1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <type_traits>
14 
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/SCF/SCF.h"
20 #include "mlir/Dialect/StandardOps/IR/Ops.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 
23 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
24 #include "mlir/IR/ImplicitLocOpBuilder.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Interfaces/VectorInterfaces.h"
28 
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 #define DEBUG_TYPE "vector-to-vector"
37 
38 using namespace mlir;
39 using namespace mlir::vector;
40 
41 // Helper to find an index in an affine map.
42 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
43   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
44     int64_t idx = map.getDimPosition(i);
45     if (idx == index)
46       return i;
47   }
48   return None;
49 }
50 
51 // Helper to construct iterator types with one index removed.
52 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
53                                             int64_t index) {
54   SmallVector<Attribute, 4> results;
55   for (const auto &it : llvm::enumerate(iteratorTypes)) {
56     int64_t idx = it.index();
57     if (idx == index)
58       continue;
59     results.push_back(it.value());
60   }
61   return results;
62 }
63 
64 // Helper to construct an affine map with one index removed.
65 static AffineMap adjustMap(AffineMap map, int64_t index,
66                            PatternRewriter &rewriter) {
67   auto *ctx = rewriter.getContext();
68   SmallVector<AffineExpr, 4> results;
69   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
70     int64_t idx = map.getDimPosition(i);
71     if (idx == index)
72       continue;
73     // Re-insert remaining indices, but renamed when occurring
74     // after the removed index.
75     auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
76     results.push_back(targetExpr);
77   }
78   return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
79 }
80 
81 // Helper method to possibly drop a dimension in a load.
82 // TODO
83 static Value reshapeLoad(Location loc, Value val, VectorType type,
84                          int64_t index, int64_t pos,
85                          PatternRewriter &rewriter) {
86   if (index == -1)
87     return val;
88   Type lowType = VectorType::Builder(type).dropDim(0);
89   // At extraction dimension?
90   if (index == 0) {
91     auto posAttr = rewriter.getI64ArrayAttr(pos);
92     return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
93   }
94   // Unroll leading dimensions.
95   VectorType vType = lowType.cast<VectorType>();
96   Type resType = VectorType::Builder(type).dropDim(index);
97   auto resVectorType = resType.cast<VectorType>();
98   Value result = rewriter.create<arith::ConstantOp>(
99       loc, resVectorType, rewriter.getZeroAttr(resVectorType));
100   for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
101     auto posAttr = rewriter.getI64ArrayAttr(d);
102     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
103     Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
104     result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
105                                                posAttr);
106   }
107   return result;
108 }
109 
110 // Helper method to possibly drop a dimension in a store.
111 // TODO
112 static Value reshapeStore(Location loc, Value val, Value result,
113                           VectorType type, int64_t index, int64_t pos,
114                           PatternRewriter &rewriter) {
115   // Unmodified?
116   if (index == -1)
117     return val;
118   // At insertion dimension?
119   if (index == 0) {
120     auto posAttr = rewriter.getI64ArrayAttr(pos);
121     return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
122   }
123   // Unroll leading dimensions.
124   Type lowType = VectorType::Builder(type).dropDim(0);
125   VectorType vType = lowType.cast<VectorType>();
126   Type insType = VectorType::Builder(vType).dropDim(0);
127   for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
128     auto posAttr = rewriter.getI64ArrayAttr(d);
129     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
130     Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
131     Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
132     result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
133   }
134   return result;
135 }
136 
137 template <typename IntType>
138 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
139   return llvm::to_vector<4>(llvm::map_range(
140       arrayAttr.getAsRange<IntegerAttr>(),
141       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
142 }
143 
144 namespace {
145 
146 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
147 //
148 // Example:
149 //
150 //  The following MLIR with cancelling ShapeCastOps:
151 //
152 //   %0 = source : vector<5x4x2xf32>
153 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
154 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
155 //   %3 = user %2 : vector<5x4x2xf32>
156 //
157 //  Should canonicalize to the following:
158 //
159 //   %0 = source : vector<5x4x2xf32>
160 //   %1 = user %0 : vector<5x4x2xf32>
161 //
162 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
163   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
164 
165   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
166                                 PatternRewriter &rewriter) const override {
167     // Check if 'shapeCastOp' has vector source/result type.
168     auto sourceVectorType =
169         shapeCastOp.source().getType().dyn_cast_or_null<VectorType>();
170     auto resultVectorType =
171         shapeCastOp.result().getType().dyn_cast_or_null<VectorType>();
172     if (!sourceVectorType || !resultVectorType)
173       return failure();
174 
175     // Check if shape cast op source operand is also a shape cast op.
176     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
177         shapeCastOp.source().getDefiningOp());
178     if (!sourceShapeCastOp)
179       return failure();
180     auto operandSourceVectorType =
181         sourceShapeCastOp.source().getType().cast<VectorType>();
182     auto operandResultVectorType = sourceShapeCastOp.getType();
183 
184     // Check if shape cast operations invert each other.
185     if (operandSourceVectorType != resultVectorType ||
186         operandResultVectorType != sourceVectorType)
187       return failure();
188 
189     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source());
190     return success();
191   }
192 };
193 
194 /// Progressive lowering of BroadcastOp.
195 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
196 public:
197   using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
198 
199   LogicalResult matchAndRewrite(vector::BroadcastOp op,
200                                 PatternRewriter &rewriter) const override {
201     auto loc = op.getLoc();
202     VectorType dstType = op.getVectorType();
203     VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
204     Type eltType = dstType.getElementType();
205 
206     // Scalar to any vector can use splat.
207     if (!srcType) {
208       rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, op.source());
209       return success();
210     }
211 
212     // Determine rank of source and destination.
213     int64_t srcRank = srcType.getRank();
214     int64_t dstRank = dstType.getRank();
215 
216     // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
217     if (srcRank <= 1 && dstRank == 1) {
218       Value ext;
219       if (srcRank == 0)
220         ext = rewriter.create<vector::ExtractElementOp>(loc, op.source());
221       else
222         ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
223       rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, ext);
224       return success();
225     }
226 
227     // Duplicate this rank.
228     // For example:
229     //   %x = broadcast %y  : k-D to n-D, k < n
230     // becomes:
231     //   %b = broadcast %y  : k-D to (n-1)-D
232     //   %x = [%b,%b,%b,%b] : n-D
233     // becomes:
234     //   %b = [%y,%y]       : (n-1)-D
235     //   %x = [%b,%b,%b,%b] : n-D
236     if (srcRank < dstRank) {
237       // Duplication.
238       VectorType resType =
239           VectorType::get(dstType.getShape().drop_front(), eltType);
240       Value bcst =
241           rewriter.create<vector::BroadcastOp>(loc, resType, op.source());
242       Value result = rewriter.create<arith::ConstantOp>(
243           loc, dstType, rewriter.getZeroAttr(dstType));
244       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
245         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
246       rewriter.replaceOp(op, result);
247       return success();
248     }
249 
250     // Find non-matching dimension, if any.
251     assert(srcRank == dstRank);
252     int64_t m = -1;
253     for (int64_t r = 0; r < dstRank; r++)
254       if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
255         m = r;
256         break;
257       }
258 
259     // All trailing dimensions are the same. Simply pass through.
260     if (m == -1) {
261       rewriter.replaceOp(op, op.source());
262       return success();
263     }
264 
265     // Any non-matching dimension forces a stretch along this rank.
266     // For example:
267     //   %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
268     // becomes:
269     //   %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
270     //   %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
271     //   %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
272     //   %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
273     //   %x = [%a,%b,%c,%d]
274     // becomes:
275     //   %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
276     //   %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
277     //   %a = [%u, %v]
278     //   ..
279     //   %x = [%a,%b,%c,%d]
280     VectorType resType =
281         VectorType::get(dstType.getShape().drop_front(), eltType);
282     Value result = rewriter.create<arith::ConstantOp>(
283         loc, dstType, rewriter.getZeroAttr(dstType));
284     if (m == 0) {
285       // Stetch at start.
286       Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
287       Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
288       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
289         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
290     } else {
291       // Stetch not at start.
292       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
293         Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), d);
294         Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
295         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
296       }
297     }
298     rewriter.replaceOp(op, result);
299     return success();
300   }
301 };
302 
303 /// Progressive lowering of TransposeOp.
304 /// One:
305 ///   %x = vector.transpose %y, [1, 0]
306 /// is replaced by:
307 ///   %z = arith.constant dense<0.000000e+00>
308 ///   %0 = vector.extract %y[0, 0]
309 ///   %1 = vector.insert %0, %z [0, 0]
310 ///   ..
311 ///   %x = vector.insert .., .. [.., ..]
312 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
313 public:
314   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
315 
316   TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
317                       MLIRContext *context)
318       : OpRewritePattern<vector::TransposeOp>(context),
319         vectorTransformOptions(vectorTransformOptions) {}
320 
321   LogicalResult matchAndRewrite(vector::TransposeOp op,
322                                 PatternRewriter &rewriter) const override {
323     auto loc = op.getLoc();
324 
325     VectorType resType = op.getResultType();
326 
327     // Set up convenience transposition table.
328     SmallVector<int64_t, 4> transp;
329     for (auto attr : op.transp())
330       transp.push_back(attr.cast<IntegerAttr>().getInt());
331 
332     if (vectorTransformOptions.vectorTransposeLowering ==
333             vector::VectorTransposeLowering::Shuffle &&
334         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0)
335       return rewriter.notifyMatchFailure(
336           op, "Options specifies lowering to shuffle");
337 
338     // Handle a true 2-D matrix transpose differently when requested.
339     if (vectorTransformOptions.vectorTransposeLowering ==
340             vector::VectorTransposeLowering::Flat &&
341         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
342       Type flattenedType =
343           VectorType::get(resType.getNumElements(), resType.getElementType());
344       auto matrix =
345           rewriter.create<vector::ShapeCastOp>(loc, flattenedType, op.vector());
346       auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
347       auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
348       Value trans = rewriter.create<vector::FlatTransposeOp>(
349           loc, flattenedType, matrix, rows, columns);
350       rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
351       return success();
352     }
353 
354     // Generate fully unrolled extract/insert ops.
355     Value result = rewriter.create<arith::ConstantOp>(
356         loc, resType, rewriter.getZeroAttr(resType));
357     SmallVector<int64_t, 4> lhs(transp.size(), 0);
358     SmallVector<int64_t, 4> rhs(transp.size(), 0);
359     rewriter.replaceOp(op, expandIndices(loc, resType, 0, transp, lhs, rhs,
360                                          op.vector(), result, rewriter));
361     return success();
362   }
363 
364 private:
365   // Builds the indices arrays for the lhs and rhs. Generates the extract/insert
366   // operation when al ranks are exhausted.
367   Value expandIndices(Location loc, VectorType resType, int64_t pos,
368                       SmallVector<int64_t, 4> &transp,
369                       SmallVector<int64_t, 4> &lhs,
370                       SmallVector<int64_t, 4> &rhs, Value input, Value result,
371                       PatternRewriter &rewriter) const {
372     if (pos >= resType.getRank()) {
373       auto ridx = rewriter.getI64ArrayAttr(rhs);
374       auto lidx = rewriter.getI64ArrayAttr(lhs);
375       Type eltType = resType.getElementType();
376       Value e = rewriter.create<vector::ExtractOp>(loc, eltType, input, ridx);
377       return rewriter.create<vector::InsertOp>(loc, resType, e, result, lidx);
378     }
379     for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) {
380       lhs[pos] = d;
381       rhs[transp[pos]] = d;
382       result = expandIndices(loc, resType, pos + 1, transp, lhs, rhs, input,
383                              result, rewriter);
384     }
385     return result;
386   }
387 
388   /// Options to control the vector patterns.
389   vector::VectorTransformsOptions vectorTransformOptions;
390 };
391 
392 /// Rewrite a 2-D vector.transpose as a sequence of:
393 ///   vector.shape_cast 2D -> 1D
394 ///   vector.shuffle
395 ///   vector.shape_cast 1D -> 2D
396 class TransposeOp2DToShuffleLowering
397     : public OpRewritePattern<vector::TransposeOp> {
398 public:
399   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
400 
401   TransposeOp2DToShuffleLowering(
402       vector::VectorTransformsOptions vectorTransformOptions,
403       MLIRContext *context)
404       : OpRewritePattern<vector::TransposeOp>(context),
405         vectorTransformOptions(vectorTransformOptions) {}
406 
407   LogicalResult matchAndRewrite(vector::TransposeOp op,
408                                 PatternRewriter &rewriter) const override {
409     auto loc = op.getLoc();
410 
411     VectorType srcType = op.getVectorType();
412     if (srcType.getRank() != 2)
413       return rewriter.notifyMatchFailure(op, "Not a 2D transpose");
414 
415     SmallVector<int64_t, 4> transp;
416     for (auto attr : op.transp())
417       transp.push_back(attr.cast<IntegerAttr>().getInt());
418     if (transp[0] != 1 && transp[1] != 0)
419       return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation");
420 
421     if (vectorTransformOptions.vectorTransposeLowering !=
422         VectorTransposeLowering::Shuffle)
423       return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle");
424 
425     int64_t m = srcType.getShape().front(), n = srcType.getShape().back();
426     Value casted = rewriter.create<vector::ShapeCastOp>(
427         loc, VectorType::get({m * n}, srcType.getElementType()), op.vector());
428     SmallVector<int64_t> mask;
429     mask.reserve(m * n);
430     for (int64_t j = 0; j < n; ++j)
431       for (int64_t i = 0; i < m; ++i)
432         mask.push_back(i * n + j);
433 
434     Value shuffled =
435         rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask);
436     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(),
437                                                      shuffled);
438 
439     return success();
440   }
441 
442 private:
443   /// Options to control the vector patterns.
444   vector::VectorTransformsOptions vectorTransformOptions;
445 };
446 
447 /// Progressive lowering of OuterProductOp.
448 /// One:
449 ///   %x = vector.outerproduct %lhs, %rhs, %acc
450 /// is replaced by:
451 ///   %z = zero-result
452 ///   %0 = vector.extract %lhs[0]
453 ///   %1 = vector.broadcast %0
454 ///   %2 = vector.extract %acc[0]
455 ///   %3 = vector.fma %1, %rhs, %2
456 ///   %4 = vector.insert %3, %z[0]
457 ///   ..
458 ///   %x = vector.insert %.., %..[N-1]
459 ///
460 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
461 public:
462   using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
463 
464   LogicalResult matchAndRewrite(vector::OuterProductOp op,
465                                 PatternRewriter &rewriter) const override {
466     auto loc = op.getLoc();
467 
468     VectorType lhsType = op.getOperandVectorTypeLHS();
469     VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
470     VectorType resType = op.getVectorType();
471     Type eltType = resType.getElementType();
472     bool isInt = eltType.isa<IntegerType, IndexType>();
473     Value acc = (op.acc().empty()) ? nullptr : op.acc()[0];
474     vector::CombiningKind kind = op.kind();
475 
476     if (!rhsType) {
477       // Special case: AXPY operation.
478       Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.rhs());
479       Optional<Value> mult =
480           isInt ? genMultI(loc, op.lhs(), b, acc, kind, rewriter)
481                 : genMultF(loc, op.lhs(), b, acc, kind, rewriter);
482       if (!mult.hasValue())
483         return failure();
484       rewriter.replaceOp(op, mult.getValue());
485       return success();
486     }
487 
488     Value result = rewriter.create<arith::ConstantOp>(
489         loc, resType, rewriter.getZeroAttr(resType));
490     for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
491       auto pos = rewriter.getI64ArrayAttr(d);
492       Value x = rewriter.create<vector::ExtractOp>(loc, eltType, op.lhs(), pos);
493       Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
494       Value r = nullptr;
495       if (acc)
496         r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
497       Optional<Value> m = isInt ? genMultI(loc, a, op.rhs(), r, kind, rewriter)
498                                 : genMultF(loc, a, op.rhs(), r, kind, rewriter);
499       if (!m.hasValue())
500         return failure();
501       result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(),
502                                                  result, pos);
503     }
504     rewriter.replaceOp(op, result);
505     return success();
506   }
507 
508 private:
509   static Optional<Value> genMultI(Location loc, Value x, Value y, Value acc,
510                                   vector::CombiningKind kind,
511                                   PatternRewriter &rewriter) {
512     using vector::CombiningKind;
513 
514     auto mul = rewriter.create<arith::MulIOp>(loc, x, y);
515     if (!acc)
516       return Optional<Value>(mul);
517 
518     Value combinedResult;
519     switch (kind) {
520     case CombiningKind::ADD:
521       combinedResult = rewriter.create<arith::AddIOp>(loc, mul, acc);
522       break;
523     case CombiningKind::MUL:
524       combinedResult = rewriter.create<arith::MulIOp>(loc, mul, acc);
525       break;
526     case CombiningKind::MINUI:
527       combinedResult = rewriter.create<arith::MinUIOp>(loc, mul, acc);
528       break;
529     case CombiningKind::MINSI:
530       combinedResult = rewriter.create<arith::MinSIOp>(loc, mul, acc);
531       break;
532     case CombiningKind::MAXUI:
533       combinedResult = rewriter.create<arith::MaxUIOp>(loc, mul, acc);
534       break;
535     case CombiningKind::MAXSI:
536       combinedResult = rewriter.create<arith::MaxSIOp>(loc, mul, acc);
537       break;
538     case CombiningKind::AND:
539       combinedResult = rewriter.create<arith::AndIOp>(loc, mul, acc);
540       break;
541     case CombiningKind::OR:
542       combinedResult = rewriter.create<arith::OrIOp>(loc, mul, acc);
543       break;
544     case CombiningKind::XOR:
545       combinedResult = rewriter.create<arith::XOrIOp>(loc, mul, acc);
546       break;
547     case CombiningKind::MINF: // Only valid for floating point types.
548     case CombiningKind::MAXF: // Only valid for floating point types.
549       return Optional<Value>();
550     }
551     return Optional<Value>(combinedResult);
552   }
553 
554   static Optional<Value> genMultF(Location loc, Value x, Value y, Value acc,
555                                   vector::CombiningKind kind,
556                                   PatternRewriter &rewriter) {
557     using vector::CombiningKind;
558 
559     // Special case for fused multiply-add.
560     if (acc && kind == CombiningKind::ADD) {
561       return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc));
562     }
563 
564     auto mul = rewriter.create<arith::MulFOp>(loc, x, y);
565 
566     if (!acc)
567       return Optional<Value>(mul);
568 
569     Value combinedResult;
570     switch (kind) {
571     case CombiningKind::MUL:
572       combinedResult = rewriter.create<arith::MulFOp>(loc, mul, acc);
573       break;
574     case CombiningKind::MINF:
575       combinedResult = rewriter.create<arith::MinFOp>(loc, mul, acc);
576       break;
577     case CombiningKind::MAXF:
578       combinedResult = rewriter.create<arith::MaxFOp>(loc, mul, acc);
579       break;
580     case CombiningKind::ADD:   // Already handled this special case above.
581     case CombiningKind::AND:   // Only valid for integer types.
582     case CombiningKind::MINUI: // Only valid for integer types.
583     case CombiningKind::MINSI: // Only valid for integer types.
584     case CombiningKind::MAXUI: // Only valid for integer types.
585     case CombiningKind::MAXSI: // Only valid for integer types.
586     case CombiningKind::OR:    // Only valid for integer types.
587     case CombiningKind::XOR:   // Only valid for integer types.
588       return Optional<Value>();
589     }
590     return Optional<Value>(combinedResult);
591   }
592 };
593 
594 /// Progressive lowering of ConstantMaskOp.
595 /// One:
596 ///   %x = vector.constant_mask [a,b]
597 /// is replaced by:
598 ///   %z = zero-result
599 ///   %l = vector.constant_mask [b]
600 ///   %4 = vector.insert %l, %z[0]
601 ///   ..
602 ///   %x = vector.insert %l, %..[a-1]
603 /// until a one-dimensional vector is reached. All these operations
604 /// will be folded at LLVM IR level.
605 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
606 public:
607   using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
608 
609   LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
610                                 PatternRewriter &rewriter) const override {
611     auto loc = op.getLoc();
612     auto dstType = op.getType();
613     auto eltType = dstType.getElementType();
614     auto dimSizes = op.mask_dim_sizes();
615     int64_t rank = dstType.getRank();
616 
617     if (rank == 0) {
618       assert(dimSizes.size() == 1 &&
619              "Expected exactly one dim size for a 0-D vector");
620       bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1;
621       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
622           op, dstType,
623           DenseIntElementsAttr::get(
624               VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()),
625               ArrayRef<bool>{value}));
626       return success();
627     }
628 
629     int64_t trueDim = std::min(dstType.getDimSize(0),
630                                dimSizes[0].cast<IntegerAttr>().getInt());
631 
632     if (rank == 1) {
633       // Express constant 1-D case in explicit vector form:
634       //   [T,..,T,F,..,F].
635       SmallVector<bool, 4> values(dstType.getDimSize(0));
636       for (int64_t d = 0; d < trueDim; d++)
637         values[d] = true;
638       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
639           op, dstType, rewriter.getBoolVectorAttr(values));
640       return success();
641     }
642 
643     VectorType lowType =
644         VectorType::get(dstType.getShape().drop_front(), eltType);
645     SmallVector<int64_t, 4> newDimSizes;
646     for (int64_t r = 1; r < rank; r++)
647       newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
648     Value trueVal = rewriter.create<vector::ConstantMaskOp>(
649         loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
650     Value result = rewriter.create<arith::ConstantOp>(
651         loc, dstType, rewriter.getZeroAttr(dstType));
652     for (int64_t d = 0; d < trueDim; d++) {
653       auto pos = rewriter.getI64ArrayAttr(d);
654       result =
655           rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
656     }
657     rewriter.replaceOp(op, result);
658     return success();
659   }
660 };
661 
662 /// Progressive lowering of CreateMaskOp.
663 /// One:
664 ///   %x = vector.create_mask %a, ... : vector<dx...>
665 /// is replaced by:
666 ///   %l = vector.create_mask ... : vector<...>  ; one lower rank
667 ///   %0 = arith.cmpi "slt", %ci, %a       |
668 ///   %1 = select %0, %l, %zeroes    |
669 ///   %r = vector.insert %1, %pr [i] | d-times
670 ///   %x = ....
671 /// until a one-dimensional vector is reached.
672 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
673 public:
674   using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
675 
676   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
677                                 PatternRewriter &rewriter) const override {
678     auto dstType = op.getResult().getType().cast<VectorType>();
679     int64_t rank = dstType.getRank();
680     if (rank <= 1)
681       return rewriter.notifyMatchFailure(
682           op, "0-D and 1-D vectors are handled separately");
683 
684     auto loc = op.getLoc();
685     auto eltType = dstType.getElementType();
686     int64_t dim = dstType.getDimSize(0);
687     Value idx = op.getOperand(0);
688 
689     VectorType lowType =
690         VectorType::get(dstType.getShape().drop_front(), eltType);
691     Value trueVal = rewriter.create<vector::CreateMaskOp>(
692         loc, lowType, op.getOperands().drop_front());
693     Value falseVal = rewriter.create<arith::ConstantOp>(
694         loc, lowType, rewriter.getZeroAttr(lowType));
695     Value result = rewriter.create<arith::ConstantOp>(
696         loc, dstType, rewriter.getZeroAttr(dstType));
697     for (int64_t d = 0; d < dim; d++) {
698       Value bnd =
699           rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d));
700       Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
701                                                  bnd, idx);
702       Value sel = rewriter.create<SelectOp>(loc, val, trueVal, falseVal);
703       auto pos = rewriter.getI64ArrayAttr(d);
704       result =
705           rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
706     }
707     rewriter.replaceOp(op, result);
708     return success();
709   }
710 };
711 
712 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
713 /// vectors progressively on the way to target llvm.matrix intrinsics.
714 /// This iterates over the most major dimension of the 2-D vector and performs
715 /// rewrites into:
716 ///   vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
717 class ShapeCastOp2DDownCastRewritePattern
718     : public OpRewritePattern<vector::ShapeCastOp> {
719 public:
720   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
721 
722   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
723                                 PatternRewriter &rewriter) const override {
724     auto sourceVectorType = op.getSourceVectorType();
725     auto resultVectorType = op.getResultVectorType();
726     if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
727       return failure();
728 
729     auto loc = op.getLoc();
730     Value desc = rewriter.create<arith::ConstantOp>(
731         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
732     unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
733     for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
734       Value vec = rewriter.create<vector::ExtractOp>(loc, op.source(), i);
735       desc = rewriter.create<vector::InsertStridedSliceOp>(
736           loc, vec, desc,
737           /*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
738     }
739     rewriter.replaceOp(op, desc);
740     return success();
741   }
742 };
743 
744 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
745 /// vectors progressively.
746 /// This iterates over the most major dimension of the 2-D vector and performs
747 /// rewrites into:
748 ///   vector.extract_strided_slice from 1-D + vector.insert into 2-D
749 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
750 class ShapeCastOp2DUpCastRewritePattern
751     : public OpRewritePattern<vector::ShapeCastOp> {
752 public:
753   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
754 
755   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
756                                 PatternRewriter &rewriter) const override {
757     auto sourceVectorType = op.getSourceVectorType();
758     auto resultVectorType = op.getResultVectorType();
759     if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
760       return failure();
761 
762     auto loc = op.getLoc();
763     Value desc = rewriter.create<arith::ConstantOp>(
764         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
765     unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
766     for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
767       Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
768           loc, op.source(), /*offsets=*/i * mostMinorVectorSize,
769           /*sizes=*/mostMinorVectorSize,
770           /*strides=*/1);
771       desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
772     }
773     rewriter.replaceOp(op, desc);
774     return success();
775   }
776 };
777 
778 // We typically should not lower general shape cast operations into data
779 // movement instructions, since the assumption is that these casts are
780 // optimized away during progressive lowering. For completeness, however,
781 // we fall back to a reference implementation that moves all elements
782 // into the right place if we get here.
783 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
784 public:
785   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
786 
787   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
788                                 PatternRewriter &rewriter) const override {
789     Location loc = op.getLoc();
790     auto sourceVectorType = op.getSourceVectorType();
791     auto resultVectorType = op.getResultVectorType();
792 
793     // Special case 2D/1D lowerings with better implementations.
794     // TODO: make is ND/1D to allow generic ND->1D->MD.
795     int64_t srcRank = sourceVectorType.getRank();
796     int64_t resRank = resultVectorType.getRank();
797     if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
798       return failure();
799 
800     // Generic ShapeCast lowering path goes all the way down to unrolled scalar
801     // extract/insert chains.
802     // TODO: consider evolving the semantics to only allow 1D source or dest and
803     // drop this potentially very expensive lowering.
804     // Compute number of elements involved in the reshape.
805     int64_t numElts = 1;
806     for (int64_t r = 0; r < srcRank; r++)
807       numElts *= sourceVectorType.getDimSize(r);
808     // Replace with data movement operations:
809     //    x[0,0,0] = y[0,0]
810     //    x[0,0,1] = y[0,1]
811     //    x[0,1,0] = y[0,2]
812     // etc., incrementing the two index vectors "row-major"
813     // within the source and result shape.
814     SmallVector<int64_t, 4> srcIdx(srcRank);
815     SmallVector<int64_t, 4> resIdx(resRank);
816     Value result = rewriter.create<arith::ConstantOp>(
817         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
818     for (int64_t i = 0; i < numElts; i++) {
819       if (i != 0) {
820         incIdx(srcIdx, sourceVectorType, srcRank - 1);
821         incIdx(resIdx, resultVectorType, resRank - 1);
822       }
823       Value e = rewriter.create<vector::ExtractOp>(loc, op.source(), srcIdx);
824       result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
825     }
826     rewriter.replaceOp(op, result);
827     return success();
828   }
829 
830 private:
831   static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
832     assert(0 <= r && r < tp.getRank());
833     if (++idx[r] == tp.getDimSize(r)) {
834       idx[r] = 0;
835       incIdx(idx, tp, r - 1);
836     }
837   }
838 };
839 
840 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
841 /// Ex:
842 /// ```
843 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
844 ///   %1 = vector.multi_reduction add, %0 [1]
845 ///     : vector<8x32x16xf32> to vector<8x16xf32>
846 /// ```
847 /// Gets converted to:
848 /// ```
849 ///   %1 = vector.contract {indexing_maps = [
850 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
851 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
852 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
853 ///    iterator_types = ["parallel", "parallel", "reduction"],
854 ///    kind = add} %0, %arg1, %cst_f0
855 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
856 ///  ```
857 struct MultiReduceToContract
858     : public OpRewritePattern<vector::MultiDimReductionOp> {
859   using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern;
860 
861   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
862                                 PatternRewriter &rewriter) const override {
863     if (reduceOp.kind() != vector::CombiningKind::ADD)
864       return failure();
865     Operation *mulOp = reduceOp.source().getDefiningOp();
866     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
867       return failure();
868     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
869     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
870     SmallVector<AffineExpr> exprs;
871     SmallVector<StringRef> iteratorTypes;
872     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
873       if (!isReduceDim.value()) {
874         iteratorTypes.push_back(getParallelIteratorTypeName());
875         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
876       } else {
877         iteratorTypes.push_back(getReductionIteratorTypeName());
878       }
879     }
880     auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
881                                  /*symCount=*/0, exprs, reduceOp.getContext());
882     Value zero = rewriter.create<arith::ConstantOp>(
883         reduceOp.getLoc(), reduceOp.getDestType(),
884         rewriter.getZeroAttr(reduceOp.getDestType()));
885     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
886         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero,
887         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
888         rewriter.getStrArrayAttr(iteratorTypes));
889     return success();
890   }
891 };
892 
893 /// Merge TransposeOp into ContractionOp user.
894 /// Ex:
895 /// ```
896 ///   %0 = vector.transpose %arg0, [2, 0, 1]
897 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
898 ///   %1 = vector.contract {indexing_maps = [
899 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
900 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
901 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
902 ///    iterator_types = ["parallel", "parallel", "reduction"],
903 ///    kind = add} %0, %arg1, %cst_f0
904 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
905 /// ```
906 /// Gets converted to:
907 /// ```
908 ///   %1 = vector.contract {indexing_maps = [
909 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
910 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
911 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
912 ///    iterator_types = ["parallel", "parallel", "reduction"],
913 ///    kind = add} %arg0, %arg1, %cst_f0
914 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
915 ///  ```
916 struct CombineContractTranspose
917     : public OpRewritePattern<vector::ContractionOp> {
918   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
919 
920   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
921                                 PatternRewriter &rewriter) const override {
922     SmallVector<AffineMap, 4> maps =
923         llvm::to_vector<4>(contractOp.getIndexingMaps());
924     Value lhs = contractOp.lhs();
925     Value rhs = contractOp.rhs();
926     size_t index = 0;
927     bool changed = false;
928     for (Value *operand : {&lhs, &rhs}) {
929       AffineMap &map = maps[index++];
930       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
931       if (!transposeOp)
932         continue;
933       SmallVector<int64_t> perm;
934       transposeOp.getTransp(perm);
935       AffineMap permutationMap = AffineMap::getPermutationMap(
936           extractVector<unsigned>(transposeOp.transp()),
937           contractOp.getContext());
938       map = inversePermutation(permutationMap).compose(map);
939       *operand = transposeOp.vector();
940       changed = true;
941     }
942     if (!changed)
943       return failure();
944     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
945         contractOp, lhs, rhs, contractOp.acc(),
946         rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types());
947     return success();
948   }
949 };
950 
951 /// Merge BroadcastOp into ContractionOp user.
952 /// Ex:
953 /// ```
954 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
955 ///   %1 = vector.contract {indexing_maps = [
956 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
957 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
958 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
959 ///    iterator_types = ["parallel", "parallel", "reduction"],
960 ///    kind = add} %0, %arg1, %cst_f0
961 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
962 /// ```
963 /// Gets converted to:
964 /// ```
965 ///   %1 = vector.contract {indexing_maps = [
966 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
967 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
968 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
969 ///    iterator_types = ["parallel", "parallel", "reduction"],
970 ///    kind = add} %arg0, %arg1, %cst_f0
971 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
972 ///  ```
973 struct CombineContractBroadcast
974     : public OpRewritePattern<vector::ContractionOp> {
975   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
976 
977   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
978                                 PatternRewriter &rewriter) const override {
979     SmallVector<AffineMap, 4> maps =
980         llvm::to_vector<4>(contractOp.getIndexingMaps());
981     Value lhs = contractOp.lhs();
982     Value rhs = contractOp.rhs();
983     size_t index = 0;
984     bool changed = false;
985     for (Value *operand : {&lhs, &rhs}) {
986       AffineMap &map = maps[index++];
987       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
988       if (!broadcast)
989         continue;
990       // contractionOp can only take vector as operands.
991       auto srcType = broadcast.getSourceType().dyn_cast<VectorType>();
992       if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank())
993         continue;
994       int64_t rankDiff =
995           broadcast.getVectorType().getRank() - srcType.getRank();
996       bool innerDimBroadcast = false;
997       SmallVector<AffineExpr> originalDims;
998       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
999         if (dim.value() !=
1000             broadcast.getVectorType().getDimSize(rankDiff + dim.index())) {
1001           innerDimBroadcast = true;
1002           break;
1003         }
1004         originalDims.push_back(
1005             rewriter.getAffineDimExpr(dim.index() + rankDiff));
1006       }
1007       // Contract doesn't support inner dimension broadcast. Once this is
1008       // relaxed we can remove this case.
1009       if (innerDimBroadcast)
1010         continue;
1011       AffineMap broadcastMap =
1012           AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims,
1013                          contractOp.getContext());
1014       map = broadcastMap.compose(map);
1015       *operand = broadcast.source();
1016       changed = true;
1017     }
1018     if (!changed)
1019       return failure();
1020     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1021         contractOp, lhs, rhs, contractOp.acc(),
1022         rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types());
1023     return success();
1024   }
1025 };
1026 
1027 } // namespace
1028 
1029 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using
1030 /// operands `x` and `y`.
1031 static Value createAdd(Location loc, Value x, Value y, bool isInt,
1032                        PatternRewriter &rewriter) {
1033   if (isInt)
1034     return rewriter.create<arith::AddIOp>(loc, x, y);
1035   return rewriter.create<arith::AddFOp>(loc, x, y);
1036 }
1037 
1038 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using
1039 /// operands `x and `y`.
1040 static Value createMul(Location loc, Value x, Value y, bool isInt,
1041                        PatternRewriter &rewriter) {
1042   if (isInt)
1043     return rewriter.create<arith::MulIOp>(loc, x, y);
1044   return rewriter.create<arith::MulFOp>(loc, x, y);
1045 }
1046 
1047 namespace mlir {
1048 
1049 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1050 /// semantics to:
1051 /// ```
1052 ///    %mta = maybe_transpose
1053 ///    %mtb = maybe_transpose
1054 ///    %flattened_a = vector.shape_cast %mta
1055 ///    %flattened_b = vector.shape_cast %mtb
1056 ///    %flattened_d = vector.matmul %flattened_a, %flattened_b
1057 ///    %mtd = vector.shape_cast %flattened_d
1058 ///    %d = maybe_untranspose %mtd
1059 ///    %e = add %c, %d
1060 /// ```
1061 /// `vector.matmul` later lowers to `llvm.matrix.multiply`.
1062 //
1063 /// This only kicks in when VectorTransformsOptions is set to `Matmul`.
1064 /// vector.transpose operations are inserted if the vector.contract op is not a
1065 /// row-major matrix multiply.
1066 LogicalResult
1067 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op,
1068                                                  PatternRewriter &rew) const {
1069   // TODO: implement masks
1070   if (llvm::size(op.masks()) != 0)
1071     return failure();
1072   if (vectorTransformOptions.vectorContractLowering !=
1073       vector::VectorContractLowering::Matmul)
1074     return failure();
1075   if (failed(filter(op)))
1076     return failure();
1077 
1078   auto iteratorTypes = op.iterator_types().getValue();
1079   if (!isParallelIterator(iteratorTypes[0]) ||
1080       !isParallelIterator(iteratorTypes[1]) ||
1081       !isReductionIterator(iteratorTypes[2]))
1082     return failure();
1083 
1084   Type elementType = op.getLhsType().getElementType();
1085   if (!elementType.isIntOrFloat())
1086     return failure();
1087 
1088   // Perform lhs + rhs transpositions to conform to matmul row-major semantics.
1089   // Bail out if the contraction cannot be put in this form.
1090   MLIRContext *ctx = op.getContext();
1091   Location loc = op.getLoc();
1092   AffineExpr m, n, k;
1093   bindDims(rew.getContext(), m, n, k);
1094   // LHS must be A(m, k) or A(k, m).
1095   Value lhs = op.lhs();
1096   auto lhsMap = op.indexing_maps()[0].cast<AffineMapAttr>().getValue();
1097   if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
1098     lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0});
1099   else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
1100     return failure();
1101 
1102   // RHS must be B(k, n) or B(n, k).
1103   Value rhs = op.rhs();
1104   auto rhsMap = op.indexing_maps()[1].cast<AffineMapAttr>().getValue();
1105   if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
1106     rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0});
1107   else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
1108     return failure();
1109 
1110   // At this point lhs and rhs are in row-major.
1111   VectorType lhsType = lhs.getType().cast<VectorType>();
1112   VectorType rhsType = rhs.getType().cast<VectorType>();
1113   int64_t lhsRows = lhsType.getDimSize(0);
1114   int64_t lhsColumns = lhsType.getDimSize(1);
1115   int64_t rhsColumns = rhsType.getDimSize(1);
1116 
1117   Type flattenedLHSType =
1118       VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
1119   lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs);
1120 
1121   Type flattenedRHSType =
1122       VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
1123   rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs);
1124 
1125   Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns,
1126                                            rhsColumns);
1127   mul = rew.create<vector::ShapeCastOp>(
1128       loc,
1129       VectorType::get({lhsRows, rhsColumns},
1130                       getElementTypeOrSelf(op.acc().getType())),
1131       mul);
1132 
1133   // ACC must be C(m, n) or C(n, m).
1134   auto accMap = op.indexing_maps()[2].cast<AffineMapAttr>().getValue();
1135   if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
1136     mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0});
1137   else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
1138     llvm_unreachable("invalid contraction semantics");
1139 
1140   Value res =
1141       elementType.isa<IntegerType>()
1142           ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.acc(), mul))
1143           : static_cast<Value>(rew.create<arith::AddFOp>(loc, op.acc(), mul));
1144 
1145   rew.replaceOp(op, res);
1146   return success();
1147 }
1148 
1149 namespace {
1150 struct IteratorType {
1151   IteratorType(StringRef strRef) : strRef(strRef) {}
1152   bool isOfType(Attribute attr) const {
1153     auto sAttr = attr.dyn_cast<StringAttr>();
1154     return sAttr && sAttr.getValue() == strRef;
1155   }
1156   StringRef strRef;
1157 };
1158 struct Par : public IteratorType {
1159   Par() : IteratorType(getParallelIteratorTypeName()) {}
1160 };
1161 struct Red : public IteratorType {
1162   Red() : IteratorType(getReductionIteratorTypeName()) {}
1163 };
1164 
1165 /// Generate a vector implementation for matmat, matvec and tmatvec.
1166 /// This unrolls outer-products along the reduction dimension.
1167 struct UnrolledOuterProductGenerator
1168     : public StructuredGenerator<vector::ContractionOp> {
1169 
1170   UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op)
1171       : StructuredGenerator<vector::ContractionOp>(builder, op),
1172         kind(op.kind()), lhs(op.lhs()), rhs(op.rhs()), res(op.acc()),
1173         lhsType(op.getLhsType()) {}
1174 
1175   Value t(Value v) {
1176     static constexpr std::array<int64_t, 2> perm = {1, 0};
1177     return builder.create<vector::TransposeOp>(loc, v, perm);
1178   }
1179 
1180   Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) {
1181     assert(reductionSize > 0);
1182     for (int64_t k = 0; k < reductionSize; ++k) {
1183       Value a = builder.create<vector::ExtractOp>(loc, lhs, k);
1184       Value b = builder.create<vector::ExtractOp>(loc, rhs, k);
1185       res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b,
1186                                                    res, kind);
1187     }
1188     return res;
1189   }
1190 
1191   /// Two outer parallel, one inner reduction (matmat flavor).
1192   FailureOr<Value> matmat() {
1193     if (!iters({Par(), Par(), Red()}))
1194       return failure();
1195     // Set up the parallel/reduction structure in the right form.
1196     AffineExpr m, n, k;
1197     bindDims(builder.getContext(), m, n, k);
1198     // Classical row-major matmul:  Just permute the lhs.
1199     if (layout({{m, k}, {k, n}, {m, n}}))
1200       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1201     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1202     if (layout({{m, k}, {n, k}, {m, n}})) {
1203       Value tlhs = t(lhs);
1204       return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1));
1205     }
1206     // No need to permute anything.
1207     if (layout({{k, m}, {k, n}, {m, n}}))
1208       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1209     // Just permute the rhs.
1210     if (layout({{k, m}, {n, k}, {m, n}}))
1211       return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0));
1212     // Transposed output: swap RHS and LHS.
1213     // Classical row-major matmul: permute the lhs.
1214     if (layout({{m, k}, {k, n}, {n, m}}))
1215       return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1));
1216     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1217     if (layout({{m, k}, {n, k}, {n, m}})) {
1218       Value trhs = t(rhs);
1219       return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1));
1220     }
1221     if (layout({{k, m}, {k, n}, {n, m}}))
1222       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1223     if (layout({{k, m}, {n, k}, {n, m}}))
1224       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1225     return failure();
1226   }
1227 
1228   /// One outer parallel, one inner reduction (matvec flavor)
1229   FailureOr<Value> matvec() {
1230     if (!iters({Par(), Red()}))
1231       return failure();
1232     AffineExpr m, k;
1233     bindDims(builder.getContext(), m, k);
1234 
1235     // Case mat-vec: transpose.
1236     if (layout({{m, k}, {k}, {m}}))
1237       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1238     // Case mat-trans-vec: ready to go.
1239     if (layout({{k, m}, {k}, {m}}))
1240       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1241     // Case vec-mat: swap and transpose.
1242     if (layout({{k}, {m, k}, {m}}))
1243       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1244     // Case vec-mat-trans: swap and ready to go.
1245     if (layout({{k}, {k, m}, {m}}))
1246       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1247     return failure();
1248   }
1249 
1250   //
1251   // One outer reduction, one inner parallel (tmatvec flavor)
1252   //
1253   FailureOr<Value> tmatvec() {
1254     if (!iters({Red(), Par()}))
1255       return failure();
1256     AffineExpr k, m;
1257     bindDims(builder.getContext(), k, m);
1258 
1259     // Case mat-vec: transpose.
1260     if (layout({{m, k}, {k}, {m}}))
1261       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1262     // Case mat-trans-vec: ready to go.
1263     if (layout({{k, m}, {k}, {m}}))
1264       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1265     // Case vec-mat: swap and transpose.
1266     if (layout({{k}, {m, k}, {m}}))
1267       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1268     // Case vec-mat-trans: swap and ready to go.
1269     if (layout({{k}, {k, m}, {m}}))
1270       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1271     return failure();
1272   }
1273 
1274 private:
1275   vector::CombiningKind kind;
1276   Value lhs, rhs, res;
1277   VectorType lhsType;
1278 };
1279 } // namespace
1280 
1281 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1282 /// semantics to a reduction_size-unrolled sequence:
1283 /// ```
1284 ///    %at = vector.transpose %a, [1, 0]
1285 ///    %bRow0 = vector.extract %b[0]
1286 ///    %atRow0 = vector.extract %at[0]
1287 ///    %c0 = vector.outerproduct %atRow0, %bRow0, %c
1288 ///    ...
1289 ///    %bRowK = vector.extract %b[K]
1290 ///    %atRowK = vector.extract %at[K]
1291 ///    %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
1292 /// ```
1293 ///
1294 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but
1295 /// otherwise supports any layout permutation of the matrix-multiply.
1296 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
1297     vector::ContractionOp op, PatternRewriter &rewriter) const {
1298   // TODO: implement masks
1299   if (llvm::size(op.masks()) != 0)
1300     return failure();
1301 
1302   if (vectorTransformOptions.vectorContractLowering !=
1303       vector::VectorContractLowering::OuterProduct)
1304     return failure();
1305 
1306   if (failed(filter(op)))
1307     return failure();
1308 
1309   UnrolledOuterProductGenerator e(rewriter, op);
1310   FailureOr<Value> matmatRes = e.matmat();
1311   if (succeeded(matmatRes)) {
1312     rewriter.replaceOp(op, *matmatRes);
1313     return success();
1314   }
1315   FailureOr<Value> matvecRes = e.matvec();
1316   if (succeeded(matvecRes)) {
1317     rewriter.replaceOp(op, *matvecRes);
1318     return success();
1319   }
1320   FailureOr<Value> tmatvecRes = e.tmatvec();
1321   if (succeeded(tmatvecRes)) {
1322     rewriter.replaceOp(op, *tmatvecRes);
1323     return success();
1324   }
1325 
1326   return failure();
1327 }
1328 
1329 LogicalResult
1330 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
1331                                             PatternRewriter &rewriter) const {
1332   // TODO: implement masks
1333   if (llvm::size(op.masks()) != 0)
1334     return failure();
1335 
1336   if (failed(filter(op)))
1337     return failure();
1338 
1339   if (vectorTransformOptions.vectorContractLowering !=
1340       vector::VectorContractLowering::Dot)
1341     return failure();
1342 
1343   auto iteratorTypes = op.iterator_types().getValue();
1344   static constexpr std::array<int64_t, 2> perm = {1, 0};
1345   Location loc = op.getLoc();
1346   Value lhs = op.lhs(), rhs = op.rhs();
1347 
1348   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1349   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
1350   AffineExpr m, n, k;
1351   bindDims(rewriter.getContext(), m, n, k);
1352   SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
1353   //
1354   // In the following we wish to make the reduction dimension innermost so we
1355   // can load vectors and just fmul + reduce into a scalar.
1356   //
1357   if (isParallelIterator(iteratorTypes[0]) &&
1358       isParallelIterator(iteratorTypes[1]) &&
1359       isReductionIterator(iteratorTypes[2])) {
1360     //
1361     // Two outer parallel, one inner reduction (matmat flavor).
1362     //
1363     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1364       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1365     } else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
1366       // No need to permute anything.
1367     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1368       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1369       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1370     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1371       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1372     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1373       // This is the classical row-major matmul. Just permute the lhs.
1374       Value tmp = lhs;
1375       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1376       rhs = tmp;
1377     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1378       std::swap(lhs, rhs);
1379     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1380       Value tmp = lhs;
1381       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1382       rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
1383     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1384       Value tmp = rhs;
1385       rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1386       lhs = tmp;
1387     } else {
1388       return failure();
1389     }
1390   } else if (isParallelIterator(iteratorTypes[0]) &&
1391              isReductionIterator(iteratorTypes[1])) {
1392     //
1393     // One outer parallel, one inner reduction (matvec flavor)
1394     //
1395     if (maps == infer({{m, n}, {n}, {m}})) {
1396       // No need to permute anything.
1397     } else if (maps == infer({{n, m}, {n}, {m}})) {
1398       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1399     } else if (maps == infer({{n}, {m, n}, {m}})) {
1400       std::swap(lhs, rhs);
1401     } else if (maps == infer({{n}, {n, m}, {m}})) {
1402       std::swap(lhs, rhs);
1403       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1404     } else {
1405       return failure();
1406     }
1407   } else {
1408     return failure();
1409   }
1410 
1411   VectorType dstType = op.getResultType().cast<VectorType>();
1412   assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
1413          "Expected dst type of rank 1 or 2");
1414 
1415   unsigned rank = dstType.getRank();
1416   unsigned dstRows = dstType.getShape()[0];
1417   unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
1418 
1419   // ExtractOp does not allow dynamic indexing, we must unroll explicitly.
1420   Value res = rewriter.create<arith::ConstantOp>(loc, dstType,
1421                                                  rewriter.getZeroAttr(dstType));
1422   bool isInt = dstType.getElementType().isa<IntegerType>();
1423   for (unsigned r = 0; r < dstRows; ++r) {
1424     Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
1425     for (unsigned c = 0; c < dstColumns; ++c) {
1426       Value b = rank == 1
1427                     ? rhs
1428                     : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
1429       Value m = createMul(op.getLoc(), a, b, isInt, rewriter);
1430       Value reduced = rewriter.create<vector::ReductionOp>(
1431           op.getLoc(), dstType.getElementType(), rewriter.getStringAttr("add"),
1432           m, ValueRange{});
1433 
1434       SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
1435                                               : SmallVector<int64_t, 2>{r, c};
1436       res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
1437     }
1438   }
1439   if (auto acc = op.acc())
1440     res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1441   rewriter.replaceOp(op, res);
1442   return success();
1443 }
1444 
1445 /// Progressive lowering of ContractionOp.
1446 /// One:
1447 ///   %x = vector.contract with at least one free/batch dimension
1448 /// is replaced by:
1449 ///   %a = vector.contract with one less free/batch dimension
1450 ///   %b = vector.contract with one less free/batch dimension
1451 ///   ..
1452 ///   %x = combine %a %b ..
1453 /// until a pure contraction is reached (no free/batch dimensions),
1454 /// which is replaced by a dot-product.
1455 ///
1456 /// This only kicks in when either VectorTransformsOptions is set
1457 /// to DOT or when other contraction patterns fail.
1458 //
1459 // TODO: break down into transpose/reshape/cast ops
1460 //               when they become available to avoid code dup
1461 // TODO: investigate lowering order impact on performance
1462 LogicalResult
1463 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
1464                                        PatternRewriter &rewriter) const {
1465   // TODO: implement masks.
1466   if (llvm::size(op.masks()) != 0)
1467     return failure();
1468 
1469   if (failed(filter(op)))
1470     return failure();
1471 
1472   // TODO: support mixed mode contract lowering.
1473   if (op.getLhsType().getElementType() !=
1474           getElementTypeOrSelf(op.getAccType()) ||
1475       op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
1476     return failure();
1477 
1478   // TODO: implement benefits, cost models.
1479   MLIRContext *ctx = op.getContext();
1480   ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx);
1481   if (succeeded(pat1.matchAndRewrite(op, rewriter)))
1482     return success();
1483   ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx);
1484   if (succeeded(pat2.matchAndRewrite(op, rewriter)))
1485     return success();
1486   ContractionOpToDotLowering pat3(vectorTransformOptions, ctx);
1487   if (succeeded(pat3.matchAndRewrite(op, rewriter)))
1488     return success();
1489 
1490   // Find first batch dimension in LHS/RHS, and lower when found.
1491   std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
1492   if (!batchDimMap.empty()) {
1493     int64_t lhsIndex = batchDimMap[0].first;
1494     int64_t rhsIndex = batchDimMap[0].second;
1495     rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
1496     return success();
1497   }
1498 
1499   // Collect contracting dimensions.
1500   std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
1501       op.getContractingDimMap();
1502   DenseSet<int64_t> lhsContractingDimSet;
1503   DenseSet<int64_t> rhsContractingDimSet;
1504   for (auto &dimPair : contractingDimMap) {
1505     lhsContractingDimSet.insert(dimPair.first);
1506     rhsContractingDimSet.insert(dimPair.second);
1507   }
1508 
1509   // Find first free dimension in LHS, and lower when found.
1510   VectorType lhsType = op.getLhsType();
1511   for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
1512     if (lhsContractingDimSet.count(lhsIndex) == 0) {
1513       rewriter.replaceOp(
1514           op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
1515       return success();
1516     }
1517   }
1518 
1519   // Find first free dimension in RHS, and lower when found.
1520   VectorType rhsType = op.getRhsType();
1521   for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
1522     if (rhsContractingDimSet.count(rhsIndex) == 0) {
1523       rewriter.replaceOp(
1524           op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
1525       return success();
1526     }
1527   }
1528 
1529   // Lower the first remaining reduction dimension.
1530   if (!contractingDimMap.empty()) {
1531     rewriter.replaceOp(op, lowerReduction(op, rewriter));
1532     return success();
1533   }
1534 
1535   return failure();
1536 }
1537 
1538 // Lower one parallel dimension.
1539 // TODO: consider reusing existing contract unrolling
1540 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
1541                                            int64_t lhsIndex, int64_t rhsIndex,
1542                                            PatternRewriter &rewriter) const {
1543   VectorType lhsType = op.getLhsType();
1544   VectorType rhsType = op.getRhsType();
1545   VectorType resType = op.getResultType().cast<VectorType>();
1546   // Find the iterator type index and result index.
1547   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1548   int64_t iterIndex = -1;
1549   int64_t dimSize = -1;
1550   if (lhsIndex >= 0) {
1551     iterIndex = iMap[0].getDimPosition(lhsIndex);
1552     assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) &&
1553            "parallel index should be free in LHS or batch in LHS/RHS");
1554     dimSize = lhsType.getDimSize(lhsIndex);
1555   } else {
1556     assert(rhsIndex >= 0 && "missing parallel index");
1557     iterIndex = iMap[1].getDimPosition(rhsIndex);
1558     dimSize = rhsType.getDimSize(rhsIndex);
1559   }
1560   assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
1561   Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
1562   assert(lookup.hasValue() && "parallel index not listed in reduction");
1563   int64_t resIndex = lookup.getValue();
1564   // Construct new iterator types and affine map array attribute.
1565   std::array<AffineMap, 3> lowIndexingMaps = {
1566       adjustMap(iMap[0], iterIndex, rewriter),
1567       adjustMap(iMap[1], iterIndex, rewriter),
1568       adjustMap(iMap[2], iterIndex, rewriter)};
1569   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1570   auto lowIter =
1571       rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
1572   // Unroll into a series of lower dimensional vector.contract ops.
1573   Location loc = op.getLoc();
1574   Value result = rewriter.create<arith::ConstantOp>(
1575       loc, resType, rewriter.getZeroAttr(resType));
1576   for (int64_t d = 0; d < dimSize; ++d) {
1577     auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
1578     auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
1579     auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter);
1580     Value lowContract = rewriter.create<vector::ContractionOp>(
1581         loc, lhs, rhs, acc, lowAffine, lowIter);
1582     result =
1583         reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
1584   }
1585   return result;
1586 }
1587 
1588 // Lower one reduction dimension.
1589 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
1590                                             PatternRewriter &rewriter) const {
1591   auto loc = op.getLoc();
1592   VectorType lhsType = op.getLhsType();
1593   VectorType rhsType = op.getRhsType();
1594   Type resType = op.getResultType();
1595   assert(!resType.isa<VectorType>());
1596   bool isInt = resType.isa<IntegerType>();
1597   // Use iterator index 0.
1598   int64_t iterIndex = 0;
1599   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1600   Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
1601   Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
1602   assert(lookupLhs.hasValue() && "missing LHS parallel index");
1603   assert(lookupRhs.hasValue() && "missing RHS parallel index");
1604   int64_t lhsIndex = lookupLhs.getValue();
1605   int64_t rhsIndex = lookupRhs.getValue();
1606   int64_t dimSize = lhsType.getDimSize(lhsIndex);
1607   assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
1608   // Base case.
1609   if (lhsType.getRank() == 1) {
1610     assert(rhsType.getRank() == 1 && "corrupt contraction");
1611     Value m = createMul(loc, op.lhs(), op.rhs(), isInt, rewriter);
1612     StringAttr kind = rewriter.getStringAttr("add");
1613     Value res = rewriter.create<vector::ReductionOp>(loc, resType, kind, m,
1614                                                      ValueRange{});
1615     if (auto acc = op.acc())
1616       res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1617     return res;
1618   }
1619   // Construct new iterator types and affine map array attribute.
1620   std::array<AffineMap, 3> lowIndexingMaps = {
1621       adjustMap(iMap[0], iterIndex, rewriter),
1622       adjustMap(iMap[1], iterIndex, rewriter),
1623       adjustMap(iMap[2], iterIndex, rewriter)};
1624   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1625   auto lowIter =
1626       rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
1627   // Unroll into a series of lower dimensional vector.contract ops.
1628   // By feeding the initial accumulator into the first contraction,
1629   // and the result of each contraction into the next, eventually
1630   // the sum of all reductions is computed.
1631   Value result = op.acc();
1632   for (int64_t d = 0; d < dimSize; ++d) {
1633     auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
1634     auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
1635     result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
1636                                                     lowAffine, lowIter);
1637   }
1638   return result;
1639 }
1640 
1641 } // namespace mlir
1642 
1643 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp(
1644     OpBuilder &builder, Operation *op, ArrayRef<Value> ids,
1645     ArrayRef<int64_t> multiplicity, const AffineMap &map) {
1646   OpBuilder::InsertionGuard guard(builder);
1647   builder.setInsertionPointAfter(op);
1648   Location loc = op->getLoc();
1649   if (op->getNumResults() != 1)
1650     return {};
1651   Value result = op->getResult(0);
1652   VectorType type = op->getResult(0).getType().dyn_cast<VectorType>();
1653   if (!type || map.getNumResults() != multiplicity.size())
1654     return {};
1655   // For each dimension being distributed check that the size is a multiple of
1656   // the multiplicity. To handle more sizes we would need to support masking.
1657   unsigned multiplictyCount = 0;
1658   for (auto exp : map.getResults()) {
1659     auto affinExp = exp.dyn_cast<AffineDimExpr>();
1660     if (!affinExp || affinExp.getPosition() >= type.getRank() ||
1661         type.getDimSize(affinExp.getPosition()) %
1662                 multiplicity[multiplictyCount++] !=
1663             0)
1664       return {};
1665   }
1666   DistributeOps ops;
1667   ops.extract =
1668       builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map);
1669   ops.insert =
1670       builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids);
1671   return ops;
1672 }
1673 
1674 /// Progressive lowering of transfer_read. This pattern supports lowering of
1675 /// `vector.transfer_read` to a combination of `vector.load` and
1676 /// `vector.broadcast` if all of the following hold:
1677 /// - Stride of most minor memref dimension must be 1.
1678 /// - Out-of-bounds masking is not required.
1679 /// - If the memref's element type is a vector type then it coincides with the
1680 ///   result type.
1681 /// - The permutation map doesn't perform permutation (broadcasting is allowed).
1682 struct TransferReadToVectorLoadLowering
1683     : public OpRewritePattern<vector::TransferReadOp> {
1684   TransferReadToVectorLoadLowering(MLIRContext *context,
1685                                    llvm::Optional<unsigned> maxRank)
1686       : OpRewritePattern<vector::TransferReadOp>(context),
1687         maxTransferRank(maxRank) {}
1688 
1689   LogicalResult matchAndRewrite(vector::TransferReadOp read,
1690                                 PatternRewriter &rewriter) const override {
1691     if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank)
1692       return failure();
1693 
1694     SmallVector<unsigned, 4> broadcastedDims;
1695     // Permutations are handled by VectorToSCF or
1696     // populateVectorTransferPermutationMapLoweringPatterns.
1697     // We let the 0-d corner case pass-through as it is supported.
1698     if (!read.permutation_map().isMinorIdentityWithBroadcasting(
1699             &broadcastedDims))
1700       return failure();
1701 
1702     auto memRefType = read.getShapedType().dyn_cast<MemRefType>();
1703     if (!memRefType)
1704       return failure();
1705 
1706     // Non-unit strides are handled by VectorToSCF.
1707     if (!vector::isLastMemrefDimUnitStride(memRefType))
1708       return failure();
1709 
1710     // If there is broadcasting involved then we first load the unbroadcasted
1711     // vector, and then broadcast it with `vector.broadcast`.
1712     ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
1713     SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(),
1714                                                      vectorShape.end());
1715     for (unsigned i : broadcastedDims)
1716       unbroadcastedVectorShape[i] = 1;
1717     VectorType unbroadcastedVectorType = VectorType::get(
1718         unbroadcastedVectorShape, read.getVectorType().getElementType());
1719 
1720     // `vector.load` supports vector types as memref's elements only when the
1721     // resulting vector type is the same as the element type.
1722     auto memrefElTy = memRefType.getElementType();
1723     if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType)
1724       return failure();
1725 
1726     // Otherwise, element types of the memref and the vector must match.
1727     if (!memrefElTy.isa<VectorType>() &&
1728         memrefElTy != read.getVectorType().getElementType())
1729       return failure();
1730 
1731     // Out-of-bounds dims are handled by MaterializeTransferMask.
1732     if (read.hasOutOfBoundsDim())
1733       return failure();
1734 
1735     // Create vector load op.
1736     Operation *loadOp;
1737     if (read.mask()) {
1738       Value fill = rewriter.create<SplatOp>(
1739           read.getLoc(), unbroadcastedVectorType, read.padding());
1740       loadOp = rewriter.create<vector::MaskedLoadOp>(
1741           read.getLoc(), unbroadcastedVectorType, read.source(), read.indices(),
1742           read.mask(), fill);
1743     } else {
1744       loadOp = rewriter.create<vector::LoadOp>(read.getLoc(),
1745                                                unbroadcastedVectorType,
1746                                                read.source(), read.indices());
1747     }
1748 
1749     // Insert a broadcasting op if required.
1750     if (!broadcastedDims.empty()) {
1751       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1752           read, read.getVectorType(), loadOp->getResult(0));
1753     } else {
1754       rewriter.replaceOp(read, loadOp->getResult(0));
1755     }
1756 
1757     return success();
1758   }
1759 
1760   llvm::Optional<unsigned> maxTransferRank;
1761 };
1762 
1763 /// Replace a 0-d vector.load with a memref.load + vector.broadcast.
1764 // TODO: we shouldn't cross the vector/scalar domains just for this
1765 // but atm we lack the infra to avoid it. Possible solutions include:
1766 // - go directly to LLVM + bitcast
1767 // - introduce a bitcast op and likely a new pointer dialect
1768 // - let memref.load/store additionally support the 0-d vector case
1769 // There are still deeper data layout issues lingering even in this
1770 // trivial case (for architectures for which this matters).
1771 struct VectorLoadToMemrefLoadLowering
1772     : public OpRewritePattern<vector::LoadOp> {
1773   using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
1774 
1775   LogicalResult matchAndRewrite(vector::LoadOp loadOp,
1776                                 PatternRewriter &rewriter) const override {
1777     auto vecType = loadOp.getVectorType();
1778     if (vecType.getNumElements() != 1)
1779       return failure();
1780     auto memrefLoad = rewriter.create<memref::LoadOp>(
1781         loadOp.getLoc(), loadOp.base(), loadOp.indices());
1782     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
1783                                                      memrefLoad);
1784     return success();
1785   }
1786 };
1787 
1788 /// Replace a 0-d vector.store with a vector.extractelement + memref.store.
1789 struct VectorStoreToMemrefStoreLowering
1790     : public OpRewritePattern<vector::StoreOp> {
1791   using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
1792 
1793   LogicalResult matchAndRewrite(vector::StoreOp storeOp,
1794                                 PatternRewriter &rewriter) const override {
1795     auto vecType = storeOp.getVectorType();
1796     if (vecType.getNumElements() != 1)
1797       return failure();
1798     Value extracted;
1799     if (vecType.getRank() == 0) {
1800       // TODO: Unifiy once ExtractOp supports 0-d vectors.
1801       extracted = rewriter.create<vector::ExtractElementOp>(
1802           storeOp.getLoc(), storeOp.valueToStore());
1803     } else {
1804       SmallVector<int64_t> indices(vecType.getRank(), 0);
1805       extracted = rewriter.create<vector::ExtractOp>(
1806           storeOp.getLoc(), storeOp.valueToStore(), indices);
1807     }
1808 
1809     rewriter.replaceOpWithNewOp<memref::StoreOp>(
1810         storeOp, extracted, storeOp.base(), storeOp.indices());
1811     return success();
1812   }
1813 };
1814 
1815 /// Progressive lowering of transfer_write. This pattern supports lowering of
1816 /// `vector.transfer_write` to `vector.store` if all of the following hold:
1817 /// - Stride of most minor memref dimension must be 1.
1818 /// - Out-of-bounds masking is not required.
1819 /// - If the memref's element type is a vector type then it coincides with the
1820 ///   type of the written value.
1821 /// - The permutation map is the minor identity map (neither permutation nor
1822 ///   broadcasting is allowed).
1823 struct TransferWriteToVectorStoreLowering
1824     : public OpRewritePattern<vector::TransferWriteOp> {
1825   TransferWriteToVectorStoreLowering(MLIRContext *context,
1826                                      llvm::Optional<unsigned> maxRank)
1827       : OpRewritePattern<vector::TransferWriteOp>(context),
1828         maxTransferRank(maxRank) {}
1829 
1830   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
1831                                 PatternRewriter &rewriter) const override {
1832     if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank)
1833       return failure();
1834 
1835     // Permutations are handled by VectorToSCF or
1836     // populateVectorTransferPermutationMapLoweringPatterns.
1837     if ( // pass-through for the 0-d corner case.
1838         !write.permutation_map().isMinorIdentity())
1839       return failure();
1840 
1841     auto memRefType = write.getShapedType().dyn_cast<MemRefType>();
1842     if (!memRefType)
1843       return failure();
1844 
1845     // Non-unit strides are handled by VectorToSCF.
1846     if (!vector::isLastMemrefDimUnitStride(memRefType))
1847       return failure();
1848 
1849     // `vector.store` supports vector types as memref's elements only when the
1850     // type of the vector value being written is the same as the element type.
1851     auto memrefElTy = memRefType.getElementType();
1852     if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType())
1853       return failure();
1854 
1855     // Otherwise, element types of the memref and the vector must match.
1856     if (!memrefElTy.isa<VectorType>() &&
1857         memrefElTy != write.getVectorType().getElementType())
1858       return failure();
1859 
1860     // Out-of-bounds dims are handled by MaterializeTransferMask.
1861     if (write.hasOutOfBoundsDim())
1862       return failure();
1863     if (write.mask()) {
1864       rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
1865           write, write.source(), write.indices(), write.mask(), write.vector());
1866     } else {
1867       rewriter.replaceOpWithNewOp<vector::StoreOp>(
1868           write, write.vector(), write.source(), write.indices());
1869     }
1870     return success();
1871   }
1872 
1873   llvm::Optional<unsigned> maxTransferRank;
1874 };
1875 
1876 // Returns the values in `arrayAttr` as an integer vector.
1877 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
1878   return llvm::to_vector<4>(
1879       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
1880                       [](IntegerAttr attr) { return attr.getInt(); }));
1881 }
1882 
1883 // Shuffles vector.bitcast op after vector.extract op.
1884 //
1885 // This transforms IR like:
1886 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
1887 //   %1 = vector.extract %0[3] : vector<8xf16>
1888 // Into:
1889 //   %0 = vector.extract %src[1] : vector<4xf32>
1890 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
1891 //   %2 = vector.extract %1[1] : vector<2xf16>
1892 struct BubbleDownVectorBitCastForExtract
1893     : public OpRewritePattern<vector::ExtractOp> {
1894   using OpRewritePattern::OpRewritePattern;
1895 
1896   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
1897                                 PatternRewriter &rewriter) const override {
1898     // Only support extracting scalars for now.
1899     if (extractOp.getVectorType().getRank() != 1)
1900       return failure();
1901 
1902     auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>();
1903     if (!castOp)
1904       return failure();
1905 
1906     VectorType castSrcType = castOp.getSourceVectorType();
1907     VectorType castDstType = castOp.getResultVectorType();
1908     assert(castSrcType.getRank() == castDstType.getRank());
1909 
1910     // Fail to match if we only have one element in the cast op source.
1911     // This is to avoid infinite loop given that this pattern can generate
1912     // such cases.
1913     if (castSrcType.getNumElements() == 1)
1914       return failure();
1915 
1916     // Only support casting to a larger number of elements or now.
1917     // E.g., vector<4xf32> -> vector<8xf16>.
1918     if (castSrcType.getNumElements() > castDstType.getNumElements())
1919       return failure();
1920 
1921     unsigned expandRatio =
1922         castDstType.getNumElements() / castSrcType.getNumElements();
1923 
1924     auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
1925       return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
1926     };
1927 
1928     uint64_t index = getFirstIntValue(extractOp.position());
1929 
1930     // Get the single scalar (as a vector) in the source value that packs the
1931     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
1932     VectorType oneScalarType =
1933         VectorType::get({1}, castSrcType.getElementType());
1934     Value packedValue = rewriter.create<vector::ExtractOp>(
1935         extractOp.getLoc(), oneScalarType, castOp.source(),
1936         rewriter.getI64ArrayAttr(index / expandRatio));
1937 
1938     // Cast it to a vector with the desired scalar's type.
1939     // E.g. f32 -> vector<2xf16>
1940     VectorType packedType =
1941         VectorType::get({expandRatio}, castDstType.getElementType());
1942     Value castedValue = rewriter.create<vector::BitCastOp>(
1943         extractOp.getLoc(), packedType, packedValue);
1944 
1945     // Finally extract the desired scalar.
1946     rewriter.replaceOpWithNewOp<vector::ExtractOp>(
1947         extractOp, extractOp.getType(), castedValue,
1948         rewriter.getI64ArrayAttr(index % expandRatio));
1949 
1950     return success();
1951   }
1952 };
1953 
1954 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
1955 //
1956 // This transforms IR like:
1957 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
1958 //     %0 = vector.extract_strided_slice %cast {
1959 //            offsets = [4], sizes = [4], strides = [1]
1960 //          } : vector<8xf16> to vector<4xf16>
1961 // Into:
1962 //   %0 = vector.extract_strided_slice %src {
1963 //          offsets = [2], sizes = [2], strides = [1]
1964 //        } : vector<4xf32> to vector<2xf32>
1965 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
1966 struct BubbleDownBitCastForStridedSliceExtract
1967     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
1968   using OpRewritePattern::OpRewritePattern;
1969 
1970   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
1971                                 PatternRewriter &rewriter) const override {
1972     auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>();
1973     if (!castOp)
1974       return failure();
1975 
1976     VectorType castSrcType = castOp.getSourceVectorType();
1977     VectorType castDstType = castOp.getResultVectorType();
1978     assert(castSrcType.getRank() == castDstType.getRank());
1979 
1980     int64_t castSrcLastDim = castSrcType.getShape().back();
1981     int64_t castDstLastDim = castDstType.getShape().back();
1982     // Require casting to more elements for now; other cases to be implemented.
1983     if (castSrcLastDim > castDstLastDim)
1984       return failure();
1985 
1986     // Only accept all one strides for now.
1987     if (llvm::any_of(extractOp.strides().getAsValueRange<IntegerAttr>(),
1988                      [](const APInt &val) { return !val.isOneValue(); }))
1989       return failure();
1990 
1991     unsigned rank = extractOp.getVectorType().getRank();
1992     assert(castDstLastDim % castSrcLastDim == 0);
1993     int64_t expandRatio = castDstLastDim / castSrcLastDim;
1994 
1995     // If we have a less number of offsets than the rank, then implicitly we
1996     // are selecting the full range for the last bitcasted dimension; other
1997     // dimensions aren't affected. Otherwise, we need to scale down the last
1998     // dimension's offset given we are extracting from less elements now.
1999     ArrayAttr newOffsets = extractOp.offsets();
2000     if (newOffsets.size() == rank) {
2001       SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2002       if (offsets.back() % expandRatio != 0)
2003         return failure();
2004       offsets.back() = offsets.back() / expandRatio;
2005       newOffsets = rewriter.getI64ArrayAttr(offsets);
2006     }
2007 
2008     // Similarly for sizes.
2009     ArrayAttr newSizes = extractOp.sizes();
2010     if (newSizes.size() == rank) {
2011       SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes);
2012       if (sizes.back() % expandRatio != 0)
2013         return failure();
2014       sizes.back() = sizes.back() / expandRatio;
2015       newSizes = rewriter.getI64ArrayAttr(sizes);
2016     }
2017 
2018     SmallVector<int64_t, 4> dims =
2019         llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape());
2020     dims.back() = dims.back() / expandRatio;
2021     VectorType newExtractType =
2022         VectorType::get(dims, castSrcType.getElementType());
2023 
2024     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
2025         extractOp.getLoc(), newExtractType, castOp.source(), newOffsets,
2026         newSizes, extractOp.strides());
2027 
2028     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
2029         extractOp, extractOp.getType(), newExtractOp);
2030 
2031     return success();
2032   }
2033 };
2034 
2035 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
2036 //
2037 // This transforms IR like:
2038 //   %0 = vector.insert_strided_slice %src, %dst {
2039 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
2040 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
2041 // Into:
2042 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
2043 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
2044 //   %2 = vector.insert_strided_slice %src, %dst {
2045 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
2046 struct BubbleUpBitCastForStridedSliceInsert
2047     : public OpRewritePattern<vector::BitCastOp> {
2048   using OpRewritePattern::OpRewritePattern;
2049   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
2050                                 PatternRewriter &rewriter) const override {
2051     VectorType castSrcType = bitcastOp.getSourceVectorType();
2052     VectorType castDstType = bitcastOp.getResultVectorType();
2053     assert(castSrcType.getRank() == castDstType.getRank());
2054 
2055     int64_t castSrcLastDim = castSrcType.getShape().back();
2056     int64_t castDstLastDim = castDstType.getShape().back();
2057     // Require casting to less elements for now; other cases to be implemented.
2058     if (castSrcLastDim < castDstLastDim)
2059       return failure();
2060 
2061     assert(castSrcLastDim % castDstLastDim == 0);
2062     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
2063 
2064     auto insertOp =
2065         bitcastOp.source().getDefiningOp<vector::InsertStridedSliceOp>();
2066     if (!insertOp)
2067       return failure();
2068 
2069     // Only accept all one strides for now.
2070     if (llvm::any_of(insertOp.strides().getAsValueRange<IntegerAttr>(),
2071                      [](const APInt &val) { return !val.isOneValue(); }))
2072       return failure();
2073 
2074     unsigned rank = insertOp.getSourceVectorType().getRank();
2075     // Require insert op to have the same rank for the source and destination
2076     // vector; other cases to be implemented.
2077     if (rank != insertOp.getDestVectorType().getRank())
2078       return failure();
2079 
2080     ArrayAttr newOffsets = insertOp.offsets();
2081     assert(newOffsets.size() == rank);
2082     SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2083     if (offsets.back() % shrinkRatio != 0)
2084       return failure();
2085     offsets.back() = offsets.back() / shrinkRatio;
2086     newOffsets = rewriter.getI64ArrayAttr(offsets);
2087 
2088     SmallVector<int64_t, 4> srcDims =
2089         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
2090     srcDims.back() = srcDims.back() / shrinkRatio;
2091     VectorType newCastSrcType =
2092         VectorType::get(srcDims, castDstType.getElementType());
2093 
2094     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
2095         bitcastOp.getLoc(), newCastSrcType, insertOp.source());
2096 
2097     SmallVector<int64_t, 4> dstDims =
2098         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
2099     dstDims.back() = dstDims.back() / shrinkRatio;
2100     VectorType newCastDstType =
2101         VectorType::get(dstDims, castDstType.getElementType());
2102 
2103     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
2104         bitcastOp.getLoc(), newCastDstType, insertOp.dest());
2105 
2106     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
2107         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
2108         insertOp.strides());
2109 
2110     return success();
2111   }
2112 };
2113 
2114 static Value createCastToIndexLike(PatternRewriter &rewriter, Location loc,
2115                                    Type targetType, Value value) {
2116   if (targetType == value.getType())
2117     return value;
2118 
2119   bool targetIsIndex = targetType.isIndex();
2120   bool valueIsIndex = value.getType().isIndex();
2121   if (targetIsIndex ^ valueIsIndex)
2122     return rewriter.create<arith::IndexCastOp>(loc, targetType, value);
2123 
2124   auto targetIntegerType = targetType.dyn_cast<IntegerType>();
2125   auto valueIntegerType = value.getType().dyn_cast<IntegerType>();
2126   assert(targetIntegerType && valueIntegerType &&
2127          "unexpected cast between types other than integers and index");
2128   assert(targetIntegerType.getSignedness() == valueIntegerType.getSignedness());
2129 
2130   if (targetIntegerType.getWidth() > valueIntegerType.getWidth())
2131     return rewriter.create<arith::ExtSIOp>(loc, targetIntegerType, value);
2132   return rewriter.create<arith::TruncIOp>(loc, targetIntegerType, value);
2133 }
2134 
2135 // Helper that returns a vector comparison that constructs a mask:
2136 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
2137 //
2138 // If `dim == 0` then the result will be a 0-D vector.
2139 //
2140 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
2141 //       much more compact, IR for this operation, but LLVM eventually
2142 //       generates more elaborate instructions for this intrinsic since it
2143 //       is very conservative on the boundary conditions.
2144 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
2145                                    bool indexOptimizations, int64_t dim,
2146                                    Value b, Value *off = nullptr) {
2147   auto loc = op->getLoc();
2148   // If we can assume all indices fit in 32-bit, we perform the vector
2149   // comparison in 32-bit to get a higher degree of SIMD parallelism.
2150   // Otherwise we perform the vector comparison using 64-bit indices.
2151   Type idxType =
2152       indexOptimizations ? rewriter.getI32Type() : rewriter.getI64Type();
2153   DenseIntElementsAttr indicesAttr;
2154   if (dim == 0 && indexOptimizations) {
2155     indicesAttr = DenseIntElementsAttr::get(
2156         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
2157   } else if (dim == 0) {
2158     indicesAttr = DenseIntElementsAttr::get(
2159         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
2160   } else if (indexOptimizations) {
2161     indicesAttr = rewriter.getI32VectorAttr(
2162         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
2163   } else {
2164     indicesAttr = rewriter.getI64VectorAttr(
2165         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
2166   }
2167   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
2168   // Add in an offset if requested.
2169   if (off) {
2170     Value o = createCastToIndexLike(rewriter, loc, idxType, *off);
2171     Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
2172     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
2173   }
2174   // Construct the vector comparison.
2175   Value bound = createCastToIndexLike(rewriter, loc, idxType, b);
2176   Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
2177   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
2178                                         bounds);
2179 }
2180 
2181 template <typename ConcreteOp>
2182 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
2183 public:
2184   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt)
2185       : mlir::OpRewritePattern<ConcreteOp>(context),
2186         indexOptimizations(enableIndexOpt) {}
2187 
2188   LogicalResult matchAndRewrite(ConcreteOp xferOp,
2189                                 PatternRewriter &rewriter) const override {
2190     if (!xferOp.hasOutOfBoundsDim())
2191       return failure();
2192 
2193     if (xferOp.getVectorType().getRank() > 1 ||
2194         llvm::size(xferOp.indices()) == 0)
2195       return failure();
2196 
2197     Location loc = xferOp->getLoc();
2198     VectorType vtp = xferOp.getVectorType();
2199 
2200     // * Create a vector with linear indices [ 0 .. vector_length - 1 ].
2201     // * Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
2202     // * Let dim the memref dimension, compute the vector comparison mask
2203     //   (in-bounds mask):
2204     //   [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
2205     //
2206     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
2207     //       dimensions here.
2208     unsigned vecWidth = vtp.getNumElements();
2209     unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
2210     Value off = xferOp.indices()[lastIndex];
2211     Value dim =
2212         vector::createOrFoldDimOp(rewriter, loc, xferOp.source(), lastIndex);
2213     Value mask = buildVectorComparison(rewriter, xferOp, indexOptimizations,
2214                                        vecWidth, dim, &off);
2215 
2216     if (xferOp.mask()) {
2217       // Intersect the in-bounds with the mask specified as an op parameter.
2218       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.mask());
2219     }
2220 
2221     rewriter.updateRootInPlace(xferOp, [&]() {
2222       xferOp.maskMutable().assign(mask);
2223       xferOp.in_boundsAttr(rewriter.getBoolArrayAttr({true}));
2224     });
2225 
2226     return success();
2227   }
2228 
2229 private:
2230   const bool indexOptimizations;
2231 };
2232 
2233 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
2234 class VectorCreateMaskOpConversion
2235     : public OpRewritePattern<vector::CreateMaskOp> {
2236 public:
2237   explicit VectorCreateMaskOpConversion(MLIRContext *context,
2238                                         bool enableIndexOpt)
2239       : mlir::OpRewritePattern<vector::CreateMaskOp>(context),
2240         indexOptimizations(enableIndexOpt) {}
2241 
2242   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
2243                                 PatternRewriter &rewriter) const override {
2244     auto dstType = op.getType();
2245     int64_t rank = dstType.getRank();
2246     if (rank > 1)
2247       return failure();
2248     rewriter.replaceOp(
2249         op, buildVectorComparison(rewriter, op, indexOptimizations,
2250                                   rank == 0 ? 0 : dstType.getDimSize(0),
2251                                   op.getOperand(0)));
2252     return success();
2253   }
2254 
2255 private:
2256   const bool indexOptimizations;
2257 };
2258 
2259 // Drop inner most contiguous unit dimensions from transfer_read operand.
2260 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
2261   using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
2262 
2263   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
2264                                 PatternRewriter &rewriter) const override {
2265     // TODO: support 0-d corner case.
2266     if (readOp.getTransferRank() == 0)
2267       return failure();
2268 
2269     // TODO: support mask.
2270     if (readOp.mask())
2271       return failure();
2272 
2273     auto srcType = readOp.source().getType().dyn_cast<MemRefType>();
2274     if (!srcType || !srcType.hasStaticShape())
2275       return failure();
2276 
2277     if (!readOp.permutation_map().isMinorIdentity())
2278       return failure();
2279 
2280     auto targetType = readOp.getVectorType();
2281     if (targetType.getRank() <= 1)
2282       return failure();
2283 
2284     SmallVector<int64_t> srcStrides;
2285     int64_t srcOffset;
2286     if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
2287       return failure();
2288 
2289     size_t dimsToDrop = 0;
2290     for (size_t i = 1; i < srcStrides.size(); ++i) {
2291       int dim = srcType.getRank() - i - 1;
2292       if (srcStrides[dim] == 1) {
2293         dimsToDrop++;
2294       } else {
2295         break;
2296       }
2297     }
2298     if (dimsToDrop == 0)
2299       return failure();
2300 
2301     auto resultTargetVecType =
2302         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
2303                         targetType.getElementType());
2304 
2305     MemRefType resultMemrefType;
2306     if (srcType.getLayout().getAffineMap().isIdentity()) {
2307       resultMemrefType = MemRefType::get(
2308           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2309           {}, srcType.getMemorySpaceAsInt());
2310     } else {
2311       AffineMap map = srcType.getLayout().getAffineMap();
2312       int numResultDims = map.getNumDims() - dimsToDrop;
2313       int numSymbols = map.getNumSymbols();
2314       for (size_t i = 0; i < dimsToDrop; ++i) {
2315         int dim = srcType.getRank() - i - 1;
2316         map = map.replace(rewriter.getAffineDimExpr(dim),
2317                           rewriter.getAffineConstantExpr(0), numResultDims,
2318                           numSymbols);
2319       }
2320       resultMemrefType = MemRefType::get(
2321           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2322           map, srcType.getMemorySpaceAsInt());
2323     }
2324 
2325     auto loc = readOp.getLoc();
2326     SmallVector<int64_t> offsets(srcType.getRank(), 0);
2327     SmallVector<int64_t> strides(srcType.getRank(), 1);
2328 
2329     ArrayAttr inBoundsAttr =
2330         readOp.in_bounds()
2331             ? rewriter.getArrayAttr(
2332                   readOp.in_boundsAttr().getValue().drop_back(dimsToDrop))
2333             : ArrayAttr();
2334     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
2335         loc, resultMemrefType, readOp.source(), offsets, srcType.getShape(),
2336         strides);
2337     auto permMap = getTransferMinorIdentityMap(
2338         rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType);
2339     Value result = rewriter.create<vector::TransferReadOp>(
2340         loc, resultTargetVecType, rankedReducedView,
2341         readOp.indices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
2342         readOp.padding(),
2343         // TODO: support mask.
2344         /*mask=*/Value(), inBoundsAttr);
2345     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
2346                                                      result);
2347     return success();
2348   }
2349 };
2350 
2351 namespace {
2352 
2353 /// This function checks to see if the vector combining kind
2354 /// is consistent with the integer or float element type.
2355 static bool isValidKind(bool isInt, vector::CombiningKind kind) {
2356   using vector::CombiningKind;
2357   enum class KindType { FLOAT, INT, INVALID };
2358   KindType type{KindType::INVALID};
2359   switch (kind) {
2360   case CombiningKind::MINF:
2361   case CombiningKind::MAXF:
2362     type = KindType::FLOAT;
2363     break;
2364   case CombiningKind::MINUI:
2365   case CombiningKind::MINSI:
2366   case CombiningKind::MAXUI:
2367   case CombiningKind::MAXSI:
2368   case CombiningKind::AND:
2369   case CombiningKind::OR:
2370   case CombiningKind::XOR:
2371     type = KindType::INT;
2372     break;
2373   case CombiningKind::ADD:
2374   case CombiningKind::MUL:
2375     type = isInt ? KindType::INT : KindType::FLOAT;
2376     break;
2377   }
2378   bool isValidIntKind = (type == KindType::INT) && isInt;
2379   bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
2380   return (isValidIntKind || isValidFloatKind);
2381 }
2382 
2383 /// This function constructs the appropriate integer or float
2384 /// operation given the vector combining kind and operands. The
2385 /// supported int operations are : add, mul, min (signed/unsigned),
2386 /// max(signed/unsigned), and, or, xor. The supported float
2387 /// operations are : add, mul, min and max.
2388 static Value genOperator(Location loc, Value x, Value y,
2389                          vector::CombiningKind kind,
2390                          PatternRewriter &rewriter) {
2391   using vector::CombiningKind;
2392 
2393   auto elType = x.getType().cast<VectorType>().getElementType();
2394   bool isInt = elType.isIntOrIndex();
2395 
2396   Value combinedResult{nullptr};
2397   switch (kind) {
2398   case CombiningKind::ADD:
2399     if (isInt)
2400       combinedResult = rewriter.create<arith::AddIOp>(loc, x, y);
2401     else
2402       combinedResult = rewriter.create<arith::AddFOp>(loc, x, y);
2403     break;
2404   case CombiningKind::MUL:
2405     if (isInt)
2406       combinedResult = rewriter.create<arith::MulIOp>(loc, x, y);
2407     else
2408       combinedResult = rewriter.create<arith::MulFOp>(loc, x, y);
2409     break;
2410   case CombiningKind::MINUI:
2411     combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y);
2412     break;
2413   case CombiningKind::MINSI:
2414     combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y);
2415     break;
2416   case CombiningKind::MAXUI:
2417     combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y);
2418     break;
2419   case CombiningKind::MAXSI:
2420     combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y);
2421     break;
2422   case CombiningKind::AND:
2423     combinedResult = rewriter.create<arith::AndIOp>(loc, x, y);
2424     break;
2425   case CombiningKind::OR:
2426     combinedResult = rewriter.create<arith::OrIOp>(loc, x, y);
2427     break;
2428   case CombiningKind::XOR:
2429     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
2430     break;
2431   case CombiningKind::MINF:
2432     combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
2433     break;
2434   case CombiningKind::MAXF:
2435     combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
2436     break;
2437   }
2438   return combinedResult;
2439 }
2440 
2441 /// Convert vector.scan op into arith ops and
2442 /// vector.insert_strided_slice/extract_strided_slice
2443 ///
2444 /// Ex:
2445 /// ```
2446 ///   %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim =
2447 ///   1} :
2448 ///     (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
2449 /// ```
2450 /// Gets converted to:
2451 /// ```
2452 ///   %cst = arith.constant dense<0> : vector<2x3xi32>
2453 ///   %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1],
2454 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 =
2455 ///   vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]}
2456 ///   : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice
2457 ///   %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} :
2458 ///   vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 :
2459 ///   vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1],
2460 ///   strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 =
2461 ///   vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1],
2462 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3,
2463 ///   %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets =
2464 ///   [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 =
2465 ///   vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 :
2466 ///   vector<2x3xi32>, vector<2xi32>
2467 /// ```
2468 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
2469   using OpRewritePattern<vector::ScanOp>::OpRewritePattern;
2470 
2471   LogicalResult matchAndRewrite(vector::ScanOp scanOp,
2472                                 PatternRewriter &rewriter) const override {
2473     auto loc = scanOp.getLoc();
2474     VectorType destType = scanOp.getDestType();
2475     ArrayRef<int64_t> destShape = destType.getShape();
2476     auto elType = destType.getElementType();
2477     bool isInt = elType.isIntOrIndex();
2478     if (!isValidKind(isInt, scanOp.kind()))
2479       return failure();
2480 
2481     VectorType resType = VectorType::get(destShape, elType);
2482     Value result = rewriter.create<arith::ConstantOp>(
2483         loc, resType, rewriter.getZeroAttr(resType));
2484     int64_t reductionDim = scanOp.reduction_dim();
2485     bool inclusive = scanOp.inclusive();
2486     int64_t destRank = destType.getRank();
2487     VectorType initialValueType = scanOp.getInitialValueType();
2488     int64_t initialValueRank = initialValueType.getRank();
2489 
2490     SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end());
2491     reductionShape[reductionDim] = 1;
2492     VectorType reductionType = VectorType::get(reductionShape, elType);
2493     SmallVector<int64_t> offsets(destRank, 0);
2494     SmallVector<int64_t> strides(destRank, 1);
2495     SmallVector<int64_t> sizes(destShape.begin(), destShape.end());
2496     sizes[reductionDim] = 1;
2497     ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
2498     ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
2499 
2500     Value lastOutput, lastInput;
2501     for (int i = 0; i < destShape[reductionDim]; i++) {
2502       offsets[reductionDim] = i;
2503       ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
2504       Value input = rewriter.create<vector::ExtractStridedSliceOp>(
2505           loc, reductionType, scanOp.source(), scanOffsets, scanSizes,
2506           scanStrides);
2507       Value output;
2508       if (i == 0) {
2509         if (inclusive) {
2510           output = input;
2511         } else {
2512           if (initialValueRank == 0) {
2513             // ShapeCastOp cannot handle 0-D vectors
2514             output = rewriter.create<vector::BroadcastOp>(
2515                 loc, input.getType(), scanOp.initial_value());
2516           } else {
2517             output = rewriter.create<vector::ShapeCastOp>(
2518                 loc, input.getType(), scanOp.initial_value());
2519           }
2520         }
2521       } else {
2522         Value y = inclusive ? input : lastInput;
2523         output = genOperator(loc, lastOutput, y, scanOp.kind(), rewriter);
2524         assert(output != nullptr);
2525       }
2526       result = rewriter.create<vector::InsertStridedSliceOp>(
2527           loc, output, result, offsets, strides);
2528       lastOutput = output;
2529       lastInput = input;
2530     }
2531 
2532     Value reduction;
2533     if (initialValueRank == 0) {
2534       Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0);
2535       reduction =
2536           rewriter.create<vector::BroadcastOp>(loc, initialValueType, v);
2537     } else {
2538       reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType,
2539                                                        lastOutput);
2540     }
2541 
2542     rewriter.replaceOp(scanOp, {result, reduction});
2543     return success();
2544   }
2545 };
2546 
2547 } // namespace
2548 
2549 void mlir::vector::populateVectorMaskMaterializationPatterns(
2550     RewritePatternSet &patterns, bool indexOptimizations) {
2551   patterns.add<VectorCreateMaskOpConversion,
2552                MaterializeTransferMask<vector::TransferReadOp>,
2553                MaterializeTransferMask<vector::TransferWriteOp>>(
2554       patterns.getContext(), indexOptimizations);
2555 }
2556 
2557 void mlir::vector::populateShapeCastFoldingPatterns(
2558     RewritePatternSet &patterns) {
2559   patterns.add<ShapeCastOpFolder>(patterns.getContext());
2560 }
2561 
2562 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2563     RewritePatternSet &patterns) {
2564   patterns.add<BubbleDownVectorBitCastForExtract,
2565                BubbleDownBitCastForStridedSliceExtract,
2566                BubbleUpBitCastForStridedSliceInsert>(patterns.getContext());
2567 }
2568 
2569 void mlir::vector::populateVectorBroadcastLoweringPatterns(
2570     RewritePatternSet &patterns) {
2571   patterns.add<BroadcastOpLowering>(patterns.getContext());
2572 }
2573 
2574 void mlir::vector::populateVectorMaskOpLoweringPatterns(
2575     RewritePatternSet &patterns) {
2576   patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>(
2577       patterns.getContext());
2578 }
2579 
2580 void mlir::vector::populateVectorShapeCastLoweringPatterns(
2581     RewritePatternSet &patterns) {
2582   patterns.add<ShapeCastOp2DDownCastRewritePattern,
2583                ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
2584       patterns.getContext());
2585 }
2586 
2587 void mlir::vector::populateVectorContractLoweringPatterns(
2588     RewritePatternSet &patterns, VectorTransformsOptions options) {
2589   patterns.add<OuterProductOpLowering>(patterns.getContext());
2590   patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering,
2591                ContractionOpToOuterProductOpLowering>(options,
2592                                                       patterns.getContext());
2593 }
2594 
2595 void mlir::vector::populateVectorTransposeLoweringPatterns(
2596     RewritePatternSet &patterns, VectorTransformsOptions options) {
2597   patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
2598       options, patterns.getContext());
2599 }
2600 
2601 void mlir::vector::populateVectorReductionToContractPatterns(
2602     RewritePatternSet &patterns) {
2603   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2604                CombineContractTranspose>(patterns.getContext());
2605 }
2606 
2607 void mlir::vector::
2608     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2609         RewritePatternSet &patterns) {
2610   patterns.add<DropInnerMostUnitDims>(patterns.getContext());
2611 }
2612 
2613 void mlir::vector::populateVectorTransferLoweringPatterns(
2614     RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) {
2615   patterns.add<TransferReadToVectorLoadLowering,
2616                TransferWriteToVectorStoreLowering>(patterns.getContext(),
2617                                                    maxTransferRank);
2618   patterns
2619       .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
2620           patterns.getContext());
2621 }
2622 
2623 void mlir::vector::populateVectorScanLoweringPatterns(
2624     RewritePatternSet &patterns) {
2625   patterns.add<ScanToArithOps>(patterns.getContext());
2626 }
2627