1 //===- VectorDistribute.cpp - patterns to do vector distribution ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Affine/IR/AffineOps.h"
10 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
11 #include "mlir/Dialect/MemRef/IR/MemRef.h"
12 #include "mlir/Dialect/SCF/IR/SCF.h"
13 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
14 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
15 #include "mlir/IR/BlockAndValueMapping.h"
16 #include "mlir/Transforms/SideEffectUtils.h"
17 
18 #include <utility>
19 
20 using namespace mlir;
21 using namespace mlir::vector;
22 
23 static LogicalResult
24 rewriteWarpOpToScfFor(RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
25                       const WarpExecuteOnLane0LoweringOptions &options) {
26   assert(warpOp.getBodyRegion().hasOneBlock() &&
27          "expected WarpOp with single block");
28   Block *warpOpBody = &warpOp.getBodyRegion().front();
29   Location loc = warpOp.getLoc();
30 
31   // Passed all checks. Start rewriting.
32   OpBuilder::InsertionGuard g(rewriter);
33   rewriter.setInsertionPoint(warpOp);
34 
35   // Create scf.if op.
36   Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
37   Value isLane0 = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
38                                                  warpOp.getLaneid(), c0);
39   auto ifOp = rewriter.create<scf::IfOp>(loc, isLane0,
40                                          /*withElseRegion=*/false);
41   rewriter.eraseOp(ifOp.thenBlock()->getTerminator());
42 
43   // Store vectors that are defined outside of warpOp into the scratch pad
44   // buffer.
45   SmallVector<Value> bbArgReplacements;
46   for (const auto &it : llvm::enumerate(warpOp.getArgs())) {
47     Value val = it.value();
48     Value bbArg = warpOpBody->getArgument(it.index());
49 
50     rewriter.setInsertionPoint(ifOp);
51     Value buffer =
52         options.warpAllocationFn(loc, rewriter, warpOp, bbArg.getType());
53 
54     // Store arg vector into buffer.
55     rewriter.setInsertionPoint(ifOp);
56     auto vectorType = val.getType().cast<VectorType>();
57     int64_t storeSize = vectorType.getShape()[0];
58     Value storeOffset = rewriter.create<arith::MulIOp>(
59         loc, warpOp.getLaneid(),
60         rewriter.create<arith::ConstantIndexOp>(loc, storeSize));
61     rewriter.create<vector::StoreOp>(loc, val, buffer, storeOffset);
62 
63     // Load bbArg vector from buffer.
64     rewriter.setInsertionPointToStart(ifOp.thenBlock());
65     auto bbArgType = bbArg.getType().cast<VectorType>();
66     Value loadOp = rewriter.create<vector::LoadOp>(loc, bbArgType, buffer, c0);
67     bbArgReplacements.push_back(loadOp);
68   }
69 
70   // Insert sync after all the stores and before all the loads.
71   if (!warpOp.getArgs().empty()) {
72     rewriter.setInsertionPoint(ifOp);
73     options.warpSyncronizationFn(loc, rewriter, warpOp);
74   }
75 
76   // Move body of warpOp to ifOp.
77   rewriter.mergeBlocks(warpOpBody, ifOp.thenBlock(), bbArgReplacements);
78 
79   // Rewrite terminator and compute replacements of WarpOp results.
80   SmallVector<Value> replacements;
81   auto yieldOp = cast<vector::YieldOp>(ifOp.thenBlock()->getTerminator());
82   Location yieldLoc = yieldOp.getLoc();
83   for (const auto &it : llvm::enumerate(yieldOp.operands())) {
84     Value val = it.value();
85     Type resultType = warpOp->getResultTypes()[it.index()];
86     rewriter.setInsertionPoint(ifOp);
87     Value buffer =
88         options.warpAllocationFn(loc, rewriter, warpOp, val.getType());
89 
90     // Store yielded value into buffer.
91     rewriter.setInsertionPoint(yieldOp);
92     if (val.getType().isa<VectorType>())
93       rewriter.create<vector::StoreOp>(yieldLoc, val, buffer, c0);
94     else
95       rewriter.create<memref::StoreOp>(yieldLoc, val, buffer, c0);
96 
97     // Load value from buffer (after warpOp).
98     rewriter.setInsertionPointAfter(ifOp);
99     if (resultType == val.getType()) {
100       // Result type and yielded value type are the same. This is a broadcast.
101       // E.g.:
102       // %r = vector.warp_execute_on_lane_0(...) -> (f32) {
103       //   vector.yield %cst : f32
104       // }
105       // Both types are f32. The constant %cst is broadcasted to all lanes.
106       // This is described in more detail in the documentation of the op.
107       Value loadOp = rewriter.create<memref::LoadOp>(loc, buffer, c0);
108       replacements.push_back(loadOp);
109     } else {
110       auto loadedVectorType = resultType.cast<VectorType>();
111       int64_t loadSize = loadedVectorType.getShape()[0];
112 
113       // loadOffset = laneid * loadSize
114       Value loadOffset = rewriter.create<arith::MulIOp>(
115           loc, warpOp.getLaneid(),
116           rewriter.create<arith::ConstantIndexOp>(loc, loadSize));
117       Value loadOp = rewriter.create<vector::LoadOp>(loc, loadedVectorType,
118                                                      buffer, loadOffset);
119       replacements.push_back(loadOp);
120     }
121   }
122 
123   // Insert sync after all the stores and before all the loads.
124   if (!yieldOp.operands().empty()) {
125     rewriter.setInsertionPointAfter(ifOp);
126     options.warpSyncronizationFn(loc, rewriter, warpOp);
127   }
128 
129   // Delete terminator and add empty scf.yield.
130   rewriter.eraseOp(yieldOp);
131   rewriter.setInsertionPointToEnd(ifOp.thenBlock());
132   rewriter.create<scf::YieldOp>(yieldLoc);
133 
134   // Compute replacements for WarpOp results.
135   rewriter.replaceOp(warpOp, replacements);
136 
137   return success();
138 }
139 
140 /// Helper to create a new WarpExecuteOnLane0Op with different signature.
141 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndReplaceReturns(
142     RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
143     ValueRange newYieldedValues, TypeRange newReturnTypes) {
144   // Create a new op before the existing one, with the extra operands.
145   OpBuilder::InsertionGuard g(rewriter);
146   rewriter.setInsertionPoint(warpOp);
147   auto newWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
148       warpOp.getLoc(), newReturnTypes, warpOp.getLaneid(), warpOp.getWarpSize(),
149       warpOp.getArgs(), warpOp.getBody()->getArgumentTypes());
150 
151   Region &opBody = warpOp.getBodyRegion();
152   Region &newOpBody = newWarpOp.getBodyRegion();
153   Block &newOpFirstBlock = newOpBody.front();
154   rewriter.inlineRegionBefore(opBody, newOpBody, newOpBody.begin());
155   rewriter.eraseBlock(&newOpFirstBlock);
156   assert(newWarpOp.getWarpRegion().hasOneBlock() &&
157          "expected WarpOp with single block");
158 
159   auto yield =
160       cast<vector::YieldOp>(newOpBody.getBlocks().begin()->getTerminator());
161 
162   rewriter.updateRootInPlace(
163       yield, [&]() { yield.operandsMutable().assign(newYieldedValues); });
164   return newWarpOp;
165 }
166 
167 /// Helper to create a new WarpExecuteOnLane0Op region with extra outputs.
168 static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndAppendReturns(
169     RewriterBase &rewriter, WarpExecuteOnLane0Op warpOp,
170     ValueRange newYieldedValues, TypeRange newReturnTypes) {
171   SmallVector<Type> types(warpOp.getResultTypes().begin(),
172                           warpOp.getResultTypes().end());
173   types.append(newReturnTypes.begin(), newReturnTypes.end());
174   auto yield = cast<vector::YieldOp>(
175       warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
176   SmallVector<Value> yieldValues(yield.getOperands().begin(),
177                                  yield.getOperands().end());
178   yieldValues.append(newYieldedValues.begin(), newYieldedValues.end());
179   WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
180       rewriter, warpOp, yieldValues, types);
181   rewriter.replaceOp(warpOp,
182                      newWarpOp.getResults().take_front(warpOp.getNumResults()));
183   return newWarpOp;
184 }
185 
186 /// Helper to know if an op can be hoisted out of the region.
187 static bool canBeHoisted(Operation *op,
188                          function_ref<bool(Value)> definedOutside) {
189   return llvm::all_of(op->getOperands(), definedOutside) &&
190          isSideEffectFree(op) && op->getNumRegions() == 0;
191 }
192 
193 /// Return a value yielded by `warpOp` which statifies the filter lamdba
194 /// condition and is not dead.
195 static OpOperand *getWarpResult(WarpExecuteOnLane0Op warpOp,
196                                 std::function<bool(Operation *)> fn) {
197   auto yield = cast<vector::YieldOp>(
198       warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
199   for (OpOperand &yieldOperand : yield->getOpOperands()) {
200     Value yieldValues = yieldOperand.get();
201     Operation *definedOp = yieldValues.getDefiningOp();
202     if (definedOp && fn(definedOp)) {
203       if (!warpOp.getResult(yieldOperand.getOperandNumber()).use_empty())
204         return &yieldOperand;
205     }
206   }
207   return {};
208 }
209 
210 // Clones `op` into a new operation that takes `operands` and returns
211 // `resultTypes`.
212 static Operation *cloneOpWithOperandsAndTypes(RewriterBase &rewriter,
213                                               Location loc, Operation *op,
214                                               ArrayRef<Value> operands,
215                                               ArrayRef<Type> resultTypes) {
216   OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
217                      op->getAttrs());
218   return rewriter.create(res);
219 }
220 
221 /// Currently the distribution map is implicit based on the vector shape. In the
222 /// future it will be part of the op.
223 /// Example:
224 /// ```
225 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1x16x2xf32>) {
226 ///   ...
227 ///   vector.yield %3 : vector<32x16x64xf32>
228 /// }
229 /// ```
230 /// Would have an implicit map of:
231 /// `(d0, d1, d2) -> (d0, d2)`
232 static AffineMap calculateImplicitMap(Value yield, Value ret) {
233   auto srcType = yield.getType().cast<VectorType>();
234   auto dstType = ret.getType().cast<VectorType>();
235   SmallVector<AffineExpr> perm;
236   // Check which dimensions of the yield value are different than the dimensions
237   // of the result to know the distributed dimensions. Then associate each
238   // distributed dimension to an ID in order.
239   for (unsigned i = 0, e = srcType.getRank(); i < e; i++) {
240     if (srcType.getDimSize(i) != dstType.getDimSize(i))
241       perm.push_back(getAffineDimExpr(i, yield.getContext()));
242   }
243   auto map = AffineMap::get(srcType.getRank(), 0, perm, yield.getContext());
244   return map;
245 }
246 
247 namespace {
248 
249 struct WarpOpToScfForPattern : public OpRewritePattern<WarpExecuteOnLane0Op> {
250   WarpOpToScfForPattern(MLIRContext *context,
251                         const WarpExecuteOnLane0LoweringOptions &options,
252                         PatternBenefit benefit = 1)
253       : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
254         options(options) {}
255 
256   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
257                                 PatternRewriter &rewriter) const override {
258     return rewriteWarpOpToScfFor(rewriter, warpOp, options);
259   }
260 
261 private:
262   const WarpExecuteOnLane0LoweringOptions &options;
263 };
264 
265 /// Distribute transfer_write ops based on the affine map returned by
266 /// `distributionMapFn`.
267 /// Example:
268 /// ```
269 /// %0 = vector.warp_execute_on_lane_0(%id){
270 ///   ...
271 ///   vector.transfer_write %v, %A[%c0] : vector<32xf32>, memref<128xf32>
272 ///   vector.yield
273 /// }
274 /// ```
275 /// To
276 /// ```
277 /// %r:3 = vector.warp_execute_on_lane_0(%id) -> (vector<1xf32>) {
278 ///   ...
279 ///   vector.yield %v : vector<32xf32>
280 /// }
281 /// vector.transfer_write %v, %A[%id] : vector<1xf32>, memref<128xf32>
282 struct WarpOpTransferWrite : public OpRewritePattern<vector::TransferWriteOp> {
283   WarpOpTransferWrite(MLIRContext *ctx, DistributionMapFn fn,
284                       PatternBenefit b = 1)
285       : OpRewritePattern<vector::TransferWriteOp>(ctx, b),
286         distributionMapFn(std::move(fn)) {}
287 
288   /// Distribute the TransferWriteOp. Only 1D distributions and vector dims that
289   /// are multiples of the distribution ratio are supported at the moment.
290   LogicalResult tryDistributeOp(RewriterBase &rewriter,
291                                 vector::TransferWriteOp writeOp,
292                                 WarpExecuteOnLane0Op warpOp) const {
293     AffineMap map = distributionMapFn(writeOp);
294     SmallVector<int64_t> targetShape(writeOp.getVectorType().getShape().begin(),
295                                      writeOp.getVectorType().getShape().end());
296     assert(map.getNumResults() == 1 &&
297            "multi-dim distribution not implemented yet");
298     for (unsigned i = 0, e = map.getNumResults(); i < e; i++) {
299       unsigned position = map.getDimPosition(i);
300       if (targetShape[position] % warpOp.getWarpSize() != 0)
301         return failure();
302       targetShape[position] = targetShape[position] / warpOp.getWarpSize();
303     }
304     VectorType targetType =
305         VectorType::get(targetShape, writeOp.getVectorType().getElementType());
306 
307     SmallVector<Value> yieldValues = {writeOp.getVector()};
308     SmallVector<Type> retTypes = {targetType};
309     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
310         rewriter, warpOp, yieldValues, retTypes);
311     rewriter.setInsertionPointAfter(newWarpOp);
312 
313     // Move op outside of region: Insert clone at the insertion point and delete
314     // the old op.
315     auto newWriteOp =
316         cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
317     rewriter.eraseOp(writeOp);
318 
319     rewriter.setInsertionPoint(newWriteOp);
320     AffineMap indexMap = map.compose(newWriteOp.getPermutationMap());
321     Location loc = newWriteOp.getLoc();
322     SmallVector<Value> indices(newWriteOp.getIndices().begin(),
323                                newWriteOp.getIndices().end());
324     for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
325       AffineExpr d0, d1;
326       bindDims(newWarpOp.getContext(), d0, d1);
327       auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
328       if (!indexExpr)
329         continue;
330       unsigned indexPos = indexExpr.getPosition();
331       unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
332       auto scale =
333           getAffineConstantExpr(targetShape[vectorPos], newWarpOp.getContext());
334       indices[indexPos] =
335           makeComposedAffineApply(rewriter, loc, d0 + scale * d1,
336                                   {indices[indexPos], newWarpOp.getLaneid()});
337     }
338     newWriteOp.getVectorMutable().assign(newWarpOp.getResults().back());
339     newWriteOp.getIndicesMutable().assign(indices);
340 
341     return success();
342   }
343 
344   /// Extract TransferWriteOps of vector<1x> into a separate warp op.
345   LogicalResult tryExtractOp(RewriterBase &rewriter,
346                              vector::TransferWriteOp writeOp,
347                              WarpExecuteOnLane0Op warpOp) const {
348     Location loc = writeOp.getLoc();
349     VectorType vecType = writeOp.getVectorType();
350 
351     // Only sink out vector of 1 element for now to not serialize large vector
352     // store. This can later be controlled by user.
353     if (vecType.getNumElements() != 1)
354       return failure();
355 
356     // Do not process warp ops that contain only TransferWriteOps.
357     if (llvm::all_of(warpOp.getOps(), [](Operation &op) {
358           return isa<vector::TransferWriteOp, vector::YieldOp>(&op);
359         }))
360       return failure();
361 
362     SmallVector<Value> yieldValues = {writeOp.getVector()};
363     SmallVector<Type> retTypes = {vecType};
364     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
365         rewriter, warpOp, yieldValues, retTypes);
366     rewriter.setInsertionPointAfter(newWarpOp);
367 
368     // Create a second warp op that contains only writeOp.
369     auto secondWarpOp = rewriter.create<WarpExecuteOnLane0Op>(
370         loc, TypeRange(), newWarpOp.getLaneid(), newWarpOp.getWarpSize());
371     Block &body = secondWarpOp.getBodyRegion().front();
372     rewriter.setInsertionPointToStart(&body);
373     auto newWriteOp =
374         cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation()));
375     newWriteOp.getVectorMutable().assign(
376         newWarpOp.getResult(newWarpOp.getNumResults() - 1));
377     rewriter.eraseOp(writeOp);
378     rewriter.create<vector::YieldOp>(newWarpOp.getLoc());
379     return success();
380   }
381 
382   LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
383                                 PatternRewriter &rewriter) const override {
384     // Ops with mask not supported yet.
385     if (writeOp.getMask())
386       return failure();
387 
388     auto warpOp = dyn_cast<WarpExecuteOnLane0Op>(writeOp->getParentOp());
389     if (!warpOp)
390       return failure();
391 
392     // There must be no op with a side effect after writeOp.
393     Operation *nextOp = writeOp.getOperation();
394     while ((nextOp = nextOp->getNextNode()))
395       if (!isSideEffectFree(nextOp))
396         return failure();
397 
398     if (!llvm::all_of(writeOp->getOperands(), [&](Value value) {
399           return writeOp.getVector() == value ||
400                  warpOp.isDefinedOutsideOfRegion(value);
401         }))
402       return failure();
403 
404     if (succeeded(tryDistributeOp(rewriter, writeOp, warpOp)))
405       return success();
406 
407     if (succeeded(tryExtractOp(rewriter, writeOp, warpOp)))
408       return success();
409 
410     return failure();
411   }
412 
413 private:
414   DistributionMapFn distributionMapFn;
415 };
416 
417 /// Sink out elementwise op feeding into a warp op yield.
418 /// ```
419 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
420 ///   ...
421 ///   %3 = arith.addf %1, %2 : vector<32xf32>
422 ///   vector.yield %3 : vector<32xf32>
423 /// }
424 /// ```
425 /// To
426 /// ```
427 /// %r:3 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
428 /// vector<1xf32>, vector<1xf32>) {
429 ///   ...
430 ///   %4 = arith.addf %2, %3 : vector<32xf32>
431 ///   vector.yield %4, %2, %3 : vector<32xf32>, vector<32xf32>,
432 ///   vector<32xf32>
433 /// }
434 /// %0 = arith.addf %r#1, %r#2 : vector<1xf32>
435 struct WarpOpElementwise : public OpRewritePattern<WarpExecuteOnLane0Op> {
436   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
437   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
438                                 PatternRewriter &rewriter) const override {
439     OpOperand *yieldOperand = getWarpResult(warpOp, [](Operation *op) {
440       return OpTrait::hasElementwiseMappableTraits(op);
441     });
442     if (!yieldOperand)
443       return failure();
444     Operation *elementWise = yieldOperand->get().getDefiningOp();
445     unsigned operandIndex = yieldOperand->getOperandNumber();
446     Value distributedVal = warpOp.getResult(operandIndex);
447     SmallVector<Value> yieldValues;
448     SmallVector<Type> retTypes;
449     Location loc = warpOp.getLoc();
450     for (OpOperand &operand : elementWise->getOpOperands()) {
451       Type targetType;
452       if (auto vecType = distributedVal.getType().dyn_cast<VectorType>()) {
453         // If the result type is a vector, the operands must also be vectors.
454         auto operandType = operand.get().getType().cast<VectorType>();
455         targetType =
456             VectorType::get(vecType.getShape(), operandType.getElementType());
457       } else {
458         auto operandType = operand.get().getType();
459         assert(!operandType.isa<VectorType>() &&
460                "unexpected yield of vector from op with scalar result type");
461         targetType = operandType;
462       }
463       retTypes.push_back(targetType);
464       yieldValues.push_back(operand.get());
465     }
466     unsigned numResults = warpOp.getNumResults();
467     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
468         rewriter, warpOp, yieldValues, retTypes);
469     rewriter.setInsertionPointAfter(newWarpOp);
470     SmallVector<Value> newOperands(elementWise->getOperands().begin(),
471                                    elementWise->getOperands().end());
472     for (unsigned i : llvm::seq(unsigned(0), elementWise->getNumOperands())) {
473       newOperands[i] = newWarpOp.getResult(i + numResults);
474     }
475     OpBuilder::InsertionGuard g(rewriter);
476     rewriter.setInsertionPointAfter(newWarpOp);
477     Operation *newOp = cloneOpWithOperandsAndTypes(
478         rewriter, loc, elementWise, newOperands,
479         {newWarpOp.getResult(operandIndex).getType()});
480     newWarpOp.getResult(operandIndex).replaceAllUsesWith(newOp->getResult(0));
481     return success();
482   }
483 };
484 
485 /// Sink out transfer_read op feeding into a warp op yield.
486 /// ```
487 /// %0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) {
488 ///   ...
489 //    %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
490 //    vector<32xf32>
491 ///   vector.yield %2 : vector<32xf32>
492 /// }
493 /// ```
494 /// To
495 /// ```
496 /// %dead = vector.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>,
497 /// vector<1xf32>, vector<1xf32>) {
498 ///   ...
499 ///   %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>,
500 ///   vector<32xf32> vector.yield %2 : vector<32xf32>
501 /// }
502 /// %0 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, vector<1xf32>
503 struct WarpOpTransferRead : public OpRewritePattern<WarpExecuteOnLane0Op> {
504   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
505   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
506                                 PatternRewriter &rewriter) const override {
507     OpOperand *operand = getWarpResult(
508         warpOp, [](Operation *op) { return isa<vector::TransferReadOp>(op); });
509     if (!operand)
510       return failure();
511     auto read = operand->get().getDefiningOp<vector::TransferReadOp>();
512     unsigned operandIndex = operand->getOperandNumber();
513     Value distributedVal = warpOp.getResult(operandIndex);
514 
515     SmallVector<Value, 4> indices(read.getIndices().begin(),
516                                   read.getIndices().end());
517     AffineMap map = calculateImplicitMap(read.getResult(), distributedVal);
518     AffineMap indexMap = map.compose(read.getPermutationMap());
519     OpBuilder::InsertionGuard g(rewriter);
520     rewriter.setInsertionPointAfter(warpOp);
521     for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) {
522       AffineExpr d0, d1;
523       bindDims(read.getContext(), d0, d1);
524       auto indexExpr = std::get<0>(it).dyn_cast<AffineDimExpr>();
525       if (!indexExpr)
526         continue;
527       unsigned indexPos = indexExpr.getPosition();
528       unsigned vectorPos = std::get<1>(it).cast<AffineDimExpr>().getPosition();
529       int64_t scale =
530           distributedVal.getType().cast<VectorType>().getDimSize(vectorPos);
531       indices[indexPos] =
532           makeComposedAffineApply(rewriter, read.getLoc(), d0 + scale * d1,
533                                   {indices[indexPos], warpOp.getLaneid()});
534     }
535     Value newRead = rewriter.create<vector::TransferReadOp>(
536         read.getLoc(), distributedVal.getType(), read.getSource(), indices,
537         read.getPermutationMapAttr(), read.getPadding(), read.getMask(),
538         read.getInBoundsAttr());
539     distributedVal.replaceAllUsesWith(newRead);
540     return success();
541   }
542 };
543 
544 /// Remove any result that has no use along with the matching yieldOp operand.
545 // TODO: Move this in WarpExecuteOnLane0Op canonicalization.
546 struct WarpOpDeadResult : public OpRewritePattern<WarpExecuteOnLane0Op> {
547   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
548   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
549                                 PatternRewriter &rewriter) const override {
550     SmallVector<Type> resultTypes;
551     SmallVector<Value> yieldValues;
552     auto yield = cast<vector::YieldOp>(
553         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
554     for (OpResult result : warpOp.getResults()) {
555       if (result.use_empty())
556         continue;
557       resultTypes.push_back(result.getType());
558       yieldValues.push_back(yield.getOperand(result.getResultNumber()));
559     }
560     if (yield.getNumOperands() == yieldValues.size())
561       return failure();
562     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns(
563         rewriter, warpOp, yieldValues, resultTypes);
564     unsigned resultIndex = 0;
565     for (OpResult result : warpOp.getResults()) {
566       if (result.use_empty())
567         continue;
568       result.replaceAllUsesWith(newWarpOp.getResult(resultIndex++));
569     }
570     rewriter.eraseOp(warpOp);
571     return success();
572   }
573 };
574 
575 // If an operand is directly yielded out of the region we can forward it
576 // directly and it doesn't need to go through the region.
577 struct WarpOpForwardOperand : public OpRewritePattern<WarpExecuteOnLane0Op> {
578   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
579   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
580                                 PatternRewriter &rewriter) const override {
581     SmallVector<Type> resultTypes;
582     SmallVector<Value> yieldValues;
583     auto yield = cast<vector::YieldOp>(
584         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
585     Value valForwarded;
586     unsigned resultIndex;
587     for (OpOperand &operand : yield->getOpOperands()) {
588       Value result = warpOp.getResult(operand.getOperandNumber());
589       if (result.use_empty())
590         continue;
591 
592       // Assume all the values coming from above are uniform.
593       if (!warpOp.getBodyRegion().isAncestor(operand.get().getParentRegion())) {
594         if (result.getType() != operand.get().getType())
595           continue;
596         valForwarded = operand.get();
597         resultIndex = operand.getOperandNumber();
598         break;
599       }
600       auto arg = operand.get().dyn_cast<BlockArgument>();
601       if (!arg || arg.getOwner()->getParentOp() != warpOp.getOperation())
602         continue;
603       Value warpOperand = warpOp.getArgs()[arg.getArgNumber()];
604       if (result.getType() != warpOperand.getType())
605         continue;
606       valForwarded = warpOperand;
607       resultIndex = operand.getOperandNumber();
608       break;
609     }
610     if (!valForwarded)
611       return failure();
612     warpOp.getResult(resultIndex).replaceAllUsesWith(valForwarded);
613     return success();
614   }
615 };
616 
617 struct WarpOpBroadcast : public OpRewritePattern<WarpExecuteOnLane0Op> {
618   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
619   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
620                                 PatternRewriter &rewriter) const override {
621     OpOperand *operand = getWarpResult(
622         warpOp, [](Operation *op) { return isa<vector::BroadcastOp>(op); });
623     if (!operand)
624       return failure();
625     unsigned int operandNumber = operand->getOperandNumber();
626     auto broadcastOp = operand->get().getDefiningOp<vector::BroadcastOp>();
627     Location loc = broadcastOp.getLoc();
628     auto destVecType =
629         warpOp->getResultTypes()[operandNumber].cast<VectorType>();
630     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
631         rewriter, warpOp, {broadcastOp.getSource()},
632         {broadcastOp.getSource().getType()});
633     rewriter.setInsertionPointAfter(newWarpOp);
634     Value broadcasted = rewriter.create<vector::BroadcastOp>(
635         loc, destVecType, newWarpOp->getResults().back());
636     newWarpOp->getResult(operandNumber).replaceAllUsesWith(broadcasted);
637 
638     return success();
639   }
640 };
641 
642 /// Sink scf.for region out of WarpExecuteOnLane0Op. This can be done only if
643 /// the scf.ForOp is the last operation in the region so that it doesn't change
644 /// the order of execution. This creates a new scf.for region after the
645 /// WarpExecuteOnLane0Op. The new scf.for region will contain a new
646 /// WarpExecuteOnLane0Op region. Example:
647 /// ```
648 /// %w = vector.warp_execute_on_lane_0(%laneid) -> (vector<4xf32>) {
649 ///   ...
650 ///   %v1 = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%arg4 = %v)
651 ///   -> (vector<128xf32>) {
652 ///     ...
653 ///     scf.yield %r : vector<128xf32>
654 ///   }
655 ///   vector.yield %v1 : vector<128xf32>
656 /// }
657 /// ```
658 /// To:
659 /// %w0 = vector.warp_execute_on_lane_0(%arg0) -> (vector<4xf32>) {
660 ///   ...
661 ///   vector.yield %v : vector<128xf32>
662 /// }
663 /// %w = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%varg = %q0)
664 ///   -> (vector<4xf32>) {
665 ///     %iw = vector.warp_execute_on_lane_0(%laneid)
666 ///     args(%varg : vector<4xf32>) -> (vector<4xf32>) {
667 ///     ^bb0(%arg: vector<128xf32>):
668 ///       ...
669 ///       vector.yield %ir : vector<128xf32>
670 ///     }
671 ///     scf.yield %iw : vector<4xf32>
672 ///  }
673 /// ```
674 struct WarpOpScfForOp : public OpRewritePattern<WarpExecuteOnLane0Op> {
675   using OpRewritePattern<WarpExecuteOnLane0Op>::OpRewritePattern;
676   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
677                                 PatternRewriter &rewriter) const override {
678     auto yield = cast<vector::YieldOp>(
679         warpOp.getBodyRegion().getBlocks().begin()->getTerminator());
680     // Only pick up forOp if it is the last op in the region.
681     Operation *lastNode = yield->getPrevNode();
682     auto forOp = dyn_cast_or_null<scf::ForOp>(lastNode);
683     if (!forOp)
684       return failure();
685     SmallVector<Value> newOperands;
686     SmallVector<unsigned> resultIdx;
687     // Collect all the outputs coming from the forOp.
688     for (OpOperand &yieldOperand : yield->getOpOperands()) {
689       if (yieldOperand.get().getDefiningOp() != forOp.getOperation())
690         continue;
691       auto forResult = yieldOperand.get().cast<OpResult>();
692       newOperands.push_back(warpOp.getResult(yieldOperand.getOperandNumber()));
693       yieldOperand.set(forOp.getIterOperands()[forResult.getResultNumber()]);
694       resultIdx.push_back(yieldOperand.getOperandNumber());
695     }
696     OpBuilder::InsertionGuard g(rewriter);
697     rewriter.setInsertionPointAfter(warpOp);
698     // Create a new for op outside the region with a WarpExecuteOnLane0Op region
699     // inside.
700     auto newForOp = rewriter.create<scf::ForOp>(
701         forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
702         forOp.getStep(), newOperands);
703     rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
704     auto innerWarp = rewriter.create<WarpExecuteOnLane0Op>(
705         warpOp.getLoc(), newForOp.getResultTypes(), warpOp.getLaneid(),
706         warpOp.getWarpSize(), newForOp.getRegionIterArgs(),
707         forOp.getResultTypes());
708 
709     SmallVector<Value> argMapping;
710     argMapping.push_back(newForOp.getInductionVar());
711     for (Value args : innerWarp.getBody()->getArguments()) {
712       argMapping.push_back(args);
713     }
714     SmallVector<Value> yieldOperands;
715     for (Value operand : forOp.getBody()->getTerminator()->getOperands())
716       yieldOperands.push_back(operand);
717     rewriter.eraseOp(forOp.getBody()->getTerminator());
718     rewriter.mergeBlocks(forOp.getBody(), innerWarp.getBody(), argMapping);
719     rewriter.setInsertionPoint(innerWarp.getBody(), innerWarp.getBody()->end());
720     rewriter.create<vector::YieldOp>(innerWarp.getLoc(), yieldOperands);
721     rewriter.setInsertionPointAfter(innerWarp);
722     if (!innerWarp.getResults().empty())
723       rewriter.create<scf::YieldOp>(forOp.getLoc(), innerWarp.getResults());
724     rewriter.eraseOp(forOp);
725     // Replace the warpOp result coming from the original ForOp.
726     for (const auto &res : llvm::enumerate(resultIdx)) {
727       warpOp.getResult(res.value())
728           .replaceAllUsesWith(newForOp.getResult(res.index()));
729       newForOp->setOperand(res.index() + 3, warpOp.getResult(res.value()));
730     }
731     return success();
732   }
733 };
734 
735 /// A pattern that extracts vector.reduction ops from a WarpExecuteOnLane0Op.
736 /// The vector is reduced in parallel. Currently limited to vector size matching
737 /// the warpOp size. E.g.:
738 /// ```
739 /// %r = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (f32) {
740 ///   %0 = "some_def"() : () -> (vector<32xf32>)
741 ///   %1 = vector.reduction "add", %0 : vector<32xf32> into f32
742 ///   vector_ext.yield %1 : f32
743 /// }
744 /// ```
745 /// is lowered to:
746 /// ```
747 /// %0 = vector_ext.warp_execute_on_lane_0(%laneid)[32] -> (vector<1xf32>) {
748 ///   %1 = "some_def"() : () -> (vector<32xf32>)
749 ///   vector_ext.yield %1 : vector<32xf32>
750 /// }
751 /// %a = vector.extract %0[0] : vector<1xf32>
752 /// %r = ("warp.reduction %a")
753 /// ```
754 struct WarpOpReduction : public OpRewritePattern<WarpExecuteOnLane0Op> {
755   WarpOpReduction(MLIRContext *context,
756                   DistributedReductionFn distributedReductionFn,
757                   PatternBenefit benefit = 1)
758       : OpRewritePattern<WarpExecuteOnLane0Op>(context, benefit),
759         distributedReductionFn(distributedReductionFn) {}
760 
761   LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
762                                 PatternRewriter &rewriter) const override {
763     OpOperand *yieldOperand = getWarpResult(
764         warpOp, [](Operation *op) { return isa<vector::ReductionOp>(op); });
765     if (!yieldOperand)
766       return failure();
767 
768     auto reductionOp =
769         cast<vector::ReductionOp>(yieldOperand->get().getDefiningOp());
770     auto vectorType = reductionOp.getVector().getType().cast<VectorType>();
771     // Only rank 1 vectors supported.
772     if (vectorType.getRank() != 1)
773       return rewriter.notifyMatchFailure(
774           warpOp, "Only rank 1 reductions can be distributed.");
775     // Only warp_size-sized vectors supported.
776     if (static_cast<uint64_t>(vectorType.getShape()[0]) != warpOp.getWarpSize())
777       return rewriter.notifyMatchFailure(
778           warpOp, "Reduction vector dimension must match was size.");
779     // Only f32 and i32 element types are supported.
780     if (!reductionOp.getType().isF32() &&
781         !reductionOp.getType().isSignlessInteger(32))
782       return rewriter.notifyMatchFailure(
783           warpOp,
784           "Reduction distribution currently only supports 32bits types.");
785 
786     Location yieldLoc = yieldOperand->getOwner()->getLoc();
787 
788     // Return vector that will be reduced from the WarpExecuteOnLane0Op.
789     unsigned operandIndex = yieldOperand->getOperandNumber();
790     SmallVector<Value> yieldValues = {reductionOp.getVector()};
791     SmallVector<Type> retTypes = {VectorType::get({1}, reductionOp.getType())};
792     unsigned numResults = warpOp.getNumResults();
793     WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
794         rewriter, warpOp, yieldValues, retTypes);
795     rewriter.setInsertionPointAfter(newWarpOp);
796 
797     // Every lane has one scalar value. These should be reduced.
798     Value laneValVec = newWarpOp.getResult(numResults);
799     Value laneVal = rewriter.create<vector::ExtractOp>(yieldLoc, laneValVec, 0);
800     laneVal =
801         distributedReductionFn(reductionOp.getLoc(), rewriter, laneVal,
802                                reductionOp.getKind(), newWarpOp.getWarpSize());
803     newWarpOp.getResult(operandIndex).replaceAllUsesWith(laneVal);
804     return success();
805   }
806 
807 private:
808   DistributedReductionFn distributedReductionFn;
809 };
810 
811 } // namespace
812 
813 void mlir::vector::populateWarpExecuteOnLane0OpToScfForPattern(
814     RewritePatternSet &patterns,
815     const WarpExecuteOnLane0LoweringOptions &options) {
816   patterns.add<WarpOpToScfForPattern>(patterns.getContext(), options);
817 }
818 
819 void mlir::vector::populateDistributeTransferWriteOpPatterns(
820     RewritePatternSet &patterns, const DistributionMapFn &distributionMapFn) {
821   patterns.add<WarpOpTransferWrite>(patterns.getContext(), distributionMapFn);
822 }
823 
824 void mlir::vector::populatePropagateWarpVectorDistributionPatterns(
825     RewritePatternSet &patterns) {
826   patterns.add<WarpOpElementwise, WarpOpTransferRead, WarpOpDeadResult,
827                WarpOpBroadcast, WarpOpForwardOperand, WarpOpScfForOp>(
828       patterns.getContext());
829 }
830 
831 void mlir::vector::populateDistributeReduction(
832     RewritePatternSet &patterns,
833     DistributedReductionFn distributedReductionFn) {
834   patterns.add<WarpOpReduction>(patterns.getContext(), distributedReductionFn);
835 }
836 
837 void mlir::vector::moveScalarUniformCode(WarpExecuteOnLane0Op warpOp) {
838   Block *body = warpOp.getBody();
839 
840   // Keep track of the ops we want to hoist.
841   llvm::SmallSetVector<Operation *, 8> opsToMove;
842 
843   // Helper to check if a value is or will be defined outside of the region.
844   auto isDefinedOutsideOfBody = [&](Value value) {
845     auto *definingOp = value.getDefiningOp();
846     return (definingOp && opsToMove.count(definingOp)) ||
847            warpOp.isDefinedOutsideOfRegion(value);
848   };
849 
850   // Do not use walk here, as we do not want to go into nested regions and hoist
851   // operations from there.
852   for (auto &op : body->without_terminator()) {
853     bool hasVectorResult = llvm::any_of(op.getResults(), [](Value result) {
854       return result.getType().isa<VectorType>();
855     });
856     if (!hasVectorResult && canBeHoisted(&op, isDefinedOutsideOfBody))
857       opsToMove.insert(&op);
858   }
859 
860   // Move all the ops marked as uniform outside of the region.
861   for (Operation *op : opsToMove)
862     op->moveBefore(warpOp);
863 }
864