1 //===- VectorDistribute.cpp - patterns to do vector distribution ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Affine/IR/AffineOps.h"
10 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
11 #include "mlir/Dialect/MemRef/IR/MemRef.h"
12 #include "mlir/Dialect/SCF/IR/SCF.h"
13 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
14 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
15 #include "mlir/IR/BlockAndValueMapping.h"
16 #include "mlir/Transforms/SideEffectUtils.h"
17 
18 using namespace mlir;
19 using namespace mlir::vector;
20 
21 static LogicalResult
22 rewriteWarpOpToScfFor(RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
23                       const WarpExecuteOnLane0LoweringOptions &options) {
24   assert(warpOp.getBodyRegion().hasOneBlock() &&
25          "expected WarpOp with single block");
26   Block *warpOpBody = &warpOp.getBodyRegion().front();
27   Location loc = warpOp.getLoc();
28 
29   // Passed all checks. Start rewriting.
30   OpBuilder::InsertionGuard g(rewriter);
31   rewriter.setInsertionPoint(warpOp);
32 
33   // Create scf.if op.
34   Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
35   Value isLane0 = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
36                                                  warpOp.getLaneid(), c0);
37   auto ifOp = rewriter.create<scf::IfOp>(loc, isLane0,
38                                          /*withElseRegion=*/false);
39   rewriter.eraseOp(ifOp.thenBlock()->getTerminator());
40 
41   // Store vectors that are defined outside of warpOp into the scratch pad
42   // buffer.
43   SmallVector<Value> bbArgReplacements;
44   for (const auto &it : llvm::enumerate(warpOp.getArgs())) {
45     Value val = it.value();
46     Value bbArg = warpOpBody->getArgument(it.index());
47 
48     rewriter.setInsertionPoint(ifOp);
49     Value buffer = options.warpAllocationFn(warpOp->getLoc(), rewriter, warpOp,
50                                             bbArg.getType());
51 
52     // Store arg vector into buffer.
53     rewriter.setInsertionPoint(ifOp);
54     auto vectorType = val.getType().cast<VectorType>();
55     int64_t storeSize = vectorType.getShape()[0];
56     Value storeOffset = rewriter.create<arith::MulIOp>(
57         loc, warpOp.getLaneid(),
58         rewriter.create<arith::ConstantIndexOp>(loc, storeSize));
59     rewriter.create<vector::StoreOp>(loc, val, buffer, storeOffset);
60 
61     // Load bbArg vector from buffer.
62     rewriter.setInsertionPointToStart(ifOp.thenBlock());
63     auto bbArgType = bbArg.getType().cast<VectorType>();
64     Value loadOp = rewriter.create<vector::LoadOp>(loc, bbArgType, buffer, c0);
65     bbArgReplacements.push_back(loadOp);
66   }
67 
68   // Insert sync after all the stores and before all the loads.
69   if (!warpOp.getArgs().empty()) {
70     rewriter.setInsertionPoint(ifOp);
71     options.warpSyncronizationFn(warpOp->getLoc(), rewriter, warpOp);
72   }
73 
74   // Move body of warpOp to ifOp.
75   rewriter.mergeBlocks(warpOpBody, ifOp.thenBlock(), bbArgReplacements);
76 
77   // Rewrite terminator and compute replacements of WarpOp results.
78   SmallVector<Value> replacements;
79   auto yieldOp = cast<vector::YieldOp>(ifOp.thenBlock()->getTerminator());
80   Location yieldLoc = yieldOp.getLoc();
81   for (const auto &it : llvm::enumerate(yieldOp.operands())) {
82     Value val = it.value();
83     Type resultType = warpOp->getResultTypes()[it.index()];
84     rewriter.setInsertionPoint(ifOp);
85     Value buffer = options.warpAllocationFn(warpOp->getLoc(), rewriter, warpOp,
86                                             val.getType());
87 
88     // Store yielded value into buffer.
89     rewriter.setInsertionPoint(yieldOp);
90     if (val.getType().isa<VectorType>())
91       rewriter.create<vector::StoreOp>(yieldLoc, val, buffer, c0);
92     else
93       rewriter.create<memref::StoreOp>(yieldLoc, val, buffer, c0);
94 
95     // Load value from buffer (after warpOp).
96     rewriter.setInsertionPointAfter(ifOp);
97     if (resultType == val.getType()) {
98       // Result type and yielded value type are the same. This is a broadcast.
99       // E.g.:
100       // %r = vector.warp_execute_on_lane_0(...) -> (f32) {
101       //   vector.yield %cst : f32
102       // }
103       // Both types are f32. The constant %cst is broadcasted to all lanes.
104       // This is described in more detail in the documentation of the op.
105       Value loadOp = rewriter.create<memref::LoadOp>(loc, buffer, c0);
106       replacements.push_back(loadOp);
107     } else {
108       auto loadedVectorType = resultType.cast<VectorType>();
109       int64_t loadSize = loadedVectorType.getShape()[0];
110 
111       // loadOffset = laneid * loadSize
112       Value loadOffset = rewriter.create<arith::MulIOp>(
113           loc, warpOp.getLaneid(),
114           rewriter.create<arith::ConstantIndexOp>(loc, loadSize));
115       Value loadOp = rewriter.create<vector::LoadOp>(loc, loadedVectorType,
116                                                      buffer, loadOffset);
117       replacements.push_back(loadOp);
118     }
119   }
120 
121   // Insert sync after all the stores and before all the loads.
122   if (!yieldOp.operands().empty()) {
123     rewriter.setInsertionPointAfter(ifOp);
124     options.warpSyncronizationFn(warpOp->getLoc(), rewriter, warpOp);
125   }
126 
127   // Delete terminator and add empty scf.yield.
128   rewriter.eraseOp(yieldOp);
129   rewriter.setInsertionPointToEnd(ifOp.thenBlock());
130   rewriter.create<scf::YieldOp>(yieldLoc);
131 
132   // Compute replacements for WarpOp results.
133   rewriter.replaceOp(warpOp, replacements);
134 
135   return success();
136 }
137 
138 /// Helper to create a new WarpExecuteOnLane0Op with different signature.
139 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndReplaceReturns(
140     RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
141     ValueRange newYieldedValues, TypeRange newReturnTypes) {
142   // Create a new op before the existing one, with the extra operands.
143   OpBuilder::InsertionGuard g(rewriter);
144   rewriter.setInsertionPoint(warpOp);
145   auto newWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
146       warpOp.getLoc(), newReturnTypes, warpOp.getLaneid(), warpOp.getWarpSize(),
147       warpOp.getArgs(), warpOp.getBody()->getArgumentTypes());
148 
149   Region &opBody = warpOp.getBodyRegion();
150   Region &newOpBody = newWarpOp.getBodyRegion();
151   rewriter.inlineRegionBefore(opBody, newOpBody, newOpBody.begin());
152   auto yield =
153       cast<vector::YieldOp>(newOpBody.getBlocks().begin()->getTerminator());
154 
155   rewriter.updateRootInPlace(
156       yield, [&]() { yield.operandsMutable().assign(newYieldedValues); });
157   return newWarpOp;
158 }
159 
160 /// Helper to create a new WarpExecuteOnLane0Op region with extra outputs.
161 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndAppendReturns(
162     RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
163     ValueRange newYieldedValues, TypeRange newReturnTypes) {
164   SmallVector<Type> types(warpOp.getResultTypes().begin(),
165                           warpOp.getResultTypes().end());
166   types.append(newReturnTypes.begin(), newReturnTypes.end());
167   auto yield = cast<vector::YieldOp>(
168       warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
169   SmallVector<Value> yieldValues(yield.getOperands().begin(),
170                                  yield.getOperands().end());
171   yieldValues.append(newYieldedValues.begin(), newYieldedValues.end());
172   WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
173       rewriter, warpOp, yieldValues, types);
174   rewriter.replaceOp(warpOp,
175                      newWarpOp.getResults().take_front(warpOp.getNumResults()));
176   return newWarpOp;
177 }
178 
179 /// Helper to know if an op can be hoisted out of the region.
180 static bool canBeHoisted(Operation *op,
181                          function_ref<bool(Value)> definedOutside) {
182   return llvm::all_of(op->getOperands(), definedOutside) &&
183          isSideEffectFree(op) && op->getNumRegions() == 0;
184 }
185 
186 /// Return a value yielded by `warpOp` which statifies the filter lamdba
187 /// condition and is not dead.
188 static OpOperand *getWarpResult(WarpExecuteOnLane0Op warpOp,
189                                 std::function<bool(Operation *)> fn) {
190   auto yield = cast<vector::YieldOp>(
191       warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
192   for (OpOperand &yieldOperand : yield->getOpOperands()) {
193     Value yieldValues = yieldOperand.get();
194     Operation *definedOp = yieldValues.getDefiningOp();
195     if (definedOp && fn(definedOp)) {
196       if (!warpOp.getResult(yieldOperand.getOperandNumber()).use_empty())
197         return &yieldOperand;
198     }
199   }
200   return {};
201 }
202 
203 // Clones `op` into a new operation that takes `operands` and returns
204 // `resultTypes`.
205 static Operation *cloneOpWithOperandsAndTypes(RewriterBase &rewriter,
206                                               Location loc, Operation *op,
207                                               ArrayRef<Value> operands,
208                                               ArrayRef<Type> resultTypes) {
209   OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
210                      op->getAttrs());
211   return rewriter.create(res);
212 }
213 
214 /// Currently the distribution map is implicit based on the vector shape. In the
215 /// future it will be part of the op.
216 /// Example:
217 /// ```
218 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1x16x2xf32>) {
219 ///   ...
220 ///   vector.yield %3 : vector<32x16x64xf32>
221 /// }
222 /// ```
223 /// Would have an implicit map of:
224 /// `(d0, d1, d2) -> (d0, d2)`
225 static AffineMap calculateImplicitMap(Value yield, Value ret) {
226   auto srcType = yield.getType().cast<VectorType>();
227   auto dstType = ret.getType().cast<VectorType>();
228   SmallVector<AffineExpr> perm;
229   // Check which dimensions of the yield value are different than the dimensions
230   // of the result to know the distributed dimensions. Then associate each
231   // distributed dimension to an ID in order.
232   for (unsigned i = 0, e = srcType.getRank(); i < e; i++) {
233     if (srcType.getDimSize(i) != dstType.getDimSize(i))
234       perm.push_back(getAffineDimExpr(i, yield.getContext()));
235   }
236   auto map = AffineMap::get(srcType.getRank(), 0, perm, yield.getContext());
237   return map;
238 }
239 
240 namespace {
241 
242 struct WarpOpToScfForPattern : public OpRewritePattern<WarpExecuteOnLane0Op> {
243   WarpOpToScfForPattern(MLIRContext *context,
244                         const WarpExecuteOnLane0LoweringOptions &options,
245                         PatternBenefit benefit = 1)
246       : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
247         options(options) {}
248 
249   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
250                                 PatternRewriter &rewriter) const override {
251     return rewriteWarpOpToScfFor(rewriter, warpOp, options);
252   }
253 
254 private:
255   const WarpExecuteOnLane0LoweringOptions &options;
256 };
257 
258 /// Distribute transfer_write ops based on the affine map returned by
259 /// `distributionMapFn`.
260 /// Example:
261 /// ```
262 /// %0 = vector.warp_execute_on_lane_0(%id){
263 ///   ...
264 ///   vector.transfer_write %v, %A[%c0] : vector<32xf32>, memref<128xf32>
265 ///   vector.yield
266 /// }
267 /// ```
268 /// To
269 /// ```
270 /// %r:3 = vector.warp_execute_on_lane_0(%id) -> (vector<1xf32>) {
271 ///   ...
272 ///   vector.yield %v : vector<32xf32>
273 /// }
274 /// vector.transfer_write %v, %A[%id] : vector<1xf32>, memref<128xf32>
275 struct WarpOpTransferWrite : public OpRewritePattern<vector::TransferWriteOp> {
276   WarpOpTransferWrite(MLIRContext *ctx, DistributionMapFn fn,
277                       PatternBenefit b = 1)
278       : OpRewritePattern<vector::TransferWriteOp>(ctx, b),
279         distributionMapFn(fn) {}
280 
281   /// Distribute the TransferWriteOp. Only 1D distributions and vector dims that
282   /// are multiples of the distribution ratio are supported at the moment.
283   LogicalResult tryDistributeOp(RewriterBase &rewriter,
284                                 vector::TransferWriteOp writeOp,
285                                 WarpExecuteOnLane0Op warpOp) const {
286     AffineMap map = distributionMapFn(writeOp);
287     SmallVector<int64_t> targetShape(writeOp.getVectorType().getShape().begin(),
288                                      writeOp.getVectorType().getShape().end());
289     assert(map.getNumResults() == 1 &&
290            "multi-dim distribution not implemented yet");
291     for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
292       unsigned position = map.getDimPosition(i);
293       if (targetShape[position] % warpOp.getWarpSize() != 0)
294         return failure();
295       targetShape[position] = targetShape[position] / warpOp.getWarpSize();
296     }
297     VectorType targetType =
298         VectorType::get(targetShape, writeOp.getVectorType().getElementType());
299 
300     SmallVector<Value> yieldValues = {writeOp.getVector()};
301     SmallVector<Type> retTypes = {targetType};
302     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
303         rewriter, warpOp, yieldValues, retTypes);
304     rewriter.setInsertionPointAfter(newWarpOp);
305 
306     // Move op outside of region: Insert clone at the insertion point and delete
307     // the old op.
308     auto newWriteOp =
309         cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
310     rewriter.eraseOp(writeOp);
311 
312     rewriter.setInsertionPoint(newWriteOp);
313     AffineMap indexMap = map.compose(newWriteOp.getPermutationMap());
314     Location loc = newWriteOp.getLoc();
315     SmallVector<Value> indices(newWriteOp.getIndices().begin(),
316                                newWriteOp.getIndices().end());
317     for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
318       AffineExpr d0, d1;
319       bindDims(newWarpOp.getContext(), d0, d1);
320       auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
321       if (!indexExpr)
322         continue;
323       unsigned indexPos = indexExpr.getPosition();
324       unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
325       auto scale =
326           getAffineConstantExpr(targetShape[vectorPos], newWarpOp.getContext());
327       indices[indexPos] =
328           makeComposedAffineApply(rewriter, loc, d0 + scale * d1,
329                                   {indices[indexPos], newWarpOp.getLaneid()});
330     }
331     newWriteOp.getVectorMutable().assign(newWarpOp.getResults().back());
332     newWriteOp.getIndicesMutable().assign(indices);
333 
334     return success();
335   }
336 
337   /// Extract TransferWriteOps of vector<1x> into a separate warp op.
338   LogicalResult tryExtractOp(RewriterBase &rewriter,
339                              vector::TransferWriteOp writeOp,
340                              WarpExecuteOnLane0Op warpOp) const {
341     Location loc = writeOp.getLoc();
342     VectorType vecType = writeOp.getVectorType();
343 
344     // Only vector<1x> is supported at the moment.
345     if (vecType.getShape().size() != 1 || vecType.getShape()[0] != 1)
346       return failure();
347 
348     // Do not process warp ops that contain only TransferWriteOps.
349     if (llvm::all_of(warpOp.getOps(), [](Operation &op) {
350           return isa<vector::TransferWriteOp, vector::YieldOp>(&op);
351         }))
352       return failure();
353 
354     SmallVector<Value> yieldValues = {writeOp.getVector()};
355     SmallVector<Type> retTypes = {vecType};
356     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
357         rewriter, warpOp, yieldValues, retTypes);
358     rewriter.setInsertionPointAfter(newWarpOp);
359 
360     // Create a second warp op that contains only writeOp.
361     auto secondWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
362         loc, TypeRange(), newWarpOp.getLaneid(), newWarpOp.getWarpSize());
363     Block &body = secondWarpOp.getBodyRegion().front();
364     rewriter.setInsertionPointToStart(&body);
365     auto newWriteOp =
366         cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
367     newWriteOp.getVectorMutable().assign(
368         newWarpOp.getResult(newWarpOp.getNumResults() - 1));
369     rewriter.eraseOp(writeOp);
370     rewriter.create<vector::YieldOp>(newWarpOp.getLoc());
371     return success();
372   }
373 
374   LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
375                                 PatternRewriter &rewriter) const override {
376     // Ops with mask not supported yet.
377     if (writeOp.getMask())
378       return failure();
379 
380     auto warpOp = dyn_cast<WarpExecuteOnLane0Op>(writeOp->getParentOp());
381     if (!warpOp)
382       return failure();
383 
384     // There must be no op with a side effect after writeOp.
385     Operation *nextOp = writeOp.getOperation();
386     while ((nextOp = nextOp->getNextNode()))
387       if (!isSideEffectFree(nextOp))
388         return failure();
389 
390     if (!llvm::all_of(writeOp->getOperands(), [&](Value value) {
391           return writeOp.getVector() == value ||
392                  warpOp.isDefinedOutsideOfRegion(value);
393         }))
394       return failure();
395 
396     if (succeeded(tryDistributeOp(rewriter, writeOp, warpOp)))
397       return success();
398 
399     if (succeeded(tryExtractOp(rewriter, writeOp, warpOp)))
400       return success();
401 
402     return failure();
403   }
404 
405 private:
406   DistributionMapFn distributionMapFn;
407 };
408 
409 /// Sink out elementwise op feeding into a warp op yield.
410 /// ```
411 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
412 ///   ...
413 ///   %3 = arith.addf %1, %2 : vector<32xf32>
414 ///   vector.yield %3 : vector<32xf32>
415 /// }
416 /// ```
417 /// To
418 /// ```
419 /// %r:3 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
420 /// vector<1xf32>, vector<1xf32>) {
421 ///   ...
422 ///   %4 = arith.addf %2, %3 : vector<32xf32>
423 ///   vector.yield %4, %2, %3 : vector<32xf32>, vector<32xf32>,
424 ///   vector<32xf32>
425 /// }
426 /// %0 = arith.addf %r#1, %r#2 : vector<1xf32>
427 struct WarpOpElementwise : public OpRewritePattern<WarpExecuteOnLane0Op> {
428   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
429   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
430                                 PatternRewriter &rewriter) const override {
431     OpOperand *yieldOperand = getWarpResult(warpOp, [](Operation *op) {
432       return OpTrait::hasElementwiseMappableTraits(op);
433     });
434     if (!yieldOperand)
435       return failure();
436     Operation *elementWise = yieldOperand->get().getDefiningOp();
437     unsigned operandIndex = yieldOperand->getOperandNumber();
438     Value distributedVal = warpOp.getResult(operandIndex);
439     SmallVector<Value> yieldValues;
440     SmallVector<Type> retTypes;
441     Location loc = warpOp.getLoc();
442     for (OpOperand &operand : elementWise->getOpOperands()) {
443       Type targetType;
444       if (auto vecType = distributedVal.getType().dyn_cast<VectorType>()) {
445         // If the result type is a vector, the operands must also be vectors.
446         auto operandType = operand.get().getType().cast<VectorType>();
447         targetType =
448             VectorType::get(vecType.getShape(), operandType.getElementType());
449       } else {
450         auto operandType = operand.get().getType();
451         assert(!operandType.isa<VectorType>() &&
452                "unexpected yield of vector from op with scalar result type");
453         targetType = operandType;
454       }
455       retTypes.push_back(targetType);
456       yieldValues.push_back(operand.get());
457     }
458     unsigned numResults = warpOp.getNumResults();
459     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
460         rewriter, warpOp, yieldValues, retTypes);
461     rewriter.setInsertionPointAfter(newWarpOp);
462     SmallVector<Value> newOperands(elementWise->getOperands().begin(),
463                                    elementWise->getOperands().end());
464     for (unsigned i : llvm::seq(unsigned(0), elementWise->getNumOperands())) {
465       newOperands[i] = newWarpOp.getResult(i + numResults);
466     }
467     OpBuilder::InsertionGuard g(rewriter);
468     rewriter.setInsertionPointAfter(newWarpOp);
469     Operation *newOp = cloneOpWithOperandsAndTypes(
470         rewriter, loc, elementWise, newOperands,
471         {newWarpOp.getResult(operandIndex).getType()});
472     newWarpOp.getResult(operandIndex).replaceAllUsesWith(newOp->getResult(0));
473     return success();
474   }
475 };
476 
477 /// Sink out transfer_read op feeding into a warp op yield.
478 /// ```
479 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
480 ///   ...
481 //    %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
482 //    vector<32xf32>
483 ///   vector.yield %2 : vector<32xf32>
484 /// }
485 /// ```
486 /// To
487 /// ```
488 /// %dead = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
489 /// vector<1xf32>, vector<1xf32>) {
490 ///   ...
491 ///   %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
492 ///   vector<32xf32> vector.yield %2 : vector<32xf32>
493 /// }
494 /// %0 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, vector<1xf32>
495 struct WarpOpTransferRead : public OpRewritePattern<WarpExecuteOnLane0Op> {
496   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
497   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
498                                 PatternRewriter &rewriter) const override {
499     OpOperand *operand = getWarpResult(
500         warpOp, [](Operation *op) { return isa<vector::TransferReadOp>(op); });
501     if (!operand)
502       return failure();
503     auto read = operand->get().getDefiningOp<vector::TransferReadOp>();
504     unsigned operandIndex = operand->getOperandNumber();
505     Value distributedVal = warpOp.getResult(operandIndex);
506 
507     SmallVector<Value, 4> indices(read.getIndices().begin(),
508                                   read.getIndices().end());
509     AffineMap map = calculateImplicitMap(read.getResult(), distributedVal);
510     AffineMap indexMap = map.compose(read.getPermutationMap());
511     OpBuilder::InsertionGuard g(rewriter);
512     rewriter.setInsertionPointAfter(warpOp);
513     for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
514       AffineExpr d0, d1;
515       bindDims(read.getContext(), d0, d1);
516       auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
517       if (!indexExpr)
518         continue;
519       unsigned indexPos = indexExpr.getPosition();
520       unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
521       int64_t scale =
522           distributedVal.getType().cast<VectorType>().getDimSize(vectorPos);
523       indices[indexPos] =
524           makeComposedAffineApply(rewriter, read.getLoc(), d0 + scale * d1,
525                                   {indices[indexPos], warpOp.getLaneid()});
526     }
527     Value newRead = rewriter.create<vector::TransferReadOp>(
528         read.getLoc(), distributedVal.getType(), read.getSource(), indices,
529         read.getPermutationMapAttr(), read.getPadding(), read.getMask(),
530         read.getInBoundsAttr());
531     distributedVal.replaceAllUsesWith(newRead);
532     return success();
533   }
534 };
535 
536 /// Remove any result that has no use along with the matching yieldOp operand.
537 // TODO: Move this in WarpExecuteOnLane0Op canonicalization.
538 struct WarpOpDeadResult : public OpRewritePattern<WarpExecuteOnLane0Op> {
539   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
540   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
541                                 PatternRewriter &rewriter) const override {
542     SmallVector<Type> resultTypes;
543     SmallVector<Value> yieldValues;
544     auto yield = cast<vector::YieldOp>(
545         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
546     for (OpResult result : warpOp.getResults()) {
547       if (result.use_empty())
548         continue;
549       resultTypes.push_back(result.getType());
550       yieldValues.push_back(yield.getOperand(result.getResultNumber()));
551     }
552     if (yield.getNumOperands() == yieldValues.size())
553       return failure();
554     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
555         rewriter, warpOp, yieldValues, resultTypes);
556     unsigned resultIndex = 0;
557     for (OpResult result : warpOp.getResults()) {
558       if (result.use_empty())
559         continue;
560       result.replaceAllUsesWith(newWarpOp.getResult(resultIndex++));
561     }
562     rewriter.eraseOp(warpOp);
563     return success();
564   }
565 };
566 
567 // If an operand is directly yielded out of the region we can forward it
568 // directly and it doesn't need to go through the region.
569 struct WarpOpForwardOperand : public OpRewritePattern<WarpExecuteOnLane0Op> {
570   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
571   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
572                                 PatternRewriter &rewriter) const override {
573     SmallVector<Type> resultTypes;
574     SmallVector<Value> yieldValues;
575     auto yield = cast<vector::YieldOp>(
576         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
577     Value valForwarded;
578     unsigned resultIndex;
579     for (OpOperand &operand : yield->getOpOperands()) {
580       Value result = warpOp.getResult(operand.getOperandNumber());
581       if (result.use_empty())
582         continue;
583 
584       // Assume all the values coming from above are uniform.
585       if (!warpOp.getBodyRegion().isAncestor(operand.get().getParentRegion())) {
586         if (result.getType() != operand.get().getType())
587           continue;
588         valForwarded = operand.get();
589         resultIndex = operand.getOperandNumber();
590         break;
591       }
592       auto arg = operand.get().dyn_cast<BlockArgument>();
593       if (!arg || arg.getOwner()->getParentOp() != warpOp.getOperation())
594         continue;
595       Value warpOperand = warpOp.getArgs()[arg.getArgNumber()];
596       if (result.getType() != warpOperand.getType())
597         continue;
598       valForwarded = warpOperand;
599       resultIndex = operand.getOperandNumber();
600       break;
601     }
602     if (!valForwarded)
603       return failure();
604     warpOp.getResult(resultIndex).replaceAllUsesWith(valForwarded);
605     return success();
606   }
607 };
608 
609 struct WarpOpBroadcast : public OpRewritePattern<WarpExecuteOnLane0Op> {
610   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
611   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
612                                 PatternRewriter &rewriter) const override {
613     OpOperand *operand = getWarpResult(
614         warpOp, [](Operation *op) { return isa<vector::BroadcastOp>(op); });
615     if (!operand)
616       return failure();
617     unsigned int operandNumber = operand->getOperandNumber();
618     auto broadcastOp = operand->get().getDefiningOp<vector::BroadcastOp>();
619     Location loc = broadcastOp.getLoc();
620     auto destVecType =
621         warpOp->getResultTypes()[operandNumber].cast<VectorType>();
622     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
623         rewriter, warpOp, {broadcastOp.getSource()},
624         {broadcastOp.getSource().getType()});
625     rewriter.setInsertionPointAfter(newWarpOp);
626     Value broadcasted = rewriter.create<vector::BroadcastOp>(
627         loc, destVecType, newWarpOp->getResults().back());
628     newWarpOp->getResult(operandNumber).replaceAllUsesWith(broadcasted);
629 
630     return success();
631   }
632 };
633 
634 /// Sink scf.for region out of WarpExecuteOnLane0Op. This can be done only if
635 /// the scf.ForOp is the last operation in the region so that it doesn't change
636 /// the order of execution. This creates a new scf.for region after the
637 /// WarpExecuteOnLane0Op. The new scf.for region will contain a new
638 /// WarpExecuteOnLane0Op region. Example:
639 /// ```
640 /// %w = vector.warp_execute_on_lane_0(%laneid) -> (vector<4xf32>) {
641 ///   ...
642 ///   %v1 = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%arg4 = %v)
643 ///   -> (vector<128xf32>) {
644 ///     ...
645 ///     scf.yield %r : vector<128xf32>
646 ///   }
647 ///   vector.yield %v1 : vector<128xf32>
648 /// }
649 /// ```
650 /// To:
651 /// %w0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<4xf32>) {
652 ///   ...
653 ///   vector.yield %v : vector<128xf32>
654 /// }
655 /// %w = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%varg = %q0)
656 ///   -> (vector<4xf32>) {
657 ///     %iw = vector.warp_execute_on_lane_0(%laneid)
658 ///     args(%varg : vector<4xf32>) -> (vector<4xf32>) {
659 ///     ^bb0(%arg: vector<128xf32>):
660 ///       ...
661 ///       vector.yield %ir : vector<128xf32>
662 ///     }
663 ///     scf.yield %iw : vector<4xf32>
664 ///  }
665 /// ```
666 struct WarpOpScfForOp : public OpRewritePattern<WarpExecuteOnLane0Op> {
667   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
668   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
669                                 PatternRewriter &rewriter) const override {
670     auto yield = cast<vector::YieldOp>(
671         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
672     // Only pick up forOp if it is the last op in the region.
673     Operation *lastNode = yield->getPrevNode();
674     auto forOp = dyn_cast_or_null<scf::ForOp>(lastNode);
675     if (!forOp)
676       return failure();
677     SmallVector<Value> newOperands;
678     SmallVector<unsigned> resultIdx;
679     // Collect all the outputs coming from the forOp.
680     for (OpOperand &yieldOperand : yield->getOpOperands()) {
681       if (yieldOperand.get().getDefiningOp() != forOp.getOperation())
682         continue;
683       auto forResult = yieldOperand.get().cast<OpResult>();
684       newOperands.push_back(warpOp.getResult(yieldOperand.getOperandNumber()));
685       yieldOperand.set(forOp.getIterOperands()[forResult.getResultNumber()]);
686       resultIdx.push_back(yieldOperand.getOperandNumber());
687     }
688     OpBuilder::InsertionGuard g(rewriter);
689     rewriter.setInsertionPointAfter(warpOp);
690     // Create a new for op outside the region with a WarpExecuteOnLane0Op region
691     // inside.
692     auto newForOp = rewriter.create<scf::ForOp>(
693         forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
694         forOp.getStep(), newOperands);
695     rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
696     auto innerWarp = rewriter.create<WarpExecuteOnLane0Op>(
697         warpOp.getLoc(), newForOp.getResultTypes(), warpOp.getLaneid(),
698         warpOp.getWarpSize(), newForOp.getRegionIterArgs(),
699         forOp.getResultTypes());
700 
701     SmallVector<Value> argMapping;
702     argMapping.push_back(newForOp.getInductionVar());
703     for (Value args : innerWarp.getBody()->getArguments()) {
704       argMapping.push_back(args);
705     }
706     SmallVector<Value> yieldOperands;
707     for (Value operand : forOp.getBody()->getTerminator()->getOperands())
708       yieldOperands.push_back(operand);
709     rewriter.eraseOp(forOp.getBody()->getTerminator());
710     rewriter.mergeBlocks(forOp.getBody(), innerWarp.getBody(), argMapping);
711     rewriter.setInsertionPoint(innerWarp.getBody(), innerWarp.getBody()->end());
712     rewriter.create<vector::YieldOp>(innerWarp.getLoc(), yieldOperands);
713     rewriter.setInsertionPointAfter(innerWarp);
714     rewriter.create<scf::YieldOp>(forOp.getLoc(), innerWarp.getResults());
715     rewriter.eraseOp(forOp);
716     // Replace the warpOp result coming from the original ForOp.
717     for (const auto &res : llvm::enumerate(resultIdx)) {
718       warpOp.getResult(res.value())
719           .replaceAllUsesWith(newForOp.getResult(res.index()));
720       newForOp->setOperand(res.index() + 3, warpOp.getResult(res.value()));
721     }
722     return success();
723   }
724 };
725 
726 /// A pattern that extracts vector.reduction ops from a WarpExecuteOnLane0Op.
727 /// The vector is reduced in parallel. Currently limited to vector size matching
728 /// the warpOp size. E.g.:
729 /// ```
730 /// %r = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (f32) {
731 ///   %0 = "some_def"() : () -> (vector<32xf32>)
732 ///   %1 = vector.reduction "add", %0 : vector<32xf32> into f32
733 ///   vector_ext.yield %1 : f32
734 /// }
735 /// ```
736 /// is lowered to:
737 /// ```
738 /// %0 = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (vector<1xf32>) {
739 ///   %1 = "some_def"() : () -> (vector<32xf32>)
740 ///   vector_ext.yield %1 : vector<32xf32>
741 /// }
742 /// %a = vector.extract %0[0] : vector<1xf32>
743 /// %r = ("warp.reduction %a")
744 /// ```
745 struct WarpOpReduction : public OpRewritePattern<WarpExecuteOnLane0Op> {
746   WarpOpReduction(MLIRContext *context,
747                   DistributedReductionFn distributedReductionFn,
748                   PatternBenefit benefit = 1)
749       : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
750         distributedReductionFn(distributedReductionFn) {}
751 
752   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
753                                 PatternRewriter &rewriter) const override {
754     OpOperand *yieldOperand = getWarpResult(
755         warpOp, [](Operation *op) { return isa<vector::ReductionOp>(op); });
756     if (!yieldOperand)
757       return failure();
758 
759     auto reductionOp =
760         cast<vector::ReductionOp>(yieldOperand->get().getDefiningOp());
761     auto vectorType = reductionOp.getVector().getType().cast<VectorType>();
762     // Only rank 1 vectors supported.
763     if (vectorType.getRank() != 1)
764       return rewriter.notifyMatchFailure(
765           warpOp, "Only rank 1 reductions can be distributed.");
766     // Only warp_size-sized vectors supported.
767     if (static_cast<uint64_t>(vectorType.getShape()[0]) != warpOp.getWarpSize())
768       return rewriter.notifyMatchFailure(
769           warpOp, "Reduction vector dimension must match was size.");
770     // Only f32 and i32 element types are supported.
771     if (!reductionOp.getType().isF32() &&
772         !reductionOp.getType().isSignlessInteger(32))
773       return rewriter.notifyMatchFailure(
774           warpOp,
775           "Reduction distribution currently only supports 32bits types.");
776 
777     Location yieldLoc = yieldOperand->getOwner()->getLoc();
778 
779     // Return vector that will be reduced from the WarpExecuteOnLane0Op.
780     unsigned operandIndex = yieldOperand->getOperandNumber();
781     SmallVector<Value> yieldValues = {reductionOp.getVector()};
782     SmallVector<Type> retTypes = {VectorType::get({1}, reductionOp.getType())};
783     unsigned numResults = warpOp.getNumResults();
784     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
785         rewriter, warpOp, yieldValues, retTypes);
786     rewriter.setInsertionPointAfter(newWarpOp);
787 
788     // Every lane has one scalar value. These should be reduced.
789     Value laneValVec = newWarpOp.getResult(numResults);
790     Value laneVal = rewriter.create<vector::ExtractOp>(yieldLoc, laneValVec, 0);
791     laneVal =
792         distributedReductionFn(reductionOp.getLoc(), rewriter, laneVal,
793                                reductionOp.getKind(), newWarpOp.getWarpSize());
794     newWarpOp.getResult(operandIndex).replaceAllUsesWith(laneVal);
795     return success();
796   }
797 
798 private:
799   DistributedReductionFn distributedReductionFn;
800 };
801 
802 } // namespace
803 
804 void mlir::vector::populateWarpExecuteOnLane0OpToScfForPattern(
805     RewritePatternSet &patterns,
806     const WarpExecuteOnLane0LoweringOptions &options) {
807   patterns.add<WarpOpToScfForPattern>(patterns.getContext(), options);
808 }
809 
810 void mlir::vector::populateDistributeTransferWriteOpPatterns(
811     RewritePatternSet &patterns, DistributionMapFn distributionMapFn) {
812   patterns.add<WarpOpTransferWrite>(patterns.getContext(), distributionMapFn);
813 }
814 
815 void mlir::vector::populatePropagateWarpVectorDistributionPatterns(
816     RewritePatternSet &patterns) {
817   patterns.add<WarpOpElementwise, WarpOpTransferRead, WarpOpDeadResult,
818                WarpOpBroadcast, WarpOpForwardOperand, WarpOpScfForOp>(
819       patterns.getContext());
820 }
821 
822 void mlir::vector::populateDistributeReduction(
823     RewritePatternSet &patterns,
824     DistributedReductionFn distributedReductionFn) {
825   patterns.add<WarpOpReduction>(patterns.getContext(), distributedReductionFn);
826 }
827 
828 void mlir::vector::moveScalarUniformCode(WarpExecuteOnLane0Op warpOp) {
829   Block *body = warpOp.getBody();
830 
831   // Keep track of the ops we want to hoist.
832   llvm::SmallSetVector<Operation *, 8> opsToMove;
833 
834   // Helper to check if a value is or will be defined outside of the region.
835   auto isDefinedOutsideOfBody = [&](Value value) {
836     auto *definingOp = value.getDefiningOp();
837     return (definingOp && opsToMove.count(definingOp)) ||
838            warpOp.isDefinedOutsideOfRegion(value);
839   };
840 
841   // Do not use walk here, as we do not want to go into nested regions and hoist
842   // operations from there.
843   for (auto &op : body->without_terminator()) {
844     bool hasVectorResult = llvm::any_of(op.getResults(), [](Value result) {
845       return result.getType().isa<VectorType>();
846     });
847     if (!hasVectorResult && canBeHoisted(&op, isDefinedOutsideOfBody))
848       opsToMove.insert(&op);
849   }
850 
851   // Move all the ops marked as uniform outside of the region.
852   for (Operation *op : opsToMove)
853     op->moveBefore(warpOp);
854 }
855