeeded(matvecRes)) {
1617     rewriter.replaceOp(op, *matvecRes);
1618     return success();
1619   }
1620   FailureOr<Value> tmatvecRes = e.tmatvec();
1621   if (succeeded(tmatvecRes)) {
1622     rewriter.replaceOp(op, *tmatvecRes);
1623     return success();
1624   }
1625 
1626   return failure();
1627 }
1628 
1629 LogicalResult
1630 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
1631                                             PatternRewriter &rewriter) const {
1632   // TODO: implement masks
1633   if (llvm::size(op.getMasks()) != 0)
1634     return failure();
1635 
1636   if (failed(filter(op)))
1637     return failure();
1638 
1639   if (vectorTransformOptions.vectorContractLowering !=
1640       vector::VectorContractLowering::Dot)
1641     return failure();
1642 
1643   auto iteratorTypes = op.getIteratorTypes().getValue();
1644   static constexpr std::array<int64_t, 2> perm = {1, 0};
1645   Location loc = op.getLoc();
1646   Value lhs = op.getLhs(), rhs = op.getRhs();
1647 
1648   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1649   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
1650   AffineExpr m, n, k;
1651   bindDims(rewriter.getContext(), m, n, k);
1652   SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
1653   //
1654   // In the following we wish to make the reduction dimension innermost so we
1655   // can load vectors and just fmul + reduce into a scalar.
1656   //
1657   if (isParallelIterator(iteratorTypes[0]) &&
1658       isParallelIterator(iteratorTypes[1]) &&
1659       isReductionIterator(iteratorTypes[2])) {
1660     //
1661     // Two outer parallel, one inner reduction (matmat flavor).
1662     //
1663     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1664       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1665     } else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
1666       // No need to permute anything.
1667     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1668       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1669       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1670     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1671       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1672     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1673       // This is the classical row-major matmul. Just permute the lhs.
1674       Value tmp = lhs;
1675       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1676       rhs = tmp;
1677     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1678       std::swap(lhs, rhs);
1679     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1680       Value tmp = lhs;
1681       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1682       rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
1683     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1684       Value tmp = rhs;
1685       rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1686       lhs = tmp;
1687     } else {
1688       return failure();
1689     }
1690   } else if (isParallelIterator(iteratorTypes[0]) &&
1691              isReductionIterator(iteratorTypes[1])) {
1692     //
1693     // One outer parallel, one inner reduction (matvec flavor)
1694     //
1695     if (maps == infer({{m, n}, {n}, {m}})) {
1696       // No need to permute anything.
1697     } else if (maps == infer({{n, m}, {n}, {m}})) {
1698       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1699     } else if (maps == infer({{n}, {m, n}, {m}})) {
1700       std::swap(lhs, rhs);
1701     } else if (maps == infer({{n}, {n, m}, {m}})) {
1702       std::swap(lhs, rhs);
1703       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1704     } else {
1705       return failure();
1706     }
1707   } else {
1708     return failure();
1709   }
1710 
1711   VectorType dstType = op.getResultType().cast<VectorType>();
1712   assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
1713          "Expected dst type of rank 1 or 2");
1714 
1715   unsigned rank = dstType.getRank();
1716   unsigned dstRows = dstType.getShape()[0];
1717   unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
1718 
1719   // ExtractOp does not allow dynamic indexing, we must unroll explicitly.
1720   Value res = rewriter.create<arith::ConstantOp>(loc, dstType,
1721                                                  rewriter.getZeroAttr(dstType));
1722   bool isInt = dstType.getElementType().isa<IntegerType>();
1723   for (unsigned r = 0; r < dstRows; ++r) {
1724     Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
1725     for (unsigned c = 0; c < dstColumns; ++c) {
1726       Value b = rank == 1
1727                     ? rhs
1728                     : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
1729       Value m = createMul(op.getLoc(), a, b, isInt, rewriter);
1730       Value reduced = rewriter.create<vector::ReductionOp>(
1731           op.getLoc(), vector::CombiningKind::ADD, m);
1732 
1733       SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
1734                                               : SmallVector<int64_t, 2>{r, c};
1735       res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
1736     }
1737   }
1738   if (auto acc = op.getAcc())
1739     res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1740   rewriter.replaceOp(op, res);
1741   return success();
1742 }
1743 
1744 /// Progressive lowering of ContractionOp.
1745 /// One:
1746 ///   %x = vector.contract with at least one free/batch dimension
1747 /// is replaced by:
1748 ///   %a = vector.contract with one less free/batch dimension
1749 ///   %b = vector.contract with one less free/batch dimension
1750 ///   ..
1751 ///   %x = combine %a %b ..
1752 /// until a pure contraction is reached (no free/batch dimensions),
1753 /// which is replaced by a dot-product.
1754 ///
1755 /// This only kicks in when either VectorTransformsOptions is set
1756 /// to DOT or when other contraction patterns fail.
1757 //
1758 // TODO: break down into transpose/reshape/cast ops
1759 //               when they become available to avoid code dup
1760 // TODO: investigate lowering order impact on performance
1761 LogicalResult
1762 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
1763                                        PatternRewriter &rewriter) const {
1764   // TODO: implement masks.
1765   if (llvm::size(op.getMasks()) != 0)
1766     return failure();
1767 
1768   if (failed(filter(op)))
1769     return failure();
1770 
1771   // TODO: support mixed mode contract lowering.
1772   if (op.getLhsType().getElementType() !=
1773           getElementTypeOrSelf(op.getAccType()) ||
1774       op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
1775     return failure();
1776 
1777   // TODO: implement benefits, cost models.
1778   MLIRContext *ctx = op.getContext();
1779   ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx);
1780   if (succeeded(pat1.matchAndRewrite(op, rewriter)))
1781     return success();
1782   ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx);
1783   if (succeeded(pat2.matchAndRewrite(op, rewriter)))
1784     return success();
1785   ContractionOpToDotLowering pat3(vectorTransformOptions, ctx);
1786   if (succeeded(pat3.matchAndRewrite(op, rewriter)))
1787     return success();
1788   ContractOpToElementwise pat4(vectorTransformOptions, ctx);
1789   if (succeeded(pat4.matchAndRewrite(op, rewriter)))
1790     return success();
1791 
1792   // Find first batch dimension in LHS/RHS, and lower when found.
1793   std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
1794   if (!batchDimMap.empty()) {
1795     int64_t lhsIndex = batchDimMap[0].first;
1796     int64_t rhsIndex = batchDimMap[0].second;
1797     auto newOp = lowerParallel(op, lhsIndex, rhsIndex, rewriter);
1798     if (failed(newOp))
1799       return failure();
1800     rewriter.replaceOp(op, newOp.value());
1801     return success();
1802   }
1803 
1804   // Collect contracting dimensions.
1805   std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
1806       op.getContractingDimMap();
1807   DenseSet<int64_t> lhsContractingDimSet;
1808   DenseSet<int64_t> rhsContractingDimSet;
1809   for (auto &dimPair : contractingDimMap) {
1810     lhsContractingDimSet.insert(dimPair.first);
1811     rhsContractingDimSet.insert(dimPair.second);
1812   }
1813 
1814   // Find first free dimension in LHS, and lower when found.
1815   VectorType lhsType = op.getLhsType();
1816   for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
1817     if (lhsContractingDimSet.count(lhsIndex) == 0) {
1818       auto newOp = lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter);
1819       if (failed(newOp))
1820         return failure();
1821       rewriter.replaceOp(op, newOp.value());
1822       return success();
1823     }
1824   }
1825 
1826   // Find first free dimension in RHS, and lower when found.
1827   VectorType rhsType = op.getRhsType();
1828   for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
1829     if (rhsContractingDimSet.count(rhsIndex) == 0) {
1830       auto newOp = lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter);
1831       if (failed(newOp))
1832         return failure();
1833       rewriter.replaceOp(op, newOp.value());
1834       return success();
1835     }
1836   }
1837 
1838   // Lower the first remaining reduction dimension.
1839   if (!contractingDimMap.empty()) {
1840     auto newOp = lowerReduction(op, rewriter);
1841     if (failed(newOp))
1842       return failure();
1843     rewriter.replaceOp(op, newOp.value());
1844     return success();
1845   }
1846 
1847   return failure();
1848 }
1849 
1850 // Lower one parallel dimension.
1851 // Incidentally also tolerates unit-size (hence trivial) reduction dimensions.
1852 // TODO: consider reusing existing contract unrolling
1853 FailureOr<Value>
1854 ContractionOpLowering::lowerParallel(vector::ContractionOp op, int64_t lhsIndex,
1855                                      int64_t rhsIndex,
1856                                      PatternRewriter &rewriter) const {
1857   VectorType lhsType = op.getLhsType();
1858   VectorType rhsType = op.getRhsType();
1859   VectorType resType = op.getResultType().cast<VectorType>();
1860   // Find the iterator type index and result index.
1861   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1862   int64_t iterIndex = -1;
1863   int64_t dimSize = -1;
1864   if (lhsIndex >= 0) {
1865     iterIndex = iMap[0].getDimPosition(lhsIndex);
1866     if (rhsIndex >= 0 && iterIndex != iMap[1].getDimPosition(rhsIndex))
1867       return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1868         diag << "expected lhsIndex=" << lhsIndex << " and rhsIndex=" << rhsIndex
1869              << " to map to the same dimension";
1870       });
1871     dimSize = lhsType.getDimSize(lhsIndex);
1872   } else if (rhsIndex >= 0) {
1873     iterIndex = iMap[1].getDimPosition(rhsIndex);
1874     dimSize = rhsType.getDimSize(rhsIndex);
1875   }
1876   if (iterIndex < 0)
1877     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1878       diag << "expected either lhsIndex=" << lhsIndex
1879            << " or rhsIndex=" << rhsIndex << " to be nonnegative";
1880     });
1881   // value_or(-1) means that we tolerate a dimension not appearing
1882   // in the result map. That can't happen for actual parallel iterators, but
1883   // the caller ContractionOpLowering::matchAndRewrite is currently calling
1884   // lowerParallel also for the case of unit-size reduction dims appearing only
1885   // on one of LHS or RHS, not both. At the moment, such cases are created by
1886   // CastAwayContractionLeadingOneDim, so we need to either support that or
1887   // modify that pattern.
1888   int64_t resIndex = getResultIndex(iMap[2], iterIndex).value_or(-1);
1889   if (resIndex == -1 && dimSize != 1)
1890     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1891       diag << "expected the dimension for iterIndex=" << iterIndex
1892            << " to either appear in the result map, or to be a unit dimension";
1893     });
1894   // Construct new iterator types and affine map array attribute.
1895   std::array<AffineMap, 3> lowIndexingMaps = {
1896       adjustMap(iMap[0], iterIndex, rewriter),
1897       adjustMap(iMap[1], iterIndex, rewriter),
1898       adjustMap(iMap[2], iterIndex, rewriter)};
1899   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1900   auto lowIter =
1901       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1902   // Unroll into a series of lower dimensional vector.contract ops.
1903   Location loc = op.getLoc();
1904   Value result = rewriter.create<arith::ConstantOp>(
1905       loc, resType, rewriter.getZeroAttr(resType));
1906   for (int64_t d = 0; d < dimSize; ++d) {
1907     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1908     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1909     auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter);
1910     Value lowContract = rewriter.create<vector::ContractionOp>(
1911         loc, lhs, rhs, acc, lowAffine, lowIter);
1912     result =
1913         reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
1914   }
1915   return result;
1916 }
1917 
1918 // Lower one reduction dimension.
1919 FailureOr<Value>
1920 ContractionOpLowering::lowerReduction(vector::ContractionOp op,
1921                                       PatternRewriter &rewriter) const {
1922   auto loc = op.getLoc();
1923   VectorType lhsType = op.getLhsType();
1924   VectorType rhsType = op.getRhsType();
1925   Type resType = op.getResultType();
1926   if (resType.isa<VectorType>())
1927     return rewriter.notifyMatchFailure(op,
1928                                        "did not expect a VectorType result");
1929   bool isInt = resType.isa<IntegerType>();
1930   // Use iterator index 0.
1931   int64_t iterIndex = 0;
1932   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1933   Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
1934   Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
1935   if (!lookupLhs.has_value())
1936     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1937       diag << "expected iterIndex=" << iterIndex << "to map to a LHS dimension";
1938     });
1939   if (!lookupRhs.has_value())
1940     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1941       diag << "expected iterIndex=" << iterIndex << "to map to a RHS dimension";
1942     });
1943   int64_t lhsIndex = lookupLhs.value();
1944   int64_t rhsIndex = lookupRhs.value();
1945   int64_t dimSize = lhsType.getDimSize(lhsIndex);
1946   if (dimSize != rhsType.getDimSize(rhsIndex))
1947     return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
1948       diag << "expect LHS dimension " << lhsIndex
1949            << " to have the same size as RHS dimension " << rhsIndex;
1950     });
1951   // Base case.
1952   if (lhsType.getRank() == 1) {
1953     if (rhsType.getRank() != 1)
1954       return rewriter.notifyMatchFailure(
1955           op, "When LHS has rank 1, expected also RHS to have rank 1");
1956     Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter);
1957     auto kind = vector::CombiningKind::ADD;
1958     if (auto acc = op.getAcc())
1959       return rewriter.create<vector::ReductionOp>(loc, kind, m, acc)
1960           .getResult();
1961     return rewriter.create<vector::ReductionOp>(loc, kind, m).getResult();
1962   }
1963   // Construct new iterator types and affine map array attribute.
1964   std::array<AffineMap, 3> lowIndexingMaps = {
1965       adjustMap(iMap[0], iterIndex, rewriter),
1966       adjustMap(iMap[1], iterIndex, rewriter),
1967       adjustMap(iMap[2], iterIndex, rewriter)};
1968   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1969   auto lowIter =
1970       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1971   // Unroll into a series of lower dimensional vector.contract ops.
1972   // By feeding the initial accumulator into the first contraction,
1973   // and the result of each contraction into the next, eventually
1974   // the sum of all reductions is computed.
1975   Value result = op.getAcc();
1976   for (int64_t d = 0; d < dimSize; ++d) {
1977     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1978     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1979     result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
1980                                                     lowAffine, lowIter);
1981   }
1982   return result;
1983 }
1984 
1985 } // namespace mlir
1986 
1987 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp(
1988     OpBuilder &builder, Operation *op, ArrayRef<Value> ids,
1989     ArrayRef<int64_t> multiplicity, const AffineMap &map) {
1990   OpBuilder::InsertionGuard guard(builder);
1991   builder.setInsertionPointAfter(op);
1992   Location loc = op->getLoc();
1993   if (op->getNumResults() != 1)
1994     return {};
1995   Value result = op->getResult(0);
1996   VectorType type = op->getResult(0).getType().dyn_cast<VectorType>();
1997   if (!type || map.getNumResults() != multiplicity.size())
1998     return {};
1999   // For each dimension being distributed check that the size is a multiple of
2000   // the multiplicity. To handle more sizes we would need to support masking.
2001   unsigned multiplictyCount = 0;
2002   for (auto exp : map.getResults()) {
2003     auto affinExp = exp.dyn_cast<AffineDimExpr>();
2004     if (!affinExp || affinExp.getPosition() >= type.getRank() ||
2005         type.getDimSize(affinExp.getPosition()) %
2006                 multiplicity[multiplictyCount++] !=
2007             0)
2008       return {};
2009   }
2010   DistributeOps ops;
2011   ops.extract =
2012       builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map);
2013   ops.insert =
2014       builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids);
2015   return ops;
2016 }
2017 
2018 /// Progressive lowering of transfer_read. This pattern supports lowering of
2019 /// `vector.transfer_read` to a combination of `vector.load` and
2020 /// `vector.broadcast` if all of the following hold:
2021 /// - Stride of most minor memref dimension must be 1.
2022 /// - Out-of-bounds masking is not required.
2023 /// - If the memref's element type is a vector type then it coincides with the
2024 ///   result type.
2025 /// - The permutation map doesn't perform permutation (broadcasting is allowed).
2026 struct TransferReadToVectorLoadLowering
2027     : public OpRewritePattern<vector::TransferReadOp> {
2028   TransferReadToVectorLoadLowering(MLIRContext *context,
2029                                    llvm::Optional<unsigned> maxRank)
2030       : OpRewritePattern<vector::TransferReadOp>(context),
2031         maxTransferRank(maxRank) {}
2032 
2033   LogicalResult matchAndRewrite(vector::TransferReadOp read,
2034                                 PatternRewriter &rewriter) const override {
2035     if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank)
2036       return failure();
2037 
2038     SmallVector<unsigned, 4> broadcastedDims;
2039     // Permutations are handled by VectorToSCF or
2040     // populateVectorTransferPermutationMapLoweringPatterns.
2041     // We let the 0-d corner case pass-through as it is supported.
2042     if (!read.getPermutationMap().isMinorIdentityWithBroadcasting(
2043             &broadcastedDims))
2044       return failure();
2045 
2046     auto memRefType = read.getShapedType().dyn_cast<MemRefType>();
2047     if (!memRefType)
2048       return failure();
2049 
2050     // Non-unit strides are handled by VectorToSCF.
2051     if (!vector::isLastMemrefDimUnitStride(memRefType))
2052       return failure();
2053 
2054     // If there is broadcasting involved then we first load the unbroadcasted
2055     // vector, and then broadcast it with `vector.broadcast`.
2056     ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
2057     SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(),
2058                                                      vectorShape.end());
2059     for (unsigned i : broadcastedDims)
2060       unbroadcastedVectorShape[i] = 1;
2061     VectorType unbroadcastedVectorType = VectorType::get(
2062         unbroadcastedVectorShape, read.getVectorType().getElementType());
2063 
2064     // `vector.load` supports vector types as memref's elements only when the
2065     // resulting vector type is the same as the element type.
2066     auto memrefElTy = memRefType.getElementType();
2067     if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType)
2068       return failure();
2069 
2070     // Otherwise, element types of the memref and the vector must match.
2071     if (!memrefElTy.isa<VectorType>() &&
2072         memrefElTy != read.getVectorType().getElementType())
2073       return failure();
2074 
2075     // Out-of-bounds dims are handled by MaterializeTransferMask.
2076     if (read.hasOutOfBoundsDim())
2077       return failure();
2078 
2079     // Create vector load op.
2080     Operation *loadOp;
2081     if (read.getMask()) {
2082       Value fill = rewriter.create<vector::SplatOp>(
2083           read.getLoc(), unbroadcastedVectorType, read.getPadding());
2084       loadOp = rewriter.create<vector::MaskedLoadOp>(
2085           read.getLoc(), unbroadcastedVectorType, read.getSource(),
2086           read.getIndices(), read.getMask(), fill);
2087     } else {
2088       loadOp = rewriter.create<vector::LoadOp>(
2089           read.getLoc(), unbroadcastedVectorType, read.getSource(),
2090           read.getIndices());
2091     }
2092 
2093     // Insert a broadcasting op if required.
2094     if (!broadcastedDims.empty()) {
2095       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
2096           read, read.getVectorType(), loadOp->getResult(0));
2097     } else {
2098       rewriter.replaceOp(read, loadOp->getResult(0));
2099     }
2100 
2101     return success();
2102   }
2103 
2104   llvm::Optional<unsigned> maxTransferRank;
2105 };
2106 
2107 /// Replace a 0-d vector.load with a memref.load + vector.broadcast.
2108 // TODO: we shouldn't cross the vector/scalar domains just for this
2109 // but atm we lack the infra to avoid it. Possible solutions include:
2110 // - go directly to LLVM + bitcast
2111 // - introduce a bitcast op and likely a new pointer dialect
2112 // - let memref.load/store additionally support the 0-d vector case
2113 // There are still deeper data layout issues lingering even in this
2114 // trivial case (for architectures for which this matters).
2115 struct VectorLoadToMemrefLoadLowering
2116     : public OpRewritePattern<vector::LoadOp> {
2117   using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
2118 
2119   LogicalResult matchAndRewrite(vector::LoadOp loadOp,
2120                                 PatternRewriter &rewriter) const override {
2121     auto vecType = loadOp.getVectorType();
2122     if (vecType.getNumElements() != 1)
2123       return failure();
2124     auto memrefLoad = rewriter.create<memref::LoadOp>(
2125         loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices());
2126     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
2127                                                      memrefLoad);
2128     return success();
2129   }
2130 };
2131 
2132 /// Replace a 0-d vector.store with a vector.extractelement + memref.store.
2133 struct VectorStoreToMemrefStoreLowering
2134     : public OpRewritePattern<vector::StoreOp> {
2135   using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
2136 
2137   LogicalResult matchAndRewrite(vector::StoreOp storeOp,
2138                                 PatternRewriter &rewriter) const override {
2139     auto vecType = storeOp.getVectorType();
2140     if (vecType.getNumElements() != 1)
2141       return failure();
2142     Value extracted;
2143     if (vecType.getRank() == 0) {
2144       // TODO: Unifiy once ExtractOp supports 0-d vectors.
2145       extracted = rewriter.create<vector::ExtractElementOp>(
2146           storeOp.getLoc(), storeOp.getValueToStore());
2147     } else {
2148       SmallVector<int64_t> indices(vecType.getRank(), 0);
2149       extracted = rewriter.create<vector::ExtractOp>(
2150           storeOp.getLoc(), storeOp.getValueToStore(), indices);
2151     }
2152 
2153     rewriter.replaceOpWithNewOp<memref::StoreOp>(
2154         storeOp, extracted, storeOp.getBase(), storeOp.getIndices());
2155     return success();
2156   }
2157 };
2158 
2159 /// Progressive lowering of transfer_write. This pattern supports lowering of
2160 /// `vector.transfer_write` to `vector.store` if all of the following hold:
2161 /// - Stride of most minor memref dimension must be 1.
2162 /// - Out-of-bounds masking is not required.
2163 /// - If the memref's element type is a vector type then it coincides with the
2164 ///   type of the written value.
2165 /// - The permutation map is the minor identity map (neither permutation nor
2166 ///   broadcasting is allowed).
2167 struct TransferWriteToVectorStoreLowering
2168     : public OpRewritePattern<vector::TransferWriteOp> {
2169   TransferWriteToVectorStoreLowering(MLIRContext *context,
2170                                      llvm::Optional<unsigned> maxRank)
2171       : OpRewritePattern<vector::TransferWriteOp>(context),
2172         maxTransferRank(maxRank) {}
2173 
2174   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
2175                                 PatternRewriter &rewriter) const override {
2176     if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank)
2177       return failure();
2178 
2179     // Permutations are handled by VectorToSCF or
2180     // populateVectorTransferPermutationMapLoweringPatterns.
2181     if ( // pass-through for the 0-d corner case.
2182         !write.getPermutationMap().isMinorIdentity())
2183       return failure();
2184 
2185     auto memRefType = write.getShapedType().dyn_cast<MemRefType>();
2186     if (!memRefType)
2187       return failure();
2188 
2189     // Non-unit strides are handled by VectorToSCF.
2190     if (!vector::isLastMemrefDimUnitStride(memRefType))
2191       return failure();
2192 
2193     // `vector.store` supports vector types as memref's elements only when the
2194     // type of the vector value being written is the same as the element type.
2195     auto memrefElTy = memRefType.getElementType();
2196     if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType())
2197       return failure();
2198 
2199     // Otherwise, element types of the memref and the vector must match.
2200     if (!memrefElTy.isa<VectorType>() &&
2201         memrefElTy != write.getVectorType().getElementType())
2202       return failure();
2203 
2204     // Out-of-bounds dims are handled by MaterializeTransferMask.
2205     if (write.hasOutOfBoundsDim())
2206       return failure();
2207     if (write.getMask()) {
2208       rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
2209           write, write.getSource(), write.getIndices(), write.getMask(),
2210           write.getVector());
2211     } else {
2212       rewriter.replaceOpWithNewOp<vector::StoreOp>(
2213           write, write.getVector(), write.getSource(), write.getIndices());
2214     }
2215     return success();
2216   }
2217 
2218   llvm::Optional<unsigned> maxTransferRank;
2219 };
2220 
2221 // Returns the values in `arrayAttr` as an integer vector.
2222 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
2223   return llvm::to_vector<4>(
2224       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
2225                       [](IntegerAttr attr) { return attr.getInt(); }));
2226 }
2227 
2228 // Shuffles vector.bitcast op after vector.extract op.
2229 //
2230 // This transforms IR like:
2231 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
2232 //   %1 = vector.extract %0[3] : vector<8xf16>
2233 // Into:
2234 //   %0 = vector.extract %src[1] : vector<4xf32>
2235 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
2236 //   %2 = vector.extract %1[1] : vector<2xf16>
2237 struct BubbleDownVectorBitCastForExtract
2238     : public OpRewritePattern<vector::ExtractOp> {
2239   using OpRewritePattern::OpRewritePattern;
2240 
2241   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
2242                                 PatternRewriter &rewriter) const override {
2243     // Only support extracting scalars for now.
2244     if (extractOp.getVectorType().getRank() != 1)
2245       return failure();
2246 
2247     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2248     if (!castOp)
2249       return failure();
2250 
2251     VectorType castSrcType = castOp.getSourceVectorType();
2252     VectorType castDstType = castOp.getResultVectorType();
2253     assert(castSrcType.getRank() == castDstType.getRank());
2254 
2255     // Fail to match if we only have one element in the cast op source.
2256     // This is to avoid infinite loop given that this pattern can generate
2257     // such cases.
2258     if (castSrcType.getNumElements() == 1)
2259       return failure();
2260 
2261     // Only support casting to a larger number of elements or now.
2262     // E.g., vector<4xf32> -> vector<8xf16>.
2263     if (castSrcType.getNumElements() > castDstType.getNumElements())
2264       return failure();
2265 
2266     unsigned expandRatio =
2267         castDstType.getNumElements() / castSrcType.getNumElements();
2268 
2269     auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
2270       return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
2271     };
2272 
2273     uint64_t index = getFirstIntValue(extractOp.getPosition());
2274 
2275     // Get the single scalar (as a vector) in the source value that packs the
2276     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
2277     VectorType oneScalarType =
2278         VectorType::get({1}, castSrcType.getElementType());
2279     Value packedValue = rewriter.create<vector::ExtractOp>(
2280         extractOp.getLoc(), oneScalarType, castOp.getSource(),
2281         rewriter.getI64ArrayAttr(index / expandRatio));
2282 
2283     // Cast it to a vector with the desired scalar's type.
2284     // E.g. f32 -> vector<2xf16>
2285     VectorType packedType =
2286         VectorType::get({expandRatio}, castDstType.getElementType());
2287     Value castedValue = rewriter.create<vector::BitCastOp>(
2288         extractOp.getLoc(), packedType, packedValue);
2289 
2290     // Finally extract the desired scalar.
2291     rewriter.replaceOpWithNewOp<vector::ExtractOp>(
2292         extractOp, extractOp.getType(), castedValue,
2293         rewriter.getI64ArrayAttr(index % expandRatio));
2294 
2295     return success();
2296   }
2297 };
2298 
2299 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
2300 //
2301 // This transforms IR like:
2302 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
2303 //     %0 = vector.extract_strided_slice %cast {
2304 //            offsets = [4], sizes = [4], strides = [1]
2305 //          } : vector<8xf16> to vector<4xf16>
2306 // Into:
2307 //   %0 = vector.extract_strided_slice %src {
2308 //          offsets = [2], sizes = [2], strides = [1]
2309 //        } : vector<4xf32> to vector<2xf32>
2310 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
2311 struct BubbleDownBitCastForStridedSliceExtract
2312     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
2313   using OpRewritePattern::OpRewritePattern;
2314 
2315   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
2316                                 PatternRewriter &rewriter) const override {
2317     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2318     if (!castOp)
2319       return failure();
2320 
2321     VectorType castSrcType = castOp.getSourceVectorType();
2322     VectorType castDstType = castOp.getResultVectorType();
2323     assert(castSrcType.getRank() == castDstType.getRank());
2324 
2325     int64_t castSrcLastDim = castSrcType.getShape().back();
2326     int64_t castDstLastDim = castDstType.getShape().back();
2327     // Require casting to more elements for now; other cases to be implemented.
2328     if (castSrcLastDim > castDstLastDim)
2329       return failure();
2330 
2331     // Only accept all one strides for now.
2332     if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(),
2333                      [](const APInt &val) { return !val.isOneValue(); }))
2334       return failure();
2335 
2336     unsigned rank = extractOp.getVectorType().getRank();
2337     assert(castDstLastDim % castSrcLastDim == 0);
2338     int64_t expandRatio = castDstLastDim / castSrcLastDim;
2339 
2340     // If we have a less number of offsets than the rank, then implicitly we
2341     // are selecting the full range for the last bitcasted dimension; other
2342     // dimensions aren't affected. Otherwise, we need to scale down the last
2343     // dimension's offset given we are extracting from less elements now.
2344     ArrayAttr newOffsets = extractOp.getOffsets();
2345     if (newOffsets.size() == rank) {
2346       SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2347       if (offsets.back() % expandRatio != 0)
2348         return failure();
2349       offsets.back() = offsets.back() / expandRatio;
2350       newOffsets = rewriter.getI64ArrayAttr(offsets);
2351     }
2352 
2353     // Similarly for sizes.
2354     ArrayAttr newSizes = extractOp.getSizes();
2355     if (newSizes.size() == rank) {
2356       SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes);
2357       if (sizes.back() % expandRatio != 0)
2358         return failure();
2359       sizes.back() = sizes.back() / expandRatio;
2360       newSizes = rewriter.getI64ArrayAttr(sizes);
2361     }
2362 
2363     SmallVector<int64_t, 4> dims =
2364         llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape());
2365     dims.back() = dims.back() / expandRatio;
2366     VectorType newExtractType =
2367         VectorType::get(dims, castSrcType.getElementType());
2368 
2369     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
2370         extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets,
2371         newSizes, extractOp.getStrides());
2372 
2373     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
2374         extractOp, extractOp.getType(), newExtractOp);
2375 
2376     return success();
2377   }
2378 };
2379 
2380 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
2381 //
2382 // This transforms IR like:
2383 //   %0 = vector.insert_strided_slice %src, %dst {
2384 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
2385 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
2386 // Into:
2387 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
2388 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
2389 //   %2 = vector.insert_strided_slice %src, %dst {
2390 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
2391 struct BubbleUpBitCastForStridedSliceInsert
2392     : public OpRewritePattern<vector::BitCastOp> {
2393   using OpRewritePattern::OpRewritePattern;
2394   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
2395                                 PatternRewriter &rewriter) const override {
2396     VectorType castSrcType = bitcastOp.getSourceVectorType();
2397     VectorType castDstType = bitcastOp.getResultVectorType();
2398     assert(castSrcType.getRank() == castDstType.getRank());
2399 
2400     int64_t castSrcLastDim = castSrcType.getShape().back();
2401     int64_t castDstLastDim = castDstType.getShape().back();
2402     // Require casting to less elements for now; other cases to be implemented.
2403     if (castSrcLastDim < castDstLastDim)
2404       return failure();
2405 
2406     assert(castSrcLastDim % castDstLastDim == 0);
2407     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
2408 
2409     auto insertOp =
2410         bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>();
2411     if (!insertOp)
2412       return failure();
2413 
2414     // Only accept all one strides for now.
2415     if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(),
2416                      [](const APInt &val) { return !val.isOneValue(); }))
2417       return failure();
2418 
2419     unsigned rank = insertOp.getSourceVectorType().getRank();
2420     // Require insert op to have the same rank for the source and destination
2421     // vector; other cases to be implemented.
2422     if (rank != insertOp.getDestVectorType().getRank())
2423       return failure();
2424 
2425     ArrayAttr newOffsets = insertOp.getOffsets();
2426     assert(newOffsets.size() == rank);
2427     SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2428     if (offsets.back() % shrinkRatio != 0)
2429       return failure();
2430     offsets.back() = offsets.back() / shrinkRatio;
2431     newOffsets = rewriter.getI64ArrayAttr(offsets);
2432 
2433     SmallVector<int64_t, 4> srcDims =
2434         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
2435     srcDims.back() = srcDims.back() / shrinkRatio;
2436     VectorType newCastSrcType =
2437         VectorType::get(srcDims, castDstType.getElementType());
2438 
2439     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
2440         bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
2441 
2442     SmallVector<int64_t, 4> dstDims =
2443         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
2444     dstDims.back() = dstDims.back() / shrinkRatio;
2445     VectorType newCastDstType =
2446         VectorType::get(dstDims, castDstType.getElementType());
2447 
2448     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
2449         bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
2450 
2451     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
2452         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
2453         insertOp.getStrides());
2454 
2455     return success();
2456   }
2457 };
2458 
2459 // Helper that returns a vector comparison that constructs a mask:
2460 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
2461 //
2462 // If `dim == 0` then the result will be a 0-D vector.
2463 //
2464 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
2465 //       much more compact, IR for this operation, but LLVM eventually
2466 //       generates more elaborate instructions for this intrinsic since it
2467 //       is very conservative on the boundary conditions.
2468 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
2469                                    bool force32BitVectorIndices, int64_t dim,
2470                                    Value b, Value *off = nullptr) {
2471   auto loc = op->getLoc();
2472   // If we can assume all indices fit in 32-bit, we perform the vector
2473   // comparison in 32-bit to get a higher degree of SIMD parallelism.
2474   // Otherwise we perform the vector comparison using 64-bit indices.
2475   Type idxType =
2476       force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
2477   DenseIntElementsAttr indicesAttr;
2478   if (dim == 0 && force32BitVectorIndices) {
2479     indicesAttr = DenseIntElementsAttr::get(
2480         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
2481   } else if (dim == 0) {
2482     indicesAttr = DenseIntElementsAttr::get(
2483         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
2484   } else if (force32BitVectorIndices) {
2485     indicesAttr = rewriter.getI32VectorAttr(
2486         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
2487   } else {
2488     indicesAttr = rewriter.getI64VectorAttr(
2489         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
2490   }
2491   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
2492   // Add in an offset if requested.
2493   if (off) {
2494     Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off);
2495     Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
2496     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
2497   }
2498   // Construct the vector comparison.
2499   Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b);
2500   Value bounds =
2501       rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
2502   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
2503                                         bounds);
2504 }
2505 
2506 template <typename ConcreteOp>
2507 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
2508 public:
2509   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt)
2510       : mlir::OpRewritePattern<ConcreteOp>(context),
2511         force32BitVectorIndices(enableIndexOpt) {}
2512 
2513   LogicalResult matchAndRewrite(ConcreteOp xferOp,
2514                                 PatternRewriter &rewriter) const override {
2515     if (!xferOp.hasOutOfBoundsDim())
2516       return failure();
2517 
2518     if (xferOp.getVectorType().getRank() > 1 ||
2519         llvm::size(xferOp.getIndices()) == 0)
2520       return failure();
2521 
2522     Location loc = xferOp->getLoc();
2523     VectorType vtp = xferOp.getVectorType();
2524 
2525     // Create the in-bounds mask with all elements between [0 .. dim - offset)
2526     // set and [dim - offset .. vector_length) unset.
2527     //
2528     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
2529     //       dimensions here.
2530     unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1;
2531     Value off = xferOp.getIndices()[lastIndex];
2532     Value dim =
2533         vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex);
2534     Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off);
2535     Value mask = rewriter.create<vector::CreateMaskOp>(
2536         loc,
2537         VectorType::get(vtp.getShape(), rewriter.getI1Type(),
2538                         vtp.getNumScalableDims()),
2539         b);
2540     if (xferOp.getMask()) {
2541       // Intersect the in-bounds with the mask specified as an op parameter.
2542       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask());
2543     }
2544 
2545     rewriter.updateRootInPlace(xferOp, [&]() {
2546       xferOp.getMaskMutable().assign(mask);
2547       xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
2548     });
2549 
2550     return success();
2551   }
2552 
2553 private:
2554   const bool force32BitVectorIndices;
2555 };
2556 
2557 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
2558 class VectorCreateMaskOpConversion
2559     : public OpRewritePattern<vector::CreateMaskOp> {
2560 public:
2561   explicit VectorCreateMaskOpConversion(MLIRContext *context,
2562                                         bool enableIndexOpt)
2563       : mlir::OpRewritePattern<vector::CreateMaskOp>(context),
2564         force32BitVectorIndices(enableIndexOpt) {}
2565 
2566   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
2567                                 PatternRewriter &rewriter) const override {
2568     auto dstType = op.getType();
2569     if (dstType.cast<VectorType>().isScalable())
2570       return failure();
2571     int64_t rank = dstType.getRank();
2572     if (rank > 1)
2573       return failure();
2574     rewriter.replaceOp(
2575         op, buildVectorComparison(rewriter, op, force32BitVectorIndices,
2576                                   rank == 0 ? 0 : dstType.getDimSize(0),
2577                                   op.getOperand(0)));
2578     return success();
2579   }
2580 
2581 private:
2582   const bool force32BitVectorIndices;
2583 };
2584 
2585 // Drop inner most contiguous unit dimensions from transfer_read operand.
2586 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
2587   using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
2588 
2589   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
2590                                 PatternRewriter &rewriter) const override {
2591     // TODO: support 0-d corner case.
2592     if (readOp.getTransferRank() == 0)
2593       return failure();
2594 
2595     // TODO: support mask.
2596     if (readOp.getMask())
2597       return failure();
2598 
2599     auto srcType = readOp.getSource().getType().dyn_cast<MemRefType>();
2600     if (!srcType || !srcType.hasStaticShape())
2601       return failure();
2602 
2603     if (!readOp.getPermutationMap().isMinorIdentity())
2604       return failure();
2605 
2606     auto targetType = readOp.getVectorType();
2607     if (targetType.getRank() <= 1)
2608       return failure();
2609 
2610     SmallVector<int64_t> srcStrides;
2611     int64_t srcOffset;
2612     if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
2613       return failure();
2614 
2615     size_t dimsToDrop = 0;
2616     for (size_t i = 1; i < srcStrides.size(); ++i) {
2617       int dim = srcType.getRank() - i - 1;
2618       if (srcStrides[dim] == 1) {
2619         dimsToDrop++;
2620       } else {
2621         break;
2622       }
2623     }
2624     if (dimsToDrop == 0)
2625       return failure();
2626 
2627     auto resultTargetVecType =
2628         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
2629                         targetType.getElementType());
2630 
2631     MemRefType resultMemrefType;
2632     if (srcType.getLayout().getAffineMap().isIdentity()) {
2633       resultMemrefType = MemRefType::get(
2634           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2635           {}, srcType.getMemorySpaceAsInt());
2636     } else {
2637       AffineMap map = srcType.getLayout().getAffineMap();
2638       int numSymbols = map.getNumSymbols();
2639       for (size_t i = 0; i < dimsToDrop; ++i) {
2640         int dim = srcType.getRank() - i - 1;
2641         map = map.replace(rewriter.getAffineDimExpr(dim),
2642                           rewriter.getAffineConstantExpr(0),
2643                           map.getNumDims() - 1, numSymbols);
2644       }
2645       resultMemrefType = MemRefType::get(
2646           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2647           map, srcType.getMemorySpaceAsInt());
2648     }
2649 
2650     auto loc = readOp.getLoc();
2651     SmallVector<int64_t> offsets(srcType.getRank(), 0);
2652     SmallVector<int64_t> strides(srcType.getRank(), 1);
2653 
2654     ArrayAttr inBoundsAttr =
2655         readOp.getInBounds()
2656             ? rewriter.getArrayAttr(
2657                   readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop))
2658             : ArrayAttr();
2659     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
2660         loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(),
2661         strides);
2662     auto permMap = getTransferMinorIdentityMap(
2663         rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType);
2664     Value result = rewriter.create<vector::TransferReadOp>(
2665         loc, resultTargetVecType, rankedReducedView,
2666         readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
2667         readOp.getPadding(),
2668         // TODO: support mask.
2669         /*mask=*/Value(), inBoundsAttr);
2670     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
2671                                                      result);
2672     return success();
2673   }
2674 };
2675 
2676 namespace {
2677 
2678 /// This function checks to see if the vector combining kind
2679 /// is consistent with the integer or float element type.
2680 static bool isValidKind(bool isInt, vector::CombiningKind kind) {
2681   using vector::CombiningKind;
2682   enum class KindType { FLOAT, INT, INVALID };
2683   KindType type{KindType::INVALID};
2684   switch (kind) {
2685   case CombiningKind::MINF:
2686   case CombiningKind::MAXF:
2687     type = KindType::FLOAT;
2688     break;
2689   case CombiningKind::MINUI:
2690   case CombiningKind::MINSI:
2691   case CombiningKind::MAXUI:
2692   case CombiningKind::MAXSI:
2693   case CombiningKind::AND:
2694   case CombiningKind::OR:
2695   case CombiningKind::XOR:
2696     type = KindType::INT;
2697     break;
2698   case CombiningKind::ADD:
2699   case CombiningKind::MUL:
2700     type = isInt ? KindType::INT : KindType::FLOAT;
2701     break;
2702   }
2703   bool isValidIntKind = (type == KindType::INT) && isInt;
2704   bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
2705   return (isValidIntKind || isValidFloatKind);
2706 }
2707 
2708 /// This function constructs the appropriate integer or float
2709 /// operation given the vector combining kind and operands. The
2710 /// supported int operations are : add, mul, min (signed/unsigned),
2711 /// max(signed/unsigned), and, or, xor. The supported float
2712 /// operations are : add, mul, min and max.
2713 static Value genOperator(Location loc, Value x, Value y,
2714                          vector::CombiningKind kind,
2715                          PatternRewriter &rewriter) {
2716   using vector::CombiningKind;
2717 
2718   auto elType = x.getType().cast<VectorType>().getElementType();
2719   bool isInt = elType.isIntOrIndex();
2720 
2721   Value combinedResult{nullptr};
2722   switch (kind) {
2723   case CombiningKind::ADD:
2724     if (isInt)
2725       combinedResult = rewriter.create<arith::AddIOp>(loc, x, y);
2726     else
2727       combinedResult = rewriter.create<arith::AddFOp>(loc, x, y);
2728     break;
2729   case CombiningKind::MUL:
2730     if (isInt)
2731       combinedResult = rewriter.create<arith::MulIOp>(loc, x, y);
2732     else
2733       combinedResult = rewriter.create<arith::MulFOp>(loc, x, y);
2734     break;
2735   case CombiningKind::MINUI:
2736     combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y);
2737     break;
2738   case CombiningKind::MINSI:
2739     combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y);
2740     break;
2741   case CombiningKind::MAXUI:
2742     combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y);
2743     break;
2744   case CombiningKind::MAXSI:
2745     combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y);
2746     break;
2747   case CombiningKind::AND:
2748     combinedResult = rewriter.create<arith::AndIOp>(loc, x, y);
2749     break;
2750   case CombiningKind::OR:
2751     combinedResult = rewriter.create<arith::OrIOp>(loc, x, y);
2752     break;
2753   case CombiningKind::XOR:
2754     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
2755     break;
2756   case CombiningKind::MINF:
2757     combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
2758     break;
2759   case CombiningKind::MAXF:
2760     combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
2761     break;
2762   }
2763   return combinedResult;
2764 }
2765 
2766 /// Convert vector.scan op into arith ops and
2767 /// vector.insert_strided_slice/extract_strided_slice
2768 ///
2769 /// Ex:
2770 /// ```
2771 ///   %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim =
2772 ///   1} :
2773 ///     (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
2774 /// ```
2775 /// Gets converted to:
2776 /// ```
2777 ///   %cst = arith.constant dense<0> : vector<2x3xi32>
2778 ///   %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1],
2779 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 =
2780 ///   vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]}
2781 ///   : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice
2782 ///   %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} :
2783 ///   vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 :
2784 ///   vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1],
2785 ///   strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 =
2786 ///   vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1],
2787 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3,
2788 ///   %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets =
2789 ///   [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 =
2790 ///   vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 :
2791 ///   vector<2x3xi32>, vector<2xi32>
2792 /// ```
2793 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
2794   using OpRewritePattern<vector::ScanOp>::OpRewritePattern;
2795 
2796   LogicalResult matchAndRewrite(vector::ScanOp scanOp,
2797                                 PatternRewriter &rewriter) const override {
2798     auto loc = scanOp.getLoc();
2799     VectorType destType = scanOp.getDestType();
2800     ArrayRef<int64_t> destShape = destType.getShape();
2801     auto elType = destType.getElementType();
2802     bool isInt = elType.isIntOrIndex();
2803     if (!isValidKind(isInt, scanOp.getKind()))
2804       return failure();
2805 
2806     VectorType resType = VectorType::get(destShape, elType);
2807     Value result = rewriter.create<arith::ConstantOp>(
2808         loc, resType, rewriter.getZeroAttr(resType));
2809     int64_t reductionDim = scanOp.getReductionDim();
2810     bool inclusive = scanOp.getInclusive();
2811     int64_t destRank = destType.getRank();
2812     VectorType initialValueType = scanOp.getInitialValueType();
2813     int64_t initialValueRank = initialValueType.getRank();
2814 
2815     SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end());
2816     reductionShape[reductionDim] = 1;
2817     VectorType reductionType = VectorType::get(reductionShape, elType);
2818     SmallVector<int64_t> offsets(destRank, 0);
2819     SmallVector<int64_t> strides(destRank, 1);
2820     SmallVector<int64_t> sizes(destShape.begin(), destShape.end());
2821     sizes[reductionDim] = 1;
2822     ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
2823     ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
2824 
2825     Value lastOutput, lastInput;
2826     for (int i = 0; i < destShape[reductionDim]; i++) {
2827       offsets[reductionDim] = i;
2828       ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
2829       Value input = rewriter.create<vector::ExtractStridedSliceOp>(
2830           loc, reductionType, scanOp.getSource(), scanOffsets, scanSizes,
2831           scanStrides);
2832       Value output;
2833       if (i == 0) {
2834         if (inclusive) {
2835           output = input;
2836         } else {
2837           if (initialValueRank == 0) {
2838             // ShapeCastOp cannot handle 0-D vectors
2839             output = rewriter.create<vector::BroadcastOp>(
2840                 loc, input.getType(), scanOp.getInitialValue());
2841           } else {
2842             output = rewriter.create<vector::ShapeCastOp>(
2843                 loc, input.getType(), scanOp.getInitialValue());
2844           }
2845         }
2846       } else {
2847         Value y = inclusive ? input : lastInput;
2848         output = genOperator(loc, lastOutput, y, scanOp.getKind(), rewriter);
2849         assert(output != nullptr);
2850       }
2851       result = rewriter.create<vector::InsertStridedSliceOp>(
2852           loc, output, result, offsets, strides);
2853       lastOutput = output;
2854       lastInput = input;
2855     }
2856 
2857     Value reduction;
2858     if (initialValueRank == 0) {
2859       Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0);
2860       reduction =
2861           rewriter.create<vector::BroadcastOp>(loc, initialValueType, v);
2862     } else {
2863       reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType,
2864                                                        lastOutput);
2865     }
2866 
2867     rewriter.replaceOp(scanOp, {result, reduction});
2868     return success();
2869   }
2870 };
2871 
2872 } // namespace
2873 
2874 void mlir::vector::populateVectorMaskMaterializationPatterns(
2875     RewritePatternSet &patterns, bool force32BitVectorIndices) {
2876   patterns.add<VectorCreateMaskOpConversion,
2877                MaterializeTransferMask<vector::TransferReadOp>,
2878                MaterializeTransferMask<vector::TransferWriteOp>>(
2879       patterns.getContext(), force32BitVectorIndices);
2880 }
2881 
2882 void mlir::vector::populateShapeCastFoldingPatterns(
2883     RewritePatternSet &patterns) {
2884   patterns.add<ShapeCastOpFolder>(patterns.getContext());
2885 }
2886 
2887 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2888     RewritePatternSet &patterns) {
2889   patterns.add<BubbleDownVectorBitCastForExtract,
2890                BubbleDownBitCastForStridedSliceExtract,
2891                BubbleUpBitCastForStridedSliceInsert>(patterns.getContext());
2892 }
2893 
2894 void mlir::vector::populateVectorBroadcastLoweringPatterns(
2895     RewritePatternSet &patterns) {
2896   patterns.add<BroadcastOpLowering>(patterns.getContext());
2897 }
2898 
2899 void mlir::vector::populateVectorMaskOpLoweringPatterns(
2900     RewritePatternSet &patterns) {
2901   patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>(
2902       patterns.getContext());
2903 }
2904 
2905 void mlir::vector::populateVectorShapeCastLoweringPatterns(
2906     RewritePatternSet &patterns) {
2907   patterns.add<ShapeCastOp2DDownCastRewritePattern,
2908                ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
2909       patterns.getContext());
2910 }
2911 
2912 void mlir::vector::populateVectorContractLoweringPatterns(
2913     RewritePatternSet &patterns, VectorTransformsOptions options) {
2914   patterns.add<OuterProductOpLowering>(patterns.getContext());
2915   patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering,
2916                ContractionOpToOuterProductOpLowering>(options,
2917                                                       patterns.getContext());
2918 }
2919 
2920 void mlir::vector::populateVectorTransposeLoweringPatterns(
2921     RewritePatternSet &patterns, VectorTransformsOptions options) {
2922   patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
2923       options, patterns.getContext());
2924 }
2925 
2926 void mlir::vector::populateVectorReductionToContractPatterns(
2927     RewritePatternSet &patterns) {
2928   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2929                CombineContractTranspose, ReorderCastOpsOnBroadcast,
2930                ReorderElementwiseOpsOnTranspose>(patterns.getContext());
2931 }
2932 
2933 void mlir::vector::
2934     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2935         RewritePatternSet &patterns) {
2936   patterns.add<DropInnerMostUnitDims>(patterns.getContext());
2937 }
2938 
2939 void mlir::vector::populateVectorTransferLoweringPatterns(
2940     RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) {
2941   patterns.add<TransferReadToVectorLoadLowering,
2942                TransferWriteToVectorStoreLowering>(patterns.getContext(),
2943                                                    maxTransferRank);
2944   patterns
2945       .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
2946           patterns.getContext());
2947 }
2948 
2949 void mlir::vector::populateVectorScanLoweringPatterns(
2950     RewritePatternSet &patterns) {
2951   patterns.add<ScanToArithOps>(patterns.getContext());
2952 }
2953