1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   // TODO: Add remaining reduction operations.
480   default:
481     (void)emitOptionalError(loc, "Reduction operation type not supported");
482     break;
483   }
484   return nullptr;
485 }
486 
487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
488   return llvm::to_vector<4>(getVectorType().getShape());
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ContractionOp
493 //===----------------------------------------------------------------------===//
494 
495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
496                                   Value lhs, Value rhs, Value acc,
497                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
498                                   ArrayRef<StringRef> iteratorTypes) {
499   result.addOperands({lhs, rhs, acc});
500   result.addTypes(acc.getType());
501   result.addAttribute(::mlir::getIndexingMapsAttrName(),
502                       builder.getAffineMapArrayAttr(
503                           AffineMap::inferFromExprList(indexingExprs)));
504   result.addAttribute(::mlir::getIteratorTypesAttrName(),
505                       builder.getStrArrayAttr(iteratorTypes));
506 }
507 
508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
509                                   Value lhs, Value rhs, Value acc,
510                                   ArrayAttr indexingMaps,
511                                   ArrayAttr iteratorTypes) {
512   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
513         ContractionOp::getDefaultKind());
514 }
515 
516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
517                                   Value lhs, Value rhs, Value acc,
518                                   ArrayAttr indexingMaps,
519                                   ArrayAttr iteratorTypes, CombiningKind kind) {
520   result.addOperands({lhs, rhs, acc});
521   result.addTypes(acc.getType());
522   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
523   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
524   result.addAttribute(ContractionOp::getKindAttrStrName(),
525                       CombiningKindAttr::get(kind, builder.getContext()));
526 }
527 
528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
529   OpAsmParser::UnresolvedOperand lhsInfo;
530   OpAsmParser::UnresolvedOperand rhsInfo;
531   OpAsmParser::UnresolvedOperand accInfo;
532   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
533   SmallVector<Type, 2> types;
534   Type resultType;
535   auto loc = parser.getCurrentLocation();
536   DictionaryAttr dictAttr;
537   // TODO: Unify linalg op attribute parsing.
538   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
539       parser.parseOperand(lhsInfo) || parser.parseComma() ||
540       parser.parseOperand(rhsInfo) || parser.parseComma() ||
541       parser.parseOperand(accInfo) ||
542       parser.parseTrailingOperandList(masksInfo) ||
543       parser.parseOptionalAttrDict(result.attributes) ||
544       parser.parseColonTypeList(types) ||
545       parser.parseKeywordType("into", resultType) ||
546       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
547       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
548       parser.resolveOperand(accInfo, resultType, result.operands) ||
549       parser.addTypeToList(resultType, result.types))
550     return failure();
551   result.attributes.assign(dictAttr.getValue().begin(),
552                            dictAttr.getValue().end());
553   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
554     result.addAttribute(ContractionOp::getKindAttrStrName(),
555                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
556                                                result.getContext()));
557   }
558   if (masksInfo.empty())
559     return success();
560   if (masksInfo.size() != 2)
561     return parser.emitError(parser.getNameLoc(),
562                             "expected zero or exactly 2 vector mask operands");
563   auto lhsType = types[0].cast<VectorType>();
564   auto rhsType = types[1].cast<VectorType>();
565   auto maskElementType = parser.getBuilder().getI1Type();
566   std::array<Type, 2> maskTypes = {
567       VectorType::Builder(lhsType).setElementType(maskElementType),
568       VectorType::Builder(rhsType).setElementType(maskElementType)};
569   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
570     return failure();
571   return success();
572 }
573 
574 void ContractionOp::print(OpAsmPrinter &p) {
575   // TODO: Unify printing code with linalg ops.
576   auto attrNames = getTraitAttrNames();
577   llvm::StringSet<> traitAttrsSet;
578   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
579   SmallVector<NamedAttribute, 8> attrs;
580   for (auto attr : (*this)->getAttrs())
581     if (traitAttrsSet.count(attr.getName().strref()) > 0)
582       attrs.push_back(attr);
583 
584   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
585   p << " " << dictAttr << " " << getLhs() << ", ";
586   p << getRhs() << ", " << getAcc();
587   if (getMasks().size() == 2)
588     p << ", " << getMasks();
589 
590   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
591   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
592     << getResultType();
593 }
594 
595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
596                          const std::vector<std::pair<int64_t, int64_t>> &map) {
597   for (auto &dimPair : map) {
598     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
599         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
600         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
601       return false;
602   }
603   return true;
604 }
605 
606 static LogicalResult verifyOutputShape(
607     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
608     Type resType,
609     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
610     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
611   DenseSet<int64_t> lhsContractingDimSet;
612   DenseSet<int64_t> rhsContractingDimSet;
613   for (auto &dimPair : contractingDimMap) {
614     lhsContractingDimSet.insert(dimPair.first);
615     rhsContractingDimSet.insert(dimPair.second);
616   }
617   DenseSet<int64_t> rhsBatchDimSet;
618   for (auto &dimPair : batchDimMap)
619     rhsBatchDimSet.insert(dimPair.second);
620 
621   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
622   SmallVector<int64_t, 4> expectedResultDims;
623   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
624     if (lhsContractingDimSet.count(i) > 0)
625       continue;
626     expectedResultDims.push_back(lhsType.getDimSize(i));
627   }
628 
629   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
630   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
631     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
632       continue;
633     expectedResultDims.push_back(rhsType.getDimSize(i));
634   }
635 
636   // Verify 'expectedResultDims'.
637   if (expectedResultDims.empty()) {
638     // No batch or free dimension implies a scalar result.
639     if (resType.isa<VectorType>() || accType.isa<VectorType>())
640       return op.emitOpError("invalid accumulator/result vector shape");
641   } else {
642     // At least one batch or free dimension implies a vector result.
643     auto resVectorType = resType.dyn_cast<VectorType>();
644     auto accVectorType = accType.dyn_cast<VectorType>();
645     if (!resVectorType || !accVectorType)
646       return op.emitOpError("invalid accumulator/result vector shape");
647 
648     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
649     // types fully define the result vector type. This assumes the affine maps
650     // are well-formed, which must have been verified already.
651     MLIRContext *ctx = op.getContext();
652     AffineMap lhsMap = op.getIndexingMaps()[0];
653     AffineMap rhsMap = op.getIndexingMaps()[1];
654     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
655     for (auto pair :
656          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
657       VectorType v = pair.first;
658       auto map = pair.second;
659       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
660         unsigned pos = map.getDimPosition(idx);
661         if (!extents[pos])
662           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
663       }
664     }
665     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
666            "expected extent along all dimensions.");
667 
668     AffineMap resMap = op.getIndexingMaps()[2];
669     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
670                                      /*symCount=*/0, extents, ctx);
671     // Compose the resMap with the extentsMap, which is a constant map.
672     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
673     assert(llvm::all_of(
674                expectedMap.getResults(),
675                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
676            "expected constant extent along all dimensions.");
677     // Extract the expected shape and build the type.
678     auto expectedShape = llvm::to_vector<4>(
679         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
680           return e.cast<AffineConstantExpr>().getValue();
681         }));
682     auto expected =
683         VectorType::get(expectedShape, resVectorType.getElementType());
684     if (resVectorType != expected || accVectorType != expected)
685       return op.emitOpError(
686                  "invalid accumulator/result vector shape, expected: ")
687              << expected;
688   }
689   return success();
690 }
691 
692 LogicalResult ContractionOp::verify() {
693   auto lhsType = getLhsType();
694   auto rhsType = getRhsType();
695   auto accType = getAccType();
696   auto resType = getResultType();
697 
698   // Verify that an indexing map was specified for each vector operand.
699   if (getIndexingMaps().size() != 3)
700     return emitOpError("expected an indexing map for each vector operand");
701 
702   // Verify that each index map has 'numIterators' inputs, no symbols, and
703   // that the number of map outputs equals the rank of its associated
704   // vector operand.
705   unsigned numIterators = getIteratorTypes().getValue().size();
706   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
707     auto index = it.index();
708     auto map = it.value();
709     if (map.getNumSymbols() != 0)
710       return emitOpError("expected indexing map ")
711              << index << " to have no symbols";
712     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
713     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
714     // Verify that the map has the right number of inputs, outputs, and indices.
715     // This also correctly accounts for (..) -> () for rank-0 results.
716     if (map.getNumDims() != numIterators)
717       return emitOpError("expected indexing map ")
718              << index << " to have " << numIterators << " number of inputs";
719     if (map.getNumResults() != rank)
720       return emitOpError("expected indexing map ")
721              << index << " to have " << rank << " number of outputs";
722     if (!map.isProjectedPermutation())
723       return emitOpError("expected indexing map ")
724              << index << " to be a projected permutation of its inputs";
725   }
726 
727   auto contractingDimMap = getContractingDimMap();
728   auto batchDimMap = getBatchDimMap();
729 
730   // Verify at least one contracting dimension pair was specified.
731   if (contractingDimMap.empty())
732     return emitOpError("expected at least one contracting dimension pair");
733 
734   // Verify contracting dimension map was properly constructed.
735   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
736     return emitOpError("invalid contracting dimension map");
737 
738   // Verify batch dimension map was properly constructed.
739   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
740     return emitOpError("invalid batch dimension map");
741 
742   // Verify 'accType' and 'resType' shape.
743   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
744                                contractingDimMap, batchDimMap)))
745     return failure();
746 
747   // Verify that either two vector masks are set or none are set.
748   auto lhsMaskType = getLHSVectorMaskType();
749   auto rhsMaskType = getRHSVectorMaskType();
750   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
751     return emitOpError("invalid number of vector masks specified");
752   if (lhsMaskType && rhsMaskType) {
753     // Verify mask rank == argument rank.
754     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
755         rhsMaskType.getShape().size() != rhsType.getShape().size())
756       return emitOpError("invalid vector mask rank");
757   }
758 
759   // Verify supported combining kind.
760   auto vectorType = resType.dyn_cast<VectorType>();
761   auto elementType = vectorType ? vectorType.getElementType() : resType;
762   if (!isSupportedCombiningKind(getKind(), elementType))
763     return emitOpError("unsupported contraction type");
764 
765   return success();
766 }
767 
768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
769   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
770                                          ::mlir::getIteratorTypesAttrName(),
771                                          ContractionOp::getKindAttrStrName()};
772   return llvm::makeArrayRef(names);
773 }
774 
775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
776   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
777     if (targetExpr == map.getResult(i))
778       return i;
779   return -1;
780 }
781 
782 static std::vector<std::pair<int64_t, int64_t>>
783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
784           StringRef targetIteratorTypeName, MLIRContext *context) {
785   std::vector<std::pair<int64_t, int64_t>> dimMap;
786   for (const auto &it : llvm::enumerate(iteratorTypes)) {
787     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
788     if (iteratorTypeName != targetIteratorTypeName)
789       continue;
790     // Search lhs/rhs map results for 'targetExpr'.
791     auto targetExpr = getAffineDimExpr(it.index(), context);
792     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
793     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
794     if (lhsDim >= 0 && rhsDim >= 0)
795       dimMap.emplace_back(lhsDim, rhsDim);
796   }
797   return dimMap;
798 }
799 
800 void ContractionOp::getIterationBounds(
801     SmallVectorImpl<int64_t> &iterationBounds) {
802   auto lhsShape = getLhsType().getShape();
803   auto resVectorType = getResultType().dyn_cast<VectorType>();
804   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
805   SmallVector<int64_t, 2> iterationShape;
806   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
807     // Search lhs/rhs map results for 'targetExpr'.
808     auto targetExpr = getAffineDimExpr(it.index(), getContext());
809     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
810     if (iteratorTypeName == getReductionIteratorTypeName()) {
811       // Get reduction dim size from lhs shape (same size in rhsShape).
812       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
813       assert(lhsDimIndex >= 0);
814       iterationBounds.push_back(lhsShape[lhsDimIndex]);
815       continue;
816     }
817     // Get parallel dimension size from result shape.
818     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
819     assert(resDimIndex >= 0);
820     assert(resVectorType != nullptr);
821     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
822   }
823 }
824 
825 void ContractionOp::getIterationIndexMap(
826     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
827   unsigned numMaps = getIndexingMaps().size();
828   iterationIndexMap.resize(numMaps);
829   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
830     auto index = it.index();
831     auto map = it.value();
832     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
833       auto dim = map.getResult(i).cast<AffineDimExpr>();
834       iterationIndexMap[index][dim.getPosition()] = i;
835     }
836   }
837 }
838 
839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
840   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
841   return getDimMap(indexingMaps, getIteratorTypes(),
842                    getReductionIteratorTypeName(), getContext());
843 }
844 
845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
846   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
847   return getDimMap(indexingMaps, getIteratorTypes(),
848                    getParallelIteratorTypeName(), getContext());
849 }
850 
851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
852   SmallVector<int64_t, 4> shape;
853   getIterationBounds(shape);
854   return shape;
855 }
856 
857 /// Return a fused vector::ContractionOp which represents a patterns such as:
858 ///
859 /// ```mlir
860 ///    %c0 = vector.constant 0: ...
861 ///    %c = vector.contract %a, %b, %c0: ...
862 ///    %e = add %c, %d: ...
863 /// ```
864 ///
865 /// by:
866 ///
867 /// ```mlir
868 ///    %e = vector.contract %a, %b, %d: ...
869 /// ```
870 ///
871 /// Return null if the canonicalization does not apply.
872 // TODO: This should be a folding of Add into Contract in core but while they
873 // live in different dialects, it is not possible without unnatural
874 // dependencies.
875 template <typename AddOpType>
876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
877   using OpRewritePattern<AddOpType>::OpRewritePattern;
878 
879   LogicalResult matchAndRewrite(AddOpType addOp,
880                                 PatternRewriter &rewriter) const override {
881     auto canonicalize = [&](Value maybeContraction,
882                             Value otherOperand) -> vector::ContractionOp {
883       vector::ContractionOp contractionOp =
884           dyn_cast_or_null<vector::ContractionOp>(
885               maybeContraction.getDefiningOp());
886       if (!contractionOp)
887         return vector::ContractionOp();
888       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
889               contractionOp.getAcc().getDefiningOp())) {
890         if (maybeZero.getValue() ==
891             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
892           BlockAndValueMapping bvm;
893           bvm.map(contractionOp.getAcc(), otherOperand);
894           auto newContraction =
895               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
896           rewriter.replaceOp(addOp, newContraction.getResult());
897           return newContraction;
898         }
899       }
900       return vector::ContractionOp();
901     };
902 
903     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
904     vector::ContractionOp contract = canonicalize(a, b);
905     contract = contract ? contract : canonicalize(b, a);
906     return contract ? success() : failure();
907   }
908 };
909 
910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
911                                                 MLIRContext *context) {
912   results.add<CanonicalizeContractAdd<arith::AddIOp>,
913               CanonicalizeContractAdd<arith::AddFOp>>(context);
914 }
915 
916 //===----------------------------------------------------------------------===//
917 // ExtractElementOp
918 //===----------------------------------------------------------------------===//
919 
920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
921                                      Value source) {
922   result.addOperands({source});
923   result.addTypes(source.getType().cast<VectorType>().getElementType());
924 }
925 
926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
927                                      Value source, Value position) {
928   result.addOperands({source, position});
929   result.addTypes(source.getType().cast<VectorType>().getElementType());
930 }
931 
932 LogicalResult vector::ExtractElementOp::verify() {
933   VectorType vectorType = getVectorType();
934   if (vectorType.getRank() == 0) {
935     if (getPosition())
936       return emitOpError("expected position to be empty with 0-D vector");
937     return success();
938   }
939   if (vectorType.getRank() != 1)
940     return emitOpError("unexpected >1 vector rank");
941   if (!getPosition())
942     return emitOpError("expected position for 1-D vector");
943   return success();
944 }
945 
946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
947   // Skip the 0-D vector here now.
948   if (operands.size() < 2)
949     return {};
950 
951   Attribute src = operands[0];
952   Attribute pos = operands[1];
953 
954   // Fold extractelement (splat X) -> X.
955   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
956     return splat.getInput();
957 
958   if (!pos || !src)
959     return {};
960 
961   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
962 
963   auto attr = pos.dyn_cast<IntegerAttr>();
964   uint64_t posIdx = attr.getInt();
965 
966   return srcElements[posIdx];
967 }
968 
969 //===----------------------------------------------------------------------===//
970 // ExtractOp
971 //===----------------------------------------------------------------------===//
972 
973 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
974                               Value source, ArrayRef<int64_t> position) {
975   build(builder, result, source, getVectorSubscriptAttr(builder, position));
976 }
977 
978 // Convenience builder which assumes the values are constant indices.
979 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
980                               Value source, ValueRange position) {
981   SmallVector<int64_t, 4> positionConstants =
982       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
983         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
984       }));
985   build(builder, result, source, positionConstants);
986 }
987 
988 LogicalResult
989 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
990                             ValueRange operands, DictionaryAttr attributes,
991                             RegionRange,
992                             SmallVectorImpl<Type> &inferredReturnTypes) {
993   ExtractOp::Adaptor op(operands, attributes);
994   auto vectorType = op.getVector().getType().cast<VectorType>();
995   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
996     inferredReturnTypes.push_back(vectorType.getElementType());
997   } else {
998     auto n =
999         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1000     inferredReturnTypes.push_back(VectorType::get(
1001         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1002   }
1003   return success();
1004 }
1005 
1006 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1007   // Allow extracting 1-element vectors instead of scalars.
1008   auto isCompatible = [](TypeRange l, TypeRange r) {
1009     auto vectorType = l.front().dyn_cast<VectorType>();
1010     return vectorType && vectorType.getShape().equals({1}) &&
1011            vectorType.getElementType() == r.front();
1012   };
1013   if (l.size() == 1 && r.size() == 1 &&
1014       (isCompatible(l, r) || isCompatible(r, l)))
1015     return true;
1016   return l == r;
1017 }
1018 
1019 LogicalResult vector::ExtractOp::verify() {
1020   auto positionAttr = getPosition().getValue();
1021   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1022     return emitOpError(
1023         "expected position attribute of rank smaller than vector rank");
1024   for (const auto &en : llvm::enumerate(positionAttr)) {
1025     auto attr = en.value().dyn_cast<IntegerAttr>();
1026     if (!attr || attr.getInt() < 0 ||
1027         attr.getInt() >= getVectorType().getDimSize(en.index()))
1028       return emitOpError("expected position attribute #")
1029              << (en.index() + 1)
1030              << " to be a non-negative integer smaller than the corresponding "
1031                 "vector dimension";
1032   }
1033   return success();
1034 }
1035 
1036 template <typename IntType>
1037 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1038   return llvm::to_vector<4>(llvm::map_range(
1039       arrayAttr.getAsRange<IntegerAttr>(),
1040       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1041 }
1042 
1043 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1044 /// positions.
1045 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1046   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1047     return failure();
1048 
1049   SmallVector<int64_t, 4> globalPosition;
1050   ExtractOp currentOp = extractOp;
1051   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1052   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1053   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1054     currentOp = nextOp;
1055     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1056     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1057   }
1058   extractOp.setOperand(currentOp.getVector());
1059   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1060   OpBuilder b(extractOp.getContext());
1061   std::reverse(globalPosition.begin(), globalPosition.end());
1062   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1063                      b.getI64ArrayAttr(globalPosition));
1064   return success();
1065 }
1066 
1067 namespace {
1068 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1069 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1070 /// Compose TransposeOp permutations as we walk back.
1071 /// This helper class keeps an updated extraction position `extractPosition`
1072 /// with extra trailing sentinels.
1073 /// The sentinels encode the internal transposition status of the result vector.
1074 /// As we iterate, extractPosition is permuted and updated.
1075 class ExtractFromInsertTransposeChainState {
1076 public:
1077   ExtractFromInsertTransposeChainState(ExtractOp e);
1078 
1079   /// Iterate over producing insert and transpose ops until we find a fold.
1080   Value fold();
1081 
1082 private:
1083   /// Return true if the vector at position `a` is contained within the vector
1084   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1085   /// is a prefix of `b`.
1086   template <typename ContainerA, typename ContainerB>
1087   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1088     return a.size() <= b.size() &&
1089            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1090   }
1091 
1092   /// Return true if the vector at position `a` intersects the vector at
1093   /// position `b`. Under insert/extract semantics, this is the same as equality
1094   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1095   /// Comparison is on the common prefix (i.e. zip).
1096   template <typename ContainerA, typename ContainerB>
1097   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1098     for (auto it : llvm::zip(a, b)) {
1099       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1100         continue;
1101       if (std::get<0>(it) != std::get<1>(it))
1102         return false;
1103     }
1104     return true;
1105   }
1106 
1107   /// Folding is only possible in the absence of an internal permutation in the
1108   /// result vector.
1109   bool canFold() {
1110     return (sentinels ==
1111             makeArrayRef(extractPosition).drop_front(extractedRank));
1112   }
1113 
1114   // Helper to get the next defining op of interest.
1115   void updateStateForNextIteration(Value v) {
1116     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1117     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1118   };
1119 
1120   // Case 1. If we hit a transpose, just compose the map and iterate.
1121   // Invariant: insert + transpose do not change rank, we can always compose.
1122   LogicalResult handleTransposeOp();
1123 
1124   // Case 2: the insert position matches extractPosition exactly, early return.
1125   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1126 
1127   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1128   /// portion of the source of the insert.
1129   /// Example:
1130   /// ```
1131   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1132   /// // extractPosition == [1, 2, 3]
1133   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1134   /// // can fold to vector.extract %source[0, 3]
1135   /// %ext = vector.extract %source[3]: vector<5x6>
1136   /// ```
1137   /// To traverse through %source, we need to set the leading dims to 0 and
1138   /// drop the extra leading dims.
1139   /// This method updates the internal state.
1140   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1141 
1142   /// Try to fold in place to extract(source, extractPosition) and return the
1143   /// folded result. Return null if folding is not possible (e.g. due to an
1144   /// internal tranposition in the result).
1145   Value tryToFoldExtractOpInPlace(Value source);
1146 
1147   ExtractOp extractOp;
1148   int64_t vectorRank;
1149   int64_t extractedRank;
1150 
1151   InsertOp nextInsertOp;
1152   TransposeOp nextTransposeOp;
1153 
1154   /// Sentinel values that encode the internal permutation status of the result.
1155   /// They are set to (-1, ... , -k) at the beginning and appended to
1156   /// `extractPosition`.
1157   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1158   /// ensure that there is no internal transposition.
1159   /// Internal transposition cannot be accounted for with a folding pattern.
1160   // TODO: We could relax the internal transposition with an extra transposition
1161   // operation in a future canonicalizer.
1162   SmallVector<int64_t> sentinels;
1163   SmallVector<int64_t> extractPosition;
1164 };
1165 } // namespace
1166 
1167 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1168     ExtractOp e)
1169     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1170       extractedRank(extractOp.getPosition().size()) {
1171   assert(vectorRank >= extractedRank && "extracted pos overflow");
1172   sentinels.reserve(vectorRank - extractedRank);
1173   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1174     sentinels.push_back(-(i + 1));
1175   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1176   llvm::append_range(extractPosition, sentinels);
1177 }
1178 
1179 // Case 1. If we hit a transpose, just compose the map and iterate.
1180 // Invariant: insert + transpose do not change rank, we can always compose.
1181 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1182   if (!nextTransposeOp)
1183     return failure();
1184   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1185   AffineMap m = inversePermutation(
1186       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1187   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1188   return success();
1189 }
1190 
1191 // Case 2: the insert position matches extractPosition exactly, early return.
1192 LogicalResult
1193 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1194     Value &res) {
1195   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1196   if (makeArrayRef(insertedPos) !=
1197       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1198     return failure();
1199   // Case 2.a. early-exit fold.
1200   res = nextInsertOp.getSource();
1201   // Case 2.b. if internal transposition is present, canFold will be false.
1202   return success();
1203 }
1204 
1205 /// Case 3: if inserted position is a prefix of extractPosition,
1206 /// extract a portion of the source of the insertion.
1207 /// This method updates the internal state.
1208 LogicalResult
1209 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1210   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1211   if (!isContainedWithin(insertedPos, extractPosition))
1212     return failure();
1213   // Set leading dims to zero.
1214   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1215   // Drop extra leading dims.
1216   extractPosition.erase(extractPosition.begin(),
1217                         extractPosition.begin() + insertedPos.size());
1218   extractedRank = extractPosition.size() - sentinels.size();
1219   // Case 3.a. early-exit fold (break and delegate to post-while path).
1220   res = nextInsertOp.getSource();
1221   // Case 3.b. if internal transposition is present, canFold will be false.
1222   return success();
1223 }
1224 
1225 /// Try to fold in place to extract(source, extractPosition) and return the
1226 /// folded result. Return null if folding is not possible (e.g. due to an
1227 /// internal tranposition in the result).
1228 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1229     Value source) {
1230   // If we can't fold (either internal transposition, or nothing to fold), bail.
1231   bool nothingToFold = (source == extractOp.getVector());
1232   if (nothingToFold || !canFold())
1233     return Value();
1234   // Otherwise, fold by updating the op inplace and return its result.
1235   OpBuilder b(extractOp.getContext());
1236   extractOp->setAttr(
1237       extractOp.getPositionAttrName(),
1238       b.getI64ArrayAttr(
1239           makeArrayRef(extractPosition).take_front(extractedRank)));
1240   extractOp.getVectorMutable().assign(source);
1241   return extractOp.getResult();
1242 }
1243 
1244 /// Iterate over producing insert and transpose ops until we find a fold.
1245 Value ExtractFromInsertTransposeChainState::fold() {
1246   Value valueToExtractFrom = extractOp.getVector();
1247   updateStateForNextIteration(valueToExtractFrom);
1248   while (nextInsertOp || nextTransposeOp) {
1249     // Case 1. If we hit a transpose, just compose the map and iterate.
1250     // Invariant: insert + transpose do not change rank, we can always compose.
1251     if (succeeded(handleTransposeOp())) {
1252       valueToExtractFrom = nextTransposeOp.getVector();
1253       updateStateForNextIteration(valueToExtractFrom);
1254       continue;
1255     }
1256 
1257     Value result;
1258     // Case 2: the position match exactly.
1259     if (succeeded(handleInsertOpWithMatchingPos(result)))
1260       return result;
1261 
1262     // Case 3: if the inserted position is a prefix of extractPosition, we can
1263     // just extract a portion of the source of the insert.
1264     if (succeeded(handleInsertOpWithPrefixPos(result)))
1265       return tryToFoldExtractOpInPlace(result);
1266 
1267     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1268     // values. This is a more difficult case and we bail.
1269     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1270     if (isContainedWithin(extractPosition, insertedPos) ||
1271         intersectsWhereNonNegative(extractPosition, insertedPos))
1272       return Value();
1273 
1274     // Case 5: No intersection, we forward the extract to insertOp.dest().
1275     valueToExtractFrom = nextInsertOp.getDest();
1276     updateStateForNextIteration(valueToExtractFrom);
1277   }
1278   // If after all this we can fold, go for it.
1279   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1280 }
1281 
1282 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1283 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1284   Operation *defOp = extractOp.getVector().getDefiningOp();
1285   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1286     return Value();
1287   Value source = defOp->getOperand(0);
1288   if (extractOp.getType() == source.getType())
1289     return source;
1290   auto getRank = [](Type type) {
1291     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1292   };
1293   unsigned broadcastSrcRank = getRank(source.getType());
1294   unsigned extractResultRank = getRank(extractOp.getType());
1295   if (extractResultRank >= broadcastSrcRank)
1296     return Value();
1297   // Check that the dimension of the result haven't been broadcasted.
1298   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1299   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1300   if (extractVecType && broadcastVecType &&
1301       extractVecType.getShape() !=
1302           broadcastVecType.getShape().take_back(extractResultRank))
1303     return Value();
1304   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1305   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1306   extractPos.erase(extractPos.begin(),
1307                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1308   extractOp.setOperand(source);
1309   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1310   OpBuilder b(extractOp.getContext());
1311   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1312                      b.getI64ArrayAttr(extractPos));
1313   return extractOp.getResult();
1314 }
1315 
1316 // Fold extractOp with source coming from ShapeCast op.
1317 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1318   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1319   if (!shapeCastOp)
1320     return Value();
1321   // Get the nth dimension size starting from lowest dimension.
1322   auto getDimReverse = [](VectorType type, int64_t n) {
1323     return type.getShape().take_back(n + 1).front();
1324   };
1325   int64_t destinationRank =
1326       extractOp.getType().isa<VectorType>()
1327           ? extractOp.getType().cast<VectorType>().getRank()
1328           : 0;
1329   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1330     return Value();
1331   if (destinationRank > 0) {
1332     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1333     for (int64_t i = 0; i < destinationRank; i++) {
1334       // The lowest dimension of of the destination must match the lowest
1335       // dimension of the shapecast op source.
1336       // TODO: This case could be support in a canonicalization pattern.
1337       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1338           getDimReverse(destinationType, i))
1339         return Value();
1340     }
1341   }
1342   // Extract the strides associated with the extract op vector source. Then use
1343   // this to calculate a linearized position for the extract.
1344   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1345   std::reverse(extractedPos.begin(), extractedPos.end());
1346   SmallVector<int64_t, 4> strides;
1347   int64_t stride = 1;
1348   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1349     strides.push_back(stride);
1350     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1351   }
1352 
1353   int64_t position = linearize(extractedPos, strides);
1354   // Then extract the strides associated to the shapeCast op vector source and
1355   // delinearize the position using those strides.
1356   SmallVector<int64_t, 4> newStrides;
1357   int64_t numDimension =
1358       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1359   stride = 1;
1360   for (int64_t i = 0; i < numDimension; i++) {
1361     newStrides.push_back(stride);
1362     stride *=
1363         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1364   }
1365   std::reverse(newStrides.begin(), newStrides.end());
1366   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1367   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1368   OpBuilder b(extractOp.getContext());
1369   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1370                      b.getI64ArrayAttr(newPosition));
1371   extractOp.setOperand(shapeCastOp.getSource());
1372   return extractOp.getResult();
1373 }
1374 
1375 /// Fold an ExtractOp from ExtractStridedSliceOp.
1376 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1377   auto extractStridedSliceOp =
1378       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1379   if (!extractStridedSliceOp)
1380     return Value();
1381   // Return if 'extractStridedSliceOp' has non-unit strides.
1382   if (extractStridedSliceOp.hasNonUnitStrides())
1383     return Value();
1384 
1385   // Trim offsets for dimensions fully extracted.
1386   auto sliceOffsets =
1387       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1388   while (!sliceOffsets.empty()) {
1389     size_t lastOffset = sliceOffsets.size() - 1;
1390     if (sliceOffsets.back() != 0 ||
1391         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1392             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1393       break;
1394     sliceOffsets.pop_back();
1395   }
1396   unsigned destinationRank = 0;
1397   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1398     destinationRank = vecType.getRank();
1399   // The dimensions of the result need to be untouched by the
1400   // extractStridedSlice op.
1401   if (destinationRank >
1402       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1403     return Value();
1404   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1405   assert(extractedPos.size() >= sliceOffsets.size());
1406   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1407     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1408   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1409   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1410   OpBuilder b(extractOp.getContext());
1411   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1412                      b.getI64ArrayAttr(extractedPos));
1413   return extractOp.getResult();
1414 }
1415 
1416 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1417 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1418   int64_t destinationRank = op.getType().isa<VectorType>()
1419                                 ? op.getType().cast<VectorType>().getRank()
1420                                 : 0;
1421   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1422   while (insertOp) {
1423     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1424                              insertOp.getSourceVectorType().getRank();
1425     if (destinationRank > insertOp.getSourceVectorType().getRank())
1426       return Value();
1427     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1428     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1429 
1430     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1431           return attr.cast<IntegerAttr>().getInt() != 1;
1432         }))
1433       return Value();
1434     bool disjoint = false;
1435     SmallVector<int64_t, 4> offsetDiffs;
1436     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1437       int64_t start = insertOffsets[dim];
1438       int64_t size =
1439           (dim < insertRankDiff)
1440               ? 1
1441               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1442       int64_t end = start + size;
1443       int64_t offset = extractOffsets[dim];
1444       // Check if the start of the extract offset is in the interval inserted.
1445       if (start <= offset && offset < end) {
1446         if (dim >= insertRankDiff)
1447           offsetDiffs.push_back(offset - start);
1448         continue;
1449       }
1450       disjoint = true;
1451       break;
1452     }
1453     // The extract element chunk overlap with the vector inserted.
1454     if (!disjoint) {
1455       // If any of the inner dimensions are only partially inserted we have a
1456       // partial overlap.
1457       int64_t srcRankDiff =
1458           insertOp.getSourceVectorType().getRank() - destinationRank;
1459       for (int64_t i = 0; i < destinationRank; i++) {
1460         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1461             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1462                                                     insertRankDiff))
1463           return Value();
1464       }
1465       op.getVectorMutable().assign(insertOp.getSource());
1466       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1467       OpBuilder b(op.getContext());
1468       op->setAttr(ExtractOp::getPositionAttrStrName(),
1469                   b.getI64ArrayAttr(offsetDiffs));
1470       return op.getResult();
1471     }
1472     // If the chunk extracted is disjoint from the chunk inserted, keep
1473     // looking in the insert chain.
1474     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1475   }
1476   return Value();
1477 }
1478 
1479 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1480   if (getPosition().empty())
1481     return getVector();
1482   if (succeeded(foldExtractOpFromExtractChain(*this)))
1483     return getResult();
1484   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1485     return res;
1486   if (auto res = foldExtractFromBroadcast(*this))
1487     return res;
1488   if (auto res = foldExtractFromShapeCast(*this))
1489     return res;
1490   if (auto val = foldExtractFromExtractStrided(*this))
1491     return val;
1492   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1493     return val;
1494   return OpFoldResult();
1495 }
1496 
1497 namespace {
1498 
1499 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1500 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1501 public:
1502   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1503 
1504   LogicalResult matchAndRewrite(ExtractOp extractOp,
1505                                 PatternRewriter &rewriter) const override {
1506     Operation *defOp = extractOp.getVector().getDefiningOp();
1507     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1508       return failure();
1509 
1510     Value source = defOp->getOperand(0);
1511     if (extractOp.getType() == source.getType())
1512       return failure();
1513     auto getRank = [](Type type) {
1514       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1515     };
1516     unsigned broadcastSrcRank = getRank(source.getType());
1517     unsigned extractResultRank = getRank(extractOp.getType());
1518     // We only consider the case where the rank of the source is less than or
1519     // equal to the rank of the extract dst. The other cases are handled in the
1520     // folding patterns.
1521     if (extractResultRank < broadcastSrcRank)
1522       return failure();
1523     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1524         extractOp, extractOp.getType(), source);
1525     return success();
1526   }
1527 };
1528 
1529 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1530 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1531 public:
1532   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1533 
1534   LogicalResult matchAndRewrite(ExtractOp extractOp,
1535                                 PatternRewriter &rewriter) const override {
1536     // Return if 'extractStridedSliceOp' operand is not defined by a
1537     // ConstantOp.
1538     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1539     if (!constantOp)
1540       return failure();
1541     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1542     if (!dense)
1543       return failure();
1544     Attribute newAttr = dense.getSplatValue<Attribute>();
1545     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1546       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1547     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1548     return success();
1549   }
1550 };
1551 
1552 } // namespace
1553 
1554 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1555                                             MLIRContext *context) {
1556   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1557 }
1558 
1559 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1560                                        SmallVectorImpl<int64_t> &results) {
1561   for (auto attr : arrayAttr)
1562     results.push_back(attr.cast<IntegerAttr>().getInt());
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 // ExtractMapOp
1567 //===----------------------------------------------------------------------===//
1568 
1569 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1570                          Value vector, ValueRange ids,
1571                          ArrayRef<int64_t> multiplicity,
1572                          AffineMap permutationMap) {
1573   assert(ids.size() == multiplicity.size() &&
1574          ids.size() == permutationMap.getNumResults());
1575   assert(permutationMap.isProjectedPermutation());
1576   VectorType type = vector.getType().cast<VectorType>();
1577   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1578                                    type.getShape().end());
1579   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1580     AffineExpr expr = permutationMap.getResult(i);
1581     auto dim = expr.cast<AffineDimExpr>();
1582     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1583   }
1584   VectorType resultType = VectorType::get(newShape, type.getElementType());
1585   ExtractMapOp::build(builder, result, resultType, vector, ids);
1586 }
1587 
1588 LogicalResult ExtractMapOp::verify() {
1589   if (getSourceVectorType().getRank() != getResultType().getRank())
1590     return emitOpError("expected source and destination vectors of same rank");
1591   unsigned numId = 0;
1592   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1593     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1594         0)
1595       return emitOpError("source vector dimensions must be a multiple of "
1596                          "destination vector dimensions");
1597     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1598       numId++;
1599   }
1600   if (numId != getIds().size())
1601     return emitOpError("expected number of ids must match the number of "
1602                        "dimensions distributed");
1603   return success();
1604 }
1605 
1606 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1607   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1608   if (insert == nullptr || getType() != insert.getVector().getType() ||
1609       getIds() != insert.getIds())
1610     return {};
1611   return insert.getVector();
1612 }
1613 
1614 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1615   assert(multiplicity.empty());
1616   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1617     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1618       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1619                              getResultType().getDimSize(i));
1620   }
1621 }
1622 
1623 template <typename MapOp>
1624 AffineMap calculateImplicitMap(MapOp op) {
1625   SmallVector<AffineExpr, 4> perm;
1626   // Check which dimension have a multiplicity greater than 1 and associated
1627   // them to the IDs in order.
1628   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1629     if (op.getSourceVectorType().getDimSize(i) !=
1630         op.getResultType().getDimSize(i))
1631       perm.push_back(getAffineDimExpr(i, op.getContext()));
1632   }
1633   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1634                             op.getContext());
1635   return map;
1636 }
1637 
1638 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1639 
1640 //===----------------------------------------------------------------------===//
1641 // FmaOp
1642 //===----------------------------------------------------------------------===//
1643 
1644 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1645   return llvm::to_vector<4>(getVectorType().getShape());
1646 }
1647 
1648 //===----------------------------------------------------------------------===//
1649 // BroadcastOp
1650 //===----------------------------------------------------------------------===//
1651 
1652 BroadcastableToResult
1653 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1654                                 std::pair<int, int> *mismatchingDims) {
1655   // Broadcast scalar to vector of the same element type.
1656   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1657       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1658     return BroadcastableToResult::Success;
1659   // From now on, only vectors broadcast.
1660   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1661   if (!srcVectorType)
1662     return BroadcastableToResult::SourceTypeNotAVector;
1663 
1664   int64_t srcRank = srcVectorType.getRank();
1665   int64_t dstRank = dstVectorType.getRank();
1666   if (srcRank > dstRank)
1667     return BroadcastableToResult::SourceRankHigher;
1668   // Source has an exact match or singleton value for all trailing dimensions
1669   // (all leading dimensions are simply duplicated).
1670   int64_t lead = dstRank - srcRank;
1671   for (int64_t r = 0; r < srcRank; ++r) {
1672     int64_t srcDim = srcVectorType.getDimSize(r);
1673     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1674     if (srcDim != 1 && srcDim != dstDim) {
1675       if (mismatchingDims) {
1676         mismatchingDims->first = srcDim;
1677         mismatchingDims->second = dstDim;
1678       }
1679       return BroadcastableToResult::DimensionMismatch;
1680     }
1681   }
1682 
1683   return BroadcastableToResult::Success;
1684 }
1685 
1686 LogicalResult BroadcastOp::verify() {
1687   std::pair<int, int> mismatchingDims;
1688   BroadcastableToResult res =
1689       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1690   if (res == BroadcastableToResult::Success)
1691     return success();
1692   if (res == BroadcastableToResult::SourceRankHigher)
1693     return emitOpError("source rank higher than destination rank");
1694   if (res == BroadcastableToResult::DimensionMismatch)
1695     return emitOpError("dimension mismatch (")
1696            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1697   if (res == BroadcastableToResult::SourceTypeNotAVector)
1698     return emitOpError("source type is not a vector");
1699   llvm_unreachable("unexpected vector.broadcast op error");
1700 }
1701 
1702 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1703   if (getSourceType() == getVectorType())
1704     return getSource();
1705   if (!operands[0])
1706     return {};
1707   auto vectorType = getVectorType();
1708   if (operands[0].getType().isIntOrIndexOrFloat())
1709     return DenseElementsAttr::get(vectorType, operands[0]);
1710   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1711     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1712   return {};
1713 }
1714 
1715 namespace {
1716 
1717 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1718 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1719   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1720 
1721   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1722                                 PatternRewriter &rewriter) const override {
1723     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1724     if (!srcBroadcast)
1725       return failure();
1726     rewriter.replaceOpWithNewOp<BroadcastOp>(
1727         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1728     return success();
1729   }
1730 };
1731 } // namespace
1732 
1733 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1734                                               MLIRContext *context) {
1735   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1736   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1737   results.add<BroadcastFolder>(context);
1738 }
1739 
1740 //===----------------------------------------------------------------------===//
1741 // ShuffleOp
1742 //===----------------------------------------------------------------------===//
1743 
1744 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1745                       Value v2, ArrayRef<int64_t> mask) {
1746   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1747 }
1748 
1749 LogicalResult ShuffleOp::verify() {
1750   VectorType resultType = getVectorType();
1751   VectorType v1Type = getV1VectorType();
1752   VectorType v2Type = getV2VectorType();
1753   // Verify ranks.
1754   int64_t resRank = resultType.getRank();
1755   int64_t v1Rank = v1Type.getRank();
1756   int64_t v2Rank = v2Type.getRank();
1757   if (resRank != v1Rank || v1Rank != v2Rank)
1758     return emitOpError("rank mismatch");
1759   // Verify all but leading dimension sizes.
1760   for (int64_t r = 1; r < v1Rank; ++r) {
1761     int64_t resDim = resultType.getDimSize(r);
1762     int64_t v1Dim = v1Type.getDimSize(r);
1763     int64_t v2Dim = v2Type.getDimSize(r);
1764     if (resDim != v1Dim || v1Dim != v2Dim)
1765       return emitOpError("dimension mismatch");
1766   }
1767   // Verify mask length.
1768   auto maskAttr = getMask().getValue();
1769   int64_t maskLength = maskAttr.size();
1770   if (maskLength <= 0)
1771     return emitOpError("invalid mask length");
1772   if (maskLength != resultType.getDimSize(0))
1773     return emitOpError("mask length mismatch");
1774   // Verify all indices.
1775   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1776   for (const auto &en : llvm::enumerate(maskAttr)) {
1777     auto attr = en.value().dyn_cast<IntegerAttr>();
1778     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1779       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1780   }
1781   return success();
1782 }
1783 
1784 LogicalResult
1785 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1786                             ValueRange operands, DictionaryAttr attributes,
1787                             RegionRange,
1788                             SmallVectorImpl<Type> &inferredReturnTypes) {
1789   ShuffleOp::Adaptor op(operands, attributes);
1790   auto v1Type = op.getV1().getType().cast<VectorType>();
1791   // Construct resulting type: leading dimension matches mask length,
1792   // all trailing dimensions match the operands.
1793   SmallVector<int64_t, 4> shape;
1794   shape.reserve(v1Type.getRank());
1795   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1796   llvm::append_range(shape, v1Type.getShape().drop_front());
1797   inferredReturnTypes.push_back(
1798       VectorType::get(shape, v1Type.getElementType()));
1799   return success();
1800 }
1801 
1802 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1803   uint64_t expected = begin;
1804   return idxArr.size() == width &&
1805          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1806                       [&expected](auto attr) {
1807                         return attr.getZExtValue() == expected++;
1808                       });
1809 }
1810 
1811 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1812   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1813   if (!getV1VectorType().isScalable() &&
1814       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1815     return getV1();
1816   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1817   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1818       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1819                        getV2VectorType().getDimSize(0)))
1820     return getV2();
1821 
1822   Attribute lhs = operands.front(), rhs = operands.back();
1823   if (!lhs || !rhs)
1824     return {};
1825 
1826   auto lhsType = lhs.getType().cast<VectorType>();
1827   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1828   // manipulation.
1829   if (lhsType.getRank() != 1)
1830     return {};
1831   int64_t lhsSize = lhsType.getDimSize(0);
1832 
1833   SmallVector<Attribute> results;
1834   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1835   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1836   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1837     int64_t i = index.getZExtValue();
1838     if (i >= lhsSize) {
1839       results.push_back(rhsElements[i - lhsSize]);
1840     } else {
1841       results.push_back(lhsElements[i]);
1842     }
1843   }
1844 
1845   return DenseElementsAttr::get(getVectorType(), results);
1846 }
1847 
1848 //===----------------------------------------------------------------------===//
1849 // InsertElementOp
1850 //===----------------------------------------------------------------------===//
1851 
1852 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1853                             Value source, Value dest) {
1854   build(builder, result, source, dest, {});
1855 }
1856 
1857 LogicalResult InsertElementOp::verify() {
1858   auto dstVectorType = getDestVectorType();
1859   if (dstVectorType.getRank() == 0) {
1860     if (getPosition())
1861       return emitOpError("expected position to be empty with 0-D vector");
1862     return success();
1863   }
1864   if (dstVectorType.getRank() != 1)
1865     return emitOpError("unexpected >1 vector rank");
1866   if (!getPosition())
1867     return emitOpError("expected position for 1-D vector");
1868   return success();
1869 }
1870 
1871 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1872   // Skip the 0-D vector here.
1873   if (operands.size() < 3)
1874     return {};
1875 
1876   Attribute src = operands[0];
1877   Attribute dst = operands[1];
1878   Attribute pos = operands[2];
1879   if (!src || !dst || !pos)
1880     return {};
1881 
1882   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1883 
1884   SmallVector<Attribute> results(dstElements);
1885 
1886   auto attr = pos.dyn_cast<IntegerAttr>();
1887   uint64_t posIdx = attr.getInt();
1888 
1889   results[posIdx] = src;
1890 
1891   return DenseElementsAttr::get(getDestVectorType(), results);
1892 }
1893 
1894 //===----------------------------------------------------------------------===//
1895 // InsertOp
1896 //===----------------------------------------------------------------------===//
1897 
1898 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1899                      Value dest, ArrayRef<int64_t> position) {
1900   result.addOperands({source, dest});
1901   auto positionAttr = getVectorSubscriptAttr(builder, position);
1902   result.addTypes(dest.getType());
1903   result.addAttribute(getPositionAttrStrName(), positionAttr);
1904 }
1905 
1906 // Convenience builder which assumes the values are constant indices.
1907 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1908                      Value dest, ValueRange position) {
1909   SmallVector<int64_t, 4> positionConstants =
1910       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1911         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1912       }));
1913   build(builder, result, source, dest, positionConstants);
1914 }
1915 
1916 LogicalResult InsertOp::verify() {
1917   auto positionAttr = getPosition().getValue();
1918   auto destVectorType = getDestVectorType();
1919   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1920     return emitOpError(
1921         "expected position attribute of rank smaller than dest vector rank");
1922   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1923   if (srcVectorType &&
1924       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1925        static_cast<unsigned>(destVectorType.getRank())))
1926     return emitOpError("expected position attribute rank + source rank to "
1927                           "match dest vector rank");
1928   if (!srcVectorType &&
1929       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1930     return emitOpError(
1931         "expected position attribute rank to match the dest vector rank");
1932   for (const auto &en : llvm::enumerate(positionAttr)) {
1933     auto attr = en.value().dyn_cast<IntegerAttr>();
1934     if (!attr || attr.getInt() < 0 ||
1935         attr.getInt() >= destVectorType.getDimSize(en.index()))
1936       return emitOpError("expected position attribute #")
1937              << (en.index() + 1)
1938              << " to be a non-negative integer smaller than the corresponding "
1939                 "dest vector dimension";
1940   }
1941   return success();
1942 }
1943 
1944 namespace {
1945 
1946 // If insertOp is only inserting unit dimensions it can be transformed to a
1947 // broadcast.
1948 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1949 public:
1950   using OpRewritePattern<InsertOp>::OpRewritePattern;
1951 
1952   LogicalResult matchAndRewrite(InsertOp insertOp,
1953                                 PatternRewriter &rewriter) const override {
1954     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1955     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1956                            srcVecType.getNumElements())
1957       return failure();
1958     rewriter.replaceOpWithNewOp<BroadcastOp>(
1959         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1960     return success();
1961   }
1962 };
1963 
1964 } // namespace
1965 
1966 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1967                                            MLIRContext *context) {
1968   results.add<InsertToBroadcast, BroadcastFolder>(context);
1969 }
1970 
1971 // Eliminates insert operations that produce values identical to their source
1972 // value. This happens when the source and destination vectors have identical
1973 // sizes.
1974 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1975   if (getPosition().empty())
1976     return getSource();
1977   return {};
1978 }
1979 
1980 //===----------------------------------------------------------------------===//
1981 // InsertMapOp
1982 //===----------------------------------------------------------------------===//
1983 
1984 LogicalResult InsertMapOp::verify() {
1985   if (getSourceVectorType().getRank() != getResultType().getRank())
1986     return emitOpError("expected source and destination vectors of same rank");
1987   unsigned numId = 0;
1988   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1989     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1990         0)
1991       return emitOpError(
1992           "destination vector size must be a multiple of source vector size");
1993     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1994       numId++;
1995   }
1996   if (numId != getIds().size())
1997     return emitOpError("expected number of ids must match the number of "
1998                        "dimensions distributed");
1999   return success();
2000 }
2001 
2002 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2003 
2004 //===----------------------------------------------------------------------===//
2005 // InsertStridedSliceOp
2006 //===----------------------------------------------------------------------===//
2007 
2008 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2009                                  Value source, Value dest,
2010                                  ArrayRef<int64_t> offsets,
2011                                  ArrayRef<int64_t> strides) {
2012   result.addOperands({source, dest});
2013   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2014   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2015   result.addTypes(dest.getType());
2016   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2017   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2018 }
2019 
2020 // TODO: Should be moved to Tablegen Confined attributes.
2021 template <typename OpType>
2022 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2023                                                         ArrayAttr arrayAttr,
2024                                                         ArrayRef<int64_t> shape,
2025                                                         StringRef attrName) {
2026   if (arrayAttr.size() > shape.size())
2027     return op.emitOpError("expected ")
2028            << attrName << " attribute of rank smaller than vector rank";
2029   return success();
2030 }
2031 
2032 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2033 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2034 // Otherwise, the admissible interval is [min, max].
2035 template <typename OpType>
2036 static LogicalResult
2037 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2038                                   int64_t max, StringRef attrName,
2039                                   bool halfOpen = true) {
2040   for (auto attr : arrayAttr) {
2041     auto val = attr.cast<IntegerAttr>().getInt();
2042     auto upper = max;
2043     if (!halfOpen)
2044       upper += 1;
2045     if (val < min || val >= upper)
2046       return op.emitOpError("expected ") << attrName << " to be confined to ["
2047                                          << min << ", " << upper << ")";
2048   }
2049   return success();
2050 }
2051 
2052 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2053 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2054 // Otherwise, the admissible interval is [min, max].
2055 template <typename OpType>
2056 static LogicalResult
2057 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2058                                   ArrayRef<int64_t> shape, StringRef attrName,
2059                                   bool halfOpen = true, int64_t min = 0) {
2060   assert(arrayAttr.size() <= shape.size());
2061   unsigned index = 0;
2062   for (auto it : llvm::zip(arrayAttr, shape)) {
2063     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2064     auto max = std::get<1>(it);
2065     if (!halfOpen)
2066       max += 1;
2067     if (val < min || val >= max)
2068       return op.emitOpError("expected ")
2069              << attrName << " dimension " << index << " to be confined to ["
2070              << min << ", " << max << ")";
2071     ++index;
2072   }
2073   return success();
2074 }
2075 
2076 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2077 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2078 // Otherwise, the admissible interval is [min, max].
2079 template <typename OpType>
2080 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2081     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2082     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2083     bool halfOpen = true, int64_t min = 1) {
2084   assert(arrayAttr1.size() <= shape.size());
2085   assert(arrayAttr2.size() <= shape.size());
2086   unsigned index = 0;
2087   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2088     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2089     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2090     auto max = std::get<2>(it);
2091     if (!halfOpen)
2092       max += 1;
2093     if (val1 + val2 < 0 || val1 + val2 >= max)
2094       return op.emitOpError("expected sum(")
2095              << attrName1 << ", " << attrName2 << ") dimension " << index
2096              << " to be confined to [" << min << ", " << max << ")";
2097     ++index;
2098   }
2099   return success();
2100 }
2101 
2102 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2103                                   MLIRContext *context) {
2104   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2105     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2106   });
2107   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2108 }
2109 
2110 LogicalResult InsertStridedSliceOp::verify() {
2111   auto sourceVectorType = getSourceVectorType();
2112   auto destVectorType = getDestVectorType();
2113   auto offsets = getOffsetsAttr();
2114   auto strides = getStridesAttr();
2115   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2116     return emitOpError(
2117         "expected offsets of same size as destination vector rank");
2118   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2119     return emitOpError("expected strides of same size as source vector rank");
2120   if (sourceVectorType.getRank() > destVectorType.getRank())
2121     return emitOpError(
2122         "expected source rank to be smaller than destination rank");
2123 
2124   auto sourceShape = sourceVectorType.getShape();
2125   auto destShape = destVectorType.getShape();
2126   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2127       destShape.size() - sourceShape.size(), 0);
2128   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2129   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2130   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2131   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2132                                                offName)) ||
2133       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2134                                                stridesName,
2135                                                /*halfOpen=*/false)) ||
2136       failed(isSumOfIntegerArrayAttrConfinedToShape(
2137           *this, offsets,
2138           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2139           offName, "source vector shape",
2140           /*halfOpen=*/false, /*min=*/1)))
2141     return failure();
2142 
2143   return success();
2144 }
2145 
2146 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2147   if (getSourceVectorType() == getDestVectorType())
2148     return getSource();
2149   return {};
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // OuterProductOp
2154 //===----------------------------------------------------------------------===//
2155 
2156 /// Build an op without mask, use the type of `acc` as the return type.
2157 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2158                            Value lhs, Value rhs, Value acc) {
2159   result.addOperands({lhs, rhs, acc});
2160   result.addTypes(acc.getType());
2161 }
2162 
2163 void OuterProductOp::print(OpAsmPrinter &p) {
2164   p << " " << getLhs() << ", " << getRhs();
2165   if (!getAcc().empty()) {
2166     p << ", " << getAcc();
2167     p.printOptionalAttrDict((*this)->getAttrs());
2168   }
2169   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2170 }
2171 
2172 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2173   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2174   Type tLHS, tRHS;
2175   if (parser.parseOperandList(operandsInfo) ||
2176       parser.parseOptionalAttrDict(result.attributes) ||
2177       parser.parseColonType(tLHS) || parser.parseComma() ||
2178       parser.parseType(tRHS))
2179     return failure();
2180   if (operandsInfo.size() < 2)
2181     return parser.emitError(parser.getNameLoc(),
2182                             "expected at least 2 operands");
2183   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2184   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2185   if (!vLHS)
2186     return parser.emitError(parser.getNameLoc(),
2187                             "expected vector type for operand #1");
2188   VectorType resType =
2189       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2190                              vLHS.getElementType())
2191            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2192 
2193   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2194     result.attributes.append(
2195         OuterProductOp::getKindAttrStrName(),
2196         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2197                                result.getContext()));
2198   }
2199 
2200   return failure(
2201       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2202       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2203       (operandsInfo.size() > 2 &&
2204        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2205       parser.addTypeToList(resType, result.types));
2206 }
2207 
2208 LogicalResult OuterProductOp::verify() {
2209   Type tRHS = getOperandTypeRHS();
2210   VectorType vLHS = getOperandVectorTypeLHS(),
2211              vRHS = tRHS.dyn_cast<VectorType>(),
2212              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2213 
2214   if (vLHS.getRank() != 1)
2215     return emitOpError("expected 1-d vector for operand #1");
2216 
2217   if (vRHS) {
2218     // Proper OUTER operation.
2219     if (vRHS.getRank() != 1)
2220       return emitOpError("expected 1-d vector for operand #2");
2221     if (vRES.getRank() != 2)
2222       return emitOpError("expected 2-d vector result");
2223     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2224       return emitOpError("expected #1 operand dim to match result dim #1");
2225     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2226       return emitOpError("expected #2 operand dim to match result dim #2");
2227   } else {
2228     // An AXPY operation.
2229     if (vRES.getRank() != 1)
2230       return emitOpError("expected 1-d vector result");
2231     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2232       return emitOpError("expected #1 operand dim to match result dim #1");
2233   }
2234 
2235   if (vACC && vACC != vRES)
2236     return emitOpError("expected operand #3 of same type as result type");
2237 
2238   // Verify supported combining kind.
2239   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2240     return emitOpError("unsupported outerproduct type");
2241 
2242   return success();
2243 }
2244 
2245 //===----------------------------------------------------------------------===//
2246 // ReshapeOp
2247 //===----------------------------------------------------------------------===//
2248 
2249 LogicalResult ReshapeOp::verify() {
2250   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2251   auto inputVectorType = getInputVectorType();
2252   auto outputVectorType = getOutputVectorType();
2253   int64_t inputShapeRank = getNumInputShapeSizes();
2254   int64_t outputShapeRank = getNumOutputShapeSizes();
2255   SmallVector<int64_t, 4> fixedVectorSizes;
2256   getFixedVectorSizes(fixedVectorSizes);
2257   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2258 
2259   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2260     return emitError("invalid input shape for vector type ")
2261            << inputVectorType;
2262 
2263   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2264     return emitError("invalid output shape for vector type ")
2265            << outputVectorType;
2266 
2267   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2268   // suffix.
2269   unsigned inputVectorRank = inputVectorType.getRank();
2270   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2271     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2272     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2273       return emitError("fixed vector size must match input vector for dim ")
2274              << i;
2275   }
2276 
2277   unsigned outputVectorRank = outputVectorType.getRank();
2278   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2279     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2280     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2281       return emitError("fixed vector size must match output vector for dim ")
2282              << i;
2283   }
2284 
2285   // If all shape operands are produced by constant ops, verify that product
2286   // of dimensions for input/output shape match.
2287   auto isDefByConstant = [](Value operand) {
2288     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2289   };
2290   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2291       llvm::all_of(getOutputShape(), isDefByConstant)) {
2292     int64_t numInputElements = 1;
2293     for (auto operand : getInputShape())
2294       numInputElements *=
2295           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2296     int64_t numOutputElements = 1;
2297     for (auto operand : getOutputShape())
2298       numOutputElements *=
2299           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2300     if (numInputElements != numOutputElements)
2301       return emitError("product of input and output shape sizes must match");
2302   }
2303   return success();
2304 }
2305 
2306 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2307   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2308 }
2309 
2310 //===----------------------------------------------------------------------===//
2311 // ExtractStridedSliceOp
2312 //===----------------------------------------------------------------------===//
2313 
2314 // Inference works as follows:
2315 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2316 //   2. Add sizes from 'vectorType' for remaining dims.
2317 static Type inferStridedSliceOpResultType(VectorType vectorType,
2318                                           ArrayAttr offsets, ArrayAttr sizes,
2319                                           ArrayAttr strides) {
2320   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2321   SmallVector<int64_t, 4> shape;
2322   shape.reserve(vectorType.getRank());
2323   unsigned idx = 0;
2324   for (unsigned e = offsets.size(); idx < e; ++idx)
2325     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2326   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2327     shape.push_back(vectorType.getShape()[idx]);
2328 
2329   return VectorType::get(shape, vectorType.getElementType());
2330 }
2331 
2332 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2333                                   Value source, ArrayRef<int64_t> offsets,
2334                                   ArrayRef<int64_t> sizes,
2335                                   ArrayRef<int64_t> strides) {
2336   result.addOperands(source);
2337   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2338   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2339   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2340   result.addTypes(
2341       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2342                                     offsetsAttr, sizesAttr, stridesAttr));
2343   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2344   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2345   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2346 }
2347 
2348 LogicalResult ExtractStridedSliceOp::verify() {
2349   auto type = getVectorType();
2350   auto offsets = getOffsetsAttr();
2351   auto sizes = getSizesAttr();
2352   auto strides = getStridesAttr();
2353   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2354     return emitOpError("expected offsets, sizes and strides attributes of same size");
2355 
2356   auto shape = type.getShape();
2357   auto offName = getOffsetsAttrName();
2358   auto sizesName = getSizesAttrName();
2359   auto stridesName = getStridesAttrName();
2360   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2361       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2362       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2363                                                 stridesName)) ||
2364       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2365       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2366                                                /*halfOpen=*/false,
2367                                                /*min=*/1)) ||
2368       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2369                                                /*halfOpen=*/false)) ||
2370       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2371                                                     offName, sizesName,
2372                                                     /*halfOpen=*/false)))
2373     return failure();
2374 
2375   auto resultType =
2376       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2377   if (getResult().getType() != resultType)
2378     return emitOpError("expected result type to be ") << resultType;
2379 
2380   return success();
2381 }
2382 
2383 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2384 // to use the source of the InsertStrided ops if we can detect that the
2385 // extracted vector is a subset of one of the vector inserted.
2386 static LogicalResult
2387 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2388   // Helper to extract integer out of ArrayAttr.
2389   auto getElement = [](ArrayAttr array, int idx) {
2390     return array[idx].cast<IntegerAttr>().getInt();
2391   };
2392   ArrayAttr extractOffsets = op.getOffsets();
2393   ArrayAttr extractStrides = op.getStrides();
2394   ArrayAttr extractSizes = op.getSizes();
2395   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2396   while (insertOp) {
2397     if (op.getVectorType().getRank() !=
2398         insertOp.getSourceVectorType().getRank())
2399       return failure();
2400     ArrayAttr insertOffsets = insertOp.getOffsets();
2401     ArrayAttr insertStrides = insertOp.getStrides();
2402     // If the rank of extract is greater than the rank of insert, we are likely
2403     // extracting a partial chunk of the vector inserted.
2404     if (extractOffsets.size() > insertOffsets.size())
2405       return failure();
2406     bool patialoverlap = false;
2407     bool disjoint = false;
2408     SmallVector<int64_t, 4> offsetDiffs;
2409     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2410       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2411         return failure();
2412       int64_t start = getElement(insertOffsets, dim);
2413       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2414       int64_t offset = getElement(extractOffsets, dim);
2415       int64_t size = getElement(extractSizes, dim);
2416       // Check if the start of the extract offset is in the interval inserted.
2417       if (start <= offset && offset < end) {
2418         // If the extract interval overlaps but is not fully included we may
2419         // have a partial overlap that will prevent any folding.
2420         if (offset + size > end)
2421           patialoverlap = true;
2422         offsetDiffs.push_back(offset - start);
2423         continue;
2424       }
2425       disjoint = true;
2426       break;
2427     }
2428     // The extract element chunk is a subset of the insert element.
2429     if (!disjoint && !patialoverlap) {
2430       op.setOperand(insertOp.getSource());
2431       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2432       OpBuilder b(op.getContext());
2433       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2434                   b.getI64ArrayAttr(offsetDiffs));
2435       return success();
2436     }
2437     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2438     // in the insert chain.
2439     if (disjoint)
2440       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2441     else {
2442       // The extracted vector partially overlap the inserted vector, we cannot
2443       // fold.
2444       return failure();
2445     }
2446   }
2447   return failure();
2448 }
2449 
2450 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2451   if (getVectorType() == getResult().getType())
2452     return getVector();
2453   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2454     return getResult();
2455   return {};
2456 }
2457 
2458 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2459   populateFromInt64AttrArray(getOffsets(), results);
2460 }
2461 
2462 namespace {
2463 
2464 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2465 // ConstantMaskOp.
2466 class StridedSliceConstantMaskFolder final
2467     : public OpRewritePattern<ExtractStridedSliceOp> {
2468 public:
2469   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2470 
2471   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2472                                 PatternRewriter &rewriter) const override {
2473     // Return if 'extractStridedSliceOp' operand is not defined by a
2474     // ConstantMaskOp.
2475     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2476     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2477     if (!constantMaskOp)
2478       return failure();
2479     // Return if 'extractStridedSliceOp' has non-unit strides.
2480     if (extractStridedSliceOp.hasNonUnitStrides())
2481       return failure();
2482     // Gather constant mask dimension sizes.
2483     SmallVector<int64_t, 4> maskDimSizes;
2484     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2485     // Gather strided slice offsets and sizes.
2486     SmallVector<int64_t, 4> sliceOffsets;
2487     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2488                                sliceOffsets);
2489     SmallVector<int64_t, 4> sliceSizes;
2490     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2491 
2492     // Compute slice of vector mask region.
2493     SmallVector<int64_t, 4> sliceMaskDimSizes;
2494     assert(sliceOffsets.size() == maskDimSizes.size());
2495     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2496       int64_t maskDimSize = std::get<0>(it);
2497       int64_t sliceOffset = std::get<1>(it);
2498       int64_t sliceSize = std::get<2>(it);
2499       int64_t sliceMaskDimSize = std::max(
2500           static_cast<int64_t>(0),
2501           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2502       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2503     }
2504     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2505     // region is a conjunction of mask dim intervals).
2506     if (llvm::is_contained(sliceMaskDimSizes, 0))
2507       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2508 
2509     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2510     // region.
2511     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2512         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2513         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2514     return success();
2515   }
2516 };
2517 
2518 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2519 class StridedSliceConstantFolder final
2520     : public OpRewritePattern<ExtractStridedSliceOp> {
2521 public:
2522   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2523 
2524   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2525                                 PatternRewriter &rewriter) const override {
2526     // Return if 'extractStridedSliceOp' operand is not defined by a
2527     // ConstantOp.
2528     auto constantOp =
2529         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2530     if (!constantOp)
2531       return failure();
2532     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2533     if (!dense)
2534       return failure();
2535     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2536                                           dense.getSplatValue<Attribute>());
2537     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2538                                                    newAttr);
2539     return success();
2540   }
2541 };
2542 
2543 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2544 // BroadcastOp(ExtractStrideSliceOp).
2545 class StridedSliceBroadcast final
2546     : public OpRewritePattern<ExtractStridedSliceOp> {
2547 public:
2548   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2549 
2550   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2551                                 PatternRewriter &rewriter) const override {
2552     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2553     if (!broadcast)
2554       return failure();
2555     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2556     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2557     auto dstVecType = op.getType().cast<VectorType>();
2558     unsigned dstRank = dstVecType.getRank();
2559     unsigned rankDiff = dstRank - srcRank;
2560     // Check if the most inner dimensions of the source of the broadcast are the
2561     // same as the destination of the extract. If this is the case we can just
2562     // use a broadcast as the original dimensions are untouched.
2563     bool lowerDimMatch = true;
2564     for (unsigned i = 0; i < srcRank; i++) {
2565       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2566         lowerDimMatch = false;
2567         break;
2568       }
2569     }
2570     Value source = broadcast.getSource();
2571     // If the inner dimensions don't match, it means we need to extract from the
2572     // source of the orignal broadcast and then broadcast the extracted value.
2573     // We also need to handle degenerated cases where the source is effectively
2574     // just a single scalar.
2575     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2576     if (!lowerDimMatch && !isScalarSrc) {
2577       source = rewriter.create<ExtractStridedSliceOp>(
2578           op->getLoc(), source,
2579           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2580           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2581           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2582     }
2583     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2584     return success();
2585   }
2586 };
2587 
2588 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2589 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2590 public:
2591   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2592 
2593   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2594                                 PatternRewriter &rewriter) const override {
2595     auto splat = op.getVector().getDefiningOp<SplatOp>();
2596     if (!splat)
2597       return failure();
2598     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2599     return success();
2600   }
2601 };
2602 
2603 } // namespace
2604 
2605 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2606     RewritePatternSet &results, MLIRContext *context) {
2607   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2608   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2609   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2610               StridedSliceBroadcast, StridedSliceSplat>(context);
2611 }
2612 
2613 //===----------------------------------------------------------------------===//
2614 // TransferReadOp
2615 //===----------------------------------------------------------------------===//
2616 
2617 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2618 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2619                            VectorType vectorType, Value source,
2620                            ValueRange indices, AffineMapAttr permutationMapAttr,
2621                            /*optional*/ ArrayAttr inBoundsAttr) {
2622   Type elemType = source.getType().cast<ShapedType>().getElementType();
2623   Value padding = builder.create<arith::ConstantOp>(
2624       result.location, elemType, builder.getZeroAttr(elemType));
2625   build(builder, result, vectorType, source, indices, permutationMapAttr,
2626         padding, /*mask=*/Value(), inBoundsAttr);
2627 }
2628 
2629 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2630 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2631                            VectorType vectorType, Value source,
2632                            ValueRange indices, AffineMap permutationMap,
2633                            Optional<ArrayRef<bool>> inBounds) {
2634   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2635   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2636                           ? builder.getBoolArrayAttr(inBounds.getValue())
2637                           : ArrayAttr();
2638   build(builder, result, vectorType, source, indices, permutationMapAttr,
2639         inBoundsAttr);
2640 }
2641 
2642 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2643 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2644                            VectorType vectorType, Value source,
2645                            ValueRange indices, Value padding,
2646                            Optional<ArrayRef<bool>> inBounds) {
2647   AffineMap permutationMap = getTransferMinorIdentityMap(
2648       source.getType().cast<ShapedType>(), vectorType);
2649   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2650   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2651                           ? builder.getBoolArrayAttr(inBounds.getValue())
2652                           : ArrayAttr();
2653   build(builder, result, vectorType, source, indices, permutationMapAttr,
2654         padding,
2655         /*mask=*/Value(), inBoundsAttr);
2656 }
2657 
2658 /// 4. Builder that sets padding to zero and permutation map to
2659 /// 'getMinorIdentityMap'.
2660 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2661                            VectorType vectorType, Value source,
2662                            ValueRange indices,
2663                            Optional<ArrayRef<bool>> inBounds) {
2664   Type elemType = source.getType().cast<ShapedType>().getElementType();
2665   Value padding = builder.create<arith::ConstantOp>(
2666       result.location, elemType, builder.getZeroAttr(elemType));
2667   build(builder, result, vectorType, source, indices, padding, inBounds);
2668 }
2669 
2670 template <typename EmitFun>
2671 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2672                                           EmitFun emitOpError) {
2673   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2674   for (auto expr : permutationMap.getResults()) {
2675     auto dim = expr.dyn_cast<AffineDimExpr>();
2676     auto zero = expr.dyn_cast<AffineConstantExpr>();
2677     if (zero) {
2678       if (zero.getValue() != 0) {
2679         return emitOpError(
2680             "requires a projected permutation_map (at most one dim or the zero "
2681             "constant can appear in each result)");
2682       }
2683       continue;
2684     }
2685     if (!dim) {
2686       return emitOpError("requires a projected permutation_map (at most one "
2687                          "dim or the zero constant can appear in each result)");
2688     }
2689     if (seen[dim.getPosition()]) {
2690       return emitOpError(
2691           "requires a permutation_map that is a permutation (found one dim "
2692           "used more than once)");
2693     }
2694     seen[dim.getPosition()] = true;
2695   }
2696   return success();
2697 }
2698 
2699 static LogicalResult
2700 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2701                  VectorType vectorType, VectorType maskType,
2702                  AffineMap permutationMap, ArrayAttr inBounds) {
2703   if (op->hasAttr("masked")) {
2704     return op->emitOpError("masked attribute has been removed. "
2705                            "Use in_bounds instead.");
2706   }
2707 
2708   if (!shapedType.isa<MemRefType, RankedTensorType>())
2709     return op->emitOpError(
2710         "requires source to be a memref or ranked tensor type");
2711 
2712   auto elementType = shapedType.getElementType();
2713   DataLayout dataLayout = DataLayout::closest(op);
2714   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2715     // Memref or tensor has vector element type.
2716     unsigned sourceVecSize =
2717         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2718         vectorElementType.getShape().back();
2719     unsigned resultVecSize =
2720         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2721         vectorType.getShape().back();
2722     if (resultVecSize % sourceVecSize != 0)
2723       return op->emitOpError(
2724           "requires the bitwidth of the minor 1-D vector to be an integral "
2725           "multiple of the bitwidth of the minor 1-D vector of the source");
2726 
2727     unsigned sourceVecEltRank = vectorElementType.getRank();
2728     unsigned resultVecRank = vectorType.getRank();
2729     if (sourceVecEltRank > resultVecRank)
2730       return op->emitOpError(
2731           "requires source vector element and vector result ranks to match.");
2732     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2733     // Check that permutation map results match 'rankOffset' of vector type.
2734     if (permutationMap.getNumResults() != rankOffset)
2735       return op->emitOpError("requires a permutation_map with result dims of "
2736                              "the same rank as the vector type");
2737 
2738     if (maskType)
2739       return op->emitOpError("does not support masks with vector element type");
2740   } else {
2741     // Memref or tensor has scalar element type.
2742     unsigned minorSize =
2743         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2744     unsigned resultVecSize =
2745         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2746     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2747       return op->emitOpError(
2748           "requires the bitwidth of the minor 1-D vector to be an integral "
2749           "multiple of the bitwidth of the source element type");
2750 
2751     // Check that permutation map results match rank of vector type.
2752     if (permutationMap.getNumResults() != vectorType.getRank())
2753       return op->emitOpError("requires a permutation_map with result dims of "
2754                              "the same rank as the vector type");
2755 
2756     VectorType expectedMaskType =
2757         vector::detail::transferMaskType(vectorType, permutationMap);
2758     if (maskType && expectedMaskType != maskType)
2759       return op->emitOpError("expects mask type consistent with permutation "
2760                              "map: ")
2761              << maskType;
2762   }
2763 
2764   if (permutationMap.getNumSymbols() != 0)
2765     return op->emitOpError("requires permutation_map without symbols");
2766 
2767   if (permutationMap.getNumInputs() != shapedType.getRank())
2768     return op->emitOpError("requires a permutation_map with input dims of the "
2769                            "same rank as the source type");
2770 
2771   if (inBounds) {
2772     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2773       return op->emitOpError("expects the optional in_bounds attr of same rank "
2774                              "as permutation_map results: ")
2775              << AffineMapAttr::get(permutationMap)
2776              << " vs inBounds of size: " << inBounds.size();
2777     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2778       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2779           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2780         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2781   }
2782 
2783   return success();
2784 }
2785 
2786 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2787   SmallVector<StringRef, 3> elidedAttrs;
2788   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2789   if (op.permutation_map().isMinorIdentity())
2790     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2791   bool elideInBounds = true;
2792   if (auto inBounds = op.in_bounds()) {
2793     for (auto attr : *inBounds) {
2794       if (attr.template cast<BoolAttr>().getValue()) {
2795         elideInBounds = false;
2796         break;
2797       }
2798     }
2799   }
2800   if (elideInBounds)
2801     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2802   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2803 }
2804 
2805 void TransferReadOp::print(OpAsmPrinter &p) {
2806   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2807   if (getMask())
2808     p << ", " << getMask();
2809   printTransferAttrs(p, *this);
2810   p << " : " << getShapedType() << ", " << getVectorType();
2811 }
2812 
2813 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2814   auto &builder = parser.getBuilder();
2815   SMLoc typesLoc;
2816   OpAsmParser::UnresolvedOperand sourceInfo;
2817   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2818   OpAsmParser::UnresolvedOperand paddingInfo;
2819   SmallVector<Type, 2> types;
2820   OpAsmParser::UnresolvedOperand maskInfo;
2821   // Parsing with support for paddingValue.
2822   if (parser.parseOperand(sourceInfo) ||
2823       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2824       parser.parseComma() || parser.parseOperand(paddingInfo))
2825     return failure();
2826   ParseResult hasMask = parser.parseOptionalComma();
2827   if (hasMask.succeeded()) {
2828     parser.parseOperand(maskInfo);
2829   }
2830   if (parser.parseOptionalAttrDict(result.attributes) ||
2831       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2832     return failure();
2833   if (types.size() != 2)
2834     return parser.emitError(typesLoc, "requires two types");
2835   auto indexType = builder.getIndexType();
2836   auto shapedType = types[0].dyn_cast<ShapedType>();
2837   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2838     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2839   VectorType vectorType = types[1].dyn_cast<VectorType>();
2840   if (!vectorType)
2841     return parser.emitError(typesLoc, "requires vector type");
2842   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2843   Attribute mapAttr = result.attributes.get(permutationAttrName);
2844   if (!mapAttr) {
2845     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2846     // Update `mapAttr` that is used later to determine mask type.
2847     mapAttr = AffineMapAttr::get(permMap);
2848     result.attributes.set(permutationAttrName, mapAttr);
2849   }
2850   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2851       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2852       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2853                             result.operands))
2854     return failure();
2855   if (hasMask.succeeded()) {
2856     if (shapedType.getElementType().dyn_cast<VectorType>())
2857       return parser.emitError(
2858           maskInfo.location, "does not support masks with vector element type");
2859     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2860     // Instead of adding the mask type as an op type, compute it based on the
2861     // vector type and the permutation map (to keep the type signature small).
2862     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2863     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2864       return failure();
2865   }
2866   result.addAttribute(
2867       TransferReadOp::getOperandSegmentSizeAttr(),
2868       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2869                                 static_cast<int32_t>(hasMask.succeeded())}));
2870   return parser.addTypeToList(vectorType, result.types);
2871 }
2872 
2873 LogicalResult TransferReadOp::verify() {
2874   // Consistency of elemental types in source and vector.
2875   ShapedType shapedType = getShapedType();
2876   VectorType vectorType = getVectorType();
2877   VectorType maskType = getMaskType();
2878   auto paddingType = getPadding().getType();
2879   auto permutationMap = getPermutationMap();
2880   auto sourceElementType = shapedType.getElementType();
2881 
2882   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2883     return emitOpError("requires ") << shapedType.getRank() << " indices";
2884 
2885   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2886                               shapedType, vectorType, maskType, permutationMap,
2887                               getInBounds() ? *getInBounds() : ArrayAttr())))
2888     return failure();
2889 
2890   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2891     // Source has vector element type.
2892     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2893     if (sourceVectorElementType != paddingType)
2894       return emitOpError(
2895           "requires source element type and padding type to match.");
2896 
2897   } else {
2898     // Check that 'paddingType' is valid to store in a vector type.
2899     if (!VectorType::isValidElementType(paddingType))
2900       return emitOpError("requires valid padding vector elemental type");
2901 
2902     // Check that padding type and vector element types match.
2903     if (paddingType != sourceElementType)
2904       return emitOpError(
2905           "requires formal padding and source of the same elemental type");
2906   }
2907 
2908   return verifyPermutationMap(permutationMap,
2909                               [&](Twine t) { return emitOpError(t); });
2910 }
2911 
2912 /// This is a common class used for patterns of the form
2913 /// ```
2914 ///    someop(memrefcast) -> someop
2915 /// ```
2916 /// It folds the source of the memref.cast into the root operation directly.
2917 static LogicalResult foldMemRefCast(Operation *op) {
2918   bool folded = false;
2919   for (OpOperand &operand : op->getOpOperands()) {
2920     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2921     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2922       operand.set(castOp.getOperand());
2923       folded = true;
2924     }
2925   }
2926   return success(folded);
2927 }
2928 
2929 static LogicalResult foldTensorCast(Operation *op) {
2930   bool folded = false;
2931   for (OpOperand &operand : op->getOpOperands()) {
2932     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2933     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2934       operand.set(castOp.getOperand());
2935       folded = true;
2936     }
2937   }
2938   return success(folded);
2939 }
2940 
2941 template <typename TransferOp>
2942 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2943   // TODO: support more aggressive createOrFold on:
2944   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2945   if (op.getShapedType().isDynamicDim(indicesIdx))
2946     return false;
2947   Value index = op.getIndices()[indicesIdx];
2948   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2949   if (!cstOp)
2950     return false;
2951 
2952   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2953   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2954 
2955   return cstOp.value() + vectorSize <= sourceSize;
2956 }
2957 
2958 template <typename TransferOp>
2959 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2960   // TODO: support 0-d corner case.
2961   // TODO: Be less conservative.
2962   if (op.getTransferRank() == 0)
2963     return failure();
2964   AffineMap permutationMap = op.getPermutationMap();
2965   bool changed = false;
2966   SmallVector<bool, 4> newInBounds;
2967   newInBounds.reserve(op.getTransferRank());
2968   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2969     // Already marked as in-bounds, nothing to see here.
2970     if (op.isDimInBounds(i)) {
2971       newInBounds.push_back(true);
2972       continue;
2973     }
2974     // Currently out-of-bounds, check whether we can statically determine it is
2975     // inBounds.
2976     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2977     assert(dimExpr && "Broadcast dims must be in-bounds");
2978     auto inBounds =
2979         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2980     newInBounds.push_back(inBounds);
2981     // We commit the pattern if it is "more inbounds".
2982     changed |= inBounds;
2983   }
2984   if (!changed)
2985     return failure();
2986   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2987   OpBuilder b(op.getContext());
2988   op->setAttr(TransferOp::getInBoundsAttrStrName(),
2989               b.getBoolArrayAttr(newInBounds));
2990   return success();
2991 }
2992 
2993 ///  ```
2994 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2995 ///    : vector<1x4xf32>, tensor<4x4xf32>
2996 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2997 ///    : tensor<4x4xf32>, vector<1x4xf32>
2998 ///  ```
2999 ///  -> Folds into
3000 ///  ```
3001 ///  %v0
3002 ///  ```
3003 static Value foldRAW(TransferReadOp readOp) {
3004   if (!readOp.getShapedType().isa<RankedTensorType>())
3005     return {};
3006   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3007   while (defWrite) {
3008     if (checkSameValueRAW(defWrite, readOp))
3009       return defWrite.getVector();
3010     if (!isDisjointTransferIndices(
3011             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3012             cast<VectorTransferOpInterface>(readOp.getOperation())))
3013       break;
3014     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3015   }
3016   return {};
3017 }
3018 
3019 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3020   if (Value vec = foldRAW(*this))
3021     return vec;
3022   /// transfer_read(memrefcast) -> transfer_read
3023   if (succeeded(foldTransferInBoundsAttribute(*this)))
3024     return getResult();
3025   if (succeeded(foldMemRefCast(*this)))
3026     return getResult();
3027   if (succeeded(foldTensorCast(*this)))
3028     return getResult();
3029   return OpFoldResult();
3030 }
3031 
3032 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3033   return llvm::to_vector<4>(getVectorType().getShape());
3034 }
3035 
3036 void TransferReadOp::getEffects(
3037     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3038         &effects) {
3039   if (getShapedType().isa<MemRefType>())
3040     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3041                          SideEffects::DefaultResource::get());
3042 }
3043 
3044 namespace {
3045 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3046 ///
3047 /// ```
3048 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3049 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3050 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3051 ///     : tensor<?x?xf32>, vector<4x5xf32>
3052 /// ```
3053 /// is rewritten to:
3054 /// ```
3055 /// %p0 = arith.addi %a, %e : index
3056 /// %p1 = arith.addi %b, %f : index
3057 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3058 ///     : tensor<?x?xf32>, vector<4x5xf32>
3059 /// ```
3060 struct FoldExtractSliceIntoTransferRead
3061     : public OpRewritePattern<TransferReadOp> {
3062 public:
3063   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3064 
3065   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3066                                 PatternRewriter &rewriter) const override {
3067     // TODO: support 0-d corner case.
3068     if (xferOp.getTransferRank() == 0)
3069       return failure();
3070     if (xferOp.hasOutOfBoundsDim())
3071       return failure();
3072     if (!xferOp.getPermutationMap().isIdentity())
3073       return failure();
3074     if (xferOp.getMask())
3075       return failure();
3076     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3077     if (!extractOp)
3078       return failure();
3079     if (!extractOp.hasUnitStride())
3080       return failure();
3081 
3082     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3083     // dims are exactly the leading dims. I.e. the following is illegal:
3084     // ```
3085     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3086     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3087     //    %1 = vector.transfer_read %0[0,0], %cst :
3088     //      tensor<2x4xf32>, vector<2x4xf32>
3089     // ```
3090     //
3091     // Cannot fold into:
3092     // ```
3093     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3094     //      tensor<2x1x4xf32>, vector<2x4xf32>
3095     // ```
3096     // For this, check the trailing `vectorRank` dims of the extract_slice
3097     // result tensor match the trailing dims of the inferred result tensor.
3098     int64_t rankReduced =
3099         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3100     int64_t vectorRank = xferOp.getVectorType().getRank();
3101     RankedTensorType inferredDestTensorType =
3102         tensor::ExtractSliceOp::inferResultType(
3103             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3104             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3105     auto actualDestTensorShape = extractOp.getType().getShape();
3106     if (rankReduced > 0 &&
3107         actualDestTensorShape.take_back(vectorRank) !=
3108             inferredDestTensorType.getShape().take_back(vectorRank))
3109       return failure();
3110 
3111     SmallVector<Value> newIndices;
3112     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3113     // indices first.
3114     for (int64_t i = 0; i < rankReduced; ++i) {
3115       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3116       newIndices.push_back(getValueOrCreateConstantIndexOp(
3117           rewriter, extractOp.getLoc(), offset));
3118     }
3119     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3120       OpFoldResult offset =
3121           extractOp.getMixedOffsets()[it.index() + rankReduced];
3122       newIndices.push_back(rewriter.create<arith::AddIOp>(
3123           xferOp->getLoc(), it.value(),
3124           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3125                                           offset)));
3126     }
3127     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3128     rewriter.replaceOpWithNewOp<TransferReadOp>(
3129         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3130         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3131 
3132     return success();
3133   }
3134 };
3135 } // namespace
3136 
3137 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3138                                                  MLIRContext *context) {
3139   results.add<FoldExtractSliceIntoTransferRead>(context);
3140 }
3141 
3142 //===----------------------------------------------------------------------===//
3143 // TransferWriteOp
3144 //===----------------------------------------------------------------------===//
3145 
3146 /// 1. Builder with type inference.
3147 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3148                             Value vector, Value dest, ValueRange indices,
3149                             AffineMapAttr permutationMapAttr,
3150                             /*optional*/ Value mask,
3151                             /*optional*/ ArrayAttr inBoundsAttr) {
3152   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3153   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3154         mask, inBoundsAttr);
3155 }
3156 
3157 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3158 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3159                             Value vector, Value dest, ValueRange indices,
3160                             AffineMapAttr permutationMapAttr,
3161                             /*optional*/ ArrayAttr inBoundsAttr) {
3162   build(builder, result, vector, dest, indices, permutationMapAttr,
3163         /*mask=*/Value(), inBoundsAttr);
3164 }
3165 
3166 /// 3. Builder with type inference that sets an empty mask (variant without
3167 /// attrs)
3168 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3169                             Value vector, Value dest, ValueRange indices,
3170                             AffineMap permutationMap,
3171                             Optional<ArrayRef<bool>> inBounds) {
3172   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3173   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3174                           ? builder.getBoolArrayAttr(inBounds.getValue())
3175                           : ArrayAttr();
3176   build(builder, result, vector, dest, indices, permutationMapAttr,
3177         /*mask=*/Value(), inBoundsAttr);
3178 }
3179 
3180 /// 4. Builder with type inference that sets an empty mask and sets permutation
3181 ///    map to 'getMinorIdentityMap'.
3182 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3183                             Value vector, Value dest, ValueRange indices,
3184                             Optional<ArrayRef<bool>> inBounds) {
3185   auto vectorType = vector.getType().cast<VectorType>();
3186   AffineMap permutationMap = getTransferMinorIdentityMap(
3187       dest.getType().cast<ShapedType>(), vectorType);
3188   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3189 }
3190 
3191 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3192                                    OperationState &result) {
3193   auto &builder = parser.getBuilder();
3194   SMLoc typesLoc;
3195   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3196   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3197   SmallVector<Type, 2> types;
3198   OpAsmParser::UnresolvedOperand maskInfo;
3199   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3200       parser.parseOperand(sourceInfo) ||
3201       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3202     return failure();
3203   ParseResult hasMask = parser.parseOptionalComma();
3204   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3205     return failure();
3206   if (parser.parseOptionalAttrDict(result.attributes) ||
3207       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3208     return failure();
3209   if (types.size() != 2)
3210     return parser.emitError(typesLoc, "requires two types");
3211   auto indexType = builder.getIndexType();
3212   VectorType vectorType = types[0].dyn_cast<VectorType>();
3213   if (!vectorType)
3214     return parser.emitError(typesLoc, "requires vector type");
3215   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3216   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3217     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3218   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3219   auto attr = result.attributes.get(permutationAttrName);
3220   if (!attr) {
3221     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3222     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3223   }
3224   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3225       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3226       parser.resolveOperands(indexInfo, indexType, result.operands))
3227     return failure();
3228   if (hasMask.succeeded()) {
3229     if (shapedType.getElementType().dyn_cast<VectorType>())
3230       return parser.emitError(
3231           maskInfo.location, "does not support masks with vector element type");
3232     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3233     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3234       return failure();
3235   }
3236   result.addAttribute(
3237       TransferWriteOp::getOperandSegmentSizeAttr(),
3238       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3239                                 static_cast<int32_t>(hasMask.succeeded())}));
3240   return failure(shapedType.isa<RankedTensorType>() &&
3241                  parser.addTypeToList(shapedType, result.types));
3242 }
3243 
3244 void TransferWriteOp::print(OpAsmPrinter &p) {
3245   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3246   if (getMask())
3247     p << ", " << getMask();
3248   printTransferAttrs(p, *this);
3249   p << " : " << getVectorType() << ", " << getShapedType();
3250 }
3251 
3252 LogicalResult TransferWriteOp::verify() {
3253   // Consistency of elemental types in shape and vector.
3254   ShapedType shapedType = getShapedType();
3255   VectorType vectorType = getVectorType();
3256   VectorType maskType = getMaskType();
3257   auto permutationMap = getPermutationMap();
3258 
3259   if (llvm::size(getIndices()) != shapedType.getRank())
3260     return emitOpError("requires ") << shapedType.getRank() << " indices";
3261 
3262   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3263   // as the semantics is unclear. This can be revisited later if necessary.
3264   if (hasBroadcastDim())
3265     return emitOpError("should not have broadcast dimensions");
3266 
3267   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3268                               shapedType, vectorType, maskType, permutationMap,
3269                               getInBounds() ? *getInBounds() : ArrayAttr())))
3270     return failure();
3271 
3272   return verifyPermutationMap(permutationMap,
3273                               [&](Twine t) { return emitOpError(t); });
3274 }
3275 
3276 /// Fold:
3277 /// ```
3278 ///    %t1 = ...
3279 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3280 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3281 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3282 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3283 /// ```
3284 ///
3285 /// into:
3286 ///
3287 /// ```
3288 ///    %t0
3289 /// ```
3290 ///
3291 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3292 /// block argument or has side effects.
3293 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3294                                        ArrayRef<Attribute>,
3295                                        SmallVectorImpl<OpFoldResult> &results) {
3296   // TODO: support 0-d corner case.
3297   if (write.getTransferRank() == 0)
3298     return failure();
3299   auto rankedTensorType =
3300       write.getSource().getType().dyn_cast<RankedTensorType>();
3301   // If not operating on tensors, bail.
3302   if (!rankedTensorType)
3303     return failure();
3304   // If no read, bail.
3305   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3306   if (!read)
3307     return failure();
3308   // TODO: support 0-d corner case.
3309   if (read.getTransferRank() == 0)
3310     return failure();
3311   // For now, only accept minor identity. Future: composition is minor identity.
3312   if (!read.getPermutationMap().isMinorIdentity() ||
3313       !write.getPermutationMap().isMinorIdentity())
3314     return failure();
3315   // Bail on mismatching ranks.
3316   if (read.getTransferRank() != write.getTransferRank())
3317     return failure();
3318   // Bail on potential out-of-bounds accesses.
3319   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3320     return failure();
3321   // Tensor types must be the same.
3322   if (read.getSource().getType() != rankedTensorType)
3323     return failure();
3324   // Vector types must be the same.
3325   if (read.getVectorType() != write.getVectorType())
3326     return failure();
3327   // Vector and Tensor shapes must match.
3328   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3329     return failure();
3330   // If any index is nonzero.
3331   auto isNotConstantZero = [](Value v) {
3332     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3333     return !cstOp || cstOp.value() != 0;
3334   };
3335   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3336       llvm::any_of(write.getIndices(), isNotConstantZero))
3337     return failure();
3338   // Success.
3339   results.push_back(read.getSource());
3340   return success();
3341 }
3342 
3343 static bool checkSameValueWAR(vector::TransferReadOp read,
3344                               vector::TransferWriteOp write) {
3345   return read.getSource() == write.getSource() &&
3346          read.getIndices() == write.getIndices() &&
3347          read.getPermutationMap() == write.getPermutationMap() &&
3348          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3349          !write.getMask();
3350 }
3351 /// Fold transfer_write write after read:
3352 /// ```
3353 ///    %t0 = ...
3354 ///    %v = vector.transfer_read %t0[%c0...] :
3355 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3356 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3357 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3358 /// ```
3359 ///
3360 /// into:
3361 ///
3362 /// ```
3363 ///    %t0
3364 /// ```
3365 static LogicalResult foldWAR(TransferWriteOp write,
3366                              SmallVectorImpl<OpFoldResult> &results) {
3367   if (!write.getSource().getType().isa<RankedTensorType>())
3368     return failure();
3369   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3370   if (!read)
3371     return failure();
3372 
3373   if (!checkSameValueWAR(read, write))
3374     return failure();
3375   results.push_back(read.getSource());
3376   return success();
3377 }
3378 
3379 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3380                                     SmallVectorImpl<OpFoldResult> &results) {
3381   if (succeeded(foldReadInitWrite(*this, operands, results)))
3382     return success();
3383   if (succeeded(foldWAR(*this, results)))
3384     return success();
3385   if (succeeded(foldTransferInBoundsAttribute(*this)))
3386     return success();
3387   return foldMemRefCast(*this);
3388 }
3389 
3390 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3391   return llvm::to_vector<4>(getVectorType().getShape());
3392 }
3393 
3394 void TransferWriteOp::getEffects(
3395     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3396         &effects) {
3397   if (getShapedType().isa<MemRefType>())
3398     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3399                          SideEffects::DefaultResource::get());
3400 }
3401 
3402 namespace {
3403 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3404 /// DCE
3405 /// ```
3406 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3407 ///    : vector<1x4xf32>, tensor<4x4xf32>
3408 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3409 ///    : vector<1x4xf32>, tensor<4x4xf32>
3410 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3411 ///    : vector<1x4xf32>, tensor<4x4xf32>
3412 /// ```
3413 ///
3414 /// into:
3415 ///
3416 /// ```
3417 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3418 ///    : vector<1x4xf32>, tensor<4x4xf32>
3419 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3420 ///    : vector<1x4xf32>, tensor<4x4xf32>
3421 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3422 ///    : vector<1x4xf32>, tensor<4x4xf32>
3423 /// ```
3424 ///
3425 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3426 /// any other uses.
3427 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3428 public:
3429   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3430   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3431                                 PatternRewriter &rewriter) const override {
3432     if (!writeOp.getShapedType().isa<RankedTensorType>())
3433       return failure();
3434     vector::TransferWriteOp writeToModify = writeOp;
3435 
3436     auto defWrite =
3437         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3438     while (defWrite) {
3439       if (checkSameValueWAW(writeOp, defWrite)) {
3440         writeToModify.getSourceMutable().assign(defWrite.getSource());
3441         return success();
3442       }
3443       if (!isDisjointTransferIndices(
3444               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3445               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3446         break;
3447       // If the previous write op doesn't have any other use we an safely look
3448       // at the previous store to see if it can be removed.
3449       if (!defWrite->hasOneUse())
3450         break;
3451       writeToModify = defWrite;
3452       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3453     }
3454     return failure();
3455   }
3456 };
3457 
3458 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3459 /// could directly write to the insert_slice's destination. E.g.:
3460 ///
3461 /// ```
3462 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3463 ///     : vector<4x5xf32>, tensor<4x5xf32>
3464 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3465 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3466 /// ```
3467 /// is rewritten to:
3468 /// ```
3469 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3470 ///     : vector<4x5xf32>, tensor<?x?xf32>
3471 /// ```
3472 struct FoldInsertSliceIntoTransferWrite
3473     : public OpRewritePattern<tensor::InsertSliceOp> {
3474 public:
3475   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3476 
3477   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3478                                 PatternRewriter &rewriter) const override {
3479     if (!insertOp.hasUnitStride())
3480       return failure();
3481 
3482     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3483     if (!xferOp)
3484       return failure();
3485     // TODO: support 0-d corner case.
3486     if (xferOp.getTransferRank() == 0)
3487       return failure();
3488 
3489     if (xferOp.hasOutOfBoundsDim())
3490       return failure();
3491     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3492       return failure();
3493     if (xferOp.getMask())
3494       return failure();
3495     // Fold only if the TransferWriteOp completely overwrites the `source` with
3496     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3497     // content is the data of the vector.
3498     if (!llvm::equal(xferOp.getVectorType().getShape(),
3499                      xferOp.getShapedType().getShape()))
3500       return failure();
3501     if (!xferOp.getPermutationMap().isIdentity())
3502       return failure();
3503 
3504     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3505     // dims are exactly the leading dims. I.e. the following is illegal:
3506     // ```
3507     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3508     //      vector<2x4xf32>, tensor<2x4xf32>
3509     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3510     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3511     // ```
3512     //
3513     // Cannot fold into:
3514     // ```
3515     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3516     //      vector<2x4xf32>, tensor<2x1x4xf32>
3517     // ```
3518     // For this, check the trailing `vectorRank` dims of the insert_slice result
3519     // tensor match the trailing dims of the inferred result tensor.
3520     int64_t rankReduced =
3521         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3522     int64_t vectorRank = xferOp.getVectorType().getRank();
3523     RankedTensorType inferredSourceTensorType =
3524         tensor::ExtractSliceOp::inferResultType(
3525             insertOp.getType(), insertOp.getMixedOffsets(),
3526             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3527     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3528     if (rankReduced > 0 &&
3529         actualSourceTensorShape.take_back(vectorRank) !=
3530             inferredSourceTensorType.getShape().take_back(vectorRank))
3531       return failure();
3532 
3533     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3534         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3535     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3536     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3537                                                  insertOp.dest(), indices,
3538                                                  ArrayRef<bool>{inBounds});
3539     return success();
3540   }
3541 };
3542 
3543 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3544 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3545 /// overwritten and inserted into another tensor. After this rewrite, the
3546 /// operations bufferize in-place since all of them work on the same slice.
3547 ///
3548 /// For example:
3549 /// ```mlir
3550 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3551 ///        : vector<8x16xf32>, tensor<8x16xf32>
3552 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3553 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3554 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3555 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3556 /// ```
3557 /// folds to
3558 /// ```mlir
3559 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3560 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3561 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3562 ///        : vector<8x16xf32>, tensor<?x?xf32>
3563 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3564 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3565 /// ```
3566 struct SwapExtractSliceOfTransferWrite
3567     : public OpRewritePattern<tensor::InsertSliceOp> {
3568 public:
3569   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3570 
3571   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3572                                 PatternRewriter &rewriter) const override {
3573     if (!insertOp.hasUnitStride())
3574       return failure();
3575     auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3576     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3577       return failure();
3578     auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>();
3579     if (!transferOp || !transferOp->hasOneUse())
3580       return failure();
3581 
3582     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3583     // rank-reducing.
3584     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3585       return rewriter.notifyMatchFailure(insertOp,
3586                                          "use-def chain is rank-reducing");
3587     }
3588 
3589     // Fail if tensor::ExtractSliceOp has non-zero offset.
3590     if (!extractOp.hasZeroOffset()) {
3591       return rewriter.notifyMatchFailure(insertOp,
3592                                          "ExtractSliceOp has non-zero offset");
3593     }
3594 
3595     // Fail if tensor::TransferWriteOp has non-zero offset.
3596     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3597           return getConstantIntValue(value) == static_cast<int64_t>(0);
3598         })) {
3599       return rewriter.notifyMatchFailure(insertOp,
3600                                          "TranferWriteOp has non-zero offset");
3601     }
3602 
3603     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3604     for (const auto &it :
3605          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3606       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3607         return rewriter.notifyMatchFailure(
3608             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3609       }
3610     }
3611 
3612     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3613     assert(transferOp.getVectorType().hasStaticShape() &&
3614            "expected vector to have a static shape");
3615     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3616     SmallVector<int64_t> resultShape = applyPermutationMap(
3617         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3618     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3619       return rewriter.notifyMatchFailure(
3620           insertOp, "TransferWriteOp may not write the full tensor.");
3621     }
3622 
3623     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3624     SmallVector<int64_t> newResultShape = applyPermutationMap(
3625         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3626     SmallVector<bool> newInBounds;
3627     for (const auto &en : enumerate(newResultShape))
3628       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3629     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3630         extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(),
3631         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3632         insertOp.getMixedStrides());
3633     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3634         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3635         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3636         rewriter.getBoolArrayAttr(newInBounds));
3637     rewriter.updateRootInPlace(insertOp, [&]() {
3638       insertOp.sourceMutable().assign(newTransferWriteOp.getResult());
3639     });
3640     return success();
3641   }
3642 };
3643 
3644 } // namespace
3645 
3646 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3647                                                   MLIRContext *context) {
3648   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3649               SwapExtractSliceOfTransferWrite>(context);
3650 }
3651 
3652 //===----------------------------------------------------------------------===//
3653 // LoadOp
3654 //===----------------------------------------------------------------------===//
3655 
3656 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3657                                                  MemRefType memRefTy) {
3658   if (!isLastMemrefDimUnitStride(memRefTy))
3659     return op->emitOpError("most minor memref dim must have unit stride");
3660   return success();
3661 }
3662 
3663 LogicalResult vector::LoadOp::verify() {
3664   VectorType resVecTy = getVectorType();
3665   MemRefType memRefTy = getMemRefType();
3666 
3667   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3668     return failure();
3669 
3670   // Checks for vector memrefs.
3671   Type memElemTy = memRefTy.getElementType();
3672   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3673     if (memVecTy != resVecTy)
3674       return emitOpError("base memref and result vector types should match");
3675     memElemTy = memVecTy.getElementType();
3676   }
3677 
3678   if (resVecTy.getElementType() != memElemTy)
3679     return emitOpError("base and result element types should match");
3680   if (llvm::size(getIndices()) != memRefTy.getRank())
3681     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3682   return success();
3683 }
3684 
3685 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3686   if (succeeded(foldMemRefCast(*this)))
3687     return getResult();
3688   return OpFoldResult();
3689 }
3690 
3691 //===----------------------------------------------------------------------===//
3692 // StoreOp
3693 //===----------------------------------------------------------------------===//
3694 
3695 LogicalResult vector::StoreOp::verify() {
3696   VectorType valueVecTy = getVectorType();
3697   MemRefType memRefTy = getMemRefType();
3698 
3699   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3700     return failure();
3701 
3702   // Checks for vector memrefs.
3703   Type memElemTy = memRefTy.getElementType();
3704   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3705     if (memVecTy != valueVecTy)
3706       return emitOpError(
3707           "base memref and valueToStore vector types should match");
3708     memElemTy = memVecTy.getElementType();
3709   }
3710 
3711   if (valueVecTy.getElementType() != memElemTy)
3712     return emitOpError("base and valueToStore element type should match");
3713   if (llvm::size(getIndices()) != memRefTy.getRank())
3714     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3715   return success();
3716 }
3717 
3718 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3719                             SmallVectorImpl<OpFoldResult> &results) {
3720   return foldMemRefCast(*this);
3721 }
3722 
3723 //===----------------------------------------------------------------------===//
3724 // MaskedLoadOp
3725 //===----------------------------------------------------------------------===//
3726 
3727 LogicalResult MaskedLoadOp::verify() {
3728   VectorType maskVType = getMaskVectorType();
3729   VectorType passVType = getPassThruVectorType();
3730   VectorType resVType = getVectorType();
3731   MemRefType memType = getMemRefType();
3732 
3733   if (resVType.getElementType() != memType.getElementType())
3734     return emitOpError("base and result element type should match");
3735   if (llvm::size(getIndices()) != memType.getRank())
3736     return emitOpError("requires ") << memType.getRank() << " indices";
3737   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3738     return emitOpError("expected result dim to match mask dim");
3739   if (resVType != passVType)
3740     return emitOpError("expected pass_thru of same type as result type");
3741   return success();
3742 }
3743 
3744 namespace {
3745 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3746 public:
3747   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3748   LogicalResult matchAndRewrite(MaskedLoadOp load,
3749                                 PatternRewriter &rewriter) const override {
3750     switch (get1DMaskFormat(load.getMask())) {
3751     case MaskFormat::AllTrue:
3752       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3753           load, load.getType(), load.getBase(), load.getIndices());
3754       return success();
3755     case MaskFormat::AllFalse:
3756       rewriter.replaceOp(load, load.getPassThru());
3757       return success();
3758     case MaskFormat::Unknown:
3759       return failure();
3760     }
3761     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3762   }
3763 };
3764 } // namespace
3765 
3766 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3767                                                MLIRContext *context) {
3768   results.add<MaskedLoadFolder>(context);
3769 }
3770 
3771 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3772   if (succeeded(foldMemRefCast(*this)))
3773     return getResult();
3774   return OpFoldResult();
3775 }
3776 
3777 //===----------------------------------------------------------------------===//
3778 // MaskedStoreOp
3779 //===----------------------------------------------------------------------===//
3780 
3781 LogicalResult MaskedStoreOp::verify() {
3782   VectorType maskVType = getMaskVectorType();
3783   VectorType valueVType = getVectorType();
3784   MemRefType memType = getMemRefType();
3785 
3786   if (valueVType.getElementType() != memType.getElementType())
3787     return emitOpError("base and valueToStore element type should match");
3788   if (llvm::size(getIndices()) != memType.getRank())
3789     return emitOpError("requires ") << memType.getRank() << " indices";
3790   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3791     return emitOpError("expected valueToStore dim to match mask dim");
3792   return success();
3793 }
3794 
3795 namespace {
3796 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3797 public:
3798   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3799   LogicalResult matchAndRewrite(MaskedStoreOp store,
3800                                 PatternRewriter &rewriter) const override {
3801     switch (get1DMaskFormat(store.getMask())) {
3802     case MaskFormat::AllTrue:
3803       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3804           store, store.getValueToStore(), store.getBase(), store.getIndices());
3805       return success();
3806     case MaskFormat::AllFalse:
3807       rewriter.eraseOp(store);
3808       return success();
3809     case MaskFormat::Unknown:
3810       return failure();
3811     }
3812     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3813   }
3814 };
3815 } // namespace
3816 
3817 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3818                                                 MLIRContext *context) {
3819   results.add<MaskedStoreFolder>(context);
3820 }
3821 
3822 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3823                                   SmallVectorImpl<OpFoldResult> &results) {
3824   return foldMemRefCast(*this);
3825 }
3826 
3827 //===----------------------------------------------------------------------===//
3828 // GatherOp
3829 //===----------------------------------------------------------------------===//
3830 
3831 LogicalResult GatherOp::verify() {
3832   VectorType indVType = getIndexVectorType();
3833   VectorType maskVType = getMaskVectorType();
3834   VectorType resVType = getVectorType();
3835   MemRefType memType = getMemRefType();
3836 
3837   if (resVType.getElementType() != memType.getElementType())
3838     return emitOpError("base and result element type should match");
3839   if (llvm::size(getIndices()) != memType.getRank())
3840     return emitOpError("requires ") << memType.getRank() << " indices";
3841   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3842     return emitOpError("expected result dim to match indices dim");
3843   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3844     return emitOpError("expected result dim to match mask dim");
3845   if (resVType != getPassThruVectorType())
3846     return emitOpError("expected pass_thru of same type as result type");
3847   return success();
3848 }
3849 
3850 namespace {
3851 class GatherFolder final : public OpRewritePattern<GatherOp> {
3852 public:
3853   using OpRewritePattern<GatherOp>::OpRewritePattern;
3854   LogicalResult matchAndRewrite(GatherOp gather,
3855                                 PatternRewriter &rewriter) const override {
3856     switch (get1DMaskFormat(gather.getMask())) {
3857     case MaskFormat::AllTrue:
3858       return failure(); // no unmasked equivalent
3859     case MaskFormat::AllFalse:
3860       rewriter.replaceOp(gather, gather.getPassThru());
3861       return success();
3862     case MaskFormat::Unknown:
3863       return failure();
3864     }
3865     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3866   }
3867 };
3868 } // namespace
3869 
3870 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3871                                            MLIRContext *context) {
3872   results.add<GatherFolder>(context);
3873 }
3874 
3875 //===----------------------------------------------------------------------===//
3876 // ScatterOp
3877 //===----------------------------------------------------------------------===//
3878 
3879 LogicalResult ScatterOp::verify() {
3880   VectorType indVType = getIndexVectorType();
3881   VectorType maskVType = getMaskVectorType();
3882   VectorType valueVType = getVectorType();
3883   MemRefType memType = getMemRefType();
3884 
3885   if (valueVType.getElementType() != memType.getElementType())
3886     return emitOpError("base and valueToStore element type should match");
3887   if (llvm::size(getIndices()) != memType.getRank())
3888     return emitOpError("requires ") << memType.getRank() << " indices";
3889   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3890     return emitOpError("expected valueToStore dim to match indices dim");
3891   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3892     return emitOpError("expected valueToStore dim to match mask dim");
3893   return success();
3894 }
3895 
3896 namespace {
3897 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3898 public:
3899   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3900   LogicalResult matchAndRewrite(ScatterOp scatter,
3901                                 PatternRewriter &rewriter) const override {
3902     switch (get1DMaskFormat(scatter.getMask())) {
3903     case MaskFormat::AllTrue:
3904       return failure(); // no unmasked equivalent
3905     case MaskFormat::AllFalse:
3906       rewriter.eraseOp(scatter);
3907       return success();
3908     case MaskFormat::Unknown:
3909       return failure();
3910     }
3911     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3912   }
3913 };
3914 } // namespace
3915 
3916 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3917                                             MLIRContext *context) {
3918   results.add<ScatterFolder>(context);
3919 }
3920 
3921 //===----------------------------------------------------------------------===//
3922 // ExpandLoadOp
3923 //===----------------------------------------------------------------------===//
3924 
3925 LogicalResult ExpandLoadOp::verify() {
3926   VectorType maskVType = getMaskVectorType();
3927   VectorType passVType = getPassThruVectorType();
3928   VectorType resVType = getVectorType();
3929   MemRefType memType = getMemRefType();
3930 
3931   if (resVType.getElementType() != memType.getElementType())
3932     return emitOpError("base and result element type should match");
3933   if (llvm::size(getIndices()) != memType.getRank())
3934     return emitOpError("requires ") << memType.getRank() << " indices";
3935   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3936     return emitOpError("expected result dim to match mask dim");
3937   if (resVType != passVType)
3938     return emitOpError("expected pass_thru of same type as result type");
3939   return success();
3940 }
3941 
3942 namespace {
3943 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3944 public:
3945   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3946   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3947                                 PatternRewriter &rewriter) const override {
3948     switch (get1DMaskFormat(expand.getMask())) {
3949     case MaskFormat::AllTrue:
3950       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3951           expand, expand.getType(), expand.getBase(), expand.getIndices());
3952       return success();
3953     case MaskFormat::AllFalse:
3954       rewriter.replaceOp(expand, expand.getPassThru());
3955       return success();
3956     case MaskFormat::Unknown:
3957       return failure();
3958     }
3959     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3960   }
3961 };
3962 } // namespace
3963 
3964 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3965                                                MLIRContext *context) {
3966   results.add<ExpandLoadFolder>(context);
3967 }
3968 
3969 //===----------------------------------------------------------------------===//
3970 // CompressStoreOp
3971 //===----------------------------------------------------------------------===//
3972 
3973 LogicalResult CompressStoreOp::verify() {
3974   VectorType maskVType = getMaskVectorType();
3975   VectorType valueVType = getVectorType();
3976   MemRefType memType = getMemRefType();
3977 
3978   if (valueVType.getElementType() != memType.getElementType())
3979     return emitOpError("base and valueToStore element type should match");
3980   if (llvm::size(getIndices()) != memType.getRank())
3981     return emitOpError("requires ") << memType.getRank() << " indices";
3982   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3983     return emitOpError("expected valueToStore dim to match mask dim");
3984   return success();
3985 }
3986 
3987 namespace {
3988 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3989 public:
3990   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3991   LogicalResult matchAndRewrite(CompressStoreOp compress,
3992                                 PatternRewriter &rewriter) const override {
3993     switch (get1DMaskFormat(compress.getMask())) {
3994     case MaskFormat::AllTrue:
3995       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3996           compress, compress.getValueToStore(), compress.getBase(),
3997           compress.getIndices());
3998       return success();
3999     case MaskFormat::AllFalse:
4000       rewriter.eraseOp(compress);
4001       return success();
4002     case MaskFormat::Unknown:
4003       return failure();
4004     }
4005     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4006   }
4007 };
4008 } // namespace
4009 
4010 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4011                                                   MLIRContext *context) {
4012   results.add<CompressStoreFolder>(context);
4013 }
4014 
4015 //===----------------------------------------------------------------------===//
4016 // ShapeCastOp
4017 //===----------------------------------------------------------------------===//
4018 
4019 /// Returns true if each element of 'a' is equal to the product of a contiguous
4020 /// sequence of the elements of 'b'. Returns false otherwise.
4021 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4022   unsigned rankA = a.size();
4023   unsigned rankB = b.size();
4024   assert(rankA < rankB);
4025 
4026   unsigned i = 0;
4027   unsigned j = 0;
4028   while (i < rankA && j < rankB) {
4029     int64_t dimA = a[i];
4030     int64_t dimB = 1;
4031     while (dimB < dimA && j < rankB)
4032       dimB *= b[j++];
4033     if (dimA != dimB)
4034       break;
4035     ++i;
4036 
4037     // Handle the case when trailing dimensions are of size 1.
4038     // Include them into the contiguous sequence.
4039     auto isOne = [](int64_t v) { return v == 1; };
4040     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4041       i = rankA;
4042     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4043       j = rankB;
4044   }
4045 
4046   return i == rankA && j == rankB;
4047 }
4048 
4049 static LogicalResult verifyVectorShapeCast(Operation *op,
4050                                            VectorType sourceVectorType,
4051                                            VectorType resultVectorType) {
4052   // Check that element type is the same.
4053   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4054     return op->emitOpError("source/result vectors must have same element type");
4055   auto sourceShape = sourceVectorType.getShape();
4056   auto resultShape = resultVectorType.getShape();
4057 
4058   // Check that product of source dim sizes matches product of result dim sizes.
4059   int64_t sourceDimProduct = std::accumulate(
4060       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4061   int64_t resultDimProduct = std::accumulate(
4062       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4063   if (sourceDimProduct != resultDimProduct)
4064     return op->emitOpError("source/result number of elements must match");
4065 
4066   // Check that expanding/contracting rank cases.
4067   unsigned sourceRank = sourceVectorType.getRank();
4068   unsigned resultRank = resultVectorType.getRank();
4069   if (sourceRank < resultRank) {
4070     if (!isValidShapeCast(sourceShape, resultShape))
4071       return op->emitOpError("invalid shape cast");
4072   } else if (sourceRank > resultRank) {
4073     if (!isValidShapeCast(resultShape, sourceShape))
4074       return op->emitOpError("invalid shape cast");
4075   }
4076   return success();
4077 }
4078 
4079 LogicalResult ShapeCastOp::verify() {
4080   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4081   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4082 
4083   // Check if source/result are of vector type.
4084   if (sourceVectorType && resultVectorType)
4085     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4086 
4087   return success();
4088 }
4089 
4090 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4091   // Nop shape cast.
4092   if (getSource().getType() == getResult().getType())
4093     return getSource();
4094 
4095   // Canceling shape casts.
4096   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4097     if (getResult().getType() == otherOp.getSource().getType())
4098       return otherOp.getSource();
4099 
4100     // Only allows valid transitive folding.
4101     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4102     VectorType resultType = getResult().getType().cast<VectorType>();
4103     if (srcType.getRank() < resultType.getRank()) {
4104       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4105         return {};
4106     } else if (srcType.getRank() > resultType.getRank()) {
4107       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4108         return {};
4109     } else {
4110       return {};
4111     }
4112 
4113     setOperand(otherOp.getSource());
4114     return getResult();
4115   }
4116   return {};
4117 }
4118 
4119 namespace {
4120 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4121 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4122 public:
4123   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4124 
4125   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4126                                 PatternRewriter &rewriter) const override {
4127     auto constantOp =
4128         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4129     if (!constantOp)
4130       return failure();
4131     // Only handle splat for now.
4132     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4133     if (!dense)
4134       return failure();
4135     auto newAttr =
4136         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4137                                dense.getSplatValue<Attribute>());
4138     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4139     return success();
4140   }
4141 };
4142 
4143 } // namespace
4144 
4145 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4146                                               MLIRContext *context) {
4147   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4148   results.add<ShapeCastConstantFolder>(context);
4149 }
4150 
4151 //===----------------------------------------------------------------------===//
4152 // VectorBitCastOp
4153 //===----------------------------------------------------------------------===//
4154 
4155 LogicalResult BitCastOp::verify() {
4156   auto sourceVectorType = getSourceVectorType();
4157   auto resultVectorType = getResultVectorType();
4158 
4159   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4160     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4161       return emitOpError("dimension size mismatch at: ") << i;
4162   }
4163 
4164   DataLayout dataLayout = DataLayout::closest(*this);
4165   auto sourceElementBits =
4166       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4167   auto resultElementBits =
4168       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4169 
4170   if (sourceVectorType.getRank() == 0) {
4171     if (sourceElementBits != resultElementBits)
4172       return emitOpError("source/result bitwidth of the 0-D vector element "
4173                             "types must be equal");
4174   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4175              resultElementBits * resultVectorType.getShape().back()) {
4176     return emitOpError(
4177         "source/result bitwidth of the minor 1-D vectors must be equal");
4178   }
4179 
4180   return success();
4181 }
4182 
4183 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4184   // Nop cast.
4185   if (getSource().getType() == getResult().getType())
4186     return getSource();
4187 
4188   // Canceling bitcasts.
4189   if (auto otherOp = getSource().getDefiningOp<BitCastOp>())
4190     if (getResult().getType() == otherOp.getSource().getType())
4191       return otherOp.getSource();
4192 
4193   Attribute sourceConstant = operands.front();
4194   if (!sourceConstant)
4195     return {};
4196 
4197   Type srcElemType = getSourceVectorType().getElementType();
4198   Type dstElemType = getResultVectorType().getElementType();
4199 
4200   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4201     if (floatPack.isSplat()) {
4202       auto splat = floatPack.getSplatValue<FloatAttr>();
4203 
4204       // Casting fp16 into fp32.
4205       if (srcElemType.isF16() && dstElemType.isF32()) {
4206         uint32_t bits = static_cast<uint32_t>(
4207             splat.getValue().bitcastToAPInt().getZExtValue());
4208         // Duplicate the 16-bit pattern.
4209         bits = (bits << 16) | (bits & 0xffff);
4210         APInt intBits(32, bits);
4211         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4212         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4213       }
4214     }
4215   }
4216 
4217   return {};
4218 }
4219 
4220 //===----------------------------------------------------------------------===//
4221 // TypeCastOp
4222 //===----------------------------------------------------------------------===//
4223 
4224 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4225   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4226   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4227                               memRefType.getShape().end());
4228   if (vectorType)
4229     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4230   return res;
4231 }
4232 
4233 /// Build the canonical memRefType with a single vector.
4234 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4235 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4236                        Value source) {
4237   result.addOperands(source);
4238   MemRefType memRefType = source.getType().cast<MemRefType>();
4239   VectorType vectorType =
4240       VectorType::get(extractShape(memRefType),
4241                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4242   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4243                                   memRefType.getMemorySpace()));
4244 }
4245 
4246 LogicalResult TypeCastOp::verify() {
4247   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4248   if (!canonicalType.getLayout().isIdentity())
4249     return emitOpError("expects operand to be a memref with identity layout");
4250   if (!getResultMemRefType().getLayout().isIdentity())
4251     return emitOpError("expects result to be a memref with identity layout");
4252   if (getResultMemRefType().getMemorySpace() !=
4253       getMemRefType().getMemorySpace())
4254     return emitOpError("expects result in same memory space");
4255 
4256   auto sourceType = getMemRefType();
4257   auto resultType = getResultMemRefType();
4258   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4259       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4260     return emitOpError(
4261                "expects result and operand with same underlying scalar type: ")
4262            << resultType;
4263   if (extractShape(sourceType) != extractShape(resultType))
4264     return emitOpError(
4265                "expects concatenated result and operand shapes to be equal: ")
4266            << resultType;
4267   return success();
4268 }
4269 
4270 //===----------------------------------------------------------------------===//
4271 // TransposeOp
4272 //===----------------------------------------------------------------------===//
4273 
4274 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4275                                 Value vector, ArrayRef<int64_t> transp) {
4276   VectorType vt = vector.getType().cast<VectorType>();
4277   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4278   for (unsigned i = 0; i < transp.size(); ++i)
4279     transposedShape[i] = vt.getShape()[transp[i]];
4280 
4281   result.addOperands(vector);
4282   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4283   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4284 }
4285 
4286 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4287   // Eliminate splat constant transpose ops.
4288   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4289     if (attr.isSplat())
4290       return attr.reshape(getResultType());
4291 
4292   // Eliminate identity transpose ops. This happens when the dimensions of the
4293   // input vector remain in their original order after the transpose operation.
4294   SmallVector<int64_t, 4> transp;
4295   getTransp(transp);
4296 
4297   // Check if the permutation of the dimensions contains sequential values:
4298   // {0, 1, 2, ...}.
4299   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4300     if (transp[i] != i)
4301       return {};
4302   }
4303 
4304   return getVector();
4305 }
4306 
4307 LogicalResult vector::TransposeOp::verify() {
4308   VectorType vectorType = getVectorType();
4309   VectorType resultType = getResultType();
4310   int64_t rank = resultType.getRank();
4311   if (vectorType.getRank() != rank)
4312     return emitOpError("vector result rank mismatch: ") << rank;
4313   // Verify transposition array.
4314   auto transpAttr = getTransp().getValue();
4315   int64_t size = transpAttr.size();
4316   if (rank != size)
4317     return emitOpError("transposition length mismatch: ") << size;
4318   SmallVector<bool, 8> seen(rank, false);
4319   for (const auto &ta : llvm::enumerate(transpAttr)) {
4320     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4321     if (i < 0 || i >= rank)
4322       return emitOpError("transposition index out of range: ") << i;
4323     if (seen[i])
4324       return emitOpError("duplicate position index: ") << i;
4325     seen[i] = true;
4326     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4327       return emitOpError("dimension size mismatch at: ") << i;
4328   }
4329   return success();
4330 }
4331 
4332 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4333   return llvm::to_vector<4>(getResultType().getShape());
4334 }
4335 
4336 namespace {
4337 
4338 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4339 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4340 public:
4341   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4342 
4343   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4344                                 PatternRewriter &rewriter) const override {
4345     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4346     auto getPermutation = [](vector::TransposeOp transpose) {
4347       SmallVector<int64_t, 4> permutation;
4348       transpose.getTransp(permutation);
4349       return permutation;
4350     };
4351 
4352     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4353     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4354                                   ArrayRef<int64_t> permutation2) {
4355       SmallVector<int64_t, 4> result;
4356       for (auto index : permutation2)
4357         result.push_back(permutation1[index]);
4358       return result;
4359     };
4360 
4361     // Return if the input of 'transposeOp' is not defined by another transpose.
4362     vector::TransposeOp parentTransposeOp =
4363         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4364     if (!parentTransposeOp)
4365       return failure();
4366 
4367     SmallVector<int64_t, 4> permutation = composePermutations(
4368         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4369     // Replace 'transposeOp' with a new transpose operation.
4370     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4371         transposeOp, transposeOp.getResult().getType(),
4372         parentTransposeOp.getVector(),
4373         vector::getVectorSubscriptAttr(rewriter, permutation));
4374     return success();
4375   }
4376 };
4377 
4378 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4379 struct FoldTransposedScalarBroadcast final
4380     : public OpRewritePattern<vector::TransposeOp> {
4381   using OpRewritePattern::OpRewritePattern;
4382 
4383   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4384                                 PatternRewriter &rewriter) const override {
4385     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4386     if (!bcastOp)
4387       return failure();
4388 
4389     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4390     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4391       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4392           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4393       return success();
4394     }
4395 
4396     return failure();
4397   }
4398 };
4399 
4400 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4401 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4402 public:
4403   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4404 
4405   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4406                                 PatternRewriter &rewriter) const override {
4407     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4408     if (!splatOp)
4409       return failure();
4410 
4411     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4412         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4413     return success();
4414   }
4415 };
4416 
4417 } // namespace
4418 
4419 void vector::TransposeOp::getCanonicalizationPatterns(
4420     RewritePatternSet &results, MLIRContext *context) {
4421   results
4422       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4423           context);
4424 }
4425 
4426 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4427   populateFromInt64AttrArray(getTransp(), results);
4428 }
4429 
4430 //===----------------------------------------------------------------------===//
4431 // ConstantMaskOp
4432 //===----------------------------------------------------------------------===//
4433 
4434 LogicalResult ConstantMaskOp::verify() {
4435   auto resultType = getResult().getType().cast<VectorType>();
4436   // Check the corner case of 0-D vectors first.
4437   if (resultType.getRank() == 0) {
4438     if (getMaskDimSizes().size() != 1)
4439       return emitError("array attr must have length 1 for 0-D vectors");
4440     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4441     if (dim != 0 && dim != 1)
4442       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4443     return success();
4444   }
4445 
4446   // Verify that array attr size matches the rank of the vector result.
4447   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4448     return emitOpError(
4449         "must specify array attr of size equal vector result rank");
4450   // Verify that each array attr element is in bounds of corresponding vector
4451   // result dimension size.
4452   auto resultShape = resultType.getShape();
4453   SmallVector<int64_t, 4> maskDimSizes;
4454   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4455     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4456     if (attrValue < 0 || attrValue > resultShape[it.index()])
4457       return emitOpError(
4458           "array attr of size out of bounds of vector result dimension size");
4459     maskDimSizes.push_back(attrValue);
4460   }
4461   // Verify that if one mask dim size is zero, they all should be zero (because
4462   // the mask region is a conjunction of each mask dimension interval).
4463   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4464   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4465   if (anyZeros && !allZeros)
4466     return emitOpError("expected all mask dim sizes to be zeros, "
4467                        "as a result of conjunction with zero mask dim");
4468   // Verify that if the mask type is scalable, dimensions should be zero because
4469   // constant scalable masks can only be defined for the "none set" or "all set"
4470   // cases, and there is no VLA way to define an "all set" case for
4471   // `vector.constant_mask`. In the future, a convention could be established
4472   // to decide if a specific dimension value could be considered as "all set".
4473   if (resultType.isScalable() &&
4474       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4475     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4476   return success();
4477 }
4478 
4479 //===----------------------------------------------------------------------===//
4480 // CreateMaskOp
4481 //===----------------------------------------------------------------------===//
4482 
4483 LogicalResult CreateMaskOp::verify() {
4484   auto vectorType = getResult().getType().cast<VectorType>();
4485   // Verify that an operand was specified for each result vector each dimension.
4486   if (vectorType.getRank() == 0) {
4487     if (getNumOperands() != 1)
4488       return emitOpError(
4489           "must specify exactly one operand for 0-D create_mask");
4490   } else if (getNumOperands() !=
4491              getResult().getType().cast<VectorType>().getRank()) {
4492     return emitOpError(
4493         "must specify an operand for each result vector dimension");
4494   }
4495   return success();
4496 }
4497 
4498 namespace {
4499 
4500 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4501 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4502 public:
4503   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4504 
4505   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4506                                 PatternRewriter &rewriter) const override {
4507     // Return if any of 'createMaskOp' operands are not defined by a constant.
4508     auto isNotDefByConstant = [](Value operand) {
4509       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4510     };
4511     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4512       return failure();
4513 
4514     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4515     // are negative or zero.
4516     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4517       if (vType.isScalable())
4518         for (auto opDim : createMaskOp.getOperands()) {
4519           APInt intVal;
4520           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4521               intVal.isStrictlyPositive())
4522             return failure();
4523         }
4524     }
4525 
4526     // Gather constant mask dimension sizes.
4527     SmallVector<int64_t, 4> maskDimSizes;
4528     for (auto it : llvm::zip(createMaskOp.operands(),
4529                              createMaskOp.getType().getShape())) {
4530       auto *defOp = std::get<0>(it).getDefiningOp();
4531       int64_t maxDimSize = std::get<1>(it);
4532       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4533       dimSize = std::min(dimSize, maxDimSize);
4534       // If one of dim sizes is zero, set all dims to zero.
4535       if (dimSize <= 0) {
4536         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4537         break;
4538       }
4539       maskDimSizes.push_back(dimSize);
4540     }
4541     // Replace 'createMaskOp' with ConstantMaskOp.
4542     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4543         createMaskOp, createMaskOp.getResult().getType(),
4544         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4545     return success();
4546   }
4547 };
4548 
4549 } // namespace
4550 
4551 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4552                                                MLIRContext *context) {
4553   results.add<CreateMaskFolder>(context);
4554 }
4555 
4556 //===----------------------------------------------------------------------===//
4557 // ScanOp
4558 //===----------------------------------------------------------------------===//
4559 
4560 LogicalResult ScanOp::verify() {
4561   VectorType srcType = getSourceType();
4562   VectorType initialType = getInitialValueType();
4563   // Check reduction dimension < rank.
4564   int64_t srcRank = srcType.getRank();
4565   int64_t reductionDim = getReductionDim();
4566   if (reductionDim >= srcRank)
4567     return emitOpError("reduction dimension ")
4568            << reductionDim << " has to be less than " << srcRank;
4569 
4570   // Check that rank(initial_value) = rank(src) - 1.
4571   int64_t initialValueRank = initialType.getRank();
4572   if (initialValueRank != srcRank - 1)
4573     return emitOpError("initial value rank ")
4574            << initialValueRank << " has to be equal to " << srcRank - 1;
4575 
4576   // Check shapes of initial value and src.
4577   ArrayRef<int64_t> srcShape = srcType.getShape();
4578   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4579   SmallVector<int64_t> expectedShape;
4580   for (int i = 0; i < srcRank; i++) {
4581     if (i != reductionDim)
4582       expectedShape.push_back(srcShape[i]);
4583   }
4584   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4585                    [](std::tuple<int64_t, int64_t> s) {
4586                      return std::get<0>(s) != std::get<1>(s);
4587                    })) {
4588     return emitOpError("incompatible input/initial value shapes");
4589   }
4590 
4591   // Verify supported reduction kind.
4592   Type eltType = getDestType().getElementType();
4593   if (!isSupportedCombiningKind(getKind(), eltType))
4594     return emitOpError("unsupported reduction type ")
4595            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4596            << "'";
4597 
4598   return success();
4599 }
4600 
4601 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4602     RewritePatternSet &patterns) {
4603   patterns
4604       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4605            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4606            StridedSliceConstantMaskFolder, TransposeFolder>(
4607           patterns.getContext());
4608 }
4609 
4610 //===----------------------------------------------------------------------===//
4611 // SplatOp
4612 //===----------------------------------------------------------------------===//
4613 
4614 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4615   auto constOperand = operands.front();
4616   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4617     return {};
4618 
4619   // SplatElementsAttr::get treats single value for second arg as being a splat.
4620   return SplatElementsAttr::get(getType(), {constOperand});
4621 }
4622 
4623 //===----------------------------------------------------------------------===//
4624 // WarpExecuteOnLane0Op
4625 //===----------------------------------------------------------------------===//
4626 
4627 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4628   p << "(" << getLaneid() << ")";
4629 
4630   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4631   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4632   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4633 
4634   if (!getArgs().empty())
4635     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4636   if (!getResults().empty())
4637     p << " -> (" << getResults().getTypes() << ')';
4638   p << " ";
4639   p.printRegion(getRegion(),
4640                 /*printEntryBlockArgs=*/true,
4641                 /*printBlockTerminators=*/!getResults().empty());
4642   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4643 }
4644 
4645 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4646                                         OperationState &result) {
4647   // Create the region.
4648   result.regions.reserve(1);
4649   Region *warpRegion = result.addRegion();
4650 
4651   auto &builder = parser.getBuilder();
4652   OpAsmParser::UnresolvedOperand laneId;
4653 
4654   // Parse predicate operand.
4655   if (parser.parseLParen() || parser.parseRegionArgument(laneId) ||
4656       parser.parseRParen())
4657     return failure();
4658 
4659   int64_t warpSize;
4660   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4661       parser.parseRSquare())
4662     return failure();
4663   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4664                                                         builder.getContext())),
4665                       builder.getI64IntegerAttr(warpSize));
4666 
4667   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4668     return failure();
4669 
4670   llvm::SMLoc inputsOperandsLoc;
4671   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4672   SmallVector<Type> inputTypes;
4673   if (succeeded(parser.parseOptionalKeyword("args"))) {
4674     if (parser.parseLParen())
4675       return failure();
4676 
4677     inputsOperandsLoc = parser.getCurrentLocation();
4678     if (parser.parseOperandList(inputsOperands) ||
4679         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4680       return failure();
4681   }
4682   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4683                              result.operands))
4684     return failure();
4685 
4686   // Parse optional results type list.
4687   if (parser.parseOptionalArrowTypeList(result.types))
4688     return failure();
4689   // Parse the region.
4690   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4691                          /*argTypes=*/{}))
4692     return failure();
4693   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4694 
4695   // Parse the optional attribute list.
4696   if (parser.parseOptionalAttrDict(result.attributes))
4697     return failure();
4698   return success();
4699 }
4700 
4701 void WarpExecuteOnLane0Op::getSuccessorRegions(
4702     Optional<unsigned> index, ArrayRef<Attribute> operands,
4703     SmallVectorImpl<RegionSuccessor> &regions) {
4704   if (index.hasValue()) {
4705     regions.push_back(RegionSuccessor(getResults()));
4706     return;
4707   }
4708 
4709   // The warp region is always executed
4710   regions.push_back(RegionSuccessor(&getWarpRegion()));
4711 }
4712 
4713 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4714                                  TypeRange resultTypes, Value laneId,
4715                                  int64_t warpSize) {
4716   build(builder, result, resultTypes, laneId, warpSize,
4717         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4718 }
4719 
4720 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4721                                  TypeRange resultTypes, Value laneId,
4722                                  int64_t warpSize, ValueRange args,
4723                                  TypeRange blockArgTypes) {
4724   result.addOperands(laneId);
4725   result.addAttribute(getAttributeNames()[0],
4726                       builder.getI64IntegerAttr(warpSize));
4727   result.addTypes(resultTypes);
4728   result.addOperands(args);
4729   assert(args.size() == blockArgTypes.size());
4730   OpBuilder::InsertionGuard guard(builder);
4731   Region *warpRegion = result.addRegion();
4732   Block *block = builder.createBlock(warpRegion);
4733   for (auto it : llvm::zip(blockArgTypes, args))
4734     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4735 }
4736 
4737 /// Helper check if the distributed vector type is consistent with the expanded
4738 /// type and distributed size.
4739 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4740                                            int64_t warpSize, Operation *op) {
4741   // If the types matches there is no distribution.
4742   if (expanded == distributed)
4743     return success();
4744   auto expandedVecType = expanded.dyn_cast<VectorType>();
4745   auto distributedVecType = distributed.dyn_cast<VectorType>();
4746   if (!expandedVecType || !distributedVecType)
4747     return op->emitOpError("expected vector type for distributed operands.");
4748   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4749       expandedVecType.getElementType() != distributedVecType.getElementType())
4750     return op->emitOpError(
4751         "expected distributed vectors to have same rank and element type.");
4752   bool foundDistributedDim = false;
4753   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4754     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4755       continue;
4756     if (expandedVecType.getDimSize(i) ==
4757         distributedVecType.getDimSize(i) * warpSize) {
4758       if (foundDistributedDim)
4759         return op->emitOpError()
4760                << "expected only one dimension to be distributed from "
4761                << expandedVecType << " to " << distributedVecType;
4762       foundDistributedDim = true;
4763       continue;
4764     }
4765     return op->emitOpError() << "incompatible distribution dimensions from "
4766                              << expandedVecType << " to " << distributedVecType;
4767   }
4768   return success();
4769 }
4770 
4771 LogicalResult WarpExecuteOnLane0Op::verify() {
4772   if (getArgs().size() != getWarpRegion().getNumArguments())
4773     return emitOpError(
4774         "expected same number op arguments and block arguments.");
4775   auto yield =
4776       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4777   if (yield.getNumOperands() != getNumResults())
4778     return emitOpError(
4779         "expected same number of yield operands and return values.");
4780   int64_t warpSize = getWarpSize();
4781   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4782     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4783                                      std::get<1>(it).getType(), warpSize,
4784                                      getOperation())))
4785       return failure();
4786   }
4787   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4788     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4789                                      std::get<1>(it).getType(), warpSize,
4790                                      getOperation())))
4791       return failure();
4792   }
4793   return success();
4794 }
4795 
4796 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4797   return succeeded(
4798       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4799 }
4800 
4801 //===----------------------------------------------------------------------===//
4802 // TableGen'd op method definitions
4803 //===----------------------------------------------------------------------===//
4804 
4805 #define GET_OP_CLASSES
4806 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4807