1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-independent rewrites as 1->N patterns. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 14 15 #include <type_traits> 16 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/MemRef/IR/MemRef.h" 21 #include "mlir/Dialect/SCF/SCF.h" 22 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 23 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 24 #include "mlir/IR/ImplicitLocOpBuilder.h" 25 #include "mlir/IR/Matchers.h" 26 #include "mlir/IR/PatternMatch.h" 27 #include "mlir/Interfaces/VectorInterfaces.h" 28 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/MapVector.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 36 #define DEBUG_TYPE "vector-to-vector" 37 38 using namespace mlir; 39 using namespace mlir::vector; 40 41 // Helper to find an index in an affine map. 42 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) { 43 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 44 int64_t idx = map.getDimPosition(i); 45 if (idx == index) 46 return i; 47 } 48 return None; 49 } 50 51 // Helper to construct iterator types with one index removed. 52 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes, 53 int64_t index) { 54 SmallVector<Attribute, 4> results; 55 for (const auto &it : llvm::enumerate(iteratorTypes)) { 56 int64_t idx = it.index(); 57 if (idx == index) 58 continue; 59 results.push_back(it.value()); 60 } 61 return results; 62 } 63 64 // Helper to construct an affine map with one index removed. 65 static AffineMap adjustMap(AffineMap map, int64_t index, 66 PatternRewriter &rewriter) { 67 auto *ctx = rewriter.getContext(); 68 SmallVector<AffineExpr, 4> results; 69 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 70 int64_t idx = map.getDimPosition(i); 71 if (idx == index) 72 continue; 73 // Re-insert remaining indices, but renamed when occurring 74 // after the removed index. 75 auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx); 76 results.push_back(targetExpr); 77 } 78 return AffineMap::get(map.getNumDims() - 1, 0, results, ctx); 79 } 80 81 // Helper method to possibly drop a dimension in a load. 82 // TODO 83 static Value reshapeLoad(Location loc, Value val, VectorType type, 84 int64_t index, int64_t pos, 85 PatternRewriter &rewriter) { 86 if (index == -1) 87 return val; 88 Type lowType = VectorType::Builder(type).dropDim(0); 89 // At extraction dimension? 90 if (index == 0) { 91 auto posAttr = rewriter.getI64ArrayAttr(pos); 92 return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr); 93 } 94 // Unroll leading dimensions. 95 VectorType vType = lowType.cast<VectorType>(); 96 Type resType = VectorType::Builder(type).dropDim(index); 97 auto resVectorType = resType.cast<VectorType>(); 98 Value result = rewriter.create<arith::ConstantOp>( 99 loc, resVectorType, rewriter.getZeroAttr(resVectorType)); 100 for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) { 101 auto posAttr = rewriter.getI64ArrayAttr(d); 102 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr); 103 Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); 104 result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result, 105 posAttr); 106 } 107 return result; 108 } 109 110 // Helper method to possibly drop a dimension in a store. 111 // TODO 112 static Value reshapeStore(Location loc, Value val, Value result, 113 VectorType type, int64_t index, int64_t pos, 114 PatternRewriter &rewriter) { 115 // Unmodified? 116 if (index == -1) 117 return val; 118 // At insertion dimension? 119 if (index == 0) { 120 auto posAttr = rewriter.getI64ArrayAttr(pos); 121 return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr); 122 } 123 // Unroll leading dimensions. 124 Type lowType = VectorType::Builder(type).dropDim(0); 125 VectorType vType = lowType.cast<VectorType>(); 126 Type insType = VectorType::Builder(vType).dropDim(0); 127 for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { 128 auto posAttr = rewriter.getI64ArrayAttr(d); 129 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr); 130 Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr); 131 Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); 132 result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr); 133 } 134 return result; 135 } 136 137 template <typename IntType> 138 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) { 139 return llvm::to_vector<4>(llvm::map_range( 140 arrayAttr.getAsRange<IntegerAttr>(), 141 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 142 } 143 144 namespace { 145 146 /// ShapeCastOpFolder folds cancelling ShapeCastOps away. 147 // 148 // Example: 149 // 150 // The following MLIR with cancelling ShapeCastOps: 151 // 152 // %0 = source : vector<5x4x2xf32> 153 // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> 154 // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> 155 // %3 = user %2 : vector<5x4x2xf32> 156 // 157 // Should canonicalize to the following: 158 // 159 // %0 = source : vector<5x4x2xf32> 160 // %1 = user %0 : vector<5x4x2xf32> 161 // 162 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> { 163 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 164 165 LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, 166 PatternRewriter &rewriter) const override { 167 // Check if 'shapeCastOp' has vector source/result type. 168 auto sourceVectorType = 169 shapeCastOp.source().getType().dyn_cast_or_null<VectorType>(); 170 auto resultVectorType = 171 shapeCastOp.result().getType().dyn_cast_or_null<VectorType>(); 172 if (!sourceVectorType || !resultVectorType) 173 return failure(); 174 175 // Check if shape cast op source operand is also a shape cast op. 176 auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>( 177 shapeCastOp.source().getDefiningOp()); 178 if (!sourceShapeCastOp) 179 return failure(); 180 auto operandSourceVectorType = 181 sourceShapeCastOp.source().getType().cast<VectorType>(); 182 auto operandResultVectorType = sourceShapeCastOp.getType(); 183 184 // Check if shape cast operations invert each other. 185 if (operandSourceVectorType != resultVectorType || 186 operandResultVectorType != sourceVectorType) 187 return failure(); 188 189 rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source()); 190 return success(); 191 } 192 }; 193 194 /// Progressive lowering of BroadcastOp. 195 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> { 196 public: 197 using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern; 198 199 LogicalResult matchAndRewrite(vector::BroadcastOp op, 200 PatternRewriter &rewriter) const override { 201 auto loc = op.getLoc(); 202 VectorType dstType = op.getVectorType(); 203 VectorType srcType = op.getSourceType().dyn_cast<VectorType>(); 204 Type eltType = dstType.getElementType(); 205 206 // Scalar to any vector can use splat. 207 if (!srcType) { 208 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.source()); 209 return success(); 210 } 211 212 // Determine rank of source and destination. 213 int64_t srcRank = srcType.getRank(); 214 int64_t dstRank = dstType.getRank(); 215 216 // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat. 217 if (srcRank <= 1 && dstRank == 1) { 218 Value ext; 219 if (srcRank == 0) 220 ext = rewriter.create<vector::ExtractElementOp>(loc, op.source()); 221 else 222 ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0); 223 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext); 224 return success(); 225 } 226 227 // Duplicate this rank. 228 // For example: 229 // %x = broadcast %y : k-D to n-D, k < n 230 // becomes: 231 // %b = broadcast %y : k-D to (n-1)-D 232 // %x = [%b,%b,%b,%b] : n-D 233 // becomes: 234 // %b = [%y,%y] : (n-1)-D 235 // %x = [%b,%b,%b,%b] : n-D 236 if (srcRank < dstRank) { 237 // Duplication. 238 VectorType resType = 239 VectorType::get(dstType.getShape().drop_front(), eltType); 240 Value bcst = 241 rewriter.create<vector::BroadcastOp>(loc, resType, op.source()); 242 Value result = rewriter.create<arith::ConstantOp>( 243 loc, dstType, rewriter.getZeroAttr(dstType)); 244 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 245 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 246 rewriter.replaceOp(op, result); 247 return success(); 248 } 249 250 // Find non-matching dimension, if any. 251 assert(srcRank == dstRank); 252 int64_t m = -1; 253 for (int64_t r = 0; r < dstRank; r++) 254 if (srcType.getDimSize(r) != dstType.getDimSize(r)) { 255 m = r; 256 break; 257 } 258 259 // All trailing dimensions are the same. Simply pass through. 260 if (m == -1) { 261 rewriter.replaceOp(op, op.source()); 262 return success(); 263 } 264 265 // Any non-matching dimension forces a stretch along this rank. 266 // For example: 267 // %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32> 268 // becomes: 269 // %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32> 270 // %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32> 271 // %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32> 272 // %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32> 273 // %x = [%a,%b,%c,%d] 274 // becomes: 275 // %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32> 276 // %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32> 277 // %a = [%u, %v] 278 // .. 279 // %x = [%a,%b,%c,%d] 280 VectorType resType = 281 VectorType::get(dstType.getShape().drop_front(), eltType); 282 Value result = rewriter.create<arith::ConstantOp>( 283 loc, dstType, rewriter.getZeroAttr(dstType)); 284 if (m == 0) { 285 // Stetch at start. 286 Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0); 287 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 288 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 289 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 290 } else { 291 // Stetch not at start. 292 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) { 293 Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), d); 294 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 295 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 296 } 297 } 298 rewriter.replaceOp(op, result); 299 return success(); 300 } 301 }; 302 303 /// Return the number of leftmost dimensions from the first rightmost transposed 304 /// dimension found in 'transpose'. 305 size_t getNumDimsFromFirstTransposedDim(ArrayRef<int64_t> transpose) { 306 size_t numTransposedDims = transpose.size(); 307 for (size_t transpDim : llvm::reverse(transpose)) { 308 if (transpDim != numTransposedDims - 1) 309 break; 310 numTransposedDims--; 311 } 312 return numTransposedDims; 313 } 314 315 /// Progressive lowering of TransposeOp. 316 /// One: 317 /// %x = vector.transpose %y, [1, 0] 318 /// is replaced by: 319 /// %z = arith.constant dense<0.000000e+00> 320 /// %0 = vector.extract %y[0, 0] 321 /// %1 = vector.insert %0, %z [0, 0] 322 /// .. 323 /// %x = vector.insert .., .. [.., ..] 324 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> { 325 public: 326 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 327 328 TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions, 329 MLIRContext *context) 330 : OpRewritePattern<vector::TransposeOp>(context), 331 vectorTransformOptions(vectorTransformOptions) {} 332 333 LogicalResult matchAndRewrite(vector::TransposeOp op, 334 PatternRewriter &rewriter) const override { 335 auto loc = op.getLoc(); 336 337 VectorType resType = op.getResultType(); 338 339 // Set up convenience transposition table. 340 SmallVector<int64_t, 4> transp; 341 for (auto attr : op.transp()) 342 transp.push_back(attr.cast<IntegerAttr>().getInt()); 343 344 if (vectorTransformOptions.vectorTransposeLowering == 345 vector::VectorTransposeLowering::Shuffle && 346 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) 347 return rewriter.notifyMatchFailure( 348 op, "Options specifies lowering to shuffle"); 349 350 // Handle a true 2-D matrix transpose differently when requested. 351 if (vectorTransformOptions.vectorTransposeLowering == 352 vector::VectorTransposeLowering::Flat && 353 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) { 354 Type flattenedType = 355 VectorType::get(resType.getNumElements(), resType.getElementType()); 356 auto matrix = 357 rewriter.create<vector::ShapeCastOp>(loc, flattenedType, op.vector()); 358 auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]); 359 auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]); 360 Value trans = rewriter.create<vector::FlatTransposeOp>( 361 loc, flattenedType, matrix, rows, columns); 362 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans); 363 return success(); 364 } 365 366 // Generate unrolled extract/insert ops. We do not unroll the rightmost 367 // (i.e., highest-order) dimensions that are not transposed and leave them 368 // in vector form to improve performance. 369 size_t numLeftmostTransposedDims = getNumDimsFromFirstTransposedDim(transp); 370 371 // The type of the extract operation will be scalar if all the dimensions 372 // are unrolled. Otherwise, it will be a vector with the shape of the 373 // dimensions that are not transposed. 374 Type extractType = 375 numLeftmostTransposedDims == transp.size() 376 ? resType.getElementType() 377 : VectorType::Builder(resType).setShape( 378 resType.getShape().drop_front(numLeftmostTransposedDims)); 379 380 Value result = rewriter.create<arith::ConstantOp>( 381 loc, resType, rewriter.getZeroAttr(resType)); 382 SmallVector<int64_t, 4> lhs(numLeftmostTransposedDims, 0); 383 SmallVector<int64_t, 4> rhs(numLeftmostTransposedDims, 0); 384 rewriter.replaceOp(op, expandIndices(loc, resType, extractType, 0, 385 numLeftmostTransposedDims, transp, lhs, 386 rhs, op.vector(), result, rewriter)); 387 return success(); 388 } 389 390 private: 391 // Builds the indices arrays for the lhs and rhs. Generates the extract/insert 392 // operations when all the ranks go over the last dimension being transposed. 393 Value expandIndices(Location loc, VectorType resType, Type extractType, 394 int64_t pos, int64_t numLeftmostTransposedDims, 395 SmallVector<int64_t, 4> &transp, 396 SmallVector<int64_t, 4> &lhs, 397 SmallVector<int64_t, 4> &rhs, Value input, Value result, 398 PatternRewriter &rewriter) const { 399 if (pos >= numLeftmostTransposedDims) { 400 auto ridx = rewriter.getI64ArrayAttr(rhs); 401 auto lidx = rewriter.getI64ArrayAttr(lhs); 402 Value e = 403 rewriter.create<vector::ExtractOp>(loc, extractType, input, ridx); 404 return rewriter.create<vector::InsertOp>(loc, resType, e, result, lidx); 405 } 406 for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) { 407 lhs[pos] = d; 408 rhs[transp[pos]] = d; 409 result = expandIndices(loc, resType, extractType, pos + 1, 410 numLeftmostTransposedDims, transp, lhs, rhs, input, 411 result, rewriter); 412 } 413 return result; 414 } 415 416 /// Options to control the vector patterns. 417 vector::VectorTransformsOptions vectorTransformOptions; 418 }; 419 420 /// Rewrite a 2-D vector.transpose as a sequence of: 421 /// vector.shape_cast 2D -> 1D 422 /// vector.shuffle 423 /// vector.shape_cast 1D -> 2D 424 class TransposeOp2DToShuffleLowering 425 : public OpRewritePattern<vector::TransposeOp> { 426 public: 427 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 428 429 TransposeOp2DToShuffleLowering( 430 vector::VectorTransformsOptions vectorTransformOptions, 431 MLIRContext *context) 432 : OpRewritePattern<vector::TransposeOp>(context), 433 vectorTransformOptions(vectorTransformOptions) {} 434 435 LogicalResult matchAndRewrite(vector::TransposeOp op, 436 PatternRewriter &rewriter) const override { 437 auto loc = op.getLoc(); 438 439 VectorType srcType = op.getVectorType(); 440 if (srcType.getRank() != 2) 441 return rewriter.notifyMatchFailure(op, "Not a 2D transpose"); 442 443 SmallVector<int64_t, 4> transp; 444 for (auto attr : op.transp()) 445 transp.push_back(attr.cast<IntegerAttr>().getInt()); 446 if (transp[0] != 1 && transp[1] != 0) 447 return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation"); 448 449 if (vectorTransformOptions.vectorTransposeLowering != 450 VectorTransposeLowering::Shuffle) 451 return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle"); 452 453 int64_t m = srcType.getShape().front(), n = srcType.getShape().back(); 454 Value casted = rewriter.create<vector::ShapeCastOp>( 455 loc, VectorType::get({m * n}, srcType.getElementType()), op.vector()); 456 SmallVector<int64_t> mask; 457 mask.reserve(m * n); 458 for (int64_t j = 0; j < n; ++j) 459 for (int64_t i = 0; i < m; ++i) 460 mask.push_back(i * n + j); 461 462 Value shuffled = 463 rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask); 464 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(), 465 shuffled); 466 467 return success(); 468 } 469 470 private: 471 /// Options to control the vector patterns. 472 vector::VectorTransformsOptions vectorTransformOptions; 473 }; 474 475 /// Progressive lowering of OuterProductOp. 476 /// One: 477 /// %x = vector.outerproduct %lhs, %rhs, %acc 478 /// is replaced by: 479 /// %z = zero-result 480 /// %0 = vector.extract %lhs[0] 481 /// %1 = vector.broadcast %0 482 /// %2 = vector.extract %acc[0] 483 /// %3 = vector.fma %1, %rhs, %2 484 /// %4 = vector.insert %3, %z[0] 485 /// .. 486 /// %x = vector.insert %.., %..[N-1] 487 /// 488 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> { 489 public: 490 using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(vector::OuterProductOp op, 493 PatternRewriter &rewriter) const override { 494 auto loc = op.getLoc(); 495 496 VectorType lhsType = op.getOperandVectorTypeLHS(); 497 VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>(); 498 VectorType resType = op.getVectorType(); 499 Type eltType = resType.getElementType(); 500 bool isInt = eltType.isa<IntegerType, IndexType>(); 501 Value acc = (op.acc().empty()) ? nullptr : op.acc()[0]; 502 vector::CombiningKind kind = op.kind(); 503 504 if (!rhsType) { 505 // Special case: AXPY operation. 506 Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.rhs()); 507 Optional<Value> mult = 508 isInt ? genMultI(loc, op.lhs(), b, acc, kind, rewriter) 509 : genMultF(loc, op.lhs(), b, acc, kind, rewriter); 510 if (!mult.hasValue()) 511 return failure(); 512 rewriter.replaceOp(op, mult.getValue()); 513 return success(); 514 } 515 516 Value result = rewriter.create<arith::ConstantOp>( 517 loc, resType, rewriter.getZeroAttr(resType)); 518 for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { 519 auto pos = rewriter.getI64ArrayAttr(d); 520 Value x = rewriter.create<vector::ExtractOp>(loc, eltType, op.lhs(), pos); 521 Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x); 522 Value r = nullptr; 523 if (acc) 524 r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos); 525 Optional<Value> m = isInt ? genMultI(loc, a, op.rhs(), r, kind, rewriter) 526 : genMultF(loc, a, op.rhs(), r, kind, rewriter); 527 if (!m.hasValue()) 528 return failure(); 529 result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(), 530 result, pos); 531 } 532 rewriter.replaceOp(op, result); 533 return success(); 534 } 535 536 private: 537 static Optional<Value> genMultI(Location loc, Value x, Value y, Value acc, 538 vector::CombiningKind kind, 539 PatternRewriter &rewriter) { 540 using vector::CombiningKind; 541 542 auto mul = rewriter.create<arith::MulIOp>(loc, x, y); 543 if (!acc) 544 return Optional<Value>(mul); 545 546 if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF) 547 // Only valid for floating point types. 548 return Optional<Value>(); 549 550 return makeArithReduction(rewriter, loc, kind, mul, acc); 551 } 552 553 static Optional<Value> genMultF(Location loc, Value x, Value y, Value acc, 554 vector::CombiningKind kind, 555 PatternRewriter &rewriter) { 556 using vector::CombiningKind; 557 558 // Special case for fused multiply-add. 559 if (acc && kind == CombiningKind::ADD) { 560 return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc)); 561 } 562 563 auto mul = rewriter.create<arith::MulFOp>(loc, x, y); 564 565 if (!acc) 566 return Optional<Value>(mul); 567 568 if (kind == CombiningKind::ADD || kind == CombiningKind::AND || 569 kind == CombiningKind::MINUI || kind == CombiningKind::MINSI || 570 kind == CombiningKind::MAXUI || kind == CombiningKind::MAXSI || 571 kind == CombiningKind::OR || kind == CombiningKind::XOR) 572 // Already handled or only valid for integer types. 573 return Optional<Value>(); 574 575 return makeArithReduction(rewriter, loc, kind, mul, acc); 576 } 577 }; 578 579 /// Progressive lowering of ConstantMaskOp. 580 /// One: 581 /// %x = vector.constant_mask [a,b] 582 /// is replaced by: 583 /// %z = zero-result 584 /// %l = vector.constant_mask [b] 585 /// %4 = vector.insert %l, %z[0] 586 /// .. 587 /// %x = vector.insert %l, %..[a-1] 588 /// until a one-dimensional vector is reached. All these operations 589 /// will be folded at LLVM IR level. 590 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> { 591 public: 592 using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern; 593 594 LogicalResult matchAndRewrite(vector::ConstantMaskOp op, 595 PatternRewriter &rewriter) const override { 596 auto loc = op.getLoc(); 597 auto dstType = op.getType(); 598 auto eltType = dstType.getElementType(); 599 auto dimSizes = op.mask_dim_sizes(); 600 int64_t rank = dstType.getRank(); 601 602 if (rank == 0) { 603 assert(dimSizes.size() == 1 && 604 "Expected exactly one dim size for a 0-D vector"); 605 bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1; 606 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 607 op, dstType, 608 DenseIntElementsAttr::get( 609 VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()), 610 ArrayRef<bool>{value})); 611 return success(); 612 } 613 614 int64_t trueDim = std::min(dstType.getDimSize(0), 615 dimSizes[0].cast<IntegerAttr>().getInt()); 616 617 if (rank == 1) { 618 // Express constant 1-D case in explicit vector form: 619 // [T,..,T,F,..,F]. 620 SmallVector<bool, 4> values(dstType.getDimSize(0)); 621 for (int64_t d = 0; d < trueDim; d++) 622 values[d] = true; 623 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 624 op, dstType, rewriter.getBoolVectorAttr(values)); 625 return success(); 626 } 627 628 VectorType lowType = 629 VectorType::get(dstType.getShape().drop_front(), eltType); 630 SmallVector<int64_t, 4> newDimSizes; 631 for (int64_t r = 1; r < rank; r++) 632 newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt()); 633 Value trueVal = rewriter.create<vector::ConstantMaskOp>( 634 loc, lowType, rewriter.getI64ArrayAttr(newDimSizes)); 635 Value result = rewriter.create<arith::ConstantOp>( 636 loc, dstType, rewriter.getZeroAttr(dstType)); 637 for (int64_t d = 0; d < trueDim; d++) { 638 auto pos = rewriter.getI64ArrayAttr(d); 639 result = 640 rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos); 641 } 642 rewriter.replaceOp(op, result); 643 return success(); 644 } 645 }; 646 647 /// Progressive lowering of CreateMaskOp. 648 /// One: 649 /// %x = vector.create_mask %a, ... : vector<dx...> 650 /// is replaced by: 651 /// %l = vector.create_mask ... : vector<...> ; one lower rank 652 /// %0 = arith.cmpi "slt", %ci, %a | 653 /// %1 = select %0, %l, %zeroes | 654 /// %r = vector.insert %1, %pr [i] | d-times 655 /// %x = .... 656 /// until a one-dimensional vector is reached. 657 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> { 658 public: 659 using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern; 660 661 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 662 PatternRewriter &rewriter) const override { 663 auto dstType = op.getResult().getType().cast<VectorType>(); 664 int64_t rank = dstType.getRank(); 665 if (rank <= 1) 666 return rewriter.notifyMatchFailure( 667 op, "0-D and 1-D vectors are handled separately"); 668 669 auto loc = op.getLoc(); 670 auto eltType = dstType.getElementType(); 671 int64_t dim = dstType.getDimSize(0); 672 Value idx = op.getOperand(0); 673 674 VectorType lowType = 675 VectorType::get(dstType.getShape().drop_front(), eltType); 676 Value trueVal = rewriter.create<vector::CreateMaskOp>( 677 loc, lowType, op.getOperands().drop_front()); 678 Value falseVal = rewriter.create<arith::ConstantOp>( 679 loc, lowType, rewriter.getZeroAttr(lowType)); 680 Value result = rewriter.create<arith::ConstantOp>( 681 loc, dstType, rewriter.getZeroAttr(dstType)); 682 for (int64_t d = 0; d < dim; d++) { 683 Value bnd = 684 rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d)); 685 Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 686 bnd, idx); 687 Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal); 688 auto pos = rewriter.getI64ArrayAttr(d); 689 result = 690 rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos); 691 } 692 rewriter.replaceOp(op, result); 693 return success(); 694 } 695 }; 696 697 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D 698 /// vectors progressively on the way to target llvm.matrix intrinsics. 699 /// This iterates over the most major dimension of the 2-D vector and performs 700 /// rewrites into: 701 /// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D 702 class ShapeCastOp2DDownCastRewritePattern 703 : public OpRewritePattern<vector::ShapeCastOp> { 704 public: 705 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 706 707 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 708 PatternRewriter &rewriter) const override { 709 auto sourceVectorType = op.getSourceVectorType(); 710 auto resultVectorType = op.getResultVectorType(); 711 if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1) 712 return failure(); 713 714 auto loc = op.getLoc(); 715 Value desc = rewriter.create<arith::ConstantOp>( 716 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 717 unsigned mostMinorVectorSize = sourceVectorType.getShape()[1]; 718 for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) { 719 Value vec = rewriter.create<vector::ExtractOp>(loc, op.source(), i); 720 desc = rewriter.create<vector::InsertStridedSliceOp>( 721 loc, vec, desc, 722 /*offsets=*/i * mostMinorVectorSize, /*strides=*/1); 723 } 724 rewriter.replaceOp(op, desc); 725 return success(); 726 } 727 }; 728 729 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D 730 /// vectors progressively. 731 /// This iterates over the most major dimension of the 2-D vector and performs 732 /// rewrites into: 733 /// vector.extract_strided_slice from 1-D + vector.insert into 2-D 734 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle. 735 class ShapeCastOp2DUpCastRewritePattern 736 : public OpRewritePattern<vector::ShapeCastOp> { 737 public: 738 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 739 740 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 741 PatternRewriter &rewriter) const override { 742 auto sourceVectorType = op.getSourceVectorType(); 743 auto resultVectorType = op.getResultVectorType(); 744 if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2) 745 return failure(); 746 747 auto loc = op.getLoc(); 748 Value desc = rewriter.create<arith::ConstantOp>( 749 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 750 unsigned mostMinorVectorSize = resultVectorType.getShape()[1]; 751 for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) { 752 Value vec = rewriter.create<vector::ExtractStridedSliceOp>( 753 loc, op.source(), /*offsets=*/i * mostMinorVectorSize, 754 /*sizes=*/mostMinorVectorSize, 755 /*strides=*/1); 756 desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i); 757 } 758 rewriter.replaceOp(op, desc); 759 return success(); 760 } 761 }; 762 763 // We typically should not lower general shape cast operations into data 764 // movement instructions, since the assumption is that these casts are 765 // optimized away during progressive lowering. For completeness, however, 766 // we fall back to a reference implementation that moves all elements 767 // into the right place if we get here. 768 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> { 769 public: 770 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 771 772 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 773 PatternRewriter &rewriter) const override { 774 Location loc = op.getLoc(); 775 auto sourceVectorType = op.getSourceVectorType(); 776 auto resultVectorType = op.getResultVectorType(); 777 778 // Special case 2D/1D lowerings with better implementations. 779 // TODO: make is ND/1D to allow generic ND->1D->MD. 780 int64_t srcRank = sourceVectorType.getRank(); 781 int64_t resRank = resultVectorType.getRank(); 782 if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2)) 783 return failure(); 784 785 // Generic ShapeCast lowering path goes all the way down to unrolled scalar 786 // extract/insert chains. 787 // TODO: consider evolving the semantics to only allow 1D source or dest and 788 // drop this potentially very expensive lowering. 789 // Compute number of elements involved in the reshape. 790 int64_t numElts = 1; 791 for (int64_t r = 0; r < srcRank; r++) 792 numElts *= sourceVectorType.getDimSize(r); 793 // Replace with data movement operations: 794 // x[0,0,0] = y[0,0] 795 // x[0,0,1] = y[0,1] 796 // x[0,1,0] = y[0,2] 797 // etc., incrementing the two index vectors "row-major" 798 // within the source and result shape. 799 SmallVector<int64_t, 4> srcIdx(srcRank); 800 SmallVector<int64_t, 4> resIdx(resRank); 801 Value result = rewriter.create<arith::ConstantOp>( 802 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 803 for (int64_t i = 0; i < numElts; i++) { 804 if (i != 0) { 805 incIdx(srcIdx, sourceVectorType, srcRank - 1); 806 incIdx(resIdx, resultVectorType, resRank - 1); 807 } 808 Value e = rewriter.create<vector::ExtractOp>(loc, op.source(), srcIdx); 809 result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx); 810 } 811 rewriter.replaceOp(op, result); 812 return success(); 813 } 814 815 private: 816 static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) { 817 assert(0 <= r && r < tp.getRank()); 818 if (++idx[r] == tp.getDimSize(r)) { 819 idx[r] = 0; 820 incIdx(idx, tp, r - 1); 821 } 822 } 823 }; 824 825 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. 826 /// Ex: 827 /// ``` 828 /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> 829 /// %1 = vector.multi_reduction add, %0 [1] 830 /// : vector<8x32x16xf32> to vector<8x16xf32> 831 /// ``` 832 /// Gets converted to: 833 /// ``` 834 /// %1 = vector.contract {indexing_maps = [ 835 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 836 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 837 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 838 /// iterator_types = ["parallel", "parallel", "reduction"], 839 /// kind = add} %0, %arg1, %cst_f0 840 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 841 /// ``` 842 struct MultiReduceToContract 843 : public OpRewritePattern<vector::MultiDimReductionOp> { 844 using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern; 845 846 LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, 847 PatternRewriter &rewriter) const override { 848 if (reduceOp.kind() != vector::CombiningKind::ADD) 849 return failure(); 850 Operation *mulOp = reduceOp.source().getDefiningOp(); 851 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 852 return failure(); 853 SmallVector<bool> reductionMask = reduceOp.getReductionMask(); 854 auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); 855 SmallVector<AffineExpr> exprs; 856 SmallVector<StringRef> iteratorTypes; 857 for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { 858 if (!isReduceDim.value()) { 859 iteratorTypes.push_back(getParallelIteratorTypeName()); 860 exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); 861 } else { 862 iteratorTypes.push_back(getReductionIteratorTypeName()); 863 } 864 } 865 auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(), 866 /*symCount=*/0, exprs, reduceOp.getContext()); 867 Value zero = rewriter.create<arith::ConstantOp>( 868 reduceOp.getLoc(), reduceOp.getDestType(), 869 rewriter.getZeroAttr(reduceOp.getDestType())); 870 rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( 871 reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero, 872 rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), 873 rewriter.getStrArrayAttr(iteratorTypes)); 874 return success(); 875 } 876 }; 877 878 /// Merge TransposeOp into ContractionOp user. 879 /// Ex: 880 /// ``` 881 /// %0 = vector.transpose %arg0, [2, 0, 1] 882 /// : vector<32x16x8xf32> to vector<8x32x16xf32> 883 /// %1 = vector.contract {indexing_maps = [ 884 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 885 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 886 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 887 /// iterator_types = ["parallel", "parallel", "reduction"], 888 /// kind = add} %0, %arg1, %cst_f0 889 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 890 /// ``` 891 /// Gets converted to: 892 /// ``` 893 /// %1 = vector.contract {indexing_maps = [ 894 /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, 895 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 896 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 897 /// iterator_types = ["parallel", "parallel", "reduction"], 898 /// kind = add} %arg0, %arg1, %cst_f0 899 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 900 /// ``` 901 struct CombineContractTranspose 902 : public OpRewritePattern<vector::ContractionOp> { 903 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 904 905 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 906 PatternRewriter &rewriter) const override { 907 SmallVector<AffineMap, 4> maps = 908 llvm::to_vector<4>(contractOp.getIndexingMaps()); 909 Value lhs = contractOp.lhs(); 910 Value rhs = contractOp.rhs(); 911 size_t index = 0; 912 bool changed = false; 913 for (Value *operand : {&lhs, &rhs}) { 914 AffineMap &map = maps[index++]; 915 auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); 916 if (!transposeOp) 917 continue; 918 SmallVector<int64_t> perm; 919 transposeOp.getTransp(perm); 920 AffineMap permutationMap = AffineMap::getPermutationMap( 921 extractVector<unsigned>(transposeOp.transp()), 922 contractOp.getContext()); 923 map = inversePermutation(permutationMap).compose(map); 924 *operand = transposeOp.vector(); 925 changed = true; 926 } 927 if (!changed) 928 return failure(); 929 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 930 contractOp, lhs, rhs, contractOp.acc(), 931 rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types()); 932 return success(); 933 } 934 }; 935 936 /// Merge BroadcastOp into ContractionOp user. 937 /// Ex: 938 /// ``` 939 /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> 940 /// %1 = vector.contract {indexing_maps = [ 941 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 942 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 943 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 944 /// iterator_types = ["parallel", "parallel", "reduction"], 945 /// kind = add} %0, %arg1, %cst_f0 946 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 947 /// ``` 948 /// Gets converted to: 949 /// ``` 950 /// %1 = vector.contract {indexing_maps = [ 951 /// affine_map<(d0, d1, d2) -> (d1, d2)>, 952 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 953 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 954 /// iterator_types = ["parallel", "parallel", "reduction"], 955 /// kind = add} %arg0, %arg1, %cst_f0 956 /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 957 /// ``` 958 struct CombineContractBroadcast 959 : public OpRewritePattern<vector::ContractionOp> { 960 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 961 962 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 963 PatternRewriter &rewriter) const override { 964 SmallVector<AffineMap, 4> maps = 965 llvm::to_vector<4>(contractOp.getIndexingMaps()); 966 Value lhs = contractOp.lhs(); 967 Value rhs = contractOp.rhs(); 968 size_t index = 0; 969 bool changed = false; 970 for (Value *operand : {&lhs, &rhs}) { 971 AffineMap &map = maps[index++]; 972 auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); 973 if (!broadcast) 974 continue; 975 // contractionOp can only take vector as operands. 976 auto srcType = broadcast.getSourceType().dyn_cast<VectorType>(); 977 if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank()) 978 continue; 979 int64_t rankDiff = 980 broadcast.getVectorType().getRank() - srcType.getRank(); 981 bool innerDimBroadcast = false; 982 SmallVector<AffineExpr> originalDims; 983 for (const auto &dim : llvm::enumerate(srcType.getShape())) { 984 if (dim.value() != 985 broadcast.getVectorType().getDimSize(rankDiff + dim.index())) { 986 innerDimBroadcast = true; 987 break; 988 } 989 originalDims.push_back( 990 rewriter.getAffineDimExpr(dim.index() + rankDiff)); 991 } 992 // Contract doesn't support inner dimension broadcast. Once this is 993 // relaxed we can remove this case. 994 if (innerDimBroadcast) 995 continue; 996 AffineMap broadcastMap = 997 AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims, 998 contractOp.getContext()); 999 map = broadcastMap.compose(map); 1000 *operand = broadcast.source(); 1001 changed = true; 1002 } 1003 if (!changed) 1004 return failure(); 1005 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1006 contractOp, lhs, rhs, contractOp.acc(), 1007 rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types()); 1008 return success(); 1009 } 1010 }; 1011 1012 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and 1013 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when 1014 /// casting ops are around these operations. 1015 /// Ex: 1016 /// ``` 1017 /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> 1018 /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> 1019 /// ``` 1020 /// Gets converted to: 1021 /// ``` 1022 /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> 1023 /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> 1024 /// ``` 1025 struct ReorderCastOpsOnBroadcast 1026 : public OpInterfaceRewritePattern<CastOpInterface> { 1027 using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; 1028 1029 LogicalResult matchAndRewrite(CastOpInterface op, 1030 PatternRewriter &rewriter) const override { 1031 if (op->getNumOperands() != 1) 1032 return failure(); 1033 auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); 1034 if (!bcastOp) 1035 return failure(); 1036 1037 Type castResTy = getElementTypeOrSelf(op->getResult(0)); 1038 if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>()) 1039 castResTy = VectorType::get(vecTy.getShape(), castResTy); 1040 OperationState state(op->getLoc(), op->getName(), bcastOp.source(), 1041 castResTy, op->getAttrs()); 1042 auto castOp = rewriter.createOperation(state); 1043 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1044 op, op->getResult(0).getType(), castOp->getResult(0)); 1045 return success(); 1046 } 1047 }; 1048 1049 /// Reorders cast(transpose) to transpose(cast). This makes broadcast ops and 1050 /// contraction ops closer, which kicks in CombineContractTranspose pattern when 1051 /// casting ops are around these operations. 1052 /// Ex: 1053 /// ``` 1054 /// %0 = vector.transpose %arg0, [2, 0, 1] 1055 /// : vector<32x16x8xi8> to vector<8x32x16xi8> 1056 /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> 1057 /// ``` 1058 /// Gets converted to: 1059 /// ``` 1060 /// %0 = arith.extsi %0 : vector<32x16x8xi8> to vector<32x16x8xi32> 1061 /// %1 = vector.transpose %arg0, [2, 0, 1] 1062 /// : vector<32x16x8xi32> to vector<8x32x16xi32> 1063 /// ``` 1064 struct ReorderCastOpsOnTranspose 1065 : public OpInterfaceRewritePattern<CastOpInterface> { 1066 1067 using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; 1068 1069 LogicalResult matchAndRewrite(CastOpInterface op, 1070 PatternRewriter &rewriter) const override { 1071 if (op->getNumOperands() != 1) 1072 return failure(); 1073 auto transpOp = op->getOperand(0).getDefiningOp<vector::TransposeOp>(); 1074 if (!transpOp) 1075 return failure(); 1076 1077 auto castResTy = transpOp.getVectorType(); 1078 castResTy = VectorType::get(castResTy.getShape(), 1079 getElementTypeOrSelf(op->getResult(0))); 1080 OperationState state(op->getLoc(), op->getName(), transpOp.vector(), 1081 castResTy, op->getAttrs()); 1082 auto castOp = rewriter.createOperation(state); 1083 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 1084 op, op->getResult(0).getType(), castOp->getResult(0), 1085 transpOp.getTransp()); 1086 return success(); 1087 } 1088 }; 1089 1090 } // namespace 1091 1092 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using 1093 /// operands `x` and `y`. 1094 static Value createAdd(Location loc, Value x, Value y, bool isInt, 1095 PatternRewriter &rewriter) { 1096 if (isInt) 1097 return rewriter.create<arith::AddIOp>(loc, x, y); 1098 return rewriter.create<arith::AddFOp>(loc, x, y); 1099 } 1100 1101 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using 1102 /// operands `x and `y`. 1103 static Value createMul(Location loc, Value x, Value y, bool isInt, 1104 PatternRewriter &rewriter) { 1105 if (isInt) 1106 return rewriter.create<arith::MulIOp>(loc, x, y); 1107 return rewriter.create<arith::MulFOp>(loc, x, y); 1108 } 1109 1110 namespace mlir { 1111 1112 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1113 /// semantics to: 1114 /// ``` 1115 /// %mta = maybe_transpose 1116 /// %mtb = maybe_transpose 1117 /// %flattened_a = vector.shape_cast %mta 1118 /// %flattened_b = vector.shape_cast %mtb 1119 /// %flattened_d = vector.matmul %flattened_a, %flattened_b 1120 /// %mtd = vector.shape_cast %flattened_d 1121 /// %d = maybe_untranspose %mtd 1122 /// %e = add %c, %d 1123 /// ``` 1124 /// `vector.matmul` later lowers to `llvm.matrix.multiply`. 1125 // 1126 /// This only kicks in when VectorTransformsOptions is set to `Matmul`. 1127 /// vector.transpose operations are inserted if the vector.contract op is not a 1128 /// row-major matrix multiply. 1129 LogicalResult 1130 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op, 1131 PatternRewriter &rew) const { 1132 // TODO: implement masks 1133 if (llvm::size(op.masks()) != 0) 1134 return failure(); 1135 if (vectorTransformOptions.vectorContractLowering != 1136 vector::VectorContractLowering::Matmul) 1137 return failure(); 1138 if (failed(filter(op))) 1139 return failure(); 1140 1141 auto iteratorTypes = op.iterator_types().getValue(); 1142 if (!isParallelIterator(iteratorTypes[0]) || 1143 !isParallelIterator(iteratorTypes[1]) || 1144 !isReductionIterator(iteratorTypes[2])) 1145 return failure(); 1146 1147 Type elementType = op.getLhsType().getElementType(); 1148 if (!elementType.isIntOrFloat()) 1149 return failure(); 1150 1151 // Perform lhs + rhs transpositions to conform to matmul row-major semantics. 1152 // Bail out if the contraction cannot be put in this form. 1153 MLIRContext *ctx = op.getContext(); 1154 Location loc = op.getLoc(); 1155 AffineExpr m, n, k; 1156 bindDims(rew.getContext(), m, n, k); 1157 // LHS must be A(m, k) or A(k, m). 1158 Value lhs = op.lhs(); 1159 auto lhsMap = op.indexing_maps()[0]; 1160 if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx)) 1161 lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0}); 1162 else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx)) 1163 return failure(); 1164 1165 // RHS must be B(k, n) or B(n, k). 1166 Value rhs = op.rhs(); 1167 auto rhsMap = op.indexing_maps()[1]; 1168 if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx)) 1169 rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0}); 1170 else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx)) 1171 return failure(); 1172 1173 // At this point lhs and rhs are in row-major. 1174 VectorType lhsType = lhs.getType().cast<VectorType>(); 1175 VectorType rhsType = rhs.getType().cast<VectorType>(); 1176 int64_t lhsRows = lhsType.getDimSize(0); 1177 int64_t lhsColumns = lhsType.getDimSize(1); 1178 int64_t rhsColumns = rhsType.getDimSize(1); 1179 1180 Type flattenedLHSType = 1181 VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); 1182 lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs); 1183 1184 Type flattenedRHSType = 1185 VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); 1186 rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs); 1187 1188 Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns, 1189 rhsColumns); 1190 mul = rew.create<vector::ShapeCastOp>( 1191 loc, 1192 VectorType::get({lhsRows, rhsColumns}, 1193 getElementTypeOrSelf(op.acc().getType())), 1194 mul); 1195 1196 // ACC must be C(m, n) or C(n, m). 1197 auto accMap = op.indexing_maps()[2]; 1198 if (accMap == AffineMap::get(3, 0, {n, m}, ctx)) 1199 mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0}); 1200 else if (accMap != AffineMap::get(3, 0, {m, n}, ctx)) 1201 llvm_unreachable("invalid contraction semantics"); 1202 1203 Value res = 1204 elementType.isa<IntegerType>() 1205 ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.acc(), mul)) 1206 : static_cast<Value>(rew.create<arith::AddFOp>(loc, op.acc(), mul)); 1207 1208 rew.replaceOp(op, res); 1209 return success(); 1210 } 1211 1212 namespace { 1213 struct IteratorType { 1214 IteratorType(StringRef strRef) : strRef(strRef) {} 1215 bool isOfType(Attribute attr) const { 1216 auto sAttr = attr.dyn_cast<StringAttr>(); 1217 return sAttr && sAttr.getValue() == strRef; 1218 } 1219 StringRef strRef; 1220 }; 1221 struct Par : public IteratorType { 1222 Par() : IteratorType(getParallelIteratorTypeName()) {} 1223 }; 1224 struct Red : public IteratorType { 1225 Red() : IteratorType(getReductionIteratorTypeName()) {} 1226 }; 1227 1228 /// Generate a vector implementation for matmat, matvec and tmatvec. 1229 /// This unrolls outer-products along the reduction dimension. 1230 struct UnrolledOuterProductGenerator 1231 : public StructuredGenerator<vector::ContractionOp> { 1232 1233 UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op) 1234 : StructuredGenerator<vector::ContractionOp>(builder, op), 1235 kind(op.kind()), lhs(op.lhs()), rhs(op.rhs()), res(op.acc()), 1236 lhsType(op.getLhsType()) {} 1237 1238 Value t(Value v) { 1239 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1240 return builder.create<vector::TransposeOp>(loc, v, perm); 1241 } 1242 1243 Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) { 1244 assert(reductionSize > 0); 1245 for (int64_t k = 0; k < reductionSize; ++k) { 1246 Value a = builder.create<vector::ExtractOp>(loc, lhs, k); 1247 Value b = builder.create<vector::ExtractOp>(loc, rhs, k); 1248 res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b, 1249 res, kind); 1250 } 1251 return res; 1252 } 1253 1254 /// Two outer parallel, one inner reduction (matmat flavor). 1255 FailureOr<Value> matmat() { 1256 if (!iters({Par(), Par(), Red()})) 1257 return failure(); 1258 // Set up the parallel/reduction structure in the right form. 1259 AffineExpr m, n, k; 1260 bindDims(builder.getContext(), m, n, k); 1261 // Classical row-major matmul: Just permute the lhs. 1262 if (layout({{m, k}, {k, n}, {m, n}})) 1263 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1264 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1265 if (layout({{m, k}, {n, k}, {m, n}})) { 1266 Value tlhs = t(lhs); 1267 return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1)); 1268 } 1269 // No need to permute anything. 1270 if (layout({{k, m}, {k, n}, {m, n}})) 1271 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1272 // Just permute the rhs. 1273 if (layout({{k, m}, {n, k}, {m, n}})) 1274 return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0)); 1275 // Transposed output: swap RHS and LHS. 1276 // Classical row-major matmul: permute the lhs. 1277 if (layout({{m, k}, {k, n}, {n, m}})) 1278 return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1)); 1279 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1280 if (layout({{m, k}, {n, k}, {n, m}})) { 1281 Value trhs = t(rhs); 1282 return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1)); 1283 } 1284 if (layout({{k, m}, {k, n}, {n, m}})) 1285 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1286 if (layout({{k, m}, {n, k}, {n, m}})) 1287 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1288 return failure(); 1289 } 1290 1291 /// One outer parallel, one inner reduction (matvec flavor) 1292 FailureOr<Value> matvec() { 1293 if (!iters({Par(), Red()})) 1294 return failure(); 1295 AffineExpr m, k; 1296 bindDims(builder.getContext(), m, k); 1297 1298 // Case mat-vec: transpose. 1299 if (layout({{m, k}, {k}, {m}})) 1300 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1301 // Case mat-trans-vec: ready to go. 1302 if (layout({{k, m}, {k}, {m}})) 1303 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1304 // Case vec-mat: swap and transpose. 1305 if (layout({{k}, {m, k}, {m}})) 1306 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1307 // Case vec-mat-trans: swap and ready to go. 1308 if (layout({{k}, {k, m}, {m}})) 1309 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1310 return failure(); 1311 } 1312 1313 // 1314 // One outer reduction, one inner parallel (tmatvec flavor) 1315 // 1316 FailureOr<Value> tmatvec() { 1317 if (!iters({Red(), Par()})) 1318 return failure(); 1319 AffineExpr k, m; 1320 bindDims(builder.getContext(), k, m); 1321 1322 // Case mat-vec: transpose. 1323 if (layout({{m, k}, {k}, {m}})) 1324 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1325 // Case mat-trans-vec: ready to go. 1326 if (layout({{k, m}, {k}, {m}})) 1327 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1328 // Case vec-mat: swap and transpose. 1329 if (layout({{k}, {m, k}, {m}})) 1330 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1331 // Case vec-mat-trans: swap and ready to go. 1332 if (layout({{k}, {k, m}, {m}})) 1333 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1334 return failure(); 1335 } 1336 1337 private: 1338 vector::CombiningKind kind; 1339 Value lhs, rhs, res; 1340 VectorType lhsType; 1341 }; 1342 } // namespace 1343 1344 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1345 /// semantics to a reduction_size-unrolled sequence: 1346 /// ``` 1347 /// %at = vector.transpose %a, [1, 0] 1348 /// %bRow0 = vector.extract %b[0] 1349 /// %atRow0 = vector.extract %at[0] 1350 /// %c0 = vector.outerproduct %atRow0, %bRow0, %c 1351 /// ... 1352 /// %bRowK = vector.extract %b[K] 1353 /// %atRowK = vector.extract %at[K] 1354 /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 1355 /// ``` 1356 /// 1357 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but 1358 /// otherwise supports any layout permutation of the matrix-multiply. 1359 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite( 1360 vector::ContractionOp op, PatternRewriter &rewriter) const { 1361 // TODO: implement masks 1362 if (llvm::size(op.masks()) != 0) 1363 return failure(); 1364 1365 if (vectorTransformOptions.vectorContractLowering != 1366 vector::VectorContractLowering::OuterProduct) 1367 return failure(); 1368 1369 if (failed(filter(op))) 1370 return failure(); 1371 1372 UnrolledOuterProductGenerator e(rewriter, op); 1373 FailureOr<Value> matmatRes = e.matmat(); 1374 if (succeeded(matmatRes)) { 1375 rewriter.replaceOp(op, *matmatRes); 1376 return success(); 1377 } 1378 FailureOr<Value> matvecRes = e.matvec(); 1379 if (succeeded(matvecRes)) { 1380 rewriter.replaceOp(op, *matvecRes); 1381 return success(); 1382 } 1383 FailureOr<Value> tmatvecRes = e.tmatvec(); 1384 if (succeeded(tmatvecRes)) { 1385 rewriter.replaceOp(op, *tmatvecRes); 1386 return success(); 1387 } 1388 1389 return failure(); 1390 } 1391 1392 LogicalResult 1393 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op, 1394 PatternRewriter &rewriter) const { 1395 // TODO: implement masks 1396 if (llvm::size(op.masks()) != 0) 1397 return failure(); 1398 1399 if (failed(filter(op))) 1400 return failure(); 1401 1402 if (vectorTransformOptions.vectorContractLowering != 1403 vector::VectorContractLowering::Dot) 1404 return failure(); 1405 1406 auto iteratorTypes = op.iterator_types().getValue(); 1407 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1408 Location loc = op.getLoc(); 1409 Value lhs = op.lhs(), rhs = op.rhs(); 1410 1411 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 1412 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 1413 AffineExpr m, n, k; 1414 bindDims(rewriter.getContext(), m, n, k); 1415 SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 1416 // 1417 // In the following we wish to make the reduction dimension innermost so we 1418 // can load vectors and just fmul + reduce into a scalar. 1419 // 1420 if (isParallelIterator(iteratorTypes[0]) && 1421 isParallelIterator(iteratorTypes[1]) && 1422 isReductionIterator(iteratorTypes[2])) { 1423 // 1424 // Two outer parallel, one inner reduction (matmat flavor). 1425 // 1426 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 1427 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1428 } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { 1429 // No need to permute anything. 1430 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 1431 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1432 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1433 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 1434 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1435 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 1436 // This is the classical row-major matmul. Just permute the lhs. 1437 Value tmp = lhs; 1438 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1439 rhs = tmp; 1440 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 1441 std::swap(lhs, rhs); 1442 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 1443 Value tmp = lhs; 1444 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1445 rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm); 1446 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 1447 Value tmp = rhs; 1448 rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1449 lhs = tmp; 1450 } else { 1451 return failure(); 1452 } 1453 } else if (isParallelIterator(iteratorTypes[0]) && 1454 isReductionIterator(iteratorTypes[1])) { 1455 // 1456 // One outer parallel, one inner reduction (matvec flavor) 1457 // 1458 if (maps == infer({{m, n}, {n}, {m}})) { 1459 // No need to permute anything. 1460 } else if (maps == infer({{n, m}, {n}, {m}})) { 1461 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1462 } else if (maps == infer({{n}, {m, n}, {m}})) { 1463 std::swap(lhs, rhs); 1464 } else if (maps == infer({{n}, {n, m}, {m}})) { 1465 std::swap(lhs, rhs); 1466 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1467 } else { 1468 return failure(); 1469 } 1470 } else { 1471 return failure(); 1472 } 1473 1474 VectorType dstType = op.getResultType().cast<VectorType>(); 1475 assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && 1476 "Expected dst type of rank 1 or 2"); 1477 1478 unsigned rank = dstType.getRank(); 1479 unsigned dstRows = dstType.getShape()[0]; 1480 unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; 1481 1482 // ExtractOp does not allow dynamic indexing, we must unroll explicitly. 1483 Value res = rewriter.create<arith::ConstantOp>(loc, dstType, 1484 rewriter.getZeroAttr(dstType)); 1485 bool isInt = dstType.getElementType().isa<IntegerType>(); 1486 for (unsigned r = 0; r < dstRows; ++r) { 1487 Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r); 1488 for (unsigned c = 0; c < dstColumns; ++c) { 1489 Value b = rank == 1 1490 ? rhs 1491 : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c); 1492 Value m = createMul(op.getLoc(), a, b, isInt, rewriter); 1493 Value reduced = rewriter.create<vector::ReductionOp>( 1494 op.getLoc(), vector::CombiningKind::ADD, m); 1495 1496 SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r} 1497 : SmallVector<int64_t, 2>{r, c}; 1498 res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos); 1499 } 1500 } 1501 if (auto acc = op.acc()) 1502 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1503 rewriter.replaceOp(op, res); 1504 return success(); 1505 } 1506 1507 /// Progressive lowering of ContractionOp. 1508 /// One: 1509 /// %x = vector.contract with at least one free/batch dimension 1510 /// is replaced by: 1511 /// %a = vector.contract with one less free/batch dimension 1512 /// %b = vector.contract with one less free/batch dimension 1513 /// .. 1514 /// %x = combine %a %b .. 1515 /// until a pure contraction is reached (no free/batch dimensions), 1516 /// which is replaced by a dot-product. 1517 /// 1518 /// This only kicks in when either VectorTransformsOptions is set 1519 /// to DOT or when other contraction patterns fail. 1520 // 1521 // TODO: break down into transpose/reshape/cast ops 1522 // when they become available to avoid code dup 1523 // TODO: investigate lowering order impact on performance 1524 LogicalResult 1525 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op, 1526 PatternRewriter &rewriter) const { 1527 // TODO: implement masks. 1528 if (llvm::size(op.masks()) != 0) 1529 return failure(); 1530 1531 if (failed(filter(op))) 1532 return failure(); 1533 1534 // TODO: support mixed mode contract lowering. 1535 if (op.getLhsType().getElementType() != 1536 getElementTypeOrSelf(op.getAccType()) || 1537 op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) 1538 return failure(); 1539 1540 // TODO: implement benefits, cost models. 1541 MLIRContext *ctx = op.getContext(); 1542 ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx); 1543 if (succeeded(pat1.matchAndRewrite(op, rewriter))) 1544 return success(); 1545 ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx); 1546 if (succeeded(pat2.matchAndRewrite(op, rewriter))) 1547 return success(); 1548 ContractionOpToDotLowering pat3(vectorTransformOptions, ctx); 1549 if (succeeded(pat3.matchAndRewrite(op, rewriter))) 1550 return success(); 1551 1552 // Find first batch dimension in LHS/RHS, and lower when found. 1553 std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap(); 1554 if (!batchDimMap.empty()) { 1555 int64_t lhsIndex = batchDimMap[0].first; 1556 int64_t rhsIndex = batchDimMap[0].second; 1557 rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter)); 1558 return success(); 1559 } 1560 1561 // Collect contracting dimensions. 1562 std::vector<std::pair<int64_t, int64_t>> contractingDimMap = 1563 op.getContractingDimMap(); 1564 DenseSet<int64_t> lhsContractingDimSet; 1565 DenseSet<int64_t> rhsContractingDimSet; 1566 for (auto &dimPair : contractingDimMap) { 1567 lhsContractingDimSet.insert(dimPair.first); 1568 rhsContractingDimSet.insert(dimPair.second); 1569 } 1570 1571 // Find first free dimension in LHS, and lower when found. 1572 VectorType lhsType = op.getLhsType(); 1573 for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { 1574 if (lhsContractingDimSet.count(lhsIndex) == 0) { 1575 rewriter.replaceOp( 1576 op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter)); 1577 return success(); 1578 } 1579 } 1580 1581 // Find first free dimension in RHS, and lower when found. 1582 VectorType rhsType = op.getRhsType(); 1583 for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { 1584 if (rhsContractingDimSet.count(rhsIndex) == 0) { 1585 rewriter.replaceOp( 1586 op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter)); 1587 return success(); 1588 } 1589 } 1590 1591 // Lower the first remaining reduction dimension. 1592 if (!contractingDimMap.empty()) { 1593 rewriter.replaceOp(op, lowerReduction(op, rewriter)); 1594 return success(); 1595 } 1596 1597 return failure(); 1598 } 1599 1600 // Lower one parallel dimension. 1601 // TODO: consider reusing existing contract unrolling 1602 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op, 1603 int64_t lhsIndex, int64_t rhsIndex, 1604 PatternRewriter &rewriter) const { 1605 VectorType lhsType = op.getLhsType(); 1606 VectorType rhsType = op.getRhsType(); 1607 VectorType resType = op.getResultType().cast<VectorType>(); 1608 // Find the iterator type index and result index. 1609 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1610 int64_t iterIndex = -1; 1611 int64_t dimSize = -1; 1612 if (lhsIndex >= 0) { 1613 iterIndex = iMap[0].getDimPosition(lhsIndex); 1614 assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) && 1615 "parallel index should be free in LHS or batch in LHS/RHS"); 1616 dimSize = lhsType.getDimSize(lhsIndex); 1617 } else { 1618 assert(rhsIndex >= 0 && "missing parallel index"); 1619 iterIndex = iMap[1].getDimPosition(rhsIndex); 1620 dimSize = rhsType.getDimSize(rhsIndex); 1621 } 1622 assert(iterIndex >= 0 && "parallel index not listed in operand mapping"); 1623 Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex); 1624 assert(lookup.hasValue() && "parallel index not listed in reduction"); 1625 int64_t resIndex = lookup.getValue(); 1626 // Construct new iterator types and affine map array attribute. 1627 std::array<AffineMap, 3> lowIndexingMaps = { 1628 adjustMap(iMap[0], iterIndex, rewriter), 1629 adjustMap(iMap[1], iterIndex, rewriter), 1630 adjustMap(iMap[2], iterIndex, rewriter)}; 1631 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1632 auto lowIter = 1633 rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex)); 1634 // Unroll into a series of lower dimensional vector.contract ops. 1635 Location loc = op.getLoc(); 1636 Value result = rewriter.create<arith::ConstantOp>( 1637 loc, resType, rewriter.getZeroAttr(resType)); 1638 for (int64_t d = 0; d < dimSize; ++d) { 1639 auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter); 1640 auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter); 1641 auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter); 1642 Value lowContract = rewriter.create<vector::ContractionOp>( 1643 loc, lhs, rhs, acc, lowAffine, lowIter); 1644 result = 1645 reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter); 1646 } 1647 return result; 1648 } 1649 1650 // Lower one reduction dimension. 1651 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op, 1652 PatternRewriter &rewriter) const { 1653 auto loc = op.getLoc(); 1654 VectorType lhsType = op.getLhsType(); 1655 VectorType rhsType = op.getRhsType(); 1656 Type resType = op.getResultType(); 1657 assert(!resType.isa<VectorType>()); 1658 bool isInt = resType.isa<IntegerType>(); 1659 // Use iterator index 0. 1660 int64_t iterIndex = 0; 1661 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1662 Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex); 1663 Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex); 1664 assert(lookupLhs.hasValue() && "missing LHS parallel index"); 1665 assert(lookupRhs.hasValue() && "missing RHS parallel index"); 1666 int64_t lhsIndex = lookupLhs.getValue(); 1667 int64_t rhsIndex = lookupRhs.getValue(); 1668 int64_t dimSize = lhsType.getDimSize(lhsIndex); 1669 assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape"); 1670 // Base case. 1671 if (lhsType.getRank() == 1) { 1672 assert(rhsType.getRank() == 1 && "corrupt contraction"); 1673 Value m = createMul(loc, op.lhs(), op.rhs(), isInt, rewriter); 1674 auto kind = vector::CombiningKind::ADD; 1675 Value res = rewriter.create<vector::ReductionOp>(loc, kind, m); 1676 if (auto acc = op.acc()) 1677 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1678 return res; 1679 } 1680 // Construct new iterator types and affine map array attribute. 1681 std::array<AffineMap, 3> lowIndexingMaps = { 1682 adjustMap(iMap[0], iterIndex, rewriter), 1683 adjustMap(iMap[1], iterIndex, rewriter), 1684 adjustMap(iMap[2], iterIndex, rewriter)}; 1685 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1686 auto lowIter = 1687 rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex)); 1688 // Unroll into a series of lower dimensional vector.contract ops. 1689 // By feeding the initial accumulator into the first contraction, 1690 // and the result of each contraction into the next, eventually 1691 // the sum of all reductions is computed. 1692 Value result = op.acc(); 1693 for (int64_t d = 0; d < dimSize; ++d) { 1694 auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter); 1695 auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter); 1696 result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result, 1697 lowAffine, lowIter); 1698 } 1699 return result; 1700 } 1701 1702 } // namespace mlir 1703 1704 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp( 1705 OpBuilder &builder, Operation *op, ArrayRef<Value> ids, 1706 ArrayRef<int64_t> multiplicity, const AffineMap &map) { 1707 OpBuilder::InsertionGuard guard(builder); 1708 builder.setInsertionPointAfter(op); 1709 Location loc = op->getLoc(); 1710 if (op->getNumResults() != 1) 1711 return {}; 1712 Value result = op->getResult(0); 1713 VectorType type = op->getResult(0).getType().dyn_cast<VectorType>(); 1714 if (!type || map.getNumResults() != multiplicity.size()) 1715 return {}; 1716 // For each dimension being distributed check that the size is a multiple of 1717 // the multiplicity. To handle more sizes we would need to support masking. 1718 unsigned multiplictyCount = 0; 1719 for (auto exp : map.getResults()) { 1720 auto affinExp = exp.dyn_cast<AffineDimExpr>(); 1721 if (!affinExp || affinExp.getPosition() >= type.getRank() || 1722 type.getDimSize(affinExp.getPosition()) % 1723 multiplicity[multiplictyCount++] != 1724 0) 1725 return {}; 1726 } 1727 DistributeOps ops; 1728 ops.extract = 1729 builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map); 1730 ops.insert = 1731 builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids); 1732 return ops; 1733 } 1734 1735 /// Progressive lowering of transfer_read. This pattern supports lowering of 1736 /// `vector.transfer_read` to a combination of `vector.load` and 1737 /// `vector.broadcast` if all of the following hold: 1738 /// - Stride of most minor memref dimension must be 1. 1739 /// - Out-of-bounds masking is not required. 1740 /// - If the memref's element type is a vector type then it coincides with the 1741 /// result type. 1742 /// - The permutation map doesn't perform permutation (broadcasting is allowed). 1743 struct TransferReadToVectorLoadLowering 1744 : public OpRewritePattern<vector::TransferReadOp> { 1745 TransferReadToVectorLoadLowering(MLIRContext *context, 1746 llvm::Optional<unsigned> maxRank) 1747 : OpRewritePattern<vector::TransferReadOp>(context), 1748 maxTransferRank(maxRank) {} 1749 1750 LogicalResult matchAndRewrite(vector::TransferReadOp read, 1751 PatternRewriter &rewriter) const override { 1752 if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) 1753 return failure(); 1754 1755 SmallVector<unsigned, 4> broadcastedDims; 1756 // Permutations are handled by VectorToSCF or 1757 // populateVectorTransferPermutationMapLoweringPatterns. 1758 // We let the 0-d corner case pass-through as it is supported. 1759 if (!read.permutation_map().isMinorIdentityWithBroadcasting( 1760 &broadcastedDims)) 1761 return failure(); 1762 1763 auto memRefType = read.getShapedType().dyn_cast<MemRefType>(); 1764 if (!memRefType) 1765 return failure(); 1766 1767 // Non-unit strides are handled by VectorToSCF. 1768 if (!vector::isLastMemrefDimUnitStride(memRefType)) 1769 return failure(); 1770 1771 // If there is broadcasting involved then we first load the unbroadcasted 1772 // vector, and then broadcast it with `vector.broadcast`. 1773 ArrayRef<int64_t> vectorShape = read.getVectorType().getShape(); 1774 SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(), 1775 vectorShape.end()); 1776 for (unsigned i : broadcastedDims) 1777 unbroadcastedVectorShape[i] = 1; 1778 VectorType unbroadcastedVectorType = VectorType::get( 1779 unbroadcastedVectorShape, read.getVectorType().getElementType()); 1780 1781 // `vector.load` supports vector types as memref's elements only when the 1782 // resulting vector type is the same as the element type. 1783 auto memrefElTy = memRefType.getElementType(); 1784 if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType) 1785 return failure(); 1786 1787 // Otherwise, element types of the memref and the vector must match. 1788 if (!memrefElTy.isa<VectorType>() && 1789 memrefElTy != read.getVectorType().getElementType()) 1790 return failure(); 1791 1792 // Out-of-bounds dims are handled by MaterializeTransferMask. 1793 if (read.hasOutOfBoundsDim()) 1794 return failure(); 1795 1796 // Create vector load op. 1797 Operation *loadOp; 1798 if (read.mask()) { 1799 Value fill = rewriter.create<vector::SplatOp>( 1800 read.getLoc(), unbroadcastedVectorType, read.padding()); 1801 loadOp = rewriter.create<vector::MaskedLoadOp>( 1802 read.getLoc(), unbroadcastedVectorType, read.source(), read.indices(), 1803 read.mask(), fill); 1804 } else { 1805 loadOp = rewriter.create<vector::LoadOp>(read.getLoc(), 1806 unbroadcastedVectorType, 1807 read.source(), read.indices()); 1808 } 1809 1810 // Insert a broadcasting op if required. 1811 if (!broadcastedDims.empty()) { 1812 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1813 read, read.getVectorType(), loadOp->getResult(0)); 1814 } else { 1815 rewriter.replaceOp(read, loadOp->getResult(0)); 1816 } 1817 1818 return success(); 1819 } 1820 1821 llvm::Optional<unsigned> maxTransferRank; 1822 }; 1823 1824 /// Replace a 0-d vector.load with a memref.load + vector.broadcast. 1825 // TODO: we shouldn't cross the vector/scalar domains just for this 1826 // but atm we lack the infra to avoid it. Possible solutions include: 1827 // - go directly to LLVM + bitcast 1828 // - introduce a bitcast op and likely a new pointer dialect 1829 // - let memref.load/store additionally support the 0-d vector case 1830 // There are still deeper data layout issues lingering even in this 1831 // trivial case (for architectures for which this matters). 1832 struct VectorLoadToMemrefLoadLowering 1833 : public OpRewritePattern<vector::LoadOp> { 1834 using OpRewritePattern<vector::LoadOp>::OpRewritePattern; 1835 1836 LogicalResult matchAndRewrite(vector::LoadOp loadOp, 1837 PatternRewriter &rewriter) const override { 1838 auto vecType = loadOp.getVectorType(); 1839 if (vecType.getNumElements() != 1) 1840 return failure(); 1841 auto memrefLoad = rewriter.create<memref::LoadOp>( 1842 loadOp.getLoc(), loadOp.base(), loadOp.indices()); 1843 rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType, 1844 memrefLoad); 1845 return success(); 1846 } 1847 }; 1848 1849 /// Replace a 0-d vector.store with a vector.extractelement + memref.store. 1850 struct VectorStoreToMemrefStoreLowering 1851 : public OpRewritePattern<vector::StoreOp> { 1852 using OpRewritePattern<vector::StoreOp>::OpRewritePattern; 1853 1854 LogicalResult matchAndRewrite(vector::StoreOp storeOp, 1855 PatternRewriter &rewriter) const override { 1856 auto vecType = storeOp.getVectorType(); 1857 if (vecType.getNumElements() != 1) 1858 return failure(); 1859 Value extracted; 1860 if (vecType.getRank() == 0) { 1861 // TODO: Unifiy once ExtractOp supports 0-d vectors. 1862 extracted = rewriter.create<vector::ExtractElementOp>( 1863 storeOp.getLoc(), storeOp.valueToStore()); 1864 } else { 1865 SmallVector<int64_t> indices(vecType.getRank(), 0); 1866 extracted = rewriter.create<vector::ExtractOp>( 1867 storeOp.getLoc(), storeOp.valueToStore(), indices); 1868 } 1869 1870 rewriter.replaceOpWithNewOp<memref::StoreOp>( 1871 storeOp, extracted, storeOp.base(), storeOp.indices()); 1872 return success(); 1873 } 1874 }; 1875 1876 /// Progressive lowering of transfer_write. This pattern supports lowering of 1877 /// `vector.transfer_write` to `vector.store` if all of the following hold: 1878 /// - Stride of most minor memref dimension must be 1. 1879 /// - Out-of-bounds masking is not required. 1880 /// - If the memref's element type is a vector type then it coincides with the 1881 /// type of the written value. 1882 /// - The permutation map is the minor identity map (neither permutation nor 1883 /// broadcasting is allowed). 1884 struct TransferWriteToVectorStoreLowering 1885 : public OpRewritePattern<vector::TransferWriteOp> { 1886 TransferWriteToVectorStoreLowering(MLIRContext *context, 1887 llvm::Optional<unsigned> maxRank) 1888 : OpRewritePattern<vector::TransferWriteOp>(context), 1889 maxTransferRank(maxRank) {} 1890 1891 LogicalResult matchAndRewrite(vector::TransferWriteOp write, 1892 PatternRewriter &rewriter) const override { 1893 if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) 1894 return failure(); 1895 1896 // Permutations are handled by VectorToSCF or 1897 // populateVectorTransferPermutationMapLoweringPatterns. 1898 if ( // pass-through for the 0-d corner case. 1899 !write.permutation_map().isMinorIdentity()) 1900 return failure(); 1901 1902 auto memRefType = write.getShapedType().dyn_cast<MemRefType>(); 1903 if (!memRefType) 1904 return failure(); 1905 1906 // Non-unit strides are handled by VectorToSCF. 1907 if (!vector::isLastMemrefDimUnitStride(memRefType)) 1908 return failure(); 1909 1910 // `vector.store` supports vector types as memref's elements only when the 1911 // type of the vector value being written is the same as the element type. 1912 auto memrefElTy = memRefType.getElementType(); 1913 if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType()) 1914 return failure(); 1915 1916 // Otherwise, element types of the memref and the vector must match. 1917 if (!memrefElTy.isa<VectorType>() && 1918 memrefElTy != write.getVectorType().getElementType()) 1919 return failure(); 1920 1921 // Out-of-bounds dims are handled by MaterializeTransferMask. 1922 if (write.hasOutOfBoundsDim()) 1923 return failure(); 1924 if (write.mask()) { 1925 rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>( 1926 write, write.source(), write.indices(), write.mask(), write.vector()); 1927 } else { 1928 rewriter.replaceOpWithNewOp<vector::StoreOp>( 1929 write, write.vector(), write.source(), write.indices()); 1930 } 1931 return success(); 1932 } 1933 1934 llvm::Optional<unsigned> maxTransferRank; 1935 }; 1936 1937 // Returns the values in `arrayAttr` as an integer vector. 1938 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) { 1939 return llvm::to_vector<4>( 1940 llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), 1941 [](IntegerAttr attr) { return attr.getInt(); })); 1942 } 1943 1944 // Shuffles vector.bitcast op after vector.extract op. 1945 // 1946 // This transforms IR like: 1947 // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> 1948 // %1 = vector.extract %0[3] : vector<8xf16> 1949 // Into: 1950 // %0 = vector.extract %src[1] : vector<4xf32> 1951 // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> 1952 // %2 = vector.extract %1[1] : vector<2xf16> 1953 struct BubbleDownVectorBitCastForExtract 1954 : public OpRewritePattern<vector::ExtractOp> { 1955 using OpRewritePattern::OpRewritePattern; 1956 1957 LogicalResult matchAndRewrite(vector::ExtractOp extractOp, 1958 PatternRewriter &rewriter) const override { 1959 // Only support extracting scalars for now. 1960 if (extractOp.getVectorType().getRank() != 1) 1961 return failure(); 1962 1963 auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>(); 1964 if (!castOp) 1965 return failure(); 1966 1967 VectorType castSrcType = castOp.getSourceVectorType(); 1968 VectorType castDstType = castOp.getResultVectorType(); 1969 assert(castSrcType.getRank() == castDstType.getRank()); 1970 1971 // Fail to match if we only have one element in the cast op source. 1972 // This is to avoid infinite loop given that this pattern can generate 1973 // such cases. 1974 if (castSrcType.getNumElements() == 1) 1975 return failure(); 1976 1977 // Only support casting to a larger number of elements or now. 1978 // E.g., vector<4xf32> -> vector<8xf16>. 1979 if (castSrcType.getNumElements() > castDstType.getNumElements()) 1980 return failure(); 1981 1982 unsigned expandRatio = 1983 castDstType.getNumElements() / castSrcType.getNumElements(); 1984 1985 auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t { 1986 return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue(); 1987 }; 1988 1989 uint64_t index = getFirstIntValue(extractOp.position()); 1990 1991 // Get the single scalar (as a vector) in the source value that packs the 1992 // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> 1993 VectorType oneScalarType = 1994 VectorType::get({1}, castSrcType.getElementType()); 1995 Value packedValue = rewriter.create<vector::ExtractOp>( 1996 extractOp.getLoc(), oneScalarType, castOp.source(), 1997 rewriter.getI64ArrayAttr(index / expandRatio)); 1998 1999 // Cast it to a vector with the desired scalar's type. 2000 // E.g. f32 -> vector<2xf16> 2001 VectorType packedType = 2002 VectorType::get({expandRatio}, castDstType.getElementType()); 2003 Value castedValue = rewriter.create<vector::BitCastOp>( 2004 extractOp.getLoc(), packedType, packedValue); 2005 2006 // Finally extract the desired scalar. 2007 rewriter.replaceOpWithNewOp<vector::ExtractOp>( 2008 extractOp, extractOp.getType(), castedValue, 2009 rewriter.getI64ArrayAttr(index % expandRatio)); 2010 2011 return success(); 2012 } 2013 }; 2014 2015 // Shuffles vector.bitcast op after vector.extract_strided_slice op. 2016 // 2017 // This transforms IR like: 2018 // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> 2019 // %0 = vector.extract_strided_slice %cast { 2020 // offsets = [4], sizes = [4], strides = [1] 2021 // } : vector<8xf16> to vector<4xf16> 2022 // Into: 2023 // %0 = vector.extract_strided_slice %src { 2024 // offsets = [2], sizes = [2], strides = [1] 2025 // } : vector<4xf32> to vector<2xf32> 2026 // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> 2027 struct BubbleDownBitCastForStridedSliceExtract 2028 : public OpRewritePattern<vector::ExtractStridedSliceOp> { 2029 using OpRewritePattern::OpRewritePattern; 2030 2031 LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, 2032 PatternRewriter &rewriter) const override { 2033 auto castOp = extractOp.vector().getDefiningOp<vector::BitCastOp>(); 2034 if (!castOp) 2035 return failure(); 2036 2037 VectorType castSrcType = castOp.getSourceVectorType(); 2038 VectorType castDstType = castOp.getResultVectorType(); 2039 assert(castSrcType.getRank() == castDstType.getRank()); 2040 2041 int64_t castSrcLastDim = castSrcType.getShape().back(); 2042 int64_t castDstLastDim = castDstType.getShape().back(); 2043 // Require casting to more elements for now; other cases to be implemented. 2044 if (castSrcLastDim > castDstLastDim) 2045 return failure(); 2046 2047 // Only accept all one strides for now. 2048 if (llvm::any_of(extractOp.strides().getAsValueRange<IntegerAttr>(), 2049 [](const APInt &val) { return !val.isOneValue(); })) 2050 return failure(); 2051 2052 unsigned rank = extractOp.getVectorType().getRank(); 2053 assert(castDstLastDim % castSrcLastDim == 0); 2054 int64_t expandRatio = castDstLastDim / castSrcLastDim; 2055 2056 // If we have a less number of offsets than the rank, then implicitly we 2057 // are selecting the full range for the last bitcasted dimension; other 2058 // dimensions aren't affected. Otherwise, we need to scale down the last 2059 // dimension's offset given we are extracting from less elements now. 2060 ArrayAttr newOffsets = extractOp.offsets(); 2061 if (newOffsets.size() == rank) { 2062 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2063 if (offsets.back() % expandRatio != 0) 2064 return failure(); 2065 offsets.back() = offsets.back() / expandRatio; 2066 newOffsets = rewriter.getI64ArrayAttr(offsets); 2067 } 2068 2069 // Similarly for sizes. 2070 ArrayAttr newSizes = extractOp.sizes(); 2071 if (newSizes.size() == rank) { 2072 SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes); 2073 if (sizes.back() % expandRatio != 0) 2074 return failure(); 2075 sizes.back() = sizes.back() / expandRatio; 2076 newSizes = rewriter.getI64ArrayAttr(sizes); 2077 } 2078 2079 SmallVector<int64_t, 4> dims = 2080 llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape()); 2081 dims.back() = dims.back() / expandRatio; 2082 VectorType newExtractType = 2083 VectorType::get(dims, castSrcType.getElementType()); 2084 2085 auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( 2086 extractOp.getLoc(), newExtractType, castOp.source(), newOffsets, 2087 newSizes, extractOp.strides()); 2088 2089 rewriter.replaceOpWithNewOp<vector::BitCastOp>( 2090 extractOp, extractOp.getType(), newExtractOp); 2091 2092 return success(); 2093 } 2094 }; 2095 2096 // Shuffles vector.bitcast op before vector.insert_strided_slice op. 2097 // 2098 // This transforms IR like: 2099 // %0 = vector.insert_strided_slice %src, %dst { 2100 // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> 2101 // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> 2102 // Into: 2103 // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> 2104 // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> 2105 // %2 = vector.insert_strided_slice %src, %dst { 2106 // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> 2107 struct BubbleUpBitCastForStridedSliceInsert 2108 : public OpRewritePattern<vector::BitCastOp> { 2109 using OpRewritePattern::OpRewritePattern; 2110 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 2111 PatternRewriter &rewriter) const override { 2112 VectorType castSrcType = bitcastOp.getSourceVectorType(); 2113 VectorType castDstType = bitcastOp.getResultVectorType(); 2114 assert(castSrcType.getRank() == castDstType.getRank()); 2115 2116 int64_t castSrcLastDim = castSrcType.getShape().back(); 2117 int64_t castDstLastDim = castDstType.getShape().back(); 2118 // Require casting to less elements for now; other cases to be implemented. 2119 if (castSrcLastDim < castDstLastDim) 2120 return failure(); 2121 2122 assert(castSrcLastDim % castDstLastDim == 0); 2123 int64_t shrinkRatio = castSrcLastDim / castDstLastDim; 2124 2125 auto insertOp = 2126 bitcastOp.source().getDefiningOp<vector::InsertStridedSliceOp>(); 2127 if (!insertOp) 2128 return failure(); 2129 2130 // Only accept all one strides for now. 2131 if (llvm::any_of(insertOp.strides().getAsValueRange<IntegerAttr>(), 2132 [](const APInt &val) { return !val.isOneValue(); })) 2133 return failure(); 2134 2135 unsigned rank = insertOp.getSourceVectorType().getRank(); 2136 // Require insert op to have the same rank for the source and destination 2137 // vector; other cases to be implemented. 2138 if (rank != insertOp.getDestVectorType().getRank()) 2139 return failure(); 2140 2141 ArrayAttr newOffsets = insertOp.offsets(); 2142 assert(newOffsets.size() == rank); 2143 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2144 if (offsets.back() % shrinkRatio != 0) 2145 return failure(); 2146 offsets.back() = offsets.back() / shrinkRatio; 2147 newOffsets = rewriter.getI64ArrayAttr(offsets); 2148 2149 SmallVector<int64_t, 4> srcDims = 2150 llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); 2151 srcDims.back() = srcDims.back() / shrinkRatio; 2152 VectorType newCastSrcType = 2153 VectorType::get(srcDims, castDstType.getElementType()); 2154 2155 auto newCastSrcOp = rewriter.create<vector::BitCastOp>( 2156 bitcastOp.getLoc(), newCastSrcType, insertOp.source()); 2157 2158 SmallVector<int64_t, 4> dstDims = 2159 llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); 2160 dstDims.back() = dstDims.back() / shrinkRatio; 2161 VectorType newCastDstType = 2162 VectorType::get(dstDims, castDstType.getElementType()); 2163 2164 auto newCastDstOp = rewriter.create<vector::BitCastOp>( 2165 bitcastOp.getLoc(), newCastDstType, insertOp.dest()); 2166 2167 rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( 2168 bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, 2169 insertOp.strides()); 2170 2171 return success(); 2172 } 2173 }; 2174 2175 static Value createCastToIndexLike(PatternRewriter &rewriter, Location loc, 2176 Type targetType, Value value) { 2177 if (targetType == value.getType()) 2178 return value; 2179 2180 bool targetIsIndex = targetType.isIndex(); 2181 bool valueIsIndex = value.getType().isIndex(); 2182 if (targetIsIndex ^ valueIsIndex) 2183 return rewriter.create<arith::IndexCastOp>(loc, targetType, value); 2184 2185 auto targetIntegerType = targetType.dyn_cast<IntegerType>(); 2186 auto valueIntegerType = value.getType().dyn_cast<IntegerType>(); 2187 assert(targetIntegerType && valueIntegerType && 2188 "unexpected cast between types other than integers and index"); 2189 assert(targetIntegerType.getSignedness() == valueIntegerType.getSignedness()); 2190 2191 if (targetIntegerType.getWidth() > valueIntegerType.getWidth()) 2192 return rewriter.create<arith::ExtSIOp>(loc, targetIntegerType, value); 2193 return rewriter.create<arith::TruncIOp>(loc, targetIntegerType, value); 2194 } 2195 2196 // Helper that returns a vector comparison that constructs a mask: 2197 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 2198 // 2199 // If `dim == 0` then the result will be a 0-D vector. 2200 // 2201 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 2202 // much more compact, IR for this operation, but LLVM eventually 2203 // generates more elaborate instructions for this intrinsic since it 2204 // is very conservative on the boundary conditions. 2205 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, 2206 bool indexOptimizations, int64_t dim, 2207 Value b, Value *off = nullptr) { 2208 auto loc = op->getLoc(); 2209 // If we can assume all indices fit in 32-bit, we perform the vector 2210 // comparison in 32-bit to get a higher degree of SIMD parallelism. 2211 // Otherwise we perform the vector comparison using 64-bit indices. 2212 Type idxType = 2213 indexOptimizations ? rewriter.getI32Type() : rewriter.getI64Type(); 2214 DenseIntElementsAttr indicesAttr; 2215 if (dim == 0 && indexOptimizations) { 2216 indicesAttr = DenseIntElementsAttr::get( 2217 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); 2218 } else if (dim == 0) { 2219 indicesAttr = DenseIntElementsAttr::get( 2220 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); 2221 } else if (indexOptimizations) { 2222 indicesAttr = rewriter.getI32VectorAttr( 2223 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); 2224 } else { 2225 indicesAttr = rewriter.getI64VectorAttr( 2226 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); 2227 } 2228 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 2229 // Add in an offset if requested. 2230 if (off) { 2231 Value o = createCastToIndexLike(rewriter, loc, idxType, *off); 2232 Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); 2233 indices = rewriter.create<arith::AddIOp>(loc, ov, indices); 2234 } 2235 // Construct the vector comparison. 2236 Value bound = createCastToIndexLike(rewriter, loc, idxType, b); 2237 Value bounds = 2238 rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); 2239 return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, 2240 bounds); 2241 } 2242 2243 template <typename ConcreteOp> 2244 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { 2245 public: 2246 explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt) 2247 : mlir::OpRewritePattern<ConcreteOp>(context), 2248 indexOptimizations(enableIndexOpt) {} 2249 2250 LogicalResult matchAndRewrite(ConcreteOp xferOp, 2251 PatternRewriter &rewriter) const override { 2252 if (!xferOp.hasOutOfBoundsDim()) 2253 return failure(); 2254 2255 if (xferOp.getVectorType().getRank() > 1 || 2256 llvm::size(xferOp.indices()) == 0) 2257 return failure(); 2258 2259 Location loc = xferOp->getLoc(); 2260 VectorType vtp = xferOp.getVectorType(); 2261 2262 // Create the in-bounds mask with all elements between [0 .. dim - offset) 2263 // set and [dim - offset .. vector_length) unset. 2264 // 2265 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 2266 // dimensions here. 2267 unsigned lastIndex = llvm::size(xferOp.indices()) - 1; 2268 Value off = xferOp.indices()[lastIndex]; 2269 Value dim = 2270 vector::createOrFoldDimOp(rewriter, loc, xferOp.source(), lastIndex); 2271 Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); 2272 Value mask = rewriter.create<vector::CreateMaskOp>( 2273 loc, 2274 VectorType::get(vtp.getShape(), rewriter.getI1Type(), 2275 vtp.getNumScalableDims()), 2276 b); 2277 if (xferOp.mask()) { 2278 // Intersect the in-bounds with the mask specified as an op parameter. 2279 mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.mask()); 2280 } 2281 2282 rewriter.updateRootInPlace(xferOp, [&]() { 2283 xferOp.maskMutable().assign(mask); 2284 xferOp.in_boundsAttr(rewriter.getBoolArrayAttr({true})); 2285 }); 2286 2287 return success(); 2288 } 2289 2290 private: 2291 const bool indexOptimizations; 2292 }; 2293 2294 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). 2295 class VectorCreateMaskOpConversion 2296 : public OpRewritePattern<vector::CreateMaskOp> { 2297 public: 2298 explicit VectorCreateMaskOpConversion(MLIRContext *context, 2299 bool enableIndexOpt) 2300 : mlir::OpRewritePattern<vector::CreateMaskOp>(context), 2301 indexOptimizations(enableIndexOpt) {} 2302 2303 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 2304 PatternRewriter &rewriter) const override { 2305 auto dstType = op.getType(); 2306 int64_t rank = dstType.getRank(); 2307 if (rank > 1) 2308 return failure(); 2309 rewriter.replaceOp( 2310 op, buildVectorComparison(rewriter, op, indexOptimizations, 2311 rank == 0 ? 0 : dstType.getDimSize(0), 2312 op.getOperand(0))); 2313 return success(); 2314 } 2315 2316 private: 2317 const bool indexOptimizations; 2318 }; 2319 2320 // Drop inner most contiguous unit dimensions from transfer_read operand. 2321 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> { 2322 using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern; 2323 2324 LogicalResult matchAndRewrite(vector::TransferReadOp readOp, 2325 PatternRewriter &rewriter) const override { 2326 // TODO: support 0-d corner case. 2327 if (readOp.getTransferRank() == 0) 2328 return failure(); 2329 2330 // TODO: support mask. 2331 if (readOp.mask()) 2332 return failure(); 2333 2334 auto srcType = readOp.source().getType().dyn_cast<MemRefType>(); 2335 if (!srcType || !srcType.hasStaticShape()) 2336 return failure(); 2337 2338 if (!readOp.permutation_map().isMinorIdentity()) 2339 return failure(); 2340 2341 auto targetType = readOp.getVectorType(); 2342 if (targetType.getRank() <= 1) 2343 return failure(); 2344 2345 SmallVector<int64_t> srcStrides; 2346 int64_t srcOffset; 2347 if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) 2348 return failure(); 2349 2350 size_t dimsToDrop = 0; 2351 for (size_t i = 1; i < srcStrides.size(); ++i) { 2352 int dim = srcType.getRank() - i - 1; 2353 if (srcStrides[dim] == 1) { 2354 dimsToDrop++; 2355 } else { 2356 break; 2357 } 2358 } 2359 if (dimsToDrop == 0) 2360 return failure(); 2361 2362 auto resultTargetVecType = 2363 VectorType::get(targetType.getShape().drop_back(dimsToDrop), 2364 targetType.getElementType()); 2365 2366 MemRefType resultMemrefType; 2367 if (srcType.getLayout().getAffineMap().isIdentity()) { 2368 resultMemrefType = MemRefType::get( 2369 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2370 {}, srcType.getMemorySpaceAsInt()); 2371 } else { 2372 AffineMap map = srcType.getLayout().getAffineMap(); 2373 int numResultDims = map.getNumDims() - dimsToDrop; 2374 int numSymbols = map.getNumSymbols(); 2375 for (size_t i = 0; i < dimsToDrop; ++i) { 2376 int dim = srcType.getRank() - i - 1; 2377 map = map.replace(rewriter.getAffineDimExpr(dim), 2378 rewriter.getAffineConstantExpr(0), numResultDims, 2379 numSymbols); 2380 } 2381 resultMemrefType = MemRefType::get( 2382 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2383 map, srcType.getMemorySpaceAsInt()); 2384 } 2385 2386 auto loc = readOp.getLoc(); 2387 SmallVector<int64_t> offsets(srcType.getRank(), 0); 2388 SmallVector<int64_t> strides(srcType.getRank(), 1); 2389 2390 ArrayAttr inBoundsAttr = 2391 readOp.in_bounds() 2392 ? rewriter.getArrayAttr( 2393 readOp.in_boundsAttr().getValue().drop_back(dimsToDrop)) 2394 : ArrayAttr(); 2395 Value rankedReducedView = rewriter.create<memref::SubViewOp>( 2396 loc, resultMemrefType, readOp.source(), offsets, srcType.getShape(), 2397 strides); 2398 auto permMap = getTransferMinorIdentityMap( 2399 rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType); 2400 Value result = rewriter.create<vector::TransferReadOp>( 2401 loc, resultTargetVecType, rankedReducedView, 2402 readOp.indices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), 2403 readOp.padding(), 2404 // TODO: support mask. 2405 /*mask=*/Value(), inBoundsAttr); 2406 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, 2407 result); 2408 return success(); 2409 } 2410 }; 2411 2412 namespace { 2413 2414 /// This function checks to see if the vector combining kind 2415 /// is consistent with the integer or float element type. 2416 static bool isValidKind(bool isInt, vector::CombiningKind kind) { 2417 using vector::CombiningKind; 2418 enum class KindType { FLOAT, INT, INVALID }; 2419 KindType type{KindType::INVALID}; 2420 switch (kind) { 2421 case CombiningKind::MINF: 2422 case CombiningKind::MAXF: 2423 type = KindType::FLOAT; 2424 break; 2425 case CombiningKind::MINUI: 2426 case CombiningKind::MINSI: 2427 case CombiningKind::MAXUI: 2428 case CombiningKind::MAXSI: 2429 case CombiningKind::AND: 2430 case CombiningKind::OR: 2431 case CombiningKind::XOR: 2432 type = KindType::INT; 2433 break; 2434 case CombiningKind::ADD: 2435 case CombiningKind::MUL: 2436 type = isInt ? KindType::INT : KindType::FLOAT; 2437 break; 2438 } 2439 bool isValidIntKind = (type == KindType::INT) && isInt; 2440 bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt); 2441 return (isValidIntKind || isValidFloatKind); 2442 } 2443 2444 /// This function constructs the appropriate integer or float 2445 /// operation given the vector combining kind and operands. The 2446 /// supported int operations are : add, mul, min (signed/unsigned), 2447 /// max(signed/unsigned), and, or, xor. The supported float 2448 /// operations are : add, mul, min and max. 2449 static Value genOperator(Location loc, Value x, Value y, 2450 vector::CombiningKind kind, 2451 PatternRewriter &rewriter) { 2452 using vector::CombiningKind; 2453 2454 auto elType = x.getType().cast<VectorType>().getElementType(); 2455 bool isInt = elType.isIntOrIndex(); 2456 2457 Value combinedResult{nullptr}; 2458 switch (kind) { 2459 case CombiningKind::ADD: 2460 if (isInt) 2461 combinedResult = rewriter.create<arith::AddIOp>(loc, x, y); 2462 else 2463 combinedResult = rewriter.create<arith::AddFOp>(loc, x, y); 2464 break; 2465 case CombiningKind::MUL: 2466 if (isInt) 2467 combinedResult = rewriter.create<arith::MulIOp>(loc, x, y); 2468 else 2469 combinedResult = rewriter.create<arith::MulFOp>(loc, x, y); 2470 break; 2471 case CombiningKind::MINUI: 2472 combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y); 2473 break; 2474 case CombiningKind::MINSI: 2475 combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y); 2476 break; 2477 case CombiningKind::MAXUI: 2478 combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y); 2479 break; 2480 case CombiningKind::MAXSI: 2481 combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y); 2482 break; 2483 case CombiningKind::AND: 2484 combinedResult = rewriter.create<arith::AndIOp>(loc, x, y); 2485 break; 2486 case CombiningKind::OR: 2487 combinedResult = rewriter.create<arith::OrIOp>(loc, x, y); 2488 break; 2489 case CombiningKind::XOR: 2490 combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y); 2491 break; 2492 case CombiningKind::MINF: 2493 combinedResult = rewriter.create<arith::MinFOp>(loc, x, y); 2494 break; 2495 case CombiningKind::MAXF: 2496 combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y); 2497 break; 2498 } 2499 return combinedResult; 2500 } 2501 2502 /// Convert vector.scan op into arith ops and 2503 /// vector.insert_strided_slice/extract_strided_slice 2504 /// 2505 /// Ex: 2506 /// ``` 2507 /// %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim = 2508 /// 1} : 2509 /// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>) 2510 /// ``` 2511 /// Gets converted to: 2512 /// ``` 2513 /// %cst = arith.constant dense<0> : vector<2x3xi32> 2514 /// %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1], 2515 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 = 2516 /// vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]} 2517 /// : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice 2518 /// %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} : 2519 /// vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 : 2520 /// vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1], 2521 /// strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 = 2522 /// vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1], 2523 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3, 2524 /// %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets = 2525 /// [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 = 2526 /// vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 : 2527 /// vector<2x3xi32>, vector<2xi32> 2528 /// ``` 2529 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> { 2530 using OpRewritePattern<vector::ScanOp>::OpRewritePattern; 2531 2532 LogicalResult matchAndRewrite(vector::ScanOp scanOp, 2533 PatternRewriter &rewriter) const override { 2534 auto loc = scanOp.getLoc(); 2535 VectorType destType = scanOp.getDestType(); 2536 ArrayRef<int64_t> destShape = destType.getShape(); 2537 auto elType = destType.getElementType(); 2538 bool isInt = elType.isIntOrIndex(); 2539 if (!isValidKind(isInt, scanOp.kind())) 2540 return failure(); 2541 2542 VectorType resType = VectorType::get(destShape, elType); 2543 Value result = rewriter.create<arith::ConstantOp>( 2544 loc, resType, rewriter.getZeroAttr(resType)); 2545 int64_t reductionDim = scanOp.reduction_dim(); 2546 bool inclusive = scanOp.inclusive(); 2547 int64_t destRank = destType.getRank(); 2548 VectorType initialValueType = scanOp.getInitialValueType(); 2549 int64_t initialValueRank = initialValueType.getRank(); 2550 2551 SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end()); 2552 reductionShape[reductionDim] = 1; 2553 VectorType reductionType = VectorType::get(reductionShape, elType); 2554 SmallVector<int64_t> offsets(destRank, 0); 2555 SmallVector<int64_t> strides(destRank, 1); 2556 SmallVector<int64_t> sizes(destShape.begin(), destShape.end()); 2557 sizes[reductionDim] = 1; 2558 ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes); 2559 ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides); 2560 2561 Value lastOutput, lastInput; 2562 for (int i = 0; i < destShape[reductionDim]; i++) { 2563 offsets[reductionDim] = i; 2564 ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets); 2565 Value input = rewriter.create<vector::ExtractStridedSliceOp>( 2566 loc, reductionType, scanOp.source(), scanOffsets, scanSizes, 2567 scanStrides); 2568 Value output; 2569 if (i == 0) { 2570 if (inclusive) { 2571 output = input; 2572 } else { 2573 if (initialValueRank == 0) { 2574 // ShapeCastOp cannot handle 0-D vectors 2575 output = rewriter.create<vector::BroadcastOp>( 2576 loc, input.getType(), scanOp.initial_value()); 2577 } else { 2578 output = rewriter.create<vector::ShapeCastOp>( 2579 loc, input.getType(), scanOp.initial_value()); 2580 } 2581 } 2582 } else { 2583 Value y = inclusive ? input : lastInput; 2584 output = genOperator(loc, lastOutput, y, scanOp.kind(), rewriter); 2585 assert(output != nullptr); 2586 } 2587 result = rewriter.create<vector::InsertStridedSliceOp>( 2588 loc, output, result, offsets, strides); 2589 lastOutput = output; 2590 lastInput = input; 2591 } 2592 2593 Value reduction; 2594 if (initialValueRank == 0) { 2595 Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0); 2596 reduction = 2597 rewriter.create<vector::BroadcastOp>(loc, initialValueType, v); 2598 } else { 2599 reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType, 2600 lastOutput); 2601 } 2602 2603 rewriter.replaceOp(scanOp, {result, reduction}); 2604 return success(); 2605 } 2606 }; 2607 2608 } // namespace 2609 2610 void mlir::vector::populateVectorMaskMaterializationPatterns( 2611 RewritePatternSet &patterns, bool indexOptimizations) { 2612 patterns.add<VectorCreateMaskOpConversion, 2613 MaterializeTransferMask<vector::TransferReadOp>, 2614 MaterializeTransferMask<vector::TransferWriteOp>>( 2615 patterns.getContext(), indexOptimizations); 2616 } 2617 2618 void mlir::vector::populateShapeCastFoldingPatterns( 2619 RewritePatternSet &patterns) { 2620 patterns.add<ShapeCastOpFolder>(patterns.getContext()); 2621 } 2622 2623 void mlir::vector::populateBubbleVectorBitCastOpPatterns( 2624 RewritePatternSet &patterns) { 2625 patterns.add<BubbleDownVectorBitCastForExtract, 2626 BubbleDownBitCastForStridedSliceExtract, 2627 BubbleUpBitCastForStridedSliceInsert>(patterns.getContext()); 2628 } 2629 2630 void mlir::vector::populateVectorBroadcastLoweringPatterns( 2631 RewritePatternSet &patterns) { 2632 patterns.add<BroadcastOpLowering>(patterns.getContext()); 2633 } 2634 2635 void mlir::vector::populateVectorMaskOpLoweringPatterns( 2636 RewritePatternSet &patterns) { 2637 patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>( 2638 patterns.getContext()); 2639 } 2640 2641 void mlir::vector::populateVectorShapeCastLoweringPatterns( 2642 RewritePatternSet &patterns) { 2643 patterns.add<ShapeCastOp2DDownCastRewritePattern, 2644 ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>( 2645 patterns.getContext()); 2646 } 2647 2648 void mlir::vector::populateVectorContractLoweringPatterns( 2649 RewritePatternSet &patterns, VectorTransformsOptions options) { 2650 patterns.add<OuterProductOpLowering>(patterns.getContext()); 2651 patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering, 2652 ContractionOpToOuterProductOpLowering>(options, 2653 patterns.getContext()); 2654 } 2655 2656 void mlir::vector::populateVectorTransposeLoweringPatterns( 2657 RewritePatternSet &patterns, VectorTransformsOptions options) { 2658 patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>( 2659 options, patterns.getContext()); 2660 } 2661 2662 void mlir::vector::populateVectorReductionToContractPatterns( 2663 RewritePatternSet &patterns) { 2664 patterns.add<MultiReduceToContract, CombineContractBroadcast, 2665 CombineContractTranspose, ReorderCastOpsOnBroadcast, 2666 ReorderCastOpsOnTranspose>(patterns.getContext()); 2667 } 2668 2669 void mlir::vector:: 2670 populateVectorTransferCollapseInnerMostContiguousDimsPatterns( 2671 RewritePatternSet &patterns) { 2672 patterns.add<DropInnerMostUnitDims>(patterns.getContext()); 2673 } 2674 2675 void mlir::vector::populateVectorTransferLoweringPatterns( 2676 RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) { 2677 patterns.add<TransferReadToVectorLoadLowering, 2678 TransferWriteToVectorStoreLowering>(patterns.getContext(), 2679 maxTransferRank); 2680 patterns 2681 .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>( 2682 patterns.getContext()); 2683 } 2684 2685 void mlir::vector::populateVectorScanLoweringPatterns( 2686 RewritePatternSet &patterns) { 2687 patterns.add<ScanToArithOps>(patterns.getContext()); 2688 } 2689