1 //===- VectorDistribute.cpp - patterns to do vector distribution ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Affine/IR/AffineOps.h" 10 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 11 #include "mlir/Dialect/MemRef/IR/MemRef.h" 12 #include "mlir/Dialect/SCF/SCF.h" 13 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h" 14 #include "mlir/IR/BlockAndValueMapping.h" 15 #include "mlir/Transforms/SideEffectUtils.h" 16 17 using namespace mlir; 18 using namespace mlir::vector; 19 20 static LogicalResult 21 rewriteWarpOpToScfFor(RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp, 22 const WarpExecuteOnLane0LoweringOptions &options) { 23 assert(warpOp.getBodyRegion().hasOneBlock() && 24 "expected WarpOp with single block"); 25 Block *warpOpBody = &warpOp.getBodyRegion().front(); 26 Location loc = warpOp.getLoc(); 27 28 // Passed all checks. Start rewriting. 29 OpBuilder::InsertionGuard g(rewriter); 30 rewriter.setInsertionPoint(warpOp); 31 32 // Create scf.if op. 33 Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0); 34 Value isLane0 = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 35 warpOp.getLaneid(), c0); 36 auto ifOp = rewriter.create<scf::IfOp>(loc, isLane0, 37 /*withElseRegion=*/false); 38 rewriter.eraseOp(ifOp.thenBlock()->getTerminator()); 39 40 // Store vectors that are defined outside of warpOp into the scratch pad 41 // buffer. 42 SmallVector<Value> bbArgReplacements; 43 for (const auto &it : llvm::enumerate(warpOp.getArgs())) { 44 Value val = it.value(); 45 Value bbArg = warpOpBody->getArgument(it.index()); 46 47 rewriter.setInsertionPoint(ifOp); 48 Value buffer = options.warpAllocationFn(warpOp->getLoc(), rewriter, warpOp, 49 bbArg.getType()); 50 51 // Store arg vector into buffer. 52 rewriter.setInsertionPoint(ifOp); 53 auto vectorType = val.getType().cast<VectorType>(); 54 int64_t storeSize = vectorType.getShape()[0]; 55 Value storeOffset = rewriter.create<arith::MulIOp>( 56 loc, warpOp.getLaneid(), 57 rewriter.create<arith::ConstantIndexOp>(loc, storeSize)); 58 rewriter.create<vector::StoreOp>(loc, val, buffer, storeOffset); 59 60 // Load bbArg vector from buffer. 61 rewriter.setInsertionPointToStart(ifOp.thenBlock()); 62 auto bbArgType = bbArg.getType().cast<VectorType>(); 63 Value loadOp = rewriter.create<vector::LoadOp>(loc, bbArgType, buffer, c0); 64 bbArgReplacements.push_back(loadOp); 65 } 66 67 // Insert sync after all the stores and before all the loads. 68 if (!warpOp.getArgs().empty()) { 69 rewriter.setInsertionPoint(ifOp); 70 options.warpSyncronizationFn(warpOp->getLoc(), rewriter, warpOp); 71 } 72 73 // Move body of warpOp to ifOp. 74 rewriter.mergeBlocks(warpOpBody, ifOp.thenBlock(), bbArgReplacements); 75 76 // Rewrite terminator and compute replacements of WarpOp results. 77 SmallVector<Value> replacements; 78 auto yieldOp = cast<vector::YieldOp>(ifOp.thenBlock()->getTerminator()); 79 Location yieldLoc = yieldOp.getLoc(); 80 for (const auto &it : llvm::enumerate(yieldOp.operands())) { 81 Value val = it.value(); 82 Type resultType = warpOp->getResultTypes()[it.index()]; 83 rewriter.setInsertionPoint(ifOp); 84 Value buffer = options.warpAllocationFn(warpOp->getLoc(), rewriter, warpOp, 85 val.getType()); 86 87 // Store yielded value into buffer. 88 rewriter.setInsertionPoint(yieldOp); 89 if (val.getType().isa<VectorType>()) 90 rewriter.create<vector::StoreOp>(yieldLoc, val, buffer, c0); 91 else 92 rewriter.create<memref::StoreOp>(yieldLoc, val, buffer, c0); 93 94 // Load value from buffer (after warpOp). 95 rewriter.setInsertionPointAfter(ifOp); 96 if (resultType == val.getType()) { 97 // Result type and yielded value type are the same. This is a broadcast. 98 // E.g.: 99 // %r = vector.warp_execute_on_lane_0(...) -> (f32) { 100 // vector.yield %cst : f32 101 // } 102 // Both types are f32. The constant %cst is broadcasted to all lanes. 103 // This is described in more detail in the documentation of the op. 104 Value loadOp = rewriter.create<memref::LoadOp>(loc, buffer, c0); 105 replacements.push_back(loadOp); 106 } else { 107 auto loadedVectorType = resultType.cast<VectorType>(); 108 int64_t loadSize = loadedVectorType.getShape()[0]; 109 110 // loadOffset = laneid * loadSize 111 Value loadOffset = rewriter.create<arith::MulIOp>( 112 loc, warpOp.getLaneid(), 113 rewriter.create<arith::ConstantIndexOp>(loc, loadSize)); 114 Value loadOp = rewriter.create<vector::LoadOp>(loc, loadedVectorType, 115 buffer, loadOffset); 116 replacements.push_back(loadOp); 117 } 118 } 119 120 // Insert sync after all the stores and before all the loads. 121 if (!yieldOp.operands().empty()) { 122 rewriter.setInsertionPointAfter(ifOp); 123 options.warpSyncronizationFn(warpOp->getLoc(), rewriter, warpOp); 124 } 125 126 // Delete terminator and add empty scf.yield. 127 rewriter.eraseOp(yieldOp); 128 rewriter.setInsertionPointToEnd(ifOp.thenBlock()); 129 rewriter.create<scf::YieldOp>(yieldLoc); 130 131 // Compute replacements for WarpOp results. 132 rewriter.replaceOp(warpOp, replacements); 133 134 return success(); 135 } 136 137 /// Helper to create a new WarpExecuteOnLane0Op with different signature. 138 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndReplaceReturns( 139 RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp, 140 ValueRange newYieldedValues, TypeRange newReturnTypes) { 141 // Create a new op before the existing one, with the extra operands. 142 OpBuilder::InsertionGuard g(rewriter); 143 rewriter.setInsertionPoint(warpOp); 144 auto newWarpOp = rewriter.create<WarpExecuteOnLane0Op>( 145 warpOp.getLoc(), newReturnTypes, warpOp.getLaneid(), warpOp.getWarpSize(), 146 warpOp.getArgs(), warpOp.getBody()->getArgumentTypes()); 147 148 Region &opBody = warpOp.getBodyRegion(); 149 Region &newOpBody = newWarpOp.getBodyRegion(); 150 rewriter.inlineRegionBefore(opBody, newOpBody, newOpBody.begin()); 151 auto yield = 152 cast<vector::YieldOp>(newOpBody.getBlocks().begin()->getTerminator()); 153 154 rewriter.updateRootInPlace( 155 yield, [&]() { yield.operandsMutable().assign(newYieldedValues); }); 156 return newWarpOp; 157 } 158 159 /// Helper to create a new WarpExecuteOnLane0Op region with extra outputs. 160 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndAppendReturns( 161 RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp, 162 ValueRange newYieldedValues, TypeRange newReturnTypes) { 163 SmallVector<Type> types(warpOp.getResultTypes().begin(), 164 warpOp.getResultTypes().end()); 165 types.append(newReturnTypes.begin(), newReturnTypes.end()); 166 auto yield = cast<vector::YieldOp>( 167 warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); 168 SmallVector<Value> yieldValues(yield.getOperands().begin(), 169 yield.getOperands().end()); 170 yieldValues.append(newYieldedValues.begin(), newYieldedValues.end()); 171 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns( 172 rewriter, warpOp, yieldValues, types); 173 rewriter.replaceOp(warpOp, 174 newWarpOp.getResults().take_front(warpOp.getNumResults())); 175 return newWarpOp; 176 } 177 178 /// Helper to know if an op can be hoisted out of the region. 179 static bool canBeHoisted(Operation *op, 180 function_ref<bool(Value)> definedOutside) { 181 return llvm::all_of(op->getOperands(), definedOutside) && 182 isSideEffectFree(op) && op->getNumRegions() == 0; 183 } 184 185 /// Return a value yielded by `warpOp` which statifies the filter lamdba 186 /// condition and is not dead. 187 static OpOperand *getWarpResult(WarpExecuteOnLane0Op warpOp, 188 std::function<bool(Operation *)> fn) { 189 auto yield = cast<vector::YieldOp>( 190 warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); 191 for (OpOperand &yieldOperand : yield->getOpOperands()) { 192 Value yieldValues = yieldOperand.get(); 193 Operation *definedOp = yieldValues.getDefiningOp(); 194 if (definedOp && fn(definedOp)) { 195 if (!warpOp.getResult(yieldOperand.getOperandNumber()).use_empty()) 196 return &yieldOperand; 197 } 198 } 199 return {}; 200 } 201 202 // Clones `op` into a new operation that takes `operands` and returns 203 // `resultTypes`. 204 static Operation *cloneOpWithOperandsAndTypes(RewriterBase &rewriter, 205 Location loc, Operation *op, 206 ArrayRef<Value> operands, 207 ArrayRef<Type> resultTypes) { 208 OperationState res(loc, op->getName().getStringRef(), operands, resultTypes, 209 op->getAttrs()); 210 return rewriter.create(res); 211 } 212 213 /// Currently the distribution map is implicit based on the vector shape. In the 214 /// future it will be part of the op. 215 /// Example: 216 /// ``` 217 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1x16x2xf32>) { 218 /// ... 219 /// vector.yield %3 : vector<32x16x64xf32> 220 /// } 221 /// ``` 222 /// Would have an implicit map of: 223 /// `(d0, d1, d2) -> (d0, d2)` 224 static AffineMap calculateImplicitMap(Value yield, Value ret) { 225 auto srcType = yield.getType().cast<VectorType>(); 226 auto dstType = ret.getType().cast<VectorType>(); 227 SmallVector<AffineExpr> perm; 228 // Check which dimensions of the yield value are different than the dimensions 229 // of the result to know the distributed dimensions. Then associate each 230 // distributed dimension to an ID in order. 231 for (unsigned i = 0, e = srcType.getRank(); i < e; i++) { 232 if (srcType.getDimSize(i) != dstType.getDimSize(i)) 233 perm.push_back(getAffineDimExpr(i, yield.getContext())); 234 } 235 auto map = AffineMap::get(srcType.getRank(), 0, perm, yield.getContext()); 236 return map; 237 } 238 239 namespace { 240 241 struct WarpOpToScfForPattern : public OpRewritePattern<WarpExecuteOnLane0Op> { 242 WarpOpToScfForPattern(MLIRContext *context, 243 const WarpExecuteOnLane0LoweringOptions &options, 244 PatternBenefit benefit = 1) 245 : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit), 246 options(options) {} 247 248 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 249 PatternRewriter &rewriter) const override { 250 return rewriteWarpOpToScfFor(rewriter, warpOp, options); 251 } 252 253 private: 254 const WarpExecuteOnLane0LoweringOptions &options; 255 }; 256 257 /// Distribute transfer_write ops based on the affine map returned by 258 /// `distributionMapFn`. 259 /// Example: 260 /// ``` 261 /// %0 = vector.warp_execute_on_lane_0(%id){ 262 /// ... 263 /// vector.transfer_write %v, %A[%c0] : vector<32xf32>, memref<128xf32> 264 /// vector.yield 265 /// } 266 /// ``` 267 /// To 268 /// ``` 269 /// %r:3 = vector.warp_execute_on_lane_0(%id) -> (vector<1xf32>) { 270 /// ... 271 /// vector.yield %v : vector<32xf32> 272 /// } 273 /// vector.transfer_write %v, %A[%id] : vector<1xf32>, memref<128xf32> 274 struct WarpOpTransferWrite : public OpRewritePattern<vector::TransferWriteOp> { 275 WarpOpTransferWrite(MLIRContext *ctx, DistributionMapFn fn, 276 PatternBenefit b = 1) 277 : OpRewritePattern<vector::TransferWriteOp>(ctx, b), 278 distributionMapFn(fn) {} 279 280 /// Distribute the TransferWriteOp. Only 1D distributions and vector dims that 281 /// are multiples of the distribution ratio are supported at the moment. 282 LogicalResult tryDistributeOp(RewriterBase &rewriter, 283 vector::TransferWriteOp writeOp, 284 WarpExecuteOnLane0Op warpOp) const { 285 AffineMap map = distributionMapFn(writeOp); 286 SmallVector<int64_t> targetShape(writeOp.getVectorType().getShape().begin(), 287 writeOp.getVectorType().getShape().end()); 288 assert(map.getNumResults() == 1 && 289 "multi-dim distribution not implemented yet"); 290 for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { 291 unsigned position = map.getDimPosition(i); 292 if (targetShape[position] % warpOp.getWarpSize() != 0) 293 return failure(); 294 targetShape[position] = targetShape[position] / warpOp.getWarpSize(); 295 } 296 VectorType targetType = 297 VectorType::get(targetShape, writeOp.getVectorType().getElementType()); 298 299 SmallVector<Value> yieldValues = {writeOp.getVector()}; 300 SmallVector<Type> retTypes = {targetType}; 301 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( 302 rewriter, warpOp, yieldValues, retTypes); 303 rewriter.setInsertionPointAfter(newWarpOp); 304 305 // Move op outside of region: Insert clone at the insertion point and delete 306 // the old op. 307 auto newWriteOp = 308 cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation())); 309 rewriter.eraseOp(writeOp); 310 311 rewriter.setInsertionPoint(newWriteOp); 312 AffineMap indexMap = map.compose(newWriteOp.getPermutationMap()); 313 Location loc = newWriteOp.getLoc(); 314 SmallVector<Value> indices(newWriteOp.getIndices().begin(), 315 newWriteOp.getIndices().end()); 316 for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) { 317 AffineExpr d0, d1; 318 bindDims(newWarpOp.getContext(), d0, d1); 319 auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>(); 320 if (!indexExpr) 321 continue; 322 unsigned indexPos = indexExpr.getPosition(); 323 unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition(); 324 auto scale = 325 getAffineConstantExpr(targetShape[vectorPos], newWarpOp.getContext()); 326 indices[indexPos] = 327 makeComposedAffineApply(rewriter, loc, d0 + scale * d1, 328 {indices[indexPos], newWarpOp.getLaneid()}); 329 } 330 newWriteOp.getVectorMutable().assign(newWarpOp.getResults().back()); 331 newWriteOp.getIndicesMutable().assign(indices); 332 333 return success(); 334 } 335 336 /// Extract TransferWriteOps of vector<1x> into a separate warp op. 337 LogicalResult tryExtractOp(RewriterBase &rewriter, 338 vector::TransferWriteOp writeOp, 339 WarpExecuteOnLane0Op warpOp) const { 340 Location loc = writeOp.getLoc(); 341 VectorType vecType = writeOp.getVectorType(); 342 343 // Only vector<1x> is supported at the moment. 344 if (vecType.getShape().size() != 1 || vecType.getShape()[0] != 1) 345 return failure(); 346 347 // Do not process warp ops that contain only TransferWriteOps. 348 if (llvm::all_of(warpOp.getOps(), [](Operation &op) { 349 return isa<vector::TransferWriteOp, vector::YieldOp>(&op); 350 })) 351 return failure(); 352 353 SmallVector<Value> yieldValues = {writeOp.getVector()}; 354 SmallVector<Type> retTypes = {vecType}; 355 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( 356 rewriter, warpOp, yieldValues, retTypes); 357 rewriter.setInsertionPointAfter(newWarpOp); 358 359 // Create a second warp op that contains only writeOp. 360 auto secondWarpOp = rewriter.create<WarpExecuteOnLane0Op>( 361 loc, TypeRange(), newWarpOp.getLaneid(), newWarpOp.getWarpSize()); 362 Block &body = secondWarpOp.getBodyRegion().front(); 363 rewriter.setInsertionPointToStart(&body); 364 auto newWriteOp = 365 cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation())); 366 newWriteOp.getVectorMutable().assign( 367 newWarpOp.getResult(newWarpOp.getNumResults() - 1)); 368 rewriter.eraseOp(writeOp); 369 rewriter.create<vector::YieldOp>(newWarpOp.getLoc()); 370 return success(); 371 } 372 373 LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, 374 PatternRewriter &rewriter) const override { 375 // Ops with mask not supported yet. 376 if (writeOp.getMask()) 377 return failure(); 378 379 auto warpOp = dyn_cast<WarpExecuteOnLane0Op>(writeOp->getParentOp()); 380 if (!warpOp) 381 return failure(); 382 383 // There must be no op with a side effect after writeOp. 384 Operation *nextOp = writeOp.getOperation(); 385 while ((nextOp = nextOp->getNextNode())) 386 if (!isSideEffectFree(nextOp)) 387 return failure(); 388 389 if (!llvm::all_of(writeOp->getOperands(), [&](Value value) { 390 return writeOp.getVector() == value || 391 warpOp.isDefinedOutsideOfRegion(value); 392 })) 393 return failure(); 394 395 if (succeeded(tryDistributeOp(rewriter, writeOp, warpOp))) 396 return success(); 397 398 if (succeeded(tryExtractOp(rewriter, writeOp, warpOp))) 399 return success(); 400 401 return failure(); 402 } 403 404 private: 405 DistributionMapFn distributionMapFn; 406 }; 407 408 /// Sink out elementwise op feeding into a warp op yield. 409 /// ``` 410 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { 411 /// ... 412 /// %3 = arith.addf %1, %2 : vector<32xf32> 413 /// vector.yield %3 : vector<32xf32> 414 /// } 415 /// ``` 416 /// To 417 /// ``` 418 /// %r:3 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>, 419 /// vector<1xf32>, vector<1xf32>) { 420 /// ... 421 /// %4 = arith.addf %2, %3 : vector<32xf32> 422 /// vector.yield %4, %2, %3 : vector<32xf32>, vector<32xf32>, 423 /// vector<32xf32> 424 /// } 425 /// %0 = arith.addf %r#1, %r#2 : vector<1xf32> 426 struct WarpOpElementwise : public OpRewritePattern<WarpExecuteOnLane0Op> { 427 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 428 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 429 PatternRewriter &rewriter) const override { 430 OpOperand *yieldOperand = getWarpResult(warpOp, [](Operation *op) { 431 return OpTrait::hasElementwiseMappableTraits(op); 432 }); 433 if (!yieldOperand) 434 return failure(); 435 Operation *elementWise = yieldOperand->get().getDefiningOp(); 436 unsigned operandIndex = yieldOperand->getOperandNumber(); 437 Value distributedVal = warpOp.getResult(operandIndex); 438 SmallVector<Value> yieldValues; 439 SmallVector<Type> retTypes; 440 Location loc = warpOp.getLoc(); 441 for (OpOperand &operand : elementWise->getOpOperands()) { 442 Type targetType; 443 if (auto vecType = distributedVal.getType().dyn_cast<VectorType>()) { 444 // If the result type is a vector, the operands must also be vectors. 445 auto operandType = operand.get().getType().cast<VectorType>(); 446 targetType = 447 VectorType::get(vecType.getShape(), operandType.getElementType()); 448 } else { 449 auto operandType = operand.get().getType(); 450 assert(!operandType.isa<VectorType>() && 451 "unexpected yield of vector from op with scalar result type"); 452 targetType = operandType; 453 } 454 retTypes.push_back(targetType); 455 yieldValues.push_back(operand.get()); 456 } 457 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( 458 rewriter, warpOp, yieldValues, retTypes); 459 rewriter.setInsertionPointAfter(newWarpOp); 460 SmallVector<Value> newOperands(elementWise->getOperands().begin(), 461 elementWise->getOperands().end()); 462 for (unsigned i : llvm::seq(unsigned(0), elementWise->getNumOperands())) { 463 newOperands[i] = newWarpOp.getResult(i + warpOp.getNumResults()); 464 } 465 OpBuilder::InsertionGuard g(rewriter); 466 rewriter.setInsertionPointAfter(newWarpOp); 467 Operation *newOp = cloneOpWithOperandsAndTypes( 468 rewriter, loc, elementWise, newOperands, 469 {newWarpOp.getResult(operandIndex).getType()}); 470 newWarpOp.getResult(operandIndex).replaceAllUsesWith(newOp->getResult(0)); 471 return success(); 472 } 473 }; 474 475 /// Sink out transfer_read op feeding into a warp op yield. 476 /// ``` 477 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { 478 /// ... 479 // %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, 480 // vector<32xf32> 481 /// vector.yield %2 : vector<32xf32> 482 /// } 483 /// ``` 484 /// To 485 /// ``` 486 /// %dead = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>, 487 /// vector<1xf32>, vector<1xf32>) { 488 /// ... 489 /// %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, 490 /// vector<32xf32> vector.yield %2 : vector<32xf32> 491 /// } 492 /// %0 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, vector<1xf32> 493 struct WarpOpTransferRead : public OpRewritePattern<WarpExecuteOnLane0Op> { 494 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 495 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 496 PatternRewriter &rewriter) const override { 497 OpOperand *operand = getWarpResult( 498 warpOp, [](Operation *op) { return isa<vector::TransferReadOp>(op); }); 499 if (!operand) 500 return failure(); 501 auto read = operand->get().getDefiningOp<vector::TransferReadOp>(); 502 unsigned operandIndex = operand->getOperandNumber(); 503 Value distributedVal = warpOp.getResult(operandIndex); 504 505 SmallVector<Value, 4> indices(read.getIndices().begin(), 506 read.getIndices().end()); 507 AffineMap map = calculateImplicitMap(read.getResult(), distributedVal); 508 AffineMap indexMap = map.compose(read.getPermutationMap()); 509 OpBuilder::InsertionGuard g(rewriter); 510 rewriter.setInsertionPointAfter(warpOp); 511 for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) { 512 AffineExpr d0, d1; 513 bindDims(read.getContext(), d0, d1); 514 auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>(); 515 if (!indexExpr) 516 continue; 517 unsigned indexPos = indexExpr.getPosition(); 518 unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition(); 519 int64_t scale = 520 distributedVal.getType().cast<VectorType>().getDimSize(vectorPos); 521 indices[indexPos] = 522 makeComposedAffineApply(rewriter, read.getLoc(), d0 + scale * d1, 523 {indices[indexPos], warpOp.getLaneid()}); 524 } 525 Value newRead = rewriter.create<vector::TransferReadOp>( 526 read.getLoc(), distributedVal.getType(), read.getSource(), indices, 527 read.getPermutationMapAttr(), read.getPadding(), read.getMask(), 528 read.getInBoundsAttr()); 529 distributedVal.replaceAllUsesWith(newRead); 530 return success(); 531 } 532 }; 533 534 /// Remove any result that has no use along with the matching yieldOp operand. 535 // TODO: Move this in WarpExecuteOnLane0Op canonicalization. 536 struct WarpOpDeadResult : public OpRewritePattern<WarpExecuteOnLane0Op> { 537 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 538 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 539 PatternRewriter &rewriter) const override { 540 SmallVector<Type> resultTypes; 541 SmallVector<Value> yieldValues; 542 auto yield = cast<vector::YieldOp>( 543 warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); 544 for (OpResult result : warpOp.getResults()) { 545 if (result.use_empty()) 546 continue; 547 resultTypes.push_back(result.getType()); 548 yieldValues.push_back(yield.getOperand(result.getResultNumber())); 549 } 550 if (yield.getNumOperands() == yieldValues.size()) 551 return failure(); 552 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns( 553 rewriter, warpOp, yieldValues, resultTypes); 554 unsigned resultIndex = 0; 555 for (OpResult result : warpOp.getResults()) { 556 if (result.use_empty()) 557 continue; 558 result.replaceAllUsesWith(newWarpOp.getResult(resultIndex++)); 559 } 560 rewriter.eraseOp(warpOp); 561 return success(); 562 } 563 }; 564 565 // If an operand is directly yielded out of the region we can forward it 566 // directly and it doesn't need to go through the region. 567 struct WarpOpForwardOperand : public OpRewritePattern<WarpExecuteOnLane0Op> { 568 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 569 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 570 PatternRewriter &rewriter) const override { 571 SmallVector<Type> resultTypes; 572 SmallVector<Value> yieldValues; 573 auto yield = cast<vector::YieldOp>( 574 warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); 575 Value valForwarded; 576 unsigned resultIndex; 577 for (OpOperand &operand : yield->getOpOperands()) { 578 Value result = warpOp.getResult(operand.getOperandNumber()); 579 if (result.use_empty()) 580 continue; 581 582 // Assume all the values coming from above are uniform. 583 if (!warpOp.getBodyRegion().isAncestor(operand.get().getParentRegion())) { 584 if (result.getType() != operand.get().getType()) 585 continue; 586 valForwarded = operand.get(); 587 resultIndex = operand.getOperandNumber(); 588 break; 589 } 590 auto arg = operand.get().dyn_cast<BlockArgument>(); 591 if (!arg || arg.getOwner()->getParentOp() != warpOp.getOperation()) 592 continue; 593 Value warpOperand = warpOp.getArgs()[arg.getArgNumber()]; 594 if (result.getType() != warpOperand.getType()) 595 continue; 596 valForwarded = warpOperand; 597 resultIndex = operand.getOperandNumber(); 598 break; 599 } 600 if (!valForwarded) 601 return failure(); 602 warpOp.getResult(resultIndex).replaceAllUsesWith(valForwarded); 603 return success(); 604 } 605 }; 606 607 struct WarpOpBroadcast : public OpRewritePattern<WarpExecuteOnLane0Op> { 608 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 609 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 610 PatternRewriter &rewriter) const override { 611 OpOperand *operand = getWarpResult( 612 warpOp, [](Operation *op) { return isa<vector::BroadcastOp>(op); }); 613 if (!operand) 614 return failure(); 615 unsigned int operandNumber = operand->getOperandNumber(); 616 auto broadcastOp = operand->get().getDefiningOp<vector::BroadcastOp>(); 617 Location loc = broadcastOp.getLoc(); 618 auto destVecType = 619 warpOp->getResultTypes()[operandNumber].cast<VectorType>(); 620 WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( 621 rewriter, warpOp, {broadcastOp.getSource()}, 622 {broadcastOp.getSource().getType()}); 623 rewriter.setInsertionPointAfter(newWarpOp); 624 Value broadcasted = rewriter.create<vector::BroadcastOp>( 625 loc, destVecType, newWarpOp->getResults().back()); 626 newWarpOp->getResult(operandNumber).replaceAllUsesWith(broadcasted); 627 628 return success(); 629 } 630 }; 631 632 /// Sink scf.for region out of WarpExecuteOnLane0Op. This can be done only if 633 /// the scf.ForOp is the last operation in the region so that it doesn't change 634 /// the order of execution. This creates a new scf.for region after the 635 /// WarpExecuteOnLane0Op. The new scf.for region will contain a new 636 /// WarpExecuteOnLane0Op region. Example: 637 /// ``` 638 /// %w = vector.warp_execute_on_lane_0(%laneid) -> (vector<4xf32>) { 639 /// ... 640 /// %v1 = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%arg4 = %v) 641 /// -> (vector<128xf32>) { 642 /// ... 643 /// scf.yield %r : vector<128xf32> 644 /// } 645 /// vector.yield %v1 : vector<128xf32> 646 /// } 647 /// ``` 648 /// To: 649 /// %w0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<4xf32>) { 650 /// ... 651 /// vector.yield %v : vector<128xf32> 652 /// } 653 /// %w = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%varg = %q0) 654 /// -> (vector<4xf32>) { 655 /// %iw = vector.warp_execute_on_lane_0(%laneid) 656 /// args(%varg : vector<4xf32>) -> (vector<4xf32>) { 657 /// ^bb0(%arg: vector<128xf32>): 658 /// ... 659 /// vector.yield %ir : vector<128xf32> 660 /// } 661 /// scf.yield %iw : vector<4xf32> 662 /// } 663 /// ``` 664 struct WarpOpScfForOp : public OpRewritePattern<WarpExecuteOnLane0Op> { 665 using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern; 666 LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, 667 PatternRewriter &rewriter) const override { 668 auto yield = cast<vector::YieldOp>( 669 warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); 670 // Only pick up forOp if it is the last op in the region. 671 Operation *lastNode = yield->getPrevNode(); 672 auto forOp = dyn_cast_or_null<scf::ForOp>(lastNode); 673 if (!forOp) 674 return failure(); 675 SmallVector<Value> newOperands; 676 SmallVector<unsigned> resultIdx; 677 // Collect all the outputs coming from the forOp. 678 for (OpOperand &yieldOperand : yield->getOpOperands()) { 679 if (yieldOperand.get().getDefiningOp() != forOp.getOperation()) 680 continue; 681 auto forResult = yieldOperand.get().cast<OpResult>(); 682 newOperands.push_back(warpOp.getResult(yieldOperand.getOperandNumber())); 683 yieldOperand.set(forOp.getIterOperands()[forResult.getResultNumber()]); 684 resultIdx.push_back(yieldOperand.getOperandNumber()); 685 } 686 OpBuilder::InsertionGuard g(rewriter); 687 rewriter.setInsertionPointAfter(warpOp); 688 // Create a new for op outside the region with a WarpExecuteOnLane0Op region 689 // inside. 690 auto newForOp = rewriter.create<scf::ForOp>( 691 forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), 692 forOp.getStep(), newOperands); 693 rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin()); 694 auto innerWarp = rewriter.create<WarpExecuteOnLane0Op>( 695 warpOp.getLoc(), newForOp.getResultTypes(), warpOp.getLaneid(), 696 warpOp.getWarpSize(), newForOp.getRegionIterArgs(), 697 forOp.getResultTypes()); 698 699 SmallVector<Value> argMapping; 700 argMapping.push_back(newForOp.getInductionVar()); 701 for (Value args : innerWarp.getBody()->getArguments()) { 702 argMapping.push_back(args); 703 } 704 SmallVector<Value> yieldOperands; 705 for (Value operand : forOp.getBody()->getTerminator()->getOperands()) 706 yieldOperands.push_back(operand); 707 rewriter.eraseOp(forOp.getBody()->getTerminator()); 708 rewriter.mergeBlocks(forOp.getBody(), innerWarp.getBody(), argMapping); 709 rewriter.setInsertionPoint(innerWarp.getBody(), innerWarp.getBody()->end()); 710 rewriter.create<vector::YieldOp>(innerWarp.getLoc(), yieldOperands); 711 rewriter.setInsertionPointAfter(innerWarp); 712 rewriter.create<scf::YieldOp>(forOp.getLoc(), innerWarp.getResults()); 713 rewriter.eraseOp(forOp); 714 // Replace the warpOp result coming from the original ForOp. 715 for (const auto &res : llvm::enumerate(resultIdx)) { 716 warpOp.getResult(res.value()) 717 .replaceAllUsesWith(newForOp.getResult(res.index())); 718 newForOp->setOperand(res.index() + 3, warpOp.getResult(res.value())); 719 } 720 return success(); 721 } 722 }; 723 724 } // namespace 725 726 void mlir::vector::populateWarpExecuteOnLane0OpToScfForPattern( 727 RewritePatternSet &patterns, 728 const WarpExecuteOnLane0LoweringOptions &options) { 729 patterns.add<WarpOpToScfForPattern>(patterns.getContext(), options); 730 } 731 732 void mlir::vector::populateDistributeTransferWriteOpPatterns( 733 RewritePatternSet &patterns, DistributionMapFn distributionMapFn) { 734 patterns.add<WarpOpTransferWrite>(patterns.getContext(), distributionMapFn); 735 } 736 737 void mlir::vector::populatePropagateWarpVectorDistributionPatterns( 738 RewritePatternSet &patterns) { 739 patterns.add<WarpOpElementwise, WarpOpTransferRead, WarpOpDeadResult, 740 WarpOpBroadcast, WarpOpForwardOperand, WarpOpScfForOp>( 741 patterns.getContext()); 742 } 743 744 void mlir::vector::moveScalarUniformCode(WarpExecuteOnLane0Op warpOp) { 745 Block *body = warpOp.getBody(); 746 747 // Keep track of the ops we want to hoist. 748 llvm::SmallSetVector<Operation *, 8> opsToMove; 749 750 // Helper to check if a value is or will be defined outside of the region. 751 auto isDefinedOutsideOfBody = [&](Value value) { 752 auto *definingOp = value.getDefiningOp(); 753 return (definingOp && opsToMove.count(definingOp)) || 754 warpOp.isDefinedOutsideOfRegion(value); 755 }; 756 757 // Do not use walk here, as we do not want to go into nested regions and hoist 758 // operations from there. 759 for (auto &op : body->without_terminator()) { 760 bool hasVectorResult = llvm::any_of(op.getResults(), [](Value result) { 761 return result.getType().isa<VectorType>(); 762 }); 763 if (!hasVectorResult && canBeHoisted(&op, isDefinedOutsideOfBody)) 764 opsToMove.insert(&op); 765 } 766 767 // Move all the ops marked as uniform outside of the region. 768 for (Operation *op : opsToMove) 769 op->moveBefore(warpOp); 770 } 771