1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-independent rewrites as 1->N patterns. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 14 15 #include <type_traits> 16 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 19 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 20 #include "mlir/Dialect/Linalg/IR/Linalg.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/IR/SCF.h" 23 #include "mlir/Dialect/Utils/IndexingUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 26 #include "mlir/IR/BuiltinTypes.h" 27 #include "mlir/IR/ImplicitLocOpBuilder.h" 28 #include "mlir/IR/Matchers.h" 29 #include "mlir/IR/PatternMatch.h" 30 #include "mlir/Interfaces/VectorInterfaces.h" 31 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 #define DEBUG_TYPE "vector-to-vector" 40 41 using namespace mlir; 42 using namespace mlir::vector; 43 44 // Helper to find an index in an affine map. 45 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) { 46 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 47 int64_t idx = map.getDimPosition(i); 48 if (idx == index) 49 return i; 50 } 51 return None; 52 } 53 54 // Helper to construct iterator types with one index removed. 55 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes, 56 int64_t index) { 57 SmallVector<Attribute, 4> results; 58 for (const auto &it : llvm::enumerate(iteratorTypes)) { 59 int64_t idx = it.index(); 60 if (idx == index) 61 continue; 62 results.push_back(it.value()); 63 } 64 return results; 65 } 66 67 // Helper to construct an affine map with one index removed. 68 static AffineMap adjustMap(AffineMap map, int64_t index, 69 PatternRewriter &rewriter) { 70 auto *ctx = rewriter.getContext(); 71 SmallVector<AffineExpr, 4> results; 72 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 73 int64_t idx = map.getDimPosition(i); 74 if (idx == index) 75 continue; 76 // Re-insert remaining indices, but renamed when occurring 77 // after the removed index. 78 auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx); 79 results.push_back(targetExpr); 80 } 81 return AffineMap::get(map.getNumDims() - 1, 0, results, ctx); 82 } 83 84 // Helper method to possibly drop a dimension in a load. 85 // TODO 86 static Value reshapeLoad(Location loc, Value val, VectorType type, 87 int64_t index, int64_t pos, 88 PatternRewriter &rewriter) { 89 if (index == -1) 90 return val; 91 Type lowType = VectorType::Builder(type).dropDim(0); 92 // At extraction dimension? 93 if (index == 0) { 94 auto posAttr = rewriter.getI64ArrayAttr(pos); 95 return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr); 96 } 97 // Unroll leading dimensions. 98 VectorType vType = lowType.cast<VectorType>(); 99 Type resType = VectorType::Builder(type).dropDim(index); 100 auto resVectorType = resType.cast<VectorType>(); 101 Value result = rewriter.create<arith::ConstantOp>( 102 loc, resVectorType, rewriter.getZeroAttr(resVectorType)); 103 for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) { 104 auto posAttr = rewriter.getI64ArrayAttr(d); 105 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr); 106 Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); 107 result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result, 108 posAttr); 109 } 110 return result; 111 } 112 113 // Helper method to possibly drop a dimension in a store. 114 // TODO 115 static Value reshapeStore(Location loc, Value val, Value result, 116 VectorType type, int64_t index, int64_t pos, 117 PatternRewriter &rewriter) { 118 // Unmodified? 119 if (index == -1) 120 return val; 121 // At insertion dimension? 122 if (index == 0) { 123 auto posAttr = rewriter.getI64ArrayAttr(pos); 124 return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr); 125 } 126 // Unroll leading dimensions. 127 Type lowType = VectorType::Builder(type).dropDim(0); 128 VectorType vType = lowType.cast<VectorType>(); 129 Type insType = VectorType::Builder(vType).dropDim(0); 130 for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { 131 auto posAttr = rewriter.getI64ArrayAttr(d); 132 Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr); 133 Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr); 134 Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); 135 result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr); 136 } 137 return result; 138 } 139 140 template <typename IntType> 141 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) { 142 return llvm::to_vector<4>(llvm::map_range( 143 arrayAttr.getAsRange<IntegerAttr>(), 144 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 145 } 146 147 /// Helper to create arithmetic operation associated with a kind of contraction. 148 static Optional<Value> createContractArithOp(Location loc, Value x, Value y, 149 Value acc, 150 vector::CombiningKind kind, 151 PatternRewriter &rewriter, 152 bool isInt) { 153 using vector::CombiningKind; 154 Value mul; 155 if (isInt) { 156 if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF) 157 // Only valid for floating point types. 158 return Optional<Value>(); 159 mul = rewriter.create<arith::MulIOp>(loc, x, y); 160 } else { 161 // Float case. 162 if (kind == CombiningKind::AND || kind == CombiningKind::MINUI || 163 kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI || 164 kind == CombiningKind::MAXSI || kind == CombiningKind::OR || 165 kind == CombiningKind::XOR) 166 // Only valid for integer types. 167 return Optional<Value>(); 168 // Special case for fused multiply-add. 169 if (acc && acc.getType().isa<VectorType>() && kind == CombiningKind::ADD) { 170 return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc)); 171 } 172 mul = rewriter.create<arith::MulFOp>(loc, x, y); 173 } 174 if (!acc) 175 return Optional<Value>(mul); 176 return makeArithReduction(rewriter, loc, kind, mul, acc); 177 } 178 179 /// Return the positions of the reductions in the given map. 180 static SmallVector<int64_t> getReductionIndex(AffineMap map, 181 ArrayAttr iteratorTypes) { 182 SmallVector<int64_t> dimsIdx; 183 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 184 if (isReductionIterator(iteratorTypes[map.getDimPosition(i)])) 185 dimsIdx.push_back(i); 186 } 187 return dimsIdx; 188 } 189 190 /// Look for a given dimension in an affine map and return its position. Return 191 /// llvm::None if the dimension is not in the map results. 192 static llvm::Optional<unsigned> getDimPosition(AffineMap map, unsigned dim) { 193 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 194 if (map.getDimPosition(i) == dim) 195 return i; 196 } 197 return llvm::None; 198 } 199 200 namespace { 201 202 /// ShapeCastOpFolder folds cancelling ShapeCastOps away. 203 // 204 // Example: 205 // 206 // The following MLIR with cancelling ShapeCastOps: 207 // 208 // %0 = source : vector<5x4x2xf32> 209 // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> 210 // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> 211 // %3 = user %2 : vector<5x4x2xf32> 212 // 213 // Should canonicalize to the following: 214 // 215 // %0 = source : vector<5x4x2xf32> 216 // %1 = user %0 : vector<5x4x2xf32> 217 // 218 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> { 219 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 220 221 LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, 222 PatternRewriter &rewriter) const override { 223 // Check if 'shapeCastOp' has vector source/result type. 224 auto sourceVectorType = 225 shapeCastOp.getSource().getType().dyn_cast_or_null<VectorType>(); 226 auto resultVectorType = 227 shapeCastOp.getResult().getType().dyn_cast_or_null<VectorType>(); 228 if (!sourceVectorType || !resultVectorType) 229 return failure(); 230 231 // Check if shape cast op source operand is also a shape cast op. 232 auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>( 233 shapeCastOp.getSource().getDefiningOp()); 234 if (!sourceShapeCastOp) 235 return failure(); 236 auto operandSourceVectorType = 237 sourceShapeCastOp.getSource().getType().cast<VectorType>(); 238 auto operandResultVectorType = sourceShapeCastOp.getType(); 239 240 // Check if shape cast operations invert each other. 241 if (operandSourceVectorType != resultVectorType || 242 operandResultVectorType != sourceVectorType) 243 return failure(); 244 245 rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource()); 246 return success(); 247 } 248 }; 249 250 /// Progressive lowering of BroadcastOp. 251 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> { 252 public: 253 using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern; 254 255 LogicalResult matchAndRewrite(vector::BroadcastOp op, 256 PatternRewriter &rewriter) const override { 257 auto loc = op.getLoc(); 258 VectorType dstType = op.getVectorType(); 259 VectorType srcType = op.getSourceType().dyn_cast<VectorType>(); 260 Type eltType = dstType.getElementType(); 261 262 // Scalar to any vector can use splat. 263 if (!srcType) { 264 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.getSource()); 265 return success(); 266 } 267 268 // Determine rank of source and destination. 269 int64_t srcRank = srcType.getRank(); 270 int64_t dstRank = dstType.getRank(); 271 272 // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat. 273 if (srcRank <= 1 && dstRank == 1) { 274 Value ext; 275 if (srcRank == 0) 276 ext = rewriter.create<vector::ExtractElementOp>(loc, op.getSource()); 277 else 278 ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0); 279 rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext); 280 return success(); 281 } 282 283 // Duplicate this rank. 284 // For example: 285 // %x = broadcast %y : k-D to n-D, k < n 286 // becomes: 287 // %b = broadcast %y : k-D to (n-1)-D 288 // %x = [%b,%b,%b,%b] : n-D 289 // becomes: 290 // %b = [%y,%y] : (n-1)-D 291 // %x = [%b,%b,%b,%b] : n-D 292 if (srcRank < dstRank) { 293 // Duplication. 294 VectorType resType = 295 VectorType::get(dstType.getShape().drop_front(), eltType); 296 Value bcst = 297 rewriter.create<vector::BroadcastOp>(loc, resType, op.getSource()); 298 Value result = rewriter.create<arith::ConstantOp>( 299 loc, dstType, rewriter.getZeroAttr(dstType)); 300 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 301 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 302 rewriter.replaceOp(op, result); 303 return success(); 304 } 305 306 // Find non-matching dimension, if any. 307 assert(srcRank == dstRank); 308 int64_t m = -1; 309 for (int64_t r = 0; r < dstRank; r++) 310 if (srcType.getDimSize(r) != dstType.getDimSize(r)) { 311 m = r; 312 break; 313 } 314 315 // All trailing dimensions are the same. Simply pass through. 316 if (m == -1) { 317 rewriter.replaceOp(op, op.getSource()); 318 return success(); 319 } 320 321 // Any non-matching dimension forces a stretch along this rank. 322 // For example: 323 // %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32> 324 // becomes: 325 // %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32> 326 // %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32> 327 // %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32> 328 // %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32> 329 // %x = [%a,%b,%c,%d] 330 // becomes: 331 // %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32> 332 // %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32> 333 // %a = [%u, %v] 334 // .. 335 // %x = [%a,%b,%c,%d] 336 VectorType resType = 337 VectorType::get(dstType.getShape().drop_front(), eltType); 338 Value result = rewriter.create<arith::ConstantOp>( 339 loc, dstType, rewriter.getZeroAttr(dstType)); 340 if (m == 0) { 341 // Stetch at start. 342 Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0); 343 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 344 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) 345 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 346 } else { 347 // Stetch not at start. 348 for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) { 349 Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), d); 350 Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext); 351 result = rewriter.create<vector::InsertOp>(loc, bcst, result, d); 352 } 353 } 354 rewriter.replaceOp(op, result); 355 return success(); 356 } 357 }; 358 359 /// Given a 'transpose' pattern, prune the rightmost dimensions that are not 360 /// transposed. 361 void pruneNonTransposedDims(ArrayRef<int64_t> transpose, 362 SmallVectorImpl<int64_t> &result) { 363 size_t numTransposedDims = transpose.size(); 364 for (size_t transpDim : llvm::reverse(transpose)) { 365 if (transpDim != numTransposedDims - 1) 366 break; 367 numTransposedDims--; 368 } 369 370 result.append(transpose.begin(), transpose.begin() + numTransposedDims); 371 } 372 373 /// Progressive lowering of TransposeOp. 374 /// One: 375 /// %x = vector.transpose %y, [1, 0] 376 /// is replaced by: 377 /// %z = arith.constant dense<0.000000e+00> 378 /// %0 = vector.extract %y[0, 0] 379 /// %1 = vector.insert %0, %z [0, 0] 380 /// .. 381 /// %x = vector.insert .., .. [.., ..] 382 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> { 383 public: 384 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 385 386 TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions, 387 MLIRContext *context) 388 : OpRewritePattern<vector::TransposeOp>(context), 389 vectorTransformOptions(vectorTransformOptions) {} 390 391 LogicalResult matchAndRewrite(vector::TransposeOp op, 392 PatternRewriter &rewriter) const override { 393 auto loc = op.getLoc(); 394 395 Value input = op.getVector(); 396 VectorType inputType = op.getVectorType(); 397 VectorType resType = op.getResultType(); 398 399 // Set up convenience transposition table. 400 SmallVector<int64_t, 4> transp; 401 for (auto attr : op.getTransp()) 402 transp.push_back(attr.cast<IntegerAttr>().getInt()); 403 404 if (vectorTransformOptions.vectorTransposeLowering == 405 vector::VectorTransposeLowering::Shuffle && 406 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) 407 return rewriter.notifyMatchFailure( 408 op, "Options specifies lowering to shuffle"); 409 410 // Handle a true 2-D matrix transpose differently when requested. 411 if (vectorTransformOptions.vectorTransposeLowering == 412 vector::VectorTransposeLowering::Flat && 413 resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) { 414 Type flattenedType = 415 VectorType::get(resType.getNumElements(), resType.getElementType()); 416 auto matrix = 417 rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input); 418 auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]); 419 auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]); 420 Value trans = rewriter.create<vector::FlatTransposeOp>( 421 loc, flattenedType, matrix, rows, columns); 422 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans); 423 return success(); 424 } 425 426 // Generate unrolled extract/insert ops. We do not unroll the rightmost 427 // (i.e., highest-order) dimensions that are not transposed and leave them 428 // in vector form to improve performance. Therefore, we prune those 429 // dimensions from the shape/transpose data structures used to generate the 430 // extract/insert ops. 431 SmallVector<int64_t, 4> prunedTransp; 432 pruneNonTransposedDims(transp, prunedTransp); 433 size_t numPrunedDims = transp.size() - prunedTransp.size(); 434 auto prunedInShape = inputType.getShape().drop_back(numPrunedDims); 435 SmallVector<int64_t, 4> ones(prunedInShape.size(), 1); 436 auto prunedInStrides = computeStrides(prunedInShape, ones); 437 438 // Generates the extract/insert operations for every scalar/vector element 439 // of the leftmost transposed dimensions. We traverse every transpose 440 // element using a linearized index that we delinearize to generate the 441 // appropriate indices for the extract/insert operations. 442 Value result = rewriter.create<arith::ConstantOp>( 443 loc, resType, rewriter.getZeroAttr(resType)); 444 int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape); 445 446 for (int64_t linearIdx = 0; linearIdx < numTransposedElements; 447 ++linearIdx) { 448 auto extractIdxs = delinearize(prunedInStrides, linearIdx); 449 SmallVector<int64_t, 4> insertIdxs(extractIdxs); 450 applyPermutationToVector(insertIdxs, prunedTransp); 451 Value extractOp = 452 rewriter.create<vector::ExtractOp>(loc, input, extractIdxs); 453 result = 454 rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs); 455 } 456 457 rewriter.replaceOp(op, result); 458 return success(); 459 } 460 461 private: 462 /// Options to control the vector patterns. 463 vector::VectorTransformsOptions vectorTransformOptions; 464 }; 465 466 /// Rewrite a 2-D vector.transpose as a sequence of: 467 /// vector.shape_cast 2D -> 1D 468 /// vector.shuffle 469 /// vector.shape_cast 1D -> 2D 470 class TransposeOp2DToShuffleLowering 471 : public OpRewritePattern<vector::TransposeOp> { 472 public: 473 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 474 475 TransposeOp2DToShuffleLowering( 476 vector::VectorTransformsOptions vectorTransformOptions, 477 MLIRContext *context) 478 : OpRewritePattern<vector::TransposeOp>(context), 479 vectorTransformOptions(vectorTransformOptions) {} 480 481 LogicalResult matchAndRewrite(vector::TransposeOp op, 482 PatternRewriter &rewriter) const override { 483 auto loc = op.getLoc(); 484 485 VectorType srcType = op.getVectorType(); 486 if (srcType.getRank() != 2) 487 return rewriter.notifyMatchFailure(op, "Not a 2D transpose"); 488 489 SmallVector<int64_t, 4> transp; 490 for (auto attr : op.getTransp()) 491 transp.push_back(attr.cast<IntegerAttr>().getInt()); 492 if (transp[0] != 1 && transp[1] != 0) 493 return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation"); 494 495 if (vectorTransformOptions.vectorTransposeLowering != 496 VectorTransposeLowering::Shuffle) 497 return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle"); 498 499 int64_t m = srcType.getShape().front(), n = srcType.getShape().back(); 500 Value casted = rewriter.create<vector::ShapeCastOp>( 501 loc, VectorType::get({m * n}, srcType.getElementType()), 502 op.getVector()); 503 SmallVector<int64_t> mask; 504 mask.reserve(m * n); 505 for (int64_t j = 0; j < n; ++j) 506 for (int64_t i = 0; i < m; ++i) 507 mask.push_back(i * n + j); 508 509 Value shuffled = 510 rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask); 511 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(), 512 shuffled); 513 514 return success(); 515 } 516 517 private: 518 /// Options to control the vector patterns. 519 vector::VectorTransformsOptions vectorTransformOptions; 520 }; 521 522 /// Progressive lowering of OuterProductOp. 523 /// One: 524 /// %x = vector.outerproduct %lhs, %rhs, %acc 525 /// is replaced by: 526 /// %z = zero-result 527 /// %0 = vector.extract %lhs[0] 528 /// %1 = vector.broadcast %0 529 /// %2 = vector.extract %acc[0] 530 /// %3 = vector.fma %1, %rhs, %2 531 /// %4 = vector.insert %3, %z[0] 532 /// .. 533 /// %x = vector.insert %.., %..[N-1] 534 /// 535 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> { 536 public: 537 using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern; 538 539 LogicalResult matchAndRewrite(vector::OuterProductOp op, 540 PatternRewriter &rewriter) const override { 541 auto loc = op.getLoc(); 542 543 VectorType lhsType = op.getOperandVectorTypeLHS(); 544 VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>(); 545 VectorType resType = op.getVectorType(); 546 Type eltType = resType.getElementType(); 547 bool isInt = eltType.isa<IntegerType, IndexType>(); 548 Value acc = (op.getAcc().empty()) ? nullptr : op.getAcc()[0]; 549 vector::CombiningKind kind = op.getKind(); 550 551 if (!rhsType) { 552 // Special case: AXPY operation. 553 Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs()); 554 Optional<Value> mult = createContractArithOp(loc, op.getLhs(), b, acc, 555 kind, rewriter, isInt); 556 if (!mult.has_value()) 557 return failure(); 558 rewriter.replaceOp(op, mult.value()); 559 return success(); 560 } 561 562 Value result = rewriter.create<arith::ConstantOp>( 563 loc, resType, rewriter.getZeroAttr(resType)); 564 for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { 565 auto pos = rewriter.getI64ArrayAttr(d); 566 Value x = 567 rewriter.create<vector::ExtractOp>(loc, eltType, op.getLhs(), pos); 568 Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x); 569 Value r = nullptr; 570 if (acc) 571 r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos); 572 Optional<Value> m = 573 createContractArithOp(loc, a, op.getRhs(), r, kind, rewriter, isInt); 574 if (!m.has_value()) 575 return failure(); 576 result = rewriter.create<vector::InsertOp>(loc, resType, m.value(), 577 result, pos); 578 } 579 rewriter.replaceOp(op, result); 580 return success(); 581 } 582 }; 583 584 /// Lower vector.contract with all size one reduction dimensions to 585 /// elementwise ops when possible. 586 struct ContractOpToElementwise 587 : public OpRewritePattern<vector::ContractionOp> { 588 using OpRewritePattern::OpRewritePattern; 589 using FilterConstraintType = 590 std::function<LogicalResult(vector::ContractionOp op)>; 591 static LogicalResult defaultFilter(vector::ContractionOp op) { 592 return success(); 593 } 594 ContractOpToElementwise( 595 vector::VectorTransformsOptions vectorTransformOptions, 596 MLIRContext *context, 597 const FilterConstraintType &constraint = defaultFilter) 598 : OpRewritePattern<vector::ContractionOp>(context), 599 vectorTransformOptions(vectorTransformOptions), filter(defaultFilter) {} 600 601 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 602 PatternRewriter &rewriter) const override { 603 // TODO: implement masks 604 if (llvm::size(contractOp.getMasks()) != 0) 605 return failure(); 606 607 if (failed(filter(contractOp))) 608 return failure(); 609 610 if (vectorTransformOptions.vectorContractLowering != 611 vector::VectorContractLowering::ParallelArith) 612 return failure(); 613 ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape(); 614 ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape(); 615 AffineMap lhsMap = contractOp.getIndexingMaps()[0]; 616 AffineMap rhsMap = contractOp.getIndexingMaps()[1]; 617 SmallVector<int64_t> lhsReductionDims = 618 getReductionIndex(lhsMap, contractOp.getIteratorTypes()); 619 SmallVector<int64_t> rhsReductionDims = 620 getReductionIndex(rhsMap, contractOp.getIteratorTypes()); 621 // All the reduction dimensions must be a size 1. 622 for (int64_t dim : lhsReductionDims) { 623 if (lhsShape[dim] != 1) 624 return failure(); 625 } 626 for (int64_t dim : rhsReductionDims) { 627 if (rhsShape[dim] != 1) 628 return failure(); 629 } 630 AffineMap accMap = contractOp.getIndexingMaps()[2]; 631 unsigned numParallelDims = accMap.getNumResults(); 632 unsigned numLhsDimToBroadcast = 633 numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size()); 634 unsigned numRhsDimToBroadcast = 635 numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size()); 636 SmallVector<int64_t> lhsDims; 637 SmallVector<int64_t> lhsTranspose; 638 SmallVector<int64_t> rhsDims; 639 SmallVector<int64_t> rhsTranspose; 640 for (int64_t dim : lhsReductionDims) 641 lhsTranspose.push_back(numLhsDimToBroadcast + dim); 642 for (int64_t dim : rhsReductionDims) 643 rhsTranspose.push_back(numRhsDimToBroadcast + dim); 644 // Loop through the parallel dimensions to calculate the dimensions to 645 // broadcast and to permute in order to extract only parallel dimensions. 646 for (unsigned i = 0; i < numParallelDims; i++) { 647 llvm::Optional<unsigned> lhsDim = 648 getDimPosition(lhsMap, accMap.getDimPosition(i)); 649 if (lhsDim) { 650 lhsTranspose.push_back(numLhsDimToBroadcast + *lhsDim); 651 } else { 652 // If the parallel dimension doesn't exist we will have to broadcast it. 653 lhsDims.push_back( 654 contractOp.getResultType().cast<VectorType>().getDimSize(i)); 655 lhsTranspose.push_back(lhsDims.size() - 1); 656 } 657 llvm::Optional<unsigned> rhsDim = 658 getDimPosition(rhsMap, accMap.getDimPosition(i)); 659 if (rhsDim) { 660 rhsTranspose.push_back(numRhsDimToBroadcast + *rhsDim); 661 } else { 662 // If the parallel dimension doesn't exist we will have to broadcast it. 663 rhsDims.push_back( 664 contractOp.getResultType().cast<VectorType>().getDimSize(i)); 665 rhsTranspose.push_back(rhsDims.size() - 1); 666 } 667 } 668 Value newLhs = contractOp.getLhs(); 669 Value newRhs = contractOp.getRhs(); 670 Location loc = contractOp.getLoc(); 671 if (!lhsDims.empty()) { 672 lhsDims.append(lhsShape.begin(), lhsShape.end()); 673 auto expandedType = 674 VectorType::get(lhsDims, contractOp.getLhsType().getElementType()); 675 newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs); 676 } 677 if (!rhsDims.empty()) { 678 rhsDims.append(rhsShape.begin(), rhsShape.end()); 679 auto expandedType = 680 VectorType::get(rhsDims, contractOp.getRhsType().getElementType()); 681 newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs); 682 } 683 bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex(); 684 newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose); 685 newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose); 686 SmallVector<int64_t, 4> lhsOffsets(lhsReductionDims.size(), 0); 687 SmallVector<int64_t, 4> rhsOffsets(rhsReductionDims.size(), 0); 688 newLhs = rewriter.create<vector::ExtractOp>( 689 loc, newLhs, rewriter.getI64ArrayAttr(lhsOffsets)); 690 newRhs = rewriter.create<vector::ExtractOp>( 691 loc, newRhs, rewriter.getI64ArrayAttr(rhsOffsets)); 692 Optional<Value> result = 693 createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(), 694 contractOp.getKind(), rewriter, isInt); 695 rewriter.replaceOp(contractOp, {*result}); 696 return success(); 697 } 698 699 private: 700 /// Options to control the vector patterns. 701 vector::VectorTransformsOptions vectorTransformOptions; 702 FilterConstraintType filter; 703 }; 704 705 /// Progressive lowering of ConstantMaskOp. 706 /// One: 707 /// %x = vector.constant_mask [a,b] 708 /// is replaced by: 709 /// %z = zero-result 710 /// %l = vector.constant_mask [b] 711 /// %4 = vector.insert %l, %z[0] 712 /// .. 713 /// %x = vector.insert %l, %..[a-1] 714 /// until a one-dimensional vector is reached. All these operations 715 /// will be folded at LLVM IR level. 716 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> { 717 public: 718 using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern; 719 720 LogicalResult matchAndRewrite(vector::ConstantMaskOp op, 721 PatternRewriter &rewriter) const override { 722 auto loc = op.getLoc(); 723 auto dstType = op.getType(); 724 auto eltType = dstType.getElementType(); 725 auto dimSizes = op.getMaskDimSizes(); 726 int64_t rank = dstType.getRank(); 727 728 if (rank == 0) { 729 assert(dimSizes.size() == 1 && 730 "Expected exactly one dim size for a 0-D vector"); 731 bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1; 732 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 733 op, dstType, 734 DenseIntElementsAttr::get( 735 VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()), 736 ArrayRef<bool>{value})); 737 return success(); 738 } 739 740 // Scalable constant masks can only be lowered for the "none set" case. 741 if (dstType.cast<VectorType>().isScalable()) { 742 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 743 op, DenseElementsAttr::get(dstType, false)); 744 return success(); 745 } 746 747 int64_t trueDim = std::min(dstType.getDimSize(0), 748 dimSizes[0].cast<IntegerAttr>().getInt()); 749 750 if (rank == 1) { 751 // Express constant 1-D case in explicit vector form: 752 // [T,..,T,F,..,F]. 753 SmallVector<bool, 4> values(dstType.getDimSize(0)); 754 for (int64_t d = 0; d < trueDim; d++) 755 values[d] = true; 756 rewriter.replaceOpWithNewOp<arith::ConstantOp>( 757 op, dstType, rewriter.getBoolVectorAttr(values)); 758 return success(); 759 } 760 761 VectorType lowType = 762 VectorType::get(dstType.getShape().drop_front(), eltType); 763 SmallVector<int64_t, 4> newDimSizes; 764 for (int64_t r = 1; r < rank; r++) 765 newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt()); 766 Value trueVal = rewriter.create<vector::ConstantMaskOp>( 767 loc, lowType, rewriter.getI64ArrayAttr(newDimSizes)); 768 Value result = rewriter.create<arith::ConstantOp>( 769 loc, dstType, rewriter.getZeroAttr(dstType)); 770 for (int64_t d = 0; d < trueDim; d++) { 771 auto pos = rewriter.getI64ArrayAttr(d); 772 result = 773 rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos); 774 } 775 rewriter.replaceOp(op, result); 776 return success(); 777 } 778 }; 779 780 /// Progressive lowering of CreateMaskOp. 781 /// One: 782 /// %x = vector.create_mask %a, ... : vector<dx...> 783 /// is replaced by: 784 /// %l = vector.create_mask ... : vector<...> ; one lower rank 785 /// %0 = arith.cmpi "slt", %ci, %a | 786 /// %1 = select %0, %l, %zeroes | 787 /// %r = vector.insert %1, %pr [i] | d-times 788 /// %x = .... 789 /// until a one-dimensional vector is reached. 790 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> { 791 public: 792 using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern; 793 794 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 795 PatternRewriter &rewriter) const override { 796 auto dstType = op.getResult().getType().cast<VectorType>(); 797 int64_t rank = dstType.getRank(); 798 if (rank <= 1) 799 return rewriter.notifyMatchFailure( 800 op, "0-D and 1-D vectors are handled separately"); 801 802 auto loc = op.getLoc(); 803 auto eltType = dstType.getElementType(); 804 int64_t dim = dstType.getDimSize(0); 805 Value idx = op.getOperand(0); 806 807 VectorType lowType = 808 VectorType::get(dstType.getShape().drop_front(), eltType); 809 Value trueVal = rewriter.create<vector::CreateMaskOp>( 810 loc, lowType, op.getOperands().drop_front()); 811 Value falseVal = rewriter.create<arith::ConstantOp>( 812 loc, lowType, rewriter.getZeroAttr(lowType)); 813 Value result = rewriter.create<arith::ConstantOp>( 814 loc, dstType, rewriter.getZeroAttr(dstType)); 815 for (int64_t d = 0; d < dim; d++) { 816 Value bnd = 817 rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d)); 818 Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 819 bnd, idx); 820 Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal); 821 auto pos = rewriter.getI64ArrayAttr(d); 822 result = 823 rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos); 824 } 825 rewriter.replaceOp(op, result); 826 return success(); 827 } 828 }; 829 830 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D 831 /// vectors progressively on the way to target llvm.matrix intrinsics. 832 /// This iterates over the most major dimension of the 2-D vector and performs 833 /// rewrites into: 834 /// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D 835 class ShapeCastOp2DDownCastRewritePattern 836 : public OpRewritePattern<vector::ShapeCastOp> { 837 public: 838 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 839 840 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 841 PatternRewriter &rewriter) const override { 842 auto sourceVectorType = op.getSourceVectorType(); 843 auto resultVectorType = op.getResultVectorType(); 844 if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1) 845 return failure(); 846 847 auto loc = op.getLoc(); 848 Value desc = rewriter.create<arith::ConstantOp>( 849 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 850 unsigned mostMinorVectorSize = sourceVectorType.getShape()[1]; 851 for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) { 852 Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i); 853 desc = rewriter.create<vector::InsertStridedSliceOp>( 854 loc, vec, desc, 855 /*offsets=*/i * mostMinorVectorSize, /*strides=*/1); 856 } 857 rewriter.replaceOp(op, desc); 858 return success(); 859 } 860 }; 861 862 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D 863 /// vectors progressively. 864 /// This iterates over the most major dimension of the 2-D vector and performs 865 /// rewrites into: 866 /// vector.extract_strided_slice from 1-D + vector.insert into 2-D 867 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle. 868 class ShapeCastOp2DUpCastRewritePattern 869 : public OpRewritePattern<vector::ShapeCastOp> { 870 public: 871 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 872 873 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 874 PatternRewriter &rewriter) const override { 875 auto sourceVectorType = op.getSourceVectorType(); 876 auto resultVectorType = op.getResultVectorType(); 877 if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2) 878 return failure(); 879 880 auto loc = op.getLoc(); 881 Value desc = rewriter.create<arith::ConstantOp>( 882 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 883 unsigned mostMinorVectorSize = resultVectorType.getShape()[1]; 884 for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) { 885 Value vec = rewriter.create<vector::ExtractStridedSliceOp>( 886 loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize, 887 /*sizes=*/mostMinorVectorSize, 888 /*strides=*/1); 889 desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i); 890 } 891 rewriter.replaceOp(op, desc); 892 return success(); 893 } 894 }; 895 896 // We typically should not lower general shape cast operations into data 897 // movement instructions, since the assumption is that these casts are 898 // optimized away during progressive lowering. For completeness, however, 899 // we fall back to a reference implementation that moves all elements 900 // into the right place if we get here. 901 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> { 902 public: 903 using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern; 904 905 LogicalResult matchAndRewrite(vector::ShapeCastOp op, 906 PatternRewriter &rewriter) const override { 907 Location loc = op.getLoc(); 908 auto sourceVectorType = op.getSourceVectorType(); 909 auto resultVectorType = op.getResultVectorType(); 910 911 // Special case 2D/1D lowerings with better implementations. 912 // TODO: make is ND/1D to allow generic ND->1D->MD. 913 int64_t srcRank = sourceVectorType.getRank(); 914 int64_t resRank = resultVectorType.getRank(); 915 if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2)) 916 return failure(); 917 918 // Generic ShapeCast lowering path goes all the way down to unrolled scalar 919 // extract/insert chains. 920 // TODO: consider evolving the semantics to only allow 1D source or dest and 921 // drop this potentially very expensive lowering. 922 // Compute number of elements involved in the reshape. 923 int64_t numElts = 1; 924 for (int64_t r = 0; r < srcRank; r++) 925 numElts *= sourceVectorType.getDimSize(r); 926 // Replace with data movement operations: 927 // x[0,0,0] = y[0,0] 928 // x[0,0,1] = y[0,1] 929 // x[0,1,0] = y[0,2] 930 // etc., incrementing the two index vectors "row-major" 931 // within the source and result shape. 932 SmallVector<int64_t, 4> srcIdx(srcRank); 933 SmallVector<int64_t, 4> resIdx(resRank); 934 Value result = rewriter.create<arith::ConstantOp>( 935 loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); 936 for (int64_t i = 0; i < numElts; i++) { 937 if (i != 0) { 938 incIdx(srcIdx, sourceVectorType, srcRank - 1); 939 incIdx(resIdx, resultVectorType, resRank - 1); 940 } 941 Value e = rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx); 942 result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx); 943 } 944 rewriter.replaceOp(op, result); 945 return success(); 946 } 947 948 private: 949 static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) { 950 assert(0 <= r && r < tp.getRank()); 951 if (++idx[r] == tp.getDimSize(r)) { 952 idx[r] = 0; 953 incIdx(idx, tp, r - 1); 954 } 955 } 956 }; 957 958 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. 959 /// Ex: 960 /// ``` 961 /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> 962 /// %1 = vector.multi_reduction add, %0 [1] 963 /// : vector<8x32x16xf32> to vector<8x16xf32> 964 /// ``` 965 /// Gets converted to: 966 /// ``` 967 /// %1 = vector.contract {indexing_maps = [ 968 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 969 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 970 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 971 /// iterator_types = ["parallel", "parallel", "reduction"], 972 /// kind = add} %0, %arg1, %cst_f0 973 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 974 /// ``` 975 struct MultiReduceToContract 976 : public OpRewritePattern<vector::MultiDimReductionOp> { 977 using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern; 978 979 LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, 980 PatternRewriter &rewriter) const override { 981 if (reduceOp.getKind() != vector::CombiningKind::ADD) 982 return failure(); 983 Operation *mulOp = reduceOp.getSource().getDefiningOp(); 984 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 985 return failure(); 986 SmallVector<bool> reductionMask = reduceOp.getReductionMask(); 987 auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); 988 SmallVector<AffineExpr> exprs; 989 SmallVector<StringRef> iteratorTypes; 990 for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { 991 if (!isReduceDim.value()) { 992 iteratorTypes.push_back(getParallelIteratorTypeName()); 993 exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); 994 } else { 995 iteratorTypes.push_back(getReductionIteratorTypeName()); 996 } 997 } 998 auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(), 999 /*symCount=*/0, exprs, reduceOp.getContext()); 1000 Value zero = rewriter.create<arith::ConstantOp>( 1001 reduceOp.getLoc(), reduceOp.getDestType(), 1002 rewriter.getZeroAttr(reduceOp.getDestType())); 1003 rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( 1004 reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero, 1005 rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), 1006 rewriter.getStrArrayAttr(iteratorTypes)); 1007 return success(); 1008 } 1009 }; 1010 1011 /// Merge TransposeOp into ContractionOp user. 1012 /// Ex: 1013 /// ``` 1014 /// %0 = vector.transpose %arg0, [2, 0, 1] 1015 /// : vector<32x16x8xf32> to vector<8x32x16xf32> 1016 /// %1 = vector.contract {indexing_maps = [ 1017 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1018 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1019 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1020 /// iterator_types = ["parallel", "parallel", "reduction"], 1021 /// kind = add} %0, %arg1, %cst_f0 1022 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1023 /// ``` 1024 /// Gets converted to: 1025 /// ``` 1026 /// %1 = vector.contract {indexing_maps = [ 1027 /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, 1028 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1029 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1030 /// iterator_types = ["parallel", "parallel", "reduction"], 1031 /// kind = add} %arg0, %arg1, %cst_f0 1032 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1033 /// ``` 1034 struct CombineContractTranspose 1035 : public OpRewritePattern<vector::ContractionOp> { 1036 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 1037 1038 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 1039 PatternRewriter &rewriter) const override { 1040 SmallVector<AffineMap, 4> maps = 1041 llvm::to_vector<4>(contractOp.getIndexingMaps()); 1042 Value lhs = contractOp.getLhs(); 1043 Value rhs = contractOp.getRhs(); 1044 size_t index = 0; 1045 bool changed = false; 1046 for (Value *operand : {&lhs, &rhs}) { 1047 AffineMap &map = maps[index++]; 1048 auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); 1049 if (!transposeOp) 1050 continue; 1051 SmallVector<int64_t> perm; 1052 transposeOp.getTransp(perm); 1053 AffineMap permutationMap = AffineMap::getPermutationMap( 1054 extractVector<unsigned>(transposeOp.getTransp()), 1055 contractOp.getContext()); 1056 map = inversePermutation(permutationMap).compose(map); 1057 *operand = transposeOp.getVector(); 1058 changed = true; 1059 } 1060 if (!changed) 1061 return failure(); 1062 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1063 contractOp, lhs, rhs, contractOp.getAcc(), 1064 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 1065 return success(); 1066 } 1067 }; 1068 1069 /// Merge BroadcastOp into ContractionOp user. 1070 /// Ex: 1071 /// ``` 1072 /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> 1073 /// %1 = vector.contract {indexing_maps = [ 1074 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1075 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1076 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1077 /// iterator_types = ["parallel", "parallel", "reduction"], 1078 /// kind = add} %0, %arg1, %cst_f0 1079 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1080 /// ``` 1081 /// Gets converted to: 1082 /// ``` 1083 /// %1 = vector.contract {indexing_maps = [ 1084 /// affine_map<(d0, d1, d2) -> (d1, d2)>, 1085 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 1086 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 1087 /// iterator_types = ["parallel", "parallel", "reduction"], 1088 /// kind = add} %arg0, %arg1, %cst_f0 1089 /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 1090 /// ``` 1091 struct CombineContractBroadcast 1092 : public OpRewritePattern<vector::ContractionOp> { 1093 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 1094 1095 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 1096 PatternRewriter &rewriter) const override { 1097 SmallVector<AffineMap, 4> maps = 1098 llvm::to_vector<4>(contractOp.getIndexingMaps()); 1099 Value lhs = contractOp.getLhs(); 1100 Value rhs = contractOp.getRhs(); 1101 size_t index = 0; 1102 bool changed = false; 1103 for (Value *operand : {&lhs, &rhs}) { 1104 AffineMap &map = maps[index++]; 1105 auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); 1106 if (!broadcast) 1107 continue; 1108 // contractionOp can only take vector as operands. 1109 auto srcType = broadcast.getSourceType().dyn_cast<VectorType>(); 1110 if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank()) 1111 continue; 1112 int64_t rankDiff = 1113 broadcast.getVectorType().getRank() - srcType.getRank(); 1114 bool innerDimBroadcast = false; 1115 SmallVector<AffineExpr> originalDims; 1116 for (const auto &dim : llvm::enumerate(srcType.getShape())) { 1117 if (dim.value() != 1118 broadcast.getVectorType().getDimSize(rankDiff + dim.index())) { 1119 innerDimBroadcast = true; 1120 break; 1121 } 1122 originalDims.push_back( 1123 rewriter.getAffineDimExpr(dim.index() + rankDiff)); 1124 } 1125 // Contract doesn't support inner dimension broadcast. Once this is 1126 // relaxed we can remove this case. 1127 if (innerDimBroadcast) 1128 continue; 1129 AffineMap broadcastMap = 1130 AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims, 1131 contractOp.getContext()); 1132 map = broadcastMap.compose(map); 1133 *operand = broadcast.getSource(); 1134 changed = true; 1135 } 1136 if (!changed) 1137 return failure(); 1138 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1139 contractOp, lhs, rhs, contractOp.getAcc(), 1140 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 1141 return success(); 1142 } 1143 }; 1144 1145 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and 1146 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when 1147 /// casting ops are around these operations. 1148 /// Ex: 1149 /// ``` 1150 /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> 1151 /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> 1152 /// ``` 1153 /// Gets converted to: 1154 /// ``` 1155 /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> 1156 /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> 1157 /// ``` 1158 struct ReorderCastOpsOnBroadcast 1159 : public OpInterfaceRewritePattern<CastOpInterface> { 1160 using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; 1161 1162 LogicalResult matchAndRewrite(CastOpInterface op, 1163 PatternRewriter &rewriter) const override { 1164 if (op->getNumOperands() != 1) 1165 return failure(); 1166 auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); 1167 if (!bcastOp) 1168 return failure(); 1169 1170 Type castResTy = getElementTypeOrSelf(op->getResult(0)); 1171 if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>()) 1172 castResTy = VectorType::get(vecTy.getShape(), castResTy); 1173 auto *castOp = 1174 rewriter.create(op->getLoc(), op->getName().getIdentifier(), 1175 bcastOp.getSource(), castResTy, op->getAttrs()); 1176 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1177 op, op->getResult(0).getType(), castOp->getResult(0)); 1178 return success(); 1179 } 1180 }; 1181 1182 /// Reorders elementwise(transpose) to transpose(elementwise). This makes 1183 /// transpose ops and contraction ops closer, which kicks in 1184 /// CombineContractTranspose pattern when elementwise ops are between these 1185 /// operations. Ex: 1186 /// ``` 1187 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 1188 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 1189 /// %r = arith.addf %at, %bt : vector<2x4xf32> 1190 /// ``` 1191 /// Gets converted to: 1192 /// ``` 1193 /// %0 = arith.addf %a, %b : vector<4x2xf32> 1194 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> 1195 /// ``` 1196 struct ReorderElementwiseOpsOnTranspose final 1197 : public OpTraitRewritePattern<OpTrait::Elementwise> { 1198 using OpTraitRewritePattern::OpTraitRewritePattern; 1199 LogicalResult matchAndRewrite(Operation *op, 1200 PatternRewriter &rewriter) const override { 1201 if (op->getNumResults() != 1 || op->getNumRegions() != 0) 1202 return failure(); 1203 1204 // Make sure all operands are transpose/constant ops and collect their 1205 // transposition maps. 1206 SmallVector<ArrayAttr, 4> transposeMaps; 1207 transposeMaps.reserve(op->getNumOperands()); 1208 // Record the initial type before transposition. We'll use its shape later. 1209 // Any type will do here as we will check all transpose maps are the same. 1210 VectorType srcType; 1211 for (Value operand : op->getOperands()) { 1212 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 1213 if (transposeOp) { 1214 transposeMaps.push_back(transposeOp.getTransp()); 1215 srcType = transposeOp.getVectorType(); 1216 } else if (!matchPattern(operand, m_Constant())) { 1217 return failure(); 1218 } 1219 } 1220 if (transposeMaps.empty()) 1221 return failure(); 1222 // This is an elementwise op, so all transposed operands should have the 1223 // same type. We need to additionally check that all transposes uses the 1224 // same map. 1225 if (!llvm::is_splat(transposeMaps)) 1226 return rewriter.notifyMatchFailure(op, "different transpose map"); 1227 1228 SmallVector<Value, 4> srcValues; 1229 srcValues.reserve(op->getNumOperands()); 1230 1231 // If there are constant operands, we need to insert inverse transposes for 1232 // them. Calculate the inverse order first. 1233 auto order = extractVector<unsigned>(transposeMaps.front()); 1234 SmallVector<int64_t> invOrder(order.size()); 1235 for (int i = 0, e = order.size(); i < e; ++i) 1236 invOrder[order[i]] = i; 1237 1238 for (Value operand : op->getOperands()) { 1239 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 1240 if (transposeOp) { 1241 srcValues.push_back(transposeOp.getVector()); 1242 } else { 1243 // This is a constant. Create a reverse transpose op for it. 1244 auto vectorType = VectorType::get( 1245 srcType.getShape(), 1246 operand.getType().cast<VectorType>().getElementType()); 1247 srcValues.push_back(rewriter.create<vector::TransposeOp>( 1248 operand.getLoc(), vectorType, operand, 1249 rewriter.getI64ArrayAttr(invOrder))); 1250 } 1251 } 1252 1253 auto vectorType = VectorType::get( 1254 srcType.getShape(), 1255 op->getResultTypes()[0].cast<VectorType>().getElementType()); 1256 Operation *elementwiseOp = 1257 rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, 1258 vectorType, op->getAttrs()); 1259 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 1260 op, op->getResultTypes()[0], elementwiseOp->getResult(0), 1261 transposeMaps.front()); 1262 return success(); 1263 } 1264 }; 1265 1266 } // namespace 1267 1268 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using 1269 /// operands `x` and `y`. 1270 static Value createAdd(Location loc, Value x, Value y, bool isInt, 1271 PatternRewriter &rewriter) { 1272 if (isInt) 1273 return rewriter.create<arith::AddIOp>(loc, x, y); 1274 return rewriter.create<arith::AddFOp>(loc, x, y); 1275 } 1276 1277 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using 1278 /// operands `x and `y`. 1279 static Value createMul(Location loc, Value x, Value y, bool isInt, 1280 PatternRewriter &rewriter) { 1281 if (isInt) 1282 return rewriter.create<arith::MulIOp>(loc, x, y); 1283 return rewriter.create<arith::MulFOp>(loc, x, y); 1284 } 1285 1286 namespace mlir { 1287 1288 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1289 /// semantics to: 1290 /// ``` 1291 /// %mta = maybe_transpose 1292 /// %mtb = maybe_transpose 1293 /// %flattened_a = vector.shape_cast %mta 1294 /// %flattened_b = vector.shape_cast %mtb 1295 /// %flattened_d = vector.matmul %flattened_a, %flattened_b 1296 /// %mtd = vector.shape_cast %flattened_d 1297 /// %d = maybe_untranspose %mtd 1298 /// %e = add %c, %d 1299 /// ``` 1300 /// `vector.matmul` later lowers to `llvm.matrix.multiply`. 1301 // 1302 /// This only kicks in when VectorTransformsOptions is set to `Matmul`. 1303 /// vector.transpose operations are inserted if the vector.contract op is not a 1304 /// row-major matrix multiply. 1305 LogicalResult 1306 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op, 1307 PatternRewriter &rew) const { 1308 // TODO: implement masks 1309 if (llvm::size(op.getMasks()) != 0) 1310 return failure(); 1311 if (vectorTransformOptions.vectorContractLowering != 1312 vector::VectorContractLowering::Matmul) 1313 return failure(); 1314 if (failed(filter(op))) 1315 return failure(); 1316 1317 auto iteratorTypes = op.getIteratorTypes().getValue(); 1318 if (!isParallelIterator(iteratorTypes[0]) || 1319 !isParallelIterator(iteratorTypes[1]) || 1320 !isReductionIterator(iteratorTypes[2])) 1321 return failure(); 1322 1323 Type elementType = op.getLhsType().getElementType(); 1324 if (!elementType.isIntOrFloat()) 1325 return failure(); 1326 1327 Type dstElementType = op.getType(); 1328 if (auto vecType = dstElementType.dyn_cast<VectorType>()) 1329 dstElementType = vecType.getElementType(); 1330 if (elementType != dstElementType) 1331 return failure(); 1332 1333 // Perform lhs + rhs transpositions to conform to matmul row-major semantics. 1334 // Bail out if the contraction cannot be put in this form. 1335 MLIRContext *ctx = op.getContext(); 1336 Location loc = op.getLoc(); 1337 AffineExpr m, n, k; 1338 bindDims(rew.getContext(), m, n, k); 1339 // LHS must be A(m, k) or A(k, m). 1340 Value lhs = op.getLhs(); 1341 auto lhsMap = op.getIndexingMaps()[0]; 1342 if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx)) 1343 lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0}); 1344 else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx)) 1345 return failure(); 1346 1347 // RHS must be B(k, n) or B(n, k). 1348 Value rhs = op.getRhs(); 1349 auto rhsMap = op.getIndexingMaps()[1]; 1350 if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx)) 1351 rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0}); 1352 else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx)) 1353 return failure(); 1354 1355 // At this point lhs and rhs are in row-major. 1356 VectorType lhsType = lhs.getType().cast<VectorType>(); 1357 VectorType rhsType = rhs.getType().cast<VectorType>(); 1358 int64_t lhsRows = lhsType.getDimSize(0); 1359 int64_t lhsColumns = lhsType.getDimSize(1); 1360 int64_t rhsColumns = rhsType.getDimSize(1); 1361 1362 Type flattenedLHSType = 1363 VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); 1364 lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs); 1365 1366 Type flattenedRHSType = 1367 VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); 1368 rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs); 1369 1370 Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns, 1371 rhsColumns); 1372 mul = rew.create<vector::ShapeCastOp>( 1373 loc, 1374 VectorType::get({lhsRows, rhsColumns}, 1375 getElementTypeOrSelf(op.getAcc().getType())), 1376 mul); 1377 1378 // ACC must be C(m, n) or C(n, m). 1379 auto accMap = op.getIndexingMaps()[2]; 1380 if (accMap == AffineMap::get(3, 0, {n, m}, ctx)) 1381 mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0}); 1382 else if (accMap != AffineMap::get(3, 0, {m, n}, ctx)) 1383 llvm_unreachable("invalid contraction semantics"); 1384 1385 Value res = 1386 elementType.isa<IntegerType>() 1387 ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul)) 1388 : static_cast<Value>( 1389 rew.create<arith::AddFOp>(loc, op.getAcc(), mul)); 1390 1391 rew.replaceOp(op, res); 1392 return success(); 1393 } 1394 1395 namespace { 1396 struct IteratorType { 1397 IteratorType(StringRef strRef) : strRef(strRef) {} 1398 bool isOfType(Attribute attr) const { 1399 auto sAttr = attr.dyn_cast<StringAttr>(); 1400 return sAttr && sAttr.getValue() == strRef; 1401 } 1402 StringRef strRef; 1403 }; 1404 struct Par : public IteratorType { 1405 Par() : IteratorType(getParallelIteratorTypeName()) {} 1406 }; 1407 struct Red : public IteratorType { 1408 Red() : IteratorType(getReductionIteratorTypeName()) {} 1409 }; 1410 1411 /// Generate a vector implementation for matmat, matvec and tmatvec. 1412 /// This unrolls outer-products along the reduction dimension. 1413 struct UnrolledOuterProductGenerator 1414 : public StructuredGenerator<vector::ContractionOp> { 1415 UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op) 1416 : StructuredGenerator<vector::ContractionOp>(builder, op), 1417 kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()), 1418 res(op.getAcc()), lhsType(op.getLhsType()) {} 1419 1420 Value t(Value v) { 1421 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1422 return builder.create<vector::TransposeOp>(loc, v, perm); 1423 } 1424 1425 Value promote(Value v, Type dstElementType) { 1426 Type elementType = v.getType(); 1427 auto vecType = elementType.dyn_cast<VectorType>(); 1428 if (vecType) 1429 elementType = vecType.getElementType(); 1430 if (elementType == dstElementType) 1431 return v; 1432 Type promotedType = dstElementType; 1433 if (vecType) 1434 promotedType = VectorType::get(vecType.getShape(), promotedType); 1435 if (dstElementType.isa<FloatType>()) 1436 return builder.create<arith::ExtFOp>(loc, promotedType, v); 1437 return builder.create<arith::ExtSIOp>(loc, promotedType, v); 1438 } 1439 1440 Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) { 1441 assert(reductionSize > 0); 1442 Type resElementType = res.getType().cast<VectorType>().getElementType(); 1443 for (int64_t k = 0; k < reductionSize; ++k) { 1444 Value a = builder.create<vector::ExtractOp>(loc, lhs, k); 1445 Value b = builder.create<vector::ExtractOp>(loc, rhs, k); 1446 a = promote(a, resElementType); 1447 b = promote(b, resElementType); 1448 res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b, 1449 res, kind); 1450 } 1451 return res; 1452 } 1453 1454 /// Two outer parallel, one inner reduction (matmat flavor). 1455 FailureOr<Value> matmat() { 1456 if (!iters({Par(), Par(), Red()})) 1457 return failure(); 1458 // Set up the parallel/reduction structure in the right form. 1459 AffineExpr m, n, k; 1460 bindDims(builder.getContext(), m, n, k); 1461 // Classical row-major matmul: Just permute the lhs. 1462 if (layout({{m, k}, {k, n}, {m, n}})) 1463 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1464 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1465 if (layout({{m, k}, {n, k}, {m, n}})) { 1466 Value tlhs = t(lhs); 1467 return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1)); 1468 } 1469 // No need to permute anything. 1470 if (layout({{k, m}, {k, n}, {m, n}})) 1471 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1472 // Just permute the rhs. 1473 if (layout({{k, m}, {n, k}, {m, n}})) 1474 return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0)); 1475 // Transposed output: swap RHS and LHS. 1476 // Classical row-major matmul: permute the lhs. 1477 if (layout({{m, k}, {k, n}, {n, m}})) 1478 return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1)); 1479 // TODO: may be better to fail and use some vector<k> -> scalar reduction. 1480 if (layout({{m, k}, {n, k}, {n, m}})) { 1481 Value trhs = t(rhs); 1482 return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1)); 1483 } 1484 if (layout({{k, m}, {k, n}, {n, m}})) 1485 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1486 if (layout({{k, m}, {n, k}, {n, m}})) 1487 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1488 return failure(); 1489 } 1490 1491 /// One outer parallel, one inner reduction (matvec flavor) 1492 FailureOr<Value> matvec() { 1493 if (!iters({Par(), Red()})) 1494 return failure(); 1495 AffineExpr m, k; 1496 bindDims(builder.getContext(), m, k); 1497 1498 // Case mat-vec: transpose. 1499 if (layout({{m, k}, {k}, {m}})) 1500 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1501 // Case mat-trans-vec: ready to go. 1502 if (layout({{k, m}, {k}, {m}})) 1503 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1504 // Case vec-mat: swap and transpose. 1505 if (layout({{k}, {m, k}, {m}})) 1506 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1507 // Case vec-mat-trans: swap and ready to go. 1508 if (layout({{k}, {k, m}, {m}})) 1509 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1510 return failure(); 1511 } 1512 1513 // 1514 // One outer reduction, one inner parallel (tmatvec flavor) 1515 // 1516 FailureOr<Value> tmatvec() { 1517 if (!iters({Red(), Par()})) 1518 return failure(); 1519 AffineExpr k, m; 1520 bindDims(builder.getContext(), k, m); 1521 1522 // Case mat-vec: transpose. 1523 if (layout({{m, k}, {k}, {m}})) 1524 return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); 1525 // Case mat-trans-vec: ready to go. 1526 if (layout({{k, m}, {k}, {m}})) 1527 return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); 1528 // Case vec-mat: swap and transpose. 1529 if (layout({{k}, {m, k}, {m}})) 1530 return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); 1531 // Case vec-mat-trans: swap and ready to go. 1532 if (layout({{k}, {k, m}, {m}})) 1533 return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); 1534 return failure(); 1535 } 1536 1537 private: 1538 vector::CombiningKind kind; 1539 Value lhs, rhs, res; 1540 VectorType lhsType; 1541 }; 1542 } // namespace 1543 1544 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul 1545 /// semantics to a reduction_size-unrolled sequence: 1546 /// ``` 1547 /// %at = vector.transpose %a, [1, 0] 1548 /// %bRow0 = vector.extract %b[0] 1549 /// %atRow0 = vector.extract %at[0] 1550 /// %c0 = vector.outerproduct %atRow0, %bRow0, %c 1551 /// ... 1552 /// %bRowK = vector.extract %b[K] 1553 /// %atRowK = vector.extract %at[K] 1554 /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 1555 /// ``` 1556 /// 1557 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but 1558 /// otherwise supports any layout permutation of the matrix-multiply. 1559 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite( 1560 vector::ContractionOp op, PatternRewriter &rewriter) const { 1561 // TODO: implement masks 1562 if (llvm::size(op.getMasks()) != 0) 1563 return failure(); 1564 1565 if (vectorTransformOptions.vectorContractLowering != 1566 vector::VectorContractLowering::OuterProduct) 1567 return failure(); 1568 1569 if (failed(filter(op))) 1570 return failure(); 1571 1572 UnrolledOuterProductGenerator e(rewriter, op); 1573 FailureOr<Value> matmatRes = e.matmat(); 1574 if (succeeded(matmatRes)) { 1575 rewriter.replaceOp(op, *matmatRes); 1576 return success(); 1577 } 1578 FailureOr<Value> matvecRes = e.matvec(); 1579 if (succeeded(matvecRes)) { 1580 rewriter.replaceOp(op, *matvecRes); 1581 return success(); 1582 } 1583 FailureOr<Value> tmatvecRes = e.tmatvec(); 1584 if (succeeded(tmatvecRes)) { 1585 rewriter.replaceOp(op, *tmatvecRes); 1586 return success(); 1587 } 1588 1589 return failure(); 1590 } 1591 1592 LogicalResult 1593 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op, 1594 PatternRewriter &rewriter) const { 1595 // TODO: implement masks 1596 if (llvm::size(op.getMasks()) != 0) 1597 return failure(); 1598 1599 if (failed(filter(op))) 1600 return failure(); 1601 1602 if (vectorTransformOptions.vectorContractLowering != 1603 vector::VectorContractLowering::Dot) 1604 return failure(); 1605 1606 auto iteratorTypes = op.getIteratorTypes().getValue(); 1607 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1608 Location loc = op.getLoc(); 1609 Value lhs = op.getLhs(), rhs = op.getRhs(); 1610 1611 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 1612 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 1613 AffineExpr m, n, k; 1614 bindDims(rewriter.getContext(), m, n, k); 1615 SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 1616 // 1617 // In the following we wish to make the reduction dimension innermost so we 1618 // can load vectors and just fmul + reduce into a scalar. 1619 // 1620 if (isParallelIterator(iteratorTypes[0]) && 1621 isParallelIterator(iteratorTypes[1]) && 1622 isReductionIterator(iteratorTypes[2])) { 1623 // 1624 // Two outer parallel, one inner reduction (matmat flavor). 1625 // 1626 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 1627 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1628 } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { 1629 // No need to permute anything. 1630 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 1631 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1632 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1633 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 1634 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1635 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 1636 // This is the classical row-major matmul. Just permute the lhs. 1637 Value tmp = lhs; 1638 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1639 rhs = tmp; 1640 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 1641 std::swap(lhs, rhs); 1642 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 1643 Value tmp = lhs; 1644 lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 1645 rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm); 1646 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 1647 Value tmp = rhs; 1648 rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1649 lhs = tmp; 1650 } else { 1651 return failure(); 1652 } 1653 } else if (isParallelIterator(iteratorTypes[0]) && 1654 isReductionIterator(iteratorTypes[1])) { 1655 // 1656 // One outer parallel, one inner reduction (matvec flavor) 1657 // 1658 if (maps == infer({{m, n}, {n}, {m}})) { 1659 // No need to permute anything. 1660 } else if (maps == infer({{n, m}, {n}, {m}})) { 1661 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1662 } else if (maps == infer({{n}, {m, n}, {m}})) { 1663 std::swap(lhs, rhs); 1664 } else if (maps == infer({{n}, {n, m}, {m}})) { 1665 std::swap(lhs, rhs); 1666 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 1667 } else { 1668 return failure(); 1669 } 1670 } else { 1671 return failure(); 1672 } 1673 1674 VectorType dstType = op.getResultType().cast<VectorType>(); 1675 assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && 1676 "Expected dst type of rank 1 or 2"); 1677 1678 unsigned rank = dstType.getRank(); 1679 unsigned dstRows = dstType.getShape()[0]; 1680 unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; 1681 1682 // ExtractOp does not allow dynamic indexing, we must unroll explicitly. 1683 Value res = rewriter.create<arith::ConstantOp>(loc, dstType, 1684 rewriter.getZeroAttr(dstType)); 1685 bool isInt = dstType.getElementType().isa<IntegerType>(); 1686 for (unsigned r = 0; r < dstRows; ++r) { 1687 Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r); 1688 for (unsigned c = 0; c < dstColumns; ++c) { 1689 Value b = rank == 1 1690 ? rhs 1691 : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c); 1692 Value m = createMul(op.getLoc(), a, b, isInt, rewriter); 1693 Value reduced = rewriter.create<vector::ReductionOp>( 1694 op.getLoc(), vector::CombiningKind::ADD, m); 1695 1696 SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r} 1697 : SmallVector<int64_t, 2>{r, c}; 1698 res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos); 1699 } 1700 } 1701 if (auto acc = op.getAcc()) 1702 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1703 rewriter.replaceOp(op, res); 1704 return success(); 1705 } 1706 1707 /// Progressive lowering of ContractionOp. 1708 /// One: 1709 /// %x = vector.contract with at least one free/batch dimension 1710 /// is replaced by: 1711 /// %a = vector.contract with one less free/batch dimension 1712 /// %b = vector.contract with one less free/batch dimension 1713 /// .. 1714 /// %x = combine %a %b .. 1715 /// until a pure contraction is reached (no free/batch dimensions), 1716 /// which is replaced by a dot-product. 1717 /// 1718 /// This only kicks in when either VectorTransformsOptions is set 1719 /// to DOT or when other contraction patterns fail. 1720 // 1721 // TODO: break down into transpose/reshape/cast ops 1722 // when they become available to avoid code dup 1723 // TODO: investigate lowering order impact on performance 1724 LogicalResult 1725 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op, 1726 PatternRewriter &rewriter) const { 1727 // TODO: implement masks. 1728 if (llvm::size(op.getMasks()) != 0) 1729 return failure(); 1730 1731 if (failed(filter(op))) 1732 return failure(); 1733 1734 // TODO: support mixed mode contract lowering. 1735 if (op.getLhsType().getElementType() != 1736 getElementTypeOrSelf(op.getAccType()) || 1737 op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) 1738 return failure(); 1739 1740 // TODO: implement benefits, cost models. 1741 MLIRContext *ctx = op.getContext(); 1742 ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx); 1743 if (succeeded(pat1.matchAndRewrite(op, rewriter))) 1744 return success(); 1745 ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx); 1746 if (succeeded(pat2.matchAndRewrite(op, rewriter))) 1747 return success(); 1748 ContractionOpToDotLowering pat3(vectorTransformOptions, ctx); 1749 if (succeeded(pat3.matchAndRewrite(op, rewriter))) 1750 return success(); 1751 ContractOpToElementwise pat4(vectorTransformOptions, ctx); 1752 if (succeeded(pat4.matchAndRewrite(op, rewriter))) 1753 return success(); 1754 1755 // Find first batch dimension in LHS/RHS, and lower when found. 1756 std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap(); 1757 if (!batchDimMap.empty()) { 1758 int64_t lhsIndex = batchDimMap[0].first; 1759 int64_t rhsIndex = batchDimMap[0].second; 1760 rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter)); 1761 return success(); 1762 } 1763 1764 // Collect contracting dimensions. 1765 std::vector<std::pair<int64_t, int64_t>> contractingDimMap = 1766 op.getContractingDimMap(); 1767 DenseSet<int64_t> lhsContractingDimSet; 1768 DenseSet<int64_t> rhsContractingDimSet; 1769 for (auto &dimPair : contractingDimMap) { 1770 lhsContractingDimSet.insert(dimPair.first); 1771 rhsContractingDimSet.insert(dimPair.second); 1772 } 1773 1774 // Find first free dimension in LHS, and lower when found. 1775 VectorType lhsType = op.getLhsType(); 1776 for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { 1777 if (lhsContractingDimSet.count(lhsIndex) == 0) { 1778 rewriter.replaceOp( 1779 op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter)); 1780 return success(); 1781 } 1782 } 1783 1784 // Find first free dimension in RHS, and lower when found. 1785 VectorType rhsType = op.getRhsType(); 1786 for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { 1787 if (rhsContractingDimSet.count(rhsIndex) == 0) { 1788 rewriter.replaceOp( 1789 op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter)); 1790 return success(); 1791 } 1792 } 1793 1794 // Lower the first remaining reduction dimension. 1795 if (!contractingDimMap.empty()) { 1796 rewriter.replaceOp(op, lowerReduction(op, rewriter)); 1797 return success(); 1798 } 1799 1800 return failure(); 1801 } 1802 1803 // Lower one parallel dimension. 1804 // TODO: consider reusing existing contract unrolling 1805 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op, 1806 int64_t lhsIndex, int64_t rhsIndex, 1807 PatternRewriter &rewriter) const { 1808 VectorType lhsType = op.getLhsType(); 1809 VectorType rhsType = op.getRhsType(); 1810 VectorType resType = op.getResultType().cast<VectorType>(); 1811 // Find the iterator type index and result index. 1812 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1813 int64_t iterIndex = -1; 1814 int64_t dimSize = -1; 1815 if (lhsIndex >= 0) { 1816 iterIndex = iMap[0].getDimPosition(lhsIndex); 1817 assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) && 1818 "parallel index should be free in LHS or batch in LHS/RHS"); 1819 dimSize = lhsType.getDimSize(lhsIndex); 1820 } else { 1821 assert(rhsIndex >= 0 && "missing parallel index"); 1822 iterIndex = iMap[1].getDimPosition(rhsIndex); 1823 dimSize = rhsType.getDimSize(rhsIndex); 1824 } 1825 assert(iterIndex >= 0 && "parallel index not listed in operand mapping"); 1826 Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex); 1827 assert(lookup && "parallel index not listed in reduction"); 1828 int64_t resIndex = lookup.value(); 1829 // Construct new iterator types and affine map array attribute. 1830 std::array<AffineMap, 3> lowIndexingMaps = { 1831 adjustMap(iMap[0], iterIndex, rewriter), 1832 adjustMap(iMap[1], iterIndex, rewriter), 1833 adjustMap(iMap[2], iterIndex, rewriter)}; 1834 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1835 auto lowIter = 1836 rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex)); 1837 // Unroll into a series of lower dimensional vector.contract ops. 1838 Location loc = op.getLoc(); 1839 Value result = rewriter.create<arith::ConstantOp>( 1840 loc, resType, rewriter.getZeroAttr(resType)); 1841 for (int64_t d = 0; d < dimSize; ++d) { 1842 auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); 1843 auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); 1844 auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter); 1845 Value lowContract = rewriter.create<vector::ContractionOp>( 1846 loc, lhs, rhs, acc, lowAffine, lowIter); 1847 result = 1848 reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter); 1849 } 1850 return result; 1851 } 1852 1853 // Lower one reduction dimension. 1854 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op, 1855 PatternRewriter &rewriter) const { 1856 auto loc = op.getLoc(); 1857 VectorType lhsType = op.getLhsType(); 1858 VectorType rhsType = op.getRhsType(); 1859 Type resType = op.getResultType(); 1860 assert(!resType.isa<VectorType>()); 1861 bool isInt = resType.isa<IntegerType>(); 1862 // Use iterator index 0. 1863 int64_t iterIndex = 0; 1864 SmallVector<AffineMap, 4> iMap = op.getIndexingMaps(); 1865 Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex); 1866 Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex); 1867 assert(lookupLhs && "missing LHS parallel index"); 1868 assert(lookupRhs && "missing RHS parallel index"); 1869 int64_t lhsIndex = lookupLhs.value(); 1870 int64_t rhsIndex = lookupRhs.value(); 1871 int64_t dimSize = lhsType.getDimSize(lhsIndex); 1872 assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape"); 1873 // Base case. 1874 if (lhsType.getRank() == 1) { 1875 assert(rhsType.getRank() == 1 && "corrupt contraction"); 1876 Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter); 1877 auto kind = vector::CombiningKind::ADD; 1878 Value res = rewriter.create<vector::ReductionOp>(loc, kind, m); 1879 if (auto acc = op.getAcc()) 1880 res = createAdd(op.getLoc(), res, acc, isInt, rewriter); 1881 return res; 1882 } 1883 // Construct new iterator types and affine map array attribute. 1884 std::array<AffineMap, 3> lowIndexingMaps = { 1885 adjustMap(iMap[0], iterIndex, rewriter), 1886 adjustMap(iMap[1], iterIndex, rewriter), 1887 adjustMap(iMap[2], iterIndex, rewriter)}; 1888 auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); 1889 auto lowIter = 1890 rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex)); 1891 // Unroll into a series of lower dimensional vector.contract ops. 1892 // By feeding the initial accumulator into the first contraction, 1893 // and the result of each contraction into the next, eventually 1894 // the sum of all reductions is computed. 1895 Value result = op.getAcc(); 1896 for (int64_t d = 0; d < dimSize; ++d) { 1897 auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter); 1898 auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter); 1899 result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result, 1900 lowAffine, lowIter); 1901 } 1902 return result; 1903 } 1904 1905 } // namespace mlir 1906 1907 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp( 1908 OpBuilder &builder, Operation *op, ArrayRef<Value> ids, 1909 ArrayRef<int64_t> multiplicity, const AffineMap &map) { 1910 OpBuilder::InsertionGuard guard(builder); 1911 builder.setInsertionPointAfter(op); 1912 Location loc = op->getLoc(); 1913 if (op->getNumResults() != 1) 1914 return {}; 1915 Value result = op->getResult(0); 1916 VectorType type = op->getResult(0).getType().dyn_cast<VectorType>(); 1917 if (!type || map.getNumResults() != multiplicity.size()) 1918 return {}; 1919 // For each dimension being distributed check that the size is a multiple of 1920 // the multiplicity. To handle more sizes we would need to support masking. 1921 unsigned multiplictyCount = 0; 1922 for (auto exp : map.getResults()) { 1923 auto affinExp = exp.dyn_cast<AffineDimExpr>(); 1924 if (!affinExp || affinExp.getPosition() >= type.getRank() || 1925 type.getDimSize(affinExp.getPosition()) % 1926 multiplicity[multiplictyCount++] != 1927 0) 1928 return {}; 1929 } 1930 DistributeOps ops; 1931 ops.extract = 1932 builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map); 1933 ops.insert = 1934 builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids); 1935 return ops; 1936 } 1937 1938 /// Progressive lowering of transfer_read. This pattern supports lowering of 1939 /// `vector.transfer_read` to a combination of `vector.load` and 1940 /// `vector.broadcast` if all of the following hold: 1941 /// - Stride of most minor memref dimension must be 1. 1942 /// - Out-of-bounds masking is not required. 1943 /// - If the memref's element type is a vector type then it coincides with the 1944 /// result type. 1945 /// - The permutation map doesn't perform permutation (broadcasting is allowed). 1946 struct TransferReadToVectorLoadLowering 1947 : public OpRewritePattern<vector::TransferReadOp> { 1948 TransferReadToVectorLoadLowering(MLIRContext *context, 1949 llvm::Optional<unsigned> maxRank) 1950 : OpRewritePattern<vector::TransferReadOp>(context), 1951 maxTransferRank(maxRank) {} 1952 1953 LogicalResult matchAndRewrite(vector::TransferReadOp read, 1954 PatternRewriter &rewriter) const override { 1955 if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) 1956 return failure(); 1957 1958 SmallVector<unsigned, 4> broadcastedDims; 1959 // Permutations are handled by VectorToSCF or 1960 // populateVectorTransferPermutationMapLoweringPatterns. 1961 // We let the 0-d corner case pass-through as it is supported. 1962 if (!read.getPermutationMap().isMinorIdentityWithBroadcasting( 1963 &broadcastedDims)) 1964 return failure(); 1965 1966 auto memRefType = read.getShapedType().dyn_cast<MemRefType>(); 1967 if (!memRefType) 1968 return failure(); 1969 1970 // Non-unit strides are handled by VectorToSCF. 1971 if (!vector::isLastMemrefDimUnitStride(memRefType)) 1972 return failure(); 1973 1974 // If there is broadcasting involved then we first load the unbroadcasted 1975 // vector, and then broadcast it with `vector.broadcast`. 1976 ArrayRef<int64_t> vectorShape = read.getVectorType().getShape(); 1977 SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(), 1978 vectorShape.end()); 1979 for (unsigned i : broadcastedDims) 1980 unbroadcastedVectorShape[i] = 1; 1981 VectorType unbroadcastedVectorType = VectorType::get( 1982 unbroadcastedVectorShape, read.getVectorType().getElementType()); 1983 1984 // `vector.load` supports vector types as memref's elements only when the 1985 // resulting vector type is the same as the element type. 1986 auto memrefElTy = memRefType.getElementType(); 1987 if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType) 1988 return failure(); 1989 1990 // Otherwise, element types of the memref and the vector must match. 1991 if (!memrefElTy.isa<VectorType>() && 1992 memrefElTy != read.getVectorType().getElementType()) 1993 return failure(); 1994 1995 // Out-of-bounds dims are handled by MaterializeTransferMask. 1996 if (read.hasOutOfBoundsDim()) 1997 return failure(); 1998 1999 // Create vector load op. 2000 Operation *loadOp; 2001 if (read.getMask()) { 2002 Value fill = rewriter.create<vector::SplatOp>( 2003 read.getLoc(), unbroadcastedVectorType, read.getPadding()); 2004 loadOp = rewriter.create<vector::MaskedLoadOp>( 2005 read.getLoc(), unbroadcastedVectorType, read.getSource(), 2006 read.getIndices(), read.getMask(), fill); 2007 } else { 2008 loadOp = rewriter.create<vector::LoadOp>( 2009 read.getLoc(), unbroadcastedVectorType, read.getSource(), 2010 read.getIndices()); 2011 } 2012 2013 // Insert a broadcasting op if required. 2014 if (!broadcastedDims.empty()) { 2015 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 2016 read, read.getVectorType(), loadOp->getResult(0)); 2017 } else { 2018 rewriter.replaceOp(read, loadOp->getResult(0)); 2019 } 2020 2021 return success(); 2022 } 2023 2024 llvm::Optional<unsigned> maxTransferRank; 2025 }; 2026 2027 /// Replace a 0-d vector.load with a memref.load + vector.broadcast. 2028 // TODO: we shouldn't cross the vector/scalar domains just for this 2029 // but atm we lack the infra to avoid it. Possible solutions include: 2030 // - go directly to LLVM + bitcast 2031 // - introduce a bitcast op and likely a new pointer dialect 2032 // - let memref.load/store additionally support the 0-d vector case 2033 // There are still deeper data layout issues lingering even in this 2034 // trivial case (for architectures for which this matters). 2035 struct VectorLoadToMemrefLoadLowering 2036 : public OpRewritePattern<vector::LoadOp> { 2037 using OpRewritePattern<vector::LoadOp>::OpRewritePattern; 2038 2039 LogicalResult matchAndRewrite(vector::LoadOp loadOp, 2040 PatternRewriter &rewriter) const override { 2041 auto vecType = loadOp.getVectorType(); 2042 if (vecType.getNumElements() != 1) 2043 return failure(); 2044 auto memrefLoad = rewriter.create<memref::LoadOp>( 2045 loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices()); 2046 rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType, 2047 memrefLoad); 2048 return success(); 2049 } 2050 }; 2051 2052 /// Replace a 0-d vector.store with a vector.extractelement + memref.store. 2053 struct VectorStoreToMemrefStoreLowering 2054 : public OpRewritePattern<vector::StoreOp> { 2055 using OpRewritePattern<vector::StoreOp>::OpRewritePattern; 2056 2057 LogicalResult matchAndRewrite(vector::StoreOp storeOp, 2058 PatternRewriter &rewriter) const override { 2059 auto vecType = storeOp.getVectorType(); 2060 if (vecType.getNumElements() != 1) 2061 return failure(); 2062 Value extracted; 2063 if (vecType.getRank() == 0) { 2064 // TODO: Unifiy once ExtractOp supports 0-d vectors. 2065 extracted = rewriter.create<vector::ExtractElementOp>( 2066 storeOp.getLoc(), storeOp.getValueToStore()); 2067 } else { 2068 SmallVector<int64_t> indices(vecType.getRank(), 0); 2069 extracted = rewriter.create<vector::ExtractOp>( 2070 storeOp.getLoc(), storeOp.getValueToStore(), indices); 2071 } 2072 2073 rewriter.replaceOpWithNewOp<memref::StoreOp>( 2074 storeOp, extracted, storeOp.getBase(), storeOp.getIndices()); 2075 return success(); 2076 } 2077 }; 2078 2079 /// Progressive lowering of transfer_write. This pattern supports lowering of 2080 /// `vector.transfer_write` to `vector.store` if all of the following hold: 2081 /// - Stride of most minor memref dimension must be 1. 2082 /// - Out-of-bounds masking is not required. 2083 /// - If the memref's element type is a vector type then it coincides with the 2084 /// type of the written value. 2085 /// - The permutation map is the minor identity map (neither permutation nor 2086 /// broadcasting is allowed). 2087 struct TransferWriteToVectorStoreLowering 2088 : public OpRewritePattern<vector::TransferWriteOp> { 2089 TransferWriteToVectorStoreLowering(MLIRContext *context, 2090 llvm::Optional<unsigned> maxRank) 2091 : OpRewritePattern<vector::TransferWriteOp>(context), 2092 maxTransferRank(maxRank) {} 2093 2094 LogicalResult matchAndRewrite(vector::TransferWriteOp write, 2095 PatternRewriter &rewriter) const override { 2096 if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) 2097 return failure(); 2098 2099 // Permutations are handled by VectorToSCF or 2100 // populateVectorTransferPermutationMapLoweringPatterns. 2101 if ( // pass-through for the 0-d corner case. 2102 !write.getPermutationMap().isMinorIdentity()) 2103 return failure(); 2104 2105 auto memRefType = write.getShapedType().dyn_cast<MemRefType>(); 2106 if (!memRefType) 2107 return failure(); 2108 2109 // Non-unit strides are handled by VectorToSCF. 2110 if (!vector::isLastMemrefDimUnitStride(memRefType)) 2111 return failure(); 2112 2113 // `vector.store` supports vector types as memref's elements only when the 2114 // type of the vector value being written is the same as the element type. 2115 auto memrefElTy = memRefType.getElementType(); 2116 if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType()) 2117 return failure(); 2118 2119 // Otherwise, element types of the memref and the vector must match. 2120 if (!memrefElTy.isa<VectorType>() && 2121 memrefElTy != write.getVectorType().getElementType()) 2122 return failure(); 2123 2124 // Out-of-bounds dims are handled by MaterializeTransferMask. 2125 if (write.hasOutOfBoundsDim()) 2126 return failure(); 2127 if (write.getMask()) { 2128 rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>( 2129 write, write.getSource(), write.getIndices(), write.getMask(), 2130 write.getVector()); 2131 } else { 2132 rewriter.replaceOpWithNewOp<vector::StoreOp>( 2133 write, write.getVector(), write.getSource(), write.getIndices()); 2134 } 2135 return success(); 2136 } 2137 2138 llvm::Optional<unsigned> maxTransferRank; 2139 }; 2140 2141 // Returns the values in `arrayAttr` as an integer vector. 2142 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) { 2143 return llvm::to_vector<4>( 2144 llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), 2145 [](IntegerAttr attr) { return attr.getInt(); })); 2146 } 2147 2148 // Shuffles vector.bitcast op after vector.extract op. 2149 // 2150 // This transforms IR like: 2151 // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> 2152 // %1 = vector.extract %0[3] : vector<8xf16> 2153 // Into: 2154 // %0 = vector.extract %src[1] : vector<4xf32> 2155 // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> 2156 // %2 = vector.extract %1[1] : vector<2xf16> 2157 struct BubbleDownVectorBitCastForExtract 2158 : public OpRewritePattern<vector::ExtractOp> { 2159 using OpRewritePattern::OpRewritePattern; 2160 2161 LogicalResult matchAndRewrite(vector::ExtractOp extractOp, 2162 PatternRewriter &rewriter) const override { 2163 // Only support extracting scalars for now. 2164 if (extractOp.getVectorType().getRank() != 1) 2165 return failure(); 2166 2167 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 2168 if (!castOp) 2169 return failure(); 2170 2171 VectorType castSrcType = castOp.getSourceVectorType(); 2172 VectorType castDstType = castOp.getResultVectorType(); 2173 assert(castSrcType.getRank() == castDstType.getRank()); 2174 2175 // Fail to match if we only have one element in the cast op source. 2176 // This is to avoid infinite loop given that this pattern can generate 2177 // such cases. 2178 if (castSrcType.getNumElements() == 1) 2179 return failure(); 2180 2181 // Only support casting to a larger number of elements or now. 2182 // E.g., vector<4xf32> -> vector<8xf16>. 2183 if (castSrcType.getNumElements() > castDstType.getNumElements()) 2184 return failure(); 2185 2186 unsigned expandRatio = 2187 castDstType.getNumElements() / castSrcType.getNumElements(); 2188 2189 auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t { 2190 return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue(); 2191 }; 2192 2193 uint64_t index = getFirstIntValue(extractOp.getPosition()); 2194 2195 // Get the single scalar (as a vector) in the source value that packs the 2196 // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> 2197 VectorType oneScalarType = 2198 VectorType::get({1}, castSrcType.getElementType()); 2199 Value packedValue = rewriter.create<vector::ExtractOp>( 2200 extractOp.getLoc(), oneScalarType, castOp.getSource(), 2201 rewriter.getI64ArrayAttr(index / expandRatio)); 2202 2203 // Cast it to a vector with the desired scalar's type. 2204 // E.g. f32 -> vector<2xf16> 2205 VectorType packedType = 2206 VectorType::get({expandRatio}, castDstType.getElementType()); 2207 Value castedValue = rewriter.create<vector::BitCastOp>( 2208 extractOp.getLoc(), packedType, packedValue); 2209 2210 // Finally extract the desired scalar. 2211 rewriter.replaceOpWithNewOp<vector::ExtractOp>( 2212 extractOp, extractOp.getType(), castedValue, 2213 rewriter.getI64ArrayAttr(index % expandRatio)); 2214 2215 return success(); 2216 } 2217 }; 2218 2219 // Shuffles vector.bitcast op after vector.extract_strided_slice op. 2220 // 2221 // This transforms IR like: 2222 // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> 2223 // %0 = vector.extract_strided_slice %cast { 2224 // offsets = [4], sizes = [4], strides = [1] 2225 // } : vector<8xf16> to vector<4xf16> 2226 // Into: 2227 // %0 = vector.extract_strided_slice %src { 2228 // offsets = [2], sizes = [2], strides = [1] 2229 // } : vector<4xf32> to vector<2xf32> 2230 // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> 2231 struct BubbleDownBitCastForStridedSliceExtract 2232 : public OpRewritePattern<vector::ExtractStridedSliceOp> { 2233 using OpRewritePattern::OpRewritePattern; 2234 2235 LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, 2236 PatternRewriter &rewriter) const override { 2237 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 2238 if (!castOp) 2239 return failure(); 2240 2241 VectorType castSrcType = castOp.getSourceVectorType(); 2242 VectorType castDstType = castOp.getResultVectorType(); 2243 assert(castSrcType.getRank() == castDstType.getRank()); 2244 2245 int64_t castSrcLastDim = castSrcType.getShape().back(); 2246 int64_t castDstLastDim = castDstType.getShape().back(); 2247 // Require casting to more elements for now; other cases to be implemented. 2248 if (castSrcLastDim > castDstLastDim) 2249 return failure(); 2250 2251 // Only accept all one strides for now. 2252 if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), 2253 [](const APInt &val) { return !val.isOneValue(); })) 2254 return failure(); 2255 2256 unsigned rank = extractOp.getVectorType().getRank(); 2257 assert(castDstLastDim % castSrcLastDim == 0); 2258 int64_t expandRatio = castDstLastDim / castSrcLastDim; 2259 2260 // If we have a less number of offsets than the rank, then implicitly we 2261 // are selecting the full range for the last bitcasted dimension; other 2262 // dimensions aren't affected. Otherwise, we need to scale down the last 2263 // dimension's offset given we are extracting from less elements now. 2264 ArrayAttr newOffsets = extractOp.getOffsets(); 2265 if (newOffsets.size() == rank) { 2266 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2267 if (offsets.back() % expandRatio != 0) 2268 return failure(); 2269 offsets.back() = offsets.back() / expandRatio; 2270 newOffsets = rewriter.getI64ArrayAttr(offsets); 2271 } 2272 2273 // Similarly for sizes. 2274 ArrayAttr newSizes = extractOp.getSizes(); 2275 if (newSizes.size() == rank) { 2276 SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes); 2277 if (sizes.back() % expandRatio != 0) 2278 return failure(); 2279 sizes.back() = sizes.back() / expandRatio; 2280 newSizes = rewriter.getI64ArrayAttr(sizes); 2281 } 2282 2283 SmallVector<int64_t, 4> dims = 2284 llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape()); 2285 dims.back() = dims.back() / expandRatio; 2286 VectorType newExtractType = 2287 VectorType::get(dims, castSrcType.getElementType()); 2288 2289 auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( 2290 extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, 2291 newSizes, extractOp.getStrides()); 2292 2293 rewriter.replaceOpWithNewOp<vector::BitCastOp>( 2294 extractOp, extractOp.getType(), newExtractOp); 2295 2296 return success(); 2297 } 2298 }; 2299 2300 // Shuffles vector.bitcast op before vector.insert_strided_slice op. 2301 // 2302 // This transforms IR like: 2303 // %0 = vector.insert_strided_slice %src, %dst { 2304 // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> 2305 // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> 2306 // Into: 2307 // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> 2308 // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> 2309 // %2 = vector.insert_strided_slice %src, %dst { 2310 // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> 2311 struct BubbleUpBitCastForStridedSliceInsert 2312 : public OpRewritePattern<vector::BitCastOp> { 2313 using OpRewritePattern::OpRewritePattern; 2314 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 2315 PatternRewriter &rewriter) const override { 2316 VectorType castSrcType = bitcastOp.getSourceVectorType(); 2317 VectorType castDstType = bitcastOp.getResultVectorType(); 2318 assert(castSrcType.getRank() == castDstType.getRank()); 2319 2320 int64_t castSrcLastDim = castSrcType.getShape().back(); 2321 int64_t castDstLastDim = castDstType.getShape().back(); 2322 // Require casting to less elements for now; other cases to be implemented. 2323 if (castSrcLastDim < castDstLastDim) 2324 return failure(); 2325 2326 assert(castSrcLastDim % castDstLastDim == 0); 2327 int64_t shrinkRatio = castSrcLastDim / castDstLastDim; 2328 2329 auto insertOp = 2330 bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); 2331 if (!insertOp) 2332 return failure(); 2333 2334 // Only accept all one strides for now. 2335 if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), 2336 [](const APInt &val) { return !val.isOneValue(); })) 2337 return failure(); 2338 2339 unsigned rank = insertOp.getSourceVectorType().getRank(); 2340 // Require insert op to have the same rank for the source and destination 2341 // vector; other cases to be implemented. 2342 if (rank != insertOp.getDestVectorType().getRank()) 2343 return failure(); 2344 2345 ArrayAttr newOffsets = insertOp.getOffsets(); 2346 assert(newOffsets.size() == rank); 2347 SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets); 2348 if (offsets.back() % shrinkRatio != 0) 2349 return failure(); 2350 offsets.back() = offsets.back() / shrinkRatio; 2351 newOffsets = rewriter.getI64ArrayAttr(offsets); 2352 2353 SmallVector<int64_t, 4> srcDims = 2354 llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); 2355 srcDims.back() = srcDims.back() / shrinkRatio; 2356 VectorType newCastSrcType = 2357 VectorType::get(srcDims, castDstType.getElementType()); 2358 2359 auto newCastSrcOp = rewriter.create<vector::BitCastOp>( 2360 bitcastOp.getLoc(), newCastSrcType, insertOp.getSource()); 2361 2362 SmallVector<int64_t, 4> dstDims = 2363 llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); 2364 dstDims.back() = dstDims.back() / shrinkRatio; 2365 VectorType newCastDstType = 2366 VectorType::get(dstDims, castDstType.getElementType()); 2367 2368 auto newCastDstOp = rewriter.create<vector::BitCastOp>( 2369 bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); 2370 2371 rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( 2372 bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, 2373 insertOp.getStrides()); 2374 2375 return success(); 2376 } 2377 }; 2378 2379 // Helper that returns a vector comparison that constructs a mask: 2380 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 2381 // 2382 // If `dim == 0` then the result will be a 0-D vector. 2383 // 2384 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 2385 // much more compact, IR for this operation, but LLVM eventually 2386 // generates more elaborate instructions for this intrinsic since it 2387 // is very conservative on the boundary conditions. 2388 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, 2389 bool force32BitVectorIndices, int64_t dim, 2390 Value b, Value *off = nullptr) { 2391 auto loc = op->getLoc(); 2392 // If we can assume all indices fit in 32-bit, we perform the vector 2393 // comparison in 32-bit to get a higher degree of SIMD parallelism. 2394 // Otherwise we perform the vector comparison using 64-bit indices. 2395 Type idxType = 2396 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 2397 DenseIntElementsAttr indicesAttr; 2398 if (dim == 0 && force32BitVectorIndices) { 2399 indicesAttr = DenseIntElementsAttr::get( 2400 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); 2401 } else if (dim == 0) { 2402 indicesAttr = DenseIntElementsAttr::get( 2403 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); 2404 } else if (force32BitVectorIndices) { 2405 indicesAttr = rewriter.getI32VectorAttr( 2406 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); 2407 } else { 2408 indicesAttr = rewriter.getI64VectorAttr( 2409 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); 2410 } 2411 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 2412 // Add in an offset if requested. 2413 if (off) { 2414 Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off); 2415 Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); 2416 indices = rewriter.create<arith::AddIOp>(loc, ov, indices); 2417 } 2418 // Construct the vector comparison. 2419 Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b); 2420 Value bounds = 2421 rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); 2422 return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, 2423 bounds); 2424 } 2425 2426 template <typename ConcreteOp> 2427 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { 2428 public: 2429 explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt) 2430 : mlir::OpRewritePattern<ConcreteOp>(context), 2431 force32BitVectorIndices(enableIndexOpt) {} 2432 2433 LogicalResult matchAndRewrite(ConcreteOp xferOp, 2434 PatternRewriter &rewriter) const override { 2435 if (!xferOp.hasOutOfBoundsDim()) 2436 return failure(); 2437 2438 if (xferOp.getVectorType().getRank() > 1 || 2439 llvm::size(xferOp.getIndices()) == 0) 2440 return failure(); 2441 2442 Location loc = xferOp->getLoc(); 2443 VectorType vtp = xferOp.getVectorType(); 2444 2445 // Create the in-bounds mask with all elements between [0 .. dim - offset) 2446 // set and [dim - offset .. vector_length) unset. 2447 // 2448 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 2449 // dimensions here. 2450 unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; 2451 Value off = xferOp.getIndices()[lastIndex]; 2452 Value dim = 2453 vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex); 2454 Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); 2455 Value mask = rewriter.create<vector::CreateMaskOp>( 2456 loc, 2457 VectorType::get(vtp.getShape(), rewriter.getI1Type(), 2458 vtp.getNumScalableDims()), 2459 b); 2460 if (xferOp.getMask()) { 2461 // Intersect the in-bounds with the mask specified as an op parameter. 2462 mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); 2463 } 2464 2465 rewriter.updateRootInPlace(xferOp, [&]() { 2466 xferOp.getMaskMutable().assign(mask); 2467 xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); 2468 }); 2469 2470 return success(); 2471 } 2472 2473 private: 2474 const bool force32BitVectorIndices; 2475 }; 2476 2477 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). 2478 class VectorCreateMaskOpConversion 2479 : public OpRewritePattern<vector::CreateMaskOp> { 2480 public: 2481 explicit VectorCreateMaskOpConversion(MLIRContext *context, 2482 bool enableIndexOpt) 2483 : mlir::OpRewritePattern<vector::CreateMaskOp>(context), 2484 force32BitVectorIndices(enableIndexOpt) {} 2485 2486 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 2487 PatternRewriter &rewriter) const override { 2488 auto dstType = op.getType(); 2489 if (dstType.cast<VectorType>().isScalable()) 2490 return failure(); 2491 int64_t rank = dstType.getRank(); 2492 if (rank > 1) 2493 return failure(); 2494 rewriter.replaceOp( 2495 op, buildVectorComparison(rewriter, op, force32BitVectorIndices, 2496 rank == 0 ? 0 : dstType.getDimSize(0), 2497 op.getOperand(0))); 2498 return success(); 2499 } 2500 2501 private: 2502 const bool force32BitVectorIndices; 2503 }; 2504 2505 // Drop inner most contiguous unit dimensions from transfer_read operand. 2506 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> { 2507 using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern; 2508 2509 LogicalResult matchAndRewrite(vector::TransferReadOp readOp, 2510 PatternRewriter &rewriter) const override { 2511 // TODO: support 0-d corner case. 2512 if (readOp.getTransferRank() == 0) 2513 return failure(); 2514 2515 // TODO: support mask. 2516 if (readOp.getMask()) 2517 return failure(); 2518 2519 auto srcType = readOp.getSource().getType().dyn_cast<MemRefType>(); 2520 if (!srcType || !srcType.hasStaticShape()) 2521 return failure(); 2522 2523 if (!readOp.getPermutationMap().isMinorIdentity()) 2524 return failure(); 2525 2526 auto targetType = readOp.getVectorType(); 2527 if (targetType.getRank() <= 1) 2528 return failure(); 2529 2530 SmallVector<int64_t> srcStrides; 2531 int64_t srcOffset; 2532 if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) 2533 return failure(); 2534 2535 size_t dimsToDrop = 0; 2536 for (size_t i = 1; i < srcStrides.size(); ++i) { 2537 int dim = srcType.getRank() - i - 1; 2538 if (srcStrides[dim] == 1) { 2539 dimsToDrop++; 2540 } else { 2541 break; 2542 } 2543 } 2544 if (dimsToDrop == 0) 2545 return failure(); 2546 2547 auto resultTargetVecType = 2548 VectorType::get(targetType.getShape().drop_back(dimsToDrop), 2549 targetType.getElementType()); 2550 2551 MemRefType resultMemrefType; 2552 if (srcType.getLayout().getAffineMap().isIdentity()) { 2553 resultMemrefType = MemRefType::get( 2554 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2555 {}, srcType.getMemorySpaceAsInt()); 2556 } else { 2557 AffineMap map = srcType.getLayout().getAffineMap(); 2558 int numSymbols = map.getNumSymbols(); 2559 for (size_t i = 0; i < dimsToDrop; ++i) { 2560 int dim = srcType.getRank() - i - 1; 2561 map = map.replace(rewriter.getAffineDimExpr(dim), 2562 rewriter.getAffineConstantExpr(0), 2563 map.getNumDims() - 1, numSymbols); 2564 } 2565 resultMemrefType = MemRefType::get( 2566 srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), 2567 map, srcType.getMemorySpaceAsInt()); 2568 } 2569 2570 auto loc = readOp.getLoc(); 2571 SmallVector<int64_t> offsets(srcType.getRank(), 0); 2572 SmallVector<int64_t> strides(srcType.getRank(), 1); 2573 2574 ArrayAttr inBoundsAttr = 2575 readOp.getInBounds() 2576 ? rewriter.getArrayAttr( 2577 readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)) 2578 : ArrayAttr(); 2579 Value rankedReducedView = rewriter.create<memref::SubViewOp>( 2580 loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(), 2581 strides); 2582 auto permMap = getTransferMinorIdentityMap( 2583 rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType); 2584 Value result = rewriter.create<vector::TransferReadOp>( 2585 loc, resultTargetVecType, rankedReducedView, 2586 readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), 2587 readOp.getPadding(), 2588 // TODO: support mask. 2589 /*mask=*/Value(), inBoundsAttr); 2590 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, 2591 result); 2592 return success(); 2593 } 2594 }; 2595 2596 namespace { 2597 2598 /// This function checks to see if the vector combining kind 2599 /// is consistent with the integer or float element type. 2600 static bool isValidKind(bool isInt, vector::CombiningKind kind) { 2601 using vector::CombiningKind; 2602 enum class KindType { FLOAT, INT, INVALID }; 2603 KindType type{KindType::INVALID}; 2604 switch (kind) { 2605 case CombiningKind::MINF: 2606 case CombiningKind::MAXF: 2607 type = KindType::FLOAT; 2608 break; 2609 case CombiningKind::MINUI: 2610 case CombiningKind::MINSI: 2611 case CombiningKind::MAXUI: 2612 case CombiningKind::MAXSI: 2613 case CombiningKind::AND: 2614 case CombiningKind::OR: 2615 case CombiningKind::XOR: 2616 type = KindType::INT; 2617 break; 2618 case CombiningKind::ADD: 2619 case CombiningKind::MUL: 2620 type = isInt ? KindType::INT : KindType::FLOAT; 2621 break; 2622 } 2623 bool isValidIntKind = (type == KindType::INT) && isInt; 2624 bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt); 2625 return (isValidIntKind || isValidFloatKind); 2626 } 2627 2628 /// This function constructs the appropriate integer or float 2629 /// operation given the vector combining kind and operands. The 2630 /// supported int operations are : add, mul, min (signed/unsigned), 2631 /// max(signed/unsigned), and, or, xor. The supported float 2632 /// operations are : add, mul, min and max. 2633 static Value genOperator(Location loc, Value x, Value y, 2634 vector::CombiningKind kind, 2635 PatternRewriter &rewriter) { 2636 using vector::CombiningKind; 2637 2638 auto elType = x.getType().cast<VectorType>().getElementType(); 2639 bool isInt = elType.isIntOrIndex(); 2640 2641 Value combinedResult{nullptr}; 2642 switch (kind) { 2643 case CombiningKind::ADD: 2644 if (isInt) 2645 combinedResult = rewriter.create<arith::AddIOp>(loc, x, y); 2646 else 2647 combinedResult = rewriter.create<arith::AddFOp>(loc, x, y); 2648 break; 2649 case CombiningKind::MUL: 2650 if (isInt) 2651 combinedResult = rewriter.create<arith::MulIOp>(loc, x, y); 2652 else 2653 combinedResult = rewriter.create<arith::MulFOp>(loc, x, y); 2654 break; 2655 case CombiningKind::MINUI: 2656 combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y); 2657 break; 2658 case CombiningKind::MINSI: 2659 combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y); 2660 break; 2661 case CombiningKind::MAXUI: 2662 combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y); 2663 break; 2664 case CombiningKind::MAXSI: 2665 combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y); 2666 break; 2667 case CombiningKind::AND: 2668 combinedResult = rewriter.create<arith::AndIOp>(loc, x, y); 2669 break; 2670 case CombiningKind::OR: 2671 combinedResult = rewriter.create<arith::OrIOp>(loc, x, y); 2672 break; 2673 case CombiningKind::XOR: 2674 combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y); 2675 break; 2676 case CombiningKind::MINF: 2677 combinedResult = rewriter.create<arith::MinFOp>(loc, x, y); 2678 break; 2679 case CombiningKind::MAXF: 2680 combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y); 2681 break; 2682 } 2683 return combinedResult; 2684 } 2685 2686 /// Convert vector.scan op into arith ops and 2687 /// vector.insert_strided_slice/extract_strided_slice 2688 /// 2689 /// Ex: 2690 /// ``` 2691 /// %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim = 2692 /// 1} : 2693 /// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>) 2694 /// ``` 2695 /// Gets converted to: 2696 /// ``` 2697 /// %cst = arith.constant dense<0> : vector<2x3xi32> 2698 /// %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1], 2699 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 = 2700 /// vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]} 2701 /// : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice 2702 /// %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} : 2703 /// vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 : 2704 /// vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1], 2705 /// strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 = 2706 /// vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1], 2707 /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3, 2708 /// %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets = 2709 /// [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 = 2710 /// vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 : 2711 /// vector<2x3xi32>, vector<2xi32> 2712 /// ``` 2713 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> { 2714 using OpRewritePattern<vector::ScanOp>::OpRewritePattern; 2715 2716 LogicalResult matchAndRewrite(vector::ScanOp scanOp, 2717 PatternRewriter &rewriter) const override { 2718 auto loc = scanOp.getLoc(); 2719 VectorType destType = scanOp.getDestType(); 2720 ArrayRef<int64_t> destShape = destType.getShape(); 2721 auto elType = destType.getElementType(); 2722 bool isInt = elType.isIntOrIndex(); 2723 if (!isValidKind(isInt, scanOp.getKind())) 2724 return failure(); 2725 2726 VectorType resType = VectorType::get(destShape, elType); 2727 Value result = rewriter.create<arith::ConstantOp>( 2728 loc, resType, rewriter.getZeroAttr(resType)); 2729 int64_t reductionDim = scanOp.getReductionDim(); 2730 bool inclusive = scanOp.getInclusive(); 2731 int64_t destRank = destType.getRank(); 2732 VectorType initialValueType = scanOp.getInitialValueType(); 2733 int64_t initialValueRank = initialValueType.getRank(); 2734 2735 SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end()); 2736 reductionShape[reductionDim] = 1; 2737 VectorType reductionType = VectorType::get(reductionShape, elType); 2738 SmallVector<int64_t> offsets(destRank, 0); 2739 SmallVector<int64_t> strides(destRank, 1); 2740 SmallVector<int64_t> sizes(destShape.begin(), destShape.end()); 2741 sizes[reductionDim] = 1; 2742 ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes); 2743 ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides); 2744 2745 Value lastOutput, lastInput; 2746 for (int i = 0; i < destShape[reductionDim]; i++) { 2747 offsets[reductionDim] = i; 2748 ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets); 2749 Value input = rewriter.create<vector::ExtractStridedSliceOp>( 2750 loc, reductionType, scanOp.getSource(), scanOffsets, scanSizes, 2751 scanStrides); 2752 Value output; 2753 if (i == 0) { 2754 if (inclusive) { 2755 output = input; 2756 } else { 2757 if (initialValueRank == 0) { 2758 // ShapeCastOp cannot handle 0-D vectors 2759 output = rewriter.create<vector::BroadcastOp>( 2760 loc, input.getType(), scanOp.getInitialValue()); 2761 } else { 2762 output = rewriter.create<vector::ShapeCastOp>( 2763 loc, input.getType(), scanOp.getInitialValue()); 2764 } 2765 } 2766 } else { 2767 Value y = inclusive ? input : lastInput; 2768 output = genOperator(loc, lastOutput, y, scanOp.getKind(), rewriter); 2769 assert(output != nullptr); 2770 } 2771 result = rewriter.create<vector::InsertStridedSliceOp>( 2772 loc, output, result, offsets, strides); 2773 lastOutput = output; 2774 lastInput = input; 2775 } 2776 2777 Value reduction; 2778 if (initialValueRank == 0) { 2779 Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0); 2780 reduction = 2781 rewriter.create<vector::BroadcastOp>(loc, initialValueType, v); 2782 } else { 2783 reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType, 2784 lastOutput); 2785 } 2786 2787 rewriter.replaceOp(scanOp, {result, reduction}); 2788 return success(); 2789 } 2790 }; 2791 2792 } // namespace 2793 2794 void mlir::vector::populateVectorMaskMaterializationPatterns( 2795 RewritePatternSet &patterns, bool force32BitVectorIndices) { 2796 patterns.add<VectorCreateMaskOpConversion, 2797 MaterializeTransferMask<vector::TransferReadOp>, 2798 MaterializeTransferMask<vector::TransferWriteOp>>( 2799 patterns.getContext(), force32BitVectorIndices); 2800 } 2801 2802 void mlir::vector::populateShapeCastFoldingPatterns( 2803 RewritePatternSet &patterns) { 2804 patterns.add<ShapeCastOpFolder>(patterns.getContext()); 2805 } 2806 2807 void mlir::vector::populateBubbleVectorBitCastOpPatterns( 2808 RewritePatternSet &patterns) { 2809 patterns.add<BubbleDownVectorBitCastForExtract, 2810 BubbleDownBitCastForStridedSliceExtract, 2811 BubbleUpBitCastForStridedSliceInsert>(patterns.getContext()); 2812 } 2813 2814 void mlir::vector::populateVectorBroadcastLoweringPatterns( 2815 RewritePatternSet &patterns) { 2816 patterns.add<BroadcastOpLowering>(patterns.getContext()); 2817 } 2818 2819 void mlir::vector::populateVectorMaskOpLoweringPatterns( 2820 RewritePatternSet &patterns) { 2821 patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>( 2822 patterns.getContext()); 2823 } 2824 2825 void mlir::vector::populateVectorShapeCastLoweringPatterns( 2826 RewritePatternSet &patterns) { 2827 patterns.add<ShapeCastOp2DDownCastRewritePattern, 2828 ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>( 2829 patterns.getContext()); 2830 } 2831 2832 void mlir::vector::populateVectorContractLoweringPatterns( 2833 RewritePatternSet &patterns, VectorTransformsOptions options) { 2834 patterns.add<OuterProductOpLowering>(patterns.getContext()); 2835 patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering, 2836 ContractionOpToOuterProductOpLowering>(options, 2837 patterns.getContext()); 2838 } 2839 2840 void mlir::vector::populateVectorTransposeLoweringPatterns( 2841 RewritePatternSet &patterns, VectorTransformsOptions options) { 2842 patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>( 2843 options, patterns.getContext()); 2844 } 2845 2846 void mlir::vector::populateVectorReductionToContractPatterns( 2847 RewritePatternSet &patterns) { 2848 patterns.add<MultiReduceToContract, CombineContractBroadcast, 2849 CombineContractTranspose, ReorderCastOpsOnBroadcast, 2850 ReorderElementwiseOpsOnTranspose>(patterns.getContext()); 2851 } 2852 2853 void mlir::vector:: 2854 populateVectorTransferCollapseInnerMostContiguousDimsPatterns( 2855 RewritePatternSet &patterns) { 2856 patterns.add<DropInnerMostUnitDims>(patterns.getContext()); 2857 } 2858 2859 void mlir::vector::populateVectorTransferLoweringPatterns( 2860 RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) { 2861 patterns.add<TransferReadToVectorLoadLowering, 2862 TransferWriteToVectorStoreLowering>(patterns.getContext(), 2863 maxTransferRank); 2864 patterns 2865 .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>( 2866 patterns.getContext()); 2867 } 2868 2869 void mlir::vector::populateVectorScanLoweringPatterns( 2870 RewritePatternSet &patterns) { 2871 patterns.add<ScanToArithOps>(patterns.getContext()); 2872 } 2873