1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 return success(); 407 } 408 409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 410 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 411 Type redType; 412 Type resType; 413 CombiningKindAttr kindAttr; 414 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 415 result.attributes) || 416 parser.parseComma() || parser.parseOperandList(operandsInfo) || 417 parser.parseColonType(redType) || 418 parser.parseKeywordType("into", resType) || 419 (!operandsInfo.empty() && 420 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 421 (operandsInfo.size() > 1 && 422 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 423 parser.addTypeToList(resType, result.types)) 424 return failure(); 425 if (operandsInfo.empty() || operandsInfo.size() > 2) 426 return parser.emitError(parser.getNameLoc(), 427 "unsupported number of operands"); 428 return success(); 429 } 430 431 void ReductionOp::print(OpAsmPrinter &p) { 432 p << " "; 433 getKindAttr().print(p); 434 p << ", " << getVector(); 435 if (getAcc()) 436 p << ", " << getAcc(); 437 p << " : " << getVector().getType() << " into " << getDest().getType(); 438 } 439 440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 441 OpBuilder &builder, Location loc, 442 Value vector) { 443 switch (op) { 444 case arith::AtomicRMWKind::addf: 445 case arith::AtomicRMWKind::addi: 446 return builder.create<vector::ReductionOp>(vector.getLoc(), 447 CombiningKind::ADD, vector); 448 case arith::AtomicRMWKind::mulf: 449 case arith::AtomicRMWKind::muli: 450 return builder.create<vector::ReductionOp>(vector.getLoc(), 451 CombiningKind::MUL, vector); 452 case arith::AtomicRMWKind::minf: 453 return builder.create<vector::ReductionOp>(vector.getLoc(), 454 CombiningKind::MINF, vector); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MINSI, vector); 458 case arith::AtomicRMWKind::minu: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINUI, vector); 461 case arith::AtomicRMWKind::maxf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MAXF, vector); 464 case arith::AtomicRMWKind::maxs: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MAXSI, vector); 467 case arith::AtomicRMWKind::maxu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXUI, vector); 470 case arith::AtomicRMWKind::andi: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::AND, vector); 473 case arith::AtomicRMWKind::ori: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::OR, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 485 return llvm::to_vector<4>(getVectorType().getShape()); 486 } 487 488 namespace { 489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 490 using OpRewritePattern::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(ReductionOp reductionOp, 493 PatternRewriter &rewriter) const override { 494 if (reductionOp.getVectorType().getDimSize(0) != 1) 495 return failure(); 496 497 Location loc = reductionOp.getLoc(); 498 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 499 reductionOp.getVector(), 500 rewriter.getI64ArrayAttr(0)); 501 502 if (Value acc = reductionOp.getAcc()) { 503 assert(reductionOp.getType().isa<FloatType>()); 504 switch (reductionOp.getKind()) { 505 case CombiningKind::ADD: 506 result = rewriter.create<arith::AddFOp>(loc, result, acc); 507 break; 508 case CombiningKind::MUL: 509 result = rewriter.create<arith::MulFOp>(loc, result, acc); 510 break; 511 default: 512 assert(false && "invalid op!"); 513 } 514 } 515 516 rewriter.replaceOp(reductionOp, result); 517 return success(); 518 } 519 }; 520 } // namespace 521 522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 523 MLIRContext *context) { 524 results.add<ElideSingleElementReduction>(context); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ContractionOp 529 //===----------------------------------------------------------------------===// 530 531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 532 Value lhs, Value rhs, Value acc, 533 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 534 ArrayRef<StringRef> iteratorTypes) { 535 result.addOperands({lhs, rhs, acc}); 536 result.addTypes(acc.getType()); 537 result.addAttribute(::mlir::getIndexingMapsAttrName(), 538 builder.getAffineMapArrayAttr( 539 AffineMap::inferFromExprList(indexingExprs))); 540 result.addAttribute(::mlir::getIteratorTypesAttrName(), 541 builder.getStrArrayAttr(iteratorTypes)); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes) { 548 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 549 ContractionOp::getDefaultKind()); 550 } 551 552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 553 Value lhs, Value rhs, Value acc, 554 ArrayAttr indexingMaps, 555 ArrayAttr iteratorTypes, CombiningKind kind) { 556 result.addOperands({lhs, rhs, acc}); 557 result.addTypes(acc.getType()); 558 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 559 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 560 result.addAttribute(ContractionOp::getKindAttrStrName(), 561 CombiningKindAttr::get(kind, builder.getContext())); 562 } 563 564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 565 OpAsmParser::UnresolvedOperand lhsInfo; 566 OpAsmParser::UnresolvedOperand rhsInfo; 567 OpAsmParser::UnresolvedOperand accInfo; 568 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 569 SmallVector<Type, 2> types; 570 Type resultType; 571 auto loc = parser.getCurrentLocation(); 572 DictionaryAttr dictAttr; 573 // TODO: Unify linalg op attribute parsing. 574 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 575 parser.parseOperand(lhsInfo) || parser.parseComma() || 576 parser.parseOperand(rhsInfo) || parser.parseComma() || 577 parser.parseOperand(accInfo) || 578 parser.parseTrailingOperandList(masksInfo) || 579 parser.parseOptionalAttrDict(result.attributes) || 580 parser.parseColonTypeList(types) || 581 parser.parseKeywordType("into", resultType) || 582 parser.resolveOperand(lhsInfo, types[0], result.operands) || 583 parser.resolveOperand(rhsInfo, types[1], result.operands) || 584 parser.resolveOperand(accInfo, resultType, result.operands) || 585 parser.addTypeToList(resultType, result.types)) 586 return failure(); 587 result.attributes.assign(dictAttr.getValue().begin(), 588 dictAttr.getValue().end()); 589 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 590 result.addAttribute(ContractionOp::getKindAttrStrName(), 591 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 592 result.getContext())); 593 } 594 if (masksInfo.empty()) 595 return success(); 596 if (masksInfo.size() != 2) 597 return parser.emitError(parser.getNameLoc(), 598 "expected zero or exactly 2 vector mask operands"); 599 auto lhsType = types[0].cast<VectorType>(); 600 auto rhsType = types[1].cast<VectorType>(); 601 auto maskElementType = parser.getBuilder().getI1Type(); 602 std::array<Type, 2> maskTypes = { 603 VectorType::Builder(lhsType).setElementType(maskElementType), 604 VectorType::Builder(rhsType).setElementType(maskElementType)}; 605 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 606 return failure(); 607 return success(); 608 } 609 610 void ContractionOp::print(OpAsmPrinter &p) { 611 // TODO: Unify printing code with linalg ops. 612 auto attrNames = getTraitAttrNames(); 613 llvm::StringSet<> traitAttrsSet; 614 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 615 SmallVector<NamedAttribute, 8> attrs; 616 for (auto attr : (*this)->getAttrs()) 617 if (traitAttrsSet.count(attr.getName().strref()) > 0) 618 attrs.push_back(attr); 619 620 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 621 p << " " << dictAttr << " " << getLhs() << ", "; 622 p << getRhs() << ", " << getAcc(); 623 if (getMasks().size() == 2) 624 p << ", " << getMasks(); 625 626 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 627 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 628 << getResultType(); 629 } 630 631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 632 const std::vector<std::pair<int64_t, int64_t>> &map) { 633 for (auto &dimPair : map) { 634 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 635 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 636 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 637 return false; 638 } 639 return true; 640 } 641 642 static LogicalResult verifyOutputShape( 643 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 644 Type resType, 645 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 646 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 647 DenseSet<int64_t> lhsContractingDimSet; 648 DenseSet<int64_t> rhsContractingDimSet; 649 for (auto &dimPair : contractingDimMap) { 650 lhsContractingDimSet.insert(dimPair.first); 651 rhsContractingDimSet.insert(dimPair.second); 652 } 653 DenseSet<int64_t> rhsBatchDimSet; 654 for (auto &dimPair : batchDimMap) 655 rhsBatchDimSet.insert(dimPair.second); 656 657 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 658 SmallVector<int64_t, 4> expectedResultDims; 659 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 660 if (lhsContractingDimSet.count(i) > 0) 661 continue; 662 expectedResultDims.push_back(lhsType.getDimSize(i)); 663 } 664 665 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 666 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 667 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 668 continue; 669 expectedResultDims.push_back(rhsType.getDimSize(i)); 670 } 671 672 // Verify 'expectedResultDims'. 673 if (expectedResultDims.empty()) { 674 // No batch or free dimension implies a scalar result. 675 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 676 return op.emitOpError("invalid accumulator/result vector shape"); 677 } else { 678 // At least one batch or free dimension implies a vector result. 679 auto resVectorType = resType.dyn_cast<VectorType>(); 680 auto accVectorType = accType.dyn_cast<VectorType>(); 681 if (!resVectorType || !accVectorType) 682 return op.emitOpError("invalid accumulator/result vector shape"); 683 684 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 685 // types fully define the result vector type. This assumes the affine maps 686 // are well-formed, which must have been verified already. 687 MLIRContext *ctx = op.getContext(); 688 AffineMap lhsMap = op.getIndexingMaps()[0]; 689 AffineMap rhsMap = op.getIndexingMaps()[1]; 690 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 691 for (auto pair : 692 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 693 VectorType v = pair.first; 694 auto map = pair.second; 695 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 696 unsigned pos = map.getDimPosition(idx); 697 if (!extents[pos]) 698 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 699 } 700 } 701 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 702 "expected extent along all dimensions."); 703 704 AffineMap resMap = op.getIndexingMaps()[2]; 705 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 706 /*symCount=*/0, extents, ctx); 707 // Compose the resMap with the extentsMap, which is a constant map. 708 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 709 assert(llvm::all_of( 710 expectedMap.getResults(), 711 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 712 "expected constant extent along all dimensions."); 713 // Extract the expected shape and build the type. 714 auto expectedShape = llvm::to_vector<4>( 715 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 716 return e.cast<AffineConstantExpr>().getValue(); 717 })); 718 auto expected = 719 VectorType::get(expectedShape, resVectorType.getElementType()); 720 if (resVectorType != expected || accVectorType != expected) 721 return op.emitOpError( 722 "invalid accumulator/result vector shape, expected: ") 723 << expected; 724 } 725 return success(); 726 } 727 728 LogicalResult ContractionOp::verify() { 729 auto lhsType = getLhsType(); 730 auto rhsType = getRhsType(); 731 auto accType = getAccType(); 732 auto resType = getResultType(); 733 734 // Verify that an indexing map was specified for each vector operand. 735 if (getIndexingMaps().size() != 3) 736 return emitOpError("expected an indexing map for each vector operand"); 737 738 // Verify that each index map has 'numIterators' inputs, no symbols, and 739 // that the number of map outputs equals the rank of its associated 740 // vector operand. 741 unsigned numIterators = getIteratorTypes().getValue().size(); 742 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 743 auto index = it.index(); 744 auto map = it.value(); 745 if (map.getNumSymbols() != 0) 746 return emitOpError("expected indexing map ") 747 << index << " to have no symbols"; 748 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 749 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 750 // Verify that the map has the right number of inputs, outputs, and indices. 751 // This also correctly accounts for (..) -> () for rank-0 results. 752 if (map.getNumDims() != numIterators) 753 return emitOpError("expected indexing map ") 754 << index << " to have " << numIterators << " number of inputs"; 755 if (map.getNumResults() != rank) 756 return emitOpError("expected indexing map ") 757 << index << " to have " << rank << " number of outputs"; 758 if (!map.isProjectedPermutation()) 759 return emitOpError("expected indexing map ") 760 << index << " to be a projected permutation of its inputs"; 761 } 762 763 auto contractingDimMap = getContractingDimMap(); 764 auto batchDimMap = getBatchDimMap(); 765 766 // Verify at least one contracting dimension pair was specified. 767 if (contractingDimMap.empty()) 768 return emitOpError("expected at least one contracting dimension pair"); 769 770 // Verify contracting dimension map was properly constructed. 771 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 772 return emitOpError("invalid contracting dimension map"); 773 774 // Verify batch dimension map was properly constructed. 775 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 776 return emitOpError("invalid batch dimension map"); 777 778 // Verify 'accType' and 'resType' shape. 779 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 780 contractingDimMap, batchDimMap))) 781 return failure(); 782 783 // Verify that either two vector masks are set or none are set. 784 auto lhsMaskType = getLHSVectorMaskType(); 785 auto rhsMaskType = getRHSVectorMaskType(); 786 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 787 return emitOpError("invalid number of vector masks specified"); 788 if (lhsMaskType && rhsMaskType) { 789 // Verify mask rank == argument rank. 790 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 791 rhsMaskType.getShape().size() != rhsType.getShape().size()) 792 return emitOpError("invalid vector mask rank"); 793 } 794 795 // Verify supported combining kind. 796 auto vectorType = resType.dyn_cast<VectorType>(); 797 auto elementType = vectorType ? vectorType.getElementType() : resType; 798 if (!isSupportedCombiningKind(getKind(), elementType)) 799 return emitOpError("unsupported contraction type"); 800 801 return success(); 802 } 803 804 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 805 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 806 ::mlir::getIteratorTypesAttrName(), 807 ContractionOp::getKindAttrStrName()}; 808 return llvm::makeArrayRef(names); 809 } 810 811 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 812 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 813 if (targetExpr == map.getResult(i)) 814 return i; 815 return -1; 816 } 817 818 static std::vector<std::pair<int64_t, int64_t>> 819 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 820 StringRef targetIteratorTypeName, MLIRContext *context) { 821 std::vector<std::pair<int64_t, int64_t>> dimMap; 822 for (const auto &it : llvm::enumerate(iteratorTypes)) { 823 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 824 if (iteratorTypeName != targetIteratorTypeName) 825 continue; 826 // Search lhs/rhs map results for 'targetExpr'. 827 auto targetExpr = getAffineDimExpr(it.index(), context); 828 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 829 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 830 if (lhsDim >= 0 && rhsDim >= 0) 831 dimMap.emplace_back(lhsDim, rhsDim); 832 } 833 return dimMap; 834 } 835 836 void ContractionOp::getIterationBounds( 837 SmallVectorImpl<int64_t> &iterationBounds) { 838 auto lhsShape = getLhsType().getShape(); 839 auto resVectorType = getResultType().dyn_cast<VectorType>(); 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 SmallVector<int64_t, 2> iterationShape; 842 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 843 // Search lhs/rhs map results for 'targetExpr'. 844 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 845 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 846 if (iteratorTypeName == getReductionIteratorTypeName()) { 847 // Get reduction dim size from lhs shape (same size in rhsShape). 848 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 849 assert(lhsDimIndex >= 0); 850 iterationBounds.push_back(lhsShape[lhsDimIndex]); 851 continue; 852 } 853 // Get parallel dimension size from result shape. 854 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 855 assert(resDimIndex >= 0); 856 assert(resVectorType != nullptr); 857 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 858 } 859 } 860 861 void ContractionOp::getIterationIndexMap( 862 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 863 unsigned numMaps = getIndexingMaps().size(); 864 iterationIndexMap.resize(numMaps); 865 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 866 auto index = it.index(); 867 auto map = it.value(); 868 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 869 auto dim = map.getResult(i).cast<AffineDimExpr>(); 870 iterationIndexMap[index][dim.getPosition()] = i; 871 } 872 } 873 } 874 875 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 876 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 877 return getDimMap(indexingMaps, getIteratorTypes(), 878 getReductionIteratorTypeName(), getContext()); 879 } 880 881 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 882 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 883 return getDimMap(indexingMaps, getIteratorTypes(), 884 getParallelIteratorTypeName(), getContext()); 885 } 886 887 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 888 SmallVector<int64_t, 4> shape; 889 getIterationBounds(shape); 890 return shape; 891 } 892 893 /// Return a fused vector::ContractionOp which represents a patterns such as: 894 /// 895 /// ```mlir 896 /// %c0 = vector.constant 0: ... 897 /// %c = vector.contract %a, %b, %c0: ... 898 /// %e = add %c, %d: ... 899 /// ``` 900 /// 901 /// by: 902 /// 903 /// ```mlir 904 /// %e = vector.contract %a, %b, %d: ... 905 /// ``` 906 /// 907 /// Return null if the canonicalization does not apply. 908 // TODO: This should be a folding of Add into Contract in core but while they 909 // live in different dialects, it is not possible without unnatural 910 // dependencies. 911 template <typename AddOpType> 912 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 913 using OpRewritePattern<AddOpType>::OpRewritePattern; 914 915 LogicalResult matchAndRewrite(AddOpType addOp, 916 PatternRewriter &rewriter) const override { 917 auto canonicalize = [&](Value maybeContraction, 918 Value otherOperand) -> vector::ContractionOp { 919 vector::ContractionOp contractionOp = 920 dyn_cast_or_null<vector::ContractionOp>( 921 maybeContraction.getDefiningOp()); 922 if (!contractionOp) 923 return vector::ContractionOp(); 924 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 925 contractionOp.getAcc().getDefiningOp())) { 926 if (maybeZero.getValue() == 927 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 928 BlockAndValueMapping bvm; 929 bvm.map(contractionOp.getAcc(), otherOperand); 930 auto newContraction = 931 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 932 rewriter.replaceOp(addOp, newContraction.getResult()); 933 return newContraction; 934 } 935 } 936 return vector::ContractionOp(); 937 }; 938 939 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 940 vector::ContractionOp contract = canonicalize(a, b); 941 contract = contract ? contract : canonicalize(b, a); 942 return contract ? success() : failure(); 943 } 944 }; 945 946 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 947 MLIRContext *context) { 948 results.add<CanonicalizeContractAdd<arith::AddIOp>, 949 CanonicalizeContractAdd<arith::AddFOp>>(context); 950 } 951 952 //===----------------------------------------------------------------------===// 953 // ExtractElementOp 954 //===----------------------------------------------------------------------===// 955 956 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 957 Value source) { 958 result.addOperands({source}); 959 result.addTypes(source.getType().cast<VectorType>().getElementType()); 960 } 961 962 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 963 Value source, Value position) { 964 result.addOperands({source, position}); 965 result.addTypes(source.getType().cast<VectorType>().getElementType()); 966 } 967 968 LogicalResult vector::ExtractElementOp::verify() { 969 VectorType vectorType = getVectorType(); 970 if (vectorType.getRank() == 0) { 971 if (getPosition()) 972 return emitOpError("expected position to be empty with 0-D vector"); 973 return success(); 974 } 975 if (vectorType.getRank() != 1) 976 return emitOpError("unexpected >1 vector rank"); 977 if (!getPosition()) 978 return emitOpError("expected position for 1-D vector"); 979 return success(); 980 } 981 982 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 983 // Skip the 0-D vector here now. 984 if (operands.size() < 2) 985 return {}; 986 987 Attribute src = operands[0]; 988 Attribute pos = operands[1]; 989 990 // Fold extractelement (splat X) -> X. 991 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 992 return splat.getInput(); 993 994 if (!pos || !src) 995 return {}; 996 997 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 998 999 auto attr = pos.dyn_cast<IntegerAttr>(); 1000 uint64_t posIdx = attr.getInt(); 1001 1002 return srcElements[posIdx]; 1003 } 1004 1005 //===----------------------------------------------------------------------===// 1006 // ExtractOp 1007 //===----------------------------------------------------------------------===// 1008 1009 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1010 Value source, ArrayRef<int64_t> position) { 1011 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1012 } 1013 1014 // Convenience builder which assumes the values are constant indices. 1015 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1016 Value source, ValueRange position) { 1017 SmallVector<int64_t, 4> positionConstants = 1018 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1019 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1020 })); 1021 build(builder, result, source, positionConstants); 1022 } 1023 1024 LogicalResult 1025 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1026 ValueRange operands, DictionaryAttr attributes, 1027 RegionRange, 1028 SmallVectorImpl<Type> &inferredReturnTypes) { 1029 ExtractOp::Adaptor op(operands, attributes); 1030 auto vectorType = op.getVector().getType().cast<VectorType>(); 1031 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1032 inferredReturnTypes.push_back(vectorType.getElementType()); 1033 } else { 1034 auto n = 1035 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1036 inferredReturnTypes.push_back(VectorType::get( 1037 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1038 } 1039 return success(); 1040 } 1041 1042 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1043 // Allow extracting 1-element vectors instead of scalars. 1044 auto isCompatible = [](TypeRange l, TypeRange r) { 1045 auto vectorType = l.front().dyn_cast<VectorType>(); 1046 return vectorType && vectorType.getShape().equals({1}) && 1047 vectorType.getElementType() == r.front(); 1048 }; 1049 if (l.size() == 1 && r.size() == 1 && 1050 (isCompatible(l, r) || isCompatible(r, l))) 1051 return true; 1052 return l == r; 1053 } 1054 1055 LogicalResult vector::ExtractOp::verify() { 1056 auto positionAttr = getPosition().getValue(); 1057 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1058 return emitOpError( 1059 "expected position attribute of rank smaller than vector rank"); 1060 for (const auto &en : llvm::enumerate(positionAttr)) { 1061 auto attr = en.value().dyn_cast<IntegerAttr>(); 1062 if (!attr || attr.getInt() < 0 || 1063 attr.getInt() >= getVectorType().getDimSize(en.index())) 1064 return emitOpError("expected position attribute #") 1065 << (en.index() + 1) 1066 << " to be a non-negative integer smaller than the corresponding " 1067 "vector dimension"; 1068 } 1069 return success(); 1070 } 1071 1072 template <typename IntType> 1073 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1074 return llvm::to_vector<4>(llvm::map_range( 1075 arrayAttr.getAsRange<IntegerAttr>(), 1076 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1077 } 1078 1079 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1080 /// positions. 1081 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1082 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1083 return failure(); 1084 1085 SmallVector<int64_t, 4> globalPosition; 1086 ExtractOp currentOp = extractOp; 1087 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1088 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1089 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1090 currentOp = nextOp; 1091 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1092 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1093 } 1094 extractOp.setOperand(currentOp.getVector()); 1095 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1096 OpBuilder b(extractOp.getContext()); 1097 std::reverse(globalPosition.begin(), globalPosition.end()); 1098 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1099 b.getI64ArrayAttr(globalPosition)); 1100 return success(); 1101 } 1102 1103 namespace { 1104 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1105 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1106 /// Compose TransposeOp permutations as we walk back. 1107 /// This helper class keeps an updated extraction position `extractPosition` 1108 /// with extra trailing sentinels. 1109 /// The sentinels encode the internal transposition status of the result vector. 1110 /// As we iterate, extractPosition is permuted and updated. 1111 class ExtractFromInsertTransposeChainState { 1112 public: 1113 ExtractFromInsertTransposeChainState(ExtractOp e); 1114 1115 /// Iterate over producing insert and transpose ops until we find a fold. 1116 Value fold(); 1117 1118 private: 1119 /// Return true if the vector at position `a` is contained within the vector 1120 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1121 /// is a prefix of `b`. 1122 template <typename ContainerA, typename ContainerB> 1123 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1124 return a.size() <= b.size() && 1125 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1126 } 1127 1128 /// Return true if the vector at position `a` intersects the vector at 1129 /// position `b`. Under insert/extract semantics, this is the same as equality 1130 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1131 /// Comparison is on the common prefix (i.e. zip). 1132 template <typename ContainerA, typename ContainerB> 1133 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1134 for (auto it : llvm::zip(a, b)) { 1135 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1136 continue; 1137 if (std::get<0>(it) != std::get<1>(it)) 1138 return false; 1139 } 1140 return true; 1141 } 1142 1143 /// Folding is only possible in the absence of an internal permutation in the 1144 /// result vector. 1145 bool canFold() { 1146 return (sentinels == 1147 makeArrayRef(extractPosition).drop_front(extractedRank)); 1148 } 1149 1150 // Helper to get the next defining op of interest. 1151 void updateStateForNextIteration(Value v) { 1152 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1153 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1154 }; 1155 1156 // Case 1. If we hit a transpose, just compose the map and iterate. 1157 // Invariant: insert + transpose do not change rank, we can always compose. 1158 LogicalResult handleTransposeOp(); 1159 1160 // Case 2: the insert position matches extractPosition exactly, early return. 1161 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1162 1163 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1164 /// portion of the source of the insert. 1165 /// Example: 1166 /// ``` 1167 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1168 /// // extractPosition == [1, 2, 3] 1169 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1170 /// // can fold to vector.extract %source[0, 3] 1171 /// %ext = vector.extract %source[3]: vector<5x6> 1172 /// ``` 1173 /// To traverse through %source, we need to set the leading dims to 0 and 1174 /// drop the extra leading dims. 1175 /// This method updates the internal state. 1176 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1177 1178 /// Try to fold in place to extract(source, extractPosition) and return the 1179 /// folded result. Return null if folding is not possible (e.g. due to an 1180 /// internal tranposition in the result). 1181 Value tryToFoldExtractOpInPlace(Value source); 1182 1183 ExtractOp extractOp; 1184 int64_t vectorRank; 1185 int64_t extractedRank; 1186 1187 InsertOp nextInsertOp; 1188 TransposeOp nextTransposeOp; 1189 1190 /// Sentinel values that encode the internal permutation status of the result. 1191 /// They are set to (-1, ... , -k) at the beginning and appended to 1192 /// `extractPosition`. 1193 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1194 /// ensure that there is no internal transposition. 1195 /// Internal transposition cannot be accounted for with a folding pattern. 1196 // TODO: We could relax the internal transposition with an extra transposition 1197 // operation in a future canonicalizer. 1198 SmallVector<int64_t> sentinels; 1199 SmallVector<int64_t> extractPosition; 1200 }; 1201 } // namespace 1202 1203 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1204 ExtractOp e) 1205 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1206 extractedRank(extractOp.getPosition().size()) { 1207 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1208 sentinels.reserve(vectorRank - extractedRank); 1209 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1210 sentinels.push_back(-(i + 1)); 1211 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1212 llvm::append_range(extractPosition, sentinels); 1213 } 1214 1215 // Case 1. If we hit a transpose, just compose the map and iterate. 1216 // Invariant: insert + transpose do not change rank, we can always compose. 1217 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1218 if (!nextTransposeOp) 1219 return failure(); 1220 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1221 AffineMap m = inversePermutation( 1222 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1223 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1224 return success(); 1225 } 1226 1227 // Case 2: the insert position matches extractPosition exactly, early return. 1228 LogicalResult 1229 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1230 Value &res) { 1231 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1232 if (makeArrayRef(insertedPos) != 1233 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1234 return failure(); 1235 // Case 2.a. early-exit fold. 1236 res = nextInsertOp.getSource(); 1237 // Case 2.b. if internal transposition is present, canFold will be false. 1238 return success(); 1239 } 1240 1241 /// Case 3: if inserted position is a prefix of extractPosition, 1242 /// extract a portion of the source of the insertion. 1243 /// This method updates the internal state. 1244 LogicalResult 1245 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1246 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1247 if (!isContainedWithin(insertedPos, extractPosition)) 1248 return failure(); 1249 // Set leading dims to zero. 1250 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1251 // Drop extra leading dims. 1252 extractPosition.erase(extractPosition.begin(), 1253 extractPosition.begin() + insertedPos.size()); 1254 extractedRank = extractPosition.size() - sentinels.size(); 1255 // Case 3.a. early-exit fold (break and delegate to post-while path). 1256 res = nextInsertOp.getSource(); 1257 // Case 3.b. if internal transposition is present, canFold will be false. 1258 return success(); 1259 } 1260 1261 /// Try to fold in place to extract(source, extractPosition) and return the 1262 /// folded result. Return null if folding is not possible (e.g. due to an 1263 /// internal tranposition in the result). 1264 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1265 Value source) { 1266 // If we can't fold (either internal transposition, or nothing to fold), bail. 1267 bool nothingToFold = (source == extractOp.getVector()); 1268 if (nothingToFold || !canFold()) 1269 return Value(); 1270 // Otherwise, fold by updating the op inplace and return its result. 1271 OpBuilder b(extractOp.getContext()); 1272 extractOp->setAttr( 1273 extractOp.getPositionAttrName(), 1274 b.getI64ArrayAttr( 1275 makeArrayRef(extractPosition).take_front(extractedRank))); 1276 extractOp.getVectorMutable().assign(source); 1277 return extractOp.getResult(); 1278 } 1279 1280 /// Iterate over producing insert and transpose ops until we find a fold. 1281 Value ExtractFromInsertTransposeChainState::fold() { 1282 Value valueToExtractFrom = extractOp.getVector(); 1283 updateStateForNextIteration(valueToExtractFrom); 1284 while (nextInsertOp || nextTransposeOp) { 1285 // Case 1. If we hit a transpose, just compose the map and iterate. 1286 // Invariant: insert + transpose do not change rank, we can always compose. 1287 if (succeeded(handleTransposeOp())) { 1288 valueToExtractFrom = nextTransposeOp.getVector(); 1289 updateStateForNextIteration(valueToExtractFrom); 1290 continue; 1291 } 1292 1293 Value result; 1294 // Case 2: the position match exactly. 1295 if (succeeded(handleInsertOpWithMatchingPos(result))) 1296 return result; 1297 1298 // Case 3: if the inserted position is a prefix of extractPosition, we can 1299 // just extract a portion of the source of the insert. 1300 if (succeeded(handleInsertOpWithPrefixPos(result))) 1301 return tryToFoldExtractOpInPlace(result); 1302 1303 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1304 // values. This is a more difficult case and we bail. 1305 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1306 if (isContainedWithin(extractPosition, insertedPos) || 1307 intersectsWhereNonNegative(extractPosition, insertedPos)) 1308 return Value(); 1309 1310 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1311 valueToExtractFrom = nextInsertOp.getDest(); 1312 updateStateForNextIteration(valueToExtractFrom); 1313 } 1314 // If after all this we can fold, go for it. 1315 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1316 } 1317 1318 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1319 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1320 Operation *defOp = extractOp.getVector().getDefiningOp(); 1321 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1322 return Value(); 1323 Value source = defOp->getOperand(0); 1324 if (extractOp.getType() == source.getType()) 1325 return source; 1326 auto getRank = [](Type type) { 1327 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1328 }; 1329 unsigned broadcastSrcRank = getRank(source.getType()); 1330 unsigned extractResultRank = getRank(extractOp.getType()); 1331 if (extractResultRank >= broadcastSrcRank) 1332 return Value(); 1333 // Check that the dimension of the result haven't been broadcasted. 1334 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1335 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1336 if (extractVecType && broadcastVecType && 1337 extractVecType.getShape() != 1338 broadcastVecType.getShape().take_back(extractResultRank)) 1339 return Value(); 1340 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1341 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1342 extractPos.erase(extractPos.begin(), 1343 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1344 extractOp.setOperand(source); 1345 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1346 OpBuilder b(extractOp.getContext()); 1347 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1348 b.getI64ArrayAttr(extractPos)); 1349 return extractOp.getResult(); 1350 } 1351 1352 // Fold extractOp with source coming from ShapeCast op. 1353 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1354 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1355 if (!shapeCastOp) 1356 return Value(); 1357 // Get the nth dimension size starting from lowest dimension. 1358 auto getDimReverse = [](VectorType type, int64_t n) { 1359 return type.getShape().take_back(n + 1).front(); 1360 }; 1361 int64_t destinationRank = 1362 extractOp.getType().isa<VectorType>() 1363 ? extractOp.getType().cast<VectorType>().getRank() 1364 : 0; 1365 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1366 return Value(); 1367 if (destinationRank > 0) { 1368 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1369 for (int64_t i = 0; i < destinationRank; i++) { 1370 // The lowest dimension of of the destination must match the lowest 1371 // dimension of the shapecast op source. 1372 // TODO: This case could be support in a canonicalization pattern. 1373 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1374 getDimReverse(destinationType, i)) 1375 return Value(); 1376 } 1377 } 1378 // Extract the strides associated with the extract op vector source. Then use 1379 // this to calculate a linearized position for the extract. 1380 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1381 std::reverse(extractedPos.begin(), extractedPos.end()); 1382 SmallVector<int64_t, 4> strides; 1383 int64_t stride = 1; 1384 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1385 strides.push_back(stride); 1386 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1387 } 1388 1389 int64_t position = linearize(extractedPos, strides); 1390 // Then extract the strides associated to the shapeCast op vector source and 1391 // delinearize the position using those strides. 1392 SmallVector<int64_t, 4> newStrides; 1393 int64_t numDimension = 1394 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1395 stride = 1; 1396 for (int64_t i = 0; i < numDimension; i++) { 1397 newStrides.push_back(stride); 1398 stride *= 1399 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1400 } 1401 std::reverse(newStrides.begin(), newStrides.end()); 1402 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1403 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1404 OpBuilder b(extractOp.getContext()); 1405 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1406 b.getI64ArrayAttr(newPosition)); 1407 extractOp.setOperand(shapeCastOp.getSource()); 1408 return extractOp.getResult(); 1409 } 1410 1411 /// Fold an ExtractOp from ExtractStridedSliceOp. 1412 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1413 auto extractStridedSliceOp = 1414 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1415 if (!extractStridedSliceOp) 1416 return Value(); 1417 // Return if 'extractStridedSliceOp' has non-unit strides. 1418 if (extractStridedSliceOp.hasNonUnitStrides()) 1419 return Value(); 1420 1421 // Trim offsets for dimensions fully extracted. 1422 auto sliceOffsets = 1423 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1424 while (!sliceOffsets.empty()) { 1425 size_t lastOffset = sliceOffsets.size() - 1; 1426 if (sliceOffsets.back() != 0 || 1427 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1428 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1429 break; 1430 sliceOffsets.pop_back(); 1431 } 1432 unsigned destinationRank = 0; 1433 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1434 destinationRank = vecType.getRank(); 1435 // The dimensions of the result need to be untouched by the 1436 // extractStridedSlice op. 1437 if (destinationRank > 1438 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1439 return Value(); 1440 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1441 assert(extractedPos.size() >= sliceOffsets.size()); 1442 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1443 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1444 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1445 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1446 OpBuilder b(extractOp.getContext()); 1447 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1448 b.getI64ArrayAttr(extractedPos)); 1449 return extractOp.getResult(); 1450 } 1451 1452 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1453 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1454 int64_t destinationRank = op.getType().isa<VectorType>() 1455 ? op.getType().cast<VectorType>().getRank() 1456 : 0; 1457 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1458 while (insertOp) { 1459 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1460 insertOp.getSourceVectorType().getRank(); 1461 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1462 return Value(); 1463 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1464 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1465 1466 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1467 return attr.cast<IntegerAttr>().getInt() != 1; 1468 })) 1469 return Value(); 1470 bool disjoint = false; 1471 SmallVector<int64_t, 4> offsetDiffs; 1472 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1473 int64_t start = insertOffsets[dim]; 1474 int64_t size = 1475 (dim < insertRankDiff) 1476 ? 1 1477 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1478 int64_t end = start + size; 1479 int64_t offset = extractOffsets[dim]; 1480 // Check if the start of the extract offset is in the interval inserted. 1481 if (start <= offset && offset < end) { 1482 if (dim >= insertRankDiff) 1483 offsetDiffs.push_back(offset - start); 1484 continue; 1485 } 1486 disjoint = true; 1487 break; 1488 } 1489 // The extract element chunk overlap with the vector inserted. 1490 if (!disjoint) { 1491 // If any of the inner dimensions are only partially inserted we have a 1492 // partial overlap. 1493 int64_t srcRankDiff = 1494 insertOp.getSourceVectorType().getRank() - destinationRank; 1495 for (int64_t i = 0; i < destinationRank; i++) { 1496 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1497 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1498 insertRankDiff)) 1499 return Value(); 1500 } 1501 op.getVectorMutable().assign(insertOp.getSource()); 1502 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1503 OpBuilder b(op.getContext()); 1504 op->setAttr(ExtractOp::getPositionAttrStrName(), 1505 b.getI64ArrayAttr(offsetDiffs)); 1506 return op.getResult(); 1507 } 1508 // If the chunk extracted is disjoint from the chunk inserted, keep 1509 // looking in the insert chain. 1510 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1511 } 1512 return Value(); 1513 } 1514 1515 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1516 if (getPosition().empty()) 1517 return getVector(); 1518 if (succeeded(foldExtractOpFromExtractChain(*this))) 1519 return getResult(); 1520 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1521 return res; 1522 if (auto res = foldExtractFromBroadcast(*this)) 1523 return res; 1524 if (auto res = foldExtractFromShapeCast(*this)) 1525 return res; 1526 if (auto val = foldExtractFromExtractStrided(*this)) 1527 return val; 1528 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1529 return val; 1530 return OpFoldResult(); 1531 } 1532 1533 namespace { 1534 1535 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1536 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1537 public: 1538 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1539 1540 LogicalResult matchAndRewrite(ExtractOp extractOp, 1541 PatternRewriter &rewriter) const override { 1542 Operation *defOp = extractOp.getVector().getDefiningOp(); 1543 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1544 return failure(); 1545 1546 Value source = defOp->getOperand(0); 1547 if (extractOp.getType() == source.getType()) 1548 return failure(); 1549 auto getRank = [](Type type) { 1550 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1551 }; 1552 unsigned broadcastSrcRank = getRank(source.getType()); 1553 unsigned extractResultRank = getRank(extractOp.getType()); 1554 // We only consider the case where the rank of the source is less than or 1555 // equal to the rank of the extract dst. The other cases are handled in the 1556 // folding patterns. 1557 if (extractResultRank < broadcastSrcRank) 1558 return failure(); 1559 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1560 extractOp, extractOp.getType(), source); 1561 return success(); 1562 } 1563 }; 1564 1565 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1566 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1567 public: 1568 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1569 1570 LogicalResult matchAndRewrite(ExtractOp extractOp, 1571 PatternRewriter &rewriter) const override { 1572 // Return if 'extractStridedSliceOp' operand is not defined by a 1573 // ConstantOp. 1574 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1575 if (!constantOp) 1576 return failure(); 1577 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1578 if (!dense) 1579 return failure(); 1580 Attribute newAttr = dense.getSplatValue<Attribute>(); 1581 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1582 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1583 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1584 return success(); 1585 } 1586 }; 1587 1588 } // namespace 1589 1590 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1591 MLIRContext *context) { 1592 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1593 } 1594 1595 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1596 SmallVectorImpl<int64_t> &results) { 1597 for (auto attr : arrayAttr) 1598 results.push_back(attr.cast<IntegerAttr>().getInt()); 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // ExtractMapOp 1603 //===----------------------------------------------------------------------===// 1604 1605 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1606 Value vector, ValueRange ids, 1607 ArrayRef<int64_t> multiplicity, 1608 AffineMap permutationMap) { 1609 assert(ids.size() == multiplicity.size() && 1610 ids.size() == permutationMap.getNumResults()); 1611 assert(permutationMap.isProjectedPermutation()); 1612 VectorType type = vector.getType().cast<VectorType>(); 1613 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1614 type.getShape().end()); 1615 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1616 AffineExpr expr = permutationMap.getResult(i); 1617 auto dim = expr.cast<AffineDimExpr>(); 1618 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1619 } 1620 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1621 ExtractMapOp::build(builder, result, resultType, vector, ids); 1622 } 1623 1624 LogicalResult ExtractMapOp::verify() { 1625 if (getSourceVectorType().getRank() != getResultType().getRank()) 1626 return emitOpError("expected source and destination vectors of same rank"); 1627 unsigned numId = 0; 1628 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1629 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1630 0) 1631 return emitOpError("source vector dimensions must be a multiple of " 1632 "destination vector dimensions"); 1633 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1634 numId++; 1635 } 1636 if (numId != getIds().size()) 1637 return emitOpError("expected number of ids must match the number of " 1638 "dimensions distributed"); 1639 return success(); 1640 } 1641 1642 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1643 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1644 if (insert == nullptr || getType() != insert.getVector().getType() || 1645 getIds() != insert.getIds()) 1646 return {}; 1647 return insert.getVector(); 1648 } 1649 1650 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1651 assert(multiplicity.empty()); 1652 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1653 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1654 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1655 getResultType().getDimSize(i)); 1656 } 1657 } 1658 1659 template <typename MapOp> 1660 AffineMap calculateImplicitMap(MapOp op) { 1661 SmallVector<AffineExpr, 4> perm; 1662 // Check which dimension have a multiplicity greater than 1 and associated 1663 // them to the IDs in order. 1664 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1665 if (op.getSourceVectorType().getDimSize(i) != 1666 op.getResultType().getDimSize(i)) 1667 perm.push_back(getAffineDimExpr(i, op.getContext())); 1668 } 1669 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1670 op.getContext()); 1671 return map; 1672 } 1673 1674 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1675 1676 //===----------------------------------------------------------------------===// 1677 // FmaOp 1678 //===----------------------------------------------------------------------===// 1679 1680 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1681 return llvm::to_vector<4>(getVectorType().getShape()); 1682 } 1683 1684 //===----------------------------------------------------------------------===// 1685 // BroadcastOp 1686 //===----------------------------------------------------------------------===// 1687 1688 BroadcastableToResult 1689 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1690 std::pair<int, int> *mismatchingDims) { 1691 // Broadcast scalar to vector of the same element type. 1692 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1693 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1694 return BroadcastableToResult::Success; 1695 // From now on, only vectors broadcast. 1696 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1697 if (!srcVectorType) 1698 return BroadcastableToResult::SourceTypeNotAVector; 1699 1700 int64_t srcRank = srcVectorType.getRank(); 1701 int64_t dstRank = dstVectorType.getRank(); 1702 if (srcRank > dstRank) 1703 return BroadcastableToResult::SourceRankHigher; 1704 // Source has an exact match or singleton value for all trailing dimensions 1705 // (all leading dimensions are simply duplicated). 1706 int64_t lead = dstRank - srcRank; 1707 for (int64_t r = 0; r < srcRank; ++r) { 1708 int64_t srcDim = srcVectorType.getDimSize(r); 1709 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1710 if (srcDim != 1 && srcDim != dstDim) { 1711 if (mismatchingDims) { 1712 mismatchingDims->first = srcDim; 1713 mismatchingDims->second = dstDim; 1714 } 1715 return BroadcastableToResult::DimensionMismatch; 1716 } 1717 } 1718 1719 return BroadcastableToResult::Success; 1720 } 1721 1722 LogicalResult BroadcastOp::verify() { 1723 std::pair<int, int> mismatchingDims; 1724 BroadcastableToResult res = 1725 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1726 if (res == BroadcastableToResult::Success) 1727 return success(); 1728 if (res == BroadcastableToResult::SourceRankHigher) 1729 return emitOpError("source rank higher than destination rank"); 1730 if (res == BroadcastableToResult::DimensionMismatch) 1731 return emitOpError("dimension mismatch (") 1732 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1733 if (res == BroadcastableToResult::SourceTypeNotAVector) 1734 return emitOpError("source type is not a vector"); 1735 llvm_unreachable("unexpected vector.broadcast op error"); 1736 } 1737 1738 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1739 if (getSourceType() == getVectorType()) 1740 return getSource(); 1741 if (!operands[0]) 1742 return {}; 1743 auto vectorType = getVectorType(); 1744 if (operands[0].getType().isIntOrIndexOrFloat()) 1745 return DenseElementsAttr::get(vectorType, operands[0]); 1746 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1747 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1748 return {}; 1749 } 1750 1751 namespace { 1752 1753 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1754 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1755 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1756 1757 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1758 PatternRewriter &rewriter) const override { 1759 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1760 if (!srcBroadcast) 1761 return failure(); 1762 rewriter.replaceOpWithNewOp<BroadcastOp>( 1763 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1764 return success(); 1765 } 1766 }; 1767 } // namespace 1768 1769 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1770 MLIRContext *context) { 1771 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1772 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1773 results.add<BroadcastFolder>(context); 1774 } 1775 1776 //===----------------------------------------------------------------------===// 1777 // ShuffleOp 1778 //===----------------------------------------------------------------------===// 1779 1780 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1781 Value v2, ArrayRef<int64_t> mask) { 1782 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1783 } 1784 1785 LogicalResult ShuffleOp::verify() { 1786 VectorType resultType = getVectorType(); 1787 VectorType v1Type = getV1VectorType(); 1788 VectorType v2Type = getV2VectorType(); 1789 // Verify ranks. 1790 int64_t resRank = resultType.getRank(); 1791 int64_t v1Rank = v1Type.getRank(); 1792 int64_t v2Rank = v2Type.getRank(); 1793 if (resRank != v1Rank || v1Rank != v2Rank) 1794 return emitOpError("rank mismatch"); 1795 // Verify all but leading dimension sizes. 1796 for (int64_t r = 1; r < v1Rank; ++r) { 1797 int64_t resDim = resultType.getDimSize(r); 1798 int64_t v1Dim = v1Type.getDimSize(r); 1799 int64_t v2Dim = v2Type.getDimSize(r); 1800 if (resDim != v1Dim || v1Dim != v2Dim) 1801 return emitOpError("dimension mismatch"); 1802 } 1803 // Verify mask length. 1804 auto maskAttr = getMask().getValue(); 1805 int64_t maskLength = maskAttr.size(); 1806 if (maskLength <= 0) 1807 return emitOpError("invalid mask length"); 1808 if (maskLength != resultType.getDimSize(0)) 1809 return emitOpError("mask length mismatch"); 1810 // Verify all indices. 1811 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1812 for (const auto &en : llvm::enumerate(maskAttr)) { 1813 auto attr = en.value().dyn_cast<IntegerAttr>(); 1814 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1815 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1816 } 1817 return success(); 1818 } 1819 1820 LogicalResult 1821 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1822 ValueRange operands, DictionaryAttr attributes, 1823 RegionRange, 1824 SmallVectorImpl<Type> &inferredReturnTypes) { 1825 ShuffleOp::Adaptor op(operands, attributes); 1826 auto v1Type = op.getV1().getType().cast<VectorType>(); 1827 // Construct resulting type: leading dimension matches mask length, 1828 // all trailing dimensions match the operands. 1829 SmallVector<int64_t, 4> shape; 1830 shape.reserve(v1Type.getRank()); 1831 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1832 llvm::append_range(shape, v1Type.getShape().drop_front()); 1833 inferredReturnTypes.push_back( 1834 VectorType::get(shape, v1Type.getElementType())); 1835 return success(); 1836 } 1837 1838 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1839 uint64_t expected = begin; 1840 return idxArr.size() == width && 1841 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1842 [&expected](auto attr) { 1843 return attr.getZExtValue() == expected++; 1844 }); 1845 } 1846 1847 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1848 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1849 if (!getV1VectorType().isScalable() && 1850 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1851 return getV1(); 1852 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1853 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1854 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1855 getV2VectorType().getDimSize(0))) 1856 return getV2(); 1857 1858 Attribute lhs = operands.front(), rhs = operands.back(); 1859 if (!lhs || !rhs) 1860 return {}; 1861 1862 auto lhsType = lhs.getType().cast<VectorType>(); 1863 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1864 // manipulation. 1865 if (lhsType.getRank() != 1) 1866 return {}; 1867 int64_t lhsSize = lhsType.getDimSize(0); 1868 1869 SmallVector<Attribute> results; 1870 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1871 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1872 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1873 int64_t i = index.getZExtValue(); 1874 if (i >= lhsSize) { 1875 results.push_back(rhsElements[i - lhsSize]); 1876 } else { 1877 results.push_back(lhsElements[i]); 1878 } 1879 } 1880 1881 return DenseElementsAttr::get(getVectorType(), results); 1882 } 1883 1884 //===----------------------------------------------------------------------===// 1885 // InsertElementOp 1886 //===----------------------------------------------------------------------===// 1887 1888 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1889 Value source, Value dest) { 1890 build(builder, result, source, dest, {}); 1891 } 1892 1893 LogicalResult InsertElementOp::verify() { 1894 auto dstVectorType = getDestVectorType(); 1895 if (dstVectorType.getRank() == 0) { 1896 if (getPosition()) 1897 return emitOpError("expected position to be empty with 0-D vector"); 1898 return success(); 1899 } 1900 if (dstVectorType.getRank() != 1) 1901 return emitOpError("unexpected >1 vector rank"); 1902 if (!getPosition()) 1903 return emitOpError("expected position for 1-D vector"); 1904 return success(); 1905 } 1906 1907 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1908 // Skip the 0-D vector here. 1909 if (operands.size() < 3) 1910 return {}; 1911 1912 Attribute src = operands[0]; 1913 Attribute dst = operands[1]; 1914 Attribute pos = operands[2]; 1915 if (!src || !dst || !pos) 1916 return {}; 1917 1918 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1919 1920 SmallVector<Attribute> results(dstElements); 1921 1922 auto attr = pos.dyn_cast<IntegerAttr>(); 1923 uint64_t posIdx = attr.getInt(); 1924 1925 results[posIdx] = src; 1926 1927 return DenseElementsAttr::get(getDestVectorType(), results); 1928 } 1929 1930 //===----------------------------------------------------------------------===// 1931 // InsertOp 1932 //===----------------------------------------------------------------------===// 1933 1934 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1935 Value dest, ArrayRef<int64_t> position) { 1936 result.addOperands({source, dest}); 1937 auto positionAttr = getVectorSubscriptAttr(builder, position); 1938 result.addTypes(dest.getType()); 1939 result.addAttribute(getPositionAttrStrName(), positionAttr); 1940 } 1941 1942 // Convenience builder which assumes the values are constant indices. 1943 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1944 Value dest, ValueRange position) { 1945 SmallVector<int64_t, 4> positionConstants = 1946 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1947 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1948 })); 1949 build(builder, result, source, dest, positionConstants); 1950 } 1951 1952 LogicalResult InsertOp::verify() { 1953 auto positionAttr = getPosition().getValue(); 1954 auto destVectorType = getDestVectorType(); 1955 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1956 return emitOpError( 1957 "expected position attribute of rank smaller than dest vector rank"); 1958 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1959 if (srcVectorType && 1960 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1961 static_cast<unsigned>(destVectorType.getRank()))) 1962 return emitOpError("expected position attribute rank + source rank to " 1963 "match dest vector rank"); 1964 if (!srcVectorType && 1965 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1966 return emitOpError( 1967 "expected position attribute rank to match the dest vector rank"); 1968 for (const auto &en : llvm::enumerate(positionAttr)) { 1969 auto attr = en.value().dyn_cast<IntegerAttr>(); 1970 if (!attr || attr.getInt() < 0 || 1971 attr.getInt() >= destVectorType.getDimSize(en.index())) 1972 return emitOpError("expected position attribute #") 1973 << (en.index() + 1) 1974 << " to be a non-negative integer smaller than the corresponding " 1975 "dest vector dimension"; 1976 } 1977 return success(); 1978 } 1979 1980 namespace { 1981 1982 // If insertOp is only inserting unit dimensions it can be transformed to a 1983 // broadcast. 1984 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1985 public: 1986 using OpRewritePattern<InsertOp>::OpRewritePattern; 1987 1988 LogicalResult matchAndRewrite(InsertOp insertOp, 1989 PatternRewriter &rewriter) const override { 1990 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1991 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1992 srcVecType.getNumElements()) 1993 return failure(); 1994 rewriter.replaceOpWithNewOp<BroadcastOp>( 1995 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1996 return success(); 1997 } 1998 }; 1999 2000 } // namespace 2001 2002 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2003 MLIRContext *context) { 2004 results.add<InsertToBroadcast, BroadcastFolder>(context); 2005 } 2006 2007 // Eliminates insert operations that produce values identical to their source 2008 // value. This happens when the source and destination vectors have identical 2009 // sizes. 2010 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2011 if (getPosition().empty()) 2012 return getSource(); 2013 return {}; 2014 } 2015 2016 //===----------------------------------------------------------------------===// 2017 // InsertMapOp 2018 //===----------------------------------------------------------------------===// 2019 2020 LogicalResult InsertMapOp::verify() { 2021 if (getSourceVectorType().getRank() != getResultType().getRank()) 2022 return emitOpError("expected source and destination vectors of same rank"); 2023 unsigned numId = 0; 2024 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2025 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2026 0) 2027 return emitOpError( 2028 "destination vector size must be a multiple of source vector size"); 2029 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2030 numId++; 2031 } 2032 if (numId != getIds().size()) 2033 return emitOpError("expected number of ids must match the number of " 2034 "dimensions distributed"); 2035 return success(); 2036 } 2037 2038 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2039 2040 //===----------------------------------------------------------------------===// 2041 // InsertStridedSliceOp 2042 //===----------------------------------------------------------------------===// 2043 2044 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2045 Value source, Value dest, 2046 ArrayRef<int64_t> offsets, 2047 ArrayRef<int64_t> strides) { 2048 result.addOperands({source, dest}); 2049 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2050 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2051 result.addTypes(dest.getType()); 2052 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2053 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2054 } 2055 2056 // TODO: Should be moved to Tablegen Confined attributes. 2057 template <typename OpType> 2058 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2059 ArrayAttr arrayAttr, 2060 ArrayRef<int64_t> shape, 2061 StringRef attrName) { 2062 if (arrayAttr.size() > shape.size()) 2063 return op.emitOpError("expected ") 2064 << attrName << " attribute of rank smaller than vector rank"; 2065 return success(); 2066 } 2067 2068 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2069 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2070 // Otherwise, the admissible interval is [min, max]. 2071 template <typename OpType> 2072 static LogicalResult 2073 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2074 int64_t max, StringRef attrName, 2075 bool halfOpen = true) { 2076 for (auto attr : arrayAttr) { 2077 auto val = attr.cast<IntegerAttr>().getInt(); 2078 auto upper = max; 2079 if (!halfOpen) 2080 upper += 1; 2081 if (val < min || val >= upper) 2082 return op.emitOpError("expected ") << attrName << " to be confined to [" 2083 << min << ", " << upper << ")"; 2084 } 2085 return success(); 2086 } 2087 2088 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2089 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2090 // Otherwise, the admissible interval is [min, max]. 2091 template <typename OpType> 2092 static LogicalResult 2093 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2094 ArrayRef<int64_t> shape, StringRef attrName, 2095 bool halfOpen = true, int64_t min = 0) { 2096 assert(arrayAttr.size() <= shape.size()); 2097 unsigned index = 0; 2098 for (auto it : llvm::zip(arrayAttr, shape)) { 2099 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2100 auto max = std::get<1>(it); 2101 if (!halfOpen) 2102 max += 1; 2103 if (val < min || val >= max) 2104 return op.emitOpError("expected ") 2105 << attrName << " dimension " << index << " to be confined to [" 2106 << min << ", " << max << ")"; 2107 ++index; 2108 } 2109 return success(); 2110 } 2111 2112 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2113 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2114 // Otherwise, the admissible interval is [min, max]. 2115 template <typename OpType> 2116 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2117 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2118 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2119 bool halfOpen = true, int64_t min = 1) { 2120 assert(arrayAttr1.size() <= shape.size()); 2121 assert(arrayAttr2.size() <= shape.size()); 2122 unsigned index = 0; 2123 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2124 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2125 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2126 auto max = std::get<2>(it); 2127 if (!halfOpen) 2128 max += 1; 2129 if (val1 + val2 < 0 || val1 + val2 >= max) 2130 return op.emitOpError("expected sum(") 2131 << attrName1 << ", " << attrName2 << ") dimension " << index 2132 << " to be confined to [" << min << ", " << max << ")"; 2133 ++index; 2134 } 2135 return success(); 2136 } 2137 2138 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2139 MLIRContext *context) { 2140 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2141 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2142 }); 2143 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2144 } 2145 2146 LogicalResult InsertStridedSliceOp::verify() { 2147 auto sourceVectorType = getSourceVectorType(); 2148 auto destVectorType = getDestVectorType(); 2149 auto offsets = getOffsetsAttr(); 2150 auto strides = getStridesAttr(); 2151 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2152 return emitOpError( 2153 "expected offsets of same size as destination vector rank"); 2154 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2155 return emitOpError("expected strides of same size as source vector rank"); 2156 if (sourceVectorType.getRank() > destVectorType.getRank()) 2157 return emitOpError( 2158 "expected source rank to be smaller than destination rank"); 2159 2160 auto sourceShape = sourceVectorType.getShape(); 2161 auto destShape = destVectorType.getShape(); 2162 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2163 destShape.size() - sourceShape.size(), 0); 2164 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2165 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2166 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2167 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2168 offName)) || 2169 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2170 stridesName, 2171 /*halfOpen=*/false)) || 2172 failed(isSumOfIntegerArrayAttrConfinedToShape( 2173 *this, offsets, 2174 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2175 offName, "source vector shape", 2176 /*halfOpen=*/false, /*min=*/1))) 2177 return failure(); 2178 2179 return success(); 2180 } 2181 2182 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2183 if (getSourceVectorType() == getDestVectorType()) 2184 return getSource(); 2185 return {}; 2186 } 2187 2188 //===----------------------------------------------------------------------===// 2189 // OuterProductOp 2190 //===----------------------------------------------------------------------===// 2191 2192 /// Build an op without mask, use the type of `acc` as the return type. 2193 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2194 Value lhs, Value rhs, Value acc) { 2195 result.addOperands({lhs, rhs, acc}); 2196 result.addTypes(acc.getType()); 2197 } 2198 2199 void OuterProductOp::print(OpAsmPrinter &p) { 2200 p << " " << getLhs() << ", " << getRhs(); 2201 if (!getAcc().empty()) { 2202 p << ", " << getAcc(); 2203 p.printOptionalAttrDict((*this)->getAttrs()); 2204 } 2205 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2206 } 2207 2208 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2209 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2210 Type tLHS, tRHS; 2211 if (parser.parseOperandList(operandsInfo) || 2212 parser.parseOptionalAttrDict(result.attributes) || 2213 parser.parseColonType(tLHS) || parser.parseComma() || 2214 parser.parseType(tRHS)) 2215 return failure(); 2216 if (operandsInfo.size() < 2) 2217 return parser.emitError(parser.getNameLoc(), 2218 "expected at least 2 operands"); 2219 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2220 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2221 if (!vLHS) 2222 return parser.emitError(parser.getNameLoc(), 2223 "expected vector type for operand #1"); 2224 VectorType resType = 2225 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2226 vLHS.getElementType()) 2227 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2228 2229 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2230 result.attributes.append( 2231 OuterProductOp::getKindAttrStrName(), 2232 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2233 result.getContext())); 2234 } 2235 2236 return failure( 2237 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2238 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2239 (operandsInfo.size() > 2 && 2240 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2241 parser.addTypeToList(resType, result.types)); 2242 } 2243 2244 LogicalResult OuterProductOp::verify() { 2245 Type tRHS = getOperandTypeRHS(); 2246 VectorType vLHS = getOperandVectorTypeLHS(), 2247 vRHS = tRHS.dyn_cast<VectorType>(), 2248 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2249 2250 if (vLHS.getRank() != 1) 2251 return emitOpError("expected 1-d vector for operand #1"); 2252 2253 if (vRHS) { 2254 // Proper OUTER operation. 2255 if (vRHS.getRank() != 1) 2256 return emitOpError("expected 1-d vector for operand #2"); 2257 if (vRES.getRank() != 2) 2258 return emitOpError("expected 2-d vector result"); 2259 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2260 return emitOpError("expected #1 operand dim to match result dim #1"); 2261 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2262 return emitOpError("expected #2 operand dim to match result dim #2"); 2263 } else { 2264 // An AXPY operation. 2265 if (vRES.getRank() != 1) 2266 return emitOpError("expected 1-d vector result"); 2267 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2268 return emitOpError("expected #1 operand dim to match result dim #1"); 2269 } 2270 2271 if (vACC && vACC != vRES) 2272 return emitOpError("expected operand #3 of same type as result type"); 2273 2274 // Verify supported combining kind. 2275 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2276 return emitOpError("unsupported outerproduct type"); 2277 2278 return success(); 2279 } 2280 2281 //===----------------------------------------------------------------------===// 2282 // ReshapeOp 2283 //===----------------------------------------------------------------------===// 2284 2285 LogicalResult ReshapeOp::verify() { 2286 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2287 auto inputVectorType = getInputVectorType(); 2288 auto outputVectorType = getOutputVectorType(); 2289 int64_t inputShapeRank = getNumInputShapeSizes(); 2290 int64_t outputShapeRank = getNumOutputShapeSizes(); 2291 SmallVector<int64_t, 4> fixedVectorSizes; 2292 getFixedVectorSizes(fixedVectorSizes); 2293 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2294 2295 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2296 return emitError("invalid input shape for vector type ") << inputVectorType; 2297 2298 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2299 return emitError("invalid output shape for vector type ") 2300 << outputVectorType; 2301 2302 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2303 // suffix. 2304 unsigned inputVectorRank = inputVectorType.getRank(); 2305 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2306 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2307 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2308 return emitError("fixed vector size must match input vector for dim ") 2309 << i; 2310 } 2311 2312 unsigned outputVectorRank = outputVectorType.getRank(); 2313 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2314 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2315 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2316 return emitError("fixed vector size must match output vector for dim ") 2317 << i; 2318 } 2319 2320 // If all shape operands are produced by constant ops, verify that product 2321 // of dimensions for input/output shape match. 2322 auto isDefByConstant = [](Value operand) { 2323 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2324 }; 2325 if (llvm::all_of(getInputShape(), isDefByConstant) && 2326 llvm::all_of(getOutputShape(), isDefByConstant)) { 2327 int64_t numInputElements = 1; 2328 for (auto operand : getInputShape()) 2329 numInputElements *= 2330 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2331 int64_t numOutputElements = 1; 2332 for (auto operand : getOutputShape()) 2333 numOutputElements *= 2334 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2335 if (numInputElements != numOutputElements) 2336 return emitError("product of input and output shape sizes must match"); 2337 } 2338 return success(); 2339 } 2340 2341 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2342 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2343 } 2344 2345 //===----------------------------------------------------------------------===// 2346 // ExtractStridedSliceOp 2347 //===----------------------------------------------------------------------===// 2348 2349 // Inference works as follows: 2350 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2351 // 2. Add sizes from 'vectorType' for remaining dims. 2352 static Type inferStridedSliceOpResultType(VectorType vectorType, 2353 ArrayAttr offsets, ArrayAttr sizes, 2354 ArrayAttr strides) { 2355 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2356 SmallVector<int64_t, 4> shape; 2357 shape.reserve(vectorType.getRank()); 2358 unsigned idx = 0; 2359 for (unsigned e = offsets.size(); idx < e; ++idx) 2360 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2361 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2362 shape.push_back(vectorType.getShape()[idx]); 2363 2364 return VectorType::get(shape, vectorType.getElementType()); 2365 } 2366 2367 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2368 Value source, ArrayRef<int64_t> offsets, 2369 ArrayRef<int64_t> sizes, 2370 ArrayRef<int64_t> strides) { 2371 result.addOperands(source); 2372 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2373 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2374 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2375 result.addTypes( 2376 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2377 offsetsAttr, sizesAttr, stridesAttr)); 2378 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2379 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2380 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2381 } 2382 2383 LogicalResult ExtractStridedSliceOp::verify() { 2384 auto type = getVectorType(); 2385 auto offsets = getOffsetsAttr(); 2386 auto sizes = getSizesAttr(); 2387 auto strides = getStridesAttr(); 2388 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2389 return emitOpError( 2390 "expected offsets, sizes and strides attributes of same size"); 2391 2392 auto shape = type.getShape(); 2393 auto offName = getOffsetsAttrName(); 2394 auto sizesName = getSizesAttrName(); 2395 auto stridesName = getStridesAttrName(); 2396 if (failed( 2397 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2398 failed( 2399 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2400 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2401 stridesName)) || 2402 failed( 2403 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2404 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2405 /*halfOpen=*/false, 2406 /*min=*/1)) || 2407 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2408 stridesName, 2409 /*halfOpen=*/false)) || 2410 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2411 shape, offName, sizesName, 2412 /*halfOpen=*/false))) 2413 return failure(); 2414 2415 auto resultType = 2416 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2417 if (getResult().getType() != resultType) 2418 return emitOpError("expected result type to be ") << resultType; 2419 2420 return success(); 2421 } 2422 2423 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2424 // to use the source of the InsertStrided ops if we can detect that the 2425 // extracted vector is a subset of one of the vector inserted. 2426 static LogicalResult 2427 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2428 // Helper to extract integer out of ArrayAttr. 2429 auto getElement = [](ArrayAttr array, int idx) { 2430 return array[idx].cast<IntegerAttr>().getInt(); 2431 }; 2432 ArrayAttr extractOffsets = op.getOffsets(); 2433 ArrayAttr extractStrides = op.getStrides(); 2434 ArrayAttr extractSizes = op.getSizes(); 2435 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2436 while (insertOp) { 2437 if (op.getVectorType().getRank() != 2438 insertOp.getSourceVectorType().getRank()) 2439 return failure(); 2440 ArrayAttr insertOffsets = insertOp.getOffsets(); 2441 ArrayAttr insertStrides = insertOp.getStrides(); 2442 // If the rank of extract is greater than the rank of insert, we are likely 2443 // extracting a partial chunk of the vector inserted. 2444 if (extractOffsets.size() > insertOffsets.size()) 2445 return failure(); 2446 bool patialoverlap = false; 2447 bool disjoint = false; 2448 SmallVector<int64_t, 4> offsetDiffs; 2449 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2450 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2451 return failure(); 2452 int64_t start = getElement(insertOffsets, dim); 2453 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2454 int64_t offset = getElement(extractOffsets, dim); 2455 int64_t size = getElement(extractSizes, dim); 2456 // Check if the start of the extract offset is in the interval inserted. 2457 if (start <= offset && offset < end) { 2458 // If the extract interval overlaps but is not fully included we may 2459 // have a partial overlap that will prevent any folding. 2460 if (offset + size > end) 2461 patialoverlap = true; 2462 offsetDiffs.push_back(offset - start); 2463 continue; 2464 } 2465 disjoint = true; 2466 break; 2467 } 2468 // The extract element chunk is a subset of the insert element. 2469 if (!disjoint && !patialoverlap) { 2470 op.setOperand(insertOp.getSource()); 2471 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2472 OpBuilder b(op.getContext()); 2473 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2474 b.getI64ArrayAttr(offsetDiffs)); 2475 return success(); 2476 } 2477 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2478 // in the insert chain. 2479 if (disjoint) 2480 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2481 else { 2482 // The extracted vector partially overlap the inserted vector, we cannot 2483 // fold. 2484 return failure(); 2485 } 2486 } 2487 return failure(); 2488 } 2489 2490 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2491 if (getVectorType() == getResult().getType()) 2492 return getVector(); 2493 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2494 return getResult(); 2495 return {}; 2496 } 2497 2498 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2499 populateFromInt64AttrArray(getOffsets(), results); 2500 } 2501 2502 namespace { 2503 2504 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2505 // ConstantMaskOp. 2506 class StridedSliceConstantMaskFolder final 2507 : public OpRewritePattern<ExtractStridedSliceOp> { 2508 public: 2509 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2510 2511 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2512 PatternRewriter &rewriter) const override { 2513 // Return if 'extractStridedSliceOp' operand is not defined by a 2514 // ConstantMaskOp. 2515 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2516 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2517 if (!constantMaskOp) 2518 return failure(); 2519 // Return if 'extractStridedSliceOp' has non-unit strides. 2520 if (extractStridedSliceOp.hasNonUnitStrides()) 2521 return failure(); 2522 // Gather constant mask dimension sizes. 2523 SmallVector<int64_t, 4> maskDimSizes; 2524 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2525 // Gather strided slice offsets and sizes. 2526 SmallVector<int64_t, 4> sliceOffsets; 2527 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2528 sliceOffsets); 2529 SmallVector<int64_t, 4> sliceSizes; 2530 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2531 2532 // Compute slice of vector mask region. 2533 SmallVector<int64_t, 4> sliceMaskDimSizes; 2534 assert(sliceOffsets.size() == maskDimSizes.size()); 2535 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2536 int64_t maskDimSize = std::get<0>(it); 2537 int64_t sliceOffset = std::get<1>(it); 2538 int64_t sliceSize = std::get<2>(it); 2539 int64_t sliceMaskDimSize = std::max( 2540 static_cast<int64_t>(0), 2541 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2542 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2543 } 2544 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2545 // region is a conjunction of mask dim intervals). 2546 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2547 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2548 2549 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2550 // region. 2551 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2552 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2553 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2554 return success(); 2555 } 2556 }; 2557 2558 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2559 class StridedSliceConstantFolder final 2560 : public OpRewritePattern<ExtractStridedSliceOp> { 2561 public: 2562 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2563 2564 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2565 PatternRewriter &rewriter) const override { 2566 // Return if 'extractStridedSliceOp' operand is not defined by a 2567 // ConstantOp. 2568 auto constantOp = 2569 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2570 if (!constantOp) 2571 return failure(); 2572 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2573 if (!dense) 2574 return failure(); 2575 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2576 dense.getSplatValue<Attribute>()); 2577 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2578 newAttr); 2579 return success(); 2580 } 2581 }; 2582 2583 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2584 // BroadcastOp(ExtractStrideSliceOp). 2585 class StridedSliceBroadcast final 2586 : public OpRewritePattern<ExtractStridedSliceOp> { 2587 public: 2588 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2589 2590 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2591 PatternRewriter &rewriter) const override { 2592 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2593 if (!broadcast) 2594 return failure(); 2595 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2596 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2597 auto dstVecType = op.getType().cast<VectorType>(); 2598 unsigned dstRank = dstVecType.getRank(); 2599 unsigned rankDiff = dstRank - srcRank; 2600 // Check if the most inner dimensions of the source of the broadcast are the 2601 // same as the destination of the extract. If this is the case we can just 2602 // use a broadcast as the original dimensions are untouched. 2603 bool lowerDimMatch = true; 2604 for (unsigned i = 0; i < srcRank; i++) { 2605 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2606 lowerDimMatch = false; 2607 break; 2608 } 2609 } 2610 Value source = broadcast.getSource(); 2611 // If the inner dimensions don't match, it means we need to extract from the 2612 // source of the orignal broadcast and then broadcast the extracted value. 2613 // We also need to handle degenerated cases where the source is effectively 2614 // just a single scalar. 2615 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2616 if (!lowerDimMatch && !isScalarSrc) { 2617 source = rewriter.create<ExtractStridedSliceOp>( 2618 op->getLoc(), source, 2619 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2620 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2621 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2622 } 2623 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2624 return success(); 2625 } 2626 }; 2627 2628 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2629 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2630 public: 2631 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2632 2633 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2634 PatternRewriter &rewriter) const override { 2635 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2636 if (!splat) 2637 return failure(); 2638 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2639 return success(); 2640 } 2641 }; 2642 2643 } // namespace 2644 2645 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2646 RewritePatternSet &results, MLIRContext *context) { 2647 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2648 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2649 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2650 StridedSliceBroadcast, StridedSliceSplat>(context); 2651 } 2652 2653 //===----------------------------------------------------------------------===// 2654 // TransferReadOp 2655 //===----------------------------------------------------------------------===// 2656 2657 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2658 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2659 VectorType vectorType, Value source, 2660 ValueRange indices, AffineMapAttr permutationMapAttr, 2661 /*optional*/ ArrayAttr inBoundsAttr) { 2662 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2663 Value padding = builder.create<arith::ConstantOp>( 2664 result.location, elemType, builder.getZeroAttr(elemType)); 2665 build(builder, result, vectorType, source, indices, permutationMapAttr, 2666 padding, /*mask=*/Value(), inBoundsAttr); 2667 } 2668 2669 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2670 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2671 VectorType vectorType, Value source, 2672 ValueRange indices, AffineMap permutationMap, 2673 Optional<ArrayRef<bool>> inBounds) { 2674 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2675 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2676 ? builder.getBoolArrayAttr(inBounds.getValue()) 2677 : ArrayAttr(); 2678 build(builder, result, vectorType, source, indices, permutationMapAttr, 2679 inBoundsAttr); 2680 } 2681 2682 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2683 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2684 VectorType vectorType, Value source, 2685 ValueRange indices, Value padding, 2686 Optional<ArrayRef<bool>> inBounds) { 2687 AffineMap permutationMap = getTransferMinorIdentityMap( 2688 source.getType().cast<ShapedType>(), vectorType); 2689 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2690 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2691 ? builder.getBoolArrayAttr(inBounds.getValue()) 2692 : ArrayAttr(); 2693 build(builder, result, vectorType, source, indices, permutationMapAttr, 2694 padding, 2695 /*mask=*/Value(), inBoundsAttr); 2696 } 2697 2698 /// 4. Builder that sets padding to zero and permutation map to 2699 /// 'getMinorIdentityMap'. 2700 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2701 VectorType vectorType, Value source, 2702 ValueRange indices, 2703 Optional<ArrayRef<bool>> inBounds) { 2704 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2705 Value padding = builder.create<arith::ConstantOp>( 2706 result.location, elemType, builder.getZeroAttr(elemType)); 2707 build(builder, result, vectorType, source, indices, padding, inBounds); 2708 } 2709 2710 template <typename EmitFun> 2711 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2712 EmitFun emitOpError) { 2713 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2714 for (auto expr : permutationMap.getResults()) { 2715 auto dim = expr.dyn_cast<AffineDimExpr>(); 2716 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2717 if (zero) { 2718 if (zero.getValue() != 0) { 2719 return emitOpError( 2720 "requires a projected permutation_map (at most one dim or the zero " 2721 "constant can appear in each result)"); 2722 } 2723 continue; 2724 } 2725 if (!dim) { 2726 return emitOpError("requires a projected permutation_map (at most one " 2727 "dim or the zero constant can appear in each result)"); 2728 } 2729 if (seen[dim.getPosition()]) { 2730 return emitOpError( 2731 "requires a permutation_map that is a permutation (found one dim " 2732 "used more than once)"); 2733 } 2734 seen[dim.getPosition()] = true; 2735 } 2736 return success(); 2737 } 2738 2739 static LogicalResult 2740 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2741 VectorType vectorType, VectorType maskType, 2742 AffineMap permutationMap, ArrayAttr inBounds) { 2743 if (op->hasAttr("masked")) { 2744 return op->emitOpError("masked attribute has been removed. " 2745 "Use in_bounds instead."); 2746 } 2747 2748 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2749 return op->emitOpError( 2750 "requires source to be a memref or ranked tensor type"); 2751 2752 auto elementType = shapedType.getElementType(); 2753 DataLayout dataLayout = DataLayout::closest(op); 2754 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2755 // Memref or tensor has vector element type. 2756 unsigned sourceVecSize = 2757 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2758 vectorElementType.getShape().back(); 2759 unsigned resultVecSize = 2760 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2761 vectorType.getShape().back(); 2762 if (resultVecSize % sourceVecSize != 0) 2763 return op->emitOpError( 2764 "requires the bitwidth of the minor 1-D vector to be an integral " 2765 "multiple of the bitwidth of the minor 1-D vector of the source"); 2766 2767 unsigned sourceVecEltRank = vectorElementType.getRank(); 2768 unsigned resultVecRank = vectorType.getRank(); 2769 if (sourceVecEltRank > resultVecRank) 2770 return op->emitOpError( 2771 "requires source vector element and vector result ranks to match."); 2772 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2773 // Check that permutation map results match 'rankOffset' of vector type. 2774 if (permutationMap.getNumResults() != rankOffset) 2775 return op->emitOpError("requires a permutation_map with result dims of " 2776 "the same rank as the vector type"); 2777 2778 if (maskType) 2779 return op->emitOpError("does not support masks with vector element type"); 2780 } else { 2781 // Memref or tensor has scalar element type. 2782 unsigned minorSize = 2783 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2784 unsigned resultVecSize = 2785 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2786 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2787 return op->emitOpError( 2788 "requires the bitwidth of the minor 1-D vector to be an integral " 2789 "multiple of the bitwidth of the source element type"); 2790 2791 // Check that permutation map results match rank of vector type. 2792 if (permutationMap.getNumResults() != vectorType.getRank()) 2793 return op->emitOpError("requires a permutation_map with result dims of " 2794 "the same rank as the vector type"); 2795 2796 VectorType expectedMaskType = 2797 vector::detail::transferMaskType(vectorType, permutationMap); 2798 if (maskType && expectedMaskType != maskType) 2799 return op->emitOpError("expects mask type consistent with permutation " 2800 "map: ") 2801 << maskType; 2802 } 2803 2804 if (permutationMap.getNumSymbols() != 0) 2805 return op->emitOpError("requires permutation_map without symbols"); 2806 2807 if (permutationMap.getNumInputs() != shapedType.getRank()) 2808 return op->emitOpError("requires a permutation_map with input dims of the " 2809 "same rank as the source type"); 2810 2811 if (inBounds) { 2812 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2813 return op->emitOpError("expects the optional in_bounds attr of same rank " 2814 "as permutation_map results: ") 2815 << AffineMapAttr::get(permutationMap) 2816 << " vs inBounds of size: " << inBounds.size(); 2817 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2818 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2819 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2820 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2821 } 2822 2823 return success(); 2824 } 2825 2826 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2827 SmallVector<StringRef, 3> elidedAttrs; 2828 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2829 if (op.permutation_map().isMinorIdentity()) 2830 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2831 bool elideInBounds = true; 2832 if (auto inBounds = op.in_bounds()) { 2833 for (auto attr : *inBounds) { 2834 if (attr.template cast<BoolAttr>().getValue()) { 2835 elideInBounds = false; 2836 break; 2837 } 2838 } 2839 } 2840 if (elideInBounds) 2841 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2842 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2843 } 2844 2845 void TransferReadOp::print(OpAsmPrinter &p) { 2846 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2847 if (getMask()) 2848 p << ", " << getMask(); 2849 printTransferAttrs(p, *this); 2850 p << " : " << getShapedType() << ", " << getVectorType(); 2851 } 2852 2853 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2854 auto &builder = parser.getBuilder(); 2855 SMLoc typesLoc; 2856 OpAsmParser::UnresolvedOperand sourceInfo; 2857 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2858 OpAsmParser::UnresolvedOperand paddingInfo; 2859 SmallVector<Type, 2> types; 2860 OpAsmParser::UnresolvedOperand maskInfo; 2861 // Parsing with support for paddingValue. 2862 if (parser.parseOperand(sourceInfo) || 2863 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2864 parser.parseComma() || parser.parseOperand(paddingInfo)) 2865 return failure(); 2866 ParseResult hasMask = parser.parseOptionalComma(); 2867 if (hasMask.succeeded()) { 2868 if (parser.parseOperand(maskInfo)) 2869 return failure(); 2870 } 2871 if (parser.parseOptionalAttrDict(result.attributes) || 2872 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2873 return failure(); 2874 if (types.size() != 2) 2875 return parser.emitError(typesLoc, "requires two types"); 2876 auto indexType = builder.getIndexType(); 2877 auto shapedType = types[0].dyn_cast<ShapedType>(); 2878 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2879 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2880 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2881 if (!vectorType) 2882 return parser.emitError(typesLoc, "requires vector type"); 2883 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2884 Attribute mapAttr = result.attributes.get(permutationAttrName); 2885 if (!mapAttr) { 2886 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2887 // Update `mapAttr` that is used later to determine mask type. 2888 mapAttr = AffineMapAttr::get(permMap); 2889 result.attributes.set(permutationAttrName, mapAttr); 2890 } 2891 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2892 parser.resolveOperands(indexInfo, indexType, result.operands) || 2893 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2894 result.operands)) 2895 return failure(); 2896 if (hasMask.succeeded()) { 2897 if (shapedType.getElementType().dyn_cast<VectorType>()) 2898 return parser.emitError( 2899 maskInfo.location, "does not support masks with vector element type"); 2900 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2901 // Instead of adding the mask type as an op type, compute it based on the 2902 // vector type and the permutation map (to keep the type signature small). 2903 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2904 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2905 return failure(); 2906 } 2907 result.addAttribute( 2908 TransferReadOp::getOperandSegmentSizeAttr(), 2909 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2910 static_cast<int32_t>(hasMask.succeeded())})); 2911 return parser.addTypeToList(vectorType, result.types); 2912 } 2913 2914 LogicalResult TransferReadOp::verify() { 2915 // Consistency of elemental types in source and vector. 2916 ShapedType shapedType = getShapedType(); 2917 VectorType vectorType = getVectorType(); 2918 VectorType maskType = getMaskType(); 2919 auto paddingType = getPadding().getType(); 2920 auto permutationMap = getPermutationMap(); 2921 auto sourceElementType = shapedType.getElementType(); 2922 2923 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2924 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2925 2926 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2927 shapedType, vectorType, maskType, permutationMap, 2928 getInBounds() ? *getInBounds() : ArrayAttr()))) 2929 return failure(); 2930 2931 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2932 // Source has vector element type. 2933 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2934 if (sourceVectorElementType != paddingType) 2935 return emitOpError( 2936 "requires source element type and padding type to match."); 2937 2938 } else { 2939 // Check that 'paddingType' is valid to store in a vector type. 2940 if (!VectorType::isValidElementType(paddingType)) 2941 return emitOpError("requires valid padding vector elemental type"); 2942 2943 // Check that padding type and vector element types match. 2944 if (paddingType != sourceElementType) 2945 return emitOpError( 2946 "requires formal padding and source of the same elemental type"); 2947 } 2948 2949 return verifyPermutationMap(permutationMap, 2950 [&](Twine t) { return emitOpError(t); }); 2951 } 2952 2953 /// This is a common class used for patterns of the form 2954 /// ``` 2955 /// someop(memrefcast) -> someop 2956 /// ``` 2957 /// It folds the source of the memref.cast into the root operation directly. 2958 static LogicalResult foldMemRefCast(Operation *op) { 2959 bool folded = false; 2960 for (OpOperand &operand : op->getOpOperands()) { 2961 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2962 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2963 operand.set(castOp.getOperand()); 2964 folded = true; 2965 } 2966 } 2967 return success(folded); 2968 } 2969 2970 static LogicalResult foldTensorCast(Operation *op) { 2971 bool folded = false; 2972 for (OpOperand &operand : op->getOpOperands()) { 2973 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2974 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2975 operand.set(castOp.getOperand()); 2976 folded = true; 2977 } 2978 } 2979 return success(folded); 2980 } 2981 2982 template <typename TransferOp> 2983 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2984 // TODO: support more aggressive createOrFold on: 2985 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2986 if (op.getShapedType().isDynamicDim(indicesIdx)) 2987 return false; 2988 Value index = op.getIndices()[indicesIdx]; 2989 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2990 if (!cstOp) 2991 return false; 2992 2993 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2994 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2995 2996 return cstOp.value() + vectorSize <= sourceSize; 2997 } 2998 2999 template <typename TransferOp> 3000 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3001 // TODO: support 0-d corner case. 3002 // TODO: Be less conservative. 3003 if (op.getTransferRank() == 0) 3004 return failure(); 3005 AffineMap permutationMap = op.getPermutationMap(); 3006 bool changed = false; 3007 SmallVector<bool, 4> newInBounds; 3008 newInBounds.reserve(op.getTransferRank()); 3009 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3010 // Already marked as in-bounds, nothing to see here. 3011 if (op.isDimInBounds(i)) { 3012 newInBounds.push_back(true); 3013 continue; 3014 } 3015 // Currently out-of-bounds, check whether we can statically determine it is 3016 // inBounds. 3017 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3018 assert(dimExpr && "Broadcast dims must be in-bounds"); 3019 auto inBounds = 3020 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3021 newInBounds.push_back(inBounds); 3022 // We commit the pattern if it is "more inbounds". 3023 changed |= inBounds; 3024 } 3025 if (!changed) 3026 return failure(); 3027 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3028 OpBuilder b(op.getContext()); 3029 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3030 b.getBoolArrayAttr(newInBounds)); 3031 return success(); 3032 } 3033 3034 /// ``` 3035 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3036 /// : vector<1x4xf32>, tensor<4x4xf32> 3037 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3038 /// : tensor<4x4xf32>, vector<1x4xf32> 3039 /// ``` 3040 /// -> Folds into 3041 /// ``` 3042 /// %v0 3043 /// ``` 3044 static Value foldRAW(TransferReadOp readOp) { 3045 if (!readOp.getShapedType().isa<RankedTensorType>()) 3046 return {}; 3047 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3048 while (defWrite) { 3049 if (checkSameValueRAW(defWrite, readOp)) 3050 return defWrite.getVector(); 3051 if (!isDisjointTransferIndices( 3052 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3053 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3054 break; 3055 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3056 } 3057 return {}; 3058 } 3059 3060 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3061 if (Value vec = foldRAW(*this)) 3062 return vec; 3063 /// transfer_read(memrefcast) -> transfer_read 3064 if (succeeded(foldTransferInBoundsAttribute(*this))) 3065 return getResult(); 3066 if (succeeded(foldMemRefCast(*this))) 3067 return getResult(); 3068 if (succeeded(foldTensorCast(*this))) 3069 return getResult(); 3070 return OpFoldResult(); 3071 } 3072 3073 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3074 return llvm::to_vector<4>(getVectorType().getShape()); 3075 } 3076 3077 void TransferReadOp::getEffects( 3078 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3079 &effects) { 3080 if (getShapedType().isa<MemRefType>()) 3081 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3082 SideEffects::DefaultResource::get()); 3083 } 3084 3085 namespace { 3086 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3087 /// 3088 /// ``` 3089 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3090 /// : tensor<?x?xf32> to tensor<?x?xf32> 3091 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3092 /// : tensor<?x?xf32>, vector<4x5xf32> 3093 /// ``` 3094 /// is rewritten to: 3095 /// ``` 3096 /// %p0 = arith.addi %a, %e : index 3097 /// %p1 = arith.addi %b, %f : index 3098 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3099 /// : tensor<?x?xf32>, vector<4x5xf32> 3100 /// ``` 3101 struct FoldExtractSliceIntoTransferRead 3102 : public OpRewritePattern<TransferReadOp> { 3103 public: 3104 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3105 3106 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3107 PatternRewriter &rewriter) const override { 3108 // TODO: support 0-d corner case. 3109 if (xferOp.getTransferRank() == 0) 3110 return failure(); 3111 if (xferOp.hasOutOfBoundsDim()) 3112 return failure(); 3113 if (!xferOp.getPermutationMap().isIdentity()) 3114 return failure(); 3115 if (xferOp.getMask()) 3116 return failure(); 3117 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3118 if (!extractOp) 3119 return failure(); 3120 if (!extractOp.hasUnitStride()) 3121 return failure(); 3122 3123 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3124 // dims are exactly the leading dims. I.e. the following is illegal: 3125 // ``` 3126 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3127 // tensor<2x1x4xf32> to tensor<2x4xf32> 3128 // %1 = vector.transfer_read %0[0,0], %cst : 3129 // tensor<2x4xf32>, vector<2x4xf32> 3130 // ``` 3131 // 3132 // Cannot fold into: 3133 // ``` 3134 // %0 = vector.transfer_read %t[0,0,0], %cst : 3135 // tensor<2x1x4xf32>, vector<2x4xf32> 3136 // ``` 3137 // For this, check the trailing `vectorRank` dims of the extract_slice 3138 // result tensor match the trailing dims of the inferred result tensor. 3139 int64_t rankReduced = 3140 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3141 int64_t vectorRank = xferOp.getVectorType().getRank(); 3142 RankedTensorType inferredDestTensorType = 3143 tensor::ExtractSliceOp::inferResultType( 3144 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3145 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3146 auto actualDestTensorShape = extractOp.getType().getShape(); 3147 if (rankReduced > 0 && 3148 actualDestTensorShape.take_back(vectorRank) != 3149 inferredDestTensorType.getShape().take_back(vectorRank)) 3150 return failure(); 3151 3152 SmallVector<Value> newIndices; 3153 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3154 // indices first. 3155 for (int64_t i = 0; i < rankReduced; ++i) { 3156 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3157 newIndices.push_back(getValueOrCreateConstantIndexOp( 3158 rewriter, extractOp.getLoc(), offset)); 3159 } 3160 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3161 OpFoldResult offset = 3162 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3163 newIndices.push_back(rewriter.create<arith::AddIOp>( 3164 xferOp->getLoc(), it.value(), 3165 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3166 offset))); 3167 } 3168 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3169 rewriter.replaceOpWithNewOp<TransferReadOp>( 3170 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3171 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3172 3173 return success(); 3174 } 3175 }; 3176 } // namespace 3177 3178 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3179 MLIRContext *context) { 3180 results.add<FoldExtractSliceIntoTransferRead>(context); 3181 } 3182 3183 //===----------------------------------------------------------------------===// 3184 // TransferWriteOp 3185 //===----------------------------------------------------------------------===// 3186 3187 /// 1. Builder with type inference. 3188 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3189 Value vector, Value dest, ValueRange indices, 3190 AffineMapAttr permutationMapAttr, 3191 /*optional*/ Value mask, 3192 /*optional*/ ArrayAttr inBoundsAttr) { 3193 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3194 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3195 mask, inBoundsAttr); 3196 } 3197 3198 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3199 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3200 Value vector, Value dest, ValueRange indices, 3201 AffineMapAttr permutationMapAttr, 3202 /*optional*/ ArrayAttr inBoundsAttr) { 3203 build(builder, result, vector, dest, indices, permutationMapAttr, 3204 /*mask=*/Value(), inBoundsAttr); 3205 } 3206 3207 /// 3. Builder with type inference that sets an empty mask (variant without 3208 /// attrs) 3209 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3210 Value vector, Value dest, ValueRange indices, 3211 AffineMap permutationMap, 3212 Optional<ArrayRef<bool>> inBounds) { 3213 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3214 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3215 ? builder.getBoolArrayAttr(inBounds.getValue()) 3216 : ArrayAttr(); 3217 build(builder, result, vector, dest, indices, permutationMapAttr, 3218 /*mask=*/Value(), inBoundsAttr); 3219 } 3220 3221 /// 4. Builder with type inference that sets an empty mask and sets permutation 3222 /// map to 'getMinorIdentityMap'. 3223 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3224 Value vector, Value dest, ValueRange indices, 3225 Optional<ArrayRef<bool>> inBounds) { 3226 auto vectorType = vector.getType().cast<VectorType>(); 3227 AffineMap permutationMap = getTransferMinorIdentityMap( 3228 dest.getType().cast<ShapedType>(), vectorType); 3229 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3230 } 3231 3232 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3233 OperationState &result) { 3234 auto &builder = parser.getBuilder(); 3235 SMLoc typesLoc; 3236 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3237 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3238 SmallVector<Type, 2> types; 3239 OpAsmParser::UnresolvedOperand maskInfo; 3240 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3241 parser.parseOperand(sourceInfo) || 3242 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3243 return failure(); 3244 ParseResult hasMask = parser.parseOptionalComma(); 3245 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3246 return failure(); 3247 if (parser.parseOptionalAttrDict(result.attributes) || 3248 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3249 return failure(); 3250 if (types.size() != 2) 3251 return parser.emitError(typesLoc, "requires two types"); 3252 auto indexType = builder.getIndexType(); 3253 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3254 if (!vectorType) 3255 return parser.emitError(typesLoc, "requires vector type"); 3256 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3257 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3258 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3259 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3260 auto attr = result.attributes.get(permutationAttrName); 3261 if (!attr) { 3262 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3263 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3264 } 3265 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3266 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3267 parser.resolveOperands(indexInfo, indexType, result.operands)) 3268 return failure(); 3269 if (hasMask.succeeded()) { 3270 if (shapedType.getElementType().dyn_cast<VectorType>()) 3271 return parser.emitError( 3272 maskInfo.location, "does not support masks with vector element type"); 3273 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3274 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3275 return failure(); 3276 } 3277 result.addAttribute( 3278 TransferWriteOp::getOperandSegmentSizeAttr(), 3279 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3280 static_cast<int32_t>(hasMask.succeeded())})); 3281 return failure(shapedType.isa<RankedTensorType>() && 3282 parser.addTypeToList(shapedType, result.types)); 3283 } 3284 3285 void TransferWriteOp::print(OpAsmPrinter &p) { 3286 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3287 if (getMask()) 3288 p << ", " << getMask(); 3289 printTransferAttrs(p, *this); 3290 p << " : " << getVectorType() << ", " << getShapedType(); 3291 } 3292 3293 LogicalResult TransferWriteOp::verify() { 3294 // Consistency of elemental types in shape and vector. 3295 ShapedType shapedType = getShapedType(); 3296 VectorType vectorType = getVectorType(); 3297 VectorType maskType = getMaskType(); 3298 auto permutationMap = getPermutationMap(); 3299 3300 if (llvm::size(getIndices()) != shapedType.getRank()) 3301 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3302 3303 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3304 // as the semantics is unclear. This can be revisited later if necessary. 3305 if (hasBroadcastDim()) 3306 return emitOpError("should not have broadcast dimensions"); 3307 3308 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3309 shapedType, vectorType, maskType, permutationMap, 3310 getInBounds() ? *getInBounds() : ArrayAttr()))) 3311 return failure(); 3312 3313 return verifyPermutationMap(permutationMap, 3314 [&](Twine t) { return emitOpError(t); }); 3315 } 3316 3317 /// Fold: 3318 /// ``` 3319 /// %t1 = ... 3320 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3321 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3322 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3323 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3324 /// ``` 3325 /// 3326 /// into: 3327 /// 3328 /// ``` 3329 /// %t0 3330 /// ``` 3331 /// 3332 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3333 /// block argument or has side effects. 3334 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3335 ArrayRef<Attribute>, 3336 SmallVectorImpl<OpFoldResult> &results) { 3337 // TODO: support 0-d corner case. 3338 if (write.getTransferRank() == 0) 3339 return failure(); 3340 auto rankedTensorType = 3341 write.getSource().getType().dyn_cast<RankedTensorType>(); 3342 // If not operating on tensors, bail. 3343 if (!rankedTensorType) 3344 return failure(); 3345 // If no read, bail. 3346 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3347 if (!read) 3348 return failure(); 3349 // TODO: support 0-d corner case. 3350 if (read.getTransferRank() == 0) 3351 return failure(); 3352 // For now, only accept minor identity. Future: composition is minor identity. 3353 if (!read.getPermutationMap().isMinorIdentity() || 3354 !write.getPermutationMap().isMinorIdentity()) 3355 return failure(); 3356 // Bail on mismatching ranks. 3357 if (read.getTransferRank() != write.getTransferRank()) 3358 return failure(); 3359 // Bail on potential out-of-bounds accesses. 3360 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3361 return failure(); 3362 // Tensor types must be the same. 3363 if (read.getSource().getType() != rankedTensorType) 3364 return failure(); 3365 // Vector types must be the same. 3366 if (read.getVectorType() != write.getVectorType()) 3367 return failure(); 3368 // Vector and Tensor shapes must match. 3369 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3370 return failure(); 3371 // If any index is nonzero. 3372 auto isNotConstantZero = [](Value v) { 3373 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3374 return !cstOp || cstOp.value() != 0; 3375 }; 3376 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3377 llvm::any_of(write.getIndices(), isNotConstantZero)) 3378 return failure(); 3379 // Success. 3380 results.push_back(read.getSource()); 3381 return success(); 3382 } 3383 3384 static bool checkSameValueWAR(vector::TransferReadOp read, 3385 vector::TransferWriteOp write) { 3386 return read.getSource() == write.getSource() && 3387 read.getIndices() == write.getIndices() && 3388 read.getPermutationMap() == write.getPermutationMap() && 3389 read.getVectorType() == write.getVectorType() && !read.getMask() && 3390 !write.getMask(); 3391 } 3392 /// Fold transfer_write write after read: 3393 /// ``` 3394 /// %t0 = ... 3395 /// %v = vector.transfer_read %t0[%c0...] : 3396 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3397 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3398 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3399 /// ``` 3400 /// 3401 /// into: 3402 /// 3403 /// ``` 3404 /// %t0 3405 /// ``` 3406 static LogicalResult foldWAR(TransferWriteOp write, 3407 SmallVectorImpl<OpFoldResult> &results) { 3408 if (!write.getSource().getType().isa<RankedTensorType>()) 3409 return failure(); 3410 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3411 if (!read) 3412 return failure(); 3413 3414 if (!checkSameValueWAR(read, write)) 3415 return failure(); 3416 results.push_back(read.getSource()); 3417 return success(); 3418 } 3419 3420 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3421 SmallVectorImpl<OpFoldResult> &results) { 3422 if (succeeded(foldReadInitWrite(*this, operands, results))) 3423 return success(); 3424 if (succeeded(foldWAR(*this, results))) 3425 return success(); 3426 if (succeeded(foldTransferInBoundsAttribute(*this))) 3427 return success(); 3428 return foldMemRefCast(*this); 3429 } 3430 3431 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3432 return llvm::to_vector<4>(getVectorType().getShape()); 3433 } 3434 3435 void TransferWriteOp::getEffects( 3436 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3437 &effects) { 3438 if (getShapedType().isa<MemRefType>()) 3439 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3440 SideEffects::DefaultResource::get()); 3441 } 3442 3443 namespace { 3444 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3445 /// DCE 3446 /// ``` 3447 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3448 /// : vector<1x4xf32>, tensor<4x4xf32> 3449 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3450 /// : vector<1x4xf32>, tensor<4x4xf32> 3451 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3452 /// : vector<1x4xf32>, tensor<4x4xf32> 3453 /// ``` 3454 /// 3455 /// into: 3456 /// 3457 /// ``` 3458 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3459 /// : vector<1x4xf32>, tensor<4x4xf32> 3460 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3461 /// : vector<1x4xf32>, tensor<4x4xf32> 3462 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3463 /// : vector<1x4xf32>, tensor<4x4xf32> 3464 /// ``` 3465 /// 3466 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3467 /// any other uses. 3468 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3469 public: 3470 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3471 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3472 PatternRewriter &rewriter) const override { 3473 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3474 return failure(); 3475 vector::TransferWriteOp writeToModify = writeOp; 3476 3477 auto defWrite = 3478 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3479 while (defWrite) { 3480 if (checkSameValueWAW(writeOp, defWrite)) { 3481 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3482 return success(); 3483 } 3484 if (!isDisjointTransferIndices( 3485 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3486 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3487 break; 3488 // If the previous write op doesn't have any other use we an safely look 3489 // at the previous store to see if it can be removed. 3490 if (!defWrite->hasOneUse()) 3491 break; 3492 writeToModify = defWrite; 3493 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3494 } 3495 return failure(); 3496 } 3497 }; 3498 3499 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3500 /// could directly write to the insert_slice's destination. E.g.: 3501 /// 3502 /// ``` 3503 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3504 /// : vector<4x5xf32>, tensor<4x5xf32> 3505 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3506 /// : tensor<4x5xf32> into tensor<?x?xf32> 3507 /// ``` 3508 /// is rewritten to: 3509 /// ``` 3510 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3511 /// : vector<4x5xf32>, tensor<?x?xf32> 3512 /// ``` 3513 struct FoldInsertSliceIntoTransferWrite 3514 : public OpRewritePattern<tensor::InsertSliceOp> { 3515 public: 3516 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3517 3518 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3519 PatternRewriter &rewriter) const override { 3520 if (!insertOp.hasUnitStride()) 3521 return failure(); 3522 3523 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3524 if (!xferOp) 3525 return failure(); 3526 // TODO: support 0-d corner case. 3527 if (xferOp.getTransferRank() == 0) 3528 return failure(); 3529 3530 if (xferOp.hasOutOfBoundsDim()) 3531 return failure(); 3532 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3533 return failure(); 3534 if (xferOp.getMask()) 3535 return failure(); 3536 // Fold only if the TransferWriteOp completely overwrites the `source` with 3537 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3538 // content is the data of the vector. 3539 if (!llvm::equal(xferOp.getVectorType().getShape(), 3540 xferOp.getShapedType().getShape())) 3541 return failure(); 3542 if (!xferOp.getPermutationMap().isIdentity()) 3543 return failure(); 3544 3545 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3546 // dims are exactly the leading dims. I.e. the following is illegal: 3547 // ``` 3548 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3549 // vector<2x4xf32>, tensor<2x4xf32> 3550 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3551 // tensor<2x4xf32> into tensor<2x1x4xf32> 3552 // ``` 3553 // 3554 // Cannot fold into: 3555 // ``` 3556 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3557 // vector<2x4xf32>, tensor<2x1x4xf32> 3558 // ``` 3559 // For this, check the trailing `vectorRank` dims of the insert_slice result 3560 // tensor match the trailing dims of the inferred result tensor. 3561 int64_t rankReduced = 3562 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3563 int64_t vectorRank = xferOp.getVectorType().getRank(); 3564 RankedTensorType inferredSourceTensorType = 3565 tensor::ExtractSliceOp::inferResultType( 3566 insertOp.getType(), insertOp.getMixedOffsets(), 3567 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3568 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3569 if (rankReduced > 0 && 3570 actualSourceTensorShape.take_back(vectorRank) != 3571 inferredSourceTensorType.getShape().take_back(vectorRank)) 3572 return failure(); 3573 3574 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3575 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3576 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3577 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3578 insertOp.dest(), indices, 3579 ArrayRef<bool>{inBounds}); 3580 return success(); 3581 } 3582 }; 3583 3584 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3585 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3586 /// overwritten and inserted into another tensor. After this rewrite, the 3587 /// operations bufferize in-place since all of them work on the same slice. 3588 /// 3589 /// For example: 3590 /// ```mlir 3591 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3592 /// : vector<8x16xf32>, tensor<8x16xf32> 3593 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3594 /// : tensor<8x16xf32> to tensor<?x?xf32> 3595 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3596 /// : tensor<?x?xf32> into tensor<27x37xf32> 3597 /// ``` 3598 /// folds to 3599 /// ```mlir 3600 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3601 /// : tensor<27x37xf32> to tensor<?x?xf32> 3602 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3603 /// : vector<8x16xf32>, tensor<?x?xf32> 3604 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3605 /// : tensor<?x?xf32> into tensor<27x37xf32> 3606 /// ``` 3607 struct SwapExtractSliceOfTransferWrite 3608 : public OpRewritePattern<tensor::InsertSliceOp> { 3609 public: 3610 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3611 3612 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3613 PatternRewriter &rewriter) const override { 3614 if (!insertOp.hasUnitStride()) 3615 return failure(); 3616 auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3617 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3618 return failure(); 3619 auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>(); 3620 if (!transferOp || !transferOp->hasOneUse()) 3621 return failure(); 3622 3623 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3624 // rank-reducing. 3625 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3626 return rewriter.notifyMatchFailure(insertOp, 3627 "use-def chain is rank-reducing"); 3628 } 3629 3630 // Fail if tensor::ExtractSliceOp has non-zero offset. 3631 if (!extractOp.hasZeroOffset()) { 3632 return rewriter.notifyMatchFailure(insertOp, 3633 "ExtractSliceOp has non-zero offset"); 3634 } 3635 3636 // Fail if tensor::TransferWriteOp has non-zero offset. 3637 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3638 return getConstantIntValue(value) == static_cast<int64_t>(0); 3639 })) { 3640 return rewriter.notifyMatchFailure(insertOp, 3641 "TranferWriteOp has non-zero offset"); 3642 } 3643 3644 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3645 for (const auto &it : 3646 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3647 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3648 return rewriter.notifyMatchFailure( 3649 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3650 } 3651 } 3652 3653 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3654 assert(transferOp.getVectorType().hasStaticShape() && 3655 "expected vector to have a static shape"); 3656 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3657 SmallVector<int64_t> resultShape = applyPermutationMap( 3658 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3659 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3660 return rewriter.notifyMatchFailure( 3661 insertOp, "TransferWriteOp may not write the full tensor."); 3662 } 3663 3664 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3665 SmallVector<int64_t> newResultShape = applyPermutationMap( 3666 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3667 SmallVector<bool> newInBounds; 3668 for (const auto &en : enumerate(newResultShape)) 3669 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3670 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3671 extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(), 3672 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3673 insertOp.getMixedStrides()); 3674 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3675 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3676 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3677 rewriter.getBoolArrayAttr(newInBounds)); 3678 rewriter.updateRootInPlace(insertOp, [&]() { 3679 insertOp.sourceMutable().assign(newTransferWriteOp.getResult()); 3680 }); 3681 return success(); 3682 } 3683 }; 3684 3685 } // namespace 3686 3687 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3688 MLIRContext *context) { 3689 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3690 SwapExtractSliceOfTransferWrite>(context); 3691 } 3692 3693 //===----------------------------------------------------------------------===// 3694 // LoadOp 3695 //===----------------------------------------------------------------------===// 3696 3697 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3698 MemRefType memRefTy) { 3699 if (!isLastMemrefDimUnitStride(memRefTy)) 3700 return op->emitOpError("most minor memref dim must have unit stride"); 3701 return success(); 3702 } 3703 3704 LogicalResult vector::LoadOp::verify() { 3705 VectorType resVecTy = getVectorType(); 3706 MemRefType memRefTy = getMemRefType(); 3707 3708 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3709 return failure(); 3710 3711 // Checks for vector memrefs. 3712 Type memElemTy = memRefTy.getElementType(); 3713 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3714 if (memVecTy != resVecTy) 3715 return emitOpError("base memref and result vector types should match"); 3716 memElemTy = memVecTy.getElementType(); 3717 } 3718 3719 if (resVecTy.getElementType() != memElemTy) 3720 return emitOpError("base and result element types should match"); 3721 if (llvm::size(getIndices()) != memRefTy.getRank()) 3722 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3723 return success(); 3724 } 3725 3726 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3727 if (succeeded(foldMemRefCast(*this))) 3728 return getResult(); 3729 return OpFoldResult(); 3730 } 3731 3732 //===----------------------------------------------------------------------===// 3733 // StoreOp 3734 //===----------------------------------------------------------------------===// 3735 3736 LogicalResult vector::StoreOp::verify() { 3737 VectorType valueVecTy = getVectorType(); 3738 MemRefType memRefTy = getMemRefType(); 3739 3740 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3741 return failure(); 3742 3743 // Checks for vector memrefs. 3744 Type memElemTy = memRefTy.getElementType(); 3745 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3746 if (memVecTy != valueVecTy) 3747 return emitOpError( 3748 "base memref and valueToStore vector types should match"); 3749 memElemTy = memVecTy.getElementType(); 3750 } 3751 3752 if (valueVecTy.getElementType() != memElemTy) 3753 return emitOpError("base and valueToStore element type should match"); 3754 if (llvm::size(getIndices()) != memRefTy.getRank()) 3755 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3756 return success(); 3757 } 3758 3759 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3760 SmallVectorImpl<OpFoldResult> &results) { 3761 return foldMemRefCast(*this); 3762 } 3763 3764 //===----------------------------------------------------------------------===// 3765 // MaskedLoadOp 3766 //===----------------------------------------------------------------------===// 3767 3768 LogicalResult MaskedLoadOp::verify() { 3769 VectorType maskVType = getMaskVectorType(); 3770 VectorType passVType = getPassThruVectorType(); 3771 VectorType resVType = getVectorType(); 3772 MemRefType memType = getMemRefType(); 3773 3774 if (resVType.getElementType() != memType.getElementType()) 3775 return emitOpError("base and result element type should match"); 3776 if (llvm::size(getIndices()) != memType.getRank()) 3777 return emitOpError("requires ") << memType.getRank() << " indices"; 3778 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3779 return emitOpError("expected result dim to match mask dim"); 3780 if (resVType != passVType) 3781 return emitOpError("expected pass_thru of same type as result type"); 3782 return success(); 3783 } 3784 3785 namespace { 3786 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3787 public: 3788 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3789 LogicalResult matchAndRewrite(MaskedLoadOp load, 3790 PatternRewriter &rewriter) const override { 3791 switch (get1DMaskFormat(load.getMask())) { 3792 case MaskFormat::AllTrue: 3793 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3794 load, load.getType(), load.getBase(), load.getIndices()); 3795 return success(); 3796 case MaskFormat::AllFalse: 3797 rewriter.replaceOp(load, load.getPassThru()); 3798 return success(); 3799 case MaskFormat::Unknown: 3800 return failure(); 3801 } 3802 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3803 } 3804 }; 3805 } // namespace 3806 3807 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3808 MLIRContext *context) { 3809 results.add<MaskedLoadFolder>(context); 3810 } 3811 3812 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3813 if (succeeded(foldMemRefCast(*this))) 3814 return getResult(); 3815 return OpFoldResult(); 3816 } 3817 3818 //===----------------------------------------------------------------------===// 3819 // MaskedStoreOp 3820 //===----------------------------------------------------------------------===// 3821 3822 LogicalResult MaskedStoreOp::verify() { 3823 VectorType maskVType = getMaskVectorType(); 3824 VectorType valueVType = getVectorType(); 3825 MemRefType memType = getMemRefType(); 3826 3827 if (valueVType.getElementType() != memType.getElementType()) 3828 return emitOpError("base and valueToStore element type should match"); 3829 if (llvm::size(getIndices()) != memType.getRank()) 3830 return emitOpError("requires ") << memType.getRank() << " indices"; 3831 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3832 return emitOpError("expected valueToStore dim to match mask dim"); 3833 return success(); 3834 } 3835 3836 namespace { 3837 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3838 public: 3839 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3840 LogicalResult matchAndRewrite(MaskedStoreOp store, 3841 PatternRewriter &rewriter) const override { 3842 switch (get1DMaskFormat(store.getMask())) { 3843 case MaskFormat::AllTrue: 3844 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3845 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3846 return success(); 3847 case MaskFormat::AllFalse: 3848 rewriter.eraseOp(store); 3849 return success(); 3850 case MaskFormat::Unknown: 3851 return failure(); 3852 } 3853 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3854 } 3855 }; 3856 } // namespace 3857 3858 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3859 MLIRContext *context) { 3860 results.add<MaskedStoreFolder>(context); 3861 } 3862 3863 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3864 SmallVectorImpl<OpFoldResult> &results) { 3865 return foldMemRefCast(*this); 3866 } 3867 3868 //===----------------------------------------------------------------------===// 3869 // GatherOp 3870 //===----------------------------------------------------------------------===// 3871 3872 LogicalResult GatherOp::verify() { 3873 VectorType indVType = getIndexVectorType(); 3874 VectorType maskVType = getMaskVectorType(); 3875 VectorType resVType = getVectorType(); 3876 MemRefType memType = getMemRefType(); 3877 3878 if (resVType.getElementType() != memType.getElementType()) 3879 return emitOpError("base and result element type should match"); 3880 if (llvm::size(getIndices()) != memType.getRank()) 3881 return emitOpError("requires ") << memType.getRank() << " indices"; 3882 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3883 return emitOpError("expected result dim to match indices dim"); 3884 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3885 return emitOpError("expected result dim to match mask dim"); 3886 if (resVType != getPassThruVectorType()) 3887 return emitOpError("expected pass_thru of same type as result type"); 3888 return success(); 3889 } 3890 3891 namespace { 3892 class GatherFolder final : public OpRewritePattern<GatherOp> { 3893 public: 3894 using OpRewritePattern<GatherOp>::OpRewritePattern; 3895 LogicalResult matchAndRewrite(GatherOp gather, 3896 PatternRewriter &rewriter) const override { 3897 switch (get1DMaskFormat(gather.getMask())) { 3898 case MaskFormat::AllTrue: 3899 return failure(); // no unmasked equivalent 3900 case MaskFormat::AllFalse: 3901 rewriter.replaceOp(gather, gather.getPassThru()); 3902 return success(); 3903 case MaskFormat::Unknown: 3904 return failure(); 3905 } 3906 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3907 } 3908 }; 3909 } // namespace 3910 3911 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3912 MLIRContext *context) { 3913 results.add<GatherFolder>(context); 3914 } 3915 3916 //===----------------------------------------------------------------------===// 3917 // ScatterOp 3918 //===----------------------------------------------------------------------===// 3919 3920 LogicalResult ScatterOp::verify() { 3921 VectorType indVType = getIndexVectorType(); 3922 VectorType maskVType = getMaskVectorType(); 3923 VectorType valueVType = getVectorType(); 3924 MemRefType memType = getMemRefType(); 3925 3926 if (valueVType.getElementType() != memType.getElementType()) 3927 return emitOpError("base and valueToStore element type should match"); 3928 if (llvm::size(getIndices()) != memType.getRank()) 3929 return emitOpError("requires ") << memType.getRank() << " indices"; 3930 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3931 return emitOpError("expected valueToStore dim to match indices dim"); 3932 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3933 return emitOpError("expected valueToStore dim to match mask dim"); 3934 return success(); 3935 } 3936 3937 namespace { 3938 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3939 public: 3940 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3941 LogicalResult matchAndRewrite(ScatterOp scatter, 3942 PatternRewriter &rewriter) const override { 3943 switch (get1DMaskFormat(scatter.getMask())) { 3944 case MaskFormat::AllTrue: 3945 return failure(); // no unmasked equivalent 3946 case MaskFormat::AllFalse: 3947 rewriter.eraseOp(scatter); 3948 return success(); 3949 case MaskFormat::Unknown: 3950 return failure(); 3951 } 3952 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3953 } 3954 }; 3955 } // namespace 3956 3957 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3958 MLIRContext *context) { 3959 results.add<ScatterFolder>(context); 3960 } 3961 3962 //===----------------------------------------------------------------------===// 3963 // ExpandLoadOp 3964 //===----------------------------------------------------------------------===// 3965 3966 LogicalResult ExpandLoadOp::verify() { 3967 VectorType maskVType = getMaskVectorType(); 3968 VectorType passVType = getPassThruVectorType(); 3969 VectorType resVType = getVectorType(); 3970 MemRefType memType = getMemRefType(); 3971 3972 if (resVType.getElementType() != memType.getElementType()) 3973 return emitOpError("base and result element type should match"); 3974 if (llvm::size(getIndices()) != memType.getRank()) 3975 return emitOpError("requires ") << memType.getRank() << " indices"; 3976 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3977 return emitOpError("expected result dim to match mask dim"); 3978 if (resVType != passVType) 3979 return emitOpError("expected pass_thru of same type as result type"); 3980 return success(); 3981 } 3982 3983 namespace { 3984 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3985 public: 3986 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3987 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3988 PatternRewriter &rewriter) const override { 3989 switch (get1DMaskFormat(expand.getMask())) { 3990 case MaskFormat::AllTrue: 3991 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3992 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3993 return success(); 3994 case MaskFormat::AllFalse: 3995 rewriter.replaceOp(expand, expand.getPassThru()); 3996 return success(); 3997 case MaskFormat::Unknown: 3998 return failure(); 3999 } 4000 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4001 } 4002 }; 4003 } // namespace 4004 4005 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4006 MLIRContext *context) { 4007 results.add<ExpandLoadFolder>(context); 4008 } 4009 4010 //===----------------------------------------------------------------------===// 4011 // CompressStoreOp 4012 //===----------------------------------------------------------------------===// 4013 4014 LogicalResult CompressStoreOp::verify() { 4015 VectorType maskVType = getMaskVectorType(); 4016 VectorType valueVType = getVectorType(); 4017 MemRefType memType = getMemRefType(); 4018 4019 if (valueVType.getElementType() != memType.getElementType()) 4020 return emitOpError("base and valueToStore element type should match"); 4021 if (llvm::size(getIndices()) != memType.getRank()) 4022 return emitOpError("requires ") << memType.getRank() << " indices"; 4023 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4024 return emitOpError("expected valueToStore dim to match mask dim"); 4025 return success(); 4026 } 4027 4028 namespace { 4029 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4030 public: 4031 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4032 LogicalResult matchAndRewrite(CompressStoreOp compress, 4033 PatternRewriter &rewriter) const override { 4034 switch (get1DMaskFormat(compress.getMask())) { 4035 case MaskFormat::AllTrue: 4036 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4037 compress, compress.getValueToStore(), compress.getBase(), 4038 compress.getIndices()); 4039 return success(); 4040 case MaskFormat::AllFalse: 4041 rewriter.eraseOp(compress); 4042 return success(); 4043 case MaskFormat::Unknown: 4044 return failure(); 4045 } 4046 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4047 } 4048 }; 4049 } // namespace 4050 4051 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4052 MLIRContext *context) { 4053 results.add<CompressStoreFolder>(context); 4054 } 4055 4056 //===----------------------------------------------------------------------===// 4057 // ShapeCastOp 4058 //===----------------------------------------------------------------------===// 4059 4060 /// Returns true if each element of 'a' is equal to the product of a contiguous 4061 /// sequence of the elements of 'b'. Returns false otherwise. 4062 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4063 unsigned rankA = a.size(); 4064 unsigned rankB = b.size(); 4065 assert(rankA < rankB); 4066 4067 unsigned i = 0; 4068 unsigned j = 0; 4069 while (i < rankA && j < rankB) { 4070 int64_t dimA = a[i]; 4071 int64_t dimB = 1; 4072 while (dimB < dimA && j < rankB) 4073 dimB *= b[j++]; 4074 if (dimA != dimB) 4075 break; 4076 ++i; 4077 4078 // Handle the case when trailing dimensions are of size 1. 4079 // Include them into the contiguous sequence. 4080 auto isOne = [](int64_t v) { return v == 1; }; 4081 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4082 i = rankA; 4083 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4084 j = rankB; 4085 } 4086 4087 return i == rankA && j == rankB; 4088 } 4089 4090 static LogicalResult verifyVectorShapeCast(Operation *op, 4091 VectorType sourceVectorType, 4092 VectorType resultVectorType) { 4093 // Check that element type is the same. 4094 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4095 return op->emitOpError("source/result vectors must have same element type"); 4096 auto sourceShape = sourceVectorType.getShape(); 4097 auto resultShape = resultVectorType.getShape(); 4098 4099 // Check that product of source dim sizes matches product of result dim sizes. 4100 int64_t sourceDimProduct = std::accumulate( 4101 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4102 int64_t resultDimProduct = std::accumulate( 4103 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4104 if (sourceDimProduct != resultDimProduct) 4105 return op->emitOpError("source/result number of elements must match"); 4106 4107 // Check that expanding/contracting rank cases. 4108 unsigned sourceRank = sourceVectorType.getRank(); 4109 unsigned resultRank = resultVectorType.getRank(); 4110 if (sourceRank < resultRank) { 4111 if (!isValidShapeCast(sourceShape, resultShape)) 4112 return op->emitOpError("invalid shape cast"); 4113 } else if (sourceRank > resultRank) { 4114 if (!isValidShapeCast(resultShape, sourceShape)) 4115 return op->emitOpError("invalid shape cast"); 4116 } 4117 return success(); 4118 } 4119 4120 LogicalResult ShapeCastOp::verify() { 4121 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4122 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4123 4124 // Check if source/result are of vector type. 4125 if (sourceVectorType && resultVectorType) 4126 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4127 4128 return success(); 4129 } 4130 4131 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4132 // No-op shape cast. 4133 if (getSource().getType() == getResult().getType()) 4134 return getSource(); 4135 4136 // Canceling shape casts. 4137 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4138 if (getResult().getType() == otherOp.getSource().getType()) 4139 return otherOp.getSource(); 4140 4141 // Only allows valid transitive folding. 4142 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4143 VectorType resultType = getResult().getType().cast<VectorType>(); 4144 if (srcType.getRank() < resultType.getRank()) { 4145 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4146 return {}; 4147 } else if (srcType.getRank() > resultType.getRank()) { 4148 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4149 return {}; 4150 } else { 4151 return {}; 4152 } 4153 4154 setOperand(otherOp.getSource()); 4155 return getResult(); 4156 } 4157 4158 // Cancelling broadcast and shape cast ops. 4159 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4160 if (bcastOp.getSourceType() == getType()) 4161 return bcastOp.getSource(); 4162 } 4163 4164 return {}; 4165 } 4166 4167 namespace { 4168 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4169 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4170 public: 4171 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4172 4173 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4174 PatternRewriter &rewriter) const override { 4175 auto constantOp = 4176 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4177 if (!constantOp) 4178 return failure(); 4179 // Only handle splat for now. 4180 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4181 if (!dense) 4182 return failure(); 4183 auto newAttr = 4184 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4185 dense.getSplatValue<Attribute>()); 4186 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4187 return success(); 4188 } 4189 }; 4190 4191 } // namespace 4192 4193 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4194 MLIRContext *context) { 4195 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4196 results.add<ShapeCastConstantFolder>(context); 4197 } 4198 4199 //===----------------------------------------------------------------------===// 4200 // VectorBitCastOp 4201 //===----------------------------------------------------------------------===// 4202 4203 LogicalResult BitCastOp::verify() { 4204 auto sourceVectorType = getSourceVectorType(); 4205 auto resultVectorType = getResultVectorType(); 4206 4207 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4208 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4209 return emitOpError("dimension size mismatch at: ") << i; 4210 } 4211 4212 DataLayout dataLayout = DataLayout::closest(*this); 4213 auto sourceElementBits = 4214 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4215 auto resultElementBits = 4216 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4217 4218 if (sourceVectorType.getRank() == 0) { 4219 if (sourceElementBits != resultElementBits) 4220 return emitOpError("source/result bitwidth of the 0-D vector element " 4221 "types must be equal"); 4222 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4223 resultElementBits * resultVectorType.getShape().back()) { 4224 return emitOpError( 4225 "source/result bitwidth of the minor 1-D vectors must be equal"); 4226 } 4227 4228 return success(); 4229 } 4230 4231 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4232 // Nop cast. 4233 if (getSource().getType() == getResult().getType()) 4234 return getSource(); 4235 4236 // Canceling bitcasts. 4237 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4238 if (getResult().getType() == otherOp.getSource().getType()) 4239 return otherOp.getSource(); 4240 4241 setOperand(otherOp.getSource()); 4242 return getResult(); 4243 } 4244 4245 Attribute sourceConstant = operands.front(); 4246 if (!sourceConstant) 4247 return {}; 4248 4249 Type srcElemType = getSourceVectorType().getElementType(); 4250 Type dstElemType = getResultVectorType().getElementType(); 4251 4252 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4253 if (floatPack.isSplat()) { 4254 auto splat = floatPack.getSplatValue<FloatAttr>(); 4255 4256 // Casting fp16 into fp32. 4257 if (srcElemType.isF16() && dstElemType.isF32()) { 4258 uint32_t bits = static_cast<uint32_t>( 4259 splat.getValue().bitcastToAPInt().getZExtValue()); 4260 // Duplicate the 16-bit pattern. 4261 bits = (bits << 16) | (bits & 0xffff); 4262 APInt intBits(32, bits); 4263 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4264 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4265 } 4266 } 4267 } 4268 4269 return {}; 4270 } 4271 4272 //===----------------------------------------------------------------------===// 4273 // TypeCastOp 4274 //===----------------------------------------------------------------------===// 4275 4276 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4277 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4278 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4279 memRefType.getShape().end()); 4280 if (vectorType) 4281 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4282 return res; 4283 } 4284 4285 /// Build the canonical memRefType with a single vector. 4286 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4287 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4288 Value source) { 4289 result.addOperands(source); 4290 MemRefType memRefType = source.getType().cast<MemRefType>(); 4291 VectorType vectorType = 4292 VectorType::get(extractShape(memRefType), 4293 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4294 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4295 memRefType.getMemorySpace())); 4296 } 4297 4298 LogicalResult TypeCastOp::verify() { 4299 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4300 if (!canonicalType.getLayout().isIdentity()) 4301 return emitOpError("expects operand to be a memref with identity layout"); 4302 if (!getResultMemRefType().getLayout().isIdentity()) 4303 return emitOpError("expects result to be a memref with identity layout"); 4304 if (getResultMemRefType().getMemorySpace() != 4305 getMemRefType().getMemorySpace()) 4306 return emitOpError("expects result in same memory space"); 4307 4308 auto sourceType = getMemRefType(); 4309 auto resultType = getResultMemRefType(); 4310 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4311 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4312 return emitOpError( 4313 "expects result and operand with same underlying scalar type: ") 4314 << resultType; 4315 if (extractShape(sourceType) != extractShape(resultType)) 4316 return emitOpError( 4317 "expects concatenated result and operand shapes to be equal: ") 4318 << resultType; 4319 return success(); 4320 } 4321 4322 //===----------------------------------------------------------------------===// 4323 // TransposeOp 4324 //===----------------------------------------------------------------------===// 4325 4326 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4327 Value vector, ArrayRef<int64_t> transp) { 4328 VectorType vt = vector.getType().cast<VectorType>(); 4329 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4330 for (unsigned i = 0; i < transp.size(); ++i) 4331 transposedShape[i] = vt.getShape()[transp[i]]; 4332 4333 result.addOperands(vector); 4334 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4335 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4336 } 4337 4338 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4339 // Eliminate splat constant transpose ops. 4340 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4341 if (attr.isSplat()) 4342 return attr.reshape(getResultType()); 4343 4344 // Eliminate identity transpose ops. This happens when the dimensions of the 4345 // input vector remain in their original order after the transpose operation. 4346 SmallVector<int64_t, 4> transp; 4347 getTransp(transp); 4348 4349 // Check if the permutation of the dimensions contains sequential values: 4350 // {0, 1, 2, ...}. 4351 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4352 if (transp[i] != i) 4353 return {}; 4354 } 4355 4356 return getVector(); 4357 } 4358 4359 LogicalResult vector::TransposeOp::verify() { 4360 VectorType vectorType = getVectorType(); 4361 VectorType resultType = getResultType(); 4362 int64_t rank = resultType.getRank(); 4363 if (vectorType.getRank() != rank) 4364 return emitOpError("vector result rank mismatch: ") << rank; 4365 // Verify transposition array. 4366 auto transpAttr = getTransp().getValue(); 4367 int64_t size = transpAttr.size(); 4368 if (rank != size) 4369 return emitOpError("transposition length mismatch: ") << size; 4370 SmallVector<bool, 8> seen(rank, false); 4371 for (const auto &ta : llvm::enumerate(transpAttr)) { 4372 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4373 if (i < 0 || i >= rank) 4374 return emitOpError("transposition index out of range: ") << i; 4375 if (seen[i]) 4376 return emitOpError("duplicate position index: ") << i; 4377 seen[i] = true; 4378 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4379 return emitOpError("dimension size mismatch at: ") << i; 4380 } 4381 return success(); 4382 } 4383 4384 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4385 return llvm::to_vector<4>(getResultType().getShape()); 4386 } 4387 4388 namespace { 4389 4390 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4391 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4392 public: 4393 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4394 4395 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4396 PatternRewriter &rewriter) const override { 4397 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4398 auto getPermutation = [](vector::TransposeOp transpose) { 4399 SmallVector<int64_t, 4> permutation; 4400 transpose.getTransp(permutation); 4401 return permutation; 4402 }; 4403 4404 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4405 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4406 ArrayRef<int64_t> permutation2) { 4407 SmallVector<int64_t, 4> result; 4408 for (auto index : permutation2) 4409 result.push_back(permutation1[index]); 4410 return result; 4411 }; 4412 4413 // Return if the input of 'transposeOp' is not defined by another transpose. 4414 vector::TransposeOp parentTransposeOp = 4415 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4416 if (!parentTransposeOp) 4417 return failure(); 4418 4419 SmallVector<int64_t, 4> permutation = composePermutations( 4420 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4421 // Replace 'transposeOp' with a new transpose operation. 4422 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4423 transposeOp, transposeOp.getResult().getType(), 4424 parentTransposeOp.getVector(), 4425 vector::getVectorSubscriptAttr(rewriter, permutation)); 4426 return success(); 4427 } 4428 }; 4429 4430 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4431 struct FoldTransposedScalarBroadcast final 4432 : public OpRewritePattern<vector::TransposeOp> { 4433 using OpRewritePattern::OpRewritePattern; 4434 4435 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4436 PatternRewriter &rewriter) const override { 4437 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4438 if (!bcastOp) 4439 return failure(); 4440 4441 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4442 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4443 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4444 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4445 return success(); 4446 } 4447 4448 return failure(); 4449 } 4450 }; 4451 4452 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4453 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4454 public: 4455 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4456 4457 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4458 PatternRewriter &rewriter) const override { 4459 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4460 if (!splatOp) 4461 return failure(); 4462 4463 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4464 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4465 return success(); 4466 } 4467 }; 4468 4469 } // namespace 4470 4471 void vector::TransposeOp::getCanonicalizationPatterns( 4472 RewritePatternSet &results, MLIRContext *context) { 4473 results 4474 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4475 context); 4476 } 4477 4478 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4479 populateFromInt64AttrArray(getTransp(), results); 4480 } 4481 4482 //===----------------------------------------------------------------------===// 4483 // ConstantMaskOp 4484 //===----------------------------------------------------------------------===// 4485 4486 LogicalResult ConstantMaskOp::verify() { 4487 auto resultType = getResult().getType().cast<VectorType>(); 4488 // Check the corner case of 0-D vectors first. 4489 if (resultType.getRank() == 0) { 4490 if (getMaskDimSizes().size() != 1) 4491 return emitError("array attr must have length 1 for 0-D vectors"); 4492 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4493 if (dim != 0 && dim != 1) 4494 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4495 return success(); 4496 } 4497 4498 // Verify that array attr size matches the rank of the vector result. 4499 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4500 return emitOpError( 4501 "must specify array attr of size equal vector result rank"); 4502 // Verify that each array attr element is in bounds of corresponding vector 4503 // result dimension size. 4504 auto resultShape = resultType.getShape(); 4505 SmallVector<int64_t, 4> maskDimSizes; 4506 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4507 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4508 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4509 return emitOpError( 4510 "array attr of size out of bounds of vector result dimension size"); 4511 maskDimSizes.push_back(attrValue); 4512 } 4513 // Verify that if one mask dim size is zero, they all should be zero (because 4514 // the mask region is a conjunction of each mask dimension interval). 4515 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4516 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4517 if (anyZeros && !allZeros) 4518 return emitOpError("expected all mask dim sizes to be zeros, " 4519 "as a result of conjunction with zero mask dim"); 4520 // Verify that if the mask type is scalable, dimensions should be zero because 4521 // constant scalable masks can only be defined for the "none set" or "all set" 4522 // cases, and there is no VLA way to define an "all set" case for 4523 // `vector.constant_mask`. In the future, a convention could be established 4524 // to decide if a specific dimension value could be considered as "all set". 4525 if (resultType.isScalable() && 4526 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4527 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4528 return success(); 4529 } 4530 4531 //===----------------------------------------------------------------------===// 4532 // CreateMaskOp 4533 //===----------------------------------------------------------------------===// 4534 4535 LogicalResult CreateMaskOp::verify() { 4536 auto vectorType = getResult().getType().cast<VectorType>(); 4537 // Verify that an operand was specified for each result vector each dimension. 4538 if (vectorType.getRank() == 0) { 4539 if (getNumOperands() != 1) 4540 return emitOpError( 4541 "must specify exactly one operand for 0-D create_mask"); 4542 } else if (getNumOperands() != 4543 getResult().getType().cast<VectorType>().getRank()) { 4544 return emitOpError( 4545 "must specify an operand for each result vector dimension"); 4546 } 4547 return success(); 4548 } 4549 4550 namespace { 4551 4552 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4553 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4554 public: 4555 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4556 4557 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4558 PatternRewriter &rewriter) const override { 4559 // Return if any of 'createMaskOp' operands are not defined by a constant. 4560 auto isNotDefByConstant = [](Value operand) { 4561 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4562 }; 4563 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4564 return failure(); 4565 4566 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4567 // are negative or zero. 4568 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4569 if (vType.isScalable()) 4570 for (auto opDim : createMaskOp.getOperands()) { 4571 APInt intVal; 4572 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4573 intVal.isStrictlyPositive()) 4574 return failure(); 4575 } 4576 } 4577 4578 // Gather constant mask dimension sizes. 4579 SmallVector<int64_t, 4> maskDimSizes; 4580 for (auto it : llvm::zip(createMaskOp.operands(), 4581 createMaskOp.getType().getShape())) { 4582 auto *defOp = std::get<0>(it).getDefiningOp(); 4583 int64_t maxDimSize = std::get<1>(it); 4584 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4585 dimSize = std::min(dimSize, maxDimSize); 4586 // If one of dim sizes is zero, set all dims to zero. 4587 if (dimSize <= 0) { 4588 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4589 break; 4590 } 4591 maskDimSizes.push_back(dimSize); 4592 } 4593 // Replace 'createMaskOp' with ConstantMaskOp. 4594 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4595 createMaskOp, createMaskOp.getResult().getType(), 4596 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4597 return success(); 4598 } 4599 }; 4600 4601 } // namespace 4602 4603 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4604 MLIRContext *context) { 4605 results.add<CreateMaskFolder>(context); 4606 } 4607 4608 //===----------------------------------------------------------------------===// 4609 // ScanOp 4610 //===----------------------------------------------------------------------===// 4611 4612 LogicalResult ScanOp::verify() { 4613 VectorType srcType = getSourceType(); 4614 VectorType initialType = getInitialValueType(); 4615 // Check reduction dimension < rank. 4616 int64_t srcRank = srcType.getRank(); 4617 int64_t reductionDim = getReductionDim(); 4618 if (reductionDim >= srcRank) 4619 return emitOpError("reduction dimension ") 4620 << reductionDim << " has to be less than " << srcRank; 4621 4622 // Check that rank(initial_value) = rank(src) - 1. 4623 int64_t initialValueRank = initialType.getRank(); 4624 if (initialValueRank != srcRank - 1) 4625 return emitOpError("initial value rank ") 4626 << initialValueRank << " has to be equal to " << srcRank - 1; 4627 4628 // Check shapes of initial value and src. 4629 ArrayRef<int64_t> srcShape = srcType.getShape(); 4630 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4631 SmallVector<int64_t> expectedShape; 4632 for (int i = 0; i < srcRank; i++) { 4633 if (i != reductionDim) 4634 expectedShape.push_back(srcShape[i]); 4635 } 4636 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4637 [](std::tuple<int64_t, int64_t> s) { 4638 return std::get<0>(s) != std::get<1>(s); 4639 })) { 4640 return emitOpError("incompatible input/initial value shapes"); 4641 } 4642 4643 // Verify supported reduction kind. 4644 Type eltType = getDestType().getElementType(); 4645 if (!isSupportedCombiningKind(getKind(), eltType)) 4646 return emitOpError("unsupported reduction type ") 4647 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4648 << "'"; 4649 4650 return success(); 4651 } 4652 4653 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4654 RewritePatternSet &patterns) { 4655 patterns 4656 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4657 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4658 StridedSliceConstantMaskFolder, TransposeFolder>( 4659 patterns.getContext()); 4660 } 4661 4662 //===----------------------------------------------------------------------===// 4663 // SplatOp 4664 //===----------------------------------------------------------------------===// 4665 4666 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4667 auto constOperand = operands.front(); 4668 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4669 return {}; 4670 4671 // SplatElementsAttr::get treats single value for second arg as being a splat. 4672 return SplatElementsAttr::get(getType(), {constOperand}); 4673 } 4674 4675 //===----------------------------------------------------------------------===// 4676 // WarpExecuteOnLane0Op 4677 //===----------------------------------------------------------------------===// 4678 4679 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4680 p << "(" << getLaneid() << ")"; 4681 4682 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4683 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4684 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4685 4686 if (!getArgs().empty()) 4687 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4688 if (!getResults().empty()) 4689 p << " -> (" << getResults().getTypes() << ')'; 4690 p << " "; 4691 p.printRegion(getRegion(), 4692 /*printEntryBlockArgs=*/true, 4693 /*printBlockTerminators=*/!getResults().empty()); 4694 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4695 } 4696 4697 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4698 OperationState &result) { 4699 // Create the region. 4700 result.regions.reserve(1); 4701 Region *warpRegion = result.addRegion(); 4702 4703 auto &builder = parser.getBuilder(); 4704 OpAsmParser::UnresolvedOperand laneId; 4705 4706 // Parse predicate operand. 4707 if (parser.parseLParen() || 4708 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4709 parser.parseRParen()) 4710 return failure(); 4711 4712 int64_t warpSize; 4713 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4714 parser.parseRSquare()) 4715 return failure(); 4716 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4717 builder.getContext())), 4718 builder.getI64IntegerAttr(warpSize)); 4719 4720 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4721 return failure(); 4722 4723 llvm::SMLoc inputsOperandsLoc; 4724 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4725 SmallVector<Type> inputTypes; 4726 if (succeeded(parser.parseOptionalKeyword("args"))) { 4727 if (parser.parseLParen()) 4728 return failure(); 4729 4730 inputsOperandsLoc = parser.getCurrentLocation(); 4731 if (parser.parseOperandList(inputsOperands) || 4732 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4733 return failure(); 4734 } 4735 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4736 result.operands)) 4737 return failure(); 4738 4739 // Parse optional results type list. 4740 if (parser.parseOptionalArrowTypeList(result.types)) 4741 return failure(); 4742 // Parse the region. 4743 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4744 /*argTypes=*/{})) 4745 return failure(); 4746 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4747 4748 // Parse the optional attribute list. 4749 if (parser.parseOptionalAttrDict(result.attributes)) 4750 return failure(); 4751 return success(); 4752 } 4753 4754 void WarpExecuteOnLane0Op::getSuccessorRegions( 4755 Optional<unsigned> index, ArrayRef<Attribute> operands, 4756 SmallVectorImpl<RegionSuccessor> ®ions) { 4757 if (index) { 4758 regions.push_back(RegionSuccessor(getResults())); 4759 return; 4760 } 4761 4762 // The warp region is always executed 4763 regions.push_back(RegionSuccessor(&getWarpRegion())); 4764 } 4765 4766 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4767 TypeRange resultTypes, Value laneId, 4768 int64_t warpSize) { 4769 build(builder, result, resultTypes, laneId, warpSize, 4770 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4771 } 4772 4773 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4774 TypeRange resultTypes, Value laneId, 4775 int64_t warpSize, ValueRange args, 4776 TypeRange blockArgTypes) { 4777 result.addOperands(laneId); 4778 result.addAttribute(getAttributeNames()[0], 4779 builder.getI64IntegerAttr(warpSize)); 4780 result.addTypes(resultTypes); 4781 result.addOperands(args); 4782 assert(args.size() == blockArgTypes.size()); 4783 OpBuilder::InsertionGuard guard(builder); 4784 Region *warpRegion = result.addRegion(); 4785 Block *block = builder.createBlock(warpRegion); 4786 for (auto it : llvm::zip(blockArgTypes, args)) 4787 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4788 } 4789 4790 /// Helper check if the distributed vector type is consistent with the expanded 4791 /// type and distributed size. 4792 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4793 int64_t warpSize, Operation *op) { 4794 // If the types matches there is no distribution. 4795 if (expanded == distributed) 4796 return success(); 4797 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4798 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4799 if (!expandedVecType || !distributedVecType) 4800 return op->emitOpError("expected vector type for distributed operands."); 4801 if (expandedVecType.getRank() != distributedVecType.getRank() || 4802 expandedVecType.getElementType() != distributedVecType.getElementType()) 4803 return op->emitOpError( 4804 "expected distributed vectors to have same rank and element type."); 4805 bool foundDistributedDim = false; 4806 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4807 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4808 continue; 4809 if (expandedVecType.getDimSize(i) == 4810 distributedVecType.getDimSize(i) * warpSize) { 4811 if (foundDistributedDim) 4812 return op->emitOpError() 4813 << "expected only one dimension to be distributed from " 4814 << expandedVecType << " to " << distributedVecType; 4815 foundDistributedDim = true; 4816 continue; 4817 } 4818 return op->emitOpError() << "incompatible distribution dimensions from " 4819 << expandedVecType << " to " << distributedVecType; 4820 } 4821 return success(); 4822 } 4823 4824 LogicalResult WarpExecuteOnLane0Op::verify() { 4825 if (getArgs().size() != getWarpRegion().getNumArguments()) 4826 return emitOpError( 4827 "expected same number op arguments and block arguments."); 4828 auto yield = 4829 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4830 if (yield.getNumOperands() != getNumResults()) 4831 return emitOpError( 4832 "expected same number of yield operands and return values."); 4833 int64_t warpSize = getWarpSize(); 4834 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4835 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4836 std::get<1>(it).getType(), warpSize, 4837 getOperation()))) 4838 return failure(); 4839 } 4840 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4841 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4842 std::get<1>(it).getType(), warpSize, 4843 getOperation()))) 4844 return failure(); 4845 } 4846 return success(); 4847 } 4848 4849 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4850 return succeeded( 4851 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4852 } 4853 4854 //===----------------------------------------------------------------------===// 4855 // TableGen'd op method definitions 4856 //===----------------------------------------------------------------------===// 4857 4858 #define GET_OP_CLASSES 4859 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4860