1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::UnresolvedOperand lhsInfo; 530 OpAsmParser::UnresolvedOperand rhsInfo; 531 OpAsmParser::UnresolvedOperand accInfo; 532 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << getLhs() << ", "; 586 p << getRhs() << ", " << getAcc(); 587 if (getMasks().size() == 2) 588 p << ", " << getMasks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (getIndexingMaps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = getIteratorTypes().getValue().size(); 706 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(getKind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = getIndexingMaps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, getIteratorTypes(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, getIteratorTypes(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.getAcc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.getAcc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (getPosition()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!getPosition()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 947 // Skip the 0-D vector here now. 948 if (operands.size() < 2) 949 return {}; 950 951 Attribute src = operands[0]; 952 Attribute pos = operands[1]; 953 954 // Fold extractelement (splat X) -> X. 955 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 956 return splat.getInput(); 957 958 if (!pos || !src) 959 return {}; 960 961 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 962 963 auto attr = pos.dyn_cast<IntegerAttr>(); 964 uint64_t posIdx = attr.getInt(); 965 966 return srcElements[posIdx]; 967 } 968 969 //===----------------------------------------------------------------------===// 970 // ExtractOp 971 //===----------------------------------------------------------------------===// 972 973 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 974 Value source, ArrayRef<int64_t> position) { 975 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 976 } 977 978 // Convenience builder which assumes the values are constant indices. 979 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 980 Value source, ValueRange position) { 981 SmallVector<int64_t, 4> positionConstants = 982 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 983 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 984 })); 985 build(builder, result, source, positionConstants); 986 } 987 988 LogicalResult 989 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 990 ValueRange operands, DictionaryAttr attributes, 991 RegionRange, 992 SmallVectorImpl<Type> &inferredReturnTypes) { 993 ExtractOp::Adaptor op(operands, attributes); 994 auto vectorType = op.getVector().getType().cast<VectorType>(); 995 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 996 inferredReturnTypes.push_back(vectorType.getElementType()); 997 } else { 998 auto n = 999 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1000 inferredReturnTypes.push_back(VectorType::get( 1001 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1002 } 1003 return success(); 1004 } 1005 1006 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1007 // Allow extracting 1-element vectors instead of scalars. 1008 auto isCompatible = [](TypeRange l, TypeRange r) { 1009 auto vectorType = l.front().dyn_cast<VectorType>(); 1010 return vectorType && vectorType.getShape().equals({1}) && 1011 vectorType.getElementType() == r.front(); 1012 }; 1013 if (l.size() == 1 && r.size() == 1 && 1014 (isCompatible(l, r) || isCompatible(r, l))) 1015 return true; 1016 return l == r; 1017 } 1018 1019 LogicalResult vector::ExtractOp::verify() { 1020 auto positionAttr = getPosition().getValue(); 1021 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1022 return emitOpError( 1023 "expected position attribute of rank smaller than vector rank"); 1024 for (const auto &en : llvm::enumerate(positionAttr)) { 1025 auto attr = en.value().dyn_cast<IntegerAttr>(); 1026 if (!attr || attr.getInt() < 0 || 1027 attr.getInt() >= getVectorType().getDimSize(en.index())) 1028 return emitOpError("expected position attribute #") 1029 << (en.index() + 1) 1030 << " to be a non-negative integer smaller than the corresponding " 1031 "vector dimension"; 1032 } 1033 return success(); 1034 } 1035 1036 template <typename IntType> 1037 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1038 return llvm::to_vector<4>(llvm::map_range( 1039 arrayAttr.getAsRange<IntegerAttr>(), 1040 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1041 } 1042 1043 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1044 /// positions. 1045 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1046 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1047 return failure(); 1048 1049 SmallVector<int64_t, 4> globalPosition; 1050 ExtractOp currentOp = extractOp; 1051 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1052 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1053 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1054 currentOp = nextOp; 1055 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1056 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1057 } 1058 extractOp.setOperand(currentOp.getVector()); 1059 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1060 OpBuilder b(extractOp.getContext()); 1061 std::reverse(globalPosition.begin(), globalPosition.end()); 1062 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1063 b.getI64ArrayAttr(globalPosition)); 1064 return success(); 1065 } 1066 1067 namespace { 1068 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1069 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1070 /// Compose TransposeOp permutations as we walk back. 1071 /// This helper class keeps an updated extraction position `extractPosition` 1072 /// with extra trailing sentinels. 1073 /// The sentinels encode the internal transposition status of the result vector. 1074 /// As we iterate, extractPosition is permuted and updated. 1075 class ExtractFromInsertTransposeChainState { 1076 public: 1077 ExtractFromInsertTransposeChainState(ExtractOp e); 1078 1079 /// Iterate over producing insert and transpose ops until we find a fold. 1080 Value fold(); 1081 1082 private: 1083 /// Return true if the vector at position `a` is contained within the vector 1084 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1085 /// is a prefix of `b`. 1086 template <typename ContainerA, typename ContainerB> 1087 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1088 return a.size() <= b.size() && 1089 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1090 } 1091 1092 /// Return true if the vector at position `a` intersects the vector at 1093 /// position `b`. Under insert/extract semantics, this is the same as equality 1094 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1095 /// Comparison is on the common prefix (i.e. zip). 1096 template <typename ContainerA, typename ContainerB> 1097 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1098 for (auto it : llvm::zip(a, b)) { 1099 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1100 continue; 1101 if (std::get<0>(it) != std::get<1>(it)) 1102 return false; 1103 } 1104 return true; 1105 } 1106 1107 /// Folding is only possible in the absence of an internal permutation in the 1108 /// result vector. 1109 bool canFold() { 1110 return (sentinels == 1111 makeArrayRef(extractPosition).drop_front(extractedRank)); 1112 } 1113 1114 // Helper to get the next defining op of interest. 1115 void updateStateForNextIteration(Value v) { 1116 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1117 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1118 }; 1119 1120 // Case 1. If we hit a transpose, just compose the map and iterate. 1121 // Invariant: insert + transpose do not change rank, we can always compose. 1122 LogicalResult handleTransposeOp(); 1123 1124 // Case 2: the insert position matches extractPosition exactly, early return. 1125 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1126 1127 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1128 /// portion of the source of the insert. 1129 /// Example: 1130 /// ``` 1131 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1132 /// // extractPosition == [1, 2, 3] 1133 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1134 /// // can fold to vector.extract %source[0, 3] 1135 /// %ext = vector.extract %source[3]: vector<5x6> 1136 /// ``` 1137 /// To traverse through %source, we need to set the leading dims to 0 and 1138 /// drop the extra leading dims. 1139 /// This method updates the internal state. 1140 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1141 1142 /// Try to fold in place to extract(source, extractPosition) and return the 1143 /// folded result. Return null if folding is not possible (e.g. due to an 1144 /// internal tranposition in the result). 1145 Value tryToFoldExtractOpInPlace(Value source); 1146 1147 ExtractOp extractOp; 1148 int64_t vectorRank; 1149 int64_t extractedRank; 1150 1151 InsertOp nextInsertOp; 1152 TransposeOp nextTransposeOp; 1153 1154 /// Sentinel values that encode the internal permutation status of the result. 1155 /// They are set to (-1, ... , -k) at the beginning and appended to 1156 /// `extractPosition`. 1157 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1158 /// ensure that there is no internal transposition. 1159 /// Internal transposition cannot be accounted for with a folding pattern. 1160 // TODO: We could relax the internal transposition with an extra transposition 1161 // operation in a future canonicalizer. 1162 SmallVector<int64_t> sentinels; 1163 SmallVector<int64_t> extractPosition; 1164 }; 1165 } // namespace 1166 1167 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1168 ExtractOp e) 1169 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1170 extractedRank(extractOp.getPosition().size()) { 1171 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1172 sentinels.reserve(vectorRank - extractedRank); 1173 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1174 sentinels.push_back(-(i + 1)); 1175 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1176 llvm::append_range(extractPosition, sentinels); 1177 } 1178 1179 // Case 1. If we hit a transpose, just compose the map and iterate. 1180 // Invariant: insert + transpose do not change rank, we can always compose. 1181 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1182 if (!nextTransposeOp) 1183 return failure(); 1184 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1185 AffineMap m = inversePermutation( 1186 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1187 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1188 return success(); 1189 } 1190 1191 // Case 2: the insert position matches extractPosition exactly, early return. 1192 LogicalResult 1193 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1194 Value &res) { 1195 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1196 if (makeArrayRef(insertedPos) != 1197 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1198 return failure(); 1199 // Case 2.a. early-exit fold. 1200 res = nextInsertOp.getSource(); 1201 // Case 2.b. if internal transposition is present, canFold will be false. 1202 return success(); 1203 } 1204 1205 /// Case 3: if inserted position is a prefix of extractPosition, 1206 /// extract a portion of the source of the insertion. 1207 /// This method updates the internal state. 1208 LogicalResult 1209 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1210 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1211 if (!isContainedWithin(insertedPos, extractPosition)) 1212 return failure(); 1213 // Set leading dims to zero. 1214 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1215 // Drop extra leading dims. 1216 extractPosition.erase(extractPosition.begin(), 1217 extractPosition.begin() + insertedPos.size()); 1218 extractedRank = extractPosition.size() - sentinels.size(); 1219 // Case 3.a. early-exit fold (break and delegate to post-while path). 1220 res = nextInsertOp.getSource(); 1221 // Case 3.b. if internal transposition is present, canFold will be false. 1222 return success(); 1223 } 1224 1225 /// Try to fold in place to extract(source, extractPosition) and return the 1226 /// folded result. Return null if folding is not possible (e.g. due to an 1227 /// internal tranposition in the result). 1228 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1229 Value source) { 1230 // If we can't fold (either internal transposition, or nothing to fold), bail. 1231 bool nothingToFold = (source == extractOp.getVector()); 1232 if (nothingToFold || !canFold()) 1233 return Value(); 1234 // Otherwise, fold by updating the op inplace and return its result. 1235 OpBuilder b(extractOp.getContext()); 1236 extractOp->setAttr( 1237 extractOp.getPositionAttrName(), 1238 b.getI64ArrayAttr( 1239 makeArrayRef(extractPosition).take_front(extractedRank))); 1240 extractOp.getVectorMutable().assign(source); 1241 return extractOp.getResult(); 1242 } 1243 1244 /// Iterate over producing insert and transpose ops until we find a fold. 1245 Value ExtractFromInsertTransposeChainState::fold() { 1246 Value valueToExtractFrom = extractOp.getVector(); 1247 updateStateForNextIteration(valueToExtractFrom); 1248 while (nextInsertOp || nextTransposeOp) { 1249 // Case 1. If we hit a transpose, just compose the map and iterate. 1250 // Invariant: insert + transpose do not change rank, we can always compose. 1251 if (succeeded(handleTransposeOp())) { 1252 valueToExtractFrom = nextTransposeOp.getVector(); 1253 updateStateForNextIteration(valueToExtractFrom); 1254 continue; 1255 } 1256 1257 Value result; 1258 // Case 2: the position match exactly. 1259 if (succeeded(handleInsertOpWithMatchingPos(result))) 1260 return result; 1261 1262 // Case 3: if the inserted position is a prefix of extractPosition, we can 1263 // just extract a portion of the source of the insert. 1264 if (succeeded(handleInsertOpWithPrefixPos(result))) 1265 return tryToFoldExtractOpInPlace(result); 1266 1267 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1268 // values. This is a more difficult case and we bail. 1269 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1270 if (isContainedWithin(extractPosition, insertedPos) || 1271 intersectsWhereNonNegative(extractPosition, insertedPos)) 1272 return Value(); 1273 1274 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1275 valueToExtractFrom = nextInsertOp.getDest(); 1276 updateStateForNextIteration(valueToExtractFrom); 1277 } 1278 // If after all this we can fold, go for it. 1279 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1280 } 1281 1282 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1283 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1284 Operation *defOp = extractOp.getVector().getDefiningOp(); 1285 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1286 return Value(); 1287 Value source = defOp->getOperand(0); 1288 if (extractOp.getType() == source.getType()) 1289 return source; 1290 auto getRank = [](Type type) { 1291 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1292 }; 1293 unsigned broadcastSrcRank = getRank(source.getType()); 1294 unsigned extractResultRank = getRank(extractOp.getType()); 1295 if (extractResultRank >= broadcastSrcRank) 1296 return Value(); 1297 // Check that the dimension of the result haven't been broadcasted. 1298 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1299 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1300 if (extractVecType && broadcastVecType && 1301 extractVecType.getShape() != 1302 broadcastVecType.getShape().take_back(extractResultRank)) 1303 return Value(); 1304 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1305 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1306 extractPos.erase(extractPos.begin(), 1307 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1308 extractOp.setOperand(source); 1309 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1310 OpBuilder b(extractOp.getContext()); 1311 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1312 b.getI64ArrayAttr(extractPos)); 1313 return extractOp.getResult(); 1314 } 1315 1316 // Fold extractOp with source coming from ShapeCast op. 1317 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1318 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1319 if (!shapeCastOp) 1320 return Value(); 1321 // Get the nth dimension size starting from lowest dimension. 1322 auto getDimReverse = [](VectorType type, int64_t n) { 1323 return type.getShape().take_back(n + 1).front(); 1324 }; 1325 int64_t destinationRank = 1326 extractOp.getType().isa<VectorType>() 1327 ? extractOp.getType().cast<VectorType>().getRank() 1328 : 0; 1329 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1330 return Value(); 1331 if (destinationRank > 0) { 1332 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1333 for (int64_t i = 0; i < destinationRank; i++) { 1334 // The lowest dimension of of the destination must match the lowest 1335 // dimension of the shapecast op source. 1336 // TODO: This case could be support in a canonicalization pattern. 1337 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1338 getDimReverse(destinationType, i)) 1339 return Value(); 1340 } 1341 } 1342 // Extract the strides associated with the extract op vector source. Then use 1343 // this to calculate a linearized position for the extract. 1344 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1345 std::reverse(extractedPos.begin(), extractedPos.end()); 1346 SmallVector<int64_t, 4> strides; 1347 int64_t stride = 1; 1348 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1349 strides.push_back(stride); 1350 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1351 } 1352 1353 int64_t position = linearize(extractedPos, strides); 1354 // Then extract the strides associated to the shapeCast op vector source and 1355 // delinearize the position using those strides. 1356 SmallVector<int64_t, 4> newStrides; 1357 int64_t numDimension = 1358 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1359 stride = 1; 1360 for (int64_t i = 0; i < numDimension; i++) { 1361 newStrides.push_back(stride); 1362 stride *= 1363 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1364 } 1365 std::reverse(newStrides.begin(), newStrides.end()); 1366 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1367 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1368 OpBuilder b(extractOp.getContext()); 1369 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1370 b.getI64ArrayAttr(newPosition)); 1371 extractOp.setOperand(shapeCastOp.getSource()); 1372 return extractOp.getResult(); 1373 } 1374 1375 /// Fold an ExtractOp from ExtractStridedSliceOp. 1376 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1377 auto extractStridedSliceOp = 1378 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1379 if (!extractStridedSliceOp) 1380 return Value(); 1381 // Return if 'extractStridedSliceOp' has non-unit strides. 1382 if (extractStridedSliceOp.hasNonUnitStrides()) 1383 return Value(); 1384 1385 // Trim offsets for dimensions fully extracted. 1386 auto sliceOffsets = 1387 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1388 while (!sliceOffsets.empty()) { 1389 size_t lastOffset = sliceOffsets.size() - 1; 1390 if (sliceOffsets.back() != 0 || 1391 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1392 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1393 break; 1394 sliceOffsets.pop_back(); 1395 } 1396 unsigned destinationRank = 0; 1397 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1398 destinationRank = vecType.getRank(); 1399 // The dimensions of the result need to be untouched by the 1400 // extractStridedSlice op. 1401 if (destinationRank > 1402 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1403 return Value(); 1404 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1405 assert(extractedPos.size() >= sliceOffsets.size()); 1406 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1407 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1408 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1409 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1410 OpBuilder b(extractOp.getContext()); 1411 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1412 b.getI64ArrayAttr(extractedPos)); 1413 return extractOp.getResult(); 1414 } 1415 1416 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1417 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1418 int64_t destinationRank = op.getType().isa<VectorType>() 1419 ? op.getType().cast<VectorType>().getRank() 1420 : 0; 1421 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1422 while (insertOp) { 1423 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1424 insertOp.getSourceVectorType().getRank(); 1425 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1426 return Value(); 1427 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1428 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1429 1430 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1431 return attr.cast<IntegerAttr>().getInt() != 1; 1432 })) 1433 return Value(); 1434 bool disjoint = false; 1435 SmallVector<int64_t, 4> offsetDiffs; 1436 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1437 int64_t start = insertOffsets[dim]; 1438 int64_t size = 1439 (dim < insertRankDiff) 1440 ? 1 1441 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1442 int64_t end = start + size; 1443 int64_t offset = extractOffsets[dim]; 1444 // Check if the start of the extract offset is in the interval inserted. 1445 if (start <= offset && offset < end) { 1446 if (dim >= insertRankDiff) 1447 offsetDiffs.push_back(offset - start); 1448 continue; 1449 } 1450 disjoint = true; 1451 break; 1452 } 1453 // The extract element chunk overlap with the vector inserted. 1454 if (!disjoint) { 1455 // If any of the inner dimensions are only partially inserted we have a 1456 // partial overlap. 1457 int64_t srcRankDiff = 1458 insertOp.getSourceVectorType().getRank() - destinationRank; 1459 for (int64_t i = 0; i < destinationRank; i++) { 1460 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1461 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1462 insertRankDiff)) 1463 return Value(); 1464 } 1465 op.getVectorMutable().assign(insertOp.getSource()); 1466 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1467 OpBuilder b(op.getContext()); 1468 op->setAttr(ExtractOp::getPositionAttrStrName(), 1469 b.getI64ArrayAttr(offsetDiffs)); 1470 return op.getResult(); 1471 } 1472 // If the chunk extracted is disjoint from the chunk inserted, keep 1473 // looking in the insert chain. 1474 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1475 } 1476 return Value(); 1477 } 1478 1479 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1480 if (getPosition().empty()) 1481 return getVector(); 1482 if (succeeded(foldExtractOpFromExtractChain(*this))) 1483 return getResult(); 1484 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1485 return res; 1486 if (auto res = foldExtractFromBroadcast(*this)) 1487 return res; 1488 if (auto res = foldExtractFromShapeCast(*this)) 1489 return res; 1490 if (auto val = foldExtractFromExtractStrided(*this)) 1491 return val; 1492 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1493 return val; 1494 return OpFoldResult(); 1495 } 1496 1497 namespace { 1498 1499 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1500 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1501 public: 1502 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1503 1504 LogicalResult matchAndRewrite(ExtractOp extractOp, 1505 PatternRewriter &rewriter) const override { 1506 Operation *defOp = extractOp.getVector().getDefiningOp(); 1507 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1508 return failure(); 1509 1510 Value source = defOp->getOperand(0); 1511 if (extractOp.getType() == source.getType()) 1512 return failure(); 1513 auto getRank = [](Type type) { 1514 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1515 }; 1516 unsigned broadcastSrcRank = getRank(source.getType()); 1517 unsigned extractResultRank = getRank(extractOp.getType()); 1518 // We only consider the case where the rank of the source is less than or 1519 // equal to the rank of the extract dst. The other cases are handled in the 1520 // folding patterns. 1521 if (extractResultRank < broadcastSrcRank) 1522 return failure(); 1523 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1524 extractOp, extractOp.getType(), source); 1525 return success(); 1526 } 1527 }; 1528 1529 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1530 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1531 public: 1532 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1533 1534 LogicalResult matchAndRewrite(ExtractOp extractOp, 1535 PatternRewriter &rewriter) const override { 1536 // Return if 'extractStridedSliceOp' operand is not defined by a 1537 // ConstantOp. 1538 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1539 if (!constantOp) 1540 return failure(); 1541 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1542 if (!dense) 1543 return failure(); 1544 Attribute newAttr = dense.getSplatValue<Attribute>(); 1545 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1546 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1547 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1548 return success(); 1549 } 1550 }; 1551 1552 } // namespace 1553 1554 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1555 MLIRContext *context) { 1556 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1557 } 1558 1559 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1560 SmallVectorImpl<int64_t> &results) { 1561 for (auto attr : arrayAttr) 1562 results.push_back(attr.cast<IntegerAttr>().getInt()); 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // ExtractMapOp 1567 //===----------------------------------------------------------------------===// 1568 1569 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1570 Value vector, ValueRange ids, 1571 ArrayRef<int64_t> multiplicity, 1572 AffineMap permutationMap) { 1573 assert(ids.size() == multiplicity.size() && 1574 ids.size() == permutationMap.getNumResults()); 1575 assert(permutationMap.isProjectedPermutation()); 1576 VectorType type = vector.getType().cast<VectorType>(); 1577 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1578 type.getShape().end()); 1579 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1580 AffineExpr expr = permutationMap.getResult(i); 1581 auto dim = expr.cast<AffineDimExpr>(); 1582 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1583 } 1584 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1585 ExtractMapOp::build(builder, result, resultType, vector, ids); 1586 } 1587 1588 LogicalResult ExtractMapOp::verify() { 1589 if (getSourceVectorType().getRank() != getResultType().getRank()) 1590 return emitOpError("expected source and destination vectors of same rank"); 1591 unsigned numId = 0; 1592 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1593 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1594 0) 1595 return emitOpError("source vector dimensions must be a multiple of " 1596 "destination vector dimensions"); 1597 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1598 numId++; 1599 } 1600 if (numId != getIds().size()) 1601 return emitOpError("expected number of ids must match the number of " 1602 "dimensions distributed"); 1603 return success(); 1604 } 1605 1606 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1607 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1608 if (insert == nullptr || getType() != insert.getVector().getType() || 1609 getIds() != insert.getIds()) 1610 return {}; 1611 return insert.getVector(); 1612 } 1613 1614 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1615 assert(multiplicity.empty()); 1616 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1617 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1618 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1619 getResultType().getDimSize(i)); 1620 } 1621 } 1622 1623 template <typename MapOp> 1624 AffineMap calculateImplicitMap(MapOp op) { 1625 SmallVector<AffineExpr, 4> perm; 1626 // Check which dimension have a multiplicity greater than 1 and associated 1627 // them to the IDs in order. 1628 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1629 if (op.getSourceVectorType().getDimSize(i) != 1630 op.getResultType().getDimSize(i)) 1631 perm.push_back(getAffineDimExpr(i, op.getContext())); 1632 } 1633 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1634 op.getContext()); 1635 return map; 1636 } 1637 1638 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1639 1640 //===----------------------------------------------------------------------===// 1641 // FmaOp 1642 //===----------------------------------------------------------------------===// 1643 1644 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1645 return llvm::to_vector<4>(getVectorType().getShape()); 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // BroadcastOp 1650 //===----------------------------------------------------------------------===// 1651 1652 BroadcastableToResult 1653 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1654 std::pair<int, int> *mismatchingDims) { 1655 // Broadcast scalar to vector of the same element type. 1656 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1657 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1658 return BroadcastableToResult::Success; 1659 // From now on, only vectors broadcast. 1660 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1661 if (!srcVectorType) 1662 return BroadcastableToResult::SourceTypeNotAVector; 1663 1664 int64_t srcRank = srcVectorType.getRank(); 1665 int64_t dstRank = dstVectorType.getRank(); 1666 if (srcRank > dstRank) 1667 return BroadcastableToResult::SourceRankHigher; 1668 // Source has an exact match or singleton value for all trailing dimensions 1669 // (all leading dimensions are simply duplicated). 1670 int64_t lead = dstRank - srcRank; 1671 for (int64_t r = 0; r < srcRank; ++r) { 1672 int64_t srcDim = srcVectorType.getDimSize(r); 1673 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1674 if (srcDim != 1 && srcDim != dstDim) { 1675 if (mismatchingDims) { 1676 mismatchingDims->first = srcDim; 1677 mismatchingDims->second = dstDim; 1678 } 1679 return BroadcastableToResult::DimensionMismatch; 1680 } 1681 } 1682 1683 return BroadcastableToResult::Success; 1684 } 1685 1686 LogicalResult BroadcastOp::verify() { 1687 std::pair<int, int> mismatchingDims; 1688 BroadcastableToResult res = 1689 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1690 if (res == BroadcastableToResult::Success) 1691 return success(); 1692 if (res == BroadcastableToResult::SourceRankHigher) 1693 return emitOpError("source rank higher than destination rank"); 1694 if (res == BroadcastableToResult::DimensionMismatch) 1695 return emitOpError("dimension mismatch (") 1696 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1697 if (res == BroadcastableToResult::SourceTypeNotAVector) 1698 return emitOpError("source type is not a vector"); 1699 llvm_unreachable("unexpected vector.broadcast op error"); 1700 } 1701 1702 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1703 if (getSourceType() == getVectorType()) 1704 return getSource(); 1705 if (!operands[0]) 1706 return {}; 1707 auto vectorType = getVectorType(); 1708 if (operands[0].getType().isIntOrIndexOrFloat()) 1709 return DenseElementsAttr::get(vectorType, operands[0]); 1710 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1711 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1712 return {}; 1713 } 1714 1715 namespace { 1716 1717 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1718 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1719 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1720 1721 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1722 PatternRewriter &rewriter) const override { 1723 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1724 if (!srcBroadcast) 1725 return failure(); 1726 rewriter.replaceOpWithNewOp<BroadcastOp>( 1727 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1728 return success(); 1729 } 1730 }; 1731 } // namespace 1732 1733 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1734 MLIRContext *context) { 1735 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1736 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1737 results.add<BroadcastFolder>(context); 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // ShuffleOp 1742 //===----------------------------------------------------------------------===// 1743 1744 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1745 Value v2, ArrayRef<int64_t> mask) { 1746 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1747 } 1748 1749 LogicalResult ShuffleOp::verify() { 1750 VectorType resultType = getVectorType(); 1751 VectorType v1Type = getV1VectorType(); 1752 VectorType v2Type = getV2VectorType(); 1753 // Verify ranks. 1754 int64_t resRank = resultType.getRank(); 1755 int64_t v1Rank = v1Type.getRank(); 1756 int64_t v2Rank = v2Type.getRank(); 1757 if (resRank != v1Rank || v1Rank != v2Rank) 1758 return emitOpError("rank mismatch"); 1759 // Verify all but leading dimension sizes. 1760 for (int64_t r = 1; r < v1Rank; ++r) { 1761 int64_t resDim = resultType.getDimSize(r); 1762 int64_t v1Dim = v1Type.getDimSize(r); 1763 int64_t v2Dim = v2Type.getDimSize(r); 1764 if (resDim != v1Dim || v1Dim != v2Dim) 1765 return emitOpError("dimension mismatch"); 1766 } 1767 // Verify mask length. 1768 auto maskAttr = getMask().getValue(); 1769 int64_t maskLength = maskAttr.size(); 1770 if (maskLength <= 0) 1771 return emitOpError("invalid mask length"); 1772 if (maskLength != resultType.getDimSize(0)) 1773 return emitOpError("mask length mismatch"); 1774 // Verify all indices. 1775 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1776 for (const auto &en : llvm::enumerate(maskAttr)) { 1777 auto attr = en.value().dyn_cast<IntegerAttr>(); 1778 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1779 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1780 } 1781 return success(); 1782 } 1783 1784 LogicalResult 1785 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1786 ValueRange operands, DictionaryAttr attributes, 1787 RegionRange, 1788 SmallVectorImpl<Type> &inferredReturnTypes) { 1789 ShuffleOp::Adaptor op(operands, attributes); 1790 auto v1Type = op.getV1().getType().cast<VectorType>(); 1791 // Construct resulting type: leading dimension matches mask length, 1792 // all trailing dimensions match the operands. 1793 SmallVector<int64_t, 4> shape; 1794 shape.reserve(v1Type.getRank()); 1795 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1796 llvm::append_range(shape, v1Type.getShape().drop_front()); 1797 inferredReturnTypes.push_back( 1798 VectorType::get(shape, v1Type.getElementType())); 1799 return success(); 1800 } 1801 1802 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1803 uint64_t expected = begin; 1804 return idxArr.size() == width && 1805 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1806 [&expected](auto attr) { 1807 return attr.getZExtValue() == expected++; 1808 }); 1809 } 1810 1811 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1812 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1813 if (!getV1VectorType().isScalable() && 1814 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1815 return getV1(); 1816 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1817 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1818 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1819 getV2VectorType().getDimSize(0))) 1820 return getV2(); 1821 1822 Attribute lhs = operands.front(), rhs = operands.back(); 1823 if (!lhs || !rhs) 1824 return {}; 1825 1826 auto lhsType = lhs.getType().cast<VectorType>(); 1827 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1828 // manipulation. 1829 if (lhsType.getRank() != 1) 1830 return {}; 1831 int64_t lhsSize = lhsType.getDimSize(0); 1832 1833 SmallVector<Attribute> results; 1834 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1835 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1836 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1837 int64_t i = index.getZExtValue(); 1838 if (i >= lhsSize) { 1839 results.push_back(rhsElements[i - lhsSize]); 1840 } else { 1841 results.push_back(lhsElements[i]); 1842 } 1843 } 1844 1845 return DenseElementsAttr::get(getVectorType(), results); 1846 } 1847 1848 //===----------------------------------------------------------------------===// 1849 // InsertElementOp 1850 //===----------------------------------------------------------------------===// 1851 1852 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1853 Value source, Value dest) { 1854 build(builder, result, source, dest, {}); 1855 } 1856 1857 LogicalResult InsertElementOp::verify() { 1858 auto dstVectorType = getDestVectorType(); 1859 if (dstVectorType.getRank() == 0) { 1860 if (getPosition()) 1861 return emitOpError("expected position to be empty with 0-D vector"); 1862 return success(); 1863 } 1864 if (dstVectorType.getRank() != 1) 1865 return emitOpError("unexpected >1 vector rank"); 1866 if (!getPosition()) 1867 return emitOpError("expected position for 1-D vector"); 1868 return success(); 1869 } 1870 1871 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1872 // Skip the 0-D vector here. 1873 if (operands.size() < 3) 1874 return {}; 1875 1876 Attribute src = operands[0]; 1877 Attribute dst = operands[1]; 1878 Attribute pos = operands[2]; 1879 if (!src || !dst || !pos) 1880 return {}; 1881 1882 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1883 1884 SmallVector<Attribute> results(dstElements); 1885 1886 auto attr = pos.dyn_cast<IntegerAttr>(); 1887 uint64_t posIdx = attr.getInt(); 1888 1889 results[posIdx] = src; 1890 1891 return DenseElementsAttr::get(getDestVectorType(), results); 1892 } 1893 1894 //===----------------------------------------------------------------------===// 1895 // InsertOp 1896 //===----------------------------------------------------------------------===// 1897 1898 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1899 Value dest, ArrayRef<int64_t> position) { 1900 result.addOperands({source, dest}); 1901 auto positionAttr = getVectorSubscriptAttr(builder, position); 1902 result.addTypes(dest.getType()); 1903 result.addAttribute(getPositionAttrStrName(), positionAttr); 1904 } 1905 1906 // Convenience builder which assumes the values are constant indices. 1907 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1908 Value dest, ValueRange position) { 1909 SmallVector<int64_t, 4> positionConstants = 1910 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1911 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1912 })); 1913 build(builder, result, source, dest, positionConstants); 1914 } 1915 1916 LogicalResult InsertOp::verify() { 1917 auto positionAttr = getPosition().getValue(); 1918 auto destVectorType = getDestVectorType(); 1919 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1920 return emitOpError( 1921 "expected position attribute of rank smaller than dest vector rank"); 1922 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1923 if (srcVectorType && 1924 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1925 static_cast<unsigned>(destVectorType.getRank()))) 1926 return emitOpError("expected position attribute rank + source rank to " 1927 "match dest vector rank"); 1928 if (!srcVectorType && 1929 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1930 return emitOpError( 1931 "expected position attribute rank to match the dest vector rank"); 1932 for (const auto &en : llvm::enumerate(positionAttr)) { 1933 auto attr = en.value().dyn_cast<IntegerAttr>(); 1934 if (!attr || attr.getInt() < 0 || 1935 attr.getInt() >= destVectorType.getDimSize(en.index())) 1936 return emitOpError("expected position attribute #") 1937 << (en.index() + 1) 1938 << " to be a non-negative integer smaller than the corresponding " 1939 "dest vector dimension"; 1940 } 1941 return success(); 1942 } 1943 1944 namespace { 1945 1946 // If insertOp is only inserting unit dimensions it can be transformed to a 1947 // broadcast. 1948 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1949 public: 1950 using OpRewritePattern<InsertOp>::OpRewritePattern; 1951 1952 LogicalResult matchAndRewrite(InsertOp insertOp, 1953 PatternRewriter &rewriter) const override { 1954 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1955 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1956 srcVecType.getNumElements()) 1957 return failure(); 1958 rewriter.replaceOpWithNewOp<BroadcastOp>( 1959 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1960 return success(); 1961 } 1962 }; 1963 1964 } // namespace 1965 1966 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1967 MLIRContext *context) { 1968 results.add<InsertToBroadcast, BroadcastFolder>(context); 1969 } 1970 1971 // Eliminates insert operations that produce values identical to their source 1972 // value. This happens when the source and destination vectors have identical 1973 // sizes. 1974 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1975 if (getPosition().empty()) 1976 return getSource(); 1977 return {}; 1978 } 1979 1980 //===----------------------------------------------------------------------===// 1981 // InsertMapOp 1982 //===----------------------------------------------------------------------===// 1983 1984 LogicalResult InsertMapOp::verify() { 1985 if (getSourceVectorType().getRank() != getResultType().getRank()) 1986 return emitOpError("expected source and destination vectors of same rank"); 1987 unsigned numId = 0; 1988 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1989 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1990 0) 1991 return emitOpError( 1992 "destination vector size must be a multiple of source vector size"); 1993 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1994 numId++; 1995 } 1996 if (numId != getIds().size()) 1997 return emitOpError("expected number of ids must match the number of " 1998 "dimensions distributed"); 1999 return success(); 2000 } 2001 2002 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2003 2004 //===----------------------------------------------------------------------===// 2005 // InsertStridedSliceOp 2006 //===----------------------------------------------------------------------===// 2007 2008 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2009 Value source, Value dest, 2010 ArrayRef<int64_t> offsets, 2011 ArrayRef<int64_t> strides) { 2012 result.addOperands({source, dest}); 2013 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2014 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2015 result.addTypes(dest.getType()); 2016 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2017 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2018 } 2019 2020 // TODO: Should be moved to Tablegen Confined attributes. 2021 template <typename OpType> 2022 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2023 ArrayAttr arrayAttr, 2024 ArrayRef<int64_t> shape, 2025 StringRef attrName) { 2026 if (arrayAttr.size() > shape.size()) 2027 return op.emitOpError("expected ") 2028 << attrName << " attribute of rank smaller than vector rank"; 2029 return success(); 2030 } 2031 2032 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2033 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2034 // Otherwise, the admissible interval is [min, max]. 2035 template <typename OpType> 2036 static LogicalResult 2037 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2038 int64_t max, StringRef attrName, 2039 bool halfOpen = true) { 2040 for (auto attr : arrayAttr) { 2041 auto val = attr.cast<IntegerAttr>().getInt(); 2042 auto upper = max; 2043 if (!halfOpen) 2044 upper += 1; 2045 if (val < min || val >= upper) 2046 return op.emitOpError("expected ") << attrName << " to be confined to [" 2047 << min << ", " << upper << ")"; 2048 } 2049 return success(); 2050 } 2051 2052 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2053 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2054 // Otherwise, the admissible interval is [min, max]. 2055 template <typename OpType> 2056 static LogicalResult 2057 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2058 ArrayRef<int64_t> shape, StringRef attrName, 2059 bool halfOpen = true, int64_t min = 0) { 2060 assert(arrayAttr.size() <= shape.size()); 2061 unsigned index = 0; 2062 for (auto it : llvm::zip(arrayAttr, shape)) { 2063 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2064 auto max = std::get<1>(it); 2065 if (!halfOpen) 2066 max += 1; 2067 if (val < min || val >= max) 2068 return op.emitOpError("expected ") 2069 << attrName << " dimension " << index << " to be confined to [" 2070 << min << ", " << max << ")"; 2071 ++index; 2072 } 2073 return success(); 2074 } 2075 2076 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2077 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2078 // Otherwise, the admissible interval is [min, max]. 2079 template <typename OpType> 2080 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2081 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2082 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2083 bool halfOpen = true, int64_t min = 1) { 2084 assert(arrayAttr1.size() <= shape.size()); 2085 assert(arrayAttr2.size() <= shape.size()); 2086 unsigned index = 0; 2087 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2088 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2089 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2090 auto max = std::get<2>(it); 2091 if (!halfOpen) 2092 max += 1; 2093 if (val1 + val2 < 0 || val1 + val2 >= max) 2094 return op.emitOpError("expected sum(") 2095 << attrName1 << ", " << attrName2 << ") dimension " << index 2096 << " to be confined to [" << min << ", " << max << ")"; 2097 ++index; 2098 } 2099 return success(); 2100 } 2101 2102 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2103 MLIRContext *context) { 2104 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2105 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2106 }); 2107 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2108 } 2109 2110 LogicalResult InsertStridedSliceOp::verify() { 2111 auto sourceVectorType = getSourceVectorType(); 2112 auto destVectorType = getDestVectorType(); 2113 auto offsets = getOffsetsAttr(); 2114 auto strides = getStridesAttr(); 2115 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2116 return emitOpError( 2117 "expected offsets of same size as destination vector rank"); 2118 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2119 return emitOpError("expected strides of same size as source vector rank"); 2120 if (sourceVectorType.getRank() > destVectorType.getRank()) 2121 return emitOpError( 2122 "expected source rank to be smaller than destination rank"); 2123 2124 auto sourceShape = sourceVectorType.getShape(); 2125 auto destShape = destVectorType.getShape(); 2126 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2127 destShape.size() - sourceShape.size(), 0); 2128 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2129 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2130 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2131 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2132 offName)) || 2133 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2134 stridesName, 2135 /*halfOpen=*/false)) || 2136 failed(isSumOfIntegerArrayAttrConfinedToShape( 2137 *this, offsets, 2138 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2139 offName, "source vector shape", 2140 /*halfOpen=*/false, /*min=*/1))) 2141 return failure(); 2142 2143 return success(); 2144 } 2145 2146 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2147 if (getSourceVectorType() == getDestVectorType()) 2148 return getSource(); 2149 return {}; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // OuterProductOp 2154 //===----------------------------------------------------------------------===// 2155 2156 /// Build an op without mask, use the type of `acc` as the return type. 2157 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2158 Value lhs, Value rhs, Value acc) { 2159 result.addOperands({lhs, rhs, acc}); 2160 result.addTypes(acc.getType()); 2161 } 2162 2163 void OuterProductOp::print(OpAsmPrinter &p) { 2164 p << " " << getLhs() << ", " << getRhs(); 2165 if (!getAcc().empty()) { 2166 p << ", " << getAcc(); 2167 p.printOptionalAttrDict((*this)->getAttrs()); 2168 } 2169 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2170 } 2171 2172 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2173 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2174 Type tLHS, tRHS; 2175 if (parser.parseOperandList(operandsInfo) || 2176 parser.parseOptionalAttrDict(result.attributes) || 2177 parser.parseColonType(tLHS) || parser.parseComma() || 2178 parser.parseType(tRHS)) 2179 return failure(); 2180 if (operandsInfo.size() < 2) 2181 return parser.emitError(parser.getNameLoc(), 2182 "expected at least 2 operands"); 2183 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2184 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2185 if (!vLHS) 2186 return parser.emitError(parser.getNameLoc(), 2187 "expected vector type for operand #1"); 2188 VectorType resType = 2189 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2190 vLHS.getElementType()) 2191 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2192 2193 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2194 result.attributes.append( 2195 OuterProductOp::getKindAttrStrName(), 2196 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2197 result.getContext())); 2198 } 2199 2200 return failure( 2201 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2202 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2203 (operandsInfo.size() > 2 && 2204 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2205 parser.addTypeToList(resType, result.types)); 2206 } 2207 2208 LogicalResult OuterProductOp::verify() { 2209 Type tRHS = getOperandTypeRHS(); 2210 VectorType vLHS = getOperandVectorTypeLHS(), 2211 vRHS = tRHS.dyn_cast<VectorType>(), 2212 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2213 2214 if (vLHS.getRank() != 1) 2215 return emitOpError("expected 1-d vector for operand #1"); 2216 2217 if (vRHS) { 2218 // Proper OUTER operation. 2219 if (vRHS.getRank() != 1) 2220 return emitOpError("expected 1-d vector for operand #2"); 2221 if (vRES.getRank() != 2) 2222 return emitOpError("expected 2-d vector result"); 2223 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2224 return emitOpError("expected #1 operand dim to match result dim #1"); 2225 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2226 return emitOpError("expected #2 operand dim to match result dim #2"); 2227 } else { 2228 // An AXPY operation. 2229 if (vRES.getRank() != 1) 2230 return emitOpError("expected 1-d vector result"); 2231 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2232 return emitOpError("expected #1 operand dim to match result dim #1"); 2233 } 2234 2235 if (vACC && vACC != vRES) 2236 return emitOpError("expected operand #3 of same type as result type"); 2237 2238 // Verify supported combining kind. 2239 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2240 return emitOpError("unsupported outerproduct type"); 2241 2242 return success(); 2243 } 2244 2245 //===----------------------------------------------------------------------===// 2246 // ReshapeOp 2247 //===----------------------------------------------------------------------===// 2248 2249 LogicalResult ReshapeOp::verify() { 2250 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2251 auto inputVectorType = getInputVectorType(); 2252 auto outputVectorType = getOutputVectorType(); 2253 int64_t inputShapeRank = getNumInputShapeSizes(); 2254 int64_t outputShapeRank = getNumOutputShapeSizes(); 2255 SmallVector<int64_t, 4> fixedVectorSizes; 2256 getFixedVectorSizes(fixedVectorSizes); 2257 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2258 2259 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2260 return emitError("invalid input shape for vector type ") 2261 << inputVectorType; 2262 2263 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2264 return emitError("invalid output shape for vector type ") 2265 << outputVectorType; 2266 2267 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2268 // suffix. 2269 unsigned inputVectorRank = inputVectorType.getRank(); 2270 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2271 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2272 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2273 return emitError("fixed vector size must match input vector for dim ") 2274 << i; 2275 } 2276 2277 unsigned outputVectorRank = outputVectorType.getRank(); 2278 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2279 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2280 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2281 return emitError("fixed vector size must match output vector for dim ") 2282 << i; 2283 } 2284 2285 // If all shape operands are produced by constant ops, verify that product 2286 // of dimensions for input/output shape match. 2287 auto isDefByConstant = [](Value operand) { 2288 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2289 }; 2290 if (llvm::all_of(getInputShape(), isDefByConstant) && 2291 llvm::all_of(getOutputShape(), isDefByConstant)) { 2292 int64_t numInputElements = 1; 2293 for (auto operand : getInputShape()) 2294 numInputElements *= 2295 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2296 int64_t numOutputElements = 1; 2297 for (auto operand : getOutputShape()) 2298 numOutputElements *= 2299 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2300 if (numInputElements != numOutputElements) 2301 return emitError("product of input and output shape sizes must match"); 2302 } 2303 return success(); 2304 } 2305 2306 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2307 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2308 } 2309 2310 //===----------------------------------------------------------------------===// 2311 // ExtractStridedSliceOp 2312 //===----------------------------------------------------------------------===// 2313 2314 // Inference works as follows: 2315 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2316 // 2. Add sizes from 'vectorType' for remaining dims. 2317 static Type inferStridedSliceOpResultType(VectorType vectorType, 2318 ArrayAttr offsets, ArrayAttr sizes, 2319 ArrayAttr strides) { 2320 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2321 SmallVector<int64_t, 4> shape; 2322 shape.reserve(vectorType.getRank()); 2323 unsigned idx = 0; 2324 for (unsigned e = offsets.size(); idx < e; ++idx) 2325 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2326 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2327 shape.push_back(vectorType.getShape()[idx]); 2328 2329 return VectorType::get(shape, vectorType.getElementType()); 2330 } 2331 2332 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2333 Value source, ArrayRef<int64_t> offsets, 2334 ArrayRef<int64_t> sizes, 2335 ArrayRef<int64_t> strides) { 2336 result.addOperands(source); 2337 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2338 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2339 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2340 result.addTypes( 2341 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2342 offsetsAttr, sizesAttr, stridesAttr)); 2343 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2344 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2345 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2346 } 2347 2348 LogicalResult ExtractStridedSliceOp::verify() { 2349 auto type = getVectorType(); 2350 auto offsets = getOffsetsAttr(); 2351 auto sizes = getSizesAttr(); 2352 auto strides = getStridesAttr(); 2353 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2354 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2355 2356 auto shape = type.getShape(); 2357 auto offName = getOffsetsAttrName(); 2358 auto sizesName = getSizesAttrName(); 2359 auto stridesName = getStridesAttrName(); 2360 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2361 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2362 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2363 stridesName)) || 2364 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2365 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2366 /*halfOpen=*/false, 2367 /*min=*/1)) || 2368 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2369 /*halfOpen=*/false)) || 2370 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2371 offName, sizesName, 2372 /*halfOpen=*/false))) 2373 return failure(); 2374 2375 auto resultType = 2376 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2377 if (getResult().getType() != resultType) 2378 return emitOpError("expected result type to be ") << resultType; 2379 2380 return success(); 2381 } 2382 2383 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2384 // to use the source of the InsertStrided ops if we can detect that the 2385 // extracted vector is a subset of one of the vector inserted. 2386 static LogicalResult 2387 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2388 // Helper to extract integer out of ArrayAttr. 2389 auto getElement = [](ArrayAttr array, int idx) { 2390 return array[idx].cast<IntegerAttr>().getInt(); 2391 }; 2392 ArrayAttr extractOffsets = op.getOffsets(); 2393 ArrayAttr extractStrides = op.getStrides(); 2394 ArrayAttr extractSizes = op.getSizes(); 2395 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2396 while (insertOp) { 2397 if (op.getVectorType().getRank() != 2398 insertOp.getSourceVectorType().getRank()) 2399 return failure(); 2400 ArrayAttr insertOffsets = insertOp.getOffsets(); 2401 ArrayAttr insertStrides = insertOp.getStrides(); 2402 // If the rank of extract is greater than the rank of insert, we are likely 2403 // extracting a partial chunk of the vector inserted. 2404 if (extractOffsets.size() > insertOffsets.size()) 2405 return failure(); 2406 bool patialoverlap = false; 2407 bool disjoint = false; 2408 SmallVector<int64_t, 4> offsetDiffs; 2409 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2410 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2411 return failure(); 2412 int64_t start = getElement(insertOffsets, dim); 2413 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2414 int64_t offset = getElement(extractOffsets, dim); 2415 int64_t size = getElement(extractSizes, dim); 2416 // Check if the start of the extract offset is in the interval inserted. 2417 if (start <= offset && offset < end) { 2418 // If the extract interval overlaps but is not fully included we may 2419 // have a partial overlap that will prevent any folding. 2420 if (offset + size > end) 2421 patialoverlap = true; 2422 offsetDiffs.push_back(offset - start); 2423 continue; 2424 } 2425 disjoint = true; 2426 break; 2427 } 2428 // The extract element chunk is a subset of the insert element. 2429 if (!disjoint && !patialoverlap) { 2430 op.setOperand(insertOp.getSource()); 2431 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2432 OpBuilder b(op.getContext()); 2433 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2434 b.getI64ArrayAttr(offsetDiffs)); 2435 return success(); 2436 } 2437 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2438 // in the insert chain. 2439 if (disjoint) 2440 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2441 else { 2442 // The extracted vector partially overlap the inserted vector, we cannot 2443 // fold. 2444 return failure(); 2445 } 2446 } 2447 return failure(); 2448 } 2449 2450 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2451 if (getVectorType() == getResult().getType()) 2452 return getVector(); 2453 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2454 return getResult(); 2455 return {}; 2456 } 2457 2458 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2459 populateFromInt64AttrArray(getOffsets(), results); 2460 } 2461 2462 namespace { 2463 2464 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2465 // ConstantMaskOp. 2466 class StridedSliceConstantMaskFolder final 2467 : public OpRewritePattern<ExtractStridedSliceOp> { 2468 public: 2469 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2470 2471 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2472 PatternRewriter &rewriter) const override { 2473 // Return if 'extractStridedSliceOp' operand is not defined by a 2474 // ConstantMaskOp. 2475 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2476 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2477 if (!constantMaskOp) 2478 return failure(); 2479 // Return if 'extractStridedSliceOp' has non-unit strides. 2480 if (extractStridedSliceOp.hasNonUnitStrides()) 2481 return failure(); 2482 // Gather constant mask dimension sizes. 2483 SmallVector<int64_t, 4> maskDimSizes; 2484 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2485 // Gather strided slice offsets and sizes. 2486 SmallVector<int64_t, 4> sliceOffsets; 2487 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2488 sliceOffsets); 2489 SmallVector<int64_t, 4> sliceSizes; 2490 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2491 2492 // Compute slice of vector mask region. 2493 SmallVector<int64_t, 4> sliceMaskDimSizes; 2494 assert(sliceOffsets.size() == maskDimSizes.size()); 2495 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2496 int64_t maskDimSize = std::get<0>(it); 2497 int64_t sliceOffset = std::get<1>(it); 2498 int64_t sliceSize = std::get<2>(it); 2499 int64_t sliceMaskDimSize = std::max( 2500 static_cast<int64_t>(0), 2501 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2502 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2503 } 2504 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2505 // region is a conjunction of mask dim intervals). 2506 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2507 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2508 2509 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2510 // region. 2511 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2512 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2513 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2514 return success(); 2515 } 2516 }; 2517 2518 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2519 class StridedSliceConstantFolder final 2520 : public OpRewritePattern<ExtractStridedSliceOp> { 2521 public: 2522 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2523 2524 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2525 PatternRewriter &rewriter) const override { 2526 // Return if 'extractStridedSliceOp' operand is not defined by a 2527 // ConstantOp. 2528 auto constantOp = 2529 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2530 if (!constantOp) 2531 return failure(); 2532 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2533 if (!dense) 2534 return failure(); 2535 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2536 dense.getSplatValue<Attribute>()); 2537 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2538 newAttr); 2539 return success(); 2540 } 2541 }; 2542 2543 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2544 // BroadcastOp(ExtractStrideSliceOp). 2545 class StridedSliceBroadcast final 2546 : public OpRewritePattern<ExtractStridedSliceOp> { 2547 public: 2548 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2549 2550 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2551 PatternRewriter &rewriter) const override { 2552 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2553 if (!broadcast) 2554 return failure(); 2555 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2556 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2557 auto dstVecType = op.getType().cast<VectorType>(); 2558 unsigned dstRank = dstVecType.getRank(); 2559 unsigned rankDiff = dstRank - srcRank; 2560 // Check if the most inner dimensions of the source of the broadcast are the 2561 // same as the destination of the extract. If this is the case we can just 2562 // use a broadcast as the original dimensions are untouched. 2563 bool lowerDimMatch = true; 2564 for (unsigned i = 0; i < srcRank; i++) { 2565 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2566 lowerDimMatch = false; 2567 break; 2568 } 2569 } 2570 Value source = broadcast.getSource(); 2571 // If the inner dimensions don't match, it means we need to extract from the 2572 // source of the orignal broadcast and then broadcast the extracted value. 2573 // We also need to handle degenerated cases where the source is effectively 2574 // just a single scalar. 2575 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2576 if (!lowerDimMatch && !isScalarSrc) { 2577 source = rewriter.create<ExtractStridedSliceOp>( 2578 op->getLoc(), source, 2579 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2580 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2581 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2582 } 2583 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2584 return success(); 2585 } 2586 }; 2587 2588 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2589 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2590 public: 2591 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2592 2593 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2594 PatternRewriter &rewriter) const override { 2595 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2596 if (!splat) 2597 return failure(); 2598 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2599 return success(); 2600 } 2601 }; 2602 2603 } // namespace 2604 2605 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2606 RewritePatternSet &results, MLIRContext *context) { 2607 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2608 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2609 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2610 StridedSliceBroadcast, StridedSliceSplat>(context); 2611 } 2612 2613 //===----------------------------------------------------------------------===// 2614 // TransferReadOp 2615 //===----------------------------------------------------------------------===// 2616 2617 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2618 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2619 VectorType vectorType, Value source, 2620 ValueRange indices, AffineMapAttr permutationMapAttr, 2621 /*optional*/ ArrayAttr inBoundsAttr) { 2622 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2623 Value padding = builder.create<arith::ConstantOp>( 2624 result.location, elemType, builder.getZeroAttr(elemType)); 2625 build(builder, result, vectorType, source, indices, permutationMapAttr, 2626 padding, /*mask=*/Value(), inBoundsAttr); 2627 } 2628 2629 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2630 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2631 VectorType vectorType, Value source, 2632 ValueRange indices, AffineMap permutationMap, 2633 Optional<ArrayRef<bool>> inBounds) { 2634 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2635 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2636 ? builder.getBoolArrayAttr(inBounds.getValue()) 2637 : ArrayAttr(); 2638 build(builder, result, vectorType, source, indices, permutationMapAttr, 2639 inBoundsAttr); 2640 } 2641 2642 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2643 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2644 VectorType vectorType, Value source, 2645 ValueRange indices, Value padding, 2646 Optional<ArrayRef<bool>> inBounds) { 2647 AffineMap permutationMap = getTransferMinorIdentityMap( 2648 source.getType().cast<ShapedType>(), vectorType); 2649 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2650 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2651 ? builder.getBoolArrayAttr(inBounds.getValue()) 2652 : ArrayAttr(); 2653 build(builder, result, vectorType, source, indices, permutationMapAttr, 2654 padding, 2655 /*mask=*/Value(), inBoundsAttr); 2656 } 2657 2658 /// 4. Builder that sets padding to zero and permutation map to 2659 /// 'getMinorIdentityMap'. 2660 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2661 VectorType vectorType, Value source, 2662 ValueRange indices, 2663 Optional<ArrayRef<bool>> inBounds) { 2664 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2665 Value padding = builder.create<arith::ConstantOp>( 2666 result.location, elemType, builder.getZeroAttr(elemType)); 2667 build(builder, result, vectorType, source, indices, padding, inBounds); 2668 } 2669 2670 template <typename EmitFun> 2671 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2672 EmitFun emitOpError) { 2673 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2674 for (auto expr : permutationMap.getResults()) { 2675 auto dim = expr.dyn_cast<AffineDimExpr>(); 2676 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2677 if (zero) { 2678 if (zero.getValue() != 0) { 2679 return emitOpError( 2680 "requires a projected permutation_map (at most one dim or the zero " 2681 "constant can appear in each result)"); 2682 } 2683 continue; 2684 } 2685 if (!dim) { 2686 return emitOpError("requires a projected permutation_map (at most one " 2687 "dim or the zero constant can appear in each result)"); 2688 } 2689 if (seen[dim.getPosition()]) { 2690 return emitOpError( 2691 "requires a permutation_map that is a permutation (found one dim " 2692 "used more than once)"); 2693 } 2694 seen[dim.getPosition()] = true; 2695 } 2696 return success(); 2697 } 2698 2699 static LogicalResult 2700 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2701 VectorType vectorType, VectorType maskType, 2702 AffineMap permutationMap, ArrayAttr inBounds) { 2703 if (op->hasAttr("masked")) { 2704 return op->emitOpError("masked attribute has been removed. " 2705 "Use in_bounds instead."); 2706 } 2707 2708 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2709 return op->emitOpError( 2710 "requires source to be a memref or ranked tensor type"); 2711 2712 auto elementType = shapedType.getElementType(); 2713 DataLayout dataLayout = DataLayout::closest(op); 2714 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2715 // Memref or tensor has vector element type. 2716 unsigned sourceVecSize = 2717 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2718 vectorElementType.getShape().back(); 2719 unsigned resultVecSize = 2720 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2721 vectorType.getShape().back(); 2722 if (resultVecSize % sourceVecSize != 0) 2723 return op->emitOpError( 2724 "requires the bitwidth of the minor 1-D vector to be an integral " 2725 "multiple of the bitwidth of the minor 1-D vector of the source"); 2726 2727 unsigned sourceVecEltRank = vectorElementType.getRank(); 2728 unsigned resultVecRank = vectorType.getRank(); 2729 if (sourceVecEltRank > resultVecRank) 2730 return op->emitOpError( 2731 "requires source vector element and vector result ranks to match."); 2732 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2733 // Check that permutation map results match 'rankOffset' of vector type. 2734 if (permutationMap.getNumResults() != rankOffset) 2735 return op->emitOpError("requires a permutation_map with result dims of " 2736 "the same rank as the vector type"); 2737 2738 if (maskType) 2739 return op->emitOpError("does not support masks with vector element type"); 2740 } else { 2741 // Memref or tensor has scalar element type. 2742 unsigned minorSize = 2743 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2744 unsigned resultVecSize = 2745 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2746 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2747 return op->emitOpError( 2748 "requires the bitwidth of the minor 1-D vector to be an integral " 2749 "multiple of the bitwidth of the source element type"); 2750 2751 // Check that permutation map results match rank of vector type. 2752 if (permutationMap.getNumResults() != vectorType.getRank()) 2753 return op->emitOpError("requires a permutation_map with result dims of " 2754 "the same rank as the vector type"); 2755 2756 VectorType expectedMaskType = 2757 vector::detail::transferMaskType(vectorType, permutationMap); 2758 if (maskType && expectedMaskType != maskType) 2759 return op->emitOpError("expects mask type consistent with permutation " 2760 "map: ") 2761 << maskType; 2762 } 2763 2764 if (permutationMap.getNumSymbols() != 0) 2765 return op->emitOpError("requires permutation_map without symbols"); 2766 2767 if (permutationMap.getNumInputs() != shapedType.getRank()) 2768 return op->emitOpError("requires a permutation_map with input dims of the " 2769 "same rank as the source type"); 2770 2771 if (inBounds) { 2772 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2773 return op->emitOpError("expects the optional in_bounds attr of same rank " 2774 "as permutation_map results: ") 2775 << AffineMapAttr::get(permutationMap) 2776 << " vs inBounds of size: " << inBounds.size(); 2777 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2778 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2779 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2780 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2781 } 2782 2783 return success(); 2784 } 2785 2786 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2787 SmallVector<StringRef, 3> elidedAttrs; 2788 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2789 if (op.permutation_map().isMinorIdentity()) 2790 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2791 bool elideInBounds = true; 2792 if (auto inBounds = op.in_bounds()) { 2793 for (auto attr : *inBounds) { 2794 if (attr.template cast<BoolAttr>().getValue()) { 2795 elideInBounds = false; 2796 break; 2797 } 2798 } 2799 } 2800 if (elideInBounds) 2801 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2802 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2803 } 2804 2805 void TransferReadOp::print(OpAsmPrinter &p) { 2806 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2807 if (getMask()) 2808 p << ", " << getMask(); 2809 printTransferAttrs(p, *this); 2810 p << " : " << getShapedType() << ", " << getVectorType(); 2811 } 2812 2813 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2814 auto &builder = parser.getBuilder(); 2815 SMLoc typesLoc; 2816 OpAsmParser::UnresolvedOperand sourceInfo; 2817 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2818 OpAsmParser::UnresolvedOperand paddingInfo; 2819 SmallVector<Type, 2> types; 2820 OpAsmParser::UnresolvedOperand maskInfo; 2821 // Parsing with support for paddingValue. 2822 if (parser.parseOperand(sourceInfo) || 2823 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2824 parser.parseComma() || parser.parseOperand(paddingInfo)) 2825 return failure(); 2826 ParseResult hasMask = parser.parseOptionalComma(); 2827 if (hasMask.succeeded()) { 2828 parser.parseOperand(maskInfo); 2829 } 2830 if (parser.parseOptionalAttrDict(result.attributes) || 2831 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2832 return failure(); 2833 if (types.size() != 2) 2834 return parser.emitError(typesLoc, "requires two types"); 2835 auto indexType = builder.getIndexType(); 2836 auto shapedType = types[0].dyn_cast<ShapedType>(); 2837 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2838 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2839 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2840 if (!vectorType) 2841 return parser.emitError(typesLoc, "requires vector type"); 2842 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2843 Attribute mapAttr = result.attributes.get(permutationAttrName); 2844 if (!mapAttr) { 2845 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2846 // Update `mapAttr` that is used later to determine mask type. 2847 mapAttr = AffineMapAttr::get(permMap); 2848 result.attributes.set(permutationAttrName, mapAttr); 2849 } 2850 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2851 parser.resolveOperands(indexInfo, indexType, result.operands) || 2852 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2853 result.operands)) 2854 return failure(); 2855 if (hasMask.succeeded()) { 2856 if (shapedType.getElementType().dyn_cast<VectorType>()) 2857 return parser.emitError( 2858 maskInfo.location, "does not support masks with vector element type"); 2859 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2860 // Instead of adding the mask type as an op type, compute it based on the 2861 // vector type and the permutation map (to keep the type signature small). 2862 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2863 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2864 return failure(); 2865 } 2866 result.addAttribute( 2867 TransferReadOp::getOperandSegmentSizeAttr(), 2868 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2869 static_cast<int32_t>(hasMask.succeeded())})); 2870 return parser.addTypeToList(vectorType, result.types); 2871 } 2872 2873 LogicalResult TransferReadOp::verify() { 2874 // Consistency of elemental types in source and vector. 2875 ShapedType shapedType = getShapedType(); 2876 VectorType vectorType = getVectorType(); 2877 VectorType maskType = getMaskType(); 2878 auto paddingType = getPadding().getType(); 2879 auto permutationMap = getPermutationMap(); 2880 auto sourceElementType = shapedType.getElementType(); 2881 2882 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2883 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2884 2885 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2886 shapedType, vectorType, maskType, permutationMap, 2887 getInBounds() ? *getInBounds() : ArrayAttr()))) 2888 return failure(); 2889 2890 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2891 // Source has vector element type. 2892 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2893 if (sourceVectorElementType != paddingType) 2894 return emitOpError( 2895 "requires source element type and padding type to match."); 2896 2897 } else { 2898 // Check that 'paddingType' is valid to store in a vector type. 2899 if (!VectorType::isValidElementType(paddingType)) 2900 return emitOpError("requires valid padding vector elemental type"); 2901 2902 // Check that padding type and vector element types match. 2903 if (paddingType != sourceElementType) 2904 return emitOpError( 2905 "requires formal padding and source of the same elemental type"); 2906 } 2907 2908 return verifyPermutationMap(permutationMap, 2909 [&](Twine t) { return emitOpError(t); }); 2910 } 2911 2912 /// This is a common class used for patterns of the form 2913 /// ``` 2914 /// someop(memrefcast) -> someop 2915 /// ``` 2916 /// It folds the source of the memref.cast into the root operation directly. 2917 static LogicalResult foldMemRefCast(Operation *op) { 2918 bool folded = false; 2919 for (OpOperand &operand : op->getOpOperands()) { 2920 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2921 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2922 operand.set(castOp.getOperand()); 2923 folded = true; 2924 } 2925 } 2926 return success(folded); 2927 } 2928 2929 static LogicalResult foldTensorCast(Operation *op) { 2930 bool folded = false; 2931 for (OpOperand &operand : op->getOpOperands()) { 2932 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2933 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2934 operand.set(castOp.getOperand()); 2935 folded = true; 2936 } 2937 } 2938 return success(folded); 2939 } 2940 2941 template <typename TransferOp> 2942 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2943 // TODO: support more aggressive createOrFold on: 2944 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2945 if (op.getShapedType().isDynamicDim(indicesIdx)) 2946 return false; 2947 Value index = op.getIndices()[indicesIdx]; 2948 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2949 if (!cstOp) 2950 return false; 2951 2952 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2953 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2954 2955 return cstOp.value() + vectorSize <= sourceSize; 2956 } 2957 2958 template <typename TransferOp> 2959 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2960 // TODO: support 0-d corner case. 2961 // TODO: Be less conservative. 2962 if (op.getTransferRank() == 0) 2963 return failure(); 2964 AffineMap permutationMap = op.getPermutationMap(); 2965 bool changed = false; 2966 SmallVector<bool, 4> newInBounds; 2967 newInBounds.reserve(op.getTransferRank()); 2968 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2969 // Already marked as in-bounds, nothing to see here. 2970 if (op.isDimInBounds(i)) { 2971 newInBounds.push_back(true); 2972 continue; 2973 } 2974 // Currently out-of-bounds, check whether we can statically determine it is 2975 // inBounds. 2976 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2977 assert(dimExpr && "Broadcast dims must be in-bounds"); 2978 auto inBounds = 2979 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2980 newInBounds.push_back(inBounds); 2981 // We commit the pattern if it is "more inbounds". 2982 changed |= inBounds; 2983 } 2984 if (!changed) 2985 return failure(); 2986 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2987 OpBuilder b(op.getContext()); 2988 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2989 b.getBoolArrayAttr(newInBounds)); 2990 return success(); 2991 } 2992 2993 /// ``` 2994 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2995 /// : vector<1x4xf32>, tensor<4x4xf32> 2996 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2997 /// : tensor<4x4xf32>, vector<1x4xf32> 2998 /// ``` 2999 /// -> Folds into 3000 /// ``` 3001 /// %v0 3002 /// ``` 3003 static Value foldRAW(TransferReadOp readOp) { 3004 if (!readOp.getShapedType().isa<RankedTensorType>()) 3005 return {}; 3006 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3007 while (defWrite) { 3008 if (checkSameValueRAW(defWrite, readOp)) 3009 return defWrite.getVector(); 3010 if (!isDisjointTransferIndices( 3011 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3012 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3013 break; 3014 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3015 } 3016 return {}; 3017 } 3018 3019 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3020 if (Value vec = foldRAW(*this)) 3021 return vec; 3022 /// transfer_read(memrefcast) -> transfer_read 3023 if (succeeded(foldTransferInBoundsAttribute(*this))) 3024 return getResult(); 3025 if (succeeded(foldMemRefCast(*this))) 3026 return getResult(); 3027 if (succeeded(foldTensorCast(*this))) 3028 return getResult(); 3029 return OpFoldResult(); 3030 } 3031 3032 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3033 return llvm::to_vector<4>(getVectorType().getShape()); 3034 } 3035 3036 void TransferReadOp::getEffects( 3037 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3038 &effects) { 3039 if (getShapedType().isa<MemRefType>()) 3040 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3041 SideEffects::DefaultResource::get()); 3042 } 3043 3044 namespace { 3045 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3046 /// 3047 /// ``` 3048 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3049 /// : tensor<?x?xf32> to tensor<?x?xf32> 3050 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3051 /// : tensor<?x?xf32>, vector<4x5xf32> 3052 /// ``` 3053 /// is rewritten to: 3054 /// ``` 3055 /// %p0 = arith.addi %a, %e : index 3056 /// %p1 = arith.addi %b, %f : index 3057 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3058 /// : tensor<?x?xf32>, vector<4x5xf32> 3059 /// ``` 3060 struct FoldExtractSliceIntoTransferRead 3061 : public OpRewritePattern<TransferReadOp> { 3062 public: 3063 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3064 3065 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3066 PatternRewriter &rewriter) const override { 3067 // TODO: support 0-d corner case. 3068 if (xferOp.getTransferRank() == 0) 3069 return failure(); 3070 if (xferOp.hasOutOfBoundsDim()) 3071 return failure(); 3072 if (!xferOp.getPermutationMap().isIdentity()) 3073 return failure(); 3074 if (xferOp.getMask()) 3075 return failure(); 3076 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3077 if (!extractOp) 3078 return failure(); 3079 if (!extractOp.hasUnitStride()) 3080 return failure(); 3081 3082 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3083 // dims are exactly the leading dims. I.e. the following is illegal: 3084 // ``` 3085 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3086 // tensor<2x1x4xf32> to tensor<2x4xf32> 3087 // %1 = vector.transfer_read %0[0,0], %cst : 3088 // tensor<2x4xf32>, vector<2x4xf32> 3089 // ``` 3090 // 3091 // Cannot fold into: 3092 // ``` 3093 // %0 = vector.transfer_read %t[0,0,0], %cst : 3094 // tensor<2x1x4xf32>, vector<2x4xf32> 3095 // ``` 3096 // For this, check the trailing `vectorRank` dims of the extract_slice 3097 // result tensor match the trailing dims of the inferred result tensor. 3098 int64_t rankReduced = 3099 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3100 int64_t vectorRank = xferOp.getVectorType().getRank(); 3101 RankedTensorType inferredDestTensorType = 3102 tensor::ExtractSliceOp::inferResultType( 3103 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3104 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3105 auto actualDestTensorShape = extractOp.getType().getShape(); 3106 if (rankReduced > 0 && 3107 actualDestTensorShape.take_back(vectorRank) != 3108 inferredDestTensorType.getShape().take_back(vectorRank)) 3109 return failure(); 3110 3111 SmallVector<Value> newIndices; 3112 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3113 // indices first. 3114 for (int64_t i = 0; i < rankReduced; ++i) { 3115 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3116 newIndices.push_back(getValueOrCreateConstantIndexOp( 3117 rewriter, extractOp.getLoc(), offset)); 3118 } 3119 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3120 OpFoldResult offset = 3121 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3122 newIndices.push_back(rewriter.create<arith::AddIOp>( 3123 xferOp->getLoc(), it.value(), 3124 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3125 offset))); 3126 } 3127 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3128 rewriter.replaceOpWithNewOp<TransferReadOp>( 3129 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3130 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3131 3132 return success(); 3133 } 3134 }; 3135 } // namespace 3136 3137 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3138 MLIRContext *context) { 3139 results.add<FoldExtractSliceIntoTransferRead>(context); 3140 } 3141 3142 //===----------------------------------------------------------------------===// 3143 // TransferWriteOp 3144 //===----------------------------------------------------------------------===// 3145 3146 /// 1. Builder with type inference. 3147 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3148 Value vector, Value dest, ValueRange indices, 3149 AffineMapAttr permutationMapAttr, 3150 /*optional*/ Value mask, 3151 /*optional*/ ArrayAttr inBoundsAttr) { 3152 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3153 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3154 mask, inBoundsAttr); 3155 } 3156 3157 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3158 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3159 Value vector, Value dest, ValueRange indices, 3160 AffineMapAttr permutationMapAttr, 3161 /*optional*/ ArrayAttr inBoundsAttr) { 3162 build(builder, result, vector, dest, indices, permutationMapAttr, 3163 /*mask=*/Value(), inBoundsAttr); 3164 } 3165 3166 /// 3. Builder with type inference that sets an empty mask (variant without 3167 /// attrs) 3168 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3169 Value vector, Value dest, ValueRange indices, 3170 AffineMap permutationMap, 3171 Optional<ArrayRef<bool>> inBounds) { 3172 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3173 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3174 ? builder.getBoolArrayAttr(inBounds.getValue()) 3175 : ArrayAttr(); 3176 build(builder, result, vector, dest, indices, permutationMapAttr, 3177 /*mask=*/Value(), inBoundsAttr); 3178 } 3179 3180 /// 4. Builder with type inference that sets an empty mask and sets permutation 3181 /// map to 'getMinorIdentityMap'. 3182 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3183 Value vector, Value dest, ValueRange indices, 3184 Optional<ArrayRef<bool>> inBounds) { 3185 auto vectorType = vector.getType().cast<VectorType>(); 3186 AffineMap permutationMap = getTransferMinorIdentityMap( 3187 dest.getType().cast<ShapedType>(), vectorType); 3188 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3189 } 3190 3191 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3192 OperationState &result) { 3193 auto &builder = parser.getBuilder(); 3194 SMLoc typesLoc; 3195 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3196 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3197 SmallVector<Type, 2> types; 3198 OpAsmParser::UnresolvedOperand maskInfo; 3199 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3200 parser.parseOperand(sourceInfo) || 3201 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3202 return failure(); 3203 ParseResult hasMask = parser.parseOptionalComma(); 3204 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3205 return failure(); 3206 if (parser.parseOptionalAttrDict(result.attributes) || 3207 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3208 return failure(); 3209 if (types.size() != 2) 3210 return parser.emitError(typesLoc, "requires two types"); 3211 auto indexType = builder.getIndexType(); 3212 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3213 if (!vectorType) 3214 return parser.emitError(typesLoc, "requires vector type"); 3215 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3216 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3217 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3218 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3219 auto attr = result.attributes.get(permutationAttrName); 3220 if (!attr) { 3221 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3222 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3223 } 3224 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3225 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3226 parser.resolveOperands(indexInfo, indexType, result.operands)) 3227 return failure(); 3228 if (hasMask.succeeded()) { 3229 if (shapedType.getElementType().dyn_cast<VectorType>()) 3230 return parser.emitError( 3231 maskInfo.location, "does not support masks with vector element type"); 3232 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3233 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3234 return failure(); 3235 } 3236 result.addAttribute( 3237 TransferWriteOp::getOperandSegmentSizeAttr(), 3238 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3239 static_cast<int32_t>(hasMask.succeeded())})); 3240 return failure(shapedType.isa<RankedTensorType>() && 3241 parser.addTypeToList(shapedType, result.types)); 3242 } 3243 3244 void TransferWriteOp::print(OpAsmPrinter &p) { 3245 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3246 if (getMask()) 3247 p << ", " << getMask(); 3248 printTransferAttrs(p, *this); 3249 p << " : " << getVectorType() << ", " << getShapedType(); 3250 } 3251 3252 LogicalResult TransferWriteOp::verify() { 3253 // Consistency of elemental types in shape and vector. 3254 ShapedType shapedType = getShapedType(); 3255 VectorType vectorType = getVectorType(); 3256 VectorType maskType = getMaskType(); 3257 auto permutationMap = getPermutationMap(); 3258 3259 if (llvm::size(getIndices()) != shapedType.getRank()) 3260 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3261 3262 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3263 // as the semantics is unclear. This can be revisited later if necessary. 3264 if (hasBroadcastDim()) 3265 return emitOpError("should not have broadcast dimensions"); 3266 3267 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3268 shapedType, vectorType, maskType, permutationMap, 3269 getInBounds() ? *getInBounds() : ArrayAttr()))) 3270 return failure(); 3271 3272 return verifyPermutationMap(permutationMap, 3273 [&](Twine t) { return emitOpError(t); }); 3274 } 3275 3276 /// Fold: 3277 /// ``` 3278 /// %t1 = ... 3279 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3280 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3281 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3282 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3283 /// ``` 3284 /// 3285 /// into: 3286 /// 3287 /// ``` 3288 /// %t0 3289 /// ``` 3290 /// 3291 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3292 /// block argument or has side effects. 3293 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3294 ArrayRef<Attribute>, 3295 SmallVectorImpl<OpFoldResult> &results) { 3296 // TODO: support 0-d corner case. 3297 if (write.getTransferRank() == 0) 3298 return failure(); 3299 auto rankedTensorType = 3300 write.getSource().getType().dyn_cast<RankedTensorType>(); 3301 // If not operating on tensors, bail. 3302 if (!rankedTensorType) 3303 return failure(); 3304 // If no read, bail. 3305 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3306 if (!read) 3307 return failure(); 3308 // TODO: support 0-d corner case. 3309 if (read.getTransferRank() == 0) 3310 return failure(); 3311 // For now, only accept minor identity. Future: composition is minor identity. 3312 if (!read.getPermutationMap().isMinorIdentity() || 3313 !write.getPermutationMap().isMinorIdentity()) 3314 return failure(); 3315 // Bail on mismatching ranks. 3316 if (read.getTransferRank() != write.getTransferRank()) 3317 return failure(); 3318 // Bail on potential out-of-bounds accesses. 3319 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3320 return failure(); 3321 // Tensor types must be the same. 3322 if (read.getSource().getType() != rankedTensorType) 3323 return failure(); 3324 // Vector types must be the same. 3325 if (read.getVectorType() != write.getVectorType()) 3326 return failure(); 3327 // Vector and Tensor shapes must match. 3328 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3329 return failure(); 3330 // If any index is nonzero. 3331 auto isNotConstantZero = [](Value v) { 3332 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3333 return !cstOp || cstOp.value() != 0; 3334 }; 3335 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3336 llvm::any_of(write.getIndices(), isNotConstantZero)) 3337 return failure(); 3338 // Success. 3339 results.push_back(read.getSource()); 3340 return success(); 3341 } 3342 3343 static bool checkSameValueWAR(vector::TransferReadOp read, 3344 vector::TransferWriteOp write) { 3345 return read.getSource() == write.getSource() && 3346 read.getIndices() == write.getIndices() && 3347 read.getPermutationMap() == write.getPermutationMap() && 3348 read.getVectorType() == write.getVectorType() && !read.getMask() && 3349 !write.getMask(); 3350 } 3351 /// Fold transfer_write write after read: 3352 /// ``` 3353 /// %t0 = ... 3354 /// %v = vector.transfer_read %t0[%c0...] : 3355 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3356 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3357 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3358 /// ``` 3359 /// 3360 /// into: 3361 /// 3362 /// ``` 3363 /// %t0 3364 /// ``` 3365 static LogicalResult foldWAR(TransferWriteOp write, 3366 SmallVectorImpl<OpFoldResult> &results) { 3367 if (!write.getSource().getType().isa<RankedTensorType>()) 3368 return failure(); 3369 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3370 if (!read) 3371 return failure(); 3372 3373 if (!checkSameValueWAR(read, write)) 3374 return failure(); 3375 results.push_back(read.getSource()); 3376 return success(); 3377 } 3378 3379 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3380 SmallVectorImpl<OpFoldResult> &results) { 3381 if (succeeded(foldReadInitWrite(*this, operands, results))) 3382 return success(); 3383 if (succeeded(foldWAR(*this, results))) 3384 return success(); 3385 if (succeeded(foldTransferInBoundsAttribute(*this))) 3386 return success(); 3387 return foldMemRefCast(*this); 3388 } 3389 3390 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3391 return llvm::to_vector<4>(getVectorType().getShape()); 3392 } 3393 3394 void TransferWriteOp::getEffects( 3395 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3396 &effects) { 3397 if (getShapedType().isa<MemRefType>()) 3398 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3399 SideEffects::DefaultResource::get()); 3400 } 3401 3402 namespace { 3403 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3404 /// DCE 3405 /// ``` 3406 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3407 /// : vector<1x4xf32>, tensor<4x4xf32> 3408 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3409 /// : vector<1x4xf32>, tensor<4x4xf32> 3410 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3411 /// : vector<1x4xf32>, tensor<4x4xf32> 3412 /// ``` 3413 /// 3414 /// into: 3415 /// 3416 /// ``` 3417 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3418 /// : vector<1x4xf32>, tensor<4x4xf32> 3419 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3420 /// : vector<1x4xf32>, tensor<4x4xf32> 3421 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3422 /// : vector<1x4xf32>, tensor<4x4xf32> 3423 /// ``` 3424 /// 3425 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3426 /// any other uses. 3427 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3428 public: 3429 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3430 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3431 PatternRewriter &rewriter) const override { 3432 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3433 return failure(); 3434 vector::TransferWriteOp writeToModify = writeOp; 3435 3436 auto defWrite = 3437 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3438 while (defWrite) { 3439 if (checkSameValueWAW(writeOp, defWrite)) { 3440 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3441 return success(); 3442 } 3443 if (!isDisjointTransferIndices( 3444 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3445 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3446 break; 3447 // If the previous write op doesn't have any other use we an safely look 3448 // at the previous store to see if it can be removed. 3449 if (!defWrite->hasOneUse()) 3450 break; 3451 writeToModify = defWrite; 3452 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3453 } 3454 return failure(); 3455 } 3456 }; 3457 3458 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3459 /// could directly write to the insert_slice's destination. E.g.: 3460 /// 3461 /// ``` 3462 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3463 /// : vector<4x5xf32>, tensor<4x5xf32> 3464 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3465 /// : tensor<4x5xf32> into tensor<?x?xf32> 3466 /// ``` 3467 /// is rewritten to: 3468 /// ``` 3469 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3470 /// : vector<4x5xf32>, tensor<?x?xf32> 3471 /// ``` 3472 struct FoldInsertSliceIntoTransferWrite 3473 : public OpRewritePattern<tensor::InsertSliceOp> { 3474 public: 3475 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3476 3477 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3478 PatternRewriter &rewriter) const override { 3479 if (!insertOp.hasUnitStride()) 3480 return failure(); 3481 3482 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3483 if (!xferOp) 3484 return failure(); 3485 // TODO: support 0-d corner case. 3486 if (xferOp.getTransferRank() == 0) 3487 return failure(); 3488 3489 if (xferOp.hasOutOfBoundsDim()) 3490 return failure(); 3491 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3492 return failure(); 3493 if (xferOp.getMask()) 3494 return failure(); 3495 // Fold only if the TransferWriteOp completely overwrites the `source` with 3496 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3497 // content is the data of the vector. 3498 if (!llvm::equal(xferOp.getVectorType().getShape(), 3499 xferOp.getShapedType().getShape())) 3500 return failure(); 3501 if (!xferOp.getPermutationMap().isIdentity()) 3502 return failure(); 3503 3504 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3505 // dims are exactly the leading dims. I.e. the following is illegal: 3506 // ``` 3507 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3508 // vector<2x4xf32>, tensor<2x4xf32> 3509 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3510 // tensor<2x4xf32> into tensor<2x1x4xf32> 3511 // ``` 3512 // 3513 // Cannot fold into: 3514 // ``` 3515 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3516 // vector<2x4xf32>, tensor<2x1x4xf32> 3517 // ``` 3518 // For this, check the trailing `vectorRank` dims of the insert_slice result 3519 // tensor match the trailing dims of the inferred result tensor. 3520 int64_t rankReduced = 3521 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3522 int64_t vectorRank = xferOp.getVectorType().getRank(); 3523 RankedTensorType inferredSourceTensorType = 3524 tensor::ExtractSliceOp::inferResultType( 3525 insertOp.getType(), insertOp.getMixedOffsets(), 3526 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3527 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3528 if (rankReduced > 0 && 3529 actualSourceTensorShape.take_back(vectorRank) != 3530 inferredSourceTensorType.getShape().take_back(vectorRank)) 3531 return failure(); 3532 3533 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3534 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3535 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3536 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3537 insertOp.dest(), indices, 3538 ArrayRef<bool>{inBounds}); 3539 return success(); 3540 } 3541 }; 3542 3543 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3544 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3545 /// overwritten and inserted into another tensor. After this rewrite, the 3546 /// operations bufferize in-place since all of them work on the same slice. 3547 /// 3548 /// For example: 3549 /// ```mlir 3550 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3551 /// : vector<8x16xf32>, tensor<8x16xf32> 3552 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3553 /// : tensor<8x16xf32> to tensor<?x?xf32> 3554 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3555 /// : tensor<?x?xf32> into tensor<27x37xf32> 3556 /// ``` 3557 /// folds to 3558 /// ```mlir 3559 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3560 /// : tensor<27x37xf32> to tensor<?x?xf32> 3561 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3562 /// : vector<8x16xf32>, tensor<?x?xf32> 3563 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3564 /// : tensor<?x?xf32> into tensor<27x37xf32> 3565 /// ``` 3566 struct SwapExtractSliceOfTransferWrite 3567 : public OpRewritePattern<tensor::InsertSliceOp> { 3568 public: 3569 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3570 3571 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3572 PatternRewriter &rewriter) const override { 3573 if (!insertOp.hasUnitStride()) 3574 return failure(); 3575 auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3576 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3577 return failure(); 3578 auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>(); 3579 if (!transferOp || !transferOp->hasOneUse()) 3580 return failure(); 3581 3582 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3583 // rank-reducing. 3584 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3585 return rewriter.notifyMatchFailure(insertOp, 3586 "use-def chain is rank-reducing"); 3587 } 3588 3589 // Fail if tensor::ExtractSliceOp has non-zero offset. 3590 if (!extractOp.hasZeroOffset()) { 3591 return rewriter.notifyMatchFailure(insertOp, 3592 "ExtractSliceOp has non-zero offset"); 3593 } 3594 3595 // Fail if tensor::TransferWriteOp has non-zero offset. 3596 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3597 return getConstantIntValue(value) == static_cast<int64_t>(0); 3598 })) { 3599 return rewriter.notifyMatchFailure(insertOp, 3600 "TranferWriteOp has non-zero offset"); 3601 } 3602 3603 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3604 for (const auto &it : 3605 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3606 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3607 return rewriter.notifyMatchFailure( 3608 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3609 } 3610 } 3611 3612 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3613 assert(transferOp.getVectorType().hasStaticShape() && 3614 "expected vector to have a static shape"); 3615 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3616 SmallVector<int64_t> resultShape = applyPermutationMap( 3617 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3618 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3619 return rewriter.notifyMatchFailure( 3620 insertOp, "TransferWriteOp may not write the full tensor."); 3621 } 3622 3623 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3624 SmallVector<int64_t> newResultShape = applyPermutationMap( 3625 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3626 SmallVector<bool> newInBounds; 3627 for (const auto &en : enumerate(newResultShape)) 3628 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3629 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3630 extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(), 3631 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3632 insertOp.getMixedStrides()); 3633 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3634 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3635 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3636 rewriter.getBoolArrayAttr(newInBounds)); 3637 rewriter.updateRootInPlace(insertOp, [&]() { 3638 insertOp.sourceMutable().assign(newTransferWriteOp.getResult()); 3639 }); 3640 return success(); 3641 } 3642 }; 3643 3644 } // namespace 3645 3646 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3647 MLIRContext *context) { 3648 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3649 SwapExtractSliceOfTransferWrite>(context); 3650 } 3651 3652 //===----------------------------------------------------------------------===// 3653 // LoadOp 3654 //===----------------------------------------------------------------------===// 3655 3656 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3657 MemRefType memRefTy) { 3658 if (!isLastMemrefDimUnitStride(memRefTy)) 3659 return op->emitOpError("most minor memref dim must have unit stride"); 3660 return success(); 3661 } 3662 3663 LogicalResult vector::LoadOp::verify() { 3664 VectorType resVecTy = getVectorType(); 3665 MemRefType memRefTy = getMemRefType(); 3666 3667 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3668 return failure(); 3669 3670 // Checks for vector memrefs. 3671 Type memElemTy = memRefTy.getElementType(); 3672 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3673 if (memVecTy != resVecTy) 3674 return emitOpError("base memref and result vector types should match"); 3675 memElemTy = memVecTy.getElementType(); 3676 } 3677 3678 if (resVecTy.getElementType() != memElemTy) 3679 return emitOpError("base and result element types should match"); 3680 if (llvm::size(getIndices()) != memRefTy.getRank()) 3681 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3682 return success(); 3683 } 3684 3685 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3686 if (succeeded(foldMemRefCast(*this))) 3687 return getResult(); 3688 return OpFoldResult(); 3689 } 3690 3691 //===----------------------------------------------------------------------===// 3692 // StoreOp 3693 //===----------------------------------------------------------------------===// 3694 3695 LogicalResult vector::StoreOp::verify() { 3696 VectorType valueVecTy = getVectorType(); 3697 MemRefType memRefTy = getMemRefType(); 3698 3699 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3700 return failure(); 3701 3702 // Checks for vector memrefs. 3703 Type memElemTy = memRefTy.getElementType(); 3704 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3705 if (memVecTy != valueVecTy) 3706 return emitOpError( 3707 "base memref and valueToStore vector types should match"); 3708 memElemTy = memVecTy.getElementType(); 3709 } 3710 3711 if (valueVecTy.getElementType() != memElemTy) 3712 return emitOpError("base and valueToStore element type should match"); 3713 if (llvm::size(getIndices()) != memRefTy.getRank()) 3714 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3715 return success(); 3716 } 3717 3718 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3719 SmallVectorImpl<OpFoldResult> &results) { 3720 return foldMemRefCast(*this); 3721 } 3722 3723 //===----------------------------------------------------------------------===// 3724 // MaskedLoadOp 3725 //===----------------------------------------------------------------------===// 3726 3727 LogicalResult MaskedLoadOp::verify() { 3728 VectorType maskVType = getMaskVectorType(); 3729 VectorType passVType = getPassThruVectorType(); 3730 VectorType resVType = getVectorType(); 3731 MemRefType memType = getMemRefType(); 3732 3733 if (resVType.getElementType() != memType.getElementType()) 3734 return emitOpError("base and result element type should match"); 3735 if (llvm::size(getIndices()) != memType.getRank()) 3736 return emitOpError("requires ") << memType.getRank() << " indices"; 3737 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3738 return emitOpError("expected result dim to match mask dim"); 3739 if (resVType != passVType) 3740 return emitOpError("expected pass_thru of same type as result type"); 3741 return success(); 3742 } 3743 3744 namespace { 3745 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3746 public: 3747 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3748 LogicalResult matchAndRewrite(MaskedLoadOp load, 3749 PatternRewriter &rewriter) const override { 3750 switch (get1DMaskFormat(load.getMask())) { 3751 case MaskFormat::AllTrue: 3752 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3753 load, load.getType(), load.getBase(), load.getIndices()); 3754 return success(); 3755 case MaskFormat::AllFalse: 3756 rewriter.replaceOp(load, load.getPassThru()); 3757 return success(); 3758 case MaskFormat::Unknown: 3759 return failure(); 3760 } 3761 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3762 } 3763 }; 3764 } // namespace 3765 3766 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3767 MLIRContext *context) { 3768 results.add<MaskedLoadFolder>(context); 3769 } 3770 3771 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3772 if (succeeded(foldMemRefCast(*this))) 3773 return getResult(); 3774 return OpFoldResult(); 3775 } 3776 3777 //===----------------------------------------------------------------------===// 3778 // MaskedStoreOp 3779 //===----------------------------------------------------------------------===// 3780 3781 LogicalResult MaskedStoreOp::verify() { 3782 VectorType maskVType = getMaskVectorType(); 3783 VectorType valueVType = getVectorType(); 3784 MemRefType memType = getMemRefType(); 3785 3786 if (valueVType.getElementType() != memType.getElementType()) 3787 return emitOpError("base and valueToStore element type should match"); 3788 if (llvm::size(getIndices()) != memType.getRank()) 3789 return emitOpError("requires ") << memType.getRank() << " indices"; 3790 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3791 return emitOpError("expected valueToStore dim to match mask dim"); 3792 return success(); 3793 } 3794 3795 namespace { 3796 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3797 public: 3798 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3799 LogicalResult matchAndRewrite(MaskedStoreOp store, 3800 PatternRewriter &rewriter) const override { 3801 switch (get1DMaskFormat(store.getMask())) { 3802 case MaskFormat::AllTrue: 3803 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3804 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3805 return success(); 3806 case MaskFormat::AllFalse: 3807 rewriter.eraseOp(store); 3808 return success(); 3809 case MaskFormat::Unknown: 3810 return failure(); 3811 } 3812 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3813 } 3814 }; 3815 } // namespace 3816 3817 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3818 MLIRContext *context) { 3819 results.add<MaskedStoreFolder>(context); 3820 } 3821 3822 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3823 SmallVectorImpl<OpFoldResult> &results) { 3824 return foldMemRefCast(*this); 3825 } 3826 3827 //===----------------------------------------------------------------------===// 3828 // GatherOp 3829 //===----------------------------------------------------------------------===// 3830 3831 LogicalResult GatherOp::verify() { 3832 VectorType indVType = getIndexVectorType(); 3833 VectorType maskVType = getMaskVectorType(); 3834 VectorType resVType = getVectorType(); 3835 MemRefType memType = getMemRefType(); 3836 3837 if (resVType.getElementType() != memType.getElementType()) 3838 return emitOpError("base and result element type should match"); 3839 if (llvm::size(getIndices()) != memType.getRank()) 3840 return emitOpError("requires ") << memType.getRank() << " indices"; 3841 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3842 return emitOpError("expected result dim to match indices dim"); 3843 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3844 return emitOpError("expected result dim to match mask dim"); 3845 if (resVType != getPassThruVectorType()) 3846 return emitOpError("expected pass_thru of same type as result type"); 3847 return success(); 3848 } 3849 3850 namespace { 3851 class GatherFolder final : public OpRewritePattern<GatherOp> { 3852 public: 3853 using OpRewritePattern<GatherOp>::OpRewritePattern; 3854 LogicalResult matchAndRewrite(GatherOp gather, 3855 PatternRewriter &rewriter) const override { 3856 switch (get1DMaskFormat(gather.getMask())) { 3857 case MaskFormat::AllTrue: 3858 return failure(); // no unmasked equivalent 3859 case MaskFormat::AllFalse: 3860 rewriter.replaceOp(gather, gather.getPassThru()); 3861 return success(); 3862 case MaskFormat::Unknown: 3863 return failure(); 3864 } 3865 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3866 } 3867 }; 3868 } // namespace 3869 3870 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3871 MLIRContext *context) { 3872 results.add<GatherFolder>(context); 3873 } 3874 3875 //===----------------------------------------------------------------------===// 3876 // ScatterOp 3877 //===----------------------------------------------------------------------===// 3878 3879 LogicalResult ScatterOp::verify() { 3880 VectorType indVType = getIndexVectorType(); 3881 VectorType maskVType = getMaskVectorType(); 3882 VectorType valueVType = getVectorType(); 3883 MemRefType memType = getMemRefType(); 3884 3885 if (valueVType.getElementType() != memType.getElementType()) 3886 return emitOpError("base and valueToStore element type should match"); 3887 if (llvm::size(getIndices()) != memType.getRank()) 3888 return emitOpError("requires ") << memType.getRank() << " indices"; 3889 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3890 return emitOpError("expected valueToStore dim to match indices dim"); 3891 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3892 return emitOpError("expected valueToStore dim to match mask dim"); 3893 return success(); 3894 } 3895 3896 namespace { 3897 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3898 public: 3899 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3900 LogicalResult matchAndRewrite(ScatterOp scatter, 3901 PatternRewriter &rewriter) const override { 3902 switch (get1DMaskFormat(scatter.getMask())) { 3903 case MaskFormat::AllTrue: 3904 return failure(); // no unmasked equivalent 3905 case MaskFormat::AllFalse: 3906 rewriter.eraseOp(scatter); 3907 return success(); 3908 case MaskFormat::Unknown: 3909 return failure(); 3910 } 3911 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3912 } 3913 }; 3914 } // namespace 3915 3916 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3917 MLIRContext *context) { 3918 results.add<ScatterFolder>(context); 3919 } 3920 3921 //===----------------------------------------------------------------------===// 3922 // ExpandLoadOp 3923 //===----------------------------------------------------------------------===// 3924 3925 LogicalResult ExpandLoadOp::verify() { 3926 VectorType maskVType = getMaskVectorType(); 3927 VectorType passVType = getPassThruVectorType(); 3928 VectorType resVType = getVectorType(); 3929 MemRefType memType = getMemRefType(); 3930 3931 if (resVType.getElementType() != memType.getElementType()) 3932 return emitOpError("base and result element type should match"); 3933 if (llvm::size(getIndices()) != memType.getRank()) 3934 return emitOpError("requires ") << memType.getRank() << " indices"; 3935 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3936 return emitOpError("expected result dim to match mask dim"); 3937 if (resVType != passVType) 3938 return emitOpError("expected pass_thru of same type as result type"); 3939 return success(); 3940 } 3941 3942 namespace { 3943 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3944 public: 3945 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3946 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3947 PatternRewriter &rewriter) const override { 3948 switch (get1DMaskFormat(expand.getMask())) { 3949 case MaskFormat::AllTrue: 3950 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3951 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3952 return success(); 3953 case MaskFormat::AllFalse: 3954 rewriter.replaceOp(expand, expand.getPassThru()); 3955 return success(); 3956 case MaskFormat::Unknown: 3957 return failure(); 3958 } 3959 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3960 } 3961 }; 3962 } // namespace 3963 3964 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3965 MLIRContext *context) { 3966 results.add<ExpandLoadFolder>(context); 3967 } 3968 3969 //===----------------------------------------------------------------------===// 3970 // CompressStoreOp 3971 //===----------------------------------------------------------------------===// 3972 3973 LogicalResult CompressStoreOp::verify() { 3974 VectorType maskVType = getMaskVectorType(); 3975 VectorType valueVType = getVectorType(); 3976 MemRefType memType = getMemRefType(); 3977 3978 if (valueVType.getElementType() != memType.getElementType()) 3979 return emitOpError("base and valueToStore element type should match"); 3980 if (llvm::size(getIndices()) != memType.getRank()) 3981 return emitOpError("requires ") << memType.getRank() << " indices"; 3982 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3983 return emitOpError("expected valueToStore dim to match mask dim"); 3984 return success(); 3985 } 3986 3987 namespace { 3988 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3989 public: 3990 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3991 LogicalResult matchAndRewrite(CompressStoreOp compress, 3992 PatternRewriter &rewriter) const override { 3993 switch (get1DMaskFormat(compress.getMask())) { 3994 case MaskFormat::AllTrue: 3995 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3996 compress, compress.getValueToStore(), compress.getBase(), 3997 compress.getIndices()); 3998 return success(); 3999 case MaskFormat::AllFalse: 4000 rewriter.eraseOp(compress); 4001 return success(); 4002 case MaskFormat::Unknown: 4003 return failure(); 4004 } 4005 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4006 } 4007 }; 4008 } // namespace 4009 4010 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4011 MLIRContext *context) { 4012 results.add<CompressStoreFolder>(context); 4013 } 4014 4015 //===----------------------------------------------------------------------===// 4016 // ShapeCastOp 4017 //===----------------------------------------------------------------------===// 4018 4019 /// Returns true if each element of 'a' is equal to the product of a contiguous 4020 /// sequence of the elements of 'b'. Returns false otherwise. 4021 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4022 unsigned rankA = a.size(); 4023 unsigned rankB = b.size(); 4024 assert(rankA < rankB); 4025 4026 unsigned i = 0; 4027 unsigned j = 0; 4028 while (i < rankA && j < rankB) { 4029 int64_t dimA = a[i]; 4030 int64_t dimB = 1; 4031 while (dimB < dimA && j < rankB) 4032 dimB *= b[j++]; 4033 if (dimA != dimB) 4034 break; 4035 ++i; 4036 4037 // Handle the case when trailing dimensions are of size 1. 4038 // Include them into the contiguous sequence. 4039 auto isOne = [](int64_t v) { return v == 1; }; 4040 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4041 i = rankA; 4042 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4043 j = rankB; 4044 } 4045 4046 return i == rankA && j == rankB; 4047 } 4048 4049 static LogicalResult verifyVectorShapeCast(Operation *op, 4050 VectorType sourceVectorType, 4051 VectorType resultVectorType) { 4052 // Check that element type is the same. 4053 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4054 return op->emitOpError("source/result vectors must have same element type"); 4055 auto sourceShape = sourceVectorType.getShape(); 4056 auto resultShape = resultVectorType.getShape(); 4057 4058 // Check that product of source dim sizes matches product of result dim sizes. 4059 int64_t sourceDimProduct = std::accumulate( 4060 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4061 int64_t resultDimProduct = std::accumulate( 4062 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4063 if (sourceDimProduct != resultDimProduct) 4064 return op->emitOpError("source/result number of elements must match"); 4065 4066 // Check that expanding/contracting rank cases. 4067 unsigned sourceRank = sourceVectorType.getRank(); 4068 unsigned resultRank = resultVectorType.getRank(); 4069 if (sourceRank < resultRank) { 4070 if (!isValidShapeCast(sourceShape, resultShape)) 4071 return op->emitOpError("invalid shape cast"); 4072 } else if (sourceRank > resultRank) { 4073 if (!isValidShapeCast(resultShape, sourceShape)) 4074 return op->emitOpError("invalid shape cast"); 4075 } 4076 return success(); 4077 } 4078 4079 LogicalResult ShapeCastOp::verify() { 4080 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4081 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4082 4083 // Check if source/result are of vector type. 4084 if (sourceVectorType && resultVectorType) 4085 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4086 4087 return success(); 4088 } 4089 4090 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4091 // Nop shape cast. 4092 if (getSource().getType() == getResult().getType()) 4093 return getSource(); 4094 4095 // Canceling shape casts. 4096 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4097 if (getResult().getType() == otherOp.getSource().getType()) 4098 return otherOp.getSource(); 4099 4100 // Only allows valid transitive folding. 4101 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4102 VectorType resultType = getResult().getType().cast<VectorType>(); 4103 if (srcType.getRank() < resultType.getRank()) { 4104 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4105 return {}; 4106 } else if (srcType.getRank() > resultType.getRank()) { 4107 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4108 return {}; 4109 } else { 4110 return {}; 4111 } 4112 4113 setOperand(otherOp.getSource()); 4114 return getResult(); 4115 } 4116 return {}; 4117 } 4118 4119 namespace { 4120 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4121 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4122 public: 4123 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4124 4125 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4126 PatternRewriter &rewriter) const override { 4127 auto constantOp = 4128 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4129 if (!constantOp) 4130 return failure(); 4131 // Only handle splat for now. 4132 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4133 if (!dense) 4134 return failure(); 4135 auto newAttr = 4136 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4137 dense.getSplatValue<Attribute>()); 4138 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4139 return success(); 4140 } 4141 }; 4142 4143 } // namespace 4144 4145 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4146 MLIRContext *context) { 4147 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4148 results.add<ShapeCastConstantFolder>(context); 4149 } 4150 4151 //===----------------------------------------------------------------------===// 4152 // VectorBitCastOp 4153 //===----------------------------------------------------------------------===// 4154 4155 LogicalResult BitCastOp::verify() { 4156 auto sourceVectorType = getSourceVectorType(); 4157 auto resultVectorType = getResultVectorType(); 4158 4159 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4160 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4161 return emitOpError("dimension size mismatch at: ") << i; 4162 } 4163 4164 DataLayout dataLayout = DataLayout::closest(*this); 4165 auto sourceElementBits = 4166 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4167 auto resultElementBits = 4168 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4169 4170 if (sourceVectorType.getRank() == 0) { 4171 if (sourceElementBits != resultElementBits) 4172 return emitOpError("source/result bitwidth of the 0-D vector element " 4173 "types must be equal"); 4174 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4175 resultElementBits * resultVectorType.getShape().back()) { 4176 return emitOpError( 4177 "source/result bitwidth of the minor 1-D vectors must be equal"); 4178 } 4179 4180 return success(); 4181 } 4182 4183 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4184 // Nop cast. 4185 if (getSource().getType() == getResult().getType()) 4186 return getSource(); 4187 4188 // Canceling bitcasts. 4189 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4190 if (getResult().getType() == otherOp.getSource().getType()) 4191 return otherOp.getSource(); 4192 4193 Attribute sourceConstant = operands.front(); 4194 if (!sourceConstant) 4195 return {}; 4196 4197 Type srcElemType = getSourceVectorType().getElementType(); 4198 Type dstElemType = getResultVectorType().getElementType(); 4199 4200 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4201 if (floatPack.isSplat()) { 4202 auto splat = floatPack.getSplatValue<FloatAttr>(); 4203 4204 // Casting fp16 into fp32. 4205 if (srcElemType.isF16() && dstElemType.isF32()) { 4206 uint32_t bits = static_cast<uint32_t>( 4207 splat.getValue().bitcastToAPInt().getZExtValue()); 4208 // Duplicate the 16-bit pattern. 4209 bits = (bits << 16) | (bits & 0xffff); 4210 APInt intBits(32, bits); 4211 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4212 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4213 } 4214 } 4215 } 4216 4217 return {}; 4218 } 4219 4220 //===----------------------------------------------------------------------===// 4221 // TypeCastOp 4222 //===----------------------------------------------------------------------===// 4223 4224 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4225 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4226 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4227 memRefType.getShape().end()); 4228 if (vectorType) 4229 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4230 return res; 4231 } 4232 4233 /// Build the canonical memRefType with a single vector. 4234 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4235 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4236 Value source) { 4237 result.addOperands(source); 4238 MemRefType memRefType = source.getType().cast<MemRefType>(); 4239 VectorType vectorType = 4240 VectorType::get(extractShape(memRefType), 4241 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4242 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4243 memRefType.getMemorySpace())); 4244 } 4245 4246 LogicalResult TypeCastOp::verify() { 4247 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4248 if (!canonicalType.getLayout().isIdentity()) 4249 return emitOpError("expects operand to be a memref with identity layout"); 4250 if (!getResultMemRefType().getLayout().isIdentity()) 4251 return emitOpError("expects result to be a memref with identity layout"); 4252 if (getResultMemRefType().getMemorySpace() != 4253 getMemRefType().getMemorySpace()) 4254 return emitOpError("expects result in same memory space"); 4255 4256 auto sourceType = getMemRefType(); 4257 auto resultType = getResultMemRefType(); 4258 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4259 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4260 return emitOpError( 4261 "expects result and operand with same underlying scalar type: ") 4262 << resultType; 4263 if (extractShape(sourceType) != extractShape(resultType)) 4264 return emitOpError( 4265 "expects concatenated result and operand shapes to be equal: ") 4266 << resultType; 4267 return success(); 4268 } 4269 4270 //===----------------------------------------------------------------------===// 4271 // TransposeOp 4272 //===----------------------------------------------------------------------===// 4273 4274 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4275 Value vector, ArrayRef<int64_t> transp) { 4276 VectorType vt = vector.getType().cast<VectorType>(); 4277 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4278 for (unsigned i = 0; i < transp.size(); ++i) 4279 transposedShape[i] = vt.getShape()[transp[i]]; 4280 4281 result.addOperands(vector); 4282 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4283 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4284 } 4285 4286 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4287 // Eliminate splat constant transpose ops. 4288 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4289 if (attr.isSplat()) 4290 return attr.reshape(getResultType()); 4291 4292 // Eliminate identity transpose ops. This happens when the dimensions of the 4293 // input vector remain in their original order after the transpose operation. 4294 SmallVector<int64_t, 4> transp; 4295 getTransp(transp); 4296 4297 // Check if the permutation of the dimensions contains sequential values: 4298 // {0, 1, 2, ...}. 4299 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4300 if (transp[i] != i) 4301 return {}; 4302 } 4303 4304 return getVector(); 4305 } 4306 4307 LogicalResult vector::TransposeOp::verify() { 4308 VectorType vectorType = getVectorType(); 4309 VectorType resultType = getResultType(); 4310 int64_t rank = resultType.getRank(); 4311 if (vectorType.getRank() != rank) 4312 return emitOpError("vector result rank mismatch: ") << rank; 4313 // Verify transposition array. 4314 auto transpAttr = getTransp().getValue(); 4315 int64_t size = transpAttr.size(); 4316 if (rank != size) 4317 return emitOpError("transposition length mismatch: ") << size; 4318 SmallVector<bool, 8> seen(rank, false); 4319 for (const auto &ta : llvm::enumerate(transpAttr)) { 4320 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4321 if (i < 0 || i >= rank) 4322 return emitOpError("transposition index out of range: ") << i; 4323 if (seen[i]) 4324 return emitOpError("duplicate position index: ") << i; 4325 seen[i] = true; 4326 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4327 return emitOpError("dimension size mismatch at: ") << i; 4328 } 4329 return success(); 4330 } 4331 4332 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4333 return llvm::to_vector<4>(getResultType().getShape()); 4334 } 4335 4336 namespace { 4337 4338 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4339 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4340 public: 4341 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4342 4343 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4344 PatternRewriter &rewriter) const override { 4345 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4346 auto getPermutation = [](vector::TransposeOp transpose) { 4347 SmallVector<int64_t, 4> permutation; 4348 transpose.getTransp(permutation); 4349 return permutation; 4350 }; 4351 4352 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4353 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4354 ArrayRef<int64_t> permutation2) { 4355 SmallVector<int64_t, 4> result; 4356 for (auto index : permutation2) 4357 result.push_back(permutation1[index]); 4358 return result; 4359 }; 4360 4361 // Return if the input of 'transposeOp' is not defined by another transpose. 4362 vector::TransposeOp parentTransposeOp = 4363 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4364 if (!parentTransposeOp) 4365 return failure(); 4366 4367 SmallVector<int64_t, 4> permutation = composePermutations( 4368 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4369 // Replace 'transposeOp' with a new transpose operation. 4370 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4371 transposeOp, transposeOp.getResult().getType(), 4372 parentTransposeOp.getVector(), 4373 vector::getVectorSubscriptAttr(rewriter, permutation)); 4374 return success(); 4375 } 4376 }; 4377 4378 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4379 struct FoldTransposedScalarBroadcast final 4380 : public OpRewritePattern<vector::TransposeOp> { 4381 using OpRewritePattern::OpRewritePattern; 4382 4383 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4384 PatternRewriter &rewriter) const override { 4385 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4386 if (!bcastOp) 4387 return failure(); 4388 4389 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4390 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4391 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4392 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4393 return success(); 4394 } 4395 4396 return failure(); 4397 } 4398 }; 4399 4400 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4401 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4402 public: 4403 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4404 4405 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4406 PatternRewriter &rewriter) const override { 4407 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4408 if (!splatOp) 4409 return failure(); 4410 4411 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4412 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4413 return success(); 4414 } 4415 }; 4416 4417 } // namespace 4418 4419 void vector::TransposeOp::getCanonicalizationPatterns( 4420 RewritePatternSet &results, MLIRContext *context) { 4421 results 4422 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4423 context); 4424 } 4425 4426 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4427 populateFromInt64AttrArray(getTransp(), results); 4428 } 4429 4430 //===----------------------------------------------------------------------===// 4431 // ConstantMaskOp 4432 //===----------------------------------------------------------------------===// 4433 4434 LogicalResult ConstantMaskOp::verify() { 4435 auto resultType = getResult().getType().cast<VectorType>(); 4436 // Check the corner case of 0-D vectors first. 4437 if (resultType.getRank() == 0) { 4438 if (getMaskDimSizes().size() != 1) 4439 return emitError("array attr must have length 1 for 0-D vectors"); 4440 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4441 if (dim != 0 && dim != 1) 4442 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4443 return success(); 4444 } 4445 4446 // Verify that array attr size matches the rank of the vector result. 4447 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4448 return emitOpError( 4449 "must specify array attr of size equal vector result rank"); 4450 // Verify that each array attr element is in bounds of corresponding vector 4451 // result dimension size. 4452 auto resultShape = resultType.getShape(); 4453 SmallVector<int64_t, 4> maskDimSizes; 4454 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4455 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4456 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4457 return emitOpError( 4458 "array attr of size out of bounds of vector result dimension size"); 4459 maskDimSizes.push_back(attrValue); 4460 } 4461 // Verify that if one mask dim size is zero, they all should be zero (because 4462 // the mask region is a conjunction of each mask dimension interval). 4463 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4464 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4465 if (anyZeros && !allZeros) 4466 return emitOpError("expected all mask dim sizes to be zeros, " 4467 "as a result of conjunction with zero mask dim"); 4468 // Verify that if the mask type is scalable, dimensions should be zero because 4469 // constant scalable masks can only be defined for the "none set" or "all set" 4470 // cases, and there is no VLA way to define an "all set" case for 4471 // `vector.constant_mask`. In the future, a convention could be established 4472 // to decide if a specific dimension value could be considered as "all set". 4473 if (resultType.isScalable() && 4474 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4475 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4476 return success(); 4477 } 4478 4479 //===----------------------------------------------------------------------===// 4480 // CreateMaskOp 4481 //===----------------------------------------------------------------------===// 4482 4483 LogicalResult CreateMaskOp::verify() { 4484 auto vectorType = getResult().getType().cast<VectorType>(); 4485 // Verify that an operand was specified for each result vector each dimension. 4486 if (vectorType.getRank() == 0) { 4487 if (getNumOperands() != 1) 4488 return emitOpError( 4489 "must specify exactly one operand for 0-D create_mask"); 4490 } else if (getNumOperands() != 4491 getResult().getType().cast<VectorType>().getRank()) { 4492 return emitOpError( 4493 "must specify an operand for each result vector dimension"); 4494 } 4495 return success(); 4496 } 4497 4498 namespace { 4499 4500 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4501 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4502 public: 4503 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4504 4505 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4506 PatternRewriter &rewriter) const override { 4507 // Return if any of 'createMaskOp' operands are not defined by a constant. 4508 auto isNotDefByConstant = [](Value operand) { 4509 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4510 }; 4511 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4512 return failure(); 4513 4514 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4515 // are negative or zero. 4516 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4517 if (vType.isScalable()) 4518 for (auto opDim : createMaskOp.getOperands()) { 4519 APInt intVal; 4520 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4521 intVal.isStrictlyPositive()) 4522 return failure(); 4523 } 4524 } 4525 4526 // Gather constant mask dimension sizes. 4527 SmallVector<int64_t, 4> maskDimSizes; 4528 for (auto it : llvm::zip(createMaskOp.operands(), 4529 createMaskOp.getType().getShape())) { 4530 auto *defOp = std::get<0>(it).getDefiningOp(); 4531 int64_t maxDimSize = std::get<1>(it); 4532 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4533 dimSize = std::min(dimSize, maxDimSize); 4534 // If one of dim sizes is zero, set all dims to zero. 4535 if (dimSize <= 0) { 4536 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4537 break; 4538 } 4539 maskDimSizes.push_back(dimSize); 4540 } 4541 // Replace 'createMaskOp' with ConstantMaskOp. 4542 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4543 createMaskOp, createMaskOp.getResult().getType(), 4544 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4545 return success(); 4546 } 4547 }; 4548 4549 } // namespace 4550 4551 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4552 MLIRContext *context) { 4553 results.add<CreateMaskFolder>(context); 4554 } 4555 4556 //===----------------------------------------------------------------------===// 4557 // ScanOp 4558 //===----------------------------------------------------------------------===// 4559 4560 LogicalResult ScanOp::verify() { 4561 VectorType srcType = getSourceType(); 4562 VectorType initialType = getInitialValueType(); 4563 // Check reduction dimension < rank. 4564 int64_t srcRank = srcType.getRank(); 4565 int64_t reductionDim = getReductionDim(); 4566 if (reductionDim >= srcRank) 4567 return emitOpError("reduction dimension ") 4568 << reductionDim << " has to be less than " << srcRank; 4569 4570 // Check that rank(initial_value) = rank(src) - 1. 4571 int64_t initialValueRank = initialType.getRank(); 4572 if (initialValueRank != srcRank - 1) 4573 return emitOpError("initial value rank ") 4574 << initialValueRank << " has to be equal to " << srcRank - 1; 4575 4576 // Check shapes of initial value and src. 4577 ArrayRef<int64_t> srcShape = srcType.getShape(); 4578 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4579 SmallVector<int64_t> expectedShape; 4580 for (int i = 0; i < srcRank; i++) { 4581 if (i != reductionDim) 4582 expectedShape.push_back(srcShape[i]); 4583 } 4584 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4585 [](std::tuple<int64_t, int64_t> s) { 4586 return std::get<0>(s) != std::get<1>(s); 4587 })) { 4588 return emitOpError("incompatible input/initial value shapes"); 4589 } 4590 4591 // Verify supported reduction kind. 4592 Type eltType = getDestType().getElementType(); 4593 if (!isSupportedCombiningKind(getKind(), eltType)) 4594 return emitOpError("unsupported reduction type ") 4595 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4596 << "'"; 4597 4598 return success(); 4599 } 4600 4601 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4602 RewritePatternSet &patterns) { 4603 patterns 4604 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4605 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4606 StridedSliceConstantMaskFolder, TransposeFolder>( 4607 patterns.getContext()); 4608 } 4609 4610 //===----------------------------------------------------------------------===// 4611 // SplatOp 4612 //===----------------------------------------------------------------------===// 4613 4614 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4615 auto constOperand = operands.front(); 4616 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4617 return {}; 4618 4619 // SplatElementsAttr::get treats single value for second arg as being a splat. 4620 return SplatElementsAttr::get(getType(), {constOperand}); 4621 } 4622 4623 //===----------------------------------------------------------------------===// 4624 // WarpExecuteOnLane0Op 4625 //===----------------------------------------------------------------------===// 4626 4627 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4628 p << "(" << getLaneid() << ")"; 4629 4630 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4631 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4632 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4633 4634 if (!getArgs().empty()) 4635 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4636 if (!getResults().empty()) 4637 p << " -> (" << getResults().getTypes() << ')'; 4638 p << " "; 4639 p.printRegion(getRegion(), 4640 /*printEntryBlockArgs=*/true, 4641 /*printBlockTerminators=*/!getResults().empty()); 4642 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4643 } 4644 4645 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4646 OperationState &result) { 4647 // Create the region. 4648 result.regions.reserve(1); 4649 Region *warpRegion = result.addRegion(); 4650 4651 auto &builder = parser.getBuilder(); 4652 OpAsmParser::UnresolvedOperand laneId; 4653 4654 // Parse predicate operand. 4655 if (parser.parseLParen() || parser.parseRegionArgument(laneId) || 4656 parser.parseRParen()) 4657 return failure(); 4658 4659 int64_t warpSize; 4660 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4661 parser.parseRSquare()) 4662 return failure(); 4663 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4664 builder.getContext())), 4665 builder.getI64IntegerAttr(warpSize)); 4666 4667 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4668 return failure(); 4669 4670 llvm::SMLoc inputsOperandsLoc; 4671 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4672 SmallVector<Type> inputTypes; 4673 if (succeeded(parser.parseOptionalKeyword("args"))) { 4674 if (parser.parseLParen()) 4675 return failure(); 4676 4677 inputsOperandsLoc = parser.getCurrentLocation(); 4678 if (parser.parseOperandList(inputsOperands) || 4679 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4680 return failure(); 4681 } 4682 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4683 result.operands)) 4684 return failure(); 4685 4686 // Parse optional results type list. 4687 if (parser.parseOptionalArrowTypeList(result.types)) 4688 return failure(); 4689 // Parse the region. 4690 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4691 /*argTypes=*/{})) 4692 return failure(); 4693 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4694 4695 // Parse the optional attribute list. 4696 if (parser.parseOptionalAttrDict(result.attributes)) 4697 return failure(); 4698 return success(); 4699 } 4700 4701 void WarpExecuteOnLane0Op::getSuccessorRegions( 4702 Optional<unsigned> index, ArrayRef<Attribute> operands, 4703 SmallVectorImpl<RegionSuccessor> ®ions) { 4704 if (index.hasValue()) { 4705 regions.push_back(RegionSuccessor(getResults())); 4706 return; 4707 } 4708 4709 // The warp region is always executed 4710 regions.push_back(RegionSuccessor(&getWarpRegion())); 4711 } 4712 4713 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4714 TypeRange resultTypes, Value laneId, 4715 int64_t warpSize) { 4716 build(builder, result, resultTypes, laneId, warpSize, 4717 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4718 } 4719 4720 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4721 TypeRange resultTypes, Value laneId, 4722 int64_t warpSize, ValueRange args, 4723 TypeRange blockArgTypes) { 4724 result.addOperands(laneId); 4725 result.addAttribute(getAttributeNames()[0], 4726 builder.getI64IntegerAttr(warpSize)); 4727 result.addTypes(resultTypes); 4728 result.addOperands(args); 4729 assert(args.size() == blockArgTypes.size()); 4730 OpBuilder::InsertionGuard guard(builder); 4731 Region *warpRegion = result.addRegion(); 4732 Block *block = builder.createBlock(warpRegion); 4733 for (auto it : llvm::zip(blockArgTypes, args)) 4734 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4735 } 4736 4737 /// Helper check if the distributed vector type is consistent with the expanded 4738 /// type and distributed size. 4739 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4740 int64_t warpSize, Operation *op) { 4741 // If the types matches there is no distribution. 4742 if (expanded == distributed) 4743 return success(); 4744 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4745 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4746 if (!expandedVecType || !distributedVecType) 4747 return op->emitOpError("expected vector type for distributed operands."); 4748 if (expandedVecType.getRank() != distributedVecType.getRank() || 4749 expandedVecType.getElementType() != distributedVecType.getElementType()) 4750 return op->emitOpError( 4751 "expected distributed vectors to have same rank and element type."); 4752 bool foundDistributedDim = false; 4753 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4754 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4755 continue; 4756 if (expandedVecType.getDimSize(i) == 4757 distributedVecType.getDimSize(i) * warpSize) { 4758 if (foundDistributedDim) 4759 return op->emitOpError() 4760 << "expected only one dimension to be distributed from " 4761 << expandedVecType << " to " << distributedVecType; 4762 foundDistributedDim = true; 4763 continue; 4764 } 4765 return op->emitOpError() << "incompatible distribution dimensions from " 4766 << expandedVecType << " to " << distributedVecType; 4767 } 4768 return success(); 4769 } 4770 4771 LogicalResult WarpExecuteOnLane0Op::verify() { 4772 if (getArgs().size() != getWarpRegion().getNumArguments()) 4773 return emitOpError( 4774 "expected same number op arguments and block arguments."); 4775 auto yield = 4776 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4777 if (yield.getNumOperands() != getNumResults()) 4778 return emitOpError( 4779 "expected same number of yield operands and return values."); 4780 int64_t warpSize = getWarpSize(); 4781 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4782 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4783 std::get<1>(it).getType(), warpSize, 4784 getOperation()))) 4785 return failure(); 4786 } 4787 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4788 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4789 std::get<1>(it).getType(), warpSize, 4790 getOperation()))) 4791 return failure(); 4792 } 4793 return success(); 4794 } 4795 4796 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4797 return succeeded( 4798 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4799 } 4800 4801 //===----------------------------------------------------------------------===// 4802 // TableGen'd op method definitions 4803 //===----------------------------------------------------------------------===// 4804 4805 #define GET_OP_CLASSES 4806 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4807