1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
14 
15 #include <type_traits>
16 
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
19 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
20 #include "mlir/Dialect/Linalg/IR/Linalg.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/IR/SCF.h"
23 #include "mlir/Dialect/Utils/IndexingUtils.h"
24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
25 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
26 #include "mlir/IR/BuiltinTypes.h"
27 #include "mlir/IR/ImplicitLocOpBuilder.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/IR/PatternMatch.h"
30 #include "mlir/Interfaces/VectorInterfaces.h"
31 
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 #define DEBUG_TYPE "vector-to-vector"
40 
41 using namespace mlir;
42 using namespace mlir::vector;
43 
44 // Helper to find an index in an affine map.
45 static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
46   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
47     int64_t idx = map.getDimPosition(i);
48     if (idx == index)
49       return i;
50   }
51   return None;
52 }
53 
54 // Helper to construct iterator types with one index removed.
55 static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
56                                             int64_t index) {
57   SmallVector<Attribute, 4> results;
58   for (const auto &it : llvm::enumerate(iteratorTypes)) {
59     int64_t idx = it.index();
60     if (idx == index)
61       continue;
62     results.push_back(it.value());
63   }
64   return results;
65 }
66 
67 // Helper to construct an affine map with one index removed.
68 static AffineMap adjustMap(AffineMap map, int64_t index,
69                            PatternRewriter &rewriter) {
70   auto *ctx = rewriter.getContext();
71   SmallVector<AffineExpr, 4> results;
72   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
73     int64_t idx = map.getDimPosition(i);
74     if (idx == index)
75       continue;
76     // Re-insert remaining indices, but renamed when occurring
77     // after the removed index.
78     auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
79     results.push_back(targetExpr);
80   }
81   return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
82 }
83 
84 // Helper method to possibly drop a dimension in a load.
85 // TODO
86 static Value reshapeLoad(Location loc, Value val, VectorType type,
87                          int64_t index, int64_t pos,
88                          PatternRewriter &rewriter) {
89   if (index == -1)
90     return val;
91   Type lowType = VectorType::Builder(type).dropDim(0);
92   // At extraction dimension?
93   if (index == 0) {
94     auto posAttr = rewriter.getI64ArrayAttr(pos);
95     return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
96   }
97   // Unroll leading dimensions.
98   VectorType vType = lowType.cast<VectorType>();
99   Type resType = VectorType::Builder(type).dropDim(index);
100   auto resVectorType = resType.cast<VectorType>();
101   Value result = rewriter.create<arith::ConstantOp>(
102       loc, resVectorType, rewriter.getZeroAttr(resVectorType));
103   for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) {
104     auto posAttr = rewriter.getI64ArrayAttr(d);
105     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
106     Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
107     result = rewriter.create<vector::InsertOp>(loc, resVectorType, load, result,
108                                                posAttr);
109   }
110   return result;
111 }
112 
113 // Helper method to possibly drop a dimension in a store.
114 // TODO
115 static Value reshapeStore(Location loc, Value val, Value result,
116                           VectorType type, int64_t index, int64_t pos,
117                           PatternRewriter &rewriter) {
118   // Unmodified?
119   if (index == -1)
120     return val;
121   // At insertion dimension?
122   if (index == 0) {
123     auto posAttr = rewriter.getI64ArrayAttr(pos);
124     return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
125   }
126   // Unroll leading dimensions.
127   Type lowType = VectorType::Builder(type).dropDim(0);
128   VectorType vType = lowType.cast<VectorType>();
129   Type insType = VectorType::Builder(vType).dropDim(0);
130   for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
131     auto posAttr = rewriter.getI64ArrayAttr(d);
132     Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
133     Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
134     Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
135     result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
136   }
137   return result;
138 }
139 
140 template <typename IntType>
141 static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
142   return llvm::to_vector<4>(llvm::map_range(
143       arrayAttr.getAsRange<IntegerAttr>(),
144       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
145 }
146 
147 /// Helper to create arithmetic operation associated with a kind of contraction.
148 static Optional<Value> createContractArithOp(Location loc, Value x, Value y,
149                                              Value acc,
150                                              vector::CombiningKind kind,
151                                              PatternRewriter &rewriter,
152                                              bool isInt) {
153   using vector::CombiningKind;
154   Value mul;
155   if (isInt) {
156     if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF)
157       // Only valid for floating point types.
158       return Optional<Value>();
159     mul = rewriter.create<arith::MulIOp>(loc, x, y);
160   } else {
161     // Float case.
162     if (kind == CombiningKind::AND || kind == CombiningKind::MINUI ||
163         kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI ||
164         kind == CombiningKind::MAXSI || kind == CombiningKind::OR ||
165         kind == CombiningKind::XOR)
166       // Only valid for integer types.
167       return Optional<Value>();
168     // Special case for fused multiply-add.
169     if (acc && acc.getType().isa<VectorType>() && kind == CombiningKind::ADD) {
170       return Optional<Value>(rewriter.create<vector::FMAOp>(loc, x, y, acc));
171     }
172     mul = rewriter.create<arith::MulFOp>(loc, x, y);
173   }
174   if (!acc)
175     return Optional<Value>(mul);
176   return makeArithReduction(rewriter, loc, kind, mul, acc);
177 }
178 
179 /// Return the positions of the reductions in the given map.
180 static SmallVector<int64_t> getReductionIndex(AffineMap map,
181                                               ArrayAttr iteratorTypes) {
182   SmallVector<int64_t> dimsIdx;
183   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
184     if (isReductionIterator(iteratorTypes[map.getDimPosition(i)]))
185       dimsIdx.push_back(i);
186   }
187   return dimsIdx;
188 }
189 
190 /// Look for a given dimension in an affine map and return its position. Return
191 /// llvm::None if the dimension is not in the map results.
192 static llvm::Optional<unsigned> getDimPosition(AffineMap map, unsigned dim) {
193   for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
194     if (map.getDimPosition(i) == dim)
195       return i;
196   }
197   return llvm::None;
198 }
199 
200 namespace {
201 
202 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
203 //
204 // Example:
205 //
206 //  The following MLIR with cancelling ShapeCastOps:
207 //
208 //   %0 = source : vector<5x4x2xf32>
209 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
210 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
211 //   %3 = user %2 : vector<5x4x2xf32>
212 //
213 //  Should canonicalize to the following:
214 //
215 //   %0 = source : vector<5x4x2xf32>
216 //   %1 = user %0 : vector<5x4x2xf32>
217 //
218 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
219   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
220 
221   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
222                                 PatternRewriter &rewriter) const override {
223     // Check if 'shapeCastOp' has vector source/result type.
224     auto sourceVectorType =
225         shapeCastOp.getSource().getType().dyn_cast_or_null<VectorType>();
226     auto resultVectorType =
227         shapeCastOp.getResult().getType().dyn_cast_or_null<VectorType>();
228     if (!sourceVectorType || !resultVectorType)
229       return failure();
230 
231     // Check if shape cast op source operand is also a shape cast op.
232     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
233         shapeCastOp.getSource().getDefiningOp());
234     if (!sourceShapeCastOp)
235       return failure();
236     auto operandSourceVectorType =
237         sourceShapeCastOp.getSource().getType().cast<VectorType>();
238     auto operandResultVectorType = sourceShapeCastOp.getType();
239 
240     // Check if shape cast operations invert each other.
241     if (operandSourceVectorType != resultVectorType ||
242         operandResultVectorType != sourceVectorType)
243       return failure();
244 
245     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource());
246     return success();
247   }
248 };
249 
250 /// Progressive lowering of BroadcastOp.
251 class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
252 public:
253   using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
254 
255   LogicalResult matchAndRewrite(vector::BroadcastOp op,
256                                 PatternRewriter &rewriter) const override {
257     auto loc = op.getLoc();
258     VectorType dstType = op.getVectorType();
259     VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
260     Type eltType = dstType.getElementType();
261 
262     // Scalar to any vector can use splat.
263     if (!srcType) {
264       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, op.getSource());
265       return success();
266     }
267 
268     // Determine rank of source and destination.
269     int64_t srcRank = srcType.getRank();
270     int64_t dstRank = dstType.getRank();
271 
272     // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
273     if (srcRank <= 1 && dstRank == 1) {
274       Value ext;
275       if (srcRank == 0)
276         ext = rewriter.create<vector::ExtractElementOp>(loc, op.getSource());
277       else
278         ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
279       rewriter.replaceOpWithNewOp<vector::SplatOp>(op, dstType, ext);
280       return success();
281     }
282 
283     // Duplicate this rank.
284     // For example:
285     //   %x = broadcast %y  : k-D to n-D, k < n
286     // becomes:
287     //   %b = broadcast %y  : k-D to (n-1)-D
288     //   %x = [%b,%b,%b,%b] : n-D
289     // becomes:
290     //   %b = [%y,%y]       : (n-1)-D
291     //   %x = [%b,%b,%b,%b] : n-D
292     if (srcRank < dstRank) {
293       // Duplication.
294       VectorType resType =
295           VectorType::get(dstType.getShape().drop_front(), eltType);
296       Value bcst =
297           rewriter.create<vector::BroadcastOp>(loc, resType, op.getSource());
298       Value result = rewriter.create<arith::ConstantOp>(
299           loc, dstType, rewriter.getZeroAttr(dstType));
300       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
301         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
302       rewriter.replaceOp(op, result);
303       return success();
304     }
305 
306     // Find non-matching dimension, if any.
307     assert(srcRank == dstRank);
308     int64_t m = -1;
309     for (int64_t r = 0; r < dstRank; r++)
310       if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
311         m = r;
312         break;
313       }
314 
315     // All trailing dimensions are the same. Simply pass through.
316     if (m == -1) {
317       rewriter.replaceOp(op, op.getSource());
318       return success();
319     }
320 
321     // Any non-matching dimension forces a stretch along this rank.
322     // For example:
323     //   %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
324     // becomes:
325     //   %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
326     //   %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
327     //   %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
328     //   %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
329     //   %x = [%a,%b,%c,%d]
330     // becomes:
331     //   %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
332     //   %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
333     //   %a = [%u, %v]
334     //   ..
335     //   %x = [%a,%b,%c,%d]
336     VectorType resType =
337         VectorType::get(dstType.getShape().drop_front(), eltType);
338     Value result = rewriter.create<arith::ConstantOp>(
339         loc, dstType, rewriter.getZeroAttr(dstType));
340     if (m == 0) {
341       // Stetch at start.
342       Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), 0);
343       Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
344       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
345         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
346     } else {
347       // Stetch not at start.
348       for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
349         Value ext = rewriter.create<vector::ExtractOp>(loc, op.getSource(), d);
350         Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
351         result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
352       }
353     }
354     rewriter.replaceOp(op, result);
355     return success();
356   }
357 };
358 
359 /// Given a 'transpose' pattern, prune the rightmost dimensions that are not
360 /// transposed.
361 void pruneNonTransposedDims(ArrayRef<int64_t> transpose,
362                             SmallVectorImpl<int64_t> &result) {
363   size_t numTransposedDims = transpose.size();
364   for (size_t transpDim : llvm::reverse(transpose)) {
365     if (transpDim != numTransposedDims - 1)
366       break;
367     numTransposedDims--;
368   }
369 
370   result.append(transpose.begin(), transpose.begin() + numTransposedDims);
371 }
372 
373 /// Progressive lowering of TransposeOp.
374 /// One:
375 ///   %x = vector.transpose %y, [1, 0]
376 /// is replaced by:
377 ///   %z = arith.constant dense<0.000000e+00>
378 ///   %0 = vector.extract %y[0, 0]
379 ///   %1 = vector.insert %0, %z [0, 0]
380 ///   ..
381 ///   %x = vector.insert .., .. [.., ..]
382 class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
383 public:
384   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
385 
386   TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
387                       MLIRContext *context)
388       : OpRewritePattern<vector::TransposeOp>(context),
389         vectorTransformOptions(vectorTransformOptions) {}
390 
391   LogicalResult matchAndRewrite(vector::TransposeOp op,
392                                 PatternRewriter &rewriter) const override {
393     auto loc = op.getLoc();
394 
395     Value input = op.getVector();
396     VectorType inputType = op.getVectorType();
397     VectorType resType = op.getResultType();
398 
399     // Set up convenience transposition table.
400     SmallVector<int64_t, 4> transp;
401     for (auto attr : op.getTransp())
402       transp.push_back(attr.cast<IntegerAttr>().getInt());
403 
404     if (vectorTransformOptions.vectorTransposeLowering ==
405             vector::VectorTransposeLowering::Shuffle &&
406         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0)
407       return rewriter.notifyMatchFailure(
408           op, "Options specifies lowering to shuffle");
409 
410     // Handle a true 2-D matrix transpose differently when requested.
411     if (vectorTransformOptions.vectorTransposeLowering ==
412             vector::VectorTransposeLowering::Flat &&
413         resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
414       Type flattenedType =
415           VectorType::get(resType.getNumElements(), resType.getElementType());
416       auto matrix =
417           rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input);
418       auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
419       auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
420       Value trans = rewriter.create<vector::FlatTransposeOp>(
421           loc, flattenedType, matrix, rows, columns);
422       rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
423       return success();
424     }
425 
426     // Generate unrolled extract/insert ops. We do not unroll the rightmost
427     // (i.e., highest-order) dimensions that are not transposed and leave them
428     // in vector form to improve performance. Therefore, we prune those
429     // dimensions from the shape/transpose data structures used to generate the
430     // extract/insert ops.
431     SmallVector<int64_t, 4> prunedTransp;
432     pruneNonTransposedDims(transp, prunedTransp);
433     size_t numPrunedDims = transp.size() - prunedTransp.size();
434     auto prunedInShape = inputType.getShape().drop_back(numPrunedDims);
435     SmallVector<int64_t, 4> ones(prunedInShape.size(), 1);
436     auto prunedInStrides = computeStrides(prunedInShape, ones);
437 
438     // Generates the extract/insert operations for every scalar/vector element
439     // of the leftmost transposed dimensions. We traverse every transpose
440     // element using a linearized index that we delinearize to generate the
441     // appropriate indices for the extract/insert operations.
442     Value result = rewriter.create<arith::ConstantOp>(
443         loc, resType, rewriter.getZeroAttr(resType));
444     int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape);
445 
446     for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
447          ++linearIdx) {
448       auto extractIdxs = delinearize(prunedInStrides, linearIdx);
449       SmallVector<int64_t, 4> insertIdxs(extractIdxs);
450       applyPermutationToVector(insertIdxs, prunedTransp);
451       Value extractOp =
452           rewriter.create<vector::ExtractOp>(loc, input, extractIdxs);
453       result =
454           rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs);
455     }
456 
457     rewriter.replaceOp(op, result);
458     return success();
459   }
460 
461 private:
462   /// Options to control the vector patterns.
463   vector::VectorTransformsOptions vectorTransformOptions;
464 };
465 
466 /// Rewrite a 2-D vector.transpose as a sequence of:
467 ///   vector.shape_cast 2D -> 1D
468 ///   vector.shuffle
469 ///   vector.shape_cast 1D -> 2D
470 class TransposeOp2DToShuffleLowering
471     : public OpRewritePattern<vector::TransposeOp> {
472 public:
473   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
474 
475   TransposeOp2DToShuffleLowering(
476       vector::VectorTransformsOptions vectorTransformOptions,
477       MLIRContext *context)
478       : OpRewritePattern<vector::TransposeOp>(context),
479         vectorTransformOptions(vectorTransformOptions) {}
480 
481   LogicalResult matchAndRewrite(vector::TransposeOp op,
482                                 PatternRewriter &rewriter) const override {
483     auto loc = op.getLoc();
484 
485     VectorType srcType = op.getVectorType();
486     if (srcType.getRank() != 2)
487       return rewriter.notifyMatchFailure(op, "Not a 2D transpose");
488 
489     SmallVector<int64_t, 4> transp;
490     for (auto attr : op.getTransp())
491       transp.push_back(attr.cast<IntegerAttr>().getInt());
492     if (transp[0] != 1 && transp[1] != 0)
493       return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation");
494 
495     if (vectorTransformOptions.vectorTransposeLowering !=
496         VectorTransposeLowering::Shuffle)
497       return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle");
498 
499     int64_t m = srcType.getShape().front(), n = srcType.getShape().back();
500     Value casted = rewriter.create<vector::ShapeCastOp>(
501         loc, VectorType::get({m * n}, srcType.getElementType()),
502         op.getVector());
503     SmallVector<int64_t> mask;
504     mask.reserve(m * n);
505     for (int64_t j = 0; j < n; ++j)
506       for (int64_t i = 0; i < m; ++i)
507         mask.push_back(i * n + j);
508 
509     Value shuffled =
510         rewriter.create<vector::ShuffleOp>(loc, casted, casted, mask);
511     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getResultType(),
512                                                      shuffled);
513 
514     return success();
515   }
516 
517 private:
518   /// Options to control the vector patterns.
519   vector::VectorTransformsOptions vectorTransformOptions;
520 };
521 
522 /// Progressive lowering of OuterProductOp.
523 /// One:
524 ///   %x = vector.outerproduct %lhs, %rhs, %acc
525 /// is replaced by:
526 ///   %z = zero-result
527 ///   %0 = vector.extract %lhs[0]
528 ///   %1 = vector.broadcast %0
529 ///   %2 = vector.extract %acc[0]
530 ///   %3 = vector.fma %1, %rhs, %2
531 ///   %4 = vector.insert %3, %z[0]
532 ///   ..
533 ///   %x = vector.insert %.., %..[N-1]
534 ///
535 class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
536 public:
537   using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
538 
539   LogicalResult matchAndRewrite(vector::OuterProductOp op,
540                                 PatternRewriter &rewriter) const override {
541     auto loc = op.getLoc();
542 
543     VectorType lhsType = op.getOperandVectorTypeLHS();
544     VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
545     VectorType resType = op.getVectorType();
546     Type eltType = resType.getElementType();
547     bool isInt = eltType.isa<IntegerType, IndexType>();
548     Value acc = (op.getAcc().empty()) ? nullptr : op.getAcc()[0];
549     vector::CombiningKind kind = op.getKind();
550 
551     if (!rhsType) {
552       // Special case: AXPY operation.
553       Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.getRhs());
554       Optional<Value> mult = createContractArithOp(loc, op.getLhs(), b, acc,
555                                                    kind, rewriter, isInt);
556       if (!mult.hasValue())
557         return failure();
558       rewriter.replaceOp(op, mult.getValue());
559       return success();
560     }
561 
562     Value result = rewriter.create<arith::ConstantOp>(
563         loc, resType, rewriter.getZeroAttr(resType));
564     for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
565       auto pos = rewriter.getI64ArrayAttr(d);
566       Value x =
567           rewriter.create<vector::ExtractOp>(loc, eltType, op.getLhs(), pos);
568       Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
569       Value r = nullptr;
570       if (acc)
571         r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
572       Optional<Value> m =
573           createContractArithOp(loc, a, op.getRhs(), r, kind, rewriter, isInt);
574       if (!m.hasValue())
575         return failure();
576       result = rewriter.create<vector::InsertOp>(loc, resType, m.getValue(),
577                                                  result, pos);
578     }
579     rewriter.replaceOp(op, result);
580     return success();
581   }
582 };
583 
584 /// Lower vector.contract with all size one reduction dimensions to
585 /// elementwise ops when possible.
586 struct ContractOpToElementwise
587     : public OpRewritePattern<vector::ContractionOp> {
588   using OpRewritePattern::OpRewritePattern;
589   using FilterConstraintType =
590       std::function<LogicalResult(vector::ContractionOp op)>;
591   static LogicalResult defaultFilter(vector::ContractionOp op) {
592     return success();
593   }
594   ContractOpToElementwise(
595       vector::VectorTransformsOptions vectorTransformOptions,
596       MLIRContext *context,
597       const FilterConstraintType &constraint = defaultFilter)
598       : OpRewritePattern<vector::ContractionOp>(context),
599         vectorTransformOptions(vectorTransformOptions), filter(defaultFilter) {}
600 
601   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
602                                 PatternRewriter &rewriter) const override {
603     // TODO: implement masks
604     if (llvm::size(contractOp.getMasks()) != 0)
605       return failure();
606 
607     if (failed(filter(contractOp)))
608       return failure();
609 
610     if (vectorTransformOptions.vectorContractLowering !=
611         vector::VectorContractLowering::ParallelArith)
612       return failure();
613     ArrayRef<int64_t> lhsShape = contractOp.getLhsType().getShape();
614     ArrayRef<int64_t> rhsShape = contractOp.getRhsType().getShape();
615     AffineMap lhsMap = contractOp.getIndexingMaps()[0];
616     AffineMap rhsMap = contractOp.getIndexingMaps()[1];
617     SmallVector<int64_t> lhsReductionDims =
618         getReductionIndex(lhsMap, contractOp.getIteratorTypes());
619     SmallVector<int64_t> rhsReductionDims =
620         getReductionIndex(rhsMap, contractOp.getIteratorTypes());
621     // All the reduction dimensions must be a size 1.
622     for (int64_t dim : lhsReductionDims) {
623       if (lhsShape[dim] != 1)
624         return failure();
625     }
626     for (int64_t dim : rhsReductionDims) {
627       if (rhsShape[dim] != 1)
628         return failure();
629     }
630     AffineMap accMap = contractOp.getIndexingMaps()[2];
631     unsigned numParallelDims = accMap.getNumResults();
632     unsigned numLhsDimToBroadcast =
633         numParallelDims - (lhsMap.getNumResults() - lhsReductionDims.size());
634     unsigned numRhsDimToBroadcast =
635         numParallelDims - (rhsMap.getNumResults() - rhsReductionDims.size());
636     SmallVector<int64_t> lhsDims;
637     SmallVector<int64_t> lhsTranspose;
638     SmallVector<int64_t> rhsDims;
639     SmallVector<int64_t> rhsTranspose;
640     for (int64_t dim : lhsReductionDims)
641       lhsTranspose.push_back(numLhsDimToBroadcast + dim);
642     for (int64_t dim : rhsReductionDims)
643       rhsTranspose.push_back(numRhsDimToBroadcast + dim);
644     // Loop through the parallel dimensions to calculate the dimensions to
645     // broadcast and to permute in order to extract only parallel dimensions.
646     for (unsigned i = 0; i < numParallelDims; i++) {
647       llvm::Optional<unsigned> lhsDim =
648           getDimPosition(lhsMap, accMap.getDimPosition(i));
649       if (lhsDim) {
650         lhsTranspose.push_back(numLhsDimToBroadcast + *lhsDim);
651       } else {
652         // If the parallel dimension doesn't exist we will have to broadcast it.
653         lhsDims.push_back(
654             contractOp.getResultType().cast<VectorType>().getDimSize(i));
655         lhsTranspose.push_back(lhsDims.size() - 1);
656       }
657       llvm::Optional<unsigned> rhsDim =
658           getDimPosition(rhsMap, accMap.getDimPosition(i));
659       if (rhsDim) {
660         rhsTranspose.push_back(numRhsDimToBroadcast + *rhsDim);
661       } else {
662         // If the parallel dimension doesn't exist we will have to broadcast it.
663         rhsDims.push_back(
664             contractOp.getResultType().cast<VectorType>().getDimSize(i));
665         rhsTranspose.push_back(rhsDims.size() - 1);
666       }
667     }
668     Value newLhs = contractOp.getLhs();
669     Value newRhs = contractOp.getRhs();
670     Location loc = contractOp.getLoc();
671     if (!lhsDims.empty()) {
672       lhsDims.append(lhsShape.begin(), lhsShape.end());
673       auto expandedType =
674           VectorType::get(lhsDims, contractOp.getLhsType().getElementType());
675       newLhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newLhs);
676     }
677     if (!rhsDims.empty()) {
678       rhsDims.append(rhsShape.begin(), rhsShape.end());
679       auto expandedType =
680           VectorType::get(rhsDims, contractOp.getRhsType().getElementType());
681       newRhs = rewriter.create<vector::BroadcastOp>(loc, expandedType, newRhs);
682     }
683     bool isInt = contractOp.getLhsType().getElementType().isIntOrIndex();
684     newLhs = rewriter.create<vector::TransposeOp>(loc, newLhs, lhsTranspose);
685     newRhs = rewriter.create<vector::TransposeOp>(loc, newRhs, rhsTranspose);
686     SmallVector<int64_t, 4> lhsOffsets(lhsReductionDims.size(), 0);
687     SmallVector<int64_t, 4> rhsOffsets(rhsReductionDims.size(), 0);
688     newLhs = rewriter.create<vector::ExtractOp>(
689         loc, newLhs, rewriter.getI64ArrayAttr(lhsOffsets));
690     newRhs = rewriter.create<vector::ExtractOp>(
691         loc, newRhs, rewriter.getI64ArrayAttr(rhsOffsets));
692     Optional<Value> result =
693         createContractArithOp(loc, newLhs, newRhs, contractOp.getAcc(),
694                               contractOp.getKind(), rewriter, isInt);
695     rewriter.replaceOp(contractOp, {*result});
696     return success();
697   }
698 
699 private:
700   /// Options to control the vector patterns.
701   vector::VectorTransformsOptions vectorTransformOptions;
702   FilterConstraintType filter;
703 };
704 
705 /// Progressive lowering of ConstantMaskOp.
706 /// One:
707 ///   %x = vector.constant_mask [a,b]
708 /// is replaced by:
709 ///   %z = zero-result
710 ///   %l = vector.constant_mask [b]
711 ///   %4 = vector.insert %l, %z[0]
712 ///   ..
713 ///   %x = vector.insert %l, %..[a-1]
714 /// until a one-dimensional vector is reached. All these operations
715 /// will be folded at LLVM IR level.
716 class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
717 public:
718   using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
719 
720   LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
721                                 PatternRewriter &rewriter) const override {
722     auto loc = op.getLoc();
723     auto dstType = op.getType();
724     auto eltType = dstType.getElementType();
725     auto dimSizes = op.getMaskDimSizes();
726     int64_t rank = dstType.getRank();
727 
728     if (rank == 0) {
729       assert(dimSizes.size() == 1 &&
730              "Expected exactly one dim size for a 0-D vector");
731       bool value = dimSizes[0].cast<IntegerAttr>().getInt() == 1;
732       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
733           op, dstType,
734           DenseIntElementsAttr::get(
735               VectorType::get(ArrayRef<int64_t>{}, rewriter.getI1Type()),
736               ArrayRef<bool>{value}));
737       return success();
738     }
739 
740     // Scalable constant masks can only be lowered for the "none set" case.
741     if (dstType.cast<VectorType>().isScalable()) {
742       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
743           op, DenseElementsAttr::get(dstType, false));
744       return success();
745     }
746 
747     int64_t trueDim = std::min(dstType.getDimSize(0),
748                                dimSizes[0].cast<IntegerAttr>().getInt());
749 
750     if (rank == 1) {
751       // Express constant 1-D case in explicit vector form:
752       //   [T,..,T,F,..,F].
753       SmallVector<bool, 4> values(dstType.getDimSize(0));
754       for (int64_t d = 0; d < trueDim; d++)
755         values[d] = true;
756       rewriter.replaceOpWithNewOp<arith::ConstantOp>(
757           op, dstType, rewriter.getBoolVectorAttr(values));
758       return success();
759     }
760 
761     VectorType lowType =
762         VectorType::get(dstType.getShape().drop_front(), eltType);
763     SmallVector<int64_t, 4> newDimSizes;
764     for (int64_t r = 1; r < rank; r++)
765       newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
766     Value trueVal = rewriter.create<vector::ConstantMaskOp>(
767         loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
768     Value result = rewriter.create<arith::ConstantOp>(
769         loc, dstType, rewriter.getZeroAttr(dstType));
770     for (int64_t d = 0; d < trueDim; d++) {
771       auto pos = rewriter.getI64ArrayAttr(d);
772       result =
773           rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
774     }
775     rewriter.replaceOp(op, result);
776     return success();
777   }
778 };
779 
780 /// Progressive lowering of CreateMaskOp.
781 /// One:
782 ///   %x = vector.create_mask %a, ... : vector<dx...>
783 /// is replaced by:
784 ///   %l = vector.create_mask ... : vector<...>  ; one lower rank
785 ///   %0 = arith.cmpi "slt", %ci, %a       |
786 ///   %1 = select %0, %l, %zeroes    |
787 ///   %r = vector.insert %1, %pr [i] | d-times
788 ///   %x = ....
789 /// until a one-dimensional vector is reached.
790 class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
791 public:
792   using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
793 
794   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
795                                 PatternRewriter &rewriter) const override {
796     auto dstType = op.getResult().getType().cast<VectorType>();
797     int64_t rank = dstType.getRank();
798     if (rank <= 1)
799       return rewriter.notifyMatchFailure(
800           op, "0-D and 1-D vectors are handled separately");
801 
802     auto loc = op.getLoc();
803     auto eltType = dstType.getElementType();
804     int64_t dim = dstType.getDimSize(0);
805     Value idx = op.getOperand(0);
806 
807     VectorType lowType =
808         VectorType::get(dstType.getShape().drop_front(), eltType);
809     Value trueVal = rewriter.create<vector::CreateMaskOp>(
810         loc, lowType, op.getOperands().drop_front());
811     Value falseVal = rewriter.create<arith::ConstantOp>(
812         loc, lowType, rewriter.getZeroAttr(lowType));
813     Value result = rewriter.create<arith::ConstantOp>(
814         loc, dstType, rewriter.getZeroAttr(dstType));
815     for (int64_t d = 0; d < dim; d++) {
816       Value bnd =
817           rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(d));
818       Value val = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
819                                                  bnd, idx);
820       Value sel = rewriter.create<arith::SelectOp>(loc, val, trueVal, falseVal);
821       auto pos = rewriter.getI64ArrayAttr(d);
822       result =
823           rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
824     }
825     rewriter.replaceOp(op, result);
826     return success();
827   }
828 };
829 
830 /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
831 /// vectors progressively on the way to target llvm.matrix intrinsics.
832 /// This iterates over the most major dimension of the 2-D vector and performs
833 /// rewrites into:
834 ///   vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
835 class ShapeCastOp2DDownCastRewritePattern
836     : public OpRewritePattern<vector::ShapeCastOp> {
837 public:
838   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
839 
840   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
841                                 PatternRewriter &rewriter) const override {
842     auto sourceVectorType = op.getSourceVectorType();
843     auto resultVectorType = op.getResultVectorType();
844     if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
845       return failure();
846 
847     auto loc = op.getLoc();
848     Value desc = rewriter.create<arith::ConstantOp>(
849         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
850     unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
851     for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
852       Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
853       desc = rewriter.create<vector::InsertStridedSliceOp>(
854           loc, vec, desc,
855           /*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
856     }
857     rewriter.replaceOp(op, desc);
858     return success();
859   }
860 };
861 
862 /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
863 /// vectors progressively.
864 /// This iterates over the most major dimension of the 2-D vector and performs
865 /// rewrites into:
866 ///   vector.extract_strided_slice from 1-D + vector.insert into 2-D
867 /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
868 class ShapeCastOp2DUpCastRewritePattern
869     : public OpRewritePattern<vector::ShapeCastOp> {
870 public:
871   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
872 
873   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
874                                 PatternRewriter &rewriter) const override {
875     auto sourceVectorType = op.getSourceVectorType();
876     auto resultVectorType = op.getResultVectorType();
877     if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
878       return failure();
879 
880     auto loc = op.getLoc();
881     Value desc = rewriter.create<arith::ConstantOp>(
882         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
883     unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
884     for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
885       Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
886           loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
887           /*sizes=*/mostMinorVectorSize,
888           /*strides=*/1);
889       desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
890     }
891     rewriter.replaceOp(op, desc);
892     return success();
893   }
894 };
895 
896 // We typically should not lower general shape cast operations into data
897 // movement instructions, since the assumption is that these casts are
898 // optimized away during progressive lowering. For completeness, however,
899 // we fall back to a reference implementation that moves all elements
900 // into the right place if we get here.
901 class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
902 public:
903   using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
904 
905   LogicalResult matchAndRewrite(vector::ShapeCastOp op,
906                                 PatternRewriter &rewriter) const override {
907     Location loc = op.getLoc();
908     auto sourceVectorType = op.getSourceVectorType();
909     auto resultVectorType = op.getResultVectorType();
910 
911     // Special case 2D/1D lowerings with better implementations.
912     // TODO: make is ND/1D to allow generic ND->1D->MD.
913     int64_t srcRank = sourceVectorType.getRank();
914     int64_t resRank = resultVectorType.getRank();
915     if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
916       return failure();
917 
918     // Generic ShapeCast lowering path goes all the way down to unrolled scalar
919     // extract/insert chains.
920     // TODO: consider evolving the semantics to only allow 1D source or dest and
921     // drop this potentially very expensive lowering.
922     // Compute number of elements involved in the reshape.
923     int64_t numElts = 1;
924     for (int64_t r = 0; r < srcRank; r++)
925       numElts *= sourceVectorType.getDimSize(r);
926     // Replace with data movement operations:
927     //    x[0,0,0] = y[0,0]
928     //    x[0,0,1] = y[0,1]
929     //    x[0,1,0] = y[0,2]
930     // etc., incrementing the two index vectors "row-major"
931     // within the source and result shape.
932     SmallVector<int64_t, 4> srcIdx(srcRank);
933     SmallVector<int64_t, 4> resIdx(resRank);
934     Value result = rewriter.create<arith::ConstantOp>(
935         loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
936     for (int64_t i = 0; i < numElts; i++) {
937       if (i != 0) {
938         incIdx(srcIdx, sourceVectorType, srcRank - 1);
939         incIdx(resIdx, resultVectorType, resRank - 1);
940       }
941       Value e = rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
942       result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
943     }
944     rewriter.replaceOp(op, result);
945     return success();
946   }
947 
948 private:
949   static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
950     assert(0 <= r && r < tp.getRank());
951     if (++idx[r] == tp.getDimSize(r)) {
952       idx[r] = 0;
953       incIdx(idx, tp, r - 1);
954     }
955   }
956 };
957 
958 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
959 /// Ex:
960 /// ```
961 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
962 ///   %1 = vector.multi_reduction add, %0 [1]
963 ///     : vector<8x32x16xf32> to vector<8x16xf32>
964 /// ```
965 /// Gets converted to:
966 /// ```
967 ///   %1 = vector.contract {indexing_maps = [
968 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
969 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
970 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
971 ///    iterator_types = ["parallel", "parallel", "reduction"],
972 ///    kind = add} %0, %arg1, %cst_f0
973 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
974 ///  ```
975 struct MultiReduceToContract
976     : public OpRewritePattern<vector::MultiDimReductionOp> {
977   using OpRewritePattern<vector::MultiDimReductionOp>::OpRewritePattern;
978 
979   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
980                                 PatternRewriter &rewriter) const override {
981     if (reduceOp.getKind() != vector::CombiningKind::ADD)
982       return failure();
983     Operation *mulOp = reduceOp.getSource().getDefiningOp();
984     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
985       return failure();
986     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
987     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
988     SmallVector<AffineExpr> exprs;
989     SmallVector<StringRef> iteratorTypes;
990     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
991       if (!isReduceDim.value()) {
992         iteratorTypes.push_back(getParallelIteratorTypeName());
993         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
994       } else {
995         iteratorTypes.push_back(getReductionIteratorTypeName());
996       }
997     }
998     auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(),
999                                  /*symCount=*/0, exprs, reduceOp.getContext());
1000     Value zero = rewriter.create<arith::ConstantOp>(
1001         reduceOp.getLoc(), reduceOp.getDestType(),
1002         rewriter.getZeroAttr(reduceOp.getDestType()));
1003     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
1004         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero,
1005         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
1006         rewriter.getStrArrayAttr(iteratorTypes));
1007     return success();
1008   }
1009 };
1010 
1011 /// Merge TransposeOp into ContractionOp user.
1012 /// Ex:
1013 /// ```
1014 ///   %0 = vector.transpose %arg0, [2, 0, 1]
1015 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
1016 ///   %1 = vector.contract {indexing_maps = [
1017 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1018 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1019 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1020 ///    iterator_types = ["parallel", "parallel", "reduction"],
1021 ///    kind = add} %0, %arg1, %cst_f0
1022 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1023 /// ```
1024 /// Gets converted to:
1025 /// ```
1026 ///   %1 = vector.contract {indexing_maps = [
1027 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
1028 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1029 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1030 ///    iterator_types = ["parallel", "parallel", "reduction"],
1031 ///    kind = add} %arg0, %arg1, %cst_f0
1032 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1033 ///  ```
1034 struct CombineContractTranspose
1035     : public OpRewritePattern<vector::ContractionOp> {
1036   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1037 
1038   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1039                                 PatternRewriter &rewriter) const override {
1040     SmallVector<AffineMap, 4> maps =
1041         llvm::to_vector<4>(contractOp.getIndexingMaps());
1042     Value lhs = contractOp.getLhs();
1043     Value rhs = contractOp.getRhs();
1044     size_t index = 0;
1045     bool changed = false;
1046     for (Value *operand : {&lhs, &rhs}) {
1047       AffineMap &map = maps[index++];
1048       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
1049       if (!transposeOp)
1050         continue;
1051       SmallVector<int64_t> perm;
1052       transposeOp.getTransp(perm);
1053       AffineMap permutationMap = AffineMap::getPermutationMap(
1054           extractVector<unsigned>(transposeOp.getTransp()),
1055           contractOp.getContext());
1056       map = inversePermutation(permutationMap).compose(map);
1057       *operand = transposeOp.getVector();
1058       changed = true;
1059     }
1060     if (!changed)
1061       return failure();
1062     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1063         contractOp, lhs, rhs, contractOp.getAcc(),
1064         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
1065     return success();
1066   }
1067 };
1068 
1069 /// Merge BroadcastOp into ContractionOp user.
1070 /// Ex:
1071 /// ```
1072 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
1073 ///   %1 = vector.contract {indexing_maps = [
1074 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1075 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1076 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1077 ///    iterator_types = ["parallel", "parallel", "reduction"],
1078 ///    kind = add} %0, %arg1, %cst_f0
1079 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1080 /// ```
1081 /// Gets converted to:
1082 /// ```
1083 ///   %1 = vector.contract {indexing_maps = [
1084 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
1085 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
1086 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
1087 ///    iterator_types = ["parallel", "parallel", "reduction"],
1088 ///    kind = add} %arg0, %arg1, %cst_f0
1089 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
1090 ///  ```
1091 struct CombineContractBroadcast
1092     : public OpRewritePattern<vector::ContractionOp> {
1093   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
1094 
1095   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1096                                 PatternRewriter &rewriter) const override {
1097     SmallVector<AffineMap, 4> maps =
1098         llvm::to_vector<4>(contractOp.getIndexingMaps());
1099     Value lhs = contractOp.getLhs();
1100     Value rhs = contractOp.getRhs();
1101     size_t index = 0;
1102     bool changed = false;
1103     for (Value *operand : {&lhs, &rhs}) {
1104       AffineMap &map = maps[index++];
1105       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
1106       if (!broadcast)
1107         continue;
1108       // contractionOp can only take vector as operands.
1109       auto srcType = broadcast.getSourceType().dyn_cast<VectorType>();
1110       if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank())
1111         continue;
1112       int64_t rankDiff =
1113           broadcast.getVectorType().getRank() - srcType.getRank();
1114       bool innerDimBroadcast = false;
1115       SmallVector<AffineExpr> originalDims;
1116       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
1117         if (dim.value() !=
1118             broadcast.getVectorType().getDimSize(rankDiff + dim.index())) {
1119           innerDimBroadcast = true;
1120           break;
1121         }
1122         originalDims.push_back(
1123             rewriter.getAffineDimExpr(dim.index() + rankDiff));
1124       }
1125       // Contract doesn't support inner dimension broadcast. Once this is
1126       // relaxed we can remove this case.
1127       if (innerDimBroadcast)
1128         continue;
1129 
1130       // It would be incorrect to fold a broadcast onto a reduction dimension
1131       // of non-unit size.
1132       bool nonUnitDimReductionBroadcast = false;
1133       for (int64_t i = 0; i < rankDiff; ++i) {
1134         if (broadcast.getVectorType().getDimSize(i) != 1 &&
1135             isReductionIterator(contractOp.getIteratorTypes()
1136                                     .getValue()[map.getDimPosition(i)])) {
1137           nonUnitDimReductionBroadcast = true;
1138           break;
1139         }
1140       }
1141       if (nonUnitDimReductionBroadcast)
1142         continue;
1143 
1144       AffineMap broadcastMap =
1145           AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims,
1146                          contractOp.getContext());
1147       map = broadcastMap.compose(map);
1148       *operand = broadcast.getSource();
1149       changed = true;
1150     }
1151 
1152     if (!changed)
1153       return failure();
1154 
1155     // Determine which dims are usused, now that the maps have been composed
1156     // with the broadcast maps.
1157     llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps);
1158     // Compress unused dims.
1159     for (auto &m : maps)
1160       m = compressDims(m, unusedDimsBitVector);
1161     // Compute the combined iterators.
1162     SmallVector<Attribute, 4> iterators;
1163     for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) {
1164       if (!unusedDimsBitVector.test(i))
1165         iterators.push_back(contractOp.getIteratorTypes().getValue()[i]);
1166     }
1167     // Check that compressing unused dims isn't removing all reduction
1168     // iterators. For example, if the vector.contract had only one reduction
1169     // iterator and that was a unit-dimension created by a broadcast,
1170     // then we should bail here, otherwise we would create a contract without
1171     // a reduction iterator.
1172     if (!llvm::any_of(iterators, isReductionIterator))
1173       return failure();
1174     // If the compressed maps have a dimension that is not used by either LHS or
1175     // RHS then the ContractionOp verifier would fail.
1176     if (getUnusedDimsBitVector({maps[0], maps[1]}).any())
1177       return failure();
1178     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1179         contractOp, lhs, rhs, contractOp.getAcc(),
1180         rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators));
1181     return success();
1182   }
1183 };
1184 
1185 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and
1186 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when
1187 /// casting ops are around these operations.
1188 /// Ex:
1189 /// ```
1190 ///   %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8>
1191 ///   %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32>
1192 /// ```
1193 /// Gets converted to:
1194 /// ```
1195 ///   %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32>
1196 ///   %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32>
1197 /// ```
1198 struct ReorderCastOpsOnBroadcast
1199     : public OpInterfaceRewritePattern<CastOpInterface> {
1200   using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern;
1201 
1202   LogicalResult matchAndRewrite(CastOpInterface op,
1203                                 PatternRewriter &rewriter) const override {
1204     if (op->getNumOperands() != 1)
1205       return failure();
1206     auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>();
1207     if (!bcastOp)
1208       return failure();
1209 
1210     Type castResTy = getElementTypeOrSelf(op->getResult(0));
1211     if (auto vecTy = bcastOp.getSourceType().dyn_cast<VectorType>())
1212       castResTy = VectorType::get(vecTy.getShape(), castResTy);
1213     auto *castOp =
1214         rewriter.create(op->getLoc(), op->getName().getIdentifier(),
1215                         bcastOp.getSource(), castResTy, op->getAttrs());
1216     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1217         op, op->getResult(0).getType(), castOp->getResult(0));
1218     return success();
1219   }
1220 };
1221 
1222 /// Reorders elementwise(transpose) to transpose(elementwise). This makes
1223 /// transpose ops and contraction ops closer, which kicks in
1224 /// CombineContractTranspose pattern when elementwise ops are between these
1225 /// operations. Ex:
1226 /// ```
1227 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1228 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
1229 /// %r = arith.addf %at, %bt : vector<2x4xf32>
1230 /// ```
1231 /// Gets converted to:
1232 /// ```
1233 /// %0 = arith.addf %a, %b : vector<4x2xf32>
1234 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32>
1235 /// ```
1236 struct ReorderElementwiseOpsOnTranspose final
1237     : public OpTraitRewritePattern<OpTrait::Elementwise> {
1238   using OpTraitRewritePattern::OpTraitRewritePattern;
1239   LogicalResult matchAndRewrite(Operation *op,
1240                                 PatternRewriter &rewriter) const override {
1241     if (op->getNumResults() != 1 || op->getNumRegions() != 0)
1242       return failure();
1243 
1244     // Make sure all operands are transpose/constant ops and collect their
1245     // transposition maps.
1246     SmallVector<ArrayAttr, 4> transposeMaps;
1247     transposeMaps.reserve(op->getNumOperands());
1248     // Record the initial type before transposition. We'll use its shape later.
1249     // Any type will do here as we will check all transpose maps are the same.
1250     VectorType srcType;
1251     for (Value operand : op->getOperands()) {
1252       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1253       if (transposeOp) {
1254         transposeMaps.push_back(transposeOp.getTransp());
1255         srcType = transposeOp.getVectorType();
1256       } else if (!matchPattern(operand, m_Constant())) {
1257         return failure();
1258       }
1259     }
1260     if (transposeMaps.empty())
1261       return failure();
1262     // This is an elementwise op, so all transposed operands should have the
1263     // same type. We need to additionally check that all transposes uses the
1264     // same map.
1265     if (!llvm::is_splat(transposeMaps))
1266       return rewriter.notifyMatchFailure(op, "different transpose map");
1267 
1268     SmallVector<Value, 4> srcValues;
1269     srcValues.reserve(op->getNumOperands());
1270 
1271     // If there are constant operands, we need to insert inverse transposes for
1272     // them. Calculate the inverse order first.
1273     auto order = extractVector<unsigned>(transposeMaps.front());
1274     SmallVector<int64_t> invOrder(order.size());
1275     for (int i = 0, e = order.size(); i < e; ++i)
1276       invOrder[order[i]] = i;
1277 
1278     for (Value operand : op->getOperands()) {
1279       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
1280       if (transposeOp) {
1281         srcValues.push_back(transposeOp.getVector());
1282       } else {
1283         // This is a constant. Create a reverse transpose op for it.
1284         auto vectorType = VectorType::get(
1285             srcType.getShape(),
1286             operand.getType().cast<VectorType>().getElementType());
1287         srcValues.push_back(rewriter.create<vector::TransposeOp>(
1288             operand.getLoc(), vectorType, operand,
1289             rewriter.getI64ArrayAttr(invOrder)));
1290       }
1291     }
1292 
1293     auto vectorType = VectorType::get(
1294         srcType.getShape(),
1295         op->getResultTypes()[0].cast<VectorType>().getElementType());
1296     Operation *elementwiseOp =
1297         rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
1298                         vectorType, op->getAttrs());
1299     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
1300         op, op->getResultTypes()[0], elementwiseOp->getResult(0),
1301         transposeMaps.front());
1302     return success();
1303   }
1304 };
1305 
1306 } // namespace
1307 
1308 /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using
1309 /// operands `x` and `y`.
1310 static Value createAdd(Location loc, Value x, Value y, bool isInt,
1311                        PatternRewriter &rewriter) {
1312   if (isInt)
1313     return rewriter.create<arith::AddIOp>(loc, x, y);
1314   return rewriter.create<arith::AddFOp>(loc, x, y);
1315 }
1316 
1317 /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using
1318 /// operands `x and `y`.
1319 static Value createMul(Location loc, Value x, Value y, bool isInt,
1320                        PatternRewriter &rewriter) {
1321   if (isInt)
1322     return rewriter.create<arith::MulIOp>(loc, x, y);
1323   return rewriter.create<arith::MulFOp>(loc, x, y);
1324 }
1325 
1326 namespace mlir {
1327 
1328 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1329 /// semantics to:
1330 /// ```
1331 ///    %mta = maybe_transpose
1332 ///    %mtb = maybe_transpose
1333 ///    %flattened_a = vector.shape_cast %mta
1334 ///    %flattened_b = vector.shape_cast %mtb
1335 ///    %flattened_d = vector.matmul %flattened_a, %flattened_b
1336 ///    %mtd = vector.shape_cast %flattened_d
1337 ///    %d = maybe_untranspose %mtd
1338 ///    %e = add %c, %d
1339 /// ```
1340 /// `vector.matmul` later lowers to `llvm.matrix.multiply`.
1341 //
1342 /// This only kicks in when VectorTransformsOptions is set to `Matmul`.
1343 /// vector.transpose operations are inserted if the vector.contract op is not a
1344 /// row-major matrix multiply.
1345 LogicalResult
1346 ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op,
1347                                                  PatternRewriter &rew) const {
1348   // TODO: implement masks
1349   if (llvm::size(op.getMasks()) != 0)
1350     return failure();
1351   if (vectorTransformOptions.vectorContractLowering !=
1352       vector::VectorContractLowering::Matmul)
1353     return failure();
1354   if (failed(filter(op)))
1355     return failure();
1356 
1357   auto iteratorTypes = op.getIteratorTypes().getValue();
1358   if (!isParallelIterator(iteratorTypes[0]) ||
1359       !isParallelIterator(iteratorTypes[1]) ||
1360       !isReductionIterator(iteratorTypes[2]))
1361     return failure();
1362 
1363   Type elementType = op.getLhsType().getElementType();
1364   if (!elementType.isIntOrFloat())
1365     return failure();
1366 
1367   Type dstElementType = op.getType();
1368   if (auto vecType = dstElementType.dyn_cast<VectorType>())
1369     dstElementType = vecType.getElementType();
1370   if (elementType != dstElementType)
1371     return failure();
1372 
1373   // Perform lhs + rhs transpositions to conform to matmul row-major semantics.
1374   // Bail out if the contraction cannot be put in this form.
1375   MLIRContext *ctx = op.getContext();
1376   Location loc = op.getLoc();
1377   AffineExpr m, n, k;
1378   bindDims(rew.getContext(), m, n, k);
1379   // LHS must be A(m, k) or A(k, m).
1380   Value lhs = op.getLhs();
1381   auto lhsMap = op.getIndexingMaps()[0];
1382   if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
1383     lhs = rew.create<vector::TransposeOp>(loc, lhs, ArrayRef<int64_t>{1, 0});
1384   else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
1385     return failure();
1386 
1387   // RHS must be B(k, n) or B(n, k).
1388   Value rhs = op.getRhs();
1389   auto rhsMap = op.getIndexingMaps()[1];
1390   if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
1391     rhs = rew.create<vector::TransposeOp>(loc, rhs, ArrayRef<int64_t>{1, 0});
1392   else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
1393     return failure();
1394 
1395   // At this point lhs and rhs are in row-major.
1396   VectorType lhsType = lhs.getType().cast<VectorType>();
1397   VectorType rhsType = rhs.getType().cast<VectorType>();
1398   int64_t lhsRows = lhsType.getDimSize(0);
1399   int64_t lhsColumns = lhsType.getDimSize(1);
1400   int64_t rhsColumns = rhsType.getDimSize(1);
1401 
1402   Type flattenedLHSType =
1403       VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
1404   lhs = rew.create<vector::ShapeCastOp>(loc, flattenedLHSType, lhs);
1405 
1406   Type flattenedRHSType =
1407       VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
1408   rhs = rew.create<vector::ShapeCastOp>(loc, flattenedRHSType, rhs);
1409 
1410   Value mul = rew.create<vector::MatmulOp>(loc, lhs, rhs, lhsRows, lhsColumns,
1411                                            rhsColumns);
1412   mul = rew.create<vector::ShapeCastOp>(
1413       loc,
1414       VectorType::get({lhsRows, rhsColumns},
1415                       getElementTypeOrSelf(op.getAcc().getType())),
1416       mul);
1417 
1418   // ACC must be C(m, n) or C(n, m).
1419   auto accMap = op.getIndexingMaps()[2];
1420   if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
1421     mul = rew.create<vector::TransposeOp>(loc, mul, ArrayRef<int64_t>{1, 0});
1422   else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
1423     llvm_unreachable("invalid contraction semantics");
1424 
1425   Value res =
1426       elementType.isa<IntegerType>()
1427           ? static_cast<Value>(rew.create<arith::AddIOp>(loc, op.getAcc(), mul))
1428           : static_cast<Value>(
1429                 rew.create<arith::AddFOp>(loc, op.getAcc(), mul));
1430 
1431   rew.replaceOp(op, res);
1432   return success();
1433 }
1434 
1435 namespace {
1436 struct IteratorType {
1437   IteratorType(StringRef strRef) : strRef(strRef) {}
1438   bool isOfType(Attribute attr) const {
1439     auto sAttr = attr.dyn_cast<StringAttr>();
1440     return sAttr && sAttr.getValue() == strRef;
1441   }
1442   StringRef strRef;
1443 };
1444 struct Par : public IteratorType {
1445   Par() : IteratorType(getParallelIteratorTypeName()) {}
1446 };
1447 struct Red : public IteratorType {
1448   Red() : IteratorType(getReductionIteratorTypeName()) {}
1449 };
1450 
1451 /// Generate a vector implementation for matmat, matvec and tmatvec.
1452 /// This unrolls outer-products along the reduction dimension.
1453 struct UnrolledOuterProductGenerator
1454     : public StructuredGenerator<vector::ContractionOp> {
1455   UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op)
1456       : StructuredGenerator<vector::ContractionOp>(builder, op),
1457         kind(op.getKind()), lhs(op.getLhs()), rhs(op.getRhs()),
1458         res(op.getAcc()), lhsType(op.getLhsType()) {}
1459 
1460   Value t(Value v) {
1461     static constexpr std::array<int64_t, 2> perm = {1, 0};
1462     return builder.create<vector::TransposeOp>(loc, v, perm);
1463   }
1464 
1465   Value promote(Value v, Type dstElementType) {
1466     Type elementType = v.getType();
1467     auto vecType = elementType.dyn_cast<VectorType>();
1468     if (vecType)
1469       elementType = vecType.getElementType();
1470     if (elementType == dstElementType)
1471       return v;
1472     Type promotedType = dstElementType;
1473     if (vecType)
1474       promotedType = VectorType::get(vecType.getShape(), promotedType);
1475     if (dstElementType.isa<FloatType>())
1476       return builder.create<arith::ExtFOp>(loc, promotedType, v);
1477     return builder.create<arith::ExtSIOp>(loc, promotedType, v);
1478   }
1479 
1480   Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) {
1481     assert(reductionSize > 0);
1482     Type resElementType = res.getType().cast<VectorType>().getElementType();
1483     for (int64_t k = 0; k < reductionSize; ++k) {
1484       Value a = builder.create<vector::ExtractOp>(loc, lhs, k);
1485       Value b = builder.create<vector::ExtractOp>(loc, rhs, k);
1486       a = promote(a, resElementType);
1487       b = promote(b, resElementType);
1488       res = builder.create<vector::OuterProductOp>(loc, res.getType(), a, b,
1489                                                    res, kind);
1490     }
1491     return res;
1492   }
1493 
1494   /// Two outer parallel, one inner reduction (matmat flavor).
1495   FailureOr<Value> matmat() {
1496     if (!iters({Par(), Par(), Red()}))
1497       return failure();
1498     // Set up the parallel/reduction structure in the right form.
1499     AffineExpr m, n, k;
1500     bindDims(builder.getContext(), m, n, k);
1501     // Classical row-major matmul:  Just permute the lhs.
1502     if (layout({{m, k}, {k, n}, {m, n}}))
1503       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1504     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1505     if (layout({{m, k}, {n, k}, {m, n}})) {
1506       Value tlhs = t(lhs);
1507       return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1));
1508     }
1509     // No need to permute anything.
1510     if (layout({{k, m}, {k, n}, {m, n}}))
1511       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1512     // Just permute the rhs.
1513     if (layout({{k, m}, {n, k}, {m, n}}))
1514       return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0));
1515     // Transposed output: swap RHS and LHS.
1516     // Classical row-major matmul: permute the lhs.
1517     if (layout({{m, k}, {k, n}, {n, m}}))
1518       return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1));
1519     // TODO: may be better to fail and use some vector<k> -> scalar reduction.
1520     if (layout({{m, k}, {n, k}, {n, m}})) {
1521       Value trhs = t(rhs);
1522       return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1));
1523     }
1524     if (layout({{k, m}, {k, n}, {n, m}}))
1525       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1526     if (layout({{k, m}, {n, k}, {n, m}}))
1527       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1528     return failure();
1529   }
1530 
1531   /// One outer parallel, one inner reduction (matvec flavor)
1532   FailureOr<Value> matvec() {
1533     if (!iters({Par(), Red()}))
1534       return failure();
1535     AffineExpr m, k;
1536     bindDims(builder.getContext(), m, k);
1537 
1538     // Case mat-vec: transpose.
1539     if (layout({{m, k}, {k}, {m}}))
1540       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1541     // Case mat-trans-vec: ready to go.
1542     if (layout({{k, m}, {k}, {m}}))
1543       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1544     // Case vec-mat: swap and transpose.
1545     if (layout({{k}, {m, k}, {m}}))
1546       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1547     // Case vec-mat-trans: swap and ready to go.
1548     if (layout({{k}, {k, m}, {m}}))
1549       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1550     return failure();
1551   }
1552 
1553   //
1554   // One outer reduction, one inner parallel (tmatvec flavor)
1555   //
1556   FailureOr<Value> tmatvec() {
1557     if (!iters({Red(), Par()}))
1558       return failure();
1559     AffineExpr k, m;
1560     bindDims(builder.getContext(), k, m);
1561 
1562     // Case mat-vec: transpose.
1563     if (layout({{m, k}, {k}, {m}}))
1564       return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1));
1565     // Case mat-trans-vec: ready to go.
1566     if (layout({{k, m}, {k}, {m}}))
1567       return outerProd(lhs, rhs, res, lhsType.getDimSize(0));
1568     // Case vec-mat: swap and transpose.
1569     if (layout({{k}, {m, k}, {m}}))
1570       return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0));
1571     // Case vec-mat-trans: swap and ready to go.
1572     if (layout({{k}, {k, m}, {m}}))
1573       return outerProd(rhs, lhs, res, lhsType.getDimSize(0));
1574     return failure();
1575   }
1576 
1577 private:
1578   vector::CombiningKind kind;
1579   Value lhs, rhs, res;
1580   VectorType lhsType;
1581 };
1582 } // namespace
1583 
1584 /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
1585 /// semantics to a reduction_size-unrolled sequence:
1586 /// ```
1587 ///    %at = vector.transpose %a, [1, 0]
1588 ///    %bRow0 = vector.extract %b[0]
1589 ///    %atRow0 = vector.extract %at[0]
1590 ///    %c0 = vector.outerproduct %atRow0, %bRow0, %c
1591 ///    ...
1592 ///    %bRowK = vector.extract %b[K]
1593 ///    %atRowK = vector.extract %at[K]
1594 ///    %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
1595 /// ```
1596 ///
1597 /// This only kicks in when VectorTransformsOptions is set to OuterProduct but
1598 /// otherwise supports any layout permutation of the matrix-multiply.
1599 LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
1600     vector::ContractionOp op, PatternRewriter &rewriter) const {
1601   // TODO: implement masks
1602   if (llvm::size(op.getMasks()) != 0)
1603     return failure();
1604 
1605   if (vectorTransformOptions.vectorContractLowering !=
1606       vector::VectorContractLowering::OuterProduct)
1607     return failure();
1608 
1609   if (failed(filter(op)))
1610     return failure();
1611 
1612   UnrolledOuterProductGenerator e(rewriter, op);
1613   FailureOr<Value> matmatRes = e.matmat();
1614   if (succeeded(matmatRes)) {
1615     rewriter.replaceOp(op, *matmatRes);
1616     return success();
1617   }
1618   FailureOr<Value> matvecRes = e.matvec();
1619   if (succeeded(matvecRes)) {
1620     rewriter.replaceOp(op, *matvecRes);
1621     return success();
1622   }
1623   FailureOr<Value> tmatvecRes = e.tmatvec();
1624   if (succeeded(tmatvecRes)) {
1625     rewriter.replaceOp(op, *tmatvecRes);
1626     return success();
1627   }
1628 
1629   return failure();
1630 }
1631 
1632 LogicalResult
1633 ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
1634                                             PatternRewriter &rewriter) const {
1635   // TODO: implement masks
1636   if (llvm::size(op.getMasks()) != 0)
1637     return failure();
1638 
1639   if (failed(filter(op)))
1640     return failure();
1641 
1642   if (vectorTransformOptions.vectorContractLowering !=
1643       vector::VectorContractLowering::Dot)
1644     return failure();
1645 
1646   auto iteratorTypes = op.getIteratorTypes().getValue();
1647   static constexpr std::array<int64_t, 2> perm = {1, 0};
1648   Location loc = op.getLoc();
1649   Value lhs = op.getLhs(), rhs = op.getRhs();
1650 
1651   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1652   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
1653   AffineExpr m, n, k;
1654   bindDims(rewriter.getContext(), m, n, k);
1655   SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
1656   //
1657   // In the following we wish to make the reduction dimension innermost so we
1658   // can load vectors and just fmul + reduce into a scalar.
1659   //
1660   if (isParallelIterator(iteratorTypes[0]) &&
1661       isParallelIterator(iteratorTypes[1]) &&
1662       isReductionIterator(iteratorTypes[2])) {
1663     //
1664     // Two outer parallel, one inner reduction (matmat flavor).
1665     //
1666     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1667       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1668     } else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
1669       // No need to permute anything.
1670     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1671       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1672       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1673     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1674       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1675     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1676       // This is the classical row-major matmul. Just permute the lhs.
1677       Value tmp = lhs;
1678       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1679       rhs = tmp;
1680     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1681       std::swap(lhs, rhs);
1682     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1683       Value tmp = lhs;
1684       lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
1685       rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
1686     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1687       Value tmp = rhs;
1688       rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1689       lhs = tmp;
1690     } else {
1691       return failure();
1692     }
1693   } else if (isParallelIterator(iteratorTypes[0]) &&
1694              isReductionIterator(iteratorTypes[1])) {
1695     //
1696     // One outer parallel, one inner reduction (matvec flavor)
1697     //
1698     if (maps == infer({{m, n}, {n}, {m}})) {
1699       // No need to permute anything.
1700     } else if (maps == infer({{n, m}, {n}, {m}})) {
1701       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1702     } else if (maps == infer({{n}, {m, n}, {m}})) {
1703       std::swap(lhs, rhs);
1704     } else if (maps == infer({{n}, {n, m}, {m}})) {
1705       std::swap(lhs, rhs);
1706       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
1707     } else {
1708       return failure();
1709     }
1710   } else {
1711     return failure();
1712   }
1713 
1714   VectorType dstType = op.getResultType().cast<VectorType>();
1715   assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
1716          "Expected dst type of rank 1 or 2");
1717 
1718   unsigned rank = dstType.getRank();
1719   unsigned dstRows = dstType.getShape()[0];
1720   unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
1721 
1722   // ExtractOp does not allow dynamic indexing, we must unroll explicitly.
1723   Value res = rewriter.create<arith::ConstantOp>(loc, dstType,
1724                                                  rewriter.getZeroAttr(dstType));
1725   bool isInt = dstType.getElementType().isa<IntegerType>();
1726   for (unsigned r = 0; r < dstRows; ++r) {
1727     Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
1728     for (unsigned c = 0; c < dstColumns; ++c) {
1729       Value b = rank == 1
1730                     ? rhs
1731                     : rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
1732       Value m = createMul(op.getLoc(), a, b, isInt, rewriter);
1733       Value reduced = rewriter.create<vector::ReductionOp>(
1734           op.getLoc(), vector::CombiningKind::ADD, m);
1735 
1736       SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
1737                                               : SmallVector<int64_t, 2>{r, c};
1738       res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
1739     }
1740   }
1741   if (auto acc = op.getAcc())
1742     res = createAdd(op.getLoc(), res, acc, isInt, rewriter);
1743   rewriter.replaceOp(op, res);
1744   return success();
1745 }
1746 
1747 /// Progressive lowering of ContractionOp.
1748 /// One:
1749 ///   %x = vector.contract with at least one free/batch dimension
1750 /// is replaced by:
1751 ///   %a = vector.contract with one less free/batch dimension
1752 ///   %b = vector.contract with one less free/batch dimension
1753 ///   ..
1754 ///   %x = combine %a %b ..
1755 /// until a pure contraction is reached (no free/batch dimensions),
1756 /// which is replaced by a dot-product.
1757 ///
1758 /// This only kicks in when either VectorTransformsOptions is set
1759 /// to DOT or when other contraction patterns fail.
1760 //
1761 // TODO: break down into transpose/reshape/cast ops
1762 //               when they become available to avoid code dup
1763 // TODO: investigate lowering order impact on performance
1764 LogicalResult
1765 ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
1766                                        PatternRewriter &rewriter) const {
1767   // TODO: implement masks.
1768   if (llvm::size(op.getMasks()) != 0)
1769     return failure();
1770 
1771   if (failed(filter(op)))
1772     return failure();
1773 
1774   // TODO: support mixed mode contract lowering.
1775   if (op.getLhsType().getElementType() !=
1776           getElementTypeOrSelf(op.getAccType()) ||
1777       op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
1778     return failure();
1779 
1780   // TODO: implement benefits, cost models.
1781   MLIRContext *ctx = op.getContext();
1782   ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx);
1783   if (succeeded(pat1.matchAndRewrite(op, rewriter)))
1784     return success();
1785   ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx);
1786   if (succeeded(pat2.matchAndRewrite(op, rewriter)))
1787     return success();
1788   ContractionOpToDotLowering pat3(vectorTransformOptions, ctx);
1789   if (succeeded(pat3.matchAndRewrite(op, rewriter)))
1790     return success();
1791   ContractOpToElementwise pat4(vectorTransformOptions, ctx);
1792   if (succeeded(pat4.matchAndRewrite(op, rewriter)))
1793     return success();
1794 
1795   // Find first batch dimension in LHS/RHS, and lower when found.
1796   std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
1797   if (!batchDimMap.empty()) {
1798     int64_t lhsIndex = batchDimMap[0].first;
1799     int64_t rhsIndex = batchDimMap[0].second;
1800     rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
1801     return success();
1802   }
1803 
1804   // Collect contracting dimensions.
1805   std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
1806       op.getContractingDimMap();
1807   DenseSet<int64_t> lhsContractingDimSet;
1808   DenseSet<int64_t> rhsContractingDimSet;
1809   for (auto &dimPair : contractingDimMap) {
1810     lhsContractingDimSet.insert(dimPair.first);
1811     rhsContractingDimSet.insert(dimPair.second);
1812   }
1813 
1814   // Find first free dimension in LHS, and lower when found.
1815   VectorType lhsType = op.getLhsType();
1816   for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
1817     if (lhsContractingDimSet.count(lhsIndex) == 0) {
1818       rewriter.replaceOp(
1819           op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
1820       return success();
1821     }
1822   }
1823 
1824   // Find first free dimension in RHS, and lower when found.
1825   VectorType rhsType = op.getRhsType();
1826   for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
1827     if (rhsContractingDimSet.count(rhsIndex) == 0) {
1828       rewriter.replaceOp(
1829           op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
1830       return success();
1831     }
1832   }
1833 
1834   // Lower the first remaining reduction dimension.
1835   if (!contractingDimMap.empty()) {
1836     rewriter.replaceOp(op, lowerReduction(op, rewriter));
1837     return success();
1838   }
1839 
1840   return failure();
1841 }
1842 
1843 // Lower one parallel dimension.
1844 // TODO: consider reusing existing contract unrolling
1845 Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
1846                                            int64_t lhsIndex, int64_t rhsIndex,
1847                                            PatternRewriter &rewriter) const {
1848   VectorType lhsType = op.getLhsType();
1849   VectorType rhsType = op.getRhsType();
1850   VectorType resType = op.getResultType().cast<VectorType>();
1851   // Find the iterator type index and result index.
1852   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1853   int64_t iterIndex = -1;
1854   int64_t dimSize = -1;
1855   if (lhsIndex >= 0) {
1856     iterIndex = iMap[0].getDimPosition(lhsIndex);
1857     assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) &&
1858            "parallel index should be free in LHS or batch in LHS/RHS");
1859     dimSize = lhsType.getDimSize(lhsIndex);
1860   } else {
1861     assert(rhsIndex >= 0 && "missing parallel index");
1862     iterIndex = iMap[1].getDimPosition(rhsIndex);
1863     dimSize = rhsType.getDimSize(rhsIndex);
1864   }
1865   assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
1866   Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
1867   assert(lookup.hasValue() && "parallel index not listed in reduction");
1868   int64_t resIndex = lookup.getValue();
1869   // Construct new iterator types and affine map array attribute.
1870   std::array<AffineMap, 3> lowIndexingMaps = {
1871       adjustMap(iMap[0], iterIndex, rewriter),
1872       adjustMap(iMap[1], iterIndex, rewriter),
1873       adjustMap(iMap[2], iterIndex, rewriter)};
1874   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1875   auto lowIter =
1876       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1877   // Unroll into a series of lower dimensional vector.contract ops.
1878   Location loc = op.getLoc();
1879   Value result = rewriter.create<arith::ConstantOp>(
1880       loc, resType, rewriter.getZeroAttr(resType));
1881   for (int64_t d = 0; d < dimSize; ++d) {
1882     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1883     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1884     auto acc = reshapeLoad(loc, op.getAcc(), resType, resIndex, d, rewriter);
1885     Value lowContract = rewriter.create<vector::ContractionOp>(
1886         loc, lhs, rhs, acc, lowAffine, lowIter);
1887     result =
1888         reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
1889   }
1890   return result;
1891 }
1892 
1893 // Lower one reduction dimension.
1894 Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
1895                                             PatternRewriter &rewriter) const {
1896   auto loc = op.getLoc();
1897   VectorType lhsType = op.getLhsType();
1898   VectorType rhsType = op.getRhsType();
1899   Type resType = op.getResultType();
1900   assert(!resType.isa<VectorType>());
1901   bool isInt = resType.isa<IntegerType>();
1902   // Use iterator index 0.
1903   int64_t iterIndex = 0;
1904   SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
1905   Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
1906   Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
1907   assert(lookupLhs.hasValue() && "missing LHS parallel index");
1908   assert(lookupRhs.hasValue() && "missing RHS parallel index");
1909   int64_t lhsIndex = lookupLhs.getValue();
1910   int64_t rhsIndex = lookupRhs.getValue();
1911   int64_t dimSize = lhsType.getDimSize(lhsIndex);
1912   assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
1913   // Base case.
1914   if (lhsType.getRank() == 1) {
1915     assert(rhsType.getRank() == 1 && "corrupt contraction");
1916     Value m = createMul(loc, op.getLhs(), op.getRhs(), isInt, rewriter);
1917     auto kind = vector::CombiningKind::ADD;
1918     if (auto acc = op.getAcc())
1919       return rewriter.create<vector::ReductionOp>(loc, kind, m, acc);
1920     return rewriter.create<vector::ReductionOp>(loc, kind, m);
1921   }
1922   // Construct new iterator types and affine map array attribute.
1923   std::array<AffineMap, 3> lowIndexingMaps = {
1924       adjustMap(iMap[0], iterIndex, rewriter),
1925       adjustMap(iMap[1], iterIndex, rewriter),
1926       adjustMap(iMap[2], iterIndex, rewriter)};
1927   auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
1928   auto lowIter =
1929       rewriter.getArrayAttr(adjustIter(op.getIteratorTypes(), iterIndex));
1930   // Unroll into a series of lower dimensional vector.contract ops.
1931   // By feeding the initial accumulator into the first contraction,
1932   // and the result of each contraction into the next, eventually
1933   // the sum of all reductions is computed.
1934   Value result = op.getAcc();
1935   for (int64_t d = 0; d < dimSize; ++d) {
1936     auto lhs = reshapeLoad(loc, op.getLhs(), lhsType, lhsIndex, d, rewriter);
1937     auto rhs = reshapeLoad(loc, op.getRhs(), rhsType, rhsIndex, d, rewriter);
1938     result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
1939                                                     lowAffine, lowIter);
1940   }
1941   return result;
1942 }
1943 
1944 } // namespace mlir
1945 
1946 Optional<mlir::vector::DistributeOps> mlir::vector::distributPointwiseVectorOp(
1947     OpBuilder &builder, Operation *op, ArrayRef<Value> ids,
1948     ArrayRef<int64_t> multiplicity, const AffineMap &map) {
1949   OpBuilder::InsertionGuard guard(builder);
1950   builder.setInsertionPointAfter(op);
1951   Location loc = op->getLoc();
1952   if (op->getNumResults() != 1)
1953     return {};
1954   Value result = op->getResult(0);
1955   VectorType type = op->getResult(0).getType().dyn_cast<VectorType>();
1956   if (!type || map.getNumResults() != multiplicity.size())
1957     return {};
1958   // For each dimension being distributed check that the size is a multiple of
1959   // the multiplicity. To handle more sizes we would need to support masking.
1960   unsigned multiplictyCount = 0;
1961   for (auto exp : map.getResults()) {
1962     auto affinExp = exp.dyn_cast<AffineDimExpr>();
1963     if (!affinExp || affinExp.getPosition() >= type.getRank() ||
1964         type.getDimSize(affinExp.getPosition()) %
1965                 multiplicity[multiplictyCount++] !=
1966             0)
1967       return {};
1968   }
1969   DistributeOps ops;
1970   ops.extract =
1971       builder.create<vector::ExtractMapOp>(loc, result, ids, multiplicity, map);
1972   ops.insert =
1973       builder.create<vector::InsertMapOp>(loc, ops.extract, result, ids);
1974   return ops;
1975 }
1976 
1977 /// Progressive lowering of transfer_read. This pattern supports lowering of
1978 /// `vector.transfer_read` to a combination of `vector.load` and
1979 /// `vector.broadcast` if all of the following hold:
1980 /// - Stride of most minor memref dimension must be 1.
1981 /// - Out-of-bounds masking is not required.
1982 /// - If the memref's element type is a vector type then it coincides with the
1983 ///   result type.
1984 /// - The permutation map doesn't perform permutation (broadcasting is allowed).
1985 struct TransferReadToVectorLoadLowering
1986     : public OpRewritePattern<vector::TransferReadOp> {
1987   TransferReadToVectorLoadLowering(MLIRContext *context,
1988                                    llvm::Optional<unsigned> maxRank)
1989       : OpRewritePattern<vector::TransferReadOp>(context),
1990         maxTransferRank(maxRank) {}
1991 
1992   LogicalResult matchAndRewrite(vector::TransferReadOp read,
1993                                 PatternRewriter &rewriter) const override {
1994     if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank)
1995       return failure();
1996 
1997     SmallVector<unsigned, 4> broadcastedDims;
1998     // Permutations are handled by VectorToSCF or
1999     // populateVectorTransferPermutationMapLoweringPatterns.
2000     // We let the 0-d corner case pass-through as it is supported.
2001     if (!read.getPermutationMap().isMinorIdentityWithBroadcasting(
2002             &broadcastedDims))
2003       return failure();
2004 
2005     auto memRefType = read.getShapedType().dyn_cast<MemRefType>();
2006     if (!memRefType)
2007       return failure();
2008 
2009     // Non-unit strides are handled by VectorToSCF.
2010     if (!vector::isLastMemrefDimUnitStride(memRefType))
2011       return failure();
2012 
2013     // If there is broadcasting involved then we first load the unbroadcasted
2014     // vector, and then broadcast it with `vector.broadcast`.
2015     ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
2016     SmallVector<int64_t, 4> unbroadcastedVectorShape(vectorShape.begin(),
2017                                                      vectorShape.end());
2018     for (unsigned i : broadcastedDims)
2019       unbroadcastedVectorShape[i] = 1;
2020     VectorType unbroadcastedVectorType = VectorType::get(
2021         unbroadcastedVectorShape, read.getVectorType().getElementType());
2022 
2023     // `vector.load` supports vector types as memref's elements only when the
2024     // resulting vector type is the same as the element type.
2025     auto memrefElTy = memRefType.getElementType();
2026     if (memrefElTy.isa<VectorType>() && memrefElTy != unbroadcastedVectorType)
2027       return failure();
2028 
2029     // Otherwise, element types of the memref and the vector must match.
2030     if (!memrefElTy.isa<VectorType>() &&
2031         memrefElTy != read.getVectorType().getElementType())
2032       return failure();
2033 
2034     // Out-of-bounds dims are handled by MaterializeTransferMask.
2035     if (read.hasOutOfBoundsDim())
2036       return failure();
2037 
2038     // Create vector load op.
2039     Operation *loadOp;
2040     if (read.getMask()) {
2041       Value fill = rewriter.create<vector::SplatOp>(
2042           read.getLoc(), unbroadcastedVectorType, read.getPadding());
2043       loadOp = rewriter.create<vector::MaskedLoadOp>(
2044           read.getLoc(), unbroadcastedVectorType, read.getSource(),
2045           read.getIndices(), read.getMask(), fill);
2046     } else {
2047       loadOp = rewriter.create<vector::LoadOp>(
2048           read.getLoc(), unbroadcastedVectorType, read.getSource(),
2049           read.getIndices());
2050     }
2051 
2052     // Insert a broadcasting op if required.
2053     if (!broadcastedDims.empty()) {
2054       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
2055           read, read.getVectorType(), loadOp->getResult(0));
2056     } else {
2057       rewriter.replaceOp(read, loadOp->getResult(0));
2058     }
2059 
2060     return success();
2061   }
2062 
2063   llvm::Optional<unsigned> maxTransferRank;
2064 };
2065 
2066 /// Replace a 0-d vector.load with a memref.load + vector.broadcast.
2067 // TODO: we shouldn't cross the vector/scalar domains just for this
2068 // but atm we lack the infra to avoid it. Possible solutions include:
2069 // - go directly to LLVM + bitcast
2070 // - introduce a bitcast op and likely a new pointer dialect
2071 // - let memref.load/store additionally support the 0-d vector case
2072 // There are still deeper data layout issues lingering even in this
2073 // trivial case (for architectures for which this matters).
2074 struct VectorLoadToMemrefLoadLowering
2075     : public OpRewritePattern<vector::LoadOp> {
2076   using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
2077 
2078   LogicalResult matchAndRewrite(vector::LoadOp loadOp,
2079                                 PatternRewriter &rewriter) const override {
2080     auto vecType = loadOp.getVectorType();
2081     if (vecType.getNumElements() != 1)
2082       return failure();
2083     auto memrefLoad = rewriter.create<memref::LoadOp>(
2084         loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices());
2085     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
2086                                                      memrefLoad);
2087     return success();
2088   }
2089 };
2090 
2091 /// Replace a 0-d vector.store with a vector.extractelement + memref.store.
2092 struct VectorStoreToMemrefStoreLowering
2093     : public OpRewritePattern<vector::StoreOp> {
2094   using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
2095 
2096   LogicalResult matchAndRewrite(vector::StoreOp storeOp,
2097                                 PatternRewriter &rewriter) const override {
2098     auto vecType = storeOp.getVectorType();
2099     if (vecType.getNumElements() != 1)
2100       return failure();
2101     Value extracted;
2102     if (vecType.getRank() == 0) {
2103       // TODO: Unifiy once ExtractOp supports 0-d vectors.
2104       extracted = rewriter.create<vector::ExtractElementOp>(
2105           storeOp.getLoc(), storeOp.getValueToStore());
2106     } else {
2107       SmallVector<int64_t> indices(vecType.getRank(), 0);
2108       extracted = rewriter.create<vector::ExtractOp>(
2109           storeOp.getLoc(), storeOp.getValueToStore(), indices);
2110     }
2111 
2112     rewriter.replaceOpWithNewOp<memref::StoreOp>(
2113         storeOp, extracted, storeOp.getBase(), storeOp.getIndices());
2114     return success();
2115   }
2116 };
2117 
2118 /// Progressive lowering of transfer_write. This pattern supports lowering of
2119 /// `vector.transfer_write` to `vector.store` if all of the following hold:
2120 /// - Stride of most minor memref dimension must be 1.
2121 /// - Out-of-bounds masking is not required.
2122 /// - If the memref's element type is a vector type then it coincides with the
2123 ///   type of the written value.
2124 /// - The permutation map is the minor identity map (neither permutation nor
2125 ///   broadcasting is allowed).
2126 struct TransferWriteToVectorStoreLowering
2127     : public OpRewritePattern<vector::TransferWriteOp> {
2128   TransferWriteToVectorStoreLowering(MLIRContext *context,
2129                                      llvm::Optional<unsigned> maxRank)
2130       : OpRewritePattern<vector::TransferWriteOp>(context),
2131         maxTransferRank(maxRank) {}
2132 
2133   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
2134                                 PatternRewriter &rewriter) const override {
2135     if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank)
2136       return failure();
2137 
2138     // Permutations are handled by VectorToSCF or
2139     // populateVectorTransferPermutationMapLoweringPatterns.
2140     if ( // pass-through for the 0-d corner case.
2141         !write.getPermutationMap().isMinorIdentity())
2142       return failure();
2143 
2144     auto memRefType = write.getShapedType().dyn_cast<MemRefType>();
2145     if (!memRefType)
2146       return failure();
2147 
2148     // Non-unit strides are handled by VectorToSCF.
2149     if (!vector::isLastMemrefDimUnitStride(memRefType))
2150       return failure();
2151 
2152     // `vector.store` supports vector types as memref's elements only when the
2153     // type of the vector value being written is the same as the element type.
2154     auto memrefElTy = memRefType.getElementType();
2155     if (memrefElTy.isa<VectorType>() && memrefElTy != write.getVectorType())
2156       return failure();
2157 
2158     // Otherwise, element types of the memref and the vector must match.
2159     if (!memrefElTy.isa<VectorType>() &&
2160         memrefElTy != write.getVectorType().getElementType())
2161       return failure();
2162 
2163     // Out-of-bounds dims are handled by MaterializeTransferMask.
2164     if (write.hasOutOfBoundsDim())
2165       return failure();
2166     if (write.getMask()) {
2167       rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
2168           write, write.getSource(), write.getIndices(), write.getMask(),
2169           write.getVector());
2170     } else {
2171       rewriter.replaceOpWithNewOp<vector::StoreOp>(
2172           write, write.getVector(), write.getSource(), write.getIndices());
2173     }
2174     return success();
2175   }
2176 
2177   llvm::Optional<unsigned> maxTransferRank;
2178 };
2179 
2180 // Returns the values in `arrayAttr` as an integer vector.
2181 static SmallVector<int64_t, 4> getIntValueVector(ArrayAttr arrayAttr) {
2182   return llvm::to_vector<4>(
2183       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
2184                       [](IntegerAttr attr) { return attr.getInt(); }));
2185 }
2186 
2187 // Shuffles vector.bitcast op after vector.extract op.
2188 //
2189 // This transforms IR like:
2190 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
2191 //   %1 = vector.extract %0[3] : vector<8xf16>
2192 // Into:
2193 //   %0 = vector.extract %src[1] : vector<4xf32>
2194 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
2195 //   %2 = vector.extract %1[1] : vector<2xf16>
2196 struct BubbleDownVectorBitCastForExtract
2197     : public OpRewritePattern<vector::ExtractOp> {
2198   using OpRewritePattern::OpRewritePattern;
2199 
2200   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
2201                                 PatternRewriter &rewriter) const override {
2202     // Only support extracting scalars for now.
2203     if (extractOp.getVectorType().getRank() != 1)
2204       return failure();
2205 
2206     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2207     if (!castOp)
2208       return failure();
2209 
2210     VectorType castSrcType = castOp.getSourceVectorType();
2211     VectorType castDstType = castOp.getResultVectorType();
2212     assert(castSrcType.getRank() == castDstType.getRank());
2213 
2214     // Fail to match if we only have one element in the cast op source.
2215     // This is to avoid infinite loop given that this pattern can generate
2216     // such cases.
2217     if (castSrcType.getNumElements() == 1)
2218       return failure();
2219 
2220     // Only support casting to a larger number of elements or now.
2221     // E.g., vector<4xf32> -> vector<8xf16>.
2222     if (castSrcType.getNumElements() > castDstType.getNumElements())
2223       return failure();
2224 
2225     unsigned expandRatio =
2226         castDstType.getNumElements() / castSrcType.getNumElements();
2227 
2228     auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t {
2229       return (*attr.getAsValueRange<IntegerAttr>().begin()).getZExtValue();
2230     };
2231 
2232     uint64_t index = getFirstIntValue(extractOp.getPosition());
2233 
2234     // Get the single scalar (as a vector) in the source value that packs the
2235     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
2236     VectorType oneScalarType =
2237         VectorType::get({1}, castSrcType.getElementType());
2238     Value packedValue = rewriter.create<vector::ExtractOp>(
2239         extractOp.getLoc(), oneScalarType, castOp.getSource(),
2240         rewriter.getI64ArrayAttr(index / expandRatio));
2241 
2242     // Cast it to a vector with the desired scalar's type.
2243     // E.g. f32 -> vector<2xf16>
2244     VectorType packedType =
2245         VectorType::get({expandRatio}, castDstType.getElementType());
2246     Value castedValue = rewriter.create<vector::BitCastOp>(
2247         extractOp.getLoc(), packedType, packedValue);
2248 
2249     // Finally extract the desired scalar.
2250     rewriter.replaceOpWithNewOp<vector::ExtractOp>(
2251         extractOp, extractOp.getType(), castedValue,
2252         rewriter.getI64ArrayAttr(index % expandRatio));
2253 
2254     return success();
2255   }
2256 };
2257 
2258 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
2259 //
2260 // This transforms IR like:
2261 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
2262 //     %0 = vector.extract_strided_slice %cast {
2263 //            offsets = [4], sizes = [4], strides = [1]
2264 //          } : vector<8xf16> to vector<4xf16>
2265 // Into:
2266 //   %0 = vector.extract_strided_slice %src {
2267 //          offsets = [2], sizes = [2], strides = [1]
2268 //        } : vector<4xf32> to vector<2xf32>
2269 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
2270 struct BubbleDownBitCastForStridedSliceExtract
2271     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
2272   using OpRewritePattern::OpRewritePattern;
2273 
2274   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
2275                                 PatternRewriter &rewriter) const override {
2276     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
2277     if (!castOp)
2278       return failure();
2279 
2280     VectorType castSrcType = castOp.getSourceVectorType();
2281     VectorType castDstType = castOp.getResultVectorType();
2282     assert(castSrcType.getRank() == castDstType.getRank());
2283 
2284     int64_t castSrcLastDim = castSrcType.getShape().back();
2285     int64_t castDstLastDim = castDstType.getShape().back();
2286     // Require casting to more elements for now; other cases to be implemented.
2287     if (castSrcLastDim > castDstLastDim)
2288       return failure();
2289 
2290     // Only accept all one strides for now.
2291     if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(),
2292                      [](const APInt &val) { return !val.isOneValue(); }))
2293       return failure();
2294 
2295     unsigned rank = extractOp.getVectorType().getRank();
2296     assert(castDstLastDim % castSrcLastDim == 0);
2297     int64_t expandRatio = castDstLastDim / castSrcLastDim;
2298 
2299     // If we have a less number of offsets than the rank, then implicitly we
2300     // are selecting the full range for the last bitcasted dimension; other
2301     // dimensions aren't affected. Otherwise, we need to scale down the last
2302     // dimension's offset given we are extracting from less elements now.
2303     ArrayAttr newOffsets = extractOp.getOffsets();
2304     if (newOffsets.size() == rank) {
2305       SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2306       if (offsets.back() % expandRatio != 0)
2307         return failure();
2308       offsets.back() = offsets.back() / expandRatio;
2309       newOffsets = rewriter.getI64ArrayAttr(offsets);
2310     }
2311 
2312     // Similarly for sizes.
2313     ArrayAttr newSizes = extractOp.getSizes();
2314     if (newSizes.size() == rank) {
2315       SmallVector<int64_t, 4> sizes = getIntValueVector(newSizes);
2316       if (sizes.back() % expandRatio != 0)
2317         return failure();
2318       sizes.back() = sizes.back() / expandRatio;
2319       newSizes = rewriter.getI64ArrayAttr(sizes);
2320     }
2321 
2322     SmallVector<int64_t, 4> dims =
2323         llvm::to_vector<4>(extractOp.getType().cast<VectorType>().getShape());
2324     dims.back() = dims.back() / expandRatio;
2325     VectorType newExtractType =
2326         VectorType::get(dims, castSrcType.getElementType());
2327 
2328     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
2329         extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets,
2330         newSizes, extractOp.getStrides());
2331 
2332     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
2333         extractOp, extractOp.getType(), newExtractOp);
2334 
2335     return success();
2336   }
2337 };
2338 
2339 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
2340 //
2341 // This transforms IR like:
2342 //   %0 = vector.insert_strided_slice %src, %dst {
2343 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
2344 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
2345 // Into:
2346 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
2347 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
2348 //   %2 = vector.insert_strided_slice %src, %dst {
2349 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
2350 struct BubbleUpBitCastForStridedSliceInsert
2351     : public OpRewritePattern<vector::BitCastOp> {
2352   using OpRewritePattern::OpRewritePattern;
2353   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
2354                                 PatternRewriter &rewriter) const override {
2355     VectorType castSrcType = bitcastOp.getSourceVectorType();
2356     VectorType castDstType = bitcastOp.getResultVectorType();
2357     assert(castSrcType.getRank() == castDstType.getRank());
2358 
2359     int64_t castSrcLastDim = castSrcType.getShape().back();
2360     int64_t castDstLastDim = castDstType.getShape().back();
2361     // Require casting to less elements for now; other cases to be implemented.
2362     if (castSrcLastDim < castDstLastDim)
2363       return failure();
2364 
2365     assert(castSrcLastDim % castDstLastDim == 0);
2366     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
2367 
2368     auto insertOp =
2369         bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>();
2370     if (!insertOp)
2371       return failure();
2372 
2373     // Only accept all one strides for now.
2374     if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(),
2375                      [](const APInt &val) { return !val.isOneValue(); }))
2376       return failure();
2377 
2378     unsigned rank = insertOp.getSourceVectorType().getRank();
2379     // Require insert op to have the same rank for the source and destination
2380     // vector; other cases to be implemented.
2381     if (rank != insertOp.getDestVectorType().getRank())
2382       return failure();
2383 
2384     ArrayAttr newOffsets = insertOp.getOffsets();
2385     assert(newOffsets.size() == rank);
2386     SmallVector<int64_t, 4> offsets = getIntValueVector(newOffsets);
2387     if (offsets.back() % shrinkRatio != 0)
2388       return failure();
2389     offsets.back() = offsets.back() / shrinkRatio;
2390     newOffsets = rewriter.getI64ArrayAttr(offsets);
2391 
2392     SmallVector<int64_t, 4> srcDims =
2393         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
2394     srcDims.back() = srcDims.back() / shrinkRatio;
2395     VectorType newCastSrcType =
2396         VectorType::get(srcDims, castDstType.getElementType());
2397 
2398     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
2399         bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
2400 
2401     SmallVector<int64_t, 4> dstDims =
2402         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
2403     dstDims.back() = dstDims.back() / shrinkRatio;
2404     VectorType newCastDstType =
2405         VectorType::get(dstDims, castDstType.getElementType());
2406 
2407     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
2408         bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
2409 
2410     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
2411         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
2412         insertOp.getStrides());
2413 
2414     return success();
2415   }
2416 };
2417 
2418 // Helper that returns a vector comparison that constructs a mask:
2419 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
2420 //
2421 // If `dim == 0` then the result will be a 0-D vector.
2422 //
2423 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
2424 //       much more compact, IR for this operation, but LLVM eventually
2425 //       generates more elaborate instructions for this intrinsic since it
2426 //       is very conservative on the boundary conditions.
2427 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
2428                                    bool force32BitVectorIndices, int64_t dim,
2429                                    Value b, Value *off = nullptr) {
2430   auto loc = op->getLoc();
2431   // If we can assume all indices fit in 32-bit, we perform the vector
2432   // comparison in 32-bit to get a higher degree of SIMD parallelism.
2433   // Otherwise we perform the vector comparison using 64-bit indices.
2434   Type idxType =
2435       force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
2436   DenseIntElementsAttr indicesAttr;
2437   if (dim == 0 && force32BitVectorIndices) {
2438     indicesAttr = DenseIntElementsAttr::get(
2439         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
2440   } else if (dim == 0) {
2441     indicesAttr = DenseIntElementsAttr::get(
2442         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
2443   } else if (force32BitVectorIndices) {
2444     indicesAttr = rewriter.getI32VectorAttr(
2445         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
2446   } else {
2447     indicesAttr = rewriter.getI64VectorAttr(
2448         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
2449   }
2450   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
2451   // Add in an offset if requested.
2452   if (off) {
2453     Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off);
2454     Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
2455     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
2456   }
2457   // Construct the vector comparison.
2458   Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b);
2459   Value bounds =
2460       rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
2461   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
2462                                         bounds);
2463 }
2464 
2465 template <typename ConcreteOp>
2466 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
2467 public:
2468   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt)
2469       : mlir::OpRewritePattern<ConcreteOp>(context),
2470         force32BitVectorIndices(enableIndexOpt) {}
2471 
2472   LogicalResult matchAndRewrite(ConcreteOp xferOp,
2473                                 PatternRewriter &rewriter) const override {
2474     if (!xferOp.hasOutOfBoundsDim())
2475       return failure();
2476 
2477     if (xferOp.getVectorType().getRank() > 1 ||
2478         llvm::size(xferOp.getIndices()) == 0)
2479       return failure();
2480 
2481     Location loc = xferOp->getLoc();
2482     VectorType vtp = xferOp.getVectorType();
2483 
2484     // Create the in-bounds mask with all elements between [0 .. dim - offset)
2485     // set and [dim - offset .. vector_length) unset.
2486     //
2487     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
2488     //       dimensions here.
2489     unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1;
2490     Value off = xferOp.getIndices()[lastIndex];
2491     Value dim =
2492         vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex);
2493     Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off);
2494     Value mask = rewriter.create<vector::CreateMaskOp>(
2495         loc,
2496         VectorType::get(vtp.getShape(), rewriter.getI1Type(),
2497                         vtp.getNumScalableDims()),
2498         b);
2499     if (xferOp.getMask()) {
2500       // Intersect the in-bounds with the mask specified as an op parameter.
2501       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask());
2502     }
2503 
2504     rewriter.updateRootInPlace(xferOp, [&]() {
2505       xferOp.getMaskMutable().assign(mask);
2506       xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
2507     });
2508 
2509     return success();
2510   }
2511 
2512 private:
2513   const bool force32BitVectorIndices;
2514 };
2515 
2516 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
2517 class VectorCreateMaskOpConversion
2518     : public OpRewritePattern<vector::CreateMaskOp> {
2519 public:
2520   explicit VectorCreateMaskOpConversion(MLIRContext *context,
2521                                         bool enableIndexOpt)
2522       : mlir::OpRewritePattern<vector::CreateMaskOp>(context),
2523         force32BitVectorIndices(enableIndexOpt) {}
2524 
2525   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
2526                                 PatternRewriter &rewriter) const override {
2527     auto dstType = op.getType();
2528     if (dstType.cast<VectorType>().isScalable())
2529       return failure();
2530     int64_t rank = dstType.getRank();
2531     if (rank > 1)
2532       return failure();
2533     rewriter.replaceOp(
2534         op, buildVectorComparison(rewriter, op, force32BitVectorIndices,
2535                                   rank == 0 ? 0 : dstType.getDimSize(0),
2536                                   op.getOperand(0)));
2537     return success();
2538   }
2539 
2540 private:
2541   const bool force32BitVectorIndices;
2542 };
2543 
2544 // Drop inner most contiguous unit dimensions from transfer_read operand.
2545 class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> {
2546   using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
2547 
2548   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
2549                                 PatternRewriter &rewriter) const override {
2550     // TODO: support 0-d corner case.
2551     if (readOp.getTransferRank() == 0)
2552       return failure();
2553 
2554     // TODO: support mask.
2555     if (readOp.getMask())
2556       return failure();
2557 
2558     auto srcType = readOp.getSource().getType().dyn_cast<MemRefType>();
2559     if (!srcType || !srcType.hasStaticShape())
2560       return failure();
2561 
2562     if (!readOp.getPermutationMap().isMinorIdentity())
2563       return failure();
2564 
2565     auto targetType = readOp.getVectorType();
2566     if (targetType.getRank() <= 1)
2567       return failure();
2568 
2569     SmallVector<int64_t> srcStrides;
2570     int64_t srcOffset;
2571     if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
2572       return failure();
2573 
2574     size_t dimsToDrop = 0;
2575     for (size_t i = 1; i < srcStrides.size(); ++i) {
2576       int dim = srcType.getRank() - i - 1;
2577       if (srcStrides[dim] == 1) {
2578         dimsToDrop++;
2579       } else {
2580         break;
2581       }
2582     }
2583     if (dimsToDrop == 0)
2584       return failure();
2585 
2586     auto resultTargetVecType =
2587         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
2588                         targetType.getElementType());
2589 
2590     MemRefType resultMemrefType;
2591     if (srcType.getLayout().getAffineMap().isIdentity()) {
2592       resultMemrefType = MemRefType::get(
2593           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2594           {}, srcType.getMemorySpaceAsInt());
2595     } else {
2596       AffineMap map = srcType.getLayout().getAffineMap();
2597       int numSymbols = map.getNumSymbols();
2598       for (size_t i = 0; i < dimsToDrop; ++i) {
2599         int dim = srcType.getRank() - i - 1;
2600         map = map.replace(rewriter.getAffineDimExpr(dim),
2601                           rewriter.getAffineConstantExpr(0),
2602                           map.getNumDims() - 1, numSymbols);
2603       }
2604       resultMemrefType = MemRefType::get(
2605           srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(),
2606           map, srcType.getMemorySpaceAsInt());
2607     }
2608 
2609     auto loc = readOp.getLoc();
2610     SmallVector<int64_t> offsets(srcType.getRank(), 0);
2611     SmallVector<int64_t> strides(srcType.getRank(), 1);
2612 
2613     ArrayAttr inBoundsAttr =
2614         readOp.getInBounds()
2615             ? rewriter.getArrayAttr(
2616                   readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop))
2617             : ArrayAttr();
2618     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
2619         loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(),
2620         strides);
2621     auto permMap = getTransferMinorIdentityMap(
2622         rankedReducedView.getType().cast<ShapedType>(), resultTargetVecType);
2623     Value result = rewriter.create<vector::TransferReadOp>(
2624         loc, resultTargetVecType, rankedReducedView,
2625         readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
2626         readOp.getPadding(),
2627         // TODO: support mask.
2628         /*mask=*/Value(), inBoundsAttr);
2629     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
2630                                                      result);
2631     return success();
2632   }
2633 };
2634 
2635 namespace {
2636 
2637 /// This function checks to see if the vector combining kind
2638 /// is consistent with the integer or float element type.
2639 static bool isValidKind(bool isInt, vector::CombiningKind kind) {
2640   using vector::CombiningKind;
2641   enum class KindType { FLOAT, INT, INVALID };
2642   KindType type{KindType::INVALID};
2643   switch (kind) {
2644   case CombiningKind::MINF:
2645   case CombiningKind::MAXF:
2646     type = KindType::FLOAT;
2647     break;
2648   case CombiningKind::MINUI:
2649   case CombiningKind::MINSI:
2650   case CombiningKind::MAXUI:
2651   case CombiningKind::MAXSI:
2652   case CombiningKind::AND:
2653   case CombiningKind::OR:
2654   case CombiningKind::XOR:
2655     type = KindType::INT;
2656     break;
2657   case CombiningKind::ADD:
2658   case CombiningKind::MUL:
2659     type = isInt ? KindType::INT : KindType::FLOAT;
2660     break;
2661   }
2662   bool isValidIntKind = (type == KindType::INT) && isInt;
2663   bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt);
2664   return (isValidIntKind || isValidFloatKind);
2665 }
2666 
2667 /// This function constructs the appropriate integer or float
2668 /// operation given the vector combining kind and operands. The
2669 /// supported int operations are : add, mul, min (signed/unsigned),
2670 /// max(signed/unsigned), and, or, xor. The supported float
2671 /// operations are : add, mul, min and max.
2672 static Value genOperator(Location loc, Value x, Value y,
2673                          vector::CombiningKind kind,
2674                          PatternRewriter &rewriter) {
2675   using vector::CombiningKind;
2676 
2677   auto elType = x.getType().cast<VectorType>().getElementType();
2678   bool isInt = elType.isIntOrIndex();
2679 
2680   Value combinedResult{nullptr};
2681   switch (kind) {
2682   case CombiningKind::ADD:
2683     if (isInt)
2684       combinedResult = rewriter.create<arith::AddIOp>(loc, x, y);
2685     else
2686       combinedResult = rewriter.create<arith::AddFOp>(loc, x, y);
2687     break;
2688   case CombiningKind::MUL:
2689     if (isInt)
2690       combinedResult = rewriter.create<arith::MulIOp>(loc, x, y);
2691     else
2692       combinedResult = rewriter.create<arith::MulFOp>(loc, x, y);
2693     break;
2694   case CombiningKind::MINUI:
2695     combinedResult = rewriter.create<arith::MinUIOp>(loc, x, y);
2696     break;
2697   case CombiningKind::MINSI:
2698     combinedResult = rewriter.create<arith::MinSIOp>(loc, x, y);
2699     break;
2700   case CombiningKind::MAXUI:
2701     combinedResult = rewriter.create<arith::MaxUIOp>(loc, x, y);
2702     break;
2703   case CombiningKind::MAXSI:
2704     combinedResult = rewriter.create<arith::MaxSIOp>(loc, x, y);
2705     break;
2706   case CombiningKind::AND:
2707     combinedResult = rewriter.create<arith::AndIOp>(loc, x, y);
2708     break;
2709   case CombiningKind::OR:
2710     combinedResult = rewriter.create<arith::OrIOp>(loc, x, y);
2711     break;
2712   case CombiningKind::XOR:
2713     combinedResult = rewriter.create<arith::XOrIOp>(loc, x, y);
2714     break;
2715   case CombiningKind::MINF:
2716     combinedResult = rewriter.create<arith::MinFOp>(loc, x, y);
2717     break;
2718   case CombiningKind::MAXF:
2719     combinedResult = rewriter.create<arith::MaxFOp>(loc, x, y);
2720     break;
2721   }
2722   return combinedResult;
2723 }
2724 
2725 /// Convert vector.scan op into arith ops and
2726 /// vector.insert_strided_slice/extract_strided_slice
2727 ///
2728 /// Ex:
2729 /// ```
2730 ///   %0:2 = vector.scan <add>, %arg0, %arg1 {inclusive = true, reduction_dim =
2731 ///   1} :
2732 ///     (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>)
2733 /// ```
2734 /// Gets converted to:
2735 /// ```
2736 ///   %cst = arith.constant dense<0> : vector<2x3xi32>
2737 ///   %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1],
2738 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 =
2739 ///   vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]}
2740 ///   : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice
2741 ///   %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} :
2742 ///   vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 :
2743 ///   vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1],
2744 ///   strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 =
2745 ///   vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1],
2746 ///   strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3,
2747 ///   %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets =
2748 ///   [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 =
2749 ///   vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 :
2750 ///   vector<2x3xi32>, vector<2xi32>
2751 /// ```
2752 struct ScanToArithOps : public OpRewritePattern<vector::ScanOp> {
2753   using OpRewritePattern<vector::ScanOp>::OpRewritePattern;
2754 
2755   LogicalResult matchAndRewrite(vector::ScanOp scanOp,
2756                                 PatternRewriter &rewriter) const override {
2757     auto loc = scanOp.getLoc();
2758     VectorType destType = scanOp.getDestType();
2759     ArrayRef<int64_t> destShape = destType.getShape();
2760     auto elType = destType.getElementType();
2761     bool isInt = elType.isIntOrIndex();
2762     if (!isValidKind(isInt, scanOp.getKind()))
2763       return failure();
2764 
2765     VectorType resType = VectorType::get(destShape, elType);
2766     Value result = rewriter.create<arith::ConstantOp>(
2767         loc, resType, rewriter.getZeroAttr(resType));
2768     int64_t reductionDim = scanOp.getReductionDim();
2769     bool inclusive = scanOp.getInclusive();
2770     int64_t destRank = destType.getRank();
2771     VectorType initialValueType = scanOp.getInitialValueType();
2772     int64_t initialValueRank = initialValueType.getRank();
2773 
2774     SmallVector<int64_t> reductionShape(destShape.begin(), destShape.end());
2775     reductionShape[reductionDim] = 1;
2776     VectorType reductionType = VectorType::get(reductionShape, elType);
2777     SmallVector<int64_t> offsets(destRank, 0);
2778     SmallVector<int64_t> strides(destRank, 1);
2779     SmallVector<int64_t> sizes(destShape.begin(), destShape.end());
2780     sizes[reductionDim] = 1;
2781     ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes);
2782     ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides);
2783 
2784     Value lastOutput, lastInput;
2785     for (int i = 0; i < destShape[reductionDim]; i++) {
2786       offsets[reductionDim] = i;
2787       ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets);
2788       Value input = rewriter.create<vector::ExtractStridedSliceOp>(
2789           loc, reductionType, scanOp.getSource(), scanOffsets, scanSizes,
2790           scanStrides);
2791       Value output;
2792       if (i == 0) {
2793         if (inclusive) {
2794           output = input;
2795         } else {
2796           if (initialValueRank == 0) {
2797             // ShapeCastOp cannot handle 0-D vectors
2798             output = rewriter.create<vector::BroadcastOp>(
2799                 loc, input.getType(), scanOp.getInitialValue());
2800           } else {
2801             output = rewriter.create<vector::ShapeCastOp>(
2802                 loc, input.getType(), scanOp.getInitialValue());
2803           }
2804         }
2805       } else {
2806         Value y = inclusive ? input : lastInput;
2807         output = genOperator(loc, lastOutput, y, scanOp.getKind(), rewriter);
2808         assert(output != nullptr);
2809       }
2810       result = rewriter.create<vector::InsertStridedSliceOp>(
2811           loc, output, result, offsets, strides);
2812       lastOutput = output;
2813       lastInput = input;
2814     }
2815 
2816     Value reduction;
2817     if (initialValueRank == 0) {
2818       Value v = rewriter.create<vector::ExtractOp>(loc, lastOutput, 0);
2819       reduction =
2820           rewriter.create<vector::BroadcastOp>(loc, initialValueType, v);
2821     } else {
2822       reduction = rewriter.create<vector::ShapeCastOp>(loc, initialValueType,
2823                                                        lastOutput);
2824     }
2825 
2826     rewriter.replaceOp(scanOp, {result, reduction});
2827     return success();
2828   }
2829 };
2830 
2831 } // namespace
2832 
2833 void mlir::vector::populateVectorMaskMaterializationPatterns(
2834     RewritePatternSet &patterns, bool force32BitVectorIndices) {
2835   patterns.add<VectorCreateMaskOpConversion,
2836                MaterializeTransferMask<vector::TransferReadOp>,
2837                MaterializeTransferMask<vector::TransferWriteOp>>(
2838       patterns.getContext(), force32BitVectorIndices);
2839 }
2840 
2841 void mlir::vector::populateShapeCastFoldingPatterns(
2842     RewritePatternSet &patterns) {
2843   patterns.add<ShapeCastOpFolder>(patterns.getContext());
2844 }
2845 
2846 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2847     RewritePatternSet &patterns) {
2848   patterns.add<BubbleDownVectorBitCastForExtract,
2849                BubbleDownBitCastForStridedSliceExtract,
2850                BubbleUpBitCastForStridedSliceInsert>(patterns.getContext());
2851 }
2852 
2853 void mlir::vector::populateVectorBroadcastLoweringPatterns(
2854     RewritePatternSet &patterns) {
2855   patterns.add<BroadcastOpLowering>(patterns.getContext());
2856 }
2857 
2858 void mlir::vector::populateVectorMaskOpLoweringPatterns(
2859     RewritePatternSet &patterns) {
2860   patterns.add<CreateMaskOpLowering, ConstantMaskOpLowering>(
2861       patterns.getContext());
2862 }
2863 
2864 void mlir::vector::populateVectorShapeCastLoweringPatterns(
2865     RewritePatternSet &patterns) {
2866   patterns.add<ShapeCastOp2DDownCastRewritePattern,
2867                ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
2868       patterns.getContext());
2869 }
2870 
2871 void mlir::vector::populateVectorContractLoweringPatterns(
2872     RewritePatternSet &patterns, VectorTransformsOptions options) {
2873   patterns.add<OuterProductOpLowering>(patterns.getContext());
2874   patterns.add<ContractionOpLowering, ContractionOpToMatmulOpLowering,
2875                ContractionOpToOuterProductOpLowering>(options,
2876                                                       patterns.getContext());
2877 }
2878 
2879 void mlir::vector::populateVectorTransposeLoweringPatterns(
2880     RewritePatternSet &patterns, VectorTransformsOptions options) {
2881   patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
2882       options, patterns.getContext());
2883 }
2884 
2885 void mlir::vector::populateVectorReductionToContractPatterns(
2886     RewritePatternSet &patterns) {
2887   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2888                CombineContractTranspose, ReorderCastOpsOnBroadcast,
2889                ReorderElementwiseOpsOnTranspose>(patterns.getContext());
2890 }
2891 
2892 void mlir::vector::
2893     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2894         RewritePatternSet &patterns) {
2895   patterns.add<DropInnerMostUnitDims>(patterns.getContext());
2896 }
2897 
2898 void mlir::vector::populateVectorTransferLoweringPatterns(
2899     RewritePatternSet &patterns, llvm::Optional<unsigned> maxTransferRank) {
2900   patterns.add<TransferReadToVectorLoadLowering,
2901                TransferWriteToVectorStoreLowering>(patterns.getContext(),
2902                                                    maxTransferRank);
2903   patterns
2904       .add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
2905           patterns.getContext());
2906 }
2907 
2908 void mlir::vector::populateVectorScanLoweringPatterns(
2909     RewritePatternSet &patterns) {
2910   patterns.add<ScanToArithOps>(patterns.getContext());
2911 }
2912