1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   // TODO: Add remaining reduction operations.
480   default:
481     (void)emitOptionalError(loc, "Reduction operation type not supported");
482     break;
483   }
484   return nullptr;
485 }
486 
487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
488   return llvm::to_vector<4>(getVectorType().getShape());
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ContractionOp
493 //===----------------------------------------------------------------------===//
494 
495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
496                                   Value lhs, Value rhs, Value acc,
497                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
498                                   ArrayRef<StringRef> iteratorTypes) {
499   result.addOperands({lhs, rhs, acc});
500   result.addTypes(acc.getType());
501   result.addAttribute(::mlir::getIndexingMapsAttrName(),
502                       builder.getAffineMapArrayAttr(
503                           AffineMap::inferFromExprList(indexingExprs)));
504   result.addAttribute(::mlir::getIteratorTypesAttrName(),
505                       builder.getStrArrayAttr(iteratorTypes));
506 }
507 
508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
509                                   Value lhs, Value rhs, Value acc,
510                                   ArrayAttr indexingMaps,
511                                   ArrayAttr iteratorTypes) {
512   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
513         ContractionOp::getDefaultKind());
514 }
515 
516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
517                                   Value lhs, Value rhs, Value acc,
518                                   ArrayAttr indexingMaps,
519                                   ArrayAttr iteratorTypes, CombiningKind kind) {
520   result.addOperands({lhs, rhs, acc});
521   result.addTypes(acc.getType());
522   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
523   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
524   result.addAttribute(ContractionOp::getKindAttrStrName(),
525                       CombiningKindAttr::get(kind, builder.getContext()));
526 }
527 
528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
529   OpAsmParser::UnresolvedOperand lhsInfo;
530   OpAsmParser::UnresolvedOperand rhsInfo;
531   OpAsmParser::UnresolvedOperand accInfo;
532   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
533   SmallVector<Type, 2> types;
534   Type resultType;
535   auto loc = parser.getCurrentLocation();
536   DictionaryAttr dictAttr;
537   // TODO: Unify linalg op attribute parsing.
538   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
539       parser.parseOperand(lhsInfo) || parser.parseComma() ||
540       parser.parseOperand(rhsInfo) || parser.parseComma() ||
541       parser.parseOperand(accInfo) ||
542       parser.parseTrailingOperandList(masksInfo) ||
543       parser.parseOptionalAttrDict(result.attributes) ||
544       parser.parseColonTypeList(types) ||
545       parser.parseKeywordType("into", resultType) ||
546       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
547       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
548       parser.resolveOperand(accInfo, resultType, result.operands) ||
549       parser.addTypeToList(resultType, result.types))
550     return failure();
551   result.attributes.assign(dictAttr.getValue().begin(),
552                            dictAttr.getValue().end());
553   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
554     result.addAttribute(ContractionOp::getKindAttrStrName(),
555                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
556                                                result.getContext()));
557   }
558   if (masksInfo.empty())
559     return success();
560   if (masksInfo.size() != 2)
561     return parser.emitError(parser.getNameLoc(),
562                             "expected zero or exactly 2 vector mask operands");
563   auto lhsType = types[0].cast<VectorType>();
564   auto rhsType = types[1].cast<VectorType>();
565   auto maskElementType = parser.getBuilder().getI1Type();
566   std::array<Type, 2> maskTypes = {
567       VectorType::Builder(lhsType).setElementType(maskElementType),
568       VectorType::Builder(rhsType).setElementType(maskElementType)};
569   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
570     return failure();
571   return success();
572 }
573 
574 void ContractionOp::print(OpAsmPrinter &p) {
575   // TODO: Unify printing code with linalg ops.
576   auto attrNames = getTraitAttrNames();
577   llvm::StringSet<> traitAttrsSet;
578   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
579   SmallVector<NamedAttribute, 8> attrs;
580   for (auto attr : (*this)->getAttrs())
581     if (traitAttrsSet.count(attr.getName().strref()) > 0)
582       attrs.push_back(attr);
583 
584   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
585   p << " " << dictAttr << " " << getLhs() << ", ";
586   p << getRhs() << ", " << getAcc();
587   if (getMasks().size() == 2)
588     p << ", " << getMasks();
589 
590   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
591   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
592     << getResultType();
593 }
594 
595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
596                          const std::vector<std::pair<int64_t, int64_t>> &map) {
597   for (auto &dimPair : map) {
598     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
599         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
600         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
601       return false;
602   }
603   return true;
604 }
605 
606 static LogicalResult verifyOutputShape(
607     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
608     Type resType,
609     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
610     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
611   DenseSet<int64_t> lhsContractingDimSet;
612   DenseSet<int64_t> rhsContractingDimSet;
613   for (auto &dimPair : contractingDimMap) {
614     lhsContractingDimSet.insert(dimPair.first);
615     rhsContractingDimSet.insert(dimPair.second);
616   }
617   DenseSet<int64_t> rhsBatchDimSet;
618   for (auto &dimPair : batchDimMap)
619     rhsBatchDimSet.insert(dimPair.second);
620 
621   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
622   SmallVector<int64_t, 4> expectedResultDims;
623   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
624     if (lhsContractingDimSet.count(i) > 0)
625       continue;
626     expectedResultDims.push_back(lhsType.getDimSize(i));
627   }
628 
629   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
630   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
631     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
632       continue;
633     expectedResultDims.push_back(rhsType.getDimSize(i));
634   }
635 
636   // Verify 'expectedResultDims'.
637   if (expectedResultDims.empty()) {
638     // No batch or free dimension implies a scalar result.
639     if (resType.isa<VectorType>() || accType.isa<VectorType>())
640       return op.emitOpError("invalid accumulator/result vector shape");
641   } else {
642     // At least one batch or free dimension implies a vector result.
643     auto resVectorType = resType.dyn_cast<VectorType>();
644     auto accVectorType = accType.dyn_cast<VectorType>();
645     if (!resVectorType || !accVectorType)
646       return op.emitOpError("invalid accumulator/result vector shape");
647 
648     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
649     // types fully define the result vector type. This assumes the affine maps
650     // are well-formed, which must have been verified already.
651     MLIRContext *ctx = op.getContext();
652     AffineMap lhsMap = op.getIndexingMaps()[0];
653     AffineMap rhsMap = op.getIndexingMaps()[1];
654     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
655     for (auto pair :
656          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
657       VectorType v = pair.first;
658       auto map = pair.second;
659       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
660         unsigned pos = map.getDimPosition(idx);
661         if (!extents[pos])
662           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
663       }
664     }
665     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
666            "expected extent along all dimensions.");
667 
668     AffineMap resMap = op.getIndexingMaps()[2];
669     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
670                                      /*symCount=*/0, extents, ctx);
671     // Compose the resMap with the extentsMap, which is a constant map.
672     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
673     assert(llvm::all_of(
674                expectedMap.getResults(),
675                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
676            "expected constant extent along all dimensions.");
677     // Extract the expected shape and build the type.
678     auto expectedShape = llvm::to_vector<4>(
679         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
680           return e.cast<AffineConstantExpr>().getValue();
681         }));
682     auto expected =
683         VectorType::get(expectedShape, resVectorType.getElementType());
684     if (resVectorType != expected || accVectorType != expected)
685       return op.emitOpError(
686                  "invalid accumulator/result vector shape, expected: ")
687              << expected;
688   }
689   return success();
690 }
691 
692 LogicalResult ContractionOp::verify() {
693   auto lhsType = getLhsType();
694   auto rhsType = getRhsType();
695   auto accType = getAccType();
696   auto resType = getResultType();
697 
698   // Verify that an indexing map was specified for each vector operand.
699   if (getIndexingMaps().size() != 3)
700     return emitOpError("expected an indexing map for each vector operand");
701 
702   // Verify that each index map has 'numIterators' inputs, no symbols, and
703   // that the number of map outputs equals the rank of its associated
704   // vector operand.
705   unsigned numIterators = getIteratorTypes().getValue().size();
706   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
707     auto index = it.index();
708     auto map = it.value();
709     if (map.getNumSymbols() != 0)
710       return emitOpError("expected indexing map ")
711              << index << " to have no symbols";
712     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
713     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
714     // Verify that the map has the right number of inputs, outputs, and indices.
715     // This also correctly accounts for (..) -> () for rank-0 results.
716     if (map.getNumDims() != numIterators)
717       return emitOpError("expected indexing map ")
718              << index << " to have " << numIterators << " number of inputs";
719     if (map.getNumResults() != rank)
720       return emitOpError("expected indexing map ")
721              << index << " to have " << rank << " number of outputs";
722     if (!map.isProjectedPermutation())
723       return emitOpError("expected indexing map ")
724              << index << " to be a projected permutation of its inputs";
725   }
726 
727   auto contractingDimMap = getContractingDimMap();
728   auto batchDimMap = getBatchDimMap();
729 
730   // Verify at least one contracting dimension pair was specified.
731   if (contractingDimMap.empty())
732     return emitOpError("expected at least one contracting dimension pair");
733 
734   // Verify contracting dimension map was properly constructed.
735   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
736     return emitOpError("invalid contracting dimension map");
737 
738   // Verify batch dimension map was properly constructed.
739   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
740     return emitOpError("invalid batch dimension map");
741 
742   // Verify 'accType' and 'resType' shape.
743   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
744                                contractingDimMap, batchDimMap)))
745     return failure();
746 
747   // Verify that either two vector masks are set or none are set.
748   auto lhsMaskType = getLHSVectorMaskType();
749   auto rhsMaskType = getRHSVectorMaskType();
750   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
751     return emitOpError("invalid number of vector masks specified");
752   if (lhsMaskType && rhsMaskType) {
753     // Verify mask rank == argument rank.
754     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
755         rhsMaskType.getShape().size() != rhsType.getShape().size())
756       return emitOpError("invalid vector mask rank");
757   }
758 
759   // Verify supported combining kind.
760   auto vectorType = resType.dyn_cast<VectorType>();
761   auto elementType = vectorType ? vectorType.getElementType() : resType;
762   if (!isSupportedCombiningKind(getKind(), elementType))
763     return emitOpError("unsupported contraction type");
764 
765   return success();
766 }
767 
768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
769   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
770                                          ::mlir::getIteratorTypesAttrName(),
771                                          ContractionOp::getKindAttrStrName()};
772   return llvm::makeArrayRef(names);
773 }
774 
775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
776   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
777     if (targetExpr == map.getResult(i))
778       return i;
779   return -1;
780 }
781 
782 static std::vector<std::pair<int64_t, int64_t>>
783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
784           StringRef targetIteratorTypeName, MLIRContext *context) {
785   std::vector<std::pair<int64_t, int64_t>> dimMap;
786   for (const auto &it : llvm::enumerate(iteratorTypes)) {
787     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
788     if (iteratorTypeName != targetIteratorTypeName)
789       continue;
790     // Search lhs/rhs map results for 'targetExpr'.
791     auto targetExpr = getAffineDimExpr(it.index(), context);
792     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
793     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
794     if (lhsDim >= 0 && rhsDim >= 0)
795       dimMap.emplace_back(lhsDim, rhsDim);
796   }
797   return dimMap;
798 }
799 
800 void ContractionOp::getIterationBounds(
801     SmallVectorImpl<int64_t> &iterationBounds) {
802   auto lhsShape = getLhsType().getShape();
803   auto resVectorType = getResultType().dyn_cast<VectorType>();
804   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
805   SmallVector<int64_t, 2> iterationShape;
806   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
807     // Search lhs/rhs map results for 'targetExpr'.
808     auto targetExpr = getAffineDimExpr(it.index(), getContext());
809     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
810     if (iteratorTypeName == getReductionIteratorTypeName()) {
811       // Get reduction dim size from lhs shape (same size in rhsShape).
812       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
813       assert(lhsDimIndex >= 0);
814       iterationBounds.push_back(lhsShape[lhsDimIndex]);
815       continue;
816     }
817     // Get parallel dimension size from result shape.
818     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
819     assert(resDimIndex >= 0);
820     assert(resVectorType != nullptr);
821     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
822   }
823 }
824 
825 void ContractionOp::getIterationIndexMap(
826     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
827   unsigned numMaps = getIndexingMaps().size();
828   iterationIndexMap.resize(numMaps);
829   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
830     auto index = it.index();
831     auto map = it.value();
832     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
833       auto dim = map.getResult(i).cast<AffineDimExpr>();
834       iterationIndexMap[index][dim.getPosition()] = i;
835     }
836   }
837 }
838 
839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
840   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
841   return getDimMap(indexingMaps, getIteratorTypes(),
842                    getReductionIteratorTypeName(), getContext());
843 }
844 
845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
846   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
847   return getDimMap(indexingMaps, getIteratorTypes(),
848                    getParallelIteratorTypeName(), getContext());
849 }
850 
851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
852   SmallVector<int64_t, 4> shape;
853   getIterationBounds(shape);
854   return shape;
855 }
856 
857 /// Return a fused vector::ContractionOp which represents a patterns such as:
858 ///
859 /// ```mlir
860 ///    %c0 = vector.constant 0: ...
861 ///    %c = vector.contract %a, %b, %c0: ...
862 ///    %e = add %c, %d: ...
863 /// ```
864 ///
865 /// by:
866 ///
867 /// ```mlir
868 ///    %e = vector.contract %a, %b, %d: ...
869 /// ```
870 ///
871 /// Return null if the canonicalization does not apply.
872 // TODO: This should be a folding of Add into Contract in core but while they
873 // live in different dialects, it is not possible without unnatural
874 // dependencies.
875 template <typename AddOpType>
876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
877   using OpRewritePattern<AddOpType>::OpRewritePattern;
878 
879   LogicalResult matchAndRewrite(AddOpType addOp,
880                                 PatternRewriter &rewriter) const override {
881     auto canonicalize = [&](Value maybeContraction,
882                             Value otherOperand) -> vector::ContractionOp {
883       vector::ContractionOp contractionOp =
884           dyn_cast_or_null<vector::ContractionOp>(
885               maybeContraction.getDefiningOp());
886       if (!contractionOp)
887         return vector::ContractionOp();
888       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
889               contractionOp.getAcc().getDefiningOp())) {
890         if (maybeZero.getValue() ==
891             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
892           BlockAndValueMapping bvm;
893           bvm.map(contractionOp.getAcc(), otherOperand);
894           auto newContraction =
895               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
896           rewriter.replaceOp(addOp, newContraction.getResult());
897           return newContraction;
898         }
899       }
900       return vector::ContractionOp();
901     };
902 
903     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
904     vector::ContractionOp contract = canonicalize(a, b);
905     contract = contract ? contract : canonicalize(b, a);
906     return contract ? success() : failure();
907   }
908 };
909 
910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
911                                                 MLIRContext *context) {
912   results.add<CanonicalizeContractAdd<arith::AddIOp>,
913               CanonicalizeContractAdd<arith::AddFOp>>(context);
914 }
915 
916 //===----------------------------------------------------------------------===//
917 // ExtractElementOp
918 //===----------------------------------------------------------------------===//
919 
920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
921                                      Value source) {
922   result.addOperands({source});
923   result.addTypes(source.getType().cast<VectorType>().getElementType());
924 }
925 
926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
927                                      Value source, Value position) {
928   result.addOperands({source, position});
929   result.addTypes(source.getType().cast<VectorType>().getElementType());
930 }
931 
932 LogicalResult vector::ExtractElementOp::verify() {
933   VectorType vectorType = getVectorType();
934   if (vectorType.getRank() == 0) {
935     if (getPosition())
936       return emitOpError("expected position to be empty with 0-D vector");
937     return success();
938   }
939   if (vectorType.getRank() != 1)
940     return emitOpError("unexpected >1 vector rank");
941   if (!getPosition())
942     return emitOpError("expected position for 1-D vector");
943   return success();
944 }
945 
946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
947   // Skip the 0-D vector here now.
948   if (operands.size() < 2)
949     return {};
950 
951   Attribute src = operands[0];
952   Attribute pos = operands[1];
953 
954   // Fold extractelement (splat X) -> X.
955   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
956     return splat.getInput();
957 
958   if (!pos || !src)
959     return {};
960 
961   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
962 
963   auto attr = pos.dyn_cast<IntegerAttr>();
964   uint64_t posIdx = attr.getInt();
965 
966   return srcElements[posIdx];
967 }
968 
969 //===----------------------------------------------------------------------===//
970 // ExtractOp
971 //===----------------------------------------------------------------------===//
972 
973 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
974                               Value source, ArrayRef<int64_t> position) {
975   build(builder, result, source, getVectorSubscriptAttr(builder, position));
976 }
977 
978 // Convenience builder which assumes the values are constant indices.
979 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
980                               Value source, ValueRange position) {
981   SmallVector<int64_t, 4> positionConstants =
982       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
983         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
984       }));
985   build(builder, result, source, positionConstants);
986 }
987 
988 LogicalResult
989 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
990                             ValueRange operands, DictionaryAttr attributes,
991                             RegionRange,
992                             SmallVectorImpl<Type> &inferredReturnTypes) {
993   ExtractOp::Adaptor op(operands, attributes);
994   auto vectorType = op.getVector().getType().cast<VectorType>();
995   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
996     inferredReturnTypes.push_back(vectorType.getElementType());
997   } else {
998     auto n =
999         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1000     inferredReturnTypes.push_back(VectorType::get(
1001         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1002   }
1003   return success();
1004 }
1005 
1006 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1007   // Allow extracting 1-element vectors instead of scalars.
1008   auto isCompatible = [](TypeRange l, TypeRange r) {
1009     auto vectorType = l.front().dyn_cast<VectorType>();
1010     return vectorType && vectorType.getShape().equals({1}) &&
1011            vectorType.getElementType() == r.front();
1012   };
1013   if (l.size() == 1 && r.size() == 1 &&
1014       (isCompatible(l, r) || isCompatible(r, l)))
1015     return true;
1016   return l == r;
1017 }
1018 
1019 LogicalResult vector::ExtractOp::verify() {
1020   auto positionAttr = getPosition().getValue();
1021   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1022     return emitOpError(
1023         "expected position attribute of rank smaller than vector rank");
1024   for (const auto &en : llvm::enumerate(positionAttr)) {
1025     auto attr = en.value().dyn_cast<IntegerAttr>();
1026     if (!attr || attr.getInt() < 0 ||
1027         attr.getInt() >= getVectorType().getDimSize(en.index()))
1028       return emitOpError("expected position attribute #")
1029              << (en.index() + 1)
1030              << " to be a non-negative integer smaller than the corresponding "
1031                 "vector dimension";
1032   }
1033   return success();
1034 }
1035 
1036 template <typename IntType>
1037 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1038   return llvm::to_vector<4>(llvm::map_range(
1039       arrayAttr.getAsRange<IntegerAttr>(),
1040       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1041 }
1042 
1043 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1044 /// positions.
1045 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1046   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1047     return failure();
1048 
1049   SmallVector<int64_t, 4> globalPosition;
1050   ExtractOp currentOp = extractOp;
1051   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1052   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1053   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1054     currentOp = nextOp;
1055     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1056     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1057   }
1058   extractOp.setOperand(currentOp.getVector());
1059   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1060   OpBuilder b(extractOp.getContext());
1061   std::reverse(globalPosition.begin(), globalPosition.end());
1062   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1063                      b.getI64ArrayAttr(globalPosition));
1064   return success();
1065 }
1066 
1067 namespace {
1068 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1069 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1070 /// Compose TransposeOp permutations as we walk back.
1071 /// This helper class keeps an updated extraction position `extractPosition`
1072 /// with extra trailing sentinels.
1073 /// The sentinels encode the internal transposition status of the result vector.
1074 /// As we iterate, extractPosition is permuted and updated.
1075 class ExtractFromInsertTransposeChainState {
1076 public:
1077   ExtractFromInsertTransposeChainState(ExtractOp e);
1078 
1079   /// Iterate over producing insert and transpose ops until we find a fold.
1080   Value fold();
1081 
1082 private:
1083   /// Return true if the vector at position `a` is contained within the vector
1084   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1085   /// is a prefix of `b`.
1086   template <typename ContainerA, typename ContainerB>
1087   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1088     return a.size() <= b.size() &&
1089            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1090   }
1091 
1092   /// Return true if the vector at position `a` intersects the vector at
1093   /// position `b`. Under insert/extract semantics, this is the same as equality
1094   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1095   /// Comparison is on the common prefix (i.e. zip).
1096   template <typename ContainerA, typename ContainerB>
1097   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1098     for (auto it : llvm::zip(a, b)) {
1099       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1100         continue;
1101       if (std::get<0>(it) != std::get<1>(it))
1102         return false;
1103     }
1104     return true;
1105   }
1106 
1107   /// Folding is only possible in the absence of an internal permutation in the
1108   /// result vector.
1109   bool canFold() {
1110     return (sentinels ==
1111             makeArrayRef(extractPosition).drop_front(extractedRank));
1112   }
1113 
1114   // Helper to get the next defining op of interest.
1115   void updateStateForNextIteration(Value v) {
1116     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1117     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1118   };
1119 
1120   // Case 1. If we hit a transpose, just compose the map and iterate.
1121   // Invariant: insert + transpose do not change rank, we can always compose.
1122   LogicalResult handleTransposeOp();
1123 
1124   // Case 2: the insert position matches extractPosition exactly, early return.
1125   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1126 
1127   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1128   /// portion of the source of the insert.
1129   /// Example:
1130   /// ```
1131   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1132   /// // extractPosition == [1, 2, 3]
1133   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1134   /// // can fold to vector.extract %source[0, 3]
1135   /// %ext = vector.extract %source[3]: vector<5x6>
1136   /// ```
1137   /// To traverse through %source, we need to set the leading dims to 0 and
1138   /// drop the extra leading dims.
1139   /// This method updates the internal state.
1140   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1141 
1142   /// Try to fold in place to extract(source, extractPosition) and return the
1143   /// folded result. Return null if folding is not possible (e.g. due to an
1144   /// internal tranposition in the result).
1145   Value tryToFoldExtractOpInPlace(Value source);
1146 
1147   ExtractOp extractOp;
1148   int64_t vectorRank;
1149   int64_t extractedRank;
1150 
1151   InsertOp nextInsertOp;
1152   TransposeOp nextTransposeOp;
1153 
1154   /// Sentinel values that encode the internal permutation status of the result.
1155   /// They are set to (-1, ... , -k) at the beginning and appended to
1156   /// `extractPosition`.
1157   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1158   /// ensure that there is no internal transposition.
1159   /// Internal transposition cannot be accounted for with a folding pattern.
1160   // TODO: We could relax the internal transposition with an extra transposition
1161   // operation in a future canonicalizer.
1162   SmallVector<int64_t> sentinels;
1163   SmallVector<int64_t> extractPosition;
1164 };
1165 } // namespace
1166 
1167 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1168     ExtractOp e)
1169     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1170       extractedRank(extractOp.getPosition().size()) {
1171   assert(vectorRank >= extractedRank && "extracted pos overflow");
1172   sentinels.reserve(vectorRank - extractedRank);
1173   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1174     sentinels.push_back(-(i + 1));
1175   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1176   llvm::append_range(extractPosition, sentinels);
1177 }
1178 
1179 // Case 1. If we hit a transpose, just compose the map and iterate.
1180 // Invariant: insert + transpose do not change rank, we can always compose.
1181 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1182   if (!nextTransposeOp)
1183     return failure();
1184   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1185   AffineMap m = inversePermutation(
1186       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1187   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1188   return success();
1189 }
1190 
1191 // Case 2: the insert position matches extractPosition exactly, early return.
1192 LogicalResult
1193 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1194     Value &res) {
1195   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1196   if (makeArrayRef(insertedPos) !=
1197       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1198     return failure();
1199   // Case 2.a. early-exit fold.
1200   res = nextInsertOp.getSource();
1201   // Case 2.b. if internal transposition is present, canFold will be false.
1202   return success();
1203 }
1204 
1205 /// Case 3: if inserted position is a prefix of extractPosition,
1206 /// extract a portion of the source of the insertion.
1207 /// This method updates the internal state.
1208 LogicalResult
1209 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1210   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1211   if (!isContainedWithin(insertedPos, extractPosition))
1212     return failure();
1213   // Set leading dims to zero.
1214   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1215   // Drop extra leading dims.
1216   extractPosition.erase(extractPosition.begin(),
1217                         extractPosition.begin() + insertedPos.size());
1218   extractedRank = extractPosition.size() - sentinels.size();
1219   // Case 3.a. early-exit fold (break and delegate to post-while path).
1220   res = nextInsertOp.getSource();
1221   // Case 3.b. if internal transposition is present, canFold will be false.
1222   return success();
1223 }
1224 
1225 /// Try to fold in place to extract(source, extractPosition) and return the
1226 /// folded result. Return null if folding is not possible (e.g. due to an
1227 /// internal tranposition in the result).
1228 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1229     Value source) {
1230   // If we can't fold (either internal transposition, or nothing to fold), bail.
1231   bool nothingToFold = (source == extractOp.getVector());
1232   if (nothingToFold || !canFold())
1233     return Value();
1234   // Otherwise, fold by updating the op inplace and return its result.
1235   OpBuilder b(extractOp.getContext());
1236   extractOp->setAttr(
1237       extractOp.getPositionAttrName(),
1238       b.getI64ArrayAttr(
1239           makeArrayRef(extractPosition).take_front(extractedRank)));
1240   extractOp.getVectorMutable().assign(source);
1241   return extractOp.getResult();
1242 }
1243 
1244 /// Iterate over producing insert and transpose ops until we find a fold.
1245 Value ExtractFromInsertTransposeChainState::fold() {
1246   Value valueToExtractFrom = extractOp.getVector();
1247   updateStateForNextIteration(valueToExtractFrom);
1248   while (nextInsertOp || nextTransposeOp) {
1249     // Case 1. If we hit a transpose, just compose the map and iterate.
1250     // Invariant: insert + transpose do not change rank, we can always compose.
1251     if (succeeded(handleTransposeOp())) {
1252       valueToExtractFrom = nextTransposeOp.getVector();
1253       updateStateForNextIteration(valueToExtractFrom);
1254       continue;
1255     }
1256 
1257     Value result;
1258     // Case 2: the position match exactly.
1259     if (succeeded(handleInsertOpWithMatchingPos(result)))
1260       return result;
1261 
1262     // Case 3: if the inserted position is a prefix of extractPosition, we can
1263     // just extract a portion of the source of the insert.
1264     if (succeeded(handleInsertOpWithPrefixPos(result)))
1265       return tryToFoldExtractOpInPlace(result);
1266 
1267     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1268     // values. This is a more difficult case and we bail.
1269     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1270     if (isContainedWithin(extractPosition, insertedPos) ||
1271         intersectsWhereNonNegative(extractPosition, insertedPos))
1272       return Value();
1273 
1274     // Case 5: No intersection, we forward the extract to insertOp.dest().
1275     valueToExtractFrom = nextInsertOp.getDest();
1276     updateStateForNextIteration(valueToExtractFrom);
1277   }
1278   // If after all this we can fold, go for it.
1279   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1280 }
1281 
1282 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1283 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1284   Operation *defOp = extractOp.getVector().getDefiningOp();
1285   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1286     return Value();
1287   Value source = defOp->getOperand(0);
1288   if (extractOp.getType() == source.getType())
1289     return source;
1290   auto getRank = [](Type type) {
1291     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1292   };
1293   unsigned broadcastSrcRank = getRank(source.getType());
1294   unsigned extractResultRank = getRank(extractOp.getType());
1295   if (extractResultRank < broadcastSrcRank) {
1296     auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1297     unsigned rankDiff = broadcastSrcRank - extractResultRank;
1298     extractPos.erase(
1299         extractPos.begin(),
1300         std::next(extractPos.begin(), extractPos.size() - rankDiff));
1301     extractOp.setOperand(source);
1302     // OpBuilder is only used as a helper to build an I64ArrayAttr.
1303     OpBuilder b(extractOp.getContext());
1304     extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1305                        b.getI64ArrayAttr(extractPos));
1306     return extractOp.getResult();
1307   }
1308   return Value();
1309 }
1310 
1311 // Fold extractOp with source coming from ShapeCast op.
1312 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1313   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1314   if (!shapeCastOp)
1315     return Value();
1316   // Get the nth dimension size starting from lowest dimension.
1317   auto getDimReverse = [](VectorType type, int64_t n) {
1318     return type.getShape().take_back(n + 1).front();
1319   };
1320   int64_t destinationRank =
1321       extractOp.getType().isa<VectorType>()
1322           ? extractOp.getType().cast<VectorType>().getRank()
1323           : 0;
1324   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1325     return Value();
1326   if (destinationRank > 0) {
1327     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1328     for (int64_t i = 0; i < destinationRank; i++) {
1329       // The lowest dimension of of the destination must match the lowest
1330       // dimension of the shapecast op source.
1331       // TODO: This case could be support in a canonicalization pattern.
1332       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1333           getDimReverse(destinationType, i))
1334         return Value();
1335     }
1336   }
1337   // Extract the strides associated with the extract op vector source. Then use
1338   // this to calculate a linearized position for the extract.
1339   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1340   std::reverse(extractedPos.begin(), extractedPos.end());
1341   SmallVector<int64_t, 4> strides;
1342   int64_t stride = 1;
1343   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1344     strides.push_back(stride);
1345     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1346   }
1347 
1348   int64_t position = linearize(extractedPos, strides);
1349   // Then extract the strides associated to the shapeCast op vector source and
1350   // delinearize the position using those strides.
1351   SmallVector<int64_t, 4> newStrides;
1352   int64_t numDimension =
1353       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1354   stride = 1;
1355   for (int64_t i = 0; i < numDimension; i++) {
1356     newStrides.push_back(stride);
1357     stride *=
1358         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1359   }
1360   std::reverse(newStrides.begin(), newStrides.end());
1361   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1362   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1363   OpBuilder b(extractOp.getContext());
1364   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1365                      b.getI64ArrayAttr(newPosition));
1366   extractOp.setOperand(shapeCastOp.getSource());
1367   return extractOp.getResult();
1368 }
1369 
1370 /// Fold an ExtractOp from ExtractStridedSliceOp.
1371 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1372   auto extractStridedSliceOp =
1373       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1374   if (!extractStridedSliceOp)
1375     return Value();
1376   // Return if 'extractStridedSliceOp' has non-unit strides.
1377   if (extractStridedSliceOp.hasNonUnitStrides())
1378     return Value();
1379 
1380   // Trim offsets for dimensions fully extracted.
1381   auto sliceOffsets =
1382       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1383   while (!sliceOffsets.empty()) {
1384     size_t lastOffset = sliceOffsets.size() - 1;
1385     if (sliceOffsets.back() != 0 ||
1386         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1387             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1388       break;
1389     sliceOffsets.pop_back();
1390   }
1391   unsigned destinationRank = 0;
1392   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1393     destinationRank = vecType.getRank();
1394   // The dimensions of the result need to be untouched by the
1395   // extractStridedSlice op.
1396   if (destinationRank >
1397       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1398     return Value();
1399   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1400   assert(extractedPos.size() >= sliceOffsets.size());
1401   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1402     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1403   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1404   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1405   OpBuilder b(extractOp.getContext());
1406   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1407                      b.getI64ArrayAttr(extractedPos));
1408   return extractOp.getResult();
1409 }
1410 
1411 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1412 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1413   int64_t destinationRank = op.getType().isa<VectorType>()
1414                                 ? op.getType().cast<VectorType>().getRank()
1415                                 : 0;
1416   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1417   while (insertOp) {
1418     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1419                              insertOp.getSourceVectorType().getRank();
1420     if (destinationRank > insertOp.getSourceVectorType().getRank())
1421       return Value();
1422     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1423     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1424 
1425     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1426           return attr.cast<IntegerAttr>().getInt() != 1;
1427         }))
1428       return Value();
1429     bool disjoint = false;
1430     SmallVector<int64_t, 4> offsetDiffs;
1431     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1432       int64_t start = insertOffsets[dim];
1433       int64_t size =
1434           (dim < insertRankDiff)
1435               ? 1
1436               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1437       int64_t end = start + size;
1438       int64_t offset = extractOffsets[dim];
1439       // Check if the start of the extract offset is in the interval inserted.
1440       if (start <= offset && offset < end) {
1441         if (dim >= insertRankDiff)
1442           offsetDiffs.push_back(offset - start);
1443         continue;
1444       }
1445       disjoint = true;
1446       break;
1447     }
1448     // The extract element chunk overlap with the vector inserted.
1449     if (!disjoint) {
1450       // If any of the inner dimensions are only partially inserted we have a
1451       // partial overlap.
1452       int64_t srcRankDiff =
1453           insertOp.getSourceVectorType().getRank() - destinationRank;
1454       for (int64_t i = 0; i < destinationRank; i++) {
1455         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1456             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1457                                                     insertRankDiff))
1458           return Value();
1459       }
1460       op.getVectorMutable().assign(insertOp.getSource());
1461       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1462       OpBuilder b(op.getContext());
1463       op->setAttr(ExtractOp::getPositionAttrStrName(),
1464                   b.getI64ArrayAttr(offsetDiffs));
1465       return op.getResult();
1466     }
1467     // If the chunk extracted is disjoint from the chunk inserted, keep
1468     // looking in the insert chain.
1469     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1470   }
1471   return Value();
1472 }
1473 
1474 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1475   if (getPosition().empty())
1476     return getVector();
1477   if (succeeded(foldExtractOpFromExtractChain(*this)))
1478     return getResult();
1479   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1480     return res;
1481   if (auto res = foldExtractFromBroadcast(*this))
1482     return res;
1483   if (auto res = foldExtractFromShapeCast(*this))
1484     return res;
1485   if (auto val = foldExtractFromExtractStrided(*this))
1486     return val;
1487   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1488     return val;
1489   return OpFoldResult();
1490 }
1491 
1492 namespace {
1493 
1494 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1495 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1496 public:
1497   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1498 
1499   LogicalResult matchAndRewrite(ExtractOp extractOp,
1500                                 PatternRewriter &rewriter) const override {
1501     Operation *defOp = extractOp.getVector().getDefiningOp();
1502     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1503       return failure();
1504 
1505     Value source = defOp->getOperand(0);
1506     if (extractOp.getType() == source.getType())
1507       return failure();
1508     auto getRank = [](Type type) {
1509       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1510     };
1511     unsigned broadcastSrcRank = getRank(source.getType());
1512     unsigned extractResultRank = getRank(extractOp.getType());
1513     // We only consider the case where the rank of the source is less than or
1514     // equal to the rank of the extract dst. The other cases are handled in the
1515     // folding patterns.
1516     if (extractResultRank < broadcastSrcRank)
1517       return failure();
1518     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1519         extractOp, extractOp.getType(), source);
1520     return success();
1521   }
1522 };
1523 
1524 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1525 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1526 public:
1527   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1528 
1529   LogicalResult matchAndRewrite(ExtractOp extractOp,
1530                                 PatternRewriter &rewriter) const override {
1531     // Return if 'extractStridedSliceOp' operand is not defined by a
1532     // ConstantOp.
1533     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1534     if (!constantOp)
1535       return failure();
1536     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1537     if (!dense)
1538       return failure();
1539     Attribute newAttr = dense.getSplatValue<Attribute>();
1540     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1541       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1542     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1543     return success();
1544   }
1545 };
1546 
1547 } // namespace
1548 
1549 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1550                                             MLIRContext *context) {
1551   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1552 }
1553 
1554 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1555                                        SmallVectorImpl<int64_t> &results) {
1556   for (auto attr : arrayAttr)
1557     results.push_back(attr.cast<IntegerAttr>().getInt());
1558 }
1559 
1560 //===----------------------------------------------------------------------===//
1561 // ExtractMapOp
1562 //===----------------------------------------------------------------------===//
1563 
1564 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1565                          Value vector, ValueRange ids,
1566                          ArrayRef<int64_t> multiplicity,
1567                          AffineMap permutationMap) {
1568   assert(ids.size() == multiplicity.size() &&
1569          ids.size() == permutationMap.getNumResults());
1570   assert(permutationMap.isProjectedPermutation());
1571   VectorType type = vector.getType().cast<VectorType>();
1572   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1573                                    type.getShape().end());
1574   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1575     AffineExpr expr = permutationMap.getResult(i);
1576     auto dim = expr.cast<AffineDimExpr>();
1577     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1578   }
1579   VectorType resultType = VectorType::get(newShape, type.getElementType());
1580   ExtractMapOp::build(builder, result, resultType, vector, ids);
1581 }
1582 
1583 LogicalResult ExtractMapOp::verify() {
1584   if (getSourceVectorType().getRank() != getResultType().getRank())
1585     return emitOpError("expected source and destination vectors of same rank");
1586   unsigned numId = 0;
1587   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1588     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1589         0)
1590       return emitOpError("source vector dimensions must be a multiple of "
1591                          "destination vector dimensions");
1592     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1593       numId++;
1594   }
1595   if (numId != getIds().size())
1596     return emitOpError("expected number of ids must match the number of "
1597                        "dimensions distributed");
1598   return success();
1599 }
1600 
1601 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1602   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1603   if (insert == nullptr || getType() != insert.getVector().getType() ||
1604       getIds() != insert.getIds())
1605     return {};
1606   return insert.getVector();
1607 }
1608 
1609 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1610   assert(multiplicity.empty());
1611   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1612     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1613       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1614                              getResultType().getDimSize(i));
1615   }
1616 }
1617 
1618 template <typename MapOp>
1619 AffineMap calculateImplicitMap(MapOp op) {
1620   SmallVector<AffineExpr, 4> perm;
1621   // Check which dimension have a multiplicity greater than 1 and associated
1622   // them to the IDs in order.
1623   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1624     if (op.getSourceVectorType().getDimSize(i) !=
1625         op.getResultType().getDimSize(i))
1626       perm.push_back(getAffineDimExpr(i, op.getContext()));
1627   }
1628   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1629                             op.getContext());
1630   return map;
1631 }
1632 
1633 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1634 
1635 //===----------------------------------------------------------------------===//
1636 // FmaOp
1637 //===----------------------------------------------------------------------===//
1638 
1639 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1640   return llvm::to_vector<4>(getVectorType().getShape());
1641 }
1642 
1643 //===----------------------------------------------------------------------===//
1644 // BroadcastOp
1645 //===----------------------------------------------------------------------===//
1646 
1647 BroadcastableToResult
1648 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1649                                 std::pair<int, int> *mismatchingDims) {
1650   // Broadcast scalar to vector of the same element type.
1651   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1652       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1653     return BroadcastableToResult::Success;
1654   // From now on, only vectors broadcast.
1655   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1656   if (!srcVectorType)
1657     return BroadcastableToResult::SourceTypeNotAVector;
1658 
1659   int64_t srcRank = srcVectorType.getRank();
1660   int64_t dstRank = dstVectorType.getRank();
1661   if (srcRank > dstRank)
1662     return BroadcastableToResult::SourceRankHigher;
1663   // Source has an exact match or singleton value for all trailing dimensions
1664   // (all leading dimensions are simply duplicated).
1665   int64_t lead = dstRank - srcRank;
1666   for (int64_t r = 0; r < srcRank; ++r) {
1667     int64_t srcDim = srcVectorType.getDimSize(r);
1668     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1669     if (srcDim != 1 && srcDim != dstDim) {
1670       if (mismatchingDims) {
1671         mismatchingDims->first = srcDim;
1672         mismatchingDims->second = dstDim;
1673       }
1674       return BroadcastableToResult::DimensionMismatch;
1675     }
1676   }
1677 
1678   return BroadcastableToResult::Success;
1679 }
1680 
1681 LogicalResult BroadcastOp::verify() {
1682   std::pair<int, int> mismatchingDims;
1683   BroadcastableToResult res =
1684       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1685   if (res == BroadcastableToResult::Success)
1686     return success();
1687   if (res == BroadcastableToResult::SourceRankHigher)
1688     return emitOpError("source rank higher than destination rank");
1689   if (res == BroadcastableToResult::DimensionMismatch)
1690     return emitOpError("dimension mismatch (")
1691            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1692   if (res == BroadcastableToResult::SourceTypeNotAVector)
1693     return emitOpError("source type is not a vector");
1694   llvm_unreachable("unexpected vector.broadcast op error");
1695 }
1696 
1697 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1698   if (getSourceType() == getVectorType())
1699     return getSource();
1700   if (!operands[0])
1701     return {};
1702   auto vectorType = getVectorType();
1703   if (operands[0].getType().isIntOrIndexOrFloat())
1704     return DenseElementsAttr::get(vectorType, operands[0]);
1705   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1706     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1707   return {};
1708 }
1709 
1710 namespace {
1711 
1712 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1713 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1714   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1715 
1716   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1717                                 PatternRewriter &rewriter) const override {
1718     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1719     if (!srcBroadcast)
1720       return failure();
1721     rewriter.replaceOpWithNewOp<BroadcastOp>(
1722         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1723     return success();
1724   }
1725 };
1726 } // namespace
1727 
1728 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1729                                               MLIRContext *context) {
1730   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1731   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1732   results.add<BroadcastFolder>(context);
1733 }
1734 
1735 //===----------------------------------------------------------------------===//
1736 // ShuffleOp
1737 //===----------------------------------------------------------------------===//
1738 
1739 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1740                       Value v2, ArrayRef<int64_t> mask) {
1741   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1742 }
1743 
1744 LogicalResult ShuffleOp::verify() {
1745   VectorType resultType = getVectorType();
1746   VectorType v1Type = getV1VectorType();
1747   VectorType v2Type = getV2VectorType();
1748   // Verify ranks.
1749   int64_t resRank = resultType.getRank();
1750   int64_t v1Rank = v1Type.getRank();
1751   int64_t v2Rank = v2Type.getRank();
1752   if (resRank != v1Rank || v1Rank != v2Rank)
1753     return emitOpError("rank mismatch");
1754   // Verify all but leading dimension sizes.
1755   for (int64_t r = 1; r < v1Rank; ++r) {
1756     int64_t resDim = resultType.getDimSize(r);
1757     int64_t v1Dim = v1Type.getDimSize(r);
1758     int64_t v2Dim = v2Type.getDimSize(r);
1759     if (resDim != v1Dim || v1Dim != v2Dim)
1760       return emitOpError("dimension mismatch");
1761   }
1762   // Verify mask length.
1763   auto maskAttr = getMask().getValue();
1764   int64_t maskLength = maskAttr.size();
1765   if (maskLength <= 0)
1766     return emitOpError("invalid mask length");
1767   if (maskLength != resultType.getDimSize(0))
1768     return emitOpError("mask length mismatch");
1769   // Verify all indices.
1770   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1771   for (const auto &en : llvm::enumerate(maskAttr)) {
1772     auto attr = en.value().dyn_cast<IntegerAttr>();
1773     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1774       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1775   }
1776   return success();
1777 }
1778 
1779 LogicalResult
1780 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1781                             ValueRange operands, DictionaryAttr attributes,
1782                             RegionRange,
1783                             SmallVectorImpl<Type> &inferredReturnTypes) {
1784   ShuffleOp::Adaptor op(operands, attributes);
1785   auto v1Type = op.getV1().getType().cast<VectorType>();
1786   // Construct resulting type: leading dimension matches mask length,
1787   // all trailing dimensions match the operands.
1788   SmallVector<int64_t, 4> shape;
1789   shape.reserve(v1Type.getRank());
1790   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1791   llvm::append_range(shape, v1Type.getShape().drop_front());
1792   inferredReturnTypes.push_back(
1793       VectorType::get(shape, v1Type.getElementType()));
1794   return success();
1795 }
1796 
1797 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1798   uint64_t expected = begin;
1799   return idxArr.size() == width &&
1800          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1801                       [&expected](auto attr) {
1802                         return attr.getZExtValue() == expected++;
1803                       });
1804 }
1805 
1806 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1807   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1808   if (!getV1VectorType().isScalable() &&
1809       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1810     return getV1();
1811   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1812   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1813       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1814                        getV2VectorType().getDimSize(0)))
1815     return getV2();
1816 
1817   Attribute lhs = operands.front(), rhs = operands.back();
1818   if (!lhs || !rhs)
1819     return {};
1820 
1821   auto lhsType = lhs.getType().cast<VectorType>();
1822   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1823   // manipulation.
1824   if (lhsType.getRank() != 1)
1825     return {};
1826   int64_t lhsSize = lhsType.getDimSize(0);
1827 
1828   SmallVector<Attribute> results;
1829   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1830   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1831   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1832     int64_t i = index.getZExtValue();
1833     if (i >= lhsSize) {
1834       results.push_back(rhsElements[i - lhsSize]);
1835     } else {
1836       results.push_back(lhsElements[i]);
1837     }
1838   }
1839 
1840   return DenseElementsAttr::get(getVectorType(), results);
1841 }
1842 
1843 //===----------------------------------------------------------------------===//
1844 // InsertElementOp
1845 //===----------------------------------------------------------------------===//
1846 
1847 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1848                             Value source, Value dest) {
1849   build(builder, result, source, dest, {});
1850 }
1851 
1852 LogicalResult InsertElementOp::verify() {
1853   auto dstVectorType = getDestVectorType();
1854   if (dstVectorType.getRank() == 0) {
1855     if (getPosition())
1856       return emitOpError("expected position to be empty with 0-D vector");
1857     return success();
1858   }
1859   if (dstVectorType.getRank() != 1)
1860     return emitOpError("unexpected >1 vector rank");
1861   if (!getPosition())
1862     return emitOpError("expected position for 1-D vector");
1863   return success();
1864 }
1865 
1866 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1867   // Skip the 0-D vector here.
1868   if (operands.size() < 3)
1869     return {};
1870 
1871   Attribute src = operands[0];
1872   Attribute dst = operands[1];
1873   Attribute pos = operands[2];
1874   if (!src || !dst || !pos)
1875     return {};
1876 
1877   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1878 
1879   SmallVector<Attribute> results(dstElements);
1880 
1881   auto attr = pos.dyn_cast<IntegerAttr>();
1882   uint64_t posIdx = attr.getInt();
1883 
1884   results[posIdx] = src;
1885 
1886   return DenseElementsAttr::get(getDestVectorType(), results);
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 // InsertOp
1891 //===----------------------------------------------------------------------===//
1892 
1893 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1894                      Value dest, ArrayRef<int64_t> position) {
1895   result.addOperands({source, dest});
1896   auto positionAttr = getVectorSubscriptAttr(builder, position);
1897   result.addTypes(dest.getType());
1898   result.addAttribute(getPositionAttrStrName(), positionAttr);
1899 }
1900 
1901 // Convenience builder which assumes the values are constant indices.
1902 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1903                      Value dest, ValueRange position) {
1904   SmallVector<int64_t, 4> positionConstants =
1905       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1906         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1907       }));
1908   build(builder, result, source, dest, positionConstants);
1909 }
1910 
1911 LogicalResult InsertOp::verify() {
1912   auto positionAttr = getPosition().getValue();
1913   auto destVectorType = getDestVectorType();
1914   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1915     return emitOpError(
1916         "expected position attribute of rank smaller than dest vector rank");
1917   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1918   if (srcVectorType &&
1919       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1920        static_cast<unsigned>(destVectorType.getRank())))
1921     return emitOpError("expected position attribute rank + source rank to "
1922                           "match dest vector rank");
1923   if (!srcVectorType &&
1924       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1925     return emitOpError(
1926         "expected position attribute rank to match the dest vector rank");
1927   for (const auto &en : llvm::enumerate(positionAttr)) {
1928     auto attr = en.value().dyn_cast<IntegerAttr>();
1929     if (!attr || attr.getInt() < 0 ||
1930         attr.getInt() >= destVectorType.getDimSize(en.index()))
1931       return emitOpError("expected position attribute #")
1932              << (en.index() + 1)
1933              << " to be a non-negative integer smaller than the corresponding "
1934                 "dest vector dimension";
1935   }
1936   return success();
1937 }
1938 
1939 namespace {
1940 
1941 // If insertOp is only inserting unit dimensions it can be transformed to a
1942 // broadcast.
1943 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1944 public:
1945   using OpRewritePattern<InsertOp>::OpRewritePattern;
1946 
1947   LogicalResult matchAndRewrite(InsertOp insertOp,
1948                                 PatternRewriter &rewriter) const override {
1949     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1950     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1951                            srcVecType.getNumElements())
1952       return failure();
1953     rewriter.replaceOpWithNewOp<BroadcastOp>(
1954         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1955     return success();
1956   }
1957 };
1958 
1959 } // namespace
1960 
1961 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1962                                            MLIRContext *context) {
1963   results.add<InsertToBroadcast, BroadcastFolder>(context);
1964 }
1965 
1966 // Eliminates insert operations that produce values identical to their source
1967 // value. This happens when the source and destination vectors have identical
1968 // sizes.
1969 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1970   if (getPosition().empty())
1971     return getSource();
1972   return {};
1973 }
1974 
1975 //===----------------------------------------------------------------------===//
1976 // InsertMapOp
1977 //===----------------------------------------------------------------------===//
1978 
1979 LogicalResult InsertMapOp::verify() {
1980   if (getSourceVectorType().getRank() != getResultType().getRank())
1981     return emitOpError("expected source and destination vectors of same rank");
1982   unsigned numId = 0;
1983   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1984     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1985         0)
1986       return emitOpError(
1987           "destination vector size must be a multiple of source vector size");
1988     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1989       numId++;
1990   }
1991   if (numId != getIds().size())
1992     return emitOpError("expected number of ids must match the number of "
1993                        "dimensions distributed");
1994   return success();
1995 }
1996 
1997 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
1998 
1999 //===----------------------------------------------------------------------===//
2000 // InsertStridedSliceOp
2001 //===----------------------------------------------------------------------===//
2002 
2003 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2004                                  Value source, Value dest,
2005                                  ArrayRef<int64_t> offsets,
2006                                  ArrayRef<int64_t> strides) {
2007   result.addOperands({source, dest});
2008   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2009   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2010   result.addTypes(dest.getType());
2011   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2012   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2013 }
2014 
2015 // TODO: Should be moved to Tablegen Confined attributes.
2016 template <typename OpType>
2017 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2018                                                         ArrayAttr arrayAttr,
2019                                                         ArrayRef<int64_t> shape,
2020                                                         StringRef attrName) {
2021   if (arrayAttr.size() > shape.size())
2022     return op.emitOpError("expected ")
2023            << attrName << " attribute of rank smaller than vector rank";
2024   return success();
2025 }
2026 
2027 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2028 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2029 // Otherwise, the admissible interval is [min, max].
2030 template <typename OpType>
2031 static LogicalResult
2032 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2033                                   int64_t max, StringRef attrName,
2034                                   bool halfOpen = true) {
2035   for (auto attr : arrayAttr) {
2036     auto val = attr.cast<IntegerAttr>().getInt();
2037     auto upper = max;
2038     if (!halfOpen)
2039       upper += 1;
2040     if (val < min || val >= upper)
2041       return op.emitOpError("expected ") << attrName << " to be confined to ["
2042                                          << min << ", " << upper << ")";
2043   }
2044   return success();
2045 }
2046 
2047 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2048 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2049 // Otherwise, the admissible interval is [min, max].
2050 template <typename OpType>
2051 static LogicalResult
2052 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2053                                   ArrayRef<int64_t> shape, StringRef attrName,
2054                                   bool halfOpen = true, int64_t min = 0) {
2055   assert(arrayAttr.size() <= shape.size());
2056   unsigned index = 0;
2057   for (auto it : llvm::zip(arrayAttr, shape)) {
2058     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2059     auto max = std::get<1>(it);
2060     if (!halfOpen)
2061       max += 1;
2062     if (val < min || val >= max)
2063       return op.emitOpError("expected ")
2064              << attrName << " dimension " << index << " to be confined to ["
2065              << min << ", " << max << ")";
2066     ++index;
2067   }
2068   return success();
2069 }
2070 
2071 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2072 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2073 // Otherwise, the admissible interval is [min, max].
2074 template <typename OpType>
2075 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2076     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2077     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2078     bool halfOpen = true, int64_t min = 1) {
2079   assert(arrayAttr1.size() <= shape.size());
2080   assert(arrayAttr2.size() <= shape.size());
2081   unsigned index = 0;
2082   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2083     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2084     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2085     auto max = std::get<2>(it);
2086     if (!halfOpen)
2087       max += 1;
2088     if (val1 + val2 < 0 || val1 + val2 >= max)
2089       return op.emitOpError("expected sum(")
2090              << attrName1 << ", " << attrName2 << ") dimension " << index
2091              << " to be confined to [" << min << ", " << max << ")";
2092     ++index;
2093   }
2094   return success();
2095 }
2096 
2097 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2098                                   MLIRContext *context) {
2099   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2100     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2101   });
2102   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2103 }
2104 
2105 LogicalResult InsertStridedSliceOp::verify() {
2106   auto sourceVectorType = getSourceVectorType();
2107   auto destVectorType = getDestVectorType();
2108   auto offsets = getOffsetsAttr();
2109   auto strides = getStridesAttr();
2110   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2111     return emitOpError(
2112         "expected offsets of same size as destination vector rank");
2113   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2114     return emitOpError("expected strides of same size as source vector rank");
2115   if (sourceVectorType.getRank() > destVectorType.getRank())
2116     return emitOpError(
2117         "expected source rank to be smaller than destination rank");
2118 
2119   auto sourceShape = sourceVectorType.getShape();
2120   auto destShape = destVectorType.getShape();
2121   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2122       destShape.size() - sourceShape.size(), 0);
2123   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2124   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2125   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2126   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2127                                                offName)) ||
2128       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2129                                                stridesName,
2130                                                /*halfOpen=*/false)) ||
2131       failed(isSumOfIntegerArrayAttrConfinedToShape(
2132           *this, offsets,
2133           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2134           offName, "source vector shape",
2135           /*halfOpen=*/false, /*min=*/1)))
2136     return failure();
2137 
2138   return success();
2139 }
2140 
2141 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2142   if (getSourceVectorType() == getDestVectorType())
2143     return getSource();
2144   return {};
2145 }
2146 
2147 //===----------------------------------------------------------------------===//
2148 // OuterProductOp
2149 //===----------------------------------------------------------------------===//
2150 
2151 /// Build an op without mask, use the type of `acc` as the return type.
2152 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2153                            Value lhs, Value rhs, Value acc) {
2154   result.addOperands({lhs, rhs, acc});
2155   result.addTypes(acc.getType());
2156 }
2157 
2158 void OuterProductOp::print(OpAsmPrinter &p) {
2159   p << " " << getLhs() << ", " << getRhs();
2160   if (!getAcc().empty()) {
2161     p << ", " << getAcc();
2162     p.printOptionalAttrDict((*this)->getAttrs());
2163   }
2164   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2165 }
2166 
2167 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2168   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2169   Type tLHS, tRHS;
2170   if (parser.parseOperandList(operandsInfo) ||
2171       parser.parseOptionalAttrDict(result.attributes) ||
2172       parser.parseColonType(tLHS) || parser.parseComma() ||
2173       parser.parseType(tRHS))
2174     return failure();
2175   if (operandsInfo.size() < 2)
2176     return parser.emitError(parser.getNameLoc(),
2177                             "expected at least 2 operands");
2178   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2179   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2180   if (!vLHS)
2181     return parser.emitError(parser.getNameLoc(),
2182                             "expected vector type for operand #1");
2183   VectorType resType =
2184       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2185                              vLHS.getElementType())
2186            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2187 
2188   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2189     result.attributes.append(
2190         OuterProductOp::getKindAttrStrName(),
2191         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2192                                result.getContext()));
2193   }
2194 
2195   return failure(
2196       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2197       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2198       (operandsInfo.size() > 2 &&
2199        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2200       parser.addTypeToList(resType, result.types));
2201 }
2202 
2203 LogicalResult OuterProductOp::verify() {
2204   Type tRHS = getOperandTypeRHS();
2205   VectorType vLHS = getOperandVectorTypeLHS(),
2206              vRHS = tRHS.dyn_cast<VectorType>(),
2207              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2208 
2209   if (vLHS.getRank() != 1)
2210     return emitOpError("expected 1-d vector for operand #1");
2211 
2212   if (vRHS) {
2213     // Proper OUTER operation.
2214     if (vRHS.getRank() != 1)
2215       return emitOpError("expected 1-d vector for operand #2");
2216     if (vRES.getRank() != 2)
2217       return emitOpError("expected 2-d vector result");
2218     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2219       return emitOpError("expected #1 operand dim to match result dim #1");
2220     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2221       return emitOpError("expected #2 operand dim to match result dim #2");
2222   } else {
2223     // An AXPY operation.
2224     if (vRES.getRank() != 1)
2225       return emitOpError("expected 1-d vector result");
2226     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2227       return emitOpError("expected #1 operand dim to match result dim #1");
2228   }
2229 
2230   if (vACC && vACC != vRES)
2231     return emitOpError("expected operand #3 of same type as result type");
2232 
2233   // Verify supported combining kind.
2234   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2235     return emitOpError("unsupported outerproduct type");
2236 
2237   return success();
2238 }
2239 
2240 //===----------------------------------------------------------------------===//
2241 // ReshapeOp
2242 //===----------------------------------------------------------------------===//
2243 
2244 LogicalResult ReshapeOp::verify() {
2245   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2246   auto inputVectorType = getInputVectorType();
2247   auto outputVectorType = getOutputVectorType();
2248   int64_t inputShapeRank = getNumInputShapeSizes();
2249   int64_t outputShapeRank = getNumOutputShapeSizes();
2250   SmallVector<int64_t, 4> fixedVectorSizes;
2251   getFixedVectorSizes(fixedVectorSizes);
2252   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2253 
2254   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2255     return emitError("invalid input shape for vector type ")
2256            << inputVectorType;
2257 
2258   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2259     return emitError("invalid output shape for vector type ")
2260            << outputVectorType;
2261 
2262   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2263   // suffix.
2264   unsigned inputVectorRank = inputVectorType.getRank();
2265   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2266     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2267     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2268       return emitError("fixed vector size must match input vector for dim ")
2269              << i;
2270   }
2271 
2272   unsigned outputVectorRank = outputVectorType.getRank();
2273   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2274     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2275     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2276       return emitError("fixed vector size must match output vector for dim ")
2277              << i;
2278   }
2279 
2280   // If all shape operands are produced by constant ops, verify that product
2281   // of dimensions for input/output shape match.
2282   auto isDefByConstant = [](Value operand) {
2283     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2284   };
2285   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2286       llvm::all_of(getOutputShape(), isDefByConstant)) {
2287     int64_t numInputElements = 1;
2288     for (auto operand : getInputShape())
2289       numInputElements *=
2290           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2291     int64_t numOutputElements = 1;
2292     for (auto operand : getOutputShape())
2293       numOutputElements *=
2294           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2295     if (numInputElements != numOutputElements)
2296       return emitError("product of input and output shape sizes must match");
2297   }
2298   return success();
2299 }
2300 
2301 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2302   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2303 }
2304 
2305 //===----------------------------------------------------------------------===//
2306 // ExtractStridedSliceOp
2307 //===----------------------------------------------------------------------===//
2308 
2309 // Inference works as follows:
2310 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2311 //   2. Add sizes from 'vectorType' for remaining dims.
2312 static Type inferStridedSliceOpResultType(VectorType vectorType,
2313                                           ArrayAttr offsets, ArrayAttr sizes,
2314                                           ArrayAttr strides) {
2315   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2316   SmallVector<int64_t, 4> shape;
2317   shape.reserve(vectorType.getRank());
2318   unsigned idx = 0;
2319   for (unsigned e = offsets.size(); idx < e; ++idx)
2320     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2321   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2322     shape.push_back(vectorType.getShape()[idx]);
2323 
2324   return VectorType::get(shape, vectorType.getElementType());
2325 }
2326 
2327 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2328                                   Value source, ArrayRef<int64_t> offsets,
2329                                   ArrayRef<int64_t> sizes,
2330                                   ArrayRef<int64_t> strides) {
2331   result.addOperands(source);
2332   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2333   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2334   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2335   result.addTypes(
2336       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2337                                     offsetsAttr, sizesAttr, stridesAttr));
2338   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2339   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2340   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2341 }
2342 
2343 LogicalResult ExtractStridedSliceOp::verify() {
2344   auto type = getVectorType();
2345   auto offsets = getOffsetsAttr();
2346   auto sizes = getSizesAttr();
2347   auto strides = getStridesAttr();
2348   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2349     return emitOpError("expected offsets, sizes and strides attributes of same size");
2350 
2351   auto shape = type.getShape();
2352   auto offName = getOffsetsAttrName();
2353   auto sizesName = getSizesAttrName();
2354   auto stridesName = getStridesAttrName();
2355   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2356       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2357       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2358                                                 stridesName)) ||
2359       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2360       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2361                                                /*halfOpen=*/false,
2362                                                /*min=*/1)) ||
2363       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2364                                                /*halfOpen=*/false)) ||
2365       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2366                                                     offName, sizesName,
2367                                                     /*halfOpen=*/false)))
2368     return failure();
2369 
2370   auto resultType =
2371       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2372   if (getResult().getType() != resultType)
2373     return emitOpError("expected result type to be ") << resultType;
2374 
2375   return success();
2376 }
2377 
2378 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2379 // to use the source of the InsertStrided ops if we can detect that the
2380 // extracted vector is a subset of one of the vector inserted.
2381 static LogicalResult
2382 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2383   // Helper to extract integer out of ArrayAttr.
2384   auto getElement = [](ArrayAttr array, int idx) {
2385     return array[idx].cast<IntegerAttr>().getInt();
2386   };
2387   ArrayAttr extractOffsets = op.getOffsets();
2388   ArrayAttr extractStrides = op.getStrides();
2389   ArrayAttr extractSizes = op.getSizes();
2390   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2391   while (insertOp) {
2392     if (op.getVectorType().getRank() !=
2393         insertOp.getSourceVectorType().getRank())
2394       return failure();
2395     ArrayAttr insertOffsets = insertOp.getOffsets();
2396     ArrayAttr insertStrides = insertOp.getStrides();
2397     // If the rank of extract is greater than the rank of insert, we are likely
2398     // extracting a partial chunk of the vector inserted.
2399     if (extractOffsets.size() > insertOffsets.size())
2400       return failure();
2401     bool patialoverlap = false;
2402     bool disjoint = false;
2403     SmallVector<int64_t, 4> offsetDiffs;
2404     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2405       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2406         return failure();
2407       int64_t start = getElement(insertOffsets, dim);
2408       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2409       int64_t offset = getElement(extractOffsets, dim);
2410       int64_t size = getElement(extractSizes, dim);
2411       // Check if the start of the extract offset is in the interval inserted.
2412       if (start <= offset && offset < end) {
2413         // If the extract interval overlaps but is not fully included we may
2414         // have a partial overlap that will prevent any folding.
2415         if (offset + size > end)
2416           patialoverlap = true;
2417         offsetDiffs.push_back(offset - start);
2418         continue;
2419       }
2420       disjoint = true;
2421       break;
2422     }
2423     // The extract element chunk is a subset of the insert element.
2424     if (!disjoint && !patialoverlap) {
2425       op.setOperand(insertOp.getSource());
2426       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2427       OpBuilder b(op.getContext());
2428       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2429                   b.getI64ArrayAttr(offsetDiffs));
2430       return success();
2431     }
2432     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2433     // in the insert chain.
2434     if (disjoint)
2435       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2436     else {
2437       // The extracted vector partially overlap the inserted vector, we cannot
2438       // fold.
2439       return failure();
2440     }
2441   }
2442   return failure();
2443 }
2444 
2445 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2446   if (getVectorType() == getResult().getType())
2447     return getVector();
2448   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2449     return getResult();
2450   return {};
2451 }
2452 
2453 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2454   populateFromInt64AttrArray(getOffsets(), results);
2455 }
2456 
2457 namespace {
2458 
2459 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2460 // ConstantMaskOp.
2461 class StridedSliceConstantMaskFolder final
2462     : public OpRewritePattern<ExtractStridedSliceOp> {
2463 public:
2464   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2465 
2466   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2467                                 PatternRewriter &rewriter) const override {
2468     // Return if 'extractStridedSliceOp' operand is not defined by a
2469     // ConstantMaskOp.
2470     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2471     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2472     if (!constantMaskOp)
2473       return failure();
2474     // Return if 'extractStridedSliceOp' has non-unit strides.
2475     if (extractStridedSliceOp.hasNonUnitStrides())
2476       return failure();
2477     // Gather constant mask dimension sizes.
2478     SmallVector<int64_t, 4> maskDimSizes;
2479     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2480     // Gather strided slice offsets and sizes.
2481     SmallVector<int64_t, 4> sliceOffsets;
2482     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2483                                sliceOffsets);
2484     SmallVector<int64_t, 4> sliceSizes;
2485     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2486 
2487     // Compute slice of vector mask region.
2488     SmallVector<int64_t, 4> sliceMaskDimSizes;
2489     assert(sliceOffsets.size() == maskDimSizes.size());
2490     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2491       int64_t maskDimSize = std::get<0>(it);
2492       int64_t sliceOffset = std::get<1>(it);
2493       int64_t sliceSize = std::get<2>(it);
2494       int64_t sliceMaskDimSize = std::max(
2495           static_cast<int64_t>(0),
2496           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2497       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2498     }
2499     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2500     // region is a conjunction of mask dim intervals).
2501     if (llvm::is_contained(sliceMaskDimSizes, 0))
2502       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2503 
2504     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2505     // region.
2506     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2507         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2508         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2509     return success();
2510   }
2511 };
2512 
2513 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2514 class StridedSliceConstantFolder final
2515     : public OpRewritePattern<ExtractStridedSliceOp> {
2516 public:
2517   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2518 
2519   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2520                                 PatternRewriter &rewriter) const override {
2521     // Return if 'extractStridedSliceOp' operand is not defined by a
2522     // ConstantOp.
2523     auto constantOp =
2524         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2525     if (!constantOp)
2526       return failure();
2527     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2528     if (!dense)
2529       return failure();
2530     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2531                                           dense.getSplatValue<Attribute>());
2532     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2533                                                    newAttr);
2534     return success();
2535   }
2536 };
2537 
2538 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2539 // BroadcastOp(ExtractStrideSliceOp).
2540 class StridedSliceBroadcast final
2541     : public OpRewritePattern<ExtractStridedSliceOp> {
2542 public:
2543   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2544 
2545   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2546                                 PatternRewriter &rewriter) const override {
2547     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2548     if (!broadcast)
2549       return failure();
2550     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2551     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2552     auto dstVecType = op.getType().cast<VectorType>();
2553     unsigned dstRank = dstVecType.getRank();
2554     unsigned rankDiff = dstRank - srcRank;
2555     // Check if the most inner dimensions of the source of the broadcast are the
2556     // same as the destination of the extract. If this is the case we can just
2557     // use a broadcast as the original dimensions are untouched.
2558     bool lowerDimMatch = true;
2559     for (unsigned i = 0; i < srcRank; i++) {
2560       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2561         lowerDimMatch = false;
2562         break;
2563       }
2564     }
2565     Value source = broadcast.getSource();
2566     // If the inner dimensions don't match, it means we need to extract from the
2567     // source of the orignal broadcast and then broadcast the extracted value.
2568     // We also need to handle degenerated cases where the source is effectively
2569     // just a single scalar.
2570     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2571     if (!lowerDimMatch && !isScalarSrc) {
2572       source = rewriter.create<ExtractStridedSliceOp>(
2573           op->getLoc(), source,
2574           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2575           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2576           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2577     }
2578     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2579     return success();
2580   }
2581 };
2582 
2583 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2584 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2585 public:
2586   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2587 
2588   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2589                                 PatternRewriter &rewriter) const override {
2590     auto splat = op.getVector().getDefiningOp<SplatOp>();
2591     if (!splat)
2592       return failure();
2593     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2594     return success();
2595   }
2596 };
2597 
2598 } // namespace
2599 
2600 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2601     RewritePatternSet &results, MLIRContext *context) {
2602   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2603   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2604   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2605               StridedSliceBroadcast, StridedSliceSplat>(context);
2606 }
2607 
2608 //===----------------------------------------------------------------------===//
2609 // TransferReadOp
2610 //===----------------------------------------------------------------------===//
2611 
2612 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2613 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2614                            VectorType vectorType, Value source,
2615                            ValueRange indices, AffineMapAttr permutationMapAttr,
2616                            /*optional*/ ArrayAttr inBoundsAttr) {
2617   Type elemType = source.getType().cast<ShapedType>().getElementType();
2618   Value padding = builder.create<arith::ConstantOp>(
2619       result.location, elemType, builder.getZeroAttr(elemType));
2620   build(builder, result, vectorType, source, indices, permutationMapAttr,
2621         padding, /*mask=*/Value(), inBoundsAttr);
2622 }
2623 
2624 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2625 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2626                            VectorType vectorType, Value source,
2627                            ValueRange indices, AffineMap permutationMap,
2628                            Optional<ArrayRef<bool>> inBounds) {
2629   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2630   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2631                           ? builder.getBoolArrayAttr(inBounds.getValue())
2632                           : ArrayAttr();
2633   build(builder, result, vectorType, source, indices, permutationMapAttr,
2634         inBoundsAttr);
2635 }
2636 
2637 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2638 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2639                            VectorType vectorType, Value source,
2640                            ValueRange indices, Value padding,
2641                            Optional<ArrayRef<bool>> inBounds) {
2642   AffineMap permutationMap = getTransferMinorIdentityMap(
2643       source.getType().cast<ShapedType>(), vectorType);
2644   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2645   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2646                           ? builder.getBoolArrayAttr(inBounds.getValue())
2647                           : ArrayAttr();
2648   build(builder, result, vectorType, source, indices, permutationMapAttr,
2649         padding,
2650         /*mask=*/Value(), inBoundsAttr);
2651 }
2652 
2653 /// 4. Builder that sets padding to zero and permutation map to
2654 /// 'getMinorIdentityMap'.
2655 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2656                            VectorType vectorType, Value source,
2657                            ValueRange indices,
2658                            Optional<ArrayRef<bool>> inBounds) {
2659   Type elemType = source.getType().cast<ShapedType>().getElementType();
2660   Value padding = builder.create<arith::ConstantOp>(
2661       result.location, elemType, builder.getZeroAttr(elemType));
2662   build(builder, result, vectorType, source, indices, padding, inBounds);
2663 }
2664 
2665 template <typename EmitFun>
2666 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2667                                           EmitFun emitOpError) {
2668   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2669   for (auto expr : permutationMap.getResults()) {
2670     auto dim = expr.dyn_cast<AffineDimExpr>();
2671     auto zero = expr.dyn_cast<AffineConstantExpr>();
2672     if (zero) {
2673       if (zero.getValue() != 0) {
2674         return emitOpError(
2675             "requires a projected permutation_map (at most one dim or the zero "
2676             "constant can appear in each result)");
2677       }
2678       continue;
2679     }
2680     if (!dim) {
2681       return emitOpError("requires a projected permutation_map (at most one "
2682                          "dim or the zero constant can appear in each result)");
2683     }
2684     if (seen[dim.getPosition()]) {
2685       return emitOpError(
2686           "requires a permutation_map that is a permutation (found one dim "
2687           "used more than once)");
2688     }
2689     seen[dim.getPosition()] = true;
2690   }
2691   return success();
2692 }
2693 
2694 static LogicalResult
2695 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2696                  VectorType vectorType, VectorType maskType,
2697                  AffineMap permutationMap, ArrayAttr inBounds) {
2698   if (op->hasAttr("masked")) {
2699     return op->emitOpError("masked attribute has been removed. "
2700                            "Use in_bounds instead.");
2701   }
2702 
2703   if (!shapedType.isa<MemRefType, RankedTensorType>())
2704     return op->emitOpError(
2705         "requires source to be a memref or ranked tensor type");
2706 
2707   auto elementType = shapedType.getElementType();
2708   DataLayout dataLayout = DataLayout::closest(op);
2709   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2710     // Memref or tensor has vector element type.
2711     unsigned sourceVecSize =
2712         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2713         vectorElementType.getShape().back();
2714     unsigned resultVecSize =
2715         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2716         vectorType.getShape().back();
2717     if (resultVecSize % sourceVecSize != 0)
2718       return op->emitOpError(
2719           "requires the bitwidth of the minor 1-D vector to be an integral "
2720           "multiple of the bitwidth of the minor 1-D vector of the source");
2721 
2722     unsigned sourceVecEltRank = vectorElementType.getRank();
2723     unsigned resultVecRank = vectorType.getRank();
2724     if (sourceVecEltRank > resultVecRank)
2725       return op->emitOpError(
2726           "requires source vector element and vector result ranks to match.");
2727     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2728     // Check that permutation map results match 'rankOffset' of vector type.
2729     if (permutationMap.getNumResults() != rankOffset)
2730       return op->emitOpError("requires a permutation_map with result dims of "
2731                              "the same rank as the vector type");
2732 
2733     if (maskType)
2734       return op->emitOpError("does not support masks with vector element type");
2735   } else {
2736     // Memref or tensor has scalar element type.
2737     unsigned minorSize =
2738         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2739     unsigned resultVecSize =
2740         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2741     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2742       return op->emitOpError(
2743           "requires the bitwidth of the minor 1-D vector to be an integral "
2744           "multiple of the bitwidth of the source element type");
2745 
2746     // Check that permutation map results match rank of vector type.
2747     if (permutationMap.getNumResults() != vectorType.getRank())
2748       return op->emitOpError("requires a permutation_map with result dims of "
2749                              "the same rank as the vector type");
2750 
2751     VectorType expectedMaskType =
2752         vector::detail::transferMaskType(vectorType, permutationMap);
2753     if (maskType && expectedMaskType != maskType)
2754       return op->emitOpError("expects mask type consistent with permutation "
2755                              "map: ")
2756              << maskType;
2757   }
2758 
2759   if (permutationMap.getNumSymbols() != 0)
2760     return op->emitOpError("requires permutation_map without symbols");
2761 
2762   if (permutationMap.getNumInputs() != shapedType.getRank())
2763     return op->emitOpError("requires a permutation_map with input dims of the "
2764                            "same rank as the source type");
2765 
2766   if (inBounds) {
2767     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2768       return op->emitOpError("expects the optional in_bounds attr of same rank "
2769                              "as permutation_map results: ")
2770              << AffineMapAttr::get(permutationMap)
2771              << " vs inBounds of size: " << inBounds.size();
2772     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2773       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2774           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2775         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2776   }
2777 
2778   return success();
2779 }
2780 
2781 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2782   SmallVector<StringRef, 3> elidedAttrs;
2783   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2784   if (op.permutation_map().isMinorIdentity())
2785     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2786   bool elideInBounds = true;
2787   if (auto inBounds = op.in_bounds()) {
2788     for (auto attr : *inBounds) {
2789       if (attr.template cast<BoolAttr>().getValue()) {
2790         elideInBounds = false;
2791         break;
2792       }
2793     }
2794   }
2795   if (elideInBounds)
2796     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2797   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2798 }
2799 
2800 void TransferReadOp::print(OpAsmPrinter &p) {
2801   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2802   if (getMask())
2803     p << ", " << getMask();
2804   printTransferAttrs(p, *this);
2805   p << " : " << getShapedType() << ", " << getVectorType();
2806 }
2807 
2808 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2809   auto &builder = parser.getBuilder();
2810   SMLoc typesLoc;
2811   OpAsmParser::UnresolvedOperand sourceInfo;
2812   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2813   OpAsmParser::UnresolvedOperand paddingInfo;
2814   SmallVector<Type, 2> types;
2815   OpAsmParser::UnresolvedOperand maskInfo;
2816   // Parsing with support for paddingValue.
2817   if (parser.parseOperand(sourceInfo) ||
2818       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2819       parser.parseComma() || parser.parseOperand(paddingInfo))
2820     return failure();
2821   ParseResult hasMask = parser.parseOptionalComma();
2822   if (hasMask.succeeded()) {
2823     parser.parseOperand(maskInfo);
2824   }
2825   if (parser.parseOptionalAttrDict(result.attributes) ||
2826       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2827     return failure();
2828   if (types.size() != 2)
2829     return parser.emitError(typesLoc, "requires two types");
2830   auto indexType = builder.getIndexType();
2831   auto shapedType = types[0].dyn_cast<ShapedType>();
2832   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2833     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2834   VectorType vectorType = types[1].dyn_cast<VectorType>();
2835   if (!vectorType)
2836     return parser.emitError(typesLoc, "requires vector type");
2837   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2838   Attribute mapAttr = result.attributes.get(permutationAttrName);
2839   if (!mapAttr) {
2840     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2841     // Update `mapAttr` that is used later to determine mask type.
2842     mapAttr = AffineMapAttr::get(permMap);
2843     result.attributes.set(permutationAttrName, mapAttr);
2844   }
2845   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2846       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2847       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2848                             result.operands))
2849     return failure();
2850   if (hasMask.succeeded()) {
2851     if (shapedType.getElementType().dyn_cast<VectorType>())
2852       return parser.emitError(
2853           maskInfo.location, "does not support masks with vector element type");
2854     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2855     // Instead of adding the mask type as an op type, compute it based on the
2856     // vector type and the permutation map (to keep the type signature small).
2857     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2858     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2859       return failure();
2860   }
2861   result.addAttribute(
2862       TransferReadOp::getOperandSegmentSizeAttr(),
2863       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2864                                 static_cast<int32_t>(hasMask.succeeded())}));
2865   return parser.addTypeToList(vectorType, result.types);
2866 }
2867 
2868 LogicalResult TransferReadOp::verify() {
2869   // Consistency of elemental types in source and vector.
2870   ShapedType shapedType = getShapedType();
2871   VectorType vectorType = getVectorType();
2872   VectorType maskType = getMaskType();
2873   auto paddingType = getPadding().getType();
2874   auto permutationMap = getPermutationMap();
2875   auto sourceElementType = shapedType.getElementType();
2876 
2877   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2878     return emitOpError("requires ") << shapedType.getRank() << " indices";
2879 
2880   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2881                               shapedType, vectorType, maskType, permutationMap,
2882                               getInBounds() ? *getInBounds() : ArrayAttr())))
2883     return failure();
2884 
2885   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2886     // Source has vector element type.
2887     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2888     if (sourceVectorElementType != paddingType)
2889       return emitOpError(
2890           "requires source element type and padding type to match.");
2891 
2892   } else {
2893     // Check that 'paddingType' is valid to store in a vector type.
2894     if (!VectorType::isValidElementType(paddingType))
2895       return emitOpError("requires valid padding vector elemental type");
2896 
2897     // Check that padding type and vector element types match.
2898     if (paddingType != sourceElementType)
2899       return emitOpError(
2900           "requires formal padding and source of the same elemental type");
2901   }
2902 
2903   return verifyPermutationMap(permutationMap,
2904                               [&](Twine t) { return emitOpError(t); });
2905 }
2906 
2907 /// This is a common class used for patterns of the form
2908 /// ```
2909 ///    someop(memrefcast) -> someop
2910 /// ```
2911 /// It folds the source of the memref.cast into the root operation directly.
2912 static LogicalResult foldMemRefCast(Operation *op) {
2913   bool folded = false;
2914   for (OpOperand &operand : op->getOpOperands()) {
2915     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2916     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2917       operand.set(castOp.getOperand());
2918       folded = true;
2919     }
2920   }
2921   return success(folded);
2922 }
2923 
2924 static LogicalResult foldTensorCast(Operation *op) {
2925   bool folded = false;
2926   for (OpOperand &operand : op->getOpOperands()) {
2927     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2928     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2929       operand.set(castOp.getOperand());
2930       folded = true;
2931     }
2932   }
2933   return success(folded);
2934 }
2935 
2936 template <typename TransferOp>
2937 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2938   // TODO: support more aggressive createOrFold on:
2939   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2940   if (op.getShapedType().isDynamicDim(indicesIdx))
2941     return false;
2942   Value index = op.getIndices()[indicesIdx];
2943   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2944   if (!cstOp)
2945     return false;
2946 
2947   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2948   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2949 
2950   return cstOp.value() + vectorSize <= sourceSize;
2951 }
2952 
2953 template <typename TransferOp>
2954 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2955   // TODO: support 0-d corner case.
2956   // TODO: Be less conservative.
2957   if (op.getTransferRank() == 0)
2958     return failure();
2959   AffineMap permutationMap = op.getPermutationMap();
2960   bool changed = false;
2961   SmallVector<bool, 4> newInBounds;
2962   newInBounds.reserve(op.getTransferRank());
2963   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2964     // Already marked as in-bounds, nothing to see here.
2965     if (op.isDimInBounds(i)) {
2966       newInBounds.push_back(true);
2967       continue;
2968     }
2969     // Currently out-of-bounds, check whether we can statically determine it is
2970     // inBounds.
2971     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2972     assert(dimExpr && "Broadcast dims must be in-bounds");
2973     auto inBounds =
2974         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2975     newInBounds.push_back(inBounds);
2976     // We commit the pattern if it is "more inbounds".
2977     changed |= inBounds;
2978   }
2979   if (!changed)
2980     return failure();
2981   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2982   OpBuilder b(op.getContext());
2983   op->setAttr(TransferOp::getInBoundsAttrStrName(),
2984               b.getBoolArrayAttr(newInBounds));
2985   return success();
2986 }
2987 
2988 ///  ```
2989 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2990 ///    : vector<1x4xf32>, tensor<4x4xf32>
2991 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2992 ///    : tensor<4x4xf32>, vector<1x4xf32>
2993 ///  ```
2994 ///  -> Folds into
2995 ///  ```
2996 ///  %v0
2997 ///  ```
2998 static Value foldRAW(TransferReadOp readOp) {
2999   if (!readOp.getShapedType().isa<RankedTensorType>())
3000     return {};
3001   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3002   while (defWrite) {
3003     if (checkSameValueRAW(defWrite, readOp))
3004       return defWrite.getVector();
3005     if (!isDisjointTransferIndices(
3006             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3007             cast<VectorTransferOpInterface>(readOp.getOperation())))
3008       break;
3009     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3010   }
3011   return {};
3012 }
3013 
3014 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3015   if (Value vec = foldRAW(*this))
3016     return vec;
3017   /// transfer_read(memrefcast) -> transfer_read
3018   if (succeeded(foldTransferInBoundsAttribute(*this)))
3019     return getResult();
3020   if (succeeded(foldMemRefCast(*this)))
3021     return getResult();
3022   if (succeeded(foldTensorCast(*this)))
3023     return getResult();
3024   return OpFoldResult();
3025 }
3026 
3027 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3028   return llvm::to_vector<4>(getVectorType().getShape());
3029 }
3030 
3031 void TransferReadOp::getEffects(
3032     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3033         &effects) {
3034   if (getShapedType().isa<MemRefType>())
3035     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3036                          SideEffects::DefaultResource::get());
3037 }
3038 
3039 namespace {
3040 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3041 ///
3042 /// ```
3043 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3044 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3045 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3046 ///     : tensor<?x?xf32>, vector<4x5xf32>
3047 /// ```
3048 /// is rewritten to:
3049 /// ```
3050 /// %p0 = arith.addi %a, %e : index
3051 /// %p1 = arith.addi %b, %f : index
3052 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3053 ///     : tensor<?x?xf32>, vector<4x5xf32>
3054 /// ```
3055 struct FoldExtractSliceIntoTransferRead
3056     : public OpRewritePattern<TransferReadOp> {
3057 public:
3058   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3059 
3060   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3061                                 PatternRewriter &rewriter) const override {
3062     // TODO: support 0-d corner case.
3063     if (xferOp.getTransferRank() == 0)
3064       return failure();
3065     if (xferOp.hasOutOfBoundsDim())
3066       return failure();
3067     if (!xferOp.getPermutationMap().isIdentity())
3068       return failure();
3069     if (xferOp.getMask())
3070       return failure();
3071     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3072     if (!extractOp)
3073       return failure();
3074     if (!extractOp.hasUnitStride())
3075       return failure();
3076 
3077     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3078     // dims are exactly the leading dims. I.e. the following is illegal:
3079     // ```
3080     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3081     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3082     //    %1 = vector.transfer_read %0[0,0], %cst :
3083     //      tensor<2x4xf32>, vector<2x4xf32>
3084     // ```
3085     //
3086     // Cannot fold into:
3087     // ```
3088     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3089     //      tensor<2x1x4xf32>, vector<2x4xf32>
3090     // ```
3091     // For this, check the trailing `vectorRank` dims of the extract_slice
3092     // result tensor match the trailing dims of the inferred result tensor.
3093     int64_t rankReduced =
3094         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3095     int64_t vectorRank = xferOp.getVectorType().getRank();
3096     RankedTensorType inferredDestTensorType =
3097         tensor::ExtractSliceOp::inferResultType(
3098             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3099             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3100     auto actualDestTensorShape = extractOp.getType().getShape();
3101     if (rankReduced > 0 &&
3102         actualDestTensorShape.take_back(vectorRank) !=
3103             inferredDestTensorType.getShape().take_back(vectorRank))
3104       return failure();
3105 
3106     SmallVector<Value> newIndices;
3107     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3108     // indices first.
3109     for (int64_t i = 0; i < rankReduced; ++i) {
3110       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3111       newIndices.push_back(getValueOrCreateConstantIndexOp(
3112           rewriter, extractOp.getLoc(), offset));
3113     }
3114     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3115       OpFoldResult offset =
3116           extractOp.getMixedOffsets()[it.index() + rankReduced];
3117       newIndices.push_back(rewriter.create<arith::AddIOp>(
3118           xferOp->getLoc(), it.value(),
3119           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3120                                           offset)));
3121     }
3122     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3123     rewriter.replaceOpWithNewOp<TransferReadOp>(
3124         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3125         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3126 
3127     return success();
3128   }
3129 };
3130 } // namespace
3131 
3132 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3133                                                  MLIRContext *context) {
3134   results.add<FoldExtractSliceIntoTransferRead>(context);
3135 }
3136 
3137 //===----------------------------------------------------------------------===//
3138 // TransferWriteOp
3139 //===----------------------------------------------------------------------===//
3140 
3141 /// 1. Builder with type inference.
3142 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3143                             Value vector, Value dest, ValueRange indices,
3144                             AffineMapAttr permutationMapAttr,
3145                             /*optional*/ Value mask,
3146                             /*optional*/ ArrayAttr inBoundsAttr) {
3147   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3148   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3149         mask, inBoundsAttr);
3150 }
3151 
3152 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3153 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3154                             Value vector, Value dest, ValueRange indices,
3155                             AffineMapAttr permutationMapAttr,
3156                             /*optional*/ ArrayAttr inBoundsAttr) {
3157   build(builder, result, vector, dest, indices, permutationMapAttr,
3158         /*mask=*/Value(), inBoundsAttr);
3159 }
3160 
3161 /// 3. Builder with type inference that sets an empty mask (variant without
3162 /// attrs)
3163 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3164                             Value vector, Value dest, ValueRange indices,
3165                             AffineMap permutationMap,
3166                             Optional<ArrayRef<bool>> inBounds) {
3167   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3168   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3169                           ? builder.getBoolArrayAttr(inBounds.getValue())
3170                           : ArrayAttr();
3171   build(builder, result, vector, dest, indices, permutationMapAttr,
3172         /*mask=*/Value(), inBoundsAttr);
3173 }
3174 
3175 /// 4. Builder with type inference that sets an empty mask and sets permutation
3176 ///    map to 'getMinorIdentityMap'.
3177 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3178                             Value vector, Value dest, ValueRange indices,
3179                             Optional<ArrayRef<bool>> inBounds) {
3180   auto vectorType = vector.getType().cast<VectorType>();
3181   AffineMap permutationMap = getTransferMinorIdentityMap(
3182       dest.getType().cast<ShapedType>(), vectorType);
3183   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3184 }
3185 
3186 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3187                                    OperationState &result) {
3188   auto &builder = parser.getBuilder();
3189   SMLoc typesLoc;
3190   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3191   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3192   SmallVector<Type, 2> types;
3193   OpAsmParser::UnresolvedOperand maskInfo;
3194   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3195       parser.parseOperand(sourceInfo) ||
3196       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3197     return failure();
3198   ParseResult hasMask = parser.parseOptionalComma();
3199   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3200     return failure();
3201   if (parser.parseOptionalAttrDict(result.attributes) ||
3202       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3203     return failure();
3204   if (types.size() != 2)
3205     return parser.emitError(typesLoc, "requires two types");
3206   auto indexType = builder.getIndexType();
3207   VectorType vectorType = types[0].dyn_cast<VectorType>();
3208   if (!vectorType)
3209     return parser.emitError(typesLoc, "requires vector type");
3210   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3211   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3212     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3213   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3214   auto attr = result.attributes.get(permutationAttrName);
3215   if (!attr) {
3216     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3217     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3218   }
3219   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3220       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3221       parser.resolveOperands(indexInfo, indexType, result.operands))
3222     return failure();
3223   if (hasMask.succeeded()) {
3224     if (shapedType.getElementType().dyn_cast<VectorType>())
3225       return parser.emitError(
3226           maskInfo.location, "does not support masks with vector element type");
3227     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3228     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3229       return failure();
3230   }
3231   result.addAttribute(
3232       TransferWriteOp::getOperandSegmentSizeAttr(),
3233       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3234                                 static_cast<int32_t>(hasMask.succeeded())}));
3235   return failure(shapedType.isa<RankedTensorType>() &&
3236                  parser.addTypeToList(shapedType, result.types));
3237 }
3238 
3239 void TransferWriteOp::print(OpAsmPrinter &p) {
3240   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3241   if (getMask())
3242     p << ", " << getMask();
3243   printTransferAttrs(p, *this);
3244   p << " : " << getVectorType() << ", " << getShapedType();
3245 }
3246 
3247 LogicalResult TransferWriteOp::verify() {
3248   // Consistency of elemental types in shape and vector.
3249   ShapedType shapedType = getShapedType();
3250   VectorType vectorType = getVectorType();
3251   VectorType maskType = getMaskType();
3252   auto permutationMap = getPermutationMap();
3253 
3254   if (llvm::size(getIndices()) != shapedType.getRank())
3255     return emitOpError("requires ") << shapedType.getRank() << " indices";
3256 
3257   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3258   // as the semantics is unclear. This can be revisited later if necessary.
3259   if (hasBroadcastDim())
3260     return emitOpError("should not have broadcast dimensions");
3261 
3262   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3263                               shapedType, vectorType, maskType, permutationMap,
3264                               getInBounds() ? *getInBounds() : ArrayAttr())))
3265     return failure();
3266 
3267   return verifyPermutationMap(permutationMap,
3268                               [&](Twine t) { return emitOpError(t); });
3269 }
3270 
3271 /// Fold:
3272 /// ```
3273 ///    %t1 = ...
3274 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3275 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3276 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3277 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3278 /// ```
3279 ///
3280 /// into:
3281 ///
3282 /// ```
3283 ///    %t0
3284 /// ```
3285 ///
3286 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3287 /// block argument or has side effects.
3288 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3289                                        ArrayRef<Attribute>,
3290                                        SmallVectorImpl<OpFoldResult> &results) {
3291   // TODO: support 0-d corner case.
3292   if (write.getTransferRank() == 0)
3293     return failure();
3294   auto rankedTensorType =
3295       write.getSource().getType().dyn_cast<RankedTensorType>();
3296   // If not operating on tensors, bail.
3297   if (!rankedTensorType)
3298     return failure();
3299   // If no read, bail.
3300   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3301   if (!read)
3302     return failure();
3303   // TODO: support 0-d corner case.
3304   if (read.getTransferRank() == 0)
3305     return failure();
3306   // For now, only accept minor identity. Future: composition is minor identity.
3307   if (!read.getPermutationMap().isMinorIdentity() ||
3308       !write.getPermutationMap().isMinorIdentity())
3309     return failure();
3310   // Bail on mismatching ranks.
3311   if (read.getTransferRank() != write.getTransferRank())
3312     return failure();
3313   // Bail on potential out-of-bounds accesses.
3314   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3315     return failure();
3316   // Tensor types must be the same.
3317   if (read.getSource().getType() != rankedTensorType)
3318     return failure();
3319   // Vector types must be the same.
3320   if (read.getVectorType() != write.getVectorType())
3321     return failure();
3322   // Vector and Tensor shapes must match.
3323   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3324     return failure();
3325   // If any index is nonzero.
3326   auto isNotConstantZero = [](Value v) {
3327     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3328     return !cstOp || cstOp.value() != 0;
3329   };
3330   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3331       llvm::any_of(write.getIndices(), isNotConstantZero))
3332     return failure();
3333   // Success.
3334   results.push_back(read.getSource());
3335   return success();
3336 }
3337 
3338 static bool checkSameValueWAR(vector::TransferReadOp read,
3339                               vector::TransferWriteOp write) {
3340   return read.getSource() == write.getSource() &&
3341          read.getIndices() == write.getIndices() &&
3342          read.getPermutationMap() == write.getPermutationMap() &&
3343          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3344          !write.getMask();
3345 }
3346 /// Fold transfer_write write after read:
3347 /// ```
3348 ///    %t0 = ...
3349 ///    %v = vector.transfer_read %t0[%c0...] :
3350 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3351 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3352 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3353 /// ```
3354 ///
3355 /// into:
3356 ///
3357 /// ```
3358 ///    %t0
3359 /// ```
3360 static LogicalResult foldWAR(TransferWriteOp write,
3361                              SmallVectorImpl<OpFoldResult> &results) {
3362   if (!write.getSource().getType().isa<RankedTensorType>())
3363     return failure();
3364   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3365   if (!read)
3366     return failure();
3367 
3368   if (!checkSameValueWAR(read, write))
3369     return failure();
3370   results.push_back(read.getSource());
3371   return success();
3372 }
3373 
3374 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3375                                     SmallVectorImpl<OpFoldResult> &results) {
3376   if (succeeded(foldReadInitWrite(*this, operands, results)))
3377     return success();
3378   if (succeeded(foldWAR(*this, results)))
3379     return success();
3380   if (succeeded(foldTransferInBoundsAttribute(*this)))
3381     return success();
3382   return foldMemRefCast(*this);
3383 }
3384 
3385 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3386   return llvm::to_vector<4>(getVectorType().getShape());
3387 }
3388 
3389 void TransferWriteOp::getEffects(
3390     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3391         &effects) {
3392   if (getShapedType().isa<MemRefType>())
3393     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3394                          SideEffects::DefaultResource::get());
3395 }
3396 
3397 namespace {
3398 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3399 /// DCE
3400 /// ```
3401 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3402 ///    : vector<1x4xf32>, tensor<4x4xf32>
3403 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3404 ///    : vector<1x4xf32>, tensor<4x4xf32>
3405 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3406 ///    : vector<1x4xf32>, tensor<4x4xf32>
3407 /// ```
3408 ///
3409 /// into:
3410 ///
3411 /// ```
3412 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3413 ///    : vector<1x4xf32>, tensor<4x4xf32>
3414 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3415 ///    : vector<1x4xf32>, tensor<4x4xf32>
3416 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3417 ///    : vector<1x4xf32>, tensor<4x4xf32>
3418 /// ```
3419 ///
3420 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3421 /// any other uses.
3422 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3423 public:
3424   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3425   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3426                                 PatternRewriter &rewriter) const override {
3427     if (!writeOp.getShapedType().isa<RankedTensorType>())
3428       return failure();
3429     vector::TransferWriteOp writeToModify = writeOp;
3430 
3431     auto defWrite =
3432         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3433     while (defWrite) {
3434       if (checkSameValueWAW(writeOp, defWrite)) {
3435         writeToModify.getSourceMutable().assign(defWrite.getSource());
3436         return success();
3437       }
3438       if (!isDisjointTransferIndices(
3439               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3440               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3441         break;
3442       // If the previous write op doesn't have any other use we an safely look
3443       // at the previous store to see if it can be removed.
3444       if (!defWrite->hasOneUse())
3445         break;
3446       writeToModify = defWrite;
3447       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3448     }
3449     return failure();
3450   }
3451 };
3452 
3453 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3454 /// could directly write to the insert_slice's destination. E.g.:
3455 ///
3456 /// ```
3457 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3458 ///     : vector<4x5xf32>, tensor<4x5xf32>
3459 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3460 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3461 /// ```
3462 /// is rewritten to:
3463 /// ```
3464 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3465 ///     : vector<4x5xf32>, tensor<?x?xf32>
3466 /// ```
3467 struct FoldInsertSliceIntoTransferWrite
3468     : public OpRewritePattern<tensor::InsertSliceOp> {
3469 public:
3470   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3471 
3472   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3473                                 PatternRewriter &rewriter) const override {
3474     if (!insertOp.hasUnitStride())
3475       return failure();
3476 
3477     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3478     if (!xferOp)
3479       return failure();
3480     // TODO: support 0-d corner case.
3481     if (xferOp.getTransferRank() == 0)
3482       return failure();
3483 
3484     if (xferOp.hasOutOfBoundsDim())
3485       return failure();
3486     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3487       return failure();
3488     if (xferOp.getMask())
3489       return failure();
3490     // Fold only if the TransferWriteOp completely overwrites the `source` with
3491     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3492     // content is the data of the vector.
3493     if (!llvm::equal(xferOp.getVectorType().getShape(),
3494                      xferOp.getShapedType().getShape()))
3495       return failure();
3496     if (!xferOp.getPermutationMap().isIdentity())
3497       return failure();
3498 
3499     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3500     // dims are exactly the leading dims. I.e. the following is illegal:
3501     // ```
3502     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3503     //      vector<2x4xf32>, tensor<2x4xf32>
3504     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3505     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3506     // ```
3507     //
3508     // Cannot fold into:
3509     // ```
3510     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3511     //      vector<2x4xf32>, tensor<2x1x4xf32>
3512     // ```
3513     // For this, check the trailing `vectorRank` dims of the insert_slice result
3514     // tensor match the trailing dims of the inferred result tensor.
3515     int64_t rankReduced =
3516         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3517     int64_t vectorRank = xferOp.getVectorType().getRank();
3518     RankedTensorType inferredSourceTensorType =
3519         tensor::ExtractSliceOp::inferResultType(
3520             insertOp.getType(), insertOp.getMixedOffsets(),
3521             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3522     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3523     if (rankReduced > 0 &&
3524         actualSourceTensorShape.take_back(vectorRank) !=
3525             inferredSourceTensorType.getShape().take_back(vectorRank))
3526       return failure();
3527 
3528     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3529         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3530     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3531     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3532                                                  insertOp.dest(), indices,
3533                                                  ArrayRef<bool>{inBounds});
3534     return success();
3535   }
3536 };
3537 
3538 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3539 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3540 /// overwritten and inserted into another tensor. After this rewrite, the
3541 /// operations bufferize in-place since all of them work on the same slice.
3542 ///
3543 /// For example:
3544 /// ```mlir
3545 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3546 ///        : vector<8x16xf32>, tensor<8x16xf32>
3547 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3548 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3549 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3550 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3551 /// ```
3552 /// folds to
3553 /// ```mlir
3554 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3555 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3556 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3557 ///        : vector<8x16xf32>, tensor<?x?xf32>
3558 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3559 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3560 /// ```
3561 struct SwapExtractSliceOfTransferWrite
3562     : public OpRewritePattern<tensor::InsertSliceOp> {
3563 public:
3564   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3565 
3566   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3567                                 PatternRewriter &rewriter) const override {
3568     if (!insertOp.hasUnitStride())
3569       return failure();
3570     auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3571     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3572       return failure();
3573     auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>();
3574     if (!transferOp || !transferOp->hasOneUse())
3575       return failure();
3576 
3577     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3578     // rank-reducing.
3579     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3580       return rewriter.notifyMatchFailure(insertOp,
3581                                          "use-def chain is rank-reducing");
3582     }
3583 
3584     // Fail if tensor::ExtractSliceOp has non-zero offset.
3585     if (!extractOp.hasZeroOffset()) {
3586       return rewriter.notifyMatchFailure(insertOp,
3587                                          "ExtractSliceOp has non-zero offset");
3588     }
3589 
3590     // Fail if tensor::TransferWriteOp has non-zero offset.
3591     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3592           return getConstantIntValue(value) == static_cast<int64_t>(0);
3593         })) {
3594       return rewriter.notifyMatchFailure(insertOp,
3595                                          "TranferWriteOp has non-zero offset");
3596     }
3597 
3598     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3599     for (const auto &it :
3600          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3601       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3602         return rewriter.notifyMatchFailure(
3603             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3604       }
3605     }
3606 
3607     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3608     assert(transferOp.getVectorType().hasStaticShape() &&
3609            "expected vector to have a static shape");
3610     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3611     SmallVector<int64_t> resultShape = applyPermutationMap(
3612         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3613     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3614       return rewriter.notifyMatchFailure(
3615           insertOp, "TransferWriteOp may not write the full tensor.");
3616     }
3617 
3618     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3619     SmallVector<int64_t> newResultShape = applyPermutationMap(
3620         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3621     SmallVector<bool> newInBounds;
3622     for (const auto &en : enumerate(newResultShape))
3623       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3624     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3625         extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(),
3626         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3627         insertOp.getMixedStrides());
3628     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3629         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3630         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3631         rewriter.getBoolArrayAttr(newInBounds));
3632     rewriter.updateRootInPlace(insertOp, [&]() {
3633       insertOp.sourceMutable().assign(newTransferWriteOp.getResult());
3634     });
3635     return success();
3636   }
3637 };
3638 
3639 } // namespace
3640 
3641 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3642                                                   MLIRContext *context) {
3643   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3644               SwapExtractSliceOfTransferWrite>(context);
3645 }
3646 
3647 //===----------------------------------------------------------------------===//
3648 // LoadOp
3649 //===----------------------------------------------------------------------===//
3650 
3651 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3652                                                  MemRefType memRefTy) {
3653   if (!isLastMemrefDimUnitStride(memRefTy))
3654     return op->emitOpError("most minor memref dim must have unit stride");
3655   return success();
3656 }
3657 
3658 LogicalResult vector::LoadOp::verify() {
3659   VectorType resVecTy = getVectorType();
3660   MemRefType memRefTy = getMemRefType();
3661 
3662   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3663     return failure();
3664 
3665   // Checks for vector memrefs.
3666   Type memElemTy = memRefTy.getElementType();
3667   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3668     if (memVecTy != resVecTy)
3669       return emitOpError("base memref and result vector types should match");
3670     memElemTy = memVecTy.getElementType();
3671   }
3672 
3673   if (resVecTy.getElementType() != memElemTy)
3674     return emitOpError("base and result element types should match");
3675   if (llvm::size(getIndices()) != memRefTy.getRank())
3676     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3677   return success();
3678 }
3679 
3680 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3681   if (succeeded(foldMemRefCast(*this)))
3682     return getResult();
3683   return OpFoldResult();
3684 }
3685 
3686 //===----------------------------------------------------------------------===//
3687 // StoreOp
3688 //===----------------------------------------------------------------------===//
3689 
3690 LogicalResult vector::StoreOp::verify() {
3691   VectorType valueVecTy = getVectorType();
3692   MemRefType memRefTy = getMemRefType();
3693 
3694   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3695     return failure();
3696 
3697   // Checks for vector memrefs.
3698   Type memElemTy = memRefTy.getElementType();
3699   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3700     if (memVecTy != valueVecTy)
3701       return emitOpError(
3702           "base memref and valueToStore vector types should match");
3703     memElemTy = memVecTy.getElementType();
3704   }
3705 
3706   if (valueVecTy.getElementType() != memElemTy)
3707     return emitOpError("base and valueToStore element type should match");
3708   if (llvm::size(getIndices()) != memRefTy.getRank())
3709     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3710   return success();
3711 }
3712 
3713 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3714                             SmallVectorImpl<OpFoldResult> &results) {
3715   return foldMemRefCast(*this);
3716 }
3717 
3718 //===----------------------------------------------------------------------===//
3719 // MaskedLoadOp
3720 //===----------------------------------------------------------------------===//
3721 
3722 LogicalResult MaskedLoadOp::verify() {
3723   VectorType maskVType = getMaskVectorType();
3724   VectorType passVType = getPassThruVectorType();
3725   VectorType resVType = getVectorType();
3726   MemRefType memType = getMemRefType();
3727 
3728   if (resVType.getElementType() != memType.getElementType())
3729     return emitOpError("base and result element type should match");
3730   if (llvm::size(getIndices()) != memType.getRank())
3731     return emitOpError("requires ") << memType.getRank() << " indices";
3732   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3733     return emitOpError("expected result dim to match mask dim");
3734   if (resVType != passVType)
3735     return emitOpError("expected pass_thru of same type as result type");
3736   return success();
3737 }
3738 
3739 namespace {
3740 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3741 public:
3742   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3743   LogicalResult matchAndRewrite(MaskedLoadOp load,
3744                                 PatternRewriter &rewriter) const override {
3745     switch (get1DMaskFormat(load.getMask())) {
3746     case MaskFormat::AllTrue:
3747       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3748           load, load.getType(), load.getBase(), load.getIndices());
3749       return success();
3750     case MaskFormat::AllFalse:
3751       rewriter.replaceOp(load, load.getPassThru());
3752       return success();
3753     case MaskFormat::Unknown:
3754       return failure();
3755     }
3756     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3757   }
3758 };
3759 } // namespace
3760 
3761 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3762                                                MLIRContext *context) {
3763   results.add<MaskedLoadFolder>(context);
3764 }
3765 
3766 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3767   if (succeeded(foldMemRefCast(*this)))
3768     return getResult();
3769   return OpFoldResult();
3770 }
3771 
3772 //===----------------------------------------------------------------------===//
3773 // MaskedStoreOp
3774 //===----------------------------------------------------------------------===//
3775 
3776 LogicalResult MaskedStoreOp::verify() {
3777   VectorType maskVType = getMaskVectorType();
3778   VectorType valueVType = getVectorType();
3779   MemRefType memType = getMemRefType();
3780 
3781   if (valueVType.getElementType() != memType.getElementType())
3782     return emitOpError("base and valueToStore element type should match");
3783   if (llvm::size(getIndices()) != memType.getRank())
3784     return emitOpError("requires ") << memType.getRank() << " indices";
3785   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3786     return emitOpError("expected valueToStore dim to match mask dim");
3787   return success();
3788 }
3789 
3790 namespace {
3791 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3792 public:
3793   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3794   LogicalResult matchAndRewrite(MaskedStoreOp store,
3795                                 PatternRewriter &rewriter) const override {
3796     switch (get1DMaskFormat(store.getMask())) {
3797     case MaskFormat::AllTrue:
3798       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3799           store, store.getValueToStore(), store.getBase(), store.getIndices());
3800       return success();
3801     case MaskFormat::AllFalse:
3802       rewriter.eraseOp(store);
3803       return success();
3804     case MaskFormat::Unknown:
3805       return failure();
3806     }
3807     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3808   }
3809 };
3810 } // namespace
3811 
3812 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3813                                                 MLIRContext *context) {
3814   results.add<MaskedStoreFolder>(context);
3815 }
3816 
3817 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3818                                   SmallVectorImpl<OpFoldResult> &results) {
3819   return foldMemRefCast(*this);
3820 }
3821 
3822 //===----------------------------------------------------------------------===//
3823 // GatherOp
3824 //===----------------------------------------------------------------------===//
3825 
3826 LogicalResult GatherOp::verify() {
3827   VectorType indVType = getIndexVectorType();
3828   VectorType maskVType = getMaskVectorType();
3829   VectorType resVType = getVectorType();
3830   MemRefType memType = getMemRefType();
3831 
3832   if (resVType.getElementType() != memType.getElementType())
3833     return emitOpError("base and result element type should match");
3834   if (llvm::size(getIndices()) != memType.getRank())
3835     return emitOpError("requires ") << memType.getRank() << " indices";
3836   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3837     return emitOpError("expected result dim to match indices dim");
3838   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3839     return emitOpError("expected result dim to match mask dim");
3840   if (resVType != getPassThruVectorType())
3841     return emitOpError("expected pass_thru of same type as result type");
3842   return success();
3843 }
3844 
3845 namespace {
3846 class GatherFolder final : public OpRewritePattern<GatherOp> {
3847 public:
3848   using OpRewritePattern<GatherOp>::OpRewritePattern;
3849   LogicalResult matchAndRewrite(GatherOp gather,
3850                                 PatternRewriter &rewriter) const override {
3851     switch (get1DMaskFormat(gather.getMask())) {
3852     case MaskFormat::AllTrue:
3853       return failure(); // no unmasked equivalent
3854     case MaskFormat::AllFalse:
3855       rewriter.replaceOp(gather, gather.getPassThru());
3856       return success();
3857     case MaskFormat::Unknown:
3858       return failure();
3859     }
3860     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3861   }
3862 };
3863 } // namespace
3864 
3865 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3866                                            MLIRContext *context) {
3867   results.add<GatherFolder>(context);
3868 }
3869 
3870 //===----------------------------------------------------------------------===//
3871 // ScatterOp
3872 //===----------------------------------------------------------------------===//
3873 
3874 LogicalResult ScatterOp::verify() {
3875   VectorType indVType = getIndexVectorType();
3876   VectorType maskVType = getMaskVectorType();
3877   VectorType valueVType = getVectorType();
3878   MemRefType memType = getMemRefType();
3879 
3880   if (valueVType.getElementType() != memType.getElementType())
3881     return emitOpError("base and valueToStore element type should match");
3882   if (llvm::size(getIndices()) != memType.getRank())
3883     return emitOpError("requires ") << memType.getRank() << " indices";
3884   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3885     return emitOpError("expected valueToStore dim to match indices dim");
3886   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3887     return emitOpError("expected valueToStore dim to match mask dim");
3888   return success();
3889 }
3890 
3891 namespace {
3892 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3893 public:
3894   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3895   LogicalResult matchAndRewrite(ScatterOp scatter,
3896                                 PatternRewriter &rewriter) const override {
3897     switch (get1DMaskFormat(scatter.getMask())) {
3898     case MaskFormat::AllTrue:
3899       return failure(); // no unmasked equivalent
3900     case MaskFormat::AllFalse:
3901       rewriter.eraseOp(scatter);
3902       return success();
3903     case MaskFormat::Unknown:
3904       return failure();
3905     }
3906     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3907   }
3908 };
3909 } // namespace
3910 
3911 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3912                                             MLIRContext *context) {
3913   results.add<ScatterFolder>(context);
3914 }
3915 
3916 //===----------------------------------------------------------------------===//
3917 // ExpandLoadOp
3918 //===----------------------------------------------------------------------===//
3919 
3920 LogicalResult ExpandLoadOp::verify() {
3921   VectorType maskVType = getMaskVectorType();
3922   VectorType passVType = getPassThruVectorType();
3923   VectorType resVType = getVectorType();
3924   MemRefType memType = getMemRefType();
3925 
3926   if (resVType.getElementType() != memType.getElementType())
3927     return emitOpError("base and result element type should match");
3928   if (llvm::size(getIndices()) != memType.getRank())
3929     return emitOpError("requires ") << memType.getRank() << " indices";
3930   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3931     return emitOpError("expected result dim to match mask dim");
3932   if (resVType != passVType)
3933     return emitOpError("expected pass_thru of same type as result type");
3934   return success();
3935 }
3936 
3937 namespace {
3938 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3939 public:
3940   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3941   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3942                                 PatternRewriter &rewriter) const override {
3943     switch (get1DMaskFormat(expand.getMask())) {
3944     case MaskFormat::AllTrue:
3945       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3946           expand, expand.getType(), expand.getBase(), expand.getIndices());
3947       return success();
3948     case MaskFormat::AllFalse:
3949       rewriter.replaceOp(expand, expand.getPassThru());
3950       return success();
3951     case MaskFormat::Unknown:
3952       return failure();
3953     }
3954     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3955   }
3956 };
3957 } // namespace
3958 
3959 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3960                                                MLIRContext *context) {
3961   results.add<ExpandLoadFolder>(context);
3962 }
3963 
3964 //===----------------------------------------------------------------------===//
3965 // CompressStoreOp
3966 //===----------------------------------------------------------------------===//
3967 
3968 LogicalResult CompressStoreOp::verify() {
3969   VectorType maskVType = getMaskVectorType();
3970   VectorType valueVType = getVectorType();
3971   MemRefType memType = getMemRefType();
3972 
3973   if (valueVType.getElementType() != memType.getElementType())
3974     return emitOpError("base and valueToStore element type should match");
3975   if (llvm::size(getIndices()) != memType.getRank())
3976     return emitOpError("requires ") << memType.getRank() << " indices";
3977   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3978     return emitOpError("expected valueToStore dim to match mask dim");
3979   return success();
3980 }
3981 
3982 namespace {
3983 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3984 public:
3985   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3986   LogicalResult matchAndRewrite(CompressStoreOp compress,
3987                                 PatternRewriter &rewriter) const override {
3988     switch (get1DMaskFormat(compress.getMask())) {
3989     case MaskFormat::AllTrue:
3990       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3991           compress, compress.getValueToStore(), compress.getBase(),
3992           compress.getIndices());
3993       return success();
3994     case MaskFormat::AllFalse:
3995       rewriter.eraseOp(compress);
3996       return success();
3997     case MaskFormat::Unknown:
3998       return failure();
3999     }
4000     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4001   }
4002 };
4003 } // namespace
4004 
4005 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4006                                                   MLIRContext *context) {
4007   results.add<CompressStoreFolder>(context);
4008 }
4009 
4010 //===----------------------------------------------------------------------===//
4011 // ShapeCastOp
4012 //===----------------------------------------------------------------------===//
4013 
4014 /// Returns true if each element of 'a' is equal to the product of a contiguous
4015 /// sequence of the elements of 'b'. Returns false otherwise.
4016 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4017   unsigned rankA = a.size();
4018   unsigned rankB = b.size();
4019   assert(rankA < rankB);
4020 
4021   unsigned i = 0;
4022   unsigned j = 0;
4023   while (i < rankA && j < rankB) {
4024     int64_t dimA = a[i];
4025     int64_t dimB = 1;
4026     while (dimB < dimA && j < rankB)
4027       dimB *= b[j++];
4028     if (dimA != dimB)
4029       break;
4030     ++i;
4031 
4032     // Handle the case when trailing dimensions are of size 1.
4033     // Include them into the contiguous sequence.
4034     auto isOne = [](int64_t v) { return v == 1; };
4035     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4036       i = rankA;
4037     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4038       j = rankB;
4039   }
4040 
4041   return i == rankA && j == rankB;
4042 }
4043 
4044 static LogicalResult verifyVectorShapeCast(Operation *op,
4045                                            VectorType sourceVectorType,
4046                                            VectorType resultVectorType) {
4047   // Check that element type is the same.
4048   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4049     return op->emitOpError("source/result vectors must have same element type");
4050   auto sourceShape = sourceVectorType.getShape();
4051   auto resultShape = resultVectorType.getShape();
4052 
4053   // Check that product of source dim sizes matches product of result dim sizes.
4054   int64_t sourceDimProduct = std::accumulate(
4055       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4056   int64_t resultDimProduct = std::accumulate(
4057       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4058   if (sourceDimProduct != resultDimProduct)
4059     return op->emitOpError("source/result number of elements must match");
4060 
4061   // Check that expanding/contracting rank cases.
4062   unsigned sourceRank = sourceVectorType.getRank();
4063   unsigned resultRank = resultVectorType.getRank();
4064   if (sourceRank < resultRank) {
4065     if (!isValidShapeCast(sourceShape, resultShape))
4066       return op->emitOpError("invalid shape cast");
4067   } else if (sourceRank > resultRank) {
4068     if (!isValidShapeCast(resultShape, sourceShape))
4069       return op->emitOpError("invalid shape cast");
4070   }
4071   return success();
4072 }
4073 
4074 LogicalResult ShapeCastOp::verify() {
4075   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4076   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4077 
4078   // Check if source/result are of vector type.
4079   if (sourceVectorType && resultVectorType)
4080     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4081 
4082   return success();
4083 }
4084 
4085 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4086   // Nop shape cast.
4087   if (getSource().getType() == getResult().getType())
4088     return getSource();
4089 
4090   // Canceling shape casts.
4091   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4092     if (getResult().getType() == otherOp.getSource().getType())
4093       return otherOp.getSource();
4094 
4095     // Only allows valid transitive folding.
4096     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4097     VectorType resultType = getResult().getType().cast<VectorType>();
4098     if (srcType.getRank() < resultType.getRank()) {
4099       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4100         return {};
4101     } else if (srcType.getRank() > resultType.getRank()) {
4102       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4103         return {};
4104     } else {
4105       return {};
4106     }
4107 
4108     setOperand(otherOp.getSource());
4109     return getResult();
4110   }
4111   return {};
4112 }
4113 
4114 namespace {
4115 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4116 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4117 public:
4118   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4119 
4120   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4121                                 PatternRewriter &rewriter) const override {
4122     auto constantOp =
4123         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4124     if (!constantOp)
4125       return failure();
4126     // Only handle splat for now.
4127     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4128     if (!dense)
4129       return failure();
4130     auto newAttr =
4131         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4132                                dense.getSplatValue<Attribute>());
4133     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4134     return success();
4135   }
4136 };
4137 
4138 } // namespace
4139 
4140 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4141                                               MLIRContext *context) {
4142   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4143   results.add<ShapeCastConstantFolder>(context);
4144 }
4145 
4146 //===----------------------------------------------------------------------===//
4147 // VectorBitCastOp
4148 //===----------------------------------------------------------------------===//
4149 
4150 LogicalResult BitCastOp::verify() {
4151   auto sourceVectorType = getSourceVectorType();
4152   auto resultVectorType = getResultVectorType();
4153 
4154   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4155     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4156       return emitOpError("dimension size mismatch at: ") << i;
4157   }
4158 
4159   DataLayout dataLayout = DataLayout::closest(*this);
4160   auto sourceElementBits =
4161       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4162   auto resultElementBits =
4163       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4164 
4165   if (sourceVectorType.getRank() == 0) {
4166     if (sourceElementBits != resultElementBits)
4167       return emitOpError("source/result bitwidth of the 0-D vector element "
4168                             "types must be equal");
4169   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4170              resultElementBits * resultVectorType.getShape().back()) {
4171     return emitOpError(
4172         "source/result bitwidth of the minor 1-D vectors must be equal");
4173   }
4174 
4175   return success();
4176 }
4177 
4178 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4179   // Nop cast.
4180   if (getSource().getType() == getResult().getType())
4181     return getSource();
4182 
4183   // Canceling bitcasts.
4184   if (auto otherOp = getSource().getDefiningOp<BitCastOp>())
4185     if (getResult().getType() == otherOp.getSource().getType())
4186       return otherOp.getSource();
4187 
4188   Attribute sourceConstant = operands.front();
4189   if (!sourceConstant)
4190     return {};
4191 
4192   Type srcElemType = getSourceVectorType().getElementType();
4193   Type dstElemType = getResultVectorType().getElementType();
4194 
4195   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4196     if (floatPack.isSplat()) {
4197       auto splat = floatPack.getSplatValue<FloatAttr>();
4198 
4199       // Casting fp16 into fp32.
4200       if (srcElemType.isF16() && dstElemType.isF32()) {
4201         uint32_t bits = static_cast<uint32_t>(
4202             splat.getValue().bitcastToAPInt().getZExtValue());
4203         // Duplicate the 16-bit pattern.
4204         bits = (bits << 16) | (bits & 0xffff);
4205         APInt intBits(32, bits);
4206         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4207         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4208       }
4209     }
4210   }
4211 
4212   return {};
4213 }
4214 
4215 //===----------------------------------------------------------------------===//
4216 // TypeCastOp
4217 //===----------------------------------------------------------------------===//
4218 
4219 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4220   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4221   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4222                               memRefType.getShape().end());
4223   if (vectorType)
4224     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4225   return res;
4226 }
4227 
4228 /// Build the canonical memRefType with a single vector.
4229 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4230 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4231                        Value source) {
4232   result.addOperands(source);
4233   MemRefType memRefType = source.getType().cast<MemRefType>();
4234   VectorType vectorType =
4235       VectorType::get(extractShape(memRefType),
4236                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4237   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4238                                   memRefType.getMemorySpace()));
4239 }
4240 
4241 LogicalResult TypeCastOp::verify() {
4242   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4243   if (!canonicalType.getLayout().isIdentity())
4244     return emitOpError("expects operand to be a memref with identity layout");
4245   if (!getResultMemRefType().getLayout().isIdentity())
4246     return emitOpError("expects result to be a memref with identity layout");
4247   if (getResultMemRefType().getMemorySpace() !=
4248       getMemRefType().getMemorySpace())
4249     return emitOpError("expects result in same memory space");
4250 
4251   auto sourceType = getMemRefType();
4252   auto resultType = getResultMemRefType();
4253   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4254       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4255     return emitOpError(
4256                "expects result and operand with same underlying scalar type: ")
4257            << resultType;
4258   if (extractShape(sourceType) != extractShape(resultType))
4259     return emitOpError(
4260                "expects concatenated result and operand shapes to be equal: ")
4261            << resultType;
4262   return success();
4263 }
4264 
4265 //===----------------------------------------------------------------------===//
4266 // TransposeOp
4267 //===----------------------------------------------------------------------===//
4268 
4269 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4270                                 Value vector, ArrayRef<int64_t> transp) {
4271   VectorType vt = vector.getType().cast<VectorType>();
4272   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4273   for (unsigned i = 0; i < transp.size(); ++i)
4274     transposedShape[i] = vt.getShape()[transp[i]];
4275 
4276   result.addOperands(vector);
4277   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4278   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4279 }
4280 
4281 // Eliminates transpose operations, which produce values identical to their
4282 // input values. This happens when the dimensions of the input vector remain in
4283 // their original order after the transpose operation.
4284 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4285   SmallVector<int64_t, 4> transp;
4286   getTransp(transp);
4287 
4288   // Check if the permutation of the dimensions contains sequential values:
4289   // {0, 1, 2, ...}.
4290   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4291     if (transp[i] != i)
4292       return {};
4293   }
4294 
4295   return getVector();
4296 }
4297 
4298 LogicalResult vector::TransposeOp::verify() {
4299   VectorType vectorType = getVectorType();
4300   VectorType resultType = getResultType();
4301   int64_t rank = resultType.getRank();
4302   if (vectorType.getRank() != rank)
4303     return emitOpError("vector result rank mismatch: ") << rank;
4304   // Verify transposition array.
4305   auto transpAttr = getTransp().getValue();
4306   int64_t size = transpAttr.size();
4307   if (rank != size)
4308     return emitOpError("transposition length mismatch: ") << size;
4309   SmallVector<bool, 8> seen(rank, false);
4310   for (const auto &ta : llvm::enumerate(transpAttr)) {
4311     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4312     if (i < 0 || i >= rank)
4313       return emitOpError("transposition index out of range: ") << i;
4314     if (seen[i])
4315       return emitOpError("duplicate position index: ") << i;
4316     seen[i] = true;
4317     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4318       return emitOpError("dimension size mismatch at: ") << i;
4319   }
4320   return success();
4321 }
4322 
4323 namespace {
4324 
4325 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4326 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4327 public:
4328   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4329 
4330   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4331                                 PatternRewriter &rewriter) const override {
4332     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4333     auto getPermutation = [](vector::TransposeOp transpose) {
4334       SmallVector<int64_t, 4> permutation;
4335       transpose.getTransp(permutation);
4336       return permutation;
4337     };
4338 
4339     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4340     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4341                                   ArrayRef<int64_t> permutation2) {
4342       SmallVector<int64_t, 4> result;
4343       for (auto index : permutation2)
4344         result.push_back(permutation1[index]);
4345       return result;
4346     };
4347 
4348     // Return if the input of 'transposeOp' is not defined by another transpose.
4349     vector::TransposeOp parentTransposeOp =
4350         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4351     if (!parentTransposeOp)
4352       return failure();
4353 
4354     SmallVector<int64_t, 4> permutation = composePermutations(
4355         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4356     // Replace 'transposeOp' with a new transpose operation.
4357     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4358         transposeOp, transposeOp.getResult().getType(),
4359         parentTransposeOp.getVector(),
4360         vector::getVectorSubscriptAttr(rewriter, permutation));
4361     return success();
4362   }
4363 };
4364 
4365 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4366 struct FoldTransposedScalarBroadcast final
4367     : public OpRewritePattern<vector::TransposeOp> {
4368   using OpRewritePattern::OpRewritePattern;
4369 
4370   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4371                                 PatternRewriter &rewriter) const override {
4372     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4373     if (!bcastOp)
4374       return failure();
4375 
4376     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4377     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4378       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4379           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4380       return success();
4381     }
4382 
4383     return failure();
4384   }
4385 };
4386 
4387 } // namespace
4388 
4389 void vector::TransposeOp::getCanonicalizationPatterns(
4390     RewritePatternSet &results, MLIRContext *context) {
4391   results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context);
4392 }
4393 
4394 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4395   populateFromInt64AttrArray(getTransp(), results);
4396 }
4397 
4398 //===----------------------------------------------------------------------===//
4399 // ConstantMaskOp
4400 //===----------------------------------------------------------------------===//
4401 
4402 LogicalResult ConstantMaskOp::verify() {
4403   auto resultType = getResult().getType().cast<VectorType>();
4404   // Check the corner case of 0-D vectors first.
4405   if (resultType.getRank() == 0) {
4406     if (getMaskDimSizes().size() != 1)
4407       return emitError("array attr must have length 1 for 0-D vectors");
4408     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4409     if (dim != 0 && dim != 1)
4410       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4411     return success();
4412   }
4413 
4414   // Verify that array attr size matches the rank of the vector result.
4415   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4416     return emitOpError(
4417         "must specify array attr of size equal vector result rank");
4418   // Verify that each array attr element is in bounds of corresponding vector
4419   // result dimension size.
4420   auto resultShape = resultType.getShape();
4421   SmallVector<int64_t, 4> maskDimSizes;
4422   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4423     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4424     if (attrValue < 0 || attrValue > resultShape[it.index()])
4425       return emitOpError(
4426           "array attr of size out of bounds of vector result dimension size");
4427     maskDimSizes.push_back(attrValue);
4428   }
4429   // Verify that if one mask dim size is zero, they all should be zero (because
4430   // the mask region is a conjunction of each mask dimension interval).
4431   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4432   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4433   if (anyZeros && !allZeros)
4434     return emitOpError("expected all mask dim sizes to be zeros, "
4435                        "as a result of conjunction with zero mask dim");
4436   // Verify that if the mask type is scalable, dimensions should be zero because
4437   // constant scalable masks can only be defined for the "none set" or "all set"
4438   // cases, and there is no VLA way to define an "all set" case for
4439   // `vector.constant_mask`. In the future, a convention could be established
4440   // to decide if a specific dimension value could be considered as "all set".
4441   if (resultType.isScalable() &&
4442       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4443     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4444   return success();
4445 }
4446 
4447 //===----------------------------------------------------------------------===//
4448 // CreateMaskOp
4449 //===----------------------------------------------------------------------===//
4450 
4451 LogicalResult CreateMaskOp::verify() {
4452   auto vectorType = getResult().getType().cast<VectorType>();
4453   // Verify that an operand was specified for each result vector each dimension.
4454   if (vectorType.getRank() == 0) {
4455     if (getNumOperands() != 1)
4456       return emitOpError(
4457           "must specify exactly one operand for 0-D create_mask");
4458   } else if (getNumOperands() !=
4459              getResult().getType().cast<VectorType>().getRank()) {
4460     return emitOpError(
4461         "must specify an operand for each result vector dimension");
4462   }
4463   return success();
4464 }
4465 
4466 namespace {
4467 
4468 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4469 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4470 public:
4471   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4472 
4473   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4474                                 PatternRewriter &rewriter) const override {
4475     // Return if any of 'createMaskOp' operands are not defined by a constant.
4476     auto isNotDefByConstant = [](Value operand) {
4477       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4478     };
4479     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4480       return failure();
4481 
4482     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4483     // are negative or zero.
4484     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4485       if (vType.isScalable())
4486         for (auto opDim : createMaskOp.getOperands()) {
4487           APInt intVal;
4488           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4489               intVal.isStrictlyPositive())
4490             return failure();
4491         }
4492     }
4493 
4494     // Gather constant mask dimension sizes.
4495     SmallVector<int64_t, 4> maskDimSizes;
4496     for (auto it : llvm::zip(createMaskOp.operands(),
4497                              createMaskOp.getType().getShape())) {
4498       auto *defOp = std::get<0>(it).getDefiningOp();
4499       int64_t maxDimSize = std::get<1>(it);
4500       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4501       dimSize = std::min(dimSize, maxDimSize);
4502       // If one of dim sizes is zero, set all dims to zero.
4503       if (dimSize <= 0) {
4504         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4505         break;
4506       }
4507       maskDimSizes.push_back(dimSize);
4508     }
4509     // Replace 'createMaskOp' with ConstantMaskOp.
4510     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4511         createMaskOp, createMaskOp.getResult().getType(),
4512         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4513     return success();
4514   }
4515 };
4516 
4517 } // namespace
4518 
4519 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4520                                                MLIRContext *context) {
4521   results.add<CreateMaskFolder>(context);
4522 }
4523 
4524 //===----------------------------------------------------------------------===//
4525 // ScanOp
4526 //===----------------------------------------------------------------------===//
4527 
4528 LogicalResult ScanOp::verify() {
4529   VectorType srcType = getSourceType();
4530   VectorType initialType = getInitialValueType();
4531   // Check reduction dimension < rank.
4532   int64_t srcRank = srcType.getRank();
4533   int64_t reductionDim = getReductionDim();
4534   if (reductionDim >= srcRank)
4535     return emitOpError("reduction dimension ")
4536            << reductionDim << " has to be less than " << srcRank;
4537 
4538   // Check that rank(initial_value) = rank(src) - 1.
4539   int64_t initialValueRank = initialType.getRank();
4540   if (initialValueRank != srcRank - 1)
4541     return emitOpError("initial value rank ")
4542            << initialValueRank << " has to be equal to " << srcRank - 1;
4543 
4544   // Check shapes of initial value and src.
4545   ArrayRef<int64_t> srcShape = srcType.getShape();
4546   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4547   SmallVector<int64_t> expectedShape;
4548   for (int i = 0; i < srcRank; i++) {
4549     if (i != reductionDim)
4550       expectedShape.push_back(srcShape[i]);
4551   }
4552   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4553                    [](std::tuple<int64_t, int64_t> s) {
4554                      return std::get<0>(s) != std::get<1>(s);
4555                    })) {
4556     return emitOpError("incompatible input/initial value shapes");
4557   }
4558 
4559   return success();
4560 }
4561 
4562 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4563     RewritePatternSet &patterns) {
4564   patterns
4565       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4566            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4567            StridedSliceConstantMaskFolder, TransposeFolder>(
4568           patterns.getContext());
4569 }
4570 
4571 //===----------------------------------------------------------------------===//
4572 // SplatOp
4573 //===----------------------------------------------------------------------===//
4574 
4575 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4576   auto constOperand = operands.front();
4577   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4578     return {};
4579 
4580   // SplatElementsAttr::get treats single value for second arg as being a splat.
4581   return SplatElementsAttr::get(getType(), {constOperand});
4582 }
4583 
4584 //===----------------------------------------------------------------------===//
4585 // TableGen'd op method definitions
4586 //===----------------------------------------------------------------------===//
4587 
4588 #define GET_OP_CLASSES
4589 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4590