1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   return success();
407 }
408 
409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
410   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
411   Type redType;
412   Type resType;
413   CombiningKindAttr kindAttr;
414   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
415                                               result.attributes) ||
416       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
417       parser.parseColonType(redType) ||
418       parser.parseKeywordType("into", resType) ||
419       (!operandsInfo.empty() &&
420        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
421       (operandsInfo.size() > 1 &&
422        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
423       parser.addTypeToList(resType, result.types))
424     return failure();
425   if (operandsInfo.empty() || operandsInfo.size() > 2)
426     return parser.emitError(parser.getNameLoc(),
427                             "unsupported number of operands");
428   return success();
429 }
430 
431 void ReductionOp::print(OpAsmPrinter &p) {
432   p << " ";
433   getKindAttr().print(p);
434   p << ", " << getVector();
435   if (getAcc())
436     p << ", " << getAcc();
437   p << " : " << getVector().getType() << " into " << getDest().getType();
438 }
439 
440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
441                                          OpBuilder &builder, Location loc,
442                                          Value vector) {
443   switch (op) {
444   case arith::AtomicRMWKind::addf:
445   case arith::AtomicRMWKind::addi:
446     return builder.create<vector::ReductionOp>(vector.getLoc(),
447                                                CombiningKind::ADD, vector);
448   case arith::AtomicRMWKind::mulf:
449   case arith::AtomicRMWKind::muli:
450     return builder.create<vector::ReductionOp>(vector.getLoc(),
451                                                CombiningKind::MUL, vector);
452   case arith::AtomicRMWKind::minf:
453     return builder.create<vector::ReductionOp>(vector.getLoc(),
454                                                CombiningKind::MINF, vector);
455   case arith::AtomicRMWKind::mins:
456     return builder.create<vector::ReductionOp>(vector.getLoc(),
457                                                CombiningKind::MINSI, vector);
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MINUI, vector);
461   case arith::AtomicRMWKind::maxf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MAXF, vector);
464   case arith::AtomicRMWKind::maxs:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MAXSI, vector);
467   case arith::AtomicRMWKind::maxu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MAXUI, vector);
470   case arith::AtomicRMWKind::andi:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::AND, vector);
473   case arith::AtomicRMWKind::ori:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::OR, vector);
476   // TODO: Add remaining reduction operations.
477   default:
478     (void)emitOptionalError(loc, "Reduction operation type not supported");
479     break;
480   }
481   return nullptr;
482 }
483 
484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
485   return llvm::to_vector<4>(getVectorType().getShape());
486 }
487 
488 namespace {
489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
490   using OpRewritePattern::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(ReductionOp reductionOp,
493                                 PatternRewriter &rewriter) const override {
494     if (reductionOp.getVectorType().getDimSize(0) != 1)
495       return failure();
496 
497     Location loc = reductionOp.getLoc();
498     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
499                                               reductionOp.getVector(),
500                                               rewriter.getI64ArrayAttr(0));
501 
502     if (Value acc = reductionOp.getAcc()) {
503       assert(reductionOp.getType().isa<FloatType>());
504       switch (reductionOp.getKind()) {
505       case CombiningKind::ADD:
506         result = rewriter.create<arith::AddFOp>(loc, result, acc);
507         break;
508       case CombiningKind::MUL:
509         result = rewriter.create<arith::MulFOp>(loc, result, acc);
510         break;
511       default:
512         assert(false && "invalid op!");
513       }
514     }
515 
516     rewriter.replaceOp(reductionOp, result);
517     return success();
518   }
519 };
520 } // namespace
521 
522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
523                                               MLIRContext *context) {
524   results.add<ElideSingleElementReduction>(context);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // ContractionOp
529 //===----------------------------------------------------------------------===//
530 
531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
532                                   Value lhs, Value rhs, Value acc,
533                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
534                                   ArrayRef<StringRef> iteratorTypes) {
535   result.addOperands({lhs, rhs, acc});
536   result.addTypes(acc.getType());
537   result.addAttribute(::mlir::getIndexingMapsAttrName(),
538                       builder.getAffineMapArrayAttr(
539                           AffineMap::inferFromExprList(indexingExprs)));
540   result.addAttribute(::mlir::getIteratorTypesAttrName(),
541                       builder.getStrArrayAttr(iteratorTypes));
542 }
543 
544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
545                                   Value lhs, Value rhs, Value acc,
546                                   ArrayAttr indexingMaps,
547                                   ArrayAttr iteratorTypes) {
548   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
549         ContractionOp::getDefaultKind());
550 }
551 
552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
553                                   Value lhs, Value rhs, Value acc,
554                                   ArrayAttr indexingMaps,
555                                   ArrayAttr iteratorTypes, CombiningKind kind) {
556   result.addOperands({lhs, rhs, acc});
557   result.addTypes(acc.getType());
558   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
559   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
560   result.addAttribute(ContractionOp::getKindAttrStrName(),
561                       CombiningKindAttr::get(kind, builder.getContext()));
562 }
563 
564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
565   OpAsmParser::UnresolvedOperand lhsInfo;
566   OpAsmParser::UnresolvedOperand rhsInfo;
567   OpAsmParser::UnresolvedOperand accInfo;
568   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
569   SmallVector<Type, 2> types;
570   Type resultType;
571   auto loc = parser.getCurrentLocation();
572   DictionaryAttr dictAttr;
573   // TODO: Unify linalg op attribute parsing.
574   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
575       parser.parseOperand(lhsInfo) || parser.parseComma() ||
576       parser.parseOperand(rhsInfo) || parser.parseComma() ||
577       parser.parseOperand(accInfo) ||
578       parser.parseTrailingOperandList(masksInfo) ||
579       parser.parseOptionalAttrDict(result.attributes) ||
580       parser.parseColonTypeList(types) ||
581       parser.parseKeywordType("into", resultType) ||
582       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
583       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
584       parser.resolveOperand(accInfo, resultType, result.operands) ||
585       parser.addTypeToList(resultType, result.types))
586     return failure();
587   result.attributes.assign(dictAttr.getValue().begin(),
588                            dictAttr.getValue().end());
589   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
590     result.addAttribute(ContractionOp::getKindAttrStrName(),
591                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
592                                                result.getContext()));
593   }
594   if (masksInfo.empty())
595     return success();
596   if (masksInfo.size() != 2)
597     return parser.emitError(parser.getNameLoc(),
598                             "expected zero or exactly 2 vector mask operands");
599   auto lhsType = types[0].cast<VectorType>();
600   auto rhsType = types[1].cast<VectorType>();
601   auto maskElementType = parser.getBuilder().getI1Type();
602   std::array<Type, 2> maskTypes = {
603       VectorType::Builder(lhsType).setElementType(maskElementType),
604       VectorType::Builder(rhsType).setElementType(maskElementType)};
605   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
606     return failure();
607   return success();
608 }
609 
610 void ContractionOp::print(OpAsmPrinter &p) {
611   // TODO: Unify printing code with linalg ops.
612   auto attrNames = getTraitAttrNames();
613   llvm::StringSet<> traitAttrsSet;
614   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
615   SmallVector<NamedAttribute, 8> attrs;
616   for (auto attr : (*this)->getAttrs())
617     if (traitAttrsSet.count(attr.getName().strref()) > 0)
618       attrs.push_back(attr);
619 
620   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
621   p << " " << dictAttr << " " << getLhs() << ", ";
622   p << getRhs() << ", " << getAcc();
623   if (getMasks().size() == 2)
624     p << ", " << getMasks();
625 
626   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
627   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
628     << getResultType();
629 }
630 
631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
632                          const std::vector<std::pair<int64_t, int64_t>> &map) {
633   for (auto &dimPair : map) {
634     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
635         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
636         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
637       return false;
638   }
639   return true;
640 }
641 
642 static LogicalResult verifyOutputShape(
643     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
644     Type resType,
645     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
646     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
647   DenseSet<int64_t> lhsContractingDimSet;
648   DenseSet<int64_t> rhsContractingDimSet;
649   for (auto &dimPair : contractingDimMap) {
650     lhsContractingDimSet.insert(dimPair.first);
651     rhsContractingDimSet.insert(dimPair.second);
652   }
653   DenseSet<int64_t> rhsBatchDimSet;
654   for (auto &dimPair : batchDimMap)
655     rhsBatchDimSet.insert(dimPair.second);
656 
657   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
658   SmallVector<int64_t, 4> expectedResultDims;
659   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
660     if (lhsContractingDimSet.count(i) > 0)
661       continue;
662     expectedResultDims.push_back(lhsType.getDimSize(i));
663   }
664 
665   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
666   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
667     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
668       continue;
669     expectedResultDims.push_back(rhsType.getDimSize(i));
670   }
671 
672   // Verify 'expectedResultDims'.
673   if (expectedResultDims.empty()) {
674     // No batch or free dimension implies a scalar result.
675     if (resType.isa<VectorType>() || accType.isa<VectorType>())
676       return op.emitOpError("invalid accumulator/result vector shape");
677   } else {
678     // At least one batch or free dimension implies a vector result.
679     auto resVectorType = resType.dyn_cast<VectorType>();
680     auto accVectorType = accType.dyn_cast<VectorType>();
681     if (!resVectorType || !accVectorType)
682       return op.emitOpError("invalid accumulator/result vector shape");
683 
684     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
685     // types fully define the result vector type. This assumes the affine maps
686     // are well-formed, which must have been verified already.
687     MLIRContext *ctx = op.getContext();
688     AffineMap lhsMap = op.getIndexingMaps()[0];
689     AffineMap rhsMap = op.getIndexingMaps()[1];
690     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
691     for (auto pair :
692          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
693       VectorType v = pair.first;
694       auto map = pair.second;
695       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
696         unsigned pos = map.getDimPosition(idx);
697         if (!extents[pos])
698           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
699       }
700     }
701     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
702            "expected extent along all dimensions.");
703 
704     AffineMap resMap = op.getIndexingMaps()[2];
705     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
706                                      /*symCount=*/0, extents, ctx);
707     // Compose the resMap with the extentsMap, which is a constant map.
708     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
709     assert(llvm::all_of(
710                expectedMap.getResults(),
711                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
712            "expected constant extent along all dimensions.");
713     // Extract the expected shape and build the type.
714     auto expectedShape = llvm::to_vector<4>(
715         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
716           return e.cast<AffineConstantExpr>().getValue();
717         }));
718     auto expected =
719         VectorType::get(expectedShape, resVectorType.getElementType());
720     if (resVectorType != expected || accVectorType != expected)
721       return op.emitOpError(
722                  "invalid accumulator/result vector shape, expected: ")
723              << expected;
724   }
725   return success();
726 }
727 
728 LogicalResult ContractionOp::verify() {
729   auto lhsType = getLhsType();
730   auto rhsType = getRhsType();
731   auto accType = getAccType();
732   auto resType = getResultType();
733 
734   // Verify that an indexing map was specified for each vector operand.
735   if (getIndexingMaps().size() != 3)
736     return emitOpError("expected an indexing map for each vector operand");
737 
738   // Verify that each index map has 'numIterators' inputs, no symbols, and
739   // that the number of map outputs equals the rank of its associated
740   // vector operand.
741   unsigned numIterators = getIteratorTypes().getValue().size();
742   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
743     auto index = it.index();
744     auto map = it.value();
745     if (map.getNumSymbols() != 0)
746       return emitOpError("expected indexing map ")
747              << index << " to have no symbols";
748     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
749     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
750     // Verify that the map has the right number of inputs, outputs, and indices.
751     // This also correctly accounts for (..) -> () for rank-0 results.
752     if (map.getNumDims() != numIterators)
753       return emitOpError("expected indexing map ")
754              << index << " to have " << numIterators << " number of inputs";
755     if (map.getNumResults() != rank)
756       return emitOpError("expected indexing map ")
757              << index << " to have " << rank << " number of outputs";
758     if (!map.isProjectedPermutation())
759       return emitOpError("expected indexing map ")
760              << index << " to be a projected permutation of its inputs";
761   }
762 
763   auto contractingDimMap = getContractingDimMap();
764   auto batchDimMap = getBatchDimMap();
765 
766   // Verify at least one contracting dimension pair was specified.
767   if (contractingDimMap.empty())
768     return emitOpError("expected at least one contracting dimension pair");
769 
770   // Verify contracting dimension map was properly constructed.
771   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
772     return emitOpError("invalid contracting dimension map");
773 
774   // Verify batch dimension map was properly constructed.
775   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
776     return emitOpError("invalid batch dimension map");
777 
778   // Verify 'accType' and 'resType' shape.
779   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
780                                contractingDimMap, batchDimMap)))
781     return failure();
782 
783   // Verify that either two vector masks are set or none are set.
784   auto lhsMaskType = getLHSVectorMaskType();
785   auto rhsMaskType = getRHSVectorMaskType();
786   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
787     return emitOpError("invalid number of vector masks specified");
788   if (lhsMaskType && rhsMaskType) {
789     // Verify mask rank == argument rank.
790     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
791         rhsMaskType.getShape().size() != rhsType.getShape().size())
792       return emitOpError("invalid vector mask rank");
793   }
794 
795   // Verify supported combining kind.
796   auto vectorType = resType.dyn_cast<VectorType>();
797   auto elementType = vectorType ? vectorType.getElementType() : resType;
798   if (!isSupportedCombiningKind(getKind(), elementType))
799     return emitOpError("unsupported contraction type");
800 
801   return success();
802 }
803 
804 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
805   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
806                                          ::mlir::getIteratorTypesAttrName(),
807                                          ContractionOp::getKindAttrStrName()};
808   return llvm::makeArrayRef(names);
809 }
810 
811 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
812   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
813     if (targetExpr == map.getResult(i))
814       return i;
815   return -1;
816 }
817 
818 static std::vector<std::pair<int64_t, int64_t>>
819 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
820           StringRef targetIteratorTypeName, MLIRContext *context) {
821   std::vector<std::pair<int64_t, int64_t>> dimMap;
822   for (const auto &it : llvm::enumerate(iteratorTypes)) {
823     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
824     if (iteratorTypeName != targetIteratorTypeName)
825       continue;
826     // Search lhs/rhs map results for 'targetExpr'.
827     auto targetExpr = getAffineDimExpr(it.index(), context);
828     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
829     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
830     if (lhsDim >= 0 && rhsDim >= 0)
831       dimMap.emplace_back(lhsDim, rhsDim);
832   }
833   return dimMap;
834 }
835 
836 void ContractionOp::getIterationBounds(
837     SmallVectorImpl<int64_t> &iterationBounds) {
838   auto lhsShape = getLhsType().getShape();
839   auto resVectorType = getResultType().dyn_cast<VectorType>();
840   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
841   SmallVector<int64_t, 2> iterationShape;
842   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
843     // Search lhs/rhs map results for 'targetExpr'.
844     auto targetExpr = getAffineDimExpr(it.index(), getContext());
845     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
846     if (iteratorTypeName == getReductionIteratorTypeName()) {
847       // Get reduction dim size from lhs shape (same size in rhsShape).
848       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
849       assert(lhsDimIndex >= 0);
850       iterationBounds.push_back(lhsShape[lhsDimIndex]);
851       continue;
852     }
853     // Get parallel dimension size from result shape.
854     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
855     assert(resDimIndex >= 0);
856     assert(resVectorType != nullptr);
857     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
858   }
859 }
860 
861 void ContractionOp::getIterationIndexMap(
862     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
863   unsigned numMaps = getIndexingMaps().size();
864   iterationIndexMap.resize(numMaps);
865   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
866     auto index = it.index();
867     auto map = it.value();
868     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
869       auto dim = map.getResult(i).cast<AffineDimExpr>();
870       iterationIndexMap[index][dim.getPosition()] = i;
871     }
872   }
873 }
874 
875 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
876   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
877   return getDimMap(indexingMaps, getIteratorTypes(),
878                    getReductionIteratorTypeName(), getContext());
879 }
880 
881 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
882   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
883   return getDimMap(indexingMaps, getIteratorTypes(),
884                    getParallelIteratorTypeName(), getContext());
885 }
886 
887 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
888   SmallVector<int64_t, 4> shape;
889   getIterationBounds(shape);
890   return shape;
891 }
892 
893 /// Return a fused vector::ContractionOp which represents a patterns such as:
894 ///
895 /// ```mlir
896 ///    %c0 = vector.constant 0: ...
897 ///    %c = vector.contract %a, %b, %c0: ...
898 ///    %e = add %c, %d: ...
899 /// ```
900 ///
901 /// by:
902 ///
903 /// ```mlir
904 ///    %e = vector.contract %a, %b, %d: ...
905 /// ```
906 ///
907 /// Return null if the canonicalization does not apply.
908 // TODO: This should be a folding of Add into Contract in core but while they
909 // live in different dialects, it is not possible without unnatural
910 // dependencies.
911 template <typename AddOpType>
912 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
913   using OpRewritePattern<AddOpType>::OpRewritePattern;
914 
915   LogicalResult matchAndRewrite(AddOpType addOp,
916                                 PatternRewriter &rewriter) const override {
917     auto canonicalize = [&](Value maybeContraction,
918                             Value otherOperand) -> vector::ContractionOp {
919       vector::ContractionOp contractionOp =
920           dyn_cast_or_null<vector::ContractionOp>(
921               maybeContraction.getDefiningOp());
922       if (!contractionOp)
923         return vector::ContractionOp();
924       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
925               contractionOp.getAcc().getDefiningOp())) {
926         if (maybeZero.getValue() ==
927             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
928           BlockAndValueMapping bvm;
929           bvm.map(contractionOp.getAcc(), otherOperand);
930           auto newContraction =
931               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
932           rewriter.replaceOp(addOp, newContraction.getResult());
933           return newContraction;
934         }
935       }
936       return vector::ContractionOp();
937     };
938 
939     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
940     vector::ContractionOp contract = canonicalize(a, b);
941     contract = contract ? contract : canonicalize(b, a);
942     return contract ? success() : failure();
943   }
944 };
945 
946 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
947                                                 MLIRContext *context) {
948   results.add<CanonicalizeContractAdd<arith::AddIOp>,
949               CanonicalizeContractAdd<arith::AddFOp>>(context);
950 }
951 
952 //===----------------------------------------------------------------------===//
953 // ExtractElementOp
954 //===----------------------------------------------------------------------===//
955 
956 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
957                                      Value source) {
958   result.addOperands({source});
959   result.addTypes(source.getType().cast<VectorType>().getElementType());
960 }
961 
962 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
963                                      Value source, Value position) {
964   result.addOperands({source, position});
965   result.addTypes(source.getType().cast<VectorType>().getElementType());
966 }
967 
968 LogicalResult vector::ExtractElementOp::verify() {
969   VectorType vectorType = getVectorType();
970   if (vectorType.getRank() == 0) {
971     if (getPosition())
972       return emitOpError("expected position to be empty with 0-D vector");
973     return success();
974   }
975   if (vectorType.getRank() != 1)
976     return emitOpError("unexpected >1 vector rank");
977   if (!getPosition())
978     return emitOpError("expected position for 1-D vector");
979   return success();
980 }
981 
982 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
983   // Skip the 0-D vector here now.
984   if (operands.size() < 2)
985     return {};
986 
987   Attribute src = operands[0];
988   Attribute pos = operands[1];
989 
990   // Fold extractelement (splat X) -> X.
991   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
992     return splat.getInput();
993 
994   if (!pos || !src)
995     return {};
996 
997   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
998 
999   auto attr = pos.dyn_cast<IntegerAttr>();
1000   uint64_t posIdx = attr.getInt();
1001 
1002   return srcElements[posIdx];
1003 }
1004 
1005 //===----------------------------------------------------------------------===//
1006 // ExtractOp
1007 //===----------------------------------------------------------------------===//
1008 
1009 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1010                               Value source, ArrayRef<int64_t> position) {
1011   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1012 }
1013 
1014 // Convenience builder which assumes the values are constant indices.
1015 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1016                               Value source, ValueRange position) {
1017   SmallVector<int64_t, 4> positionConstants =
1018       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1019         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1020       }));
1021   build(builder, result, source, positionConstants);
1022 }
1023 
1024 LogicalResult
1025 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1026                             ValueRange operands, DictionaryAttr attributes,
1027                             RegionRange,
1028                             SmallVectorImpl<Type> &inferredReturnTypes) {
1029   ExtractOp::Adaptor op(operands, attributes);
1030   auto vectorType = op.getVector().getType().cast<VectorType>();
1031   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1032     inferredReturnTypes.push_back(vectorType.getElementType());
1033   } else {
1034     auto n =
1035         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1036     inferredReturnTypes.push_back(VectorType::get(
1037         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1038   }
1039   return success();
1040 }
1041 
1042 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1043   // Allow extracting 1-element vectors instead of scalars.
1044   auto isCompatible = [](TypeRange l, TypeRange r) {
1045     auto vectorType = l.front().dyn_cast<VectorType>();
1046     return vectorType && vectorType.getShape().equals({1}) &&
1047            vectorType.getElementType() == r.front();
1048   };
1049   if (l.size() == 1 && r.size() == 1 &&
1050       (isCompatible(l, r) || isCompatible(r, l)))
1051     return true;
1052   return l == r;
1053 }
1054 
1055 LogicalResult vector::ExtractOp::verify() {
1056   auto positionAttr = getPosition().getValue();
1057   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1058     return emitOpError(
1059         "expected position attribute of rank smaller than vector rank");
1060   for (const auto &en : llvm::enumerate(positionAttr)) {
1061     auto attr = en.value().dyn_cast<IntegerAttr>();
1062     if (!attr || attr.getInt() < 0 ||
1063         attr.getInt() >= getVectorType().getDimSize(en.index()))
1064       return emitOpError("expected position attribute #")
1065              << (en.index() + 1)
1066              << " to be a non-negative integer smaller than the corresponding "
1067                 "vector dimension";
1068   }
1069   return success();
1070 }
1071 
1072 template <typename IntType>
1073 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1074   return llvm::to_vector<4>(llvm::map_range(
1075       arrayAttr.getAsRange<IntegerAttr>(),
1076       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1077 }
1078 
1079 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1080 /// positions.
1081 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1082   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1083     return failure();
1084 
1085   SmallVector<int64_t, 4> globalPosition;
1086   ExtractOp currentOp = extractOp;
1087   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1088   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1089   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1090     currentOp = nextOp;
1091     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1092     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1093   }
1094   extractOp.setOperand(currentOp.getVector());
1095   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1096   OpBuilder b(extractOp.getContext());
1097   std::reverse(globalPosition.begin(), globalPosition.end());
1098   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1099                      b.getI64ArrayAttr(globalPosition));
1100   return success();
1101 }
1102 
1103 namespace {
1104 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1105 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1106 /// Compose TransposeOp permutations as we walk back.
1107 /// This helper class keeps an updated extraction position `extractPosition`
1108 /// with extra trailing sentinels.
1109 /// The sentinels encode the internal transposition status of the result vector.
1110 /// As we iterate, extractPosition is permuted and updated.
1111 class ExtractFromInsertTransposeChainState {
1112 public:
1113   ExtractFromInsertTransposeChainState(ExtractOp e);
1114 
1115   /// Iterate over producing insert and transpose ops until we find a fold.
1116   Value fold();
1117 
1118 private:
1119   /// Return true if the vector at position `a` is contained within the vector
1120   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1121   /// is a prefix of `b`.
1122   template <typename ContainerA, typename ContainerB>
1123   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1124     return a.size() <= b.size() &&
1125            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1126   }
1127 
1128   /// Return true if the vector at position `a` intersects the vector at
1129   /// position `b`. Under insert/extract semantics, this is the same as equality
1130   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1131   /// Comparison is on the common prefix (i.e. zip).
1132   template <typename ContainerA, typename ContainerB>
1133   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1134     for (auto it : llvm::zip(a, b)) {
1135       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1136         continue;
1137       if (std::get<0>(it) != std::get<1>(it))
1138         return false;
1139     }
1140     return true;
1141   }
1142 
1143   /// Folding is only possible in the absence of an internal permutation in the
1144   /// result vector.
1145   bool canFold() {
1146     return (sentinels ==
1147             makeArrayRef(extractPosition).drop_front(extractedRank));
1148   }
1149 
1150   // Helper to get the next defining op of interest.
1151   void updateStateForNextIteration(Value v) {
1152     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1153     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1154   };
1155 
1156   // Case 1. If we hit a transpose, just compose the map and iterate.
1157   // Invariant: insert + transpose do not change rank, we can always compose.
1158   LogicalResult handleTransposeOp();
1159 
1160   // Case 2: the insert position matches extractPosition exactly, early return.
1161   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1162 
1163   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1164   /// portion of the source of the insert.
1165   /// Example:
1166   /// ```
1167   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1168   /// // extractPosition == [1, 2, 3]
1169   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1170   /// // can fold to vector.extract %source[0, 3]
1171   /// %ext = vector.extract %source[3]: vector<5x6>
1172   /// ```
1173   /// To traverse through %source, we need to set the leading dims to 0 and
1174   /// drop the extra leading dims.
1175   /// This method updates the internal state.
1176   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1177 
1178   /// Try to fold in place to extract(source, extractPosition) and return the
1179   /// folded result. Return null if folding is not possible (e.g. due to an
1180   /// internal tranposition in the result).
1181   Value tryToFoldExtractOpInPlace(Value source);
1182 
1183   ExtractOp extractOp;
1184   int64_t vectorRank;
1185   int64_t extractedRank;
1186 
1187   InsertOp nextInsertOp;
1188   TransposeOp nextTransposeOp;
1189 
1190   /// Sentinel values that encode the internal permutation status of the result.
1191   /// They are set to (-1, ... , -k) at the beginning and appended to
1192   /// `extractPosition`.
1193   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1194   /// ensure that there is no internal transposition.
1195   /// Internal transposition cannot be accounted for with a folding pattern.
1196   // TODO: We could relax the internal transposition with an extra transposition
1197   // operation in a future canonicalizer.
1198   SmallVector<int64_t> sentinels;
1199   SmallVector<int64_t> extractPosition;
1200 };
1201 } // namespace
1202 
1203 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1204     ExtractOp e)
1205     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1206       extractedRank(extractOp.getPosition().size()) {
1207   assert(vectorRank >= extractedRank && "extracted pos overflow");
1208   sentinels.reserve(vectorRank - extractedRank);
1209   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1210     sentinels.push_back(-(i + 1));
1211   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1212   llvm::append_range(extractPosition, sentinels);
1213 }
1214 
1215 // Case 1. If we hit a transpose, just compose the map and iterate.
1216 // Invariant: insert + transpose do not change rank, we can always compose.
1217 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1218   if (!nextTransposeOp)
1219     return failure();
1220   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1221   AffineMap m = inversePermutation(
1222       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1223   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1224   return success();
1225 }
1226 
1227 // Case 2: the insert position matches extractPosition exactly, early return.
1228 LogicalResult
1229 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1230     Value &res) {
1231   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1232   if (makeArrayRef(insertedPos) !=
1233       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1234     return failure();
1235   // Case 2.a. early-exit fold.
1236   res = nextInsertOp.getSource();
1237   // Case 2.b. if internal transposition is present, canFold will be false.
1238   return success();
1239 }
1240 
1241 /// Case 3: if inserted position is a prefix of extractPosition,
1242 /// extract a portion of the source of the insertion.
1243 /// This method updates the internal state.
1244 LogicalResult
1245 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1246   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1247   if (!isContainedWithin(insertedPos, extractPosition))
1248     return failure();
1249   // Set leading dims to zero.
1250   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1251   // Drop extra leading dims.
1252   extractPosition.erase(extractPosition.begin(),
1253                         extractPosition.begin() + insertedPos.size());
1254   extractedRank = extractPosition.size() - sentinels.size();
1255   // Case 3.a. early-exit fold (break and delegate to post-while path).
1256   res = nextInsertOp.getSource();
1257   // Case 3.b. if internal transposition is present, canFold will be false.
1258   return success();
1259 }
1260 
1261 /// Try to fold in place to extract(source, extractPosition) and return the
1262 /// folded result. Return null if folding is not possible (e.g. due to an
1263 /// internal tranposition in the result).
1264 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1265     Value source) {
1266   // If we can't fold (either internal transposition, or nothing to fold), bail.
1267   bool nothingToFold = (source == extractOp.getVector());
1268   if (nothingToFold || !canFold())
1269     return Value();
1270   // Otherwise, fold by updating the op inplace and return its result.
1271   OpBuilder b(extractOp.getContext());
1272   extractOp->setAttr(
1273       extractOp.getPositionAttrName(),
1274       b.getI64ArrayAttr(
1275           makeArrayRef(extractPosition).take_front(extractedRank)));
1276   extractOp.getVectorMutable().assign(source);
1277   return extractOp.getResult();
1278 }
1279 
1280 /// Iterate over producing insert and transpose ops until we find a fold.
1281 Value ExtractFromInsertTransposeChainState::fold() {
1282   Value valueToExtractFrom = extractOp.getVector();
1283   updateStateForNextIteration(valueToExtractFrom);
1284   while (nextInsertOp || nextTransposeOp) {
1285     // Case 1. If we hit a transpose, just compose the map and iterate.
1286     // Invariant: insert + transpose do not change rank, we can always compose.
1287     if (succeeded(handleTransposeOp())) {
1288       valueToExtractFrom = nextTransposeOp.getVector();
1289       updateStateForNextIteration(valueToExtractFrom);
1290       continue;
1291     }
1292 
1293     Value result;
1294     // Case 2: the position match exactly.
1295     if (succeeded(handleInsertOpWithMatchingPos(result)))
1296       return result;
1297 
1298     // Case 3: if the inserted position is a prefix of extractPosition, we can
1299     // just extract a portion of the source of the insert.
1300     if (succeeded(handleInsertOpWithPrefixPos(result)))
1301       return tryToFoldExtractOpInPlace(result);
1302 
1303     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1304     // values. This is a more difficult case and we bail.
1305     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1306     if (isContainedWithin(extractPosition, insertedPos) ||
1307         intersectsWhereNonNegative(extractPosition, insertedPos))
1308       return Value();
1309 
1310     // Case 5: No intersection, we forward the extract to insertOp.dest().
1311     valueToExtractFrom = nextInsertOp.getDest();
1312     updateStateForNextIteration(valueToExtractFrom);
1313   }
1314   // If after all this we can fold, go for it.
1315   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1316 }
1317 
1318 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1319 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1320   Operation *defOp = extractOp.getVector().getDefiningOp();
1321   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1322     return Value();
1323   Value source = defOp->getOperand(0);
1324   if (extractOp.getType() == source.getType())
1325     return source;
1326   auto getRank = [](Type type) {
1327     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1328   };
1329   unsigned broadcastSrcRank = getRank(source.getType());
1330   unsigned extractResultRank = getRank(extractOp.getType());
1331   if (extractResultRank >= broadcastSrcRank)
1332     return Value();
1333   // Check that the dimension of the result haven't been broadcasted.
1334   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1335   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1336   if (extractVecType && broadcastVecType &&
1337       extractVecType.getShape() !=
1338           broadcastVecType.getShape().take_back(extractResultRank))
1339     return Value();
1340   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1341   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1342   extractPos.erase(extractPos.begin(),
1343                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1344   extractOp.setOperand(source);
1345   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1346   OpBuilder b(extractOp.getContext());
1347   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1348                      b.getI64ArrayAttr(extractPos));
1349   return extractOp.getResult();
1350 }
1351 
1352 // Fold extractOp with source coming from ShapeCast op.
1353 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1354   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1355   if (!shapeCastOp)
1356     return Value();
1357   // Get the nth dimension size starting from lowest dimension.
1358   auto getDimReverse = [](VectorType type, int64_t n) {
1359     return type.getShape().take_back(n + 1).front();
1360   };
1361   int64_t destinationRank =
1362       extractOp.getType().isa<VectorType>()
1363           ? extractOp.getType().cast<VectorType>().getRank()
1364           : 0;
1365   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1366     return Value();
1367   if (destinationRank > 0) {
1368     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1369     for (int64_t i = 0; i < destinationRank; i++) {
1370       // The lowest dimension of of the destination must match the lowest
1371       // dimension of the shapecast op source.
1372       // TODO: This case could be support in a canonicalization pattern.
1373       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1374           getDimReverse(destinationType, i))
1375         return Value();
1376     }
1377   }
1378   // Extract the strides associated with the extract op vector source. Then use
1379   // this to calculate a linearized position for the extract.
1380   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1381   std::reverse(extractedPos.begin(), extractedPos.end());
1382   SmallVector<int64_t, 4> strides;
1383   int64_t stride = 1;
1384   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1385     strides.push_back(stride);
1386     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1387   }
1388 
1389   int64_t position = linearize(extractedPos, strides);
1390   // Then extract the strides associated to the shapeCast op vector source and
1391   // delinearize the position using those strides.
1392   SmallVector<int64_t, 4> newStrides;
1393   int64_t numDimension =
1394       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1395   stride = 1;
1396   for (int64_t i = 0; i < numDimension; i++) {
1397     newStrides.push_back(stride);
1398     stride *=
1399         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1400   }
1401   std::reverse(newStrides.begin(), newStrides.end());
1402   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1403   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1404   OpBuilder b(extractOp.getContext());
1405   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1406                      b.getI64ArrayAttr(newPosition));
1407   extractOp.setOperand(shapeCastOp.getSource());
1408   return extractOp.getResult();
1409 }
1410 
1411 /// Fold an ExtractOp from ExtractStridedSliceOp.
1412 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1413   auto extractStridedSliceOp =
1414       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1415   if (!extractStridedSliceOp)
1416     return Value();
1417   // Return if 'extractStridedSliceOp' has non-unit strides.
1418   if (extractStridedSliceOp.hasNonUnitStrides())
1419     return Value();
1420 
1421   // Trim offsets for dimensions fully extracted.
1422   auto sliceOffsets =
1423       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1424   while (!sliceOffsets.empty()) {
1425     size_t lastOffset = sliceOffsets.size() - 1;
1426     if (sliceOffsets.back() != 0 ||
1427         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1428             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1429       break;
1430     sliceOffsets.pop_back();
1431   }
1432   unsigned destinationRank = 0;
1433   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1434     destinationRank = vecType.getRank();
1435   // The dimensions of the result need to be untouched by the
1436   // extractStridedSlice op.
1437   if (destinationRank >
1438       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1439     return Value();
1440   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1441   assert(extractedPos.size() >= sliceOffsets.size());
1442   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1443     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1444   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1445   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1446   OpBuilder b(extractOp.getContext());
1447   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1448                      b.getI64ArrayAttr(extractedPos));
1449   return extractOp.getResult();
1450 }
1451 
1452 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1453 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1454   int64_t destinationRank = op.getType().isa<VectorType>()
1455                                 ? op.getType().cast<VectorType>().getRank()
1456                                 : 0;
1457   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1458   while (insertOp) {
1459     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1460                              insertOp.getSourceVectorType().getRank();
1461     if (destinationRank > insertOp.getSourceVectorType().getRank())
1462       return Value();
1463     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1464     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1465 
1466     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1467           return attr.cast<IntegerAttr>().getInt() != 1;
1468         }))
1469       return Value();
1470     bool disjoint = false;
1471     SmallVector<int64_t, 4> offsetDiffs;
1472     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1473       int64_t start = insertOffsets[dim];
1474       int64_t size =
1475           (dim < insertRankDiff)
1476               ? 1
1477               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1478       int64_t end = start + size;
1479       int64_t offset = extractOffsets[dim];
1480       // Check if the start of the extract offset is in the interval inserted.
1481       if (start <= offset && offset < end) {
1482         if (dim >= insertRankDiff)
1483           offsetDiffs.push_back(offset - start);
1484         continue;
1485       }
1486       disjoint = true;
1487       break;
1488     }
1489     // The extract element chunk overlap with the vector inserted.
1490     if (!disjoint) {
1491       // If any of the inner dimensions are only partially inserted we have a
1492       // partial overlap.
1493       int64_t srcRankDiff =
1494           insertOp.getSourceVectorType().getRank() - destinationRank;
1495       for (int64_t i = 0; i < destinationRank; i++) {
1496         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1497             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1498                                                     insertRankDiff))
1499           return Value();
1500       }
1501       op.getVectorMutable().assign(insertOp.getSource());
1502       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1503       OpBuilder b(op.getContext());
1504       op->setAttr(ExtractOp::getPositionAttrStrName(),
1505                   b.getI64ArrayAttr(offsetDiffs));
1506       return op.getResult();
1507     }
1508     // If the chunk extracted is disjoint from the chunk inserted, keep
1509     // looking in the insert chain.
1510     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1511   }
1512   return Value();
1513 }
1514 
1515 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1516   if (getPosition().empty())
1517     return getVector();
1518   if (succeeded(foldExtractOpFromExtractChain(*this)))
1519     return getResult();
1520   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1521     return res;
1522   if (auto res = foldExtractFromBroadcast(*this))
1523     return res;
1524   if (auto res = foldExtractFromShapeCast(*this))
1525     return res;
1526   if (auto val = foldExtractFromExtractStrided(*this))
1527     return val;
1528   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1529     return val;
1530   return OpFoldResult();
1531 }
1532 
1533 namespace {
1534 
1535 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1536 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1537 public:
1538   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1539 
1540   LogicalResult matchAndRewrite(ExtractOp extractOp,
1541                                 PatternRewriter &rewriter) const override {
1542     Operation *defOp = extractOp.getVector().getDefiningOp();
1543     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1544       return failure();
1545 
1546     Value source = defOp->getOperand(0);
1547     if (extractOp.getType() == source.getType())
1548       return failure();
1549     auto getRank = [](Type type) {
1550       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1551     };
1552     unsigned broadcastSrcRank = getRank(source.getType());
1553     unsigned extractResultRank = getRank(extractOp.getType());
1554     // We only consider the case where the rank of the source is less than or
1555     // equal to the rank of the extract dst. The other cases are handled in the
1556     // folding patterns.
1557     if (extractResultRank < broadcastSrcRank)
1558       return failure();
1559     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1560         extractOp, extractOp.getType(), source);
1561     return success();
1562   }
1563 };
1564 
1565 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1566 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1567 public:
1568   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1569 
1570   LogicalResult matchAndRewrite(ExtractOp extractOp,
1571                                 PatternRewriter &rewriter) const override {
1572     // Return if 'extractStridedSliceOp' operand is not defined by a
1573     // ConstantOp.
1574     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1575     if (!constantOp)
1576       return failure();
1577     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1578     if (!dense)
1579       return failure();
1580     Attribute newAttr = dense.getSplatValue<Attribute>();
1581     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1582       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1583     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1584     return success();
1585   }
1586 };
1587 
1588 } // namespace
1589 
1590 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1591                                             MLIRContext *context) {
1592   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1593 }
1594 
1595 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1596                                        SmallVectorImpl<int64_t> &results) {
1597   for (auto attr : arrayAttr)
1598     results.push_back(attr.cast<IntegerAttr>().getInt());
1599 }
1600 
1601 //===----------------------------------------------------------------------===//
1602 // ExtractMapOp
1603 //===----------------------------------------------------------------------===//
1604 
1605 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1606                          Value vector, ValueRange ids,
1607                          ArrayRef<int64_t> multiplicity,
1608                          AffineMap permutationMap) {
1609   assert(ids.size() == multiplicity.size() &&
1610          ids.size() == permutationMap.getNumResults());
1611   assert(permutationMap.isProjectedPermutation());
1612   VectorType type = vector.getType().cast<VectorType>();
1613   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1614                                    type.getShape().end());
1615   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1616     AffineExpr expr = permutationMap.getResult(i);
1617     auto dim = expr.cast<AffineDimExpr>();
1618     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1619   }
1620   VectorType resultType = VectorType::get(newShape, type.getElementType());
1621   ExtractMapOp::build(builder, result, resultType, vector, ids);
1622 }
1623 
1624 LogicalResult ExtractMapOp::verify() {
1625   if (getSourceVectorType().getRank() != getResultType().getRank())
1626     return emitOpError("expected source and destination vectors of same rank");
1627   unsigned numId = 0;
1628   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1629     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1630         0)
1631       return emitOpError("source vector dimensions must be a multiple of "
1632                          "destination vector dimensions");
1633     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1634       numId++;
1635   }
1636   if (numId != getIds().size())
1637     return emitOpError("expected number of ids must match the number of "
1638                        "dimensions distributed");
1639   return success();
1640 }
1641 
1642 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1643   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1644   if (insert == nullptr || getType() != insert.getVector().getType() ||
1645       getIds() != insert.getIds())
1646     return {};
1647   return insert.getVector();
1648 }
1649 
1650 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1651   assert(multiplicity.empty());
1652   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1653     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1654       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1655                              getResultType().getDimSize(i));
1656   }
1657 }
1658 
1659 template <typename MapOp>
1660 AffineMap calculateImplicitMap(MapOp op) {
1661   SmallVector<AffineExpr, 4> perm;
1662   // Check which dimension have a multiplicity greater than 1 and associated
1663   // them to the IDs in order.
1664   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1665     if (op.getSourceVectorType().getDimSize(i) !=
1666         op.getResultType().getDimSize(i))
1667       perm.push_back(getAffineDimExpr(i, op.getContext()));
1668   }
1669   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1670                             op.getContext());
1671   return map;
1672 }
1673 
1674 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1675 
1676 //===----------------------------------------------------------------------===//
1677 // FmaOp
1678 //===----------------------------------------------------------------------===//
1679 
1680 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1681   return llvm::to_vector<4>(getVectorType().getShape());
1682 }
1683 
1684 //===----------------------------------------------------------------------===//
1685 // BroadcastOp
1686 //===----------------------------------------------------------------------===//
1687 
1688 BroadcastableToResult
1689 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1690                                 std::pair<int, int> *mismatchingDims) {
1691   // Broadcast scalar to vector of the same element type.
1692   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1693       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1694     return BroadcastableToResult::Success;
1695   // From now on, only vectors broadcast.
1696   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1697   if (!srcVectorType)
1698     return BroadcastableToResult::SourceTypeNotAVector;
1699 
1700   int64_t srcRank = srcVectorType.getRank();
1701   int64_t dstRank = dstVectorType.getRank();
1702   if (srcRank > dstRank)
1703     return BroadcastableToResult::SourceRankHigher;
1704   // Source has an exact match or singleton value for all trailing dimensions
1705   // (all leading dimensions are simply duplicated).
1706   int64_t lead = dstRank - srcRank;
1707   for (int64_t r = 0; r < srcRank; ++r) {
1708     int64_t srcDim = srcVectorType.getDimSize(r);
1709     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1710     if (srcDim != 1 && srcDim != dstDim) {
1711       if (mismatchingDims) {
1712         mismatchingDims->first = srcDim;
1713         mismatchingDims->second = dstDim;
1714       }
1715       return BroadcastableToResult::DimensionMismatch;
1716     }
1717   }
1718 
1719   return BroadcastableToResult::Success;
1720 }
1721 
1722 LogicalResult BroadcastOp::verify() {
1723   std::pair<int, int> mismatchingDims;
1724   BroadcastableToResult res =
1725       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1726   if (res == BroadcastableToResult::Success)
1727     return success();
1728   if (res == BroadcastableToResult::SourceRankHigher)
1729     return emitOpError("source rank higher than destination rank");
1730   if (res == BroadcastableToResult::DimensionMismatch)
1731     return emitOpError("dimension mismatch (")
1732            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1733   if (res == BroadcastableToResult::SourceTypeNotAVector)
1734     return emitOpError("source type is not a vector");
1735   llvm_unreachable("unexpected vector.broadcast op error");
1736 }
1737 
1738 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1739   if (getSourceType() == getVectorType())
1740     return getSource();
1741   if (!operands[0])
1742     return {};
1743   auto vectorType = getVectorType();
1744   if (operands[0].getType().isIntOrIndexOrFloat())
1745     return DenseElementsAttr::get(vectorType, operands[0]);
1746   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1747     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1748   return {};
1749 }
1750 
1751 namespace {
1752 
1753 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1754 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1755   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1756 
1757   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1758                                 PatternRewriter &rewriter) const override {
1759     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1760     if (!srcBroadcast)
1761       return failure();
1762     rewriter.replaceOpWithNewOp<BroadcastOp>(
1763         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1764     return success();
1765   }
1766 };
1767 } // namespace
1768 
1769 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1770                                               MLIRContext *context) {
1771   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1772   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1773   results.add<BroadcastFolder>(context);
1774 }
1775 
1776 //===----------------------------------------------------------------------===//
1777 // ShuffleOp
1778 //===----------------------------------------------------------------------===//
1779 
1780 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1781                       Value v2, ArrayRef<int64_t> mask) {
1782   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1783 }
1784 
1785 LogicalResult ShuffleOp::verify() {
1786   VectorType resultType = getVectorType();
1787   VectorType v1Type = getV1VectorType();
1788   VectorType v2Type = getV2VectorType();
1789   // Verify ranks.
1790   int64_t resRank = resultType.getRank();
1791   int64_t v1Rank = v1Type.getRank();
1792   int64_t v2Rank = v2Type.getRank();
1793   if (resRank != v1Rank || v1Rank != v2Rank)
1794     return emitOpError("rank mismatch");
1795   // Verify all but leading dimension sizes.
1796   for (int64_t r = 1; r < v1Rank; ++r) {
1797     int64_t resDim = resultType.getDimSize(r);
1798     int64_t v1Dim = v1Type.getDimSize(r);
1799     int64_t v2Dim = v2Type.getDimSize(r);
1800     if (resDim != v1Dim || v1Dim != v2Dim)
1801       return emitOpError("dimension mismatch");
1802   }
1803   // Verify mask length.
1804   auto maskAttr = getMask().getValue();
1805   int64_t maskLength = maskAttr.size();
1806   if (maskLength <= 0)
1807     return emitOpError("invalid mask length");
1808   if (maskLength != resultType.getDimSize(0))
1809     return emitOpError("mask length mismatch");
1810   // Verify all indices.
1811   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1812   for (const auto &en : llvm::enumerate(maskAttr)) {
1813     auto attr = en.value().dyn_cast<IntegerAttr>();
1814     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1815       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1816   }
1817   return success();
1818 }
1819 
1820 LogicalResult
1821 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1822                             ValueRange operands, DictionaryAttr attributes,
1823                             RegionRange,
1824                             SmallVectorImpl<Type> &inferredReturnTypes) {
1825   ShuffleOp::Adaptor op(operands, attributes);
1826   auto v1Type = op.getV1().getType().cast<VectorType>();
1827   // Construct resulting type: leading dimension matches mask length,
1828   // all trailing dimensions match the operands.
1829   SmallVector<int64_t, 4> shape;
1830   shape.reserve(v1Type.getRank());
1831   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1832   llvm::append_range(shape, v1Type.getShape().drop_front());
1833   inferredReturnTypes.push_back(
1834       VectorType::get(shape, v1Type.getElementType()));
1835   return success();
1836 }
1837 
1838 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1839   uint64_t expected = begin;
1840   return idxArr.size() == width &&
1841          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1842                       [&expected](auto attr) {
1843                         return attr.getZExtValue() == expected++;
1844                       });
1845 }
1846 
1847 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1848   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1849   if (!getV1VectorType().isScalable() &&
1850       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1851     return getV1();
1852   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1853   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1854       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1855                        getV2VectorType().getDimSize(0)))
1856     return getV2();
1857 
1858   Attribute lhs = operands.front(), rhs = operands.back();
1859   if (!lhs || !rhs)
1860     return {};
1861 
1862   auto lhsType = lhs.getType().cast<VectorType>();
1863   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1864   // manipulation.
1865   if (lhsType.getRank() != 1)
1866     return {};
1867   int64_t lhsSize = lhsType.getDimSize(0);
1868 
1869   SmallVector<Attribute> results;
1870   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1871   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1872   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1873     int64_t i = index.getZExtValue();
1874     if (i >= lhsSize) {
1875       results.push_back(rhsElements[i - lhsSize]);
1876     } else {
1877       results.push_back(lhsElements[i]);
1878     }
1879   }
1880 
1881   return DenseElementsAttr::get(getVectorType(), results);
1882 }
1883 
1884 //===----------------------------------------------------------------------===//
1885 // InsertElementOp
1886 //===----------------------------------------------------------------------===//
1887 
1888 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1889                             Value source, Value dest) {
1890   build(builder, result, source, dest, {});
1891 }
1892 
1893 LogicalResult InsertElementOp::verify() {
1894   auto dstVectorType = getDestVectorType();
1895   if (dstVectorType.getRank() == 0) {
1896     if (getPosition())
1897       return emitOpError("expected position to be empty with 0-D vector");
1898     return success();
1899   }
1900   if (dstVectorType.getRank() != 1)
1901     return emitOpError("unexpected >1 vector rank");
1902   if (!getPosition())
1903     return emitOpError("expected position for 1-D vector");
1904   return success();
1905 }
1906 
1907 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1908   // Skip the 0-D vector here.
1909   if (operands.size() < 3)
1910     return {};
1911 
1912   Attribute src = operands[0];
1913   Attribute dst = operands[1];
1914   Attribute pos = operands[2];
1915   if (!src || !dst || !pos)
1916     return {};
1917 
1918   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1919 
1920   SmallVector<Attribute> results(dstElements);
1921 
1922   auto attr = pos.dyn_cast<IntegerAttr>();
1923   uint64_t posIdx = attr.getInt();
1924 
1925   results[posIdx] = src;
1926 
1927   return DenseElementsAttr::get(getDestVectorType(), results);
1928 }
1929 
1930 //===----------------------------------------------------------------------===//
1931 // InsertOp
1932 //===----------------------------------------------------------------------===//
1933 
1934 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1935                      Value dest, ArrayRef<int64_t> position) {
1936   result.addOperands({source, dest});
1937   auto positionAttr = getVectorSubscriptAttr(builder, position);
1938   result.addTypes(dest.getType());
1939   result.addAttribute(getPositionAttrStrName(), positionAttr);
1940 }
1941 
1942 // Convenience builder which assumes the values are constant indices.
1943 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1944                      Value dest, ValueRange position) {
1945   SmallVector<int64_t, 4> positionConstants =
1946       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1947         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1948       }));
1949   build(builder, result, source, dest, positionConstants);
1950 }
1951 
1952 LogicalResult InsertOp::verify() {
1953   auto positionAttr = getPosition().getValue();
1954   auto destVectorType = getDestVectorType();
1955   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1956     return emitOpError(
1957         "expected position attribute of rank smaller than dest vector rank");
1958   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1959   if (srcVectorType &&
1960       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1961        static_cast<unsigned>(destVectorType.getRank())))
1962     return emitOpError("expected position attribute rank + source rank to "
1963                        "match dest vector rank");
1964   if (!srcVectorType &&
1965       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1966     return emitOpError(
1967         "expected position attribute rank to match the dest vector rank");
1968   for (const auto &en : llvm::enumerate(positionAttr)) {
1969     auto attr = en.value().dyn_cast<IntegerAttr>();
1970     if (!attr || attr.getInt() < 0 ||
1971         attr.getInt() >= destVectorType.getDimSize(en.index()))
1972       return emitOpError("expected position attribute #")
1973              << (en.index() + 1)
1974              << " to be a non-negative integer smaller than the corresponding "
1975                 "dest vector dimension";
1976   }
1977   return success();
1978 }
1979 
1980 namespace {
1981 
1982 // If insertOp is only inserting unit dimensions it can be transformed to a
1983 // broadcast.
1984 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1985 public:
1986   using OpRewritePattern<InsertOp>::OpRewritePattern;
1987 
1988   LogicalResult matchAndRewrite(InsertOp insertOp,
1989                                 PatternRewriter &rewriter) const override {
1990     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1991     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1992                            srcVecType.getNumElements())
1993       return failure();
1994     rewriter.replaceOpWithNewOp<BroadcastOp>(
1995         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1996     return success();
1997   }
1998 };
1999 
2000 } // namespace
2001 
2002 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2003                                            MLIRContext *context) {
2004   results.add<InsertToBroadcast, BroadcastFolder>(context);
2005 }
2006 
2007 // Eliminates insert operations that produce values identical to their source
2008 // value. This happens when the source and destination vectors have identical
2009 // sizes.
2010 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2011   if (getPosition().empty())
2012     return getSource();
2013   return {};
2014 }
2015 
2016 //===----------------------------------------------------------------------===//
2017 // InsertMapOp
2018 //===----------------------------------------------------------------------===//
2019 
2020 LogicalResult InsertMapOp::verify() {
2021   if (getSourceVectorType().getRank() != getResultType().getRank())
2022     return emitOpError("expected source and destination vectors of same rank");
2023   unsigned numId = 0;
2024   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2025     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2026         0)
2027       return emitOpError(
2028           "destination vector size must be a multiple of source vector size");
2029     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2030       numId++;
2031   }
2032   if (numId != getIds().size())
2033     return emitOpError("expected number of ids must match the number of "
2034                        "dimensions distributed");
2035   return success();
2036 }
2037 
2038 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2039 
2040 //===----------------------------------------------------------------------===//
2041 // InsertStridedSliceOp
2042 //===----------------------------------------------------------------------===//
2043 
2044 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2045                                  Value source, Value dest,
2046                                  ArrayRef<int64_t> offsets,
2047                                  ArrayRef<int64_t> strides) {
2048   result.addOperands({source, dest});
2049   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2050   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2051   result.addTypes(dest.getType());
2052   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2053   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2054 }
2055 
2056 // TODO: Should be moved to Tablegen Confined attributes.
2057 template <typename OpType>
2058 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2059                                                         ArrayAttr arrayAttr,
2060                                                         ArrayRef<int64_t> shape,
2061                                                         StringRef attrName) {
2062   if (arrayAttr.size() > shape.size())
2063     return op.emitOpError("expected ")
2064            << attrName << " attribute of rank smaller than vector rank";
2065   return success();
2066 }
2067 
2068 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2069 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2070 // Otherwise, the admissible interval is [min, max].
2071 template <typename OpType>
2072 static LogicalResult
2073 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2074                                   int64_t max, StringRef attrName,
2075                                   bool halfOpen = true) {
2076   for (auto attr : arrayAttr) {
2077     auto val = attr.cast<IntegerAttr>().getInt();
2078     auto upper = max;
2079     if (!halfOpen)
2080       upper += 1;
2081     if (val < min || val >= upper)
2082       return op.emitOpError("expected ") << attrName << " to be confined to ["
2083                                          << min << ", " << upper << ")";
2084   }
2085   return success();
2086 }
2087 
2088 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2089 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2090 // Otherwise, the admissible interval is [min, max].
2091 template <typename OpType>
2092 static LogicalResult
2093 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2094                                   ArrayRef<int64_t> shape, StringRef attrName,
2095                                   bool halfOpen = true, int64_t min = 0) {
2096   assert(arrayAttr.size() <= shape.size());
2097   unsigned index = 0;
2098   for (auto it : llvm::zip(arrayAttr, shape)) {
2099     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2100     auto max = std::get<1>(it);
2101     if (!halfOpen)
2102       max += 1;
2103     if (val < min || val >= max)
2104       return op.emitOpError("expected ")
2105              << attrName << " dimension " << index << " to be confined to ["
2106              << min << ", " << max << ")";
2107     ++index;
2108   }
2109   return success();
2110 }
2111 
2112 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2113 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2114 // Otherwise, the admissible interval is [min, max].
2115 template <typename OpType>
2116 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2117     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2118     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2119     bool halfOpen = true, int64_t min = 1) {
2120   assert(arrayAttr1.size() <= shape.size());
2121   assert(arrayAttr2.size() <= shape.size());
2122   unsigned index = 0;
2123   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2124     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2125     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2126     auto max = std::get<2>(it);
2127     if (!halfOpen)
2128       max += 1;
2129     if (val1 + val2 < 0 || val1 + val2 >= max)
2130       return op.emitOpError("expected sum(")
2131              << attrName1 << ", " << attrName2 << ") dimension " << index
2132              << " to be confined to [" << min << ", " << max << ")";
2133     ++index;
2134   }
2135   return success();
2136 }
2137 
2138 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2139                                   MLIRContext *context) {
2140   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2141     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2142   });
2143   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2144 }
2145 
2146 LogicalResult InsertStridedSliceOp::verify() {
2147   auto sourceVectorType = getSourceVectorType();
2148   auto destVectorType = getDestVectorType();
2149   auto offsets = getOffsetsAttr();
2150   auto strides = getStridesAttr();
2151   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2152     return emitOpError(
2153         "expected offsets of same size as destination vector rank");
2154   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2155     return emitOpError("expected strides of same size as source vector rank");
2156   if (sourceVectorType.getRank() > destVectorType.getRank())
2157     return emitOpError(
2158         "expected source rank to be smaller than destination rank");
2159 
2160   auto sourceShape = sourceVectorType.getShape();
2161   auto destShape = destVectorType.getShape();
2162   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2163       destShape.size() - sourceShape.size(), 0);
2164   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2165   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2166   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2167   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2168                                                offName)) ||
2169       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2170                                                stridesName,
2171                                                /*halfOpen=*/false)) ||
2172       failed(isSumOfIntegerArrayAttrConfinedToShape(
2173           *this, offsets,
2174           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2175           offName, "source vector shape",
2176           /*halfOpen=*/false, /*min=*/1)))
2177     return failure();
2178 
2179   return success();
2180 }
2181 
2182 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2183   if (getSourceVectorType() == getDestVectorType())
2184     return getSource();
2185   return {};
2186 }
2187 
2188 //===----------------------------------------------------------------------===//
2189 // OuterProductOp
2190 //===----------------------------------------------------------------------===//
2191 
2192 /// Build an op without mask, use the type of `acc` as the return type.
2193 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2194                            Value lhs, Value rhs, Value acc) {
2195   result.addOperands({lhs, rhs, acc});
2196   result.addTypes(acc.getType());
2197 }
2198 
2199 void OuterProductOp::print(OpAsmPrinter &p) {
2200   p << " " << getLhs() << ", " << getRhs();
2201   if (!getAcc().empty()) {
2202     p << ", " << getAcc();
2203     p.printOptionalAttrDict((*this)->getAttrs());
2204   }
2205   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2206 }
2207 
2208 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2209   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2210   Type tLHS, tRHS;
2211   if (parser.parseOperandList(operandsInfo) ||
2212       parser.parseOptionalAttrDict(result.attributes) ||
2213       parser.parseColonType(tLHS) || parser.parseComma() ||
2214       parser.parseType(tRHS))
2215     return failure();
2216   if (operandsInfo.size() < 2)
2217     return parser.emitError(parser.getNameLoc(),
2218                             "expected at least 2 operands");
2219   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2220   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2221   if (!vLHS)
2222     return parser.emitError(parser.getNameLoc(),
2223                             "expected vector type for operand #1");
2224   VectorType resType =
2225       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2226                              vLHS.getElementType())
2227            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2228 
2229   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2230     result.attributes.append(
2231         OuterProductOp::getKindAttrStrName(),
2232         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2233                                result.getContext()));
2234   }
2235 
2236   return failure(
2237       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2238       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2239       (operandsInfo.size() > 2 &&
2240        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2241       parser.addTypeToList(resType, result.types));
2242 }
2243 
2244 LogicalResult OuterProductOp::verify() {
2245   Type tRHS = getOperandTypeRHS();
2246   VectorType vLHS = getOperandVectorTypeLHS(),
2247              vRHS = tRHS.dyn_cast<VectorType>(),
2248              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2249 
2250   if (vLHS.getRank() != 1)
2251     return emitOpError("expected 1-d vector for operand #1");
2252 
2253   if (vRHS) {
2254     // Proper OUTER operation.
2255     if (vRHS.getRank() != 1)
2256       return emitOpError("expected 1-d vector for operand #2");
2257     if (vRES.getRank() != 2)
2258       return emitOpError("expected 2-d vector result");
2259     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2260       return emitOpError("expected #1 operand dim to match result dim #1");
2261     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2262       return emitOpError("expected #2 operand dim to match result dim #2");
2263   } else {
2264     // An AXPY operation.
2265     if (vRES.getRank() != 1)
2266       return emitOpError("expected 1-d vector result");
2267     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2268       return emitOpError("expected #1 operand dim to match result dim #1");
2269   }
2270 
2271   if (vACC && vACC != vRES)
2272     return emitOpError("expected operand #3 of same type as result type");
2273 
2274   // Verify supported combining kind.
2275   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2276     return emitOpError("unsupported outerproduct type");
2277 
2278   return success();
2279 }
2280 
2281 //===----------------------------------------------------------------------===//
2282 // ReshapeOp
2283 //===----------------------------------------------------------------------===//
2284 
2285 LogicalResult ReshapeOp::verify() {
2286   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2287   auto inputVectorType = getInputVectorType();
2288   auto outputVectorType = getOutputVectorType();
2289   int64_t inputShapeRank = getNumInputShapeSizes();
2290   int64_t outputShapeRank = getNumOutputShapeSizes();
2291   SmallVector<int64_t, 4> fixedVectorSizes;
2292   getFixedVectorSizes(fixedVectorSizes);
2293   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2294 
2295   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2296     return emitError("invalid input shape for vector type ") << inputVectorType;
2297 
2298   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2299     return emitError("invalid output shape for vector type ")
2300            << outputVectorType;
2301 
2302   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2303   // suffix.
2304   unsigned inputVectorRank = inputVectorType.getRank();
2305   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2306     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2307     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2308       return emitError("fixed vector size must match input vector for dim ")
2309              << i;
2310   }
2311 
2312   unsigned outputVectorRank = outputVectorType.getRank();
2313   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2314     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2315     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2316       return emitError("fixed vector size must match output vector for dim ")
2317              << i;
2318   }
2319 
2320   // If all shape operands are produced by constant ops, verify that product
2321   // of dimensions for input/output shape match.
2322   auto isDefByConstant = [](Value operand) {
2323     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2324   };
2325   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2326       llvm::all_of(getOutputShape(), isDefByConstant)) {
2327     int64_t numInputElements = 1;
2328     for (auto operand : getInputShape())
2329       numInputElements *=
2330           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2331     int64_t numOutputElements = 1;
2332     for (auto operand : getOutputShape())
2333       numOutputElements *=
2334           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2335     if (numInputElements != numOutputElements)
2336       return emitError("product of input and output shape sizes must match");
2337   }
2338   return success();
2339 }
2340 
2341 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2342   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2343 }
2344 
2345 //===----------------------------------------------------------------------===//
2346 // ExtractStridedSliceOp
2347 //===----------------------------------------------------------------------===//
2348 
2349 // Inference works as follows:
2350 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2351 //   2. Add sizes from 'vectorType' for remaining dims.
2352 static Type inferStridedSliceOpResultType(VectorType vectorType,
2353                                           ArrayAttr offsets, ArrayAttr sizes,
2354                                           ArrayAttr strides) {
2355   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2356   SmallVector<int64_t, 4> shape;
2357   shape.reserve(vectorType.getRank());
2358   unsigned idx = 0;
2359   for (unsigned e = offsets.size(); idx < e; ++idx)
2360     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2361   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2362     shape.push_back(vectorType.getShape()[idx]);
2363 
2364   return VectorType::get(shape, vectorType.getElementType());
2365 }
2366 
2367 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2368                                   Value source, ArrayRef<int64_t> offsets,
2369                                   ArrayRef<int64_t> sizes,
2370                                   ArrayRef<int64_t> strides) {
2371   result.addOperands(source);
2372   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2373   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2374   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2375   result.addTypes(
2376       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2377                                     offsetsAttr, sizesAttr, stridesAttr));
2378   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2379   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2380   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2381 }
2382 
2383 LogicalResult ExtractStridedSliceOp::verify() {
2384   auto type = getVectorType();
2385   auto offsets = getOffsetsAttr();
2386   auto sizes = getSizesAttr();
2387   auto strides = getStridesAttr();
2388   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2389     return emitOpError(
2390         "expected offsets, sizes and strides attributes of same size");
2391 
2392   auto shape = type.getShape();
2393   auto offName = getOffsetsAttrName();
2394   auto sizesName = getSizesAttrName();
2395   auto stridesName = getStridesAttrName();
2396   if (failed(
2397           isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2398       failed(
2399           isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2400       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2401                                                 stridesName)) ||
2402       failed(
2403           isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2404       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2405                                                /*halfOpen=*/false,
2406                                                /*min=*/1)) ||
2407       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2408                                                stridesName,
2409                                                /*halfOpen=*/false)) ||
2410       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
2411                                                     shape, offName, sizesName,
2412                                                     /*halfOpen=*/false)))
2413     return failure();
2414 
2415   auto resultType =
2416       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2417   if (getResult().getType() != resultType)
2418     return emitOpError("expected result type to be ") << resultType;
2419 
2420   return success();
2421 }
2422 
2423 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2424 // to use the source of the InsertStrided ops if we can detect that the
2425 // extracted vector is a subset of one of the vector inserted.
2426 static LogicalResult
2427 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2428   // Helper to extract integer out of ArrayAttr.
2429   auto getElement = [](ArrayAttr array, int idx) {
2430     return array[idx].cast<IntegerAttr>().getInt();
2431   };
2432   ArrayAttr extractOffsets = op.getOffsets();
2433   ArrayAttr extractStrides = op.getStrides();
2434   ArrayAttr extractSizes = op.getSizes();
2435   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2436   while (insertOp) {
2437     if (op.getVectorType().getRank() !=
2438         insertOp.getSourceVectorType().getRank())
2439       return failure();
2440     ArrayAttr insertOffsets = insertOp.getOffsets();
2441     ArrayAttr insertStrides = insertOp.getStrides();
2442     // If the rank of extract is greater than the rank of insert, we are likely
2443     // extracting a partial chunk of the vector inserted.
2444     if (extractOffsets.size() > insertOffsets.size())
2445       return failure();
2446     bool patialoverlap = false;
2447     bool disjoint = false;
2448     SmallVector<int64_t, 4> offsetDiffs;
2449     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2450       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2451         return failure();
2452       int64_t start = getElement(insertOffsets, dim);
2453       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2454       int64_t offset = getElement(extractOffsets, dim);
2455       int64_t size = getElement(extractSizes, dim);
2456       // Check if the start of the extract offset is in the interval inserted.
2457       if (start <= offset && offset < end) {
2458         // If the extract interval overlaps but is not fully included we may
2459         // have a partial overlap that will prevent any folding.
2460         if (offset + size > end)
2461           patialoverlap = true;
2462         offsetDiffs.push_back(offset - start);
2463         continue;
2464       }
2465       disjoint = true;
2466       break;
2467     }
2468     // The extract element chunk is a subset of the insert element.
2469     if (!disjoint && !patialoverlap) {
2470       op.setOperand(insertOp.getSource());
2471       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2472       OpBuilder b(op.getContext());
2473       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2474                   b.getI64ArrayAttr(offsetDiffs));
2475       return success();
2476     }
2477     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2478     // in the insert chain.
2479     if (disjoint)
2480       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2481     else {
2482       // The extracted vector partially overlap the inserted vector, we cannot
2483       // fold.
2484       return failure();
2485     }
2486   }
2487   return failure();
2488 }
2489 
2490 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2491   if (getVectorType() == getResult().getType())
2492     return getVector();
2493   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2494     return getResult();
2495   return {};
2496 }
2497 
2498 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2499   populateFromInt64AttrArray(getOffsets(), results);
2500 }
2501 
2502 namespace {
2503 
2504 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2505 // ConstantMaskOp.
2506 class StridedSliceConstantMaskFolder final
2507     : public OpRewritePattern<ExtractStridedSliceOp> {
2508 public:
2509   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2510 
2511   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2512                                 PatternRewriter &rewriter) const override {
2513     // Return if 'extractStridedSliceOp' operand is not defined by a
2514     // ConstantMaskOp.
2515     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2516     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2517     if (!constantMaskOp)
2518       return failure();
2519     // Return if 'extractStridedSliceOp' has non-unit strides.
2520     if (extractStridedSliceOp.hasNonUnitStrides())
2521       return failure();
2522     // Gather constant mask dimension sizes.
2523     SmallVector<int64_t, 4> maskDimSizes;
2524     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2525     // Gather strided slice offsets and sizes.
2526     SmallVector<int64_t, 4> sliceOffsets;
2527     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2528                                sliceOffsets);
2529     SmallVector<int64_t, 4> sliceSizes;
2530     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2531 
2532     // Compute slice of vector mask region.
2533     SmallVector<int64_t, 4> sliceMaskDimSizes;
2534     assert(sliceOffsets.size() == maskDimSizes.size());
2535     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2536       int64_t maskDimSize = std::get<0>(it);
2537       int64_t sliceOffset = std::get<1>(it);
2538       int64_t sliceSize = std::get<2>(it);
2539       int64_t sliceMaskDimSize = std::max(
2540           static_cast<int64_t>(0),
2541           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2542       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2543     }
2544     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2545     // region is a conjunction of mask dim intervals).
2546     if (llvm::is_contained(sliceMaskDimSizes, 0))
2547       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2548 
2549     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2550     // region.
2551     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2552         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2553         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2554     return success();
2555   }
2556 };
2557 
2558 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2559 class StridedSliceConstantFolder final
2560     : public OpRewritePattern<ExtractStridedSliceOp> {
2561 public:
2562   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2563 
2564   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2565                                 PatternRewriter &rewriter) const override {
2566     // Return if 'extractStridedSliceOp' operand is not defined by a
2567     // ConstantOp.
2568     auto constantOp =
2569         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2570     if (!constantOp)
2571       return failure();
2572     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2573     if (!dense)
2574       return failure();
2575     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2576                                           dense.getSplatValue<Attribute>());
2577     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2578                                                    newAttr);
2579     return success();
2580   }
2581 };
2582 
2583 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2584 // BroadcastOp(ExtractStrideSliceOp).
2585 class StridedSliceBroadcast final
2586     : public OpRewritePattern<ExtractStridedSliceOp> {
2587 public:
2588   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2589 
2590   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2591                                 PatternRewriter &rewriter) const override {
2592     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2593     if (!broadcast)
2594       return failure();
2595     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2596     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2597     auto dstVecType = op.getType().cast<VectorType>();
2598     unsigned dstRank = dstVecType.getRank();
2599     unsigned rankDiff = dstRank - srcRank;
2600     // Check if the most inner dimensions of the source of the broadcast are the
2601     // same as the destination of the extract. If this is the case we can just
2602     // use a broadcast as the original dimensions are untouched.
2603     bool lowerDimMatch = true;
2604     for (unsigned i = 0; i < srcRank; i++) {
2605       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2606         lowerDimMatch = false;
2607         break;
2608       }
2609     }
2610     Value source = broadcast.getSource();
2611     // If the inner dimensions don't match, it means we need to extract from the
2612     // source of the orignal broadcast and then broadcast the extracted value.
2613     // We also need to handle degenerated cases where the source is effectively
2614     // just a single scalar.
2615     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2616     if (!lowerDimMatch && !isScalarSrc) {
2617       source = rewriter.create<ExtractStridedSliceOp>(
2618           op->getLoc(), source,
2619           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2620           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2621           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2622     }
2623     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2624     return success();
2625   }
2626 };
2627 
2628 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2629 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2630 public:
2631   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2632 
2633   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2634                                 PatternRewriter &rewriter) const override {
2635     auto splat = op.getVector().getDefiningOp<SplatOp>();
2636     if (!splat)
2637       return failure();
2638     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2639     return success();
2640   }
2641 };
2642 
2643 } // namespace
2644 
2645 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2646     RewritePatternSet &results, MLIRContext *context) {
2647   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2648   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2649   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2650               StridedSliceBroadcast, StridedSliceSplat>(context);
2651 }
2652 
2653 //===----------------------------------------------------------------------===//
2654 // TransferReadOp
2655 //===----------------------------------------------------------------------===//
2656 
2657 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2658 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2659                            VectorType vectorType, Value source,
2660                            ValueRange indices, AffineMapAttr permutationMapAttr,
2661                            /*optional*/ ArrayAttr inBoundsAttr) {
2662   Type elemType = source.getType().cast<ShapedType>().getElementType();
2663   Value padding = builder.create<arith::ConstantOp>(
2664       result.location, elemType, builder.getZeroAttr(elemType));
2665   build(builder, result, vectorType, source, indices, permutationMapAttr,
2666         padding, /*mask=*/Value(), inBoundsAttr);
2667 }
2668 
2669 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2670 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2671                            VectorType vectorType, Value source,
2672                            ValueRange indices, AffineMap permutationMap,
2673                            Optional<ArrayRef<bool>> inBounds) {
2674   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2675   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2676                           ? builder.getBoolArrayAttr(inBounds.getValue())
2677                           : ArrayAttr();
2678   build(builder, result, vectorType, source, indices, permutationMapAttr,
2679         inBoundsAttr);
2680 }
2681 
2682 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2683 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2684                            VectorType vectorType, Value source,
2685                            ValueRange indices, Value padding,
2686                            Optional<ArrayRef<bool>> inBounds) {
2687   AffineMap permutationMap = getTransferMinorIdentityMap(
2688       source.getType().cast<ShapedType>(), vectorType);
2689   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2690   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2691                           ? builder.getBoolArrayAttr(inBounds.getValue())
2692                           : ArrayAttr();
2693   build(builder, result, vectorType, source, indices, permutationMapAttr,
2694         padding,
2695         /*mask=*/Value(), inBoundsAttr);
2696 }
2697 
2698 /// 4. Builder that sets padding to zero and permutation map to
2699 /// 'getMinorIdentityMap'.
2700 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2701                            VectorType vectorType, Value source,
2702                            ValueRange indices,
2703                            Optional<ArrayRef<bool>> inBounds) {
2704   Type elemType = source.getType().cast<ShapedType>().getElementType();
2705   Value padding = builder.create<arith::ConstantOp>(
2706       result.location, elemType, builder.getZeroAttr(elemType));
2707   build(builder, result, vectorType, source, indices, padding, inBounds);
2708 }
2709 
2710 template <typename EmitFun>
2711 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2712                                           EmitFun emitOpError) {
2713   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2714   for (auto expr : permutationMap.getResults()) {
2715     auto dim = expr.dyn_cast<AffineDimExpr>();
2716     auto zero = expr.dyn_cast<AffineConstantExpr>();
2717     if (zero) {
2718       if (zero.getValue() != 0) {
2719         return emitOpError(
2720             "requires a projected permutation_map (at most one dim or the zero "
2721             "constant can appear in each result)");
2722       }
2723       continue;
2724     }
2725     if (!dim) {
2726       return emitOpError("requires a projected permutation_map (at most one "
2727                          "dim or the zero constant can appear in each result)");
2728     }
2729     if (seen[dim.getPosition()]) {
2730       return emitOpError(
2731           "requires a permutation_map that is a permutation (found one dim "
2732           "used more than once)");
2733     }
2734     seen[dim.getPosition()] = true;
2735   }
2736   return success();
2737 }
2738 
2739 static LogicalResult
2740 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2741                  VectorType vectorType, VectorType maskType,
2742                  AffineMap permutationMap, ArrayAttr inBounds) {
2743   if (op->hasAttr("masked")) {
2744     return op->emitOpError("masked attribute has been removed. "
2745                            "Use in_bounds instead.");
2746   }
2747 
2748   if (!shapedType.isa<MemRefType, RankedTensorType>())
2749     return op->emitOpError(
2750         "requires source to be a memref or ranked tensor type");
2751 
2752   auto elementType = shapedType.getElementType();
2753   DataLayout dataLayout = DataLayout::closest(op);
2754   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2755     // Memref or tensor has vector element type.
2756     unsigned sourceVecSize =
2757         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2758         vectorElementType.getShape().back();
2759     unsigned resultVecSize =
2760         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2761         vectorType.getShape().back();
2762     if (resultVecSize % sourceVecSize != 0)
2763       return op->emitOpError(
2764           "requires the bitwidth of the minor 1-D vector to be an integral "
2765           "multiple of the bitwidth of the minor 1-D vector of the source");
2766 
2767     unsigned sourceVecEltRank = vectorElementType.getRank();
2768     unsigned resultVecRank = vectorType.getRank();
2769     if (sourceVecEltRank > resultVecRank)
2770       return op->emitOpError(
2771           "requires source vector element and vector result ranks to match.");
2772     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2773     // Check that permutation map results match 'rankOffset' of vector type.
2774     if (permutationMap.getNumResults() != rankOffset)
2775       return op->emitOpError("requires a permutation_map with result dims of "
2776                              "the same rank as the vector type");
2777 
2778     if (maskType)
2779       return op->emitOpError("does not support masks with vector element type");
2780   } else {
2781     // Memref or tensor has scalar element type.
2782     unsigned minorSize =
2783         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2784     unsigned resultVecSize =
2785         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2786     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2787       return op->emitOpError(
2788           "requires the bitwidth of the minor 1-D vector to be an integral "
2789           "multiple of the bitwidth of the source element type");
2790 
2791     // Check that permutation map results match rank of vector type.
2792     if (permutationMap.getNumResults() != vectorType.getRank())
2793       return op->emitOpError("requires a permutation_map with result dims of "
2794                              "the same rank as the vector type");
2795 
2796     VectorType expectedMaskType =
2797         vector::detail::transferMaskType(vectorType, permutationMap);
2798     if (maskType && expectedMaskType != maskType)
2799       return op->emitOpError("expects mask type consistent with permutation "
2800                              "map: ")
2801              << maskType;
2802   }
2803 
2804   if (permutationMap.getNumSymbols() != 0)
2805     return op->emitOpError("requires permutation_map without symbols");
2806 
2807   if (permutationMap.getNumInputs() != shapedType.getRank())
2808     return op->emitOpError("requires a permutation_map with input dims of the "
2809                            "same rank as the source type");
2810 
2811   if (inBounds) {
2812     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2813       return op->emitOpError("expects the optional in_bounds attr of same rank "
2814                              "as permutation_map results: ")
2815              << AffineMapAttr::get(permutationMap)
2816              << " vs inBounds of size: " << inBounds.size();
2817     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2818       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2819           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2820         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2821   }
2822 
2823   return success();
2824 }
2825 
2826 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2827   SmallVector<StringRef, 3> elidedAttrs;
2828   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2829   if (op.permutation_map().isMinorIdentity())
2830     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2831   bool elideInBounds = true;
2832   if (auto inBounds = op.in_bounds()) {
2833     for (auto attr : *inBounds) {
2834       if (attr.template cast<BoolAttr>().getValue()) {
2835         elideInBounds = false;
2836         break;
2837       }
2838     }
2839   }
2840   if (elideInBounds)
2841     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2842   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2843 }
2844 
2845 void TransferReadOp::print(OpAsmPrinter &p) {
2846   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2847   if (getMask())
2848     p << ", " << getMask();
2849   printTransferAttrs(p, *this);
2850   p << " : " << getShapedType() << ", " << getVectorType();
2851 }
2852 
2853 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2854   auto &builder = parser.getBuilder();
2855   SMLoc typesLoc;
2856   OpAsmParser::UnresolvedOperand sourceInfo;
2857   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2858   OpAsmParser::UnresolvedOperand paddingInfo;
2859   SmallVector<Type, 2> types;
2860   OpAsmParser::UnresolvedOperand maskInfo;
2861   // Parsing with support for paddingValue.
2862   if (parser.parseOperand(sourceInfo) ||
2863       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2864       parser.parseComma() || parser.parseOperand(paddingInfo))
2865     return failure();
2866   ParseResult hasMask = parser.parseOptionalComma();
2867   if (hasMask.succeeded()) {
2868     if (parser.parseOperand(maskInfo))
2869       return failure();
2870   }
2871   if (parser.parseOptionalAttrDict(result.attributes) ||
2872       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2873     return failure();
2874   if (types.size() != 2)
2875     return parser.emitError(typesLoc, "requires two types");
2876   auto indexType = builder.getIndexType();
2877   auto shapedType = types[0].dyn_cast<ShapedType>();
2878   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2879     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2880   VectorType vectorType = types[1].dyn_cast<VectorType>();
2881   if (!vectorType)
2882     return parser.emitError(typesLoc, "requires vector type");
2883   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2884   Attribute mapAttr = result.attributes.get(permutationAttrName);
2885   if (!mapAttr) {
2886     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2887     // Update `mapAttr` that is used later to determine mask type.
2888     mapAttr = AffineMapAttr::get(permMap);
2889     result.attributes.set(permutationAttrName, mapAttr);
2890   }
2891   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2892       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2893       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2894                             result.operands))
2895     return failure();
2896   if (hasMask.succeeded()) {
2897     if (shapedType.getElementType().dyn_cast<VectorType>())
2898       return parser.emitError(
2899           maskInfo.location, "does not support masks with vector element type");
2900     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2901     // Instead of adding the mask type as an op type, compute it based on the
2902     // vector type and the permutation map (to keep the type signature small).
2903     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2904     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2905       return failure();
2906   }
2907   result.addAttribute(
2908       TransferReadOp::getOperandSegmentSizeAttr(),
2909       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2910                                 static_cast<int32_t>(hasMask.succeeded())}));
2911   return parser.addTypeToList(vectorType, result.types);
2912 }
2913 
2914 LogicalResult TransferReadOp::verify() {
2915   // Consistency of elemental types in source and vector.
2916   ShapedType shapedType = getShapedType();
2917   VectorType vectorType = getVectorType();
2918   VectorType maskType = getMaskType();
2919   auto paddingType = getPadding().getType();
2920   auto permutationMap = getPermutationMap();
2921   auto sourceElementType = shapedType.getElementType();
2922 
2923   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2924     return emitOpError("requires ") << shapedType.getRank() << " indices";
2925 
2926   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2927                               shapedType, vectorType, maskType, permutationMap,
2928                               getInBounds() ? *getInBounds() : ArrayAttr())))
2929     return failure();
2930 
2931   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2932     // Source has vector element type.
2933     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2934     if (sourceVectorElementType != paddingType)
2935       return emitOpError(
2936           "requires source element type and padding type to match.");
2937 
2938   } else {
2939     // Check that 'paddingType' is valid to store in a vector type.
2940     if (!VectorType::isValidElementType(paddingType))
2941       return emitOpError("requires valid padding vector elemental type");
2942 
2943     // Check that padding type and vector element types match.
2944     if (paddingType != sourceElementType)
2945       return emitOpError(
2946           "requires formal padding and source of the same elemental type");
2947   }
2948 
2949   return verifyPermutationMap(permutationMap,
2950                               [&](Twine t) { return emitOpError(t); });
2951 }
2952 
2953 /// This is a common class used for patterns of the form
2954 /// ```
2955 ///    someop(memrefcast) -> someop
2956 /// ```
2957 /// It folds the source of the memref.cast into the root operation directly.
2958 static LogicalResult foldMemRefCast(Operation *op) {
2959   bool folded = false;
2960   for (OpOperand &operand : op->getOpOperands()) {
2961     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2962     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2963       operand.set(castOp.getOperand());
2964       folded = true;
2965     }
2966   }
2967   return success(folded);
2968 }
2969 
2970 static LogicalResult foldTensorCast(Operation *op) {
2971   bool folded = false;
2972   for (OpOperand &operand : op->getOpOperands()) {
2973     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2974     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2975       operand.set(castOp.getOperand());
2976       folded = true;
2977     }
2978   }
2979   return success(folded);
2980 }
2981 
2982 template <typename TransferOp>
2983 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2984   // TODO: support more aggressive createOrFold on:
2985   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2986   if (op.getShapedType().isDynamicDim(indicesIdx))
2987     return false;
2988   Value index = op.getIndices()[indicesIdx];
2989   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2990   if (!cstOp)
2991     return false;
2992 
2993   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2994   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2995 
2996   return cstOp.value() + vectorSize <= sourceSize;
2997 }
2998 
2999 template <typename TransferOp>
3000 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3001   // TODO: support 0-d corner case.
3002   // TODO: Be less conservative.
3003   if (op.getTransferRank() == 0)
3004     return failure();
3005   AffineMap permutationMap = op.getPermutationMap();
3006   bool changed = false;
3007   SmallVector<bool, 4> newInBounds;
3008   newInBounds.reserve(op.getTransferRank());
3009   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3010     // Already marked as in-bounds, nothing to see here.
3011     if (op.isDimInBounds(i)) {
3012       newInBounds.push_back(true);
3013       continue;
3014     }
3015     // Currently out-of-bounds, check whether we can statically determine it is
3016     // inBounds.
3017     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3018     assert(dimExpr && "Broadcast dims must be in-bounds");
3019     auto inBounds =
3020         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3021     newInBounds.push_back(inBounds);
3022     // We commit the pattern if it is "more inbounds".
3023     changed |= inBounds;
3024   }
3025   if (!changed)
3026     return failure();
3027   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3028   OpBuilder b(op.getContext());
3029   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3030               b.getBoolArrayAttr(newInBounds));
3031   return success();
3032 }
3033 
3034 ///  ```
3035 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3036 ///    : vector<1x4xf32>, tensor<4x4xf32>
3037 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3038 ///    : tensor<4x4xf32>, vector<1x4xf32>
3039 ///  ```
3040 ///  -> Folds into
3041 ///  ```
3042 ///  %v0
3043 ///  ```
3044 static Value foldRAW(TransferReadOp readOp) {
3045   if (!readOp.getShapedType().isa<RankedTensorType>())
3046     return {};
3047   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3048   while (defWrite) {
3049     if (checkSameValueRAW(defWrite, readOp))
3050       return defWrite.getVector();
3051     if (!isDisjointTransferIndices(
3052             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3053             cast<VectorTransferOpInterface>(readOp.getOperation())))
3054       break;
3055     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3056   }
3057   return {};
3058 }
3059 
3060 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3061   if (Value vec = foldRAW(*this))
3062     return vec;
3063   /// transfer_read(memrefcast) -> transfer_read
3064   if (succeeded(foldTransferInBoundsAttribute(*this)))
3065     return getResult();
3066   if (succeeded(foldMemRefCast(*this)))
3067     return getResult();
3068   if (succeeded(foldTensorCast(*this)))
3069     return getResult();
3070   return OpFoldResult();
3071 }
3072 
3073 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3074   return llvm::to_vector<4>(getVectorType().getShape());
3075 }
3076 
3077 void TransferReadOp::getEffects(
3078     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3079         &effects) {
3080   if (getShapedType().isa<MemRefType>())
3081     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3082                          SideEffects::DefaultResource::get());
3083 }
3084 
3085 namespace {
3086 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3087 ///
3088 /// ```
3089 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3090 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3091 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3092 ///     : tensor<?x?xf32>, vector<4x5xf32>
3093 /// ```
3094 /// is rewritten to:
3095 /// ```
3096 /// %p0 = arith.addi %a, %e : index
3097 /// %p1 = arith.addi %b, %f : index
3098 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3099 ///     : tensor<?x?xf32>, vector<4x5xf32>
3100 /// ```
3101 struct FoldExtractSliceIntoTransferRead
3102     : public OpRewritePattern<TransferReadOp> {
3103 public:
3104   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3105 
3106   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3107                                 PatternRewriter &rewriter) const override {
3108     // TODO: support 0-d corner case.
3109     if (xferOp.getTransferRank() == 0)
3110       return failure();
3111     if (xferOp.hasOutOfBoundsDim())
3112       return failure();
3113     if (!xferOp.getPermutationMap().isIdentity())
3114       return failure();
3115     if (xferOp.getMask())
3116       return failure();
3117     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3118     if (!extractOp)
3119       return failure();
3120     if (!extractOp.hasUnitStride())
3121       return failure();
3122 
3123     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3124     // dims are exactly the leading dims. I.e. the following is illegal:
3125     // ```
3126     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3127     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3128     //    %1 = vector.transfer_read %0[0,0], %cst :
3129     //      tensor<2x4xf32>, vector<2x4xf32>
3130     // ```
3131     //
3132     // Cannot fold into:
3133     // ```
3134     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3135     //      tensor<2x1x4xf32>, vector<2x4xf32>
3136     // ```
3137     // For this, check the trailing `vectorRank` dims of the extract_slice
3138     // result tensor match the trailing dims of the inferred result tensor.
3139     int64_t rankReduced =
3140         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3141     int64_t vectorRank = xferOp.getVectorType().getRank();
3142     RankedTensorType inferredDestTensorType =
3143         tensor::ExtractSliceOp::inferResultType(
3144             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3145             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3146     auto actualDestTensorShape = extractOp.getType().getShape();
3147     if (rankReduced > 0 &&
3148         actualDestTensorShape.take_back(vectorRank) !=
3149             inferredDestTensorType.getShape().take_back(vectorRank))
3150       return failure();
3151 
3152     SmallVector<Value> newIndices;
3153     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3154     // indices first.
3155     for (int64_t i = 0; i < rankReduced; ++i) {
3156       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3157       newIndices.push_back(getValueOrCreateConstantIndexOp(
3158           rewriter, extractOp.getLoc(), offset));
3159     }
3160     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3161       OpFoldResult offset =
3162           extractOp.getMixedOffsets()[it.index() + rankReduced];
3163       newIndices.push_back(rewriter.create<arith::AddIOp>(
3164           xferOp->getLoc(), it.value(),
3165           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3166                                           offset)));
3167     }
3168     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3169     rewriter.replaceOpWithNewOp<TransferReadOp>(
3170         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3171         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3172 
3173     return success();
3174   }
3175 };
3176 } // namespace
3177 
3178 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3179                                                  MLIRContext *context) {
3180   results.add<FoldExtractSliceIntoTransferRead>(context);
3181 }
3182 
3183 //===----------------------------------------------------------------------===//
3184 // TransferWriteOp
3185 //===----------------------------------------------------------------------===//
3186 
3187 /// 1. Builder with type inference.
3188 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3189                             Value vector, Value dest, ValueRange indices,
3190                             AffineMapAttr permutationMapAttr,
3191                             /*optional*/ Value mask,
3192                             /*optional*/ ArrayAttr inBoundsAttr) {
3193   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3194   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3195         mask, inBoundsAttr);
3196 }
3197 
3198 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3199 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3200                             Value vector, Value dest, ValueRange indices,
3201                             AffineMapAttr permutationMapAttr,
3202                             /*optional*/ ArrayAttr inBoundsAttr) {
3203   build(builder, result, vector, dest, indices, permutationMapAttr,
3204         /*mask=*/Value(), inBoundsAttr);
3205 }
3206 
3207 /// 3. Builder with type inference that sets an empty mask (variant without
3208 /// attrs)
3209 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3210                             Value vector, Value dest, ValueRange indices,
3211                             AffineMap permutationMap,
3212                             Optional<ArrayRef<bool>> inBounds) {
3213   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3214   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3215                           ? builder.getBoolArrayAttr(inBounds.getValue())
3216                           : ArrayAttr();
3217   build(builder, result, vector, dest, indices, permutationMapAttr,
3218         /*mask=*/Value(), inBoundsAttr);
3219 }
3220 
3221 /// 4. Builder with type inference that sets an empty mask and sets permutation
3222 ///    map to 'getMinorIdentityMap'.
3223 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3224                             Value vector, Value dest, ValueRange indices,
3225                             Optional<ArrayRef<bool>> inBounds) {
3226   auto vectorType = vector.getType().cast<VectorType>();
3227   AffineMap permutationMap = getTransferMinorIdentityMap(
3228       dest.getType().cast<ShapedType>(), vectorType);
3229   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3230 }
3231 
3232 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3233                                    OperationState &result) {
3234   auto &builder = parser.getBuilder();
3235   SMLoc typesLoc;
3236   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3237   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3238   SmallVector<Type, 2> types;
3239   OpAsmParser::UnresolvedOperand maskInfo;
3240   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3241       parser.parseOperand(sourceInfo) ||
3242       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3243     return failure();
3244   ParseResult hasMask = parser.parseOptionalComma();
3245   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3246     return failure();
3247   if (parser.parseOptionalAttrDict(result.attributes) ||
3248       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3249     return failure();
3250   if (types.size() != 2)
3251     return parser.emitError(typesLoc, "requires two types");
3252   auto indexType = builder.getIndexType();
3253   VectorType vectorType = types[0].dyn_cast<VectorType>();
3254   if (!vectorType)
3255     return parser.emitError(typesLoc, "requires vector type");
3256   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3257   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3258     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3259   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3260   auto attr = result.attributes.get(permutationAttrName);
3261   if (!attr) {
3262     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3263     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3264   }
3265   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3266       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3267       parser.resolveOperands(indexInfo, indexType, result.operands))
3268     return failure();
3269   if (hasMask.succeeded()) {
3270     if (shapedType.getElementType().dyn_cast<VectorType>())
3271       return parser.emitError(
3272           maskInfo.location, "does not support masks with vector element type");
3273     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3274     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3275       return failure();
3276   }
3277   result.addAttribute(
3278       TransferWriteOp::getOperandSegmentSizeAttr(),
3279       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3280                                 static_cast<int32_t>(hasMask.succeeded())}));
3281   return failure(shapedType.isa<RankedTensorType>() &&
3282                  parser.addTypeToList(shapedType, result.types));
3283 }
3284 
3285 void TransferWriteOp::print(OpAsmPrinter &p) {
3286   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3287   if (getMask())
3288     p << ", " << getMask();
3289   printTransferAttrs(p, *this);
3290   p << " : " << getVectorType() << ", " << getShapedType();
3291 }
3292 
3293 LogicalResult TransferWriteOp::verify() {
3294   // Consistency of elemental types in shape and vector.
3295   ShapedType shapedType = getShapedType();
3296   VectorType vectorType = getVectorType();
3297   VectorType maskType = getMaskType();
3298   auto permutationMap = getPermutationMap();
3299 
3300   if (llvm::size(getIndices()) != shapedType.getRank())
3301     return emitOpError("requires ") << shapedType.getRank() << " indices";
3302 
3303   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3304   // as the semantics is unclear. This can be revisited later if necessary.
3305   if (hasBroadcastDim())
3306     return emitOpError("should not have broadcast dimensions");
3307 
3308   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3309                               shapedType, vectorType, maskType, permutationMap,
3310                               getInBounds() ? *getInBounds() : ArrayAttr())))
3311     return failure();
3312 
3313   return verifyPermutationMap(permutationMap,
3314                               [&](Twine t) { return emitOpError(t); });
3315 }
3316 
3317 /// Fold:
3318 /// ```
3319 ///    %t1 = ...
3320 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3321 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3322 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3323 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3324 /// ```
3325 ///
3326 /// into:
3327 ///
3328 /// ```
3329 ///    %t0
3330 /// ```
3331 ///
3332 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3333 /// block argument or has side effects.
3334 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3335                                        ArrayRef<Attribute>,
3336                                        SmallVectorImpl<OpFoldResult> &results) {
3337   // TODO: support 0-d corner case.
3338   if (write.getTransferRank() == 0)
3339     return failure();
3340   auto rankedTensorType =
3341       write.getSource().getType().dyn_cast<RankedTensorType>();
3342   // If not operating on tensors, bail.
3343   if (!rankedTensorType)
3344     return failure();
3345   // If no read, bail.
3346   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3347   if (!read)
3348     return failure();
3349   // TODO: support 0-d corner case.
3350   if (read.getTransferRank() == 0)
3351     return failure();
3352   // For now, only accept minor identity. Future: composition is minor identity.
3353   if (!read.getPermutationMap().isMinorIdentity() ||
3354       !write.getPermutationMap().isMinorIdentity())
3355     return failure();
3356   // Bail on mismatching ranks.
3357   if (read.getTransferRank() != write.getTransferRank())
3358     return failure();
3359   // Bail on potential out-of-bounds accesses.
3360   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3361     return failure();
3362   // Tensor types must be the same.
3363   if (read.getSource().getType() != rankedTensorType)
3364     return failure();
3365   // Vector types must be the same.
3366   if (read.getVectorType() != write.getVectorType())
3367     return failure();
3368   // Vector and Tensor shapes must match.
3369   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3370     return failure();
3371   // If any index is nonzero.
3372   auto isNotConstantZero = [](Value v) {
3373     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3374     return !cstOp || cstOp.value() != 0;
3375   };
3376   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3377       llvm::any_of(write.getIndices(), isNotConstantZero))
3378     return failure();
3379   // Success.
3380   results.push_back(read.getSource());
3381   return success();
3382 }
3383 
3384 static bool checkSameValueWAR(vector::TransferReadOp read,
3385                               vector::TransferWriteOp write) {
3386   return read.getSource() == write.getSource() &&
3387          read.getIndices() == write.getIndices() &&
3388          read.getPermutationMap() == write.getPermutationMap() &&
3389          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3390          !write.getMask();
3391 }
3392 /// Fold transfer_write write after read:
3393 /// ```
3394 ///    %t0 = ...
3395 ///    %v = vector.transfer_read %t0[%c0...] :
3396 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3397 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3398 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3399 /// ```
3400 ///
3401 /// into:
3402 ///
3403 /// ```
3404 ///    %t0
3405 /// ```
3406 static LogicalResult foldWAR(TransferWriteOp write,
3407                              SmallVectorImpl<OpFoldResult> &results) {
3408   if (!write.getSource().getType().isa<RankedTensorType>())
3409     return failure();
3410   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3411   if (!read)
3412     return failure();
3413 
3414   if (!checkSameValueWAR(read, write))
3415     return failure();
3416   results.push_back(read.getSource());
3417   return success();
3418 }
3419 
3420 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3421                                     SmallVectorImpl<OpFoldResult> &results) {
3422   if (succeeded(foldReadInitWrite(*this, operands, results)))
3423     return success();
3424   if (succeeded(foldWAR(*this, results)))
3425     return success();
3426   if (succeeded(foldTransferInBoundsAttribute(*this)))
3427     return success();
3428   return foldMemRefCast(*this);
3429 }
3430 
3431 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3432   return llvm::to_vector<4>(getVectorType().getShape());
3433 }
3434 
3435 void TransferWriteOp::getEffects(
3436     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3437         &effects) {
3438   if (getShapedType().isa<MemRefType>())
3439     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3440                          SideEffects::DefaultResource::get());
3441 }
3442 
3443 namespace {
3444 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3445 /// DCE
3446 /// ```
3447 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3448 ///    : vector<1x4xf32>, tensor<4x4xf32>
3449 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3450 ///    : vector<1x4xf32>, tensor<4x4xf32>
3451 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3452 ///    : vector<1x4xf32>, tensor<4x4xf32>
3453 /// ```
3454 ///
3455 /// into:
3456 ///
3457 /// ```
3458 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3459 ///    : vector<1x4xf32>, tensor<4x4xf32>
3460 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3461 ///    : vector<1x4xf32>, tensor<4x4xf32>
3462 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3463 ///    : vector<1x4xf32>, tensor<4x4xf32>
3464 /// ```
3465 ///
3466 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3467 /// any other uses.
3468 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3469 public:
3470   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3471   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3472                                 PatternRewriter &rewriter) const override {
3473     if (!writeOp.getShapedType().isa<RankedTensorType>())
3474       return failure();
3475     vector::TransferWriteOp writeToModify = writeOp;
3476 
3477     auto defWrite =
3478         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3479     while (defWrite) {
3480       if (checkSameValueWAW(writeOp, defWrite)) {
3481         writeToModify.getSourceMutable().assign(defWrite.getSource());
3482         return success();
3483       }
3484       if (!isDisjointTransferIndices(
3485               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3486               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3487         break;
3488       // If the previous write op doesn't have any other use we an safely look
3489       // at the previous store to see if it can be removed.
3490       if (!defWrite->hasOneUse())
3491         break;
3492       writeToModify = defWrite;
3493       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3494     }
3495     return failure();
3496   }
3497 };
3498 
3499 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3500 /// could directly write to the insert_slice's destination. E.g.:
3501 ///
3502 /// ```
3503 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3504 ///     : vector<4x5xf32>, tensor<4x5xf32>
3505 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3506 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3507 /// ```
3508 /// is rewritten to:
3509 /// ```
3510 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3511 ///     : vector<4x5xf32>, tensor<?x?xf32>
3512 /// ```
3513 struct FoldInsertSliceIntoTransferWrite
3514     : public OpRewritePattern<tensor::InsertSliceOp> {
3515 public:
3516   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3517 
3518   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3519                                 PatternRewriter &rewriter) const override {
3520     if (!insertOp.hasUnitStride())
3521       return failure();
3522 
3523     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3524     if (!xferOp)
3525       return failure();
3526     // TODO: support 0-d corner case.
3527     if (xferOp.getTransferRank() == 0)
3528       return failure();
3529 
3530     if (xferOp.hasOutOfBoundsDim())
3531       return failure();
3532     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3533       return failure();
3534     if (xferOp.getMask())
3535       return failure();
3536     // Fold only if the TransferWriteOp completely overwrites the `source` with
3537     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3538     // content is the data of the vector.
3539     if (!llvm::equal(xferOp.getVectorType().getShape(),
3540                      xferOp.getShapedType().getShape()))
3541       return failure();
3542     if (!xferOp.getPermutationMap().isIdentity())
3543       return failure();
3544 
3545     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3546     // dims are exactly the leading dims. I.e. the following is illegal:
3547     // ```
3548     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3549     //      vector<2x4xf32>, tensor<2x4xf32>
3550     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3551     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3552     // ```
3553     //
3554     // Cannot fold into:
3555     // ```
3556     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3557     //      vector<2x4xf32>, tensor<2x1x4xf32>
3558     // ```
3559     // For this, check the trailing `vectorRank` dims of the insert_slice result
3560     // tensor match the trailing dims of the inferred result tensor.
3561     int64_t rankReduced =
3562         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3563     int64_t vectorRank = xferOp.getVectorType().getRank();
3564     RankedTensorType inferredSourceTensorType =
3565         tensor::ExtractSliceOp::inferResultType(
3566             insertOp.getType(), insertOp.getMixedOffsets(),
3567             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3568     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3569     if (rankReduced > 0 &&
3570         actualSourceTensorShape.take_back(vectorRank) !=
3571             inferredSourceTensorType.getShape().take_back(vectorRank))
3572       return failure();
3573 
3574     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3575         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3576     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3577     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3578                                                  insertOp.dest(), indices,
3579                                                  ArrayRef<bool>{inBounds});
3580     return success();
3581   }
3582 };
3583 
3584 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3585 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3586 /// overwritten and inserted into another tensor. After this rewrite, the
3587 /// operations bufferize in-place since all of them work on the same slice.
3588 ///
3589 /// For example:
3590 /// ```mlir
3591 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3592 ///        : vector<8x16xf32>, tensor<8x16xf32>
3593 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3594 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3595 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3596 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3597 /// ```
3598 /// folds to
3599 /// ```mlir
3600 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3601 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3602 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3603 ///        : vector<8x16xf32>, tensor<?x?xf32>
3604 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3605 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3606 /// ```
3607 struct SwapExtractSliceOfTransferWrite
3608     : public OpRewritePattern<tensor::InsertSliceOp> {
3609 public:
3610   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3611 
3612   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3613                                 PatternRewriter &rewriter) const override {
3614     if (!insertOp.hasUnitStride())
3615       return failure();
3616     auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3617     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3618       return failure();
3619     auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>();
3620     if (!transferOp || !transferOp->hasOneUse())
3621       return failure();
3622 
3623     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3624     // rank-reducing.
3625     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3626       return rewriter.notifyMatchFailure(insertOp,
3627                                          "use-def chain is rank-reducing");
3628     }
3629 
3630     // Fail if tensor::ExtractSliceOp has non-zero offset.
3631     if (!extractOp.hasZeroOffset()) {
3632       return rewriter.notifyMatchFailure(insertOp,
3633                                          "ExtractSliceOp has non-zero offset");
3634     }
3635 
3636     // Fail if tensor::TransferWriteOp has non-zero offset.
3637     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3638           return getConstantIntValue(value) == static_cast<int64_t>(0);
3639         })) {
3640       return rewriter.notifyMatchFailure(insertOp,
3641                                          "TranferWriteOp has non-zero offset");
3642     }
3643 
3644     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3645     for (const auto &it :
3646          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3647       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3648         return rewriter.notifyMatchFailure(
3649             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3650       }
3651     }
3652 
3653     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3654     assert(transferOp.getVectorType().hasStaticShape() &&
3655            "expected vector to have a static shape");
3656     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3657     SmallVector<int64_t> resultShape = applyPermutationMap(
3658         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3659     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3660       return rewriter.notifyMatchFailure(
3661           insertOp, "TransferWriteOp may not write the full tensor.");
3662     }
3663 
3664     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3665     SmallVector<int64_t> newResultShape = applyPermutationMap(
3666         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3667     SmallVector<bool> newInBounds;
3668     for (const auto &en : enumerate(newResultShape))
3669       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3670     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3671         extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(),
3672         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3673         insertOp.getMixedStrides());
3674     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3675         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3676         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3677         rewriter.getBoolArrayAttr(newInBounds));
3678     rewriter.updateRootInPlace(insertOp, [&]() {
3679       insertOp.sourceMutable().assign(newTransferWriteOp.getResult());
3680     });
3681     return success();
3682   }
3683 };
3684 
3685 } // namespace
3686 
3687 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3688                                                   MLIRContext *context) {
3689   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3690               SwapExtractSliceOfTransferWrite>(context);
3691 }
3692 
3693 //===----------------------------------------------------------------------===//
3694 // LoadOp
3695 //===----------------------------------------------------------------------===//
3696 
3697 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3698                                                  MemRefType memRefTy) {
3699   if (!isLastMemrefDimUnitStride(memRefTy))
3700     return op->emitOpError("most minor memref dim must have unit stride");
3701   return success();
3702 }
3703 
3704 LogicalResult vector::LoadOp::verify() {
3705   VectorType resVecTy = getVectorType();
3706   MemRefType memRefTy = getMemRefType();
3707 
3708   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3709     return failure();
3710 
3711   // Checks for vector memrefs.
3712   Type memElemTy = memRefTy.getElementType();
3713   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3714     if (memVecTy != resVecTy)
3715       return emitOpError("base memref and result vector types should match");
3716     memElemTy = memVecTy.getElementType();
3717   }
3718 
3719   if (resVecTy.getElementType() != memElemTy)
3720     return emitOpError("base and result element types should match");
3721   if (llvm::size(getIndices()) != memRefTy.getRank())
3722     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3723   return success();
3724 }
3725 
3726 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3727   if (succeeded(foldMemRefCast(*this)))
3728     return getResult();
3729   return OpFoldResult();
3730 }
3731 
3732 //===----------------------------------------------------------------------===//
3733 // StoreOp
3734 //===----------------------------------------------------------------------===//
3735 
3736 LogicalResult vector::StoreOp::verify() {
3737   VectorType valueVecTy = getVectorType();
3738   MemRefType memRefTy = getMemRefType();
3739 
3740   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3741     return failure();
3742 
3743   // Checks for vector memrefs.
3744   Type memElemTy = memRefTy.getElementType();
3745   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3746     if (memVecTy != valueVecTy)
3747       return emitOpError(
3748           "base memref and valueToStore vector types should match");
3749     memElemTy = memVecTy.getElementType();
3750   }
3751 
3752   if (valueVecTy.getElementType() != memElemTy)
3753     return emitOpError("base and valueToStore element type should match");
3754   if (llvm::size(getIndices()) != memRefTy.getRank())
3755     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3756   return success();
3757 }
3758 
3759 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3760                             SmallVectorImpl<OpFoldResult> &results) {
3761   return foldMemRefCast(*this);
3762 }
3763 
3764 //===----------------------------------------------------------------------===//
3765 // MaskedLoadOp
3766 //===----------------------------------------------------------------------===//
3767 
3768 LogicalResult MaskedLoadOp::verify() {
3769   VectorType maskVType = getMaskVectorType();
3770   VectorType passVType = getPassThruVectorType();
3771   VectorType resVType = getVectorType();
3772   MemRefType memType = getMemRefType();
3773 
3774   if (resVType.getElementType() != memType.getElementType())
3775     return emitOpError("base and result element type should match");
3776   if (llvm::size(getIndices()) != memType.getRank())
3777     return emitOpError("requires ") << memType.getRank() << " indices";
3778   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3779     return emitOpError("expected result dim to match mask dim");
3780   if (resVType != passVType)
3781     return emitOpError("expected pass_thru of same type as result type");
3782   return success();
3783 }
3784 
3785 namespace {
3786 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3787 public:
3788   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3789   LogicalResult matchAndRewrite(MaskedLoadOp load,
3790                                 PatternRewriter &rewriter) const override {
3791     switch (get1DMaskFormat(load.getMask())) {
3792     case MaskFormat::AllTrue:
3793       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3794           load, load.getType(), load.getBase(), load.getIndices());
3795       return success();
3796     case MaskFormat::AllFalse:
3797       rewriter.replaceOp(load, load.getPassThru());
3798       return success();
3799     case MaskFormat::Unknown:
3800       return failure();
3801     }
3802     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3803   }
3804 };
3805 } // namespace
3806 
3807 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3808                                                MLIRContext *context) {
3809   results.add<MaskedLoadFolder>(context);
3810 }
3811 
3812 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3813   if (succeeded(foldMemRefCast(*this)))
3814     return getResult();
3815   return OpFoldResult();
3816 }
3817 
3818 //===----------------------------------------------------------------------===//
3819 // MaskedStoreOp
3820 //===----------------------------------------------------------------------===//
3821 
3822 LogicalResult MaskedStoreOp::verify() {
3823   VectorType maskVType = getMaskVectorType();
3824   VectorType valueVType = getVectorType();
3825   MemRefType memType = getMemRefType();
3826 
3827   if (valueVType.getElementType() != memType.getElementType())
3828     return emitOpError("base and valueToStore element type should match");
3829   if (llvm::size(getIndices()) != memType.getRank())
3830     return emitOpError("requires ") << memType.getRank() << " indices";
3831   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3832     return emitOpError("expected valueToStore dim to match mask dim");
3833   return success();
3834 }
3835 
3836 namespace {
3837 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3838 public:
3839   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3840   LogicalResult matchAndRewrite(MaskedStoreOp store,
3841                                 PatternRewriter &rewriter) const override {
3842     switch (get1DMaskFormat(store.getMask())) {
3843     case MaskFormat::AllTrue:
3844       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3845           store, store.getValueToStore(), store.getBase(), store.getIndices());
3846       return success();
3847     case MaskFormat::AllFalse:
3848       rewriter.eraseOp(store);
3849       return success();
3850     case MaskFormat::Unknown:
3851       return failure();
3852     }
3853     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3854   }
3855 };
3856 } // namespace
3857 
3858 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3859                                                 MLIRContext *context) {
3860   results.add<MaskedStoreFolder>(context);
3861 }
3862 
3863 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3864                                   SmallVectorImpl<OpFoldResult> &results) {
3865   return foldMemRefCast(*this);
3866 }
3867 
3868 //===----------------------------------------------------------------------===//
3869 // GatherOp
3870 //===----------------------------------------------------------------------===//
3871 
3872 LogicalResult GatherOp::verify() {
3873   VectorType indVType = getIndexVectorType();
3874   VectorType maskVType = getMaskVectorType();
3875   VectorType resVType = getVectorType();
3876   MemRefType memType = getMemRefType();
3877 
3878   if (resVType.getElementType() != memType.getElementType())
3879     return emitOpError("base and result element type should match");
3880   if (llvm::size(getIndices()) != memType.getRank())
3881     return emitOpError("requires ") << memType.getRank() << " indices";
3882   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3883     return emitOpError("expected result dim to match indices dim");
3884   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3885     return emitOpError("expected result dim to match mask dim");
3886   if (resVType != getPassThruVectorType())
3887     return emitOpError("expected pass_thru of same type as result type");
3888   return success();
3889 }
3890 
3891 namespace {
3892 class GatherFolder final : public OpRewritePattern<GatherOp> {
3893 public:
3894   using OpRewritePattern<GatherOp>::OpRewritePattern;
3895   LogicalResult matchAndRewrite(GatherOp gather,
3896                                 PatternRewriter &rewriter) const override {
3897     switch (get1DMaskFormat(gather.getMask())) {
3898     case MaskFormat::AllTrue:
3899       return failure(); // no unmasked equivalent
3900     case MaskFormat::AllFalse:
3901       rewriter.replaceOp(gather, gather.getPassThru());
3902       return success();
3903     case MaskFormat::Unknown:
3904       return failure();
3905     }
3906     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3907   }
3908 };
3909 } // namespace
3910 
3911 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3912                                            MLIRContext *context) {
3913   results.add<GatherFolder>(context);
3914 }
3915 
3916 //===----------------------------------------------------------------------===//
3917 // ScatterOp
3918 //===----------------------------------------------------------------------===//
3919 
3920 LogicalResult ScatterOp::verify() {
3921   VectorType indVType = getIndexVectorType();
3922   VectorType maskVType = getMaskVectorType();
3923   VectorType valueVType = getVectorType();
3924   MemRefType memType = getMemRefType();
3925 
3926   if (valueVType.getElementType() != memType.getElementType())
3927     return emitOpError("base and valueToStore element type should match");
3928   if (llvm::size(getIndices()) != memType.getRank())
3929     return emitOpError("requires ") << memType.getRank() << " indices";
3930   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3931     return emitOpError("expected valueToStore dim to match indices dim");
3932   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3933     return emitOpError("expected valueToStore dim to match mask dim");
3934   return success();
3935 }
3936 
3937 namespace {
3938 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3939 public:
3940   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3941   LogicalResult matchAndRewrite(ScatterOp scatter,
3942                                 PatternRewriter &rewriter) const override {
3943     switch (get1DMaskFormat(scatter.getMask())) {
3944     case MaskFormat::AllTrue:
3945       return failure(); // no unmasked equivalent
3946     case MaskFormat::AllFalse:
3947       rewriter.eraseOp(scatter);
3948       return success();
3949     case MaskFormat::Unknown:
3950       return failure();
3951     }
3952     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3953   }
3954 };
3955 } // namespace
3956 
3957 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3958                                             MLIRContext *context) {
3959   results.add<ScatterFolder>(context);
3960 }
3961 
3962 //===----------------------------------------------------------------------===//
3963 // ExpandLoadOp
3964 //===----------------------------------------------------------------------===//
3965 
3966 LogicalResult ExpandLoadOp::verify() {
3967   VectorType maskVType = getMaskVectorType();
3968   VectorType passVType = getPassThruVectorType();
3969   VectorType resVType = getVectorType();
3970   MemRefType memType = getMemRefType();
3971 
3972   if (resVType.getElementType() != memType.getElementType())
3973     return emitOpError("base and result element type should match");
3974   if (llvm::size(getIndices()) != memType.getRank())
3975     return emitOpError("requires ") << memType.getRank() << " indices";
3976   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3977     return emitOpError("expected result dim to match mask dim");
3978   if (resVType != passVType)
3979     return emitOpError("expected pass_thru of same type as result type");
3980   return success();
3981 }
3982 
3983 namespace {
3984 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3985 public:
3986   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3987   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3988                                 PatternRewriter &rewriter) const override {
3989     switch (get1DMaskFormat(expand.getMask())) {
3990     case MaskFormat::AllTrue:
3991       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3992           expand, expand.getType(), expand.getBase(), expand.getIndices());
3993       return success();
3994     case MaskFormat::AllFalse:
3995       rewriter.replaceOp(expand, expand.getPassThru());
3996       return success();
3997     case MaskFormat::Unknown:
3998       return failure();
3999     }
4000     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4001   }
4002 };
4003 } // namespace
4004 
4005 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4006                                                MLIRContext *context) {
4007   results.add<ExpandLoadFolder>(context);
4008 }
4009 
4010 //===----------------------------------------------------------------------===//
4011 // CompressStoreOp
4012 //===----------------------------------------------------------------------===//
4013 
4014 LogicalResult CompressStoreOp::verify() {
4015   VectorType maskVType = getMaskVectorType();
4016   VectorType valueVType = getVectorType();
4017   MemRefType memType = getMemRefType();
4018 
4019   if (valueVType.getElementType() != memType.getElementType())
4020     return emitOpError("base and valueToStore element type should match");
4021   if (llvm::size(getIndices()) != memType.getRank())
4022     return emitOpError("requires ") << memType.getRank() << " indices";
4023   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4024     return emitOpError("expected valueToStore dim to match mask dim");
4025   return success();
4026 }
4027 
4028 namespace {
4029 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4030 public:
4031   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4032   LogicalResult matchAndRewrite(CompressStoreOp compress,
4033                                 PatternRewriter &rewriter) const override {
4034     switch (get1DMaskFormat(compress.getMask())) {
4035     case MaskFormat::AllTrue:
4036       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4037           compress, compress.getValueToStore(), compress.getBase(),
4038           compress.getIndices());
4039       return success();
4040     case MaskFormat::AllFalse:
4041       rewriter.eraseOp(compress);
4042       return success();
4043     case MaskFormat::Unknown:
4044       return failure();
4045     }
4046     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4047   }
4048 };
4049 } // namespace
4050 
4051 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4052                                                   MLIRContext *context) {
4053   results.add<CompressStoreFolder>(context);
4054 }
4055 
4056 //===----------------------------------------------------------------------===//
4057 // ShapeCastOp
4058 //===----------------------------------------------------------------------===//
4059 
4060 /// Returns true if each element of 'a' is equal to the product of a contiguous
4061 /// sequence of the elements of 'b'. Returns false otherwise.
4062 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4063   unsigned rankA = a.size();
4064   unsigned rankB = b.size();
4065   assert(rankA < rankB);
4066 
4067   unsigned i = 0;
4068   unsigned j = 0;
4069   while (i < rankA && j < rankB) {
4070     int64_t dimA = a[i];
4071     int64_t dimB = 1;
4072     while (dimB < dimA && j < rankB)
4073       dimB *= b[j++];
4074     if (dimA != dimB)
4075       break;
4076     ++i;
4077 
4078     // Handle the case when trailing dimensions are of size 1.
4079     // Include them into the contiguous sequence.
4080     auto isOne = [](int64_t v) { return v == 1; };
4081     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4082       i = rankA;
4083     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4084       j = rankB;
4085   }
4086 
4087   return i == rankA && j == rankB;
4088 }
4089 
4090 static LogicalResult verifyVectorShapeCast(Operation *op,
4091                                            VectorType sourceVectorType,
4092                                            VectorType resultVectorType) {
4093   // Check that element type is the same.
4094   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4095     return op->emitOpError("source/result vectors must have same element type");
4096   auto sourceShape = sourceVectorType.getShape();
4097   auto resultShape = resultVectorType.getShape();
4098 
4099   // Check that product of source dim sizes matches product of result dim sizes.
4100   int64_t sourceDimProduct = std::accumulate(
4101       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4102   int64_t resultDimProduct = std::accumulate(
4103       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4104   if (sourceDimProduct != resultDimProduct)
4105     return op->emitOpError("source/result number of elements must match");
4106 
4107   // Check that expanding/contracting rank cases.
4108   unsigned sourceRank = sourceVectorType.getRank();
4109   unsigned resultRank = resultVectorType.getRank();
4110   if (sourceRank < resultRank) {
4111     if (!isValidShapeCast(sourceShape, resultShape))
4112       return op->emitOpError("invalid shape cast");
4113   } else if (sourceRank > resultRank) {
4114     if (!isValidShapeCast(resultShape, sourceShape))
4115       return op->emitOpError("invalid shape cast");
4116   }
4117   return success();
4118 }
4119 
4120 LogicalResult ShapeCastOp::verify() {
4121   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4122   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4123 
4124   // Check if source/result are of vector type.
4125   if (sourceVectorType && resultVectorType)
4126     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4127 
4128   return success();
4129 }
4130 
4131 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4132   // No-op shape cast.
4133   if (getSource().getType() == getResult().getType())
4134     return getSource();
4135 
4136   // Canceling shape casts.
4137   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4138     if (getResult().getType() == otherOp.getSource().getType())
4139       return otherOp.getSource();
4140 
4141     // Only allows valid transitive folding.
4142     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4143     VectorType resultType = getResult().getType().cast<VectorType>();
4144     if (srcType.getRank() < resultType.getRank()) {
4145       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4146         return {};
4147     } else if (srcType.getRank() > resultType.getRank()) {
4148       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4149         return {};
4150     } else {
4151       return {};
4152     }
4153 
4154     setOperand(otherOp.getSource());
4155     return getResult();
4156   }
4157 
4158   // Cancelling broadcast and shape cast ops.
4159   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4160     if (bcastOp.getSourceType() == getType())
4161       return bcastOp.getSource();
4162   }
4163 
4164   return {};
4165 }
4166 
4167 namespace {
4168 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4169 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4170 public:
4171   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4172 
4173   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4174                                 PatternRewriter &rewriter) const override {
4175     auto constantOp =
4176         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4177     if (!constantOp)
4178       return failure();
4179     // Only handle splat for now.
4180     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4181     if (!dense)
4182       return failure();
4183     auto newAttr =
4184         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4185                                dense.getSplatValue<Attribute>());
4186     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4187     return success();
4188   }
4189 };
4190 
4191 } // namespace
4192 
4193 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4194                                               MLIRContext *context) {
4195   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4196   results.add<ShapeCastConstantFolder>(context);
4197 }
4198 
4199 //===----------------------------------------------------------------------===//
4200 // VectorBitCastOp
4201 //===----------------------------------------------------------------------===//
4202 
4203 LogicalResult BitCastOp::verify() {
4204   auto sourceVectorType = getSourceVectorType();
4205   auto resultVectorType = getResultVectorType();
4206 
4207   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4208     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4209       return emitOpError("dimension size mismatch at: ") << i;
4210   }
4211 
4212   DataLayout dataLayout = DataLayout::closest(*this);
4213   auto sourceElementBits =
4214       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4215   auto resultElementBits =
4216       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4217 
4218   if (sourceVectorType.getRank() == 0) {
4219     if (sourceElementBits != resultElementBits)
4220       return emitOpError("source/result bitwidth of the 0-D vector element "
4221                          "types must be equal");
4222   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4223              resultElementBits * resultVectorType.getShape().back()) {
4224     return emitOpError(
4225         "source/result bitwidth of the minor 1-D vectors must be equal");
4226   }
4227 
4228   return success();
4229 }
4230 
4231 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4232   // Nop cast.
4233   if (getSource().getType() == getResult().getType())
4234     return getSource();
4235 
4236   // Canceling bitcasts.
4237   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4238     if (getResult().getType() == otherOp.getSource().getType())
4239       return otherOp.getSource();
4240 
4241     setOperand(otherOp.getSource());
4242     return getResult();
4243   }
4244 
4245   Attribute sourceConstant = operands.front();
4246   if (!sourceConstant)
4247     return {};
4248 
4249   Type srcElemType = getSourceVectorType().getElementType();
4250   Type dstElemType = getResultVectorType().getElementType();
4251 
4252   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4253     if (floatPack.isSplat()) {
4254       auto splat = floatPack.getSplatValue<FloatAttr>();
4255 
4256       // Casting fp16 into fp32.
4257       if (srcElemType.isF16() && dstElemType.isF32()) {
4258         uint32_t bits = static_cast<uint32_t>(
4259             splat.getValue().bitcastToAPInt().getZExtValue());
4260         // Duplicate the 16-bit pattern.
4261         bits = (bits << 16) | (bits & 0xffff);
4262         APInt intBits(32, bits);
4263         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4264         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4265       }
4266     }
4267   }
4268 
4269   return {};
4270 }
4271 
4272 //===----------------------------------------------------------------------===//
4273 // TypeCastOp
4274 //===----------------------------------------------------------------------===//
4275 
4276 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4277   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4278   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4279                               memRefType.getShape().end());
4280   if (vectorType)
4281     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4282   return res;
4283 }
4284 
4285 /// Build the canonical memRefType with a single vector.
4286 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4287 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4288                        Value source) {
4289   result.addOperands(source);
4290   MemRefType memRefType = source.getType().cast<MemRefType>();
4291   VectorType vectorType =
4292       VectorType::get(extractShape(memRefType),
4293                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4294   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4295                                   memRefType.getMemorySpace()));
4296 }
4297 
4298 LogicalResult TypeCastOp::verify() {
4299   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4300   if (!canonicalType.getLayout().isIdentity())
4301     return emitOpError("expects operand to be a memref with identity layout");
4302   if (!getResultMemRefType().getLayout().isIdentity())
4303     return emitOpError("expects result to be a memref with identity layout");
4304   if (getResultMemRefType().getMemorySpace() !=
4305       getMemRefType().getMemorySpace())
4306     return emitOpError("expects result in same memory space");
4307 
4308   auto sourceType = getMemRefType();
4309   auto resultType = getResultMemRefType();
4310   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4311       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4312     return emitOpError(
4313                "expects result and operand with same underlying scalar type: ")
4314            << resultType;
4315   if (extractShape(sourceType) != extractShape(resultType))
4316     return emitOpError(
4317                "expects concatenated result and operand shapes to be equal: ")
4318            << resultType;
4319   return success();
4320 }
4321 
4322 //===----------------------------------------------------------------------===//
4323 // TransposeOp
4324 //===----------------------------------------------------------------------===//
4325 
4326 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4327                                 Value vector, ArrayRef<int64_t> transp) {
4328   VectorType vt = vector.getType().cast<VectorType>();
4329   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4330   for (unsigned i = 0; i < transp.size(); ++i)
4331     transposedShape[i] = vt.getShape()[transp[i]];
4332 
4333   result.addOperands(vector);
4334   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4335   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4336 }
4337 
4338 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4339   // Eliminate splat constant transpose ops.
4340   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4341     if (attr.isSplat())
4342       return attr.reshape(getResultType());
4343 
4344   // Eliminate identity transpose ops. This happens when the dimensions of the
4345   // input vector remain in their original order after the transpose operation.
4346   SmallVector<int64_t, 4> transp;
4347   getTransp(transp);
4348 
4349   // Check if the permutation of the dimensions contains sequential values:
4350   // {0, 1, 2, ...}.
4351   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4352     if (transp[i] != i)
4353       return {};
4354   }
4355 
4356   return getVector();
4357 }
4358 
4359 LogicalResult vector::TransposeOp::verify() {
4360   VectorType vectorType = getVectorType();
4361   VectorType resultType = getResultType();
4362   int64_t rank = resultType.getRank();
4363   if (vectorType.getRank() != rank)
4364     return emitOpError("vector result rank mismatch: ") << rank;
4365   // Verify transposition array.
4366   auto transpAttr = getTransp().getValue();
4367   int64_t size = transpAttr.size();
4368   if (rank != size)
4369     return emitOpError("transposition length mismatch: ") << size;
4370   SmallVector<bool, 8> seen(rank, false);
4371   for (const auto &ta : llvm::enumerate(transpAttr)) {
4372     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4373     if (i < 0 || i >= rank)
4374       return emitOpError("transposition index out of range: ") << i;
4375     if (seen[i])
4376       return emitOpError("duplicate position index: ") << i;
4377     seen[i] = true;
4378     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4379       return emitOpError("dimension size mismatch at: ") << i;
4380   }
4381   return success();
4382 }
4383 
4384 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4385   return llvm::to_vector<4>(getResultType().getShape());
4386 }
4387 
4388 namespace {
4389 
4390 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4391 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4392 public:
4393   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4394 
4395   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4396                                 PatternRewriter &rewriter) const override {
4397     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4398     auto getPermutation = [](vector::TransposeOp transpose) {
4399       SmallVector<int64_t, 4> permutation;
4400       transpose.getTransp(permutation);
4401       return permutation;
4402     };
4403 
4404     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4405     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4406                                   ArrayRef<int64_t> permutation2) {
4407       SmallVector<int64_t, 4> result;
4408       for (auto index : permutation2)
4409         result.push_back(permutation1[index]);
4410       return result;
4411     };
4412 
4413     // Return if the input of 'transposeOp' is not defined by another transpose.
4414     vector::TransposeOp parentTransposeOp =
4415         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4416     if (!parentTransposeOp)
4417       return failure();
4418 
4419     SmallVector<int64_t, 4> permutation = composePermutations(
4420         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4421     // Replace 'transposeOp' with a new transpose operation.
4422     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4423         transposeOp, transposeOp.getResult().getType(),
4424         parentTransposeOp.getVector(),
4425         vector::getVectorSubscriptAttr(rewriter, permutation));
4426     return success();
4427   }
4428 };
4429 
4430 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4431 struct FoldTransposedScalarBroadcast final
4432     : public OpRewritePattern<vector::TransposeOp> {
4433   using OpRewritePattern::OpRewritePattern;
4434 
4435   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4436                                 PatternRewriter &rewriter) const override {
4437     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4438     if (!bcastOp)
4439       return failure();
4440 
4441     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4442     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4443       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4444           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4445       return success();
4446     }
4447 
4448     return failure();
4449   }
4450 };
4451 
4452 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4453 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4454 public:
4455   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4456 
4457   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4458                                 PatternRewriter &rewriter) const override {
4459     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4460     if (!splatOp)
4461       return failure();
4462 
4463     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4464         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4465     return success();
4466   }
4467 };
4468 
4469 } // namespace
4470 
4471 void vector::TransposeOp::getCanonicalizationPatterns(
4472     RewritePatternSet &results, MLIRContext *context) {
4473   results
4474       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4475           context);
4476 }
4477 
4478 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4479   populateFromInt64AttrArray(getTransp(), results);
4480 }
4481 
4482 //===----------------------------------------------------------------------===//
4483 // ConstantMaskOp
4484 //===----------------------------------------------------------------------===//
4485 
4486 LogicalResult ConstantMaskOp::verify() {
4487   auto resultType = getResult().getType().cast<VectorType>();
4488   // Check the corner case of 0-D vectors first.
4489   if (resultType.getRank() == 0) {
4490     if (getMaskDimSizes().size() != 1)
4491       return emitError("array attr must have length 1 for 0-D vectors");
4492     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4493     if (dim != 0 && dim != 1)
4494       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4495     return success();
4496   }
4497 
4498   // Verify that array attr size matches the rank of the vector result.
4499   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4500     return emitOpError(
4501         "must specify array attr of size equal vector result rank");
4502   // Verify that each array attr element is in bounds of corresponding vector
4503   // result dimension size.
4504   auto resultShape = resultType.getShape();
4505   SmallVector<int64_t, 4> maskDimSizes;
4506   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4507     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4508     if (attrValue < 0 || attrValue > resultShape[it.index()])
4509       return emitOpError(
4510           "array attr of size out of bounds of vector result dimension size");
4511     maskDimSizes.push_back(attrValue);
4512   }
4513   // Verify that if one mask dim size is zero, they all should be zero (because
4514   // the mask region is a conjunction of each mask dimension interval).
4515   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4516   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4517   if (anyZeros && !allZeros)
4518     return emitOpError("expected all mask dim sizes to be zeros, "
4519                        "as a result of conjunction with zero mask dim");
4520   // Verify that if the mask type is scalable, dimensions should be zero because
4521   // constant scalable masks can only be defined for the "none set" or "all set"
4522   // cases, and there is no VLA way to define an "all set" case for
4523   // `vector.constant_mask`. In the future, a convention could be established
4524   // to decide if a specific dimension value could be considered as "all set".
4525   if (resultType.isScalable() &&
4526       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4527     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4528   return success();
4529 }
4530 
4531 //===----------------------------------------------------------------------===//
4532 // CreateMaskOp
4533 //===----------------------------------------------------------------------===//
4534 
4535 LogicalResult CreateMaskOp::verify() {
4536   auto vectorType = getResult().getType().cast<VectorType>();
4537   // Verify that an operand was specified for each result vector each dimension.
4538   if (vectorType.getRank() == 0) {
4539     if (getNumOperands() != 1)
4540       return emitOpError(
4541           "must specify exactly one operand for 0-D create_mask");
4542   } else if (getNumOperands() !=
4543              getResult().getType().cast<VectorType>().getRank()) {
4544     return emitOpError(
4545         "must specify an operand for each result vector dimension");
4546   }
4547   return success();
4548 }
4549 
4550 namespace {
4551 
4552 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4553 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4554 public:
4555   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4556 
4557   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4558                                 PatternRewriter &rewriter) const override {
4559     // Return if any of 'createMaskOp' operands are not defined by a constant.
4560     auto isNotDefByConstant = [](Value operand) {
4561       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4562     };
4563     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4564       return failure();
4565 
4566     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4567     // are negative or zero.
4568     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4569       if (vType.isScalable())
4570         for (auto opDim : createMaskOp.getOperands()) {
4571           APInt intVal;
4572           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4573               intVal.isStrictlyPositive())
4574             return failure();
4575         }
4576     }
4577 
4578     // Gather constant mask dimension sizes.
4579     SmallVector<int64_t, 4> maskDimSizes;
4580     for (auto it : llvm::zip(createMaskOp.operands(),
4581                              createMaskOp.getType().getShape())) {
4582       auto *defOp = std::get<0>(it).getDefiningOp();
4583       int64_t maxDimSize = std::get<1>(it);
4584       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4585       dimSize = std::min(dimSize, maxDimSize);
4586       // If one of dim sizes is zero, set all dims to zero.
4587       if (dimSize <= 0) {
4588         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4589         break;
4590       }
4591       maskDimSizes.push_back(dimSize);
4592     }
4593     // Replace 'createMaskOp' with ConstantMaskOp.
4594     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4595         createMaskOp, createMaskOp.getResult().getType(),
4596         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4597     return success();
4598   }
4599 };
4600 
4601 } // namespace
4602 
4603 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4604                                                MLIRContext *context) {
4605   results.add<CreateMaskFolder>(context);
4606 }
4607 
4608 //===----------------------------------------------------------------------===//
4609 // ScanOp
4610 //===----------------------------------------------------------------------===//
4611 
4612 LogicalResult ScanOp::verify() {
4613   VectorType srcType = getSourceType();
4614   VectorType initialType = getInitialValueType();
4615   // Check reduction dimension < rank.
4616   int64_t srcRank = srcType.getRank();
4617   int64_t reductionDim = getReductionDim();
4618   if (reductionDim >= srcRank)
4619     return emitOpError("reduction dimension ")
4620            << reductionDim << " has to be less than " << srcRank;
4621 
4622   // Check that rank(initial_value) = rank(src) - 1.
4623   int64_t initialValueRank = initialType.getRank();
4624   if (initialValueRank != srcRank - 1)
4625     return emitOpError("initial value rank ")
4626            << initialValueRank << " has to be equal to " << srcRank - 1;
4627 
4628   // Check shapes of initial value and src.
4629   ArrayRef<int64_t> srcShape = srcType.getShape();
4630   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4631   SmallVector<int64_t> expectedShape;
4632   for (int i = 0; i < srcRank; i++) {
4633     if (i != reductionDim)
4634       expectedShape.push_back(srcShape[i]);
4635   }
4636   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4637                    [](std::tuple<int64_t, int64_t> s) {
4638                      return std::get<0>(s) != std::get<1>(s);
4639                    })) {
4640     return emitOpError("incompatible input/initial value shapes");
4641   }
4642 
4643   // Verify supported reduction kind.
4644   Type eltType = getDestType().getElementType();
4645   if (!isSupportedCombiningKind(getKind(), eltType))
4646     return emitOpError("unsupported reduction type ")
4647            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4648            << "'";
4649 
4650   return success();
4651 }
4652 
4653 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4654     RewritePatternSet &patterns) {
4655   patterns
4656       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4657            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4658            StridedSliceConstantMaskFolder, TransposeFolder>(
4659           patterns.getContext());
4660 }
4661 
4662 //===----------------------------------------------------------------------===//
4663 // SplatOp
4664 //===----------------------------------------------------------------------===//
4665 
4666 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4667   auto constOperand = operands.front();
4668   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4669     return {};
4670 
4671   // SplatElementsAttr::get treats single value for second arg as being a splat.
4672   return SplatElementsAttr::get(getType(), {constOperand});
4673 }
4674 
4675 //===----------------------------------------------------------------------===//
4676 // WarpExecuteOnLane0Op
4677 //===----------------------------------------------------------------------===//
4678 
4679 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4680   p << "(" << getLaneid() << ")";
4681 
4682   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4683   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4684   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4685 
4686   if (!getArgs().empty())
4687     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4688   if (!getResults().empty())
4689     p << " -> (" << getResults().getTypes() << ')';
4690   p << " ";
4691   p.printRegion(getRegion(),
4692                 /*printEntryBlockArgs=*/true,
4693                 /*printBlockTerminators=*/!getResults().empty());
4694   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4695 }
4696 
4697 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4698                                         OperationState &result) {
4699   // Create the region.
4700   result.regions.reserve(1);
4701   Region *warpRegion = result.addRegion();
4702 
4703   auto &builder = parser.getBuilder();
4704   OpAsmParser::UnresolvedOperand laneId;
4705 
4706   // Parse predicate operand.
4707   if (parser.parseLParen() ||
4708       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4709       parser.parseRParen())
4710     return failure();
4711 
4712   int64_t warpSize;
4713   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4714       parser.parseRSquare())
4715     return failure();
4716   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4717                                                         builder.getContext())),
4718                       builder.getI64IntegerAttr(warpSize));
4719 
4720   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4721     return failure();
4722 
4723   llvm::SMLoc inputsOperandsLoc;
4724   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4725   SmallVector<Type> inputTypes;
4726   if (succeeded(parser.parseOptionalKeyword("args"))) {
4727     if (parser.parseLParen())
4728       return failure();
4729 
4730     inputsOperandsLoc = parser.getCurrentLocation();
4731     if (parser.parseOperandList(inputsOperands) ||
4732         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4733       return failure();
4734   }
4735   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4736                              result.operands))
4737     return failure();
4738 
4739   // Parse optional results type list.
4740   if (parser.parseOptionalArrowTypeList(result.types))
4741     return failure();
4742   // Parse the region.
4743   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4744                          /*argTypes=*/{}))
4745     return failure();
4746   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4747 
4748   // Parse the optional attribute list.
4749   if (parser.parseOptionalAttrDict(result.attributes))
4750     return failure();
4751   return success();
4752 }
4753 
4754 void WarpExecuteOnLane0Op::getSuccessorRegions(
4755     Optional<unsigned> index, ArrayRef<Attribute> operands,
4756     SmallVectorImpl<RegionSuccessor> &regions) {
4757   if (index) {
4758     regions.push_back(RegionSuccessor(getResults()));
4759     return;
4760   }
4761 
4762   // The warp region is always executed
4763   regions.push_back(RegionSuccessor(&getWarpRegion()));
4764 }
4765 
4766 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4767                                  TypeRange resultTypes, Value laneId,
4768                                  int64_t warpSize) {
4769   build(builder, result, resultTypes, laneId, warpSize,
4770         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4771 }
4772 
4773 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4774                                  TypeRange resultTypes, Value laneId,
4775                                  int64_t warpSize, ValueRange args,
4776                                  TypeRange blockArgTypes) {
4777   result.addOperands(laneId);
4778   result.addAttribute(getAttributeNames()[0],
4779                       builder.getI64IntegerAttr(warpSize));
4780   result.addTypes(resultTypes);
4781   result.addOperands(args);
4782   assert(args.size() == blockArgTypes.size());
4783   OpBuilder::InsertionGuard guard(builder);
4784   Region *warpRegion = result.addRegion();
4785   Block *block = builder.createBlock(warpRegion);
4786   for (auto it : llvm::zip(blockArgTypes, args))
4787     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4788 }
4789 
4790 /// Helper check if the distributed vector type is consistent with the expanded
4791 /// type and distributed size.
4792 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4793                                            int64_t warpSize, Operation *op) {
4794   // If the types matches there is no distribution.
4795   if (expanded == distributed)
4796     return success();
4797   auto expandedVecType = expanded.dyn_cast<VectorType>();
4798   auto distributedVecType = distributed.dyn_cast<VectorType>();
4799   if (!expandedVecType || !distributedVecType)
4800     return op->emitOpError("expected vector type for distributed operands.");
4801   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4802       expandedVecType.getElementType() != distributedVecType.getElementType())
4803     return op->emitOpError(
4804         "expected distributed vectors to have same rank and element type.");
4805   bool foundDistributedDim = false;
4806   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4807     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4808       continue;
4809     if (expandedVecType.getDimSize(i) ==
4810         distributedVecType.getDimSize(i) * warpSize) {
4811       if (foundDistributedDim)
4812         return op->emitOpError()
4813                << "expected only one dimension to be distributed from "
4814                << expandedVecType << " to " << distributedVecType;
4815       foundDistributedDim = true;
4816       continue;
4817     }
4818     return op->emitOpError() << "incompatible distribution dimensions from "
4819                              << expandedVecType << " to " << distributedVecType;
4820   }
4821   return success();
4822 }
4823 
4824 LogicalResult WarpExecuteOnLane0Op::verify() {
4825   if (getArgs().size() != getWarpRegion().getNumArguments())
4826     return emitOpError(
4827         "expected same number op arguments and block arguments.");
4828   auto yield =
4829       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4830   if (yield.getNumOperands() != getNumResults())
4831     return emitOpError(
4832         "expected same number of yield operands and return values.");
4833   int64_t warpSize = getWarpSize();
4834   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4835     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4836                                      std::get<1>(it).getType(), warpSize,
4837                                      getOperation())))
4838       return failure();
4839   }
4840   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4841     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4842                                      std::get<1>(it).getType(), warpSize,
4843                                      getOperation())))
4844       return failure();
4845   }
4846   return success();
4847 }
4848 
4849 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4850   return succeeded(
4851       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4852 }
4853 
4854 //===----------------------------------------------------------------------===//
4855 // TableGen'd op method definitions
4856 //===----------------------------------------------------------------------===//
4857 
4858 #define GET_OP_CLASSES
4859 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4860