1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   return success();
407 }
408 
409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
410   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
411   Type redType;
412   Type resType;
413   CombiningKindAttr kindAttr;
414   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
415                                               result.attributes) ||
416       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
417       parser.parseColonType(redType) ||
418       parser.parseKeywordType("into", resType) ||
419       (!operandsInfo.empty() &&
420        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
421       (operandsInfo.size() > 1 &&
422        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
423       parser.addTypeToList(resType, result.types))
424     return failure();
425   if (operandsInfo.empty() || operandsInfo.size() > 2)
426     return parser.emitError(parser.getNameLoc(),
427                             "unsupported number of operands");
428   return success();
429 }
430 
431 void ReductionOp::print(OpAsmPrinter &p) {
432   p << " ";
433   getKindAttr().print(p);
434   p << ", " << getVector();
435   if (getAcc())
436     p << ", " << getAcc();
437   p << " : " << getVector().getType() << " into " << getDest().getType();
438 }
439 
440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
441                                          OpBuilder &builder, Location loc,
442                                          Value vector) {
443   switch (op) {
444   case arith::AtomicRMWKind::addf:
445   case arith::AtomicRMWKind::addi:
446     return builder.create<vector::ReductionOp>(vector.getLoc(),
447                                                CombiningKind::ADD, vector);
448   case arith::AtomicRMWKind::mulf:
449   case arith::AtomicRMWKind::muli:
450     return builder.create<vector::ReductionOp>(vector.getLoc(),
451                                                CombiningKind::MUL, vector);
452   case arith::AtomicRMWKind::minf:
453     return builder.create<vector::ReductionOp>(vector.getLoc(),
454                                                CombiningKind::MINF, vector);
455   case arith::AtomicRMWKind::mins:
456     return builder.create<vector::ReductionOp>(vector.getLoc(),
457                                                CombiningKind::MINSI, vector);
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MINUI, vector);
461   case arith::AtomicRMWKind::maxf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MAXF, vector);
464   case arith::AtomicRMWKind::maxs:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MAXSI, vector);
467   case arith::AtomicRMWKind::maxu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MAXUI, vector);
470   case arith::AtomicRMWKind::andi:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::AND, vector);
473   case arith::AtomicRMWKind::ori:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::OR, vector);
476   // TODO: Add remaining reduction operations.
477   default:
478     (void)emitOptionalError(loc, "Reduction operation type not supported");
479     break;
480   }
481   return nullptr;
482 }
483 
484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
485   return llvm::to_vector<4>(getVectorType().getShape());
486 }
487 
488 namespace {
489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
490   using OpRewritePattern::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(ReductionOp reductionOp,
493                                 PatternRewriter &rewriter) const override {
494     if (reductionOp.getVectorType().getDimSize(0) != 1)
495       return failure();
496 
497     Location loc = reductionOp.getLoc();
498     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
499                                               reductionOp.getVector(),
500                                               rewriter.getI64ArrayAttr(0));
501 
502     if (Value acc = reductionOp.getAcc()) {
503       assert(reductionOp.getType().isa<FloatType>());
504       switch (reductionOp.getKind()) {
505       case CombiningKind::ADD:
506         result = rewriter.create<arith::AddFOp>(loc, result, acc);
507         break;
508       case CombiningKind::MUL:
509         result = rewriter.create<arith::MulFOp>(loc, result, acc);
510         break;
511       default:
512         assert(false && "invalid op!");
513       }
514     }
515 
516     rewriter.replaceOp(reductionOp, result);
517     return success();
518   }
519 };
520 } // namespace
521 
522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
523                                               MLIRContext *context) {
524   results.add<ElideSingleElementReduction>(context);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // ContractionOp
529 //===----------------------------------------------------------------------===//
530 
531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
532                                   Value lhs, Value rhs, Value acc,
533                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
534                                   ArrayRef<StringRef> iteratorTypes) {
535   result.addOperands({lhs, rhs, acc});
536   result.addTypes(acc.getType());
537   result.addAttribute(::mlir::getIndexingMapsAttrName(),
538                       builder.getAffineMapArrayAttr(
539                           AffineMap::inferFromExprList(indexingExprs)));
540   result.addAttribute(::mlir::getIteratorTypesAttrName(),
541                       builder.getStrArrayAttr(iteratorTypes));
542 }
543 
544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
545                                   Value lhs, Value rhs, Value acc,
546                                   ArrayAttr indexingMaps,
547                                   ArrayAttr iteratorTypes) {
548   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
549         ContractionOp::getDefaultKind());
550 }
551 
552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
553                                   Value lhs, Value rhs, Value acc,
554                                   ArrayAttr indexingMaps,
555                                   ArrayAttr iteratorTypes, CombiningKind kind) {
556   result.addOperands({lhs, rhs, acc});
557   result.addTypes(acc.getType());
558   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
559   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
560   result.addAttribute(ContractionOp::getKindAttrStrName(),
561                       CombiningKindAttr::get(kind, builder.getContext()));
562 }
563 
564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
565   OpAsmParser::UnresolvedOperand lhsInfo;
566   OpAsmParser::UnresolvedOperand rhsInfo;
567   OpAsmParser::UnresolvedOperand accInfo;
568   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
569   SmallVector<Type, 2> types;
570   Type resultType;
571   auto loc = parser.getCurrentLocation();
572   DictionaryAttr dictAttr;
573   // TODO: Unify linalg op attribute parsing.
574   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
575       parser.parseOperand(lhsInfo) || parser.parseComma() ||
576       parser.parseOperand(rhsInfo) || parser.parseComma() ||
577       parser.parseOperand(accInfo) ||
578       parser.parseTrailingOperandList(masksInfo) ||
579       parser.parseOptionalAttrDict(result.attributes) ||
580       parser.parseColonTypeList(types) ||
581       parser.parseKeywordType("into", resultType) ||
582       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
583       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
584       parser.resolveOperand(accInfo, resultType, result.operands) ||
585       parser.addTypeToList(resultType, result.types))
586     return failure();
587   result.attributes.assign(dictAttr.getValue().begin(),
588                            dictAttr.getValue().end());
589   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
590     result.addAttribute(ContractionOp::getKindAttrStrName(),
591                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
592                                                result.getContext()));
593   }
594   if (masksInfo.empty())
595     return success();
596   if (masksInfo.size() != 2)
597     return parser.emitError(parser.getNameLoc(),
598                             "expected zero or exactly 2 vector mask operands");
599   auto lhsType = types[0].cast<VectorType>();
600   auto rhsType = types[1].cast<VectorType>();
601   auto maskElementType = parser.getBuilder().getI1Type();
602   std::array<Type, 2> maskTypes = {
603       VectorType::Builder(lhsType).setElementType(maskElementType),
604       VectorType::Builder(rhsType).setElementType(maskElementType)};
605   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
606     return failure();
607   return success();
608 }
609 
610 void ContractionOp::print(OpAsmPrinter &p) {
611   // TODO: Unify printing code with linalg ops.
612   auto attrNames = getTraitAttrNames();
613   llvm::StringSet<> traitAttrsSet;
614   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
615   SmallVector<NamedAttribute, 8> attrs;
616   for (auto attr : (*this)->getAttrs())
617     if (traitAttrsSet.count(attr.getName().strref()) > 0)
618       attrs.push_back(attr);
619 
620   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
621   p << " " << dictAttr << " " << getLhs() << ", ";
622   p << getRhs() << ", " << getAcc();
623   if (getMasks().size() == 2)
624     p << ", " << getMasks();
625 
626   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
627   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
628     << getResultType();
629 }
630 
631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
632                          const std::vector<std::pair<int64_t, int64_t>> &map) {
633   for (auto &dimPair : map) {
634     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
635         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
636         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
637       return false;
638   }
639   return true;
640 }
641 
642 static LogicalResult verifyOutputShape(
643     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
644     Type resType,
645     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
646     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
647   DenseSet<int64_t> lhsContractingDimSet;
648   DenseSet<int64_t> rhsContractingDimSet;
649   for (auto &dimPair : contractingDimMap) {
650     lhsContractingDimSet.insert(dimPair.first);
651     rhsContractingDimSet.insert(dimPair.second);
652   }
653   DenseSet<int64_t> rhsBatchDimSet;
654   for (auto &dimPair : batchDimMap)
655     rhsBatchDimSet.insert(dimPair.second);
656 
657   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
658   SmallVector<int64_t, 4> expectedResultDims;
659   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
660     if (lhsContractingDimSet.count(i) > 0)
661       continue;
662     expectedResultDims.push_back(lhsType.getDimSize(i));
663   }
664 
665   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
666   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
667     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
668       continue;
669     expectedResultDims.push_back(rhsType.getDimSize(i));
670   }
671 
672   // Verify 'expectedResultDims'.
673   if (expectedResultDims.empty()) {
674     // No batch or free dimension implies a scalar result.
675     if (resType.isa<VectorType>() || accType.isa<VectorType>())
676       return op.emitOpError("invalid accumulator/result vector shape");
677   } else {
678     // At least one batch or free dimension implies a vector result.
679     auto resVectorType = resType.dyn_cast<VectorType>();
680     auto accVectorType = accType.dyn_cast<VectorType>();
681     if (!resVectorType || !accVectorType)
682       return op.emitOpError("invalid accumulator/result vector shape");
683 
684     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
685     // types fully define the result vector type. This assumes the affine maps
686     // are well-formed, which must have been verified already.
687     MLIRContext *ctx = op.getContext();
688     AffineMap lhsMap = op.getIndexingMaps()[0];
689     AffineMap rhsMap = op.getIndexingMaps()[1];
690     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
691     for (auto pair :
692          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
693       VectorType v = pair.first;
694       auto map = pair.second;
695       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
696         unsigned pos = map.getDimPosition(idx);
697         if (!extents[pos])
698           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
699       }
700     }
701     if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
702       return op.emitOpError("expected all input dimensions to be used by "
703                             "either the LHS or the RHS");
704 
705     AffineMap resMap = op.getIndexingMaps()[2];
706     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
707                                      /*symCount=*/0, extents, ctx);
708     // Compose the resMap with the extentsMap, which is a constant map.
709     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
710     assert(llvm::all_of(
711                expectedMap.getResults(),
712                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
713            "expected constant extent along all dimensions.");
714     // Extract the expected shape and build the type.
715     auto expectedShape = llvm::to_vector<4>(
716         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
717           return e.cast<AffineConstantExpr>().getValue();
718         }));
719     auto expected =
720         VectorType::get(expectedShape, resVectorType.getElementType());
721     if (resVectorType != expected || accVectorType != expected)
722       return op.emitOpError(
723                  "invalid accumulator/result vector shape, expected: ")
724              << expected;
725   }
726   return success();
727 }
728 
729 LogicalResult ContractionOp::verify() {
730   auto lhsType = getLhsType();
731   auto rhsType = getRhsType();
732   auto accType = getAccType();
733   auto resType = getResultType();
734 
735   // Verify that an indexing map was specified for each vector operand.
736   if (getIndexingMaps().size() != 3)
737     return emitOpError("expected an indexing map for each vector operand");
738 
739   // Verify that each index map has 'numIterators' inputs, no symbols, and
740   // that the number of map outputs equals the rank of its associated
741   // vector operand.
742   unsigned numIterators = getIteratorTypes().getValue().size();
743   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
744     auto index = it.index();
745     auto map = it.value();
746     if (map.getNumSymbols() != 0)
747       return emitOpError("expected indexing map ")
748              << index << " to have no symbols";
749     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
750     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
751     // Verify that the map has the right number of inputs, outputs, and indices.
752     // This also correctly accounts for (..) -> () for rank-0 results.
753     if (map.getNumDims() != numIterators)
754       return emitOpError("expected indexing map ")
755              << index << " to have " << numIterators << " number of inputs";
756     if (map.getNumResults() != rank)
757       return emitOpError("expected indexing map ")
758              << index << " to have " << rank << " number of outputs";
759     if (!map.isProjectedPermutation())
760       return emitOpError("expected indexing map ")
761              << index << " to be a projected permutation of its inputs";
762   }
763 
764   auto contractingDimMap = getContractingDimMap();
765   auto batchDimMap = getBatchDimMap();
766 
767   // Verify at least one contracting dimension pair was specified.
768   if (contractingDimMap.empty())
769     return emitOpError("expected at least one contracting dimension pair");
770 
771   // Verify contracting dimension map was properly constructed.
772   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
773     return emitOpError("invalid contracting dimension map");
774 
775   // Verify batch dimension map was properly constructed.
776   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
777     return emitOpError("invalid batch dimension map");
778 
779   // Verify 'accType' and 'resType' shape.
780   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
781                                contractingDimMap, batchDimMap)))
782     return failure();
783 
784   // Verify that either two vector masks are set or none are set.
785   auto lhsMaskType = getLHSVectorMaskType();
786   auto rhsMaskType = getRHSVectorMaskType();
787   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
788     return emitOpError("invalid number of vector masks specified");
789   if (lhsMaskType && rhsMaskType) {
790     // Verify mask rank == argument rank.
791     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
792         rhsMaskType.getShape().size() != rhsType.getShape().size())
793       return emitOpError("invalid vector mask rank");
794   }
795 
796   // Verify supported combining kind.
797   auto vectorType = resType.dyn_cast<VectorType>();
798   auto elementType = vectorType ? vectorType.getElementType() : resType;
799   if (!isSupportedCombiningKind(getKind(), elementType))
800     return emitOpError("unsupported contraction type");
801 
802   return success();
803 }
804 
805 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
806   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
807                                          ::mlir::getIteratorTypesAttrName(),
808                                          ContractionOp::getKindAttrStrName()};
809   return llvm::makeArrayRef(names);
810 }
811 
812 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
813   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
814     if (targetExpr == map.getResult(i))
815       return i;
816   return -1;
817 }
818 
819 static std::vector<std::pair<int64_t, int64_t>>
820 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
821           StringRef targetIteratorTypeName, MLIRContext *context) {
822   std::vector<std::pair<int64_t, int64_t>> dimMap;
823   for (const auto &it : llvm::enumerate(iteratorTypes)) {
824     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
825     if (iteratorTypeName != targetIteratorTypeName)
826       continue;
827     // Search lhs/rhs map results for 'targetExpr'.
828     auto targetExpr = getAffineDimExpr(it.index(), context);
829     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
830     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
831     if (lhsDim >= 0 && rhsDim >= 0)
832       dimMap.emplace_back(lhsDim, rhsDim);
833   }
834   return dimMap;
835 }
836 
837 void ContractionOp::getIterationBounds(
838     SmallVectorImpl<int64_t> &iterationBounds) {
839   auto lhsShape = getLhsType().getShape();
840   auto resVectorType = getResultType().dyn_cast<VectorType>();
841   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
842   SmallVector<int64_t, 2> iterationShape;
843   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
844     // Search lhs/rhs map results for 'targetExpr'.
845     auto targetExpr = getAffineDimExpr(it.index(), getContext());
846     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
847     if (iteratorTypeName == getReductionIteratorTypeName()) {
848       // Get reduction dim size from lhs shape (same size in rhsShape).
849       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
850       assert(lhsDimIndex >= 0);
851       iterationBounds.push_back(lhsShape[lhsDimIndex]);
852       continue;
853     }
854     // Get parallel dimension size from result shape.
855     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
856     assert(resDimIndex >= 0);
857     assert(resVectorType != nullptr);
858     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
859   }
860 }
861 
862 void ContractionOp::getIterationIndexMap(
863     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
864   unsigned numMaps = getIndexingMaps().size();
865   iterationIndexMap.resize(numMaps);
866   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
867     auto index = it.index();
868     auto map = it.value();
869     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
870       auto dim = map.getResult(i).cast<AffineDimExpr>();
871       iterationIndexMap[index][dim.getPosition()] = i;
872     }
873   }
874 }
875 
876 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
877   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
878   return getDimMap(indexingMaps, getIteratorTypes(),
879                    getReductionIteratorTypeName(), getContext());
880 }
881 
882 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
883   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
884   return getDimMap(indexingMaps, getIteratorTypes(),
885                    getParallelIteratorTypeName(), getContext());
886 }
887 
888 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
889   SmallVector<int64_t, 4> shape;
890   getIterationBounds(shape);
891   return shape;
892 }
893 
894 /// Return a fused vector::ContractionOp which represents a patterns such as:
895 ///
896 /// ```mlir
897 ///    %c0 = vector.constant 0: ...
898 ///    %c = vector.contract %a, %b, %c0: ...
899 ///    %e = add %c, %d: ...
900 /// ```
901 ///
902 /// by:
903 ///
904 /// ```mlir
905 ///    %e = vector.contract %a, %b, %d: ...
906 /// ```
907 ///
908 /// Return null if the canonicalization does not apply.
909 // TODO: This should be a folding of Add into Contract in core but while they
910 // live in different dialects, it is not possible without unnatural
911 // dependencies.
912 template <typename AddOpType>
913 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
914   using OpRewritePattern<AddOpType>::OpRewritePattern;
915 
916   LogicalResult matchAndRewrite(AddOpType addOp,
917                                 PatternRewriter &rewriter) const override {
918     auto canonicalize = [&](Value maybeContraction,
919                             Value otherOperand) -> vector::ContractionOp {
920       vector::ContractionOp contractionOp =
921           dyn_cast_or_null<vector::ContractionOp>(
922               maybeContraction.getDefiningOp());
923       if (!contractionOp)
924         return vector::ContractionOp();
925       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
926               contractionOp.getAcc().getDefiningOp())) {
927         if (maybeZero.getValue() ==
928             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
929           BlockAndValueMapping bvm;
930           bvm.map(contractionOp.getAcc(), otherOperand);
931           auto newContraction =
932               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
933           rewriter.replaceOp(addOp, newContraction.getResult());
934           return newContraction;
935         }
936       }
937       return vector::ContractionOp();
938     };
939 
940     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
941     vector::ContractionOp contract = canonicalize(a, b);
942     contract = contract ? contract : canonicalize(b, a);
943     return contract ? success() : failure();
944   }
945 };
946 
947 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
948                                                 MLIRContext *context) {
949   results.add<CanonicalizeContractAdd<arith::AddIOp>,
950               CanonicalizeContractAdd<arith::AddFOp>>(context);
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // ExtractElementOp
955 //===----------------------------------------------------------------------===//
956 
957 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
958                                      Value source) {
959   result.addOperands({source});
960   result.addTypes(source.getType().cast<VectorType>().getElementType());
961 }
962 
963 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
964                                      Value source, Value position) {
965   result.addOperands({source, position});
966   result.addTypes(source.getType().cast<VectorType>().getElementType());
967 }
968 
969 LogicalResult vector::ExtractElementOp::verify() {
970   VectorType vectorType = getVectorType();
971   if (vectorType.getRank() == 0) {
972     if (getPosition())
973       return emitOpError("expected position to be empty with 0-D vector");
974     return success();
975   }
976   if (vectorType.getRank() != 1)
977     return emitOpError("unexpected >1 vector rank");
978   if (!getPosition())
979     return emitOpError("expected position for 1-D vector");
980   return success();
981 }
982 
983 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
984   // Skip the 0-D vector here now.
985   if (operands.size() < 2)
986     return {};
987 
988   Attribute src = operands[0];
989   Attribute pos = operands[1];
990 
991   // Fold extractelement (splat X) -> X.
992   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
993     return splat.getInput();
994 
995   if (!pos || !src)
996     return {};
997 
998   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
999 
1000   auto attr = pos.dyn_cast<IntegerAttr>();
1001   uint64_t posIdx = attr.getInt();
1002 
1003   return srcElements[posIdx];
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 // ExtractOp
1008 //===----------------------------------------------------------------------===//
1009 
1010 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1011                               Value source, ArrayRef<int64_t> position) {
1012   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1013 }
1014 
1015 // Convenience builder which assumes the values are constant indices.
1016 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1017                               Value source, ValueRange position) {
1018   SmallVector<int64_t, 4> positionConstants =
1019       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1020         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1021       }));
1022   build(builder, result, source, positionConstants);
1023 }
1024 
1025 LogicalResult
1026 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1027                             ValueRange operands, DictionaryAttr attributes,
1028                             RegionRange,
1029                             SmallVectorImpl<Type> &inferredReturnTypes) {
1030   ExtractOp::Adaptor op(operands, attributes);
1031   auto vectorType = op.getVector().getType().cast<VectorType>();
1032   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1033     inferredReturnTypes.push_back(vectorType.getElementType());
1034   } else {
1035     auto n =
1036         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1037     inferredReturnTypes.push_back(VectorType::get(
1038         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1039   }
1040   return success();
1041 }
1042 
1043 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1044   // Allow extracting 1-element vectors instead of scalars.
1045   auto isCompatible = [](TypeRange l, TypeRange r) {
1046     auto vectorType = l.front().dyn_cast<VectorType>();
1047     return vectorType && vectorType.getShape().equals({1}) &&
1048            vectorType.getElementType() == r.front();
1049   };
1050   if (l.size() == 1 && r.size() == 1 &&
1051       (isCompatible(l, r) || isCompatible(r, l)))
1052     return true;
1053   return l == r;
1054 }
1055 
1056 LogicalResult vector::ExtractOp::verify() {
1057   auto positionAttr = getPosition().getValue();
1058   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1059     return emitOpError(
1060         "expected position attribute of rank smaller than vector rank");
1061   for (const auto &en : llvm::enumerate(positionAttr)) {
1062     auto attr = en.value().dyn_cast<IntegerAttr>();
1063     if (!attr || attr.getInt() < 0 ||
1064         attr.getInt() >= getVectorType().getDimSize(en.index()))
1065       return emitOpError("expected position attribute #")
1066              << (en.index() + 1)
1067              << " to be a non-negative integer smaller than the corresponding "
1068                 "vector dimension";
1069   }
1070   return success();
1071 }
1072 
1073 template <typename IntType>
1074 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1075   return llvm::to_vector<4>(llvm::map_range(
1076       arrayAttr.getAsRange<IntegerAttr>(),
1077       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1078 }
1079 
1080 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1081 /// positions.
1082 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1083   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1084     return failure();
1085 
1086   SmallVector<int64_t, 4> globalPosition;
1087   ExtractOp currentOp = extractOp;
1088   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1089   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1090   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1091     currentOp = nextOp;
1092     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1093     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1094   }
1095   extractOp.setOperand(currentOp.getVector());
1096   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1097   OpBuilder b(extractOp.getContext());
1098   std::reverse(globalPosition.begin(), globalPosition.end());
1099   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1100                      b.getI64ArrayAttr(globalPosition));
1101   return success();
1102 }
1103 
1104 namespace {
1105 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1106 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1107 /// Compose TransposeOp permutations as we walk back.
1108 /// This helper class keeps an updated extraction position `extractPosition`
1109 /// with extra trailing sentinels.
1110 /// The sentinels encode the internal transposition status of the result vector.
1111 /// As we iterate, extractPosition is permuted and updated.
1112 class ExtractFromInsertTransposeChainState {
1113 public:
1114   ExtractFromInsertTransposeChainState(ExtractOp e);
1115 
1116   /// Iterate over producing insert and transpose ops until we find a fold.
1117   Value fold();
1118 
1119 private:
1120   /// Return true if the vector at position `a` is contained within the vector
1121   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1122   /// is a prefix of `b`.
1123   template <typename ContainerA, typename ContainerB>
1124   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1125     return a.size() <= b.size() &&
1126            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1127   }
1128 
1129   /// Return true if the vector at position `a` intersects the vector at
1130   /// position `b`. Under insert/extract semantics, this is the same as equality
1131   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1132   /// Comparison is on the common prefix (i.e. zip).
1133   template <typename ContainerA, typename ContainerB>
1134   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1135     for (auto it : llvm::zip(a, b)) {
1136       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1137         continue;
1138       if (std::get<0>(it) != std::get<1>(it))
1139         return false;
1140     }
1141     return true;
1142   }
1143 
1144   /// Folding is only possible in the absence of an internal permutation in the
1145   /// result vector.
1146   bool canFold() {
1147     return (sentinels ==
1148             makeArrayRef(extractPosition).drop_front(extractedRank));
1149   }
1150 
1151   // Helper to get the next defining op of interest.
1152   void updateStateForNextIteration(Value v) {
1153     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1154     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1155   };
1156 
1157   // Case 1. If we hit a transpose, just compose the map and iterate.
1158   // Invariant: insert + transpose do not change rank, we can always compose.
1159   LogicalResult handleTransposeOp();
1160 
1161   // Case 2: the insert position matches extractPosition exactly, early return.
1162   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1163 
1164   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1165   /// portion of the source of the insert.
1166   /// Example:
1167   /// ```
1168   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1169   /// // extractPosition == [1, 2, 3]
1170   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1171   /// // can fold to vector.extract %source[0, 3]
1172   /// %ext = vector.extract %source[3]: vector<5x6>
1173   /// ```
1174   /// To traverse through %source, we need to set the leading dims to 0 and
1175   /// drop the extra leading dims.
1176   /// This method updates the internal state.
1177   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1178 
1179   /// Try to fold in place to extract(source, extractPosition) and return the
1180   /// folded result. Return null if folding is not possible (e.g. due to an
1181   /// internal tranposition in the result).
1182   Value tryToFoldExtractOpInPlace(Value source);
1183 
1184   ExtractOp extractOp;
1185   int64_t vectorRank;
1186   int64_t extractedRank;
1187 
1188   InsertOp nextInsertOp;
1189   TransposeOp nextTransposeOp;
1190 
1191   /// Sentinel values that encode the internal permutation status of the result.
1192   /// They are set to (-1, ... , -k) at the beginning and appended to
1193   /// `extractPosition`.
1194   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1195   /// ensure that there is no internal transposition.
1196   /// Internal transposition cannot be accounted for with a folding pattern.
1197   // TODO: We could relax the internal transposition with an extra transposition
1198   // operation in a future canonicalizer.
1199   SmallVector<int64_t> sentinels;
1200   SmallVector<int64_t> extractPosition;
1201 };
1202 } // namespace
1203 
1204 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1205     ExtractOp e)
1206     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1207       extractedRank(extractOp.getPosition().size()) {
1208   assert(vectorRank >= extractedRank && "extracted pos overflow");
1209   sentinels.reserve(vectorRank - extractedRank);
1210   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1211     sentinels.push_back(-(i + 1));
1212   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1213   llvm::append_range(extractPosition, sentinels);
1214 }
1215 
1216 // Case 1. If we hit a transpose, just compose the map and iterate.
1217 // Invariant: insert + transpose do not change rank, we can always compose.
1218 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1219   if (!nextTransposeOp)
1220     return failure();
1221   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1222   AffineMap m = inversePermutation(
1223       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1224   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1225   return success();
1226 }
1227 
1228 // Case 2: the insert position matches extractPosition exactly, early return.
1229 LogicalResult
1230 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1231     Value &res) {
1232   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1233   if (makeArrayRef(insertedPos) !=
1234       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1235     return failure();
1236   // Case 2.a. early-exit fold.
1237   res = nextInsertOp.getSource();
1238   // Case 2.b. if internal transposition is present, canFold will be false.
1239   return success();
1240 }
1241 
1242 /// Case 3: if inserted position is a prefix of extractPosition,
1243 /// extract a portion of the source of the insertion.
1244 /// This method updates the internal state.
1245 LogicalResult
1246 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1247   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1248   if (!isContainedWithin(insertedPos, extractPosition))
1249     return failure();
1250   // Set leading dims to zero.
1251   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1252   // Drop extra leading dims.
1253   extractPosition.erase(extractPosition.begin(),
1254                         extractPosition.begin() + insertedPos.size());
1255   extractedRank = extractPosition.size() - sentinels.size();
1256   // Case 3.a. early-exit fold (break and delegate to post-while path).
1257   res = nextInsertOp.getSource();
1258   // Case 3.b. if internal transposition is present, canFold will be false.
1259   return success();
1260 }
1261 
1262 /// Try to fold in place to extract(source, extractPosition) and return the
1263 /// folded result. Return null if folding is not possible (e.g. due to an
1264 /// internal tranposition in the result).
1265 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1266     Value source) {
1267   // If we can't fold (either internal transposition, or nothing to fold), bail.
1268   bool nothingToFold = (source == extractOp.getVector());
1269   if (nothingToFold || !canFold())
1270     return Value();
1271   // Otherwise, fold by updating the op inplace and return its result.
1272   OpBuilder b(extractOp.getContext());
1273   extractOp->setAttr(
1274       extractOp.getPositionAttrName(),
1275       b.getI64ArrayAttr(
1276           makeArrayRef(extractPosition).take_front(extractedRank)));
1277   extractOp.getVectorMutable().assign(source);
1278   return extractOp.getResult();
1279 }
1280 
1281 /// Iterate over producing insert and transpose ops until we find a fold.
1282 Value ExtractFromInsertTransposeChainState::fold() {
1283   Value valueToExtractFrom = extractOp.getVector();
1284   updateStateForNextIteration(valueToExtractFrom);
1285   while (nextInsertOp || nextTransposeOp) {
1286     // Case 1. If we hit a transpose, just compose the map and iterate.
1287     // Invariant: insert + transpose do not change rank, we can always compose.
1288     if (succeeded(handleTransposeOp())) {
1289       valueToExtractFrom = nextTransposeOp.getVector();
1290       updateStateForNextIteration(valueToExtractFrom);
1291       continue;
1292     }
1293 
1294     Value result;
1295     // Case 2: the position match exactly.
1296     if (succeeded(handleInsertOpWithMatchingPos(result)))
1297       return result;
1298 
1299     // Case 3: if the inserted position is a prefix of extractPosition, we can
1300     // just extract a portion of the source of the insert.
1301     if (succeeded(handleInsertOpWithPrefixPos(result)))
1302       return tryToFoldExtractOpInPlace(result);
1303 
1304     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1305     // values. This is a more difficult case and we bail.
1306     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1307     if (isContainedWithin(extractPosition, insertedPos) ||
1308         intersectsWhereNonNegative(extractPosition, insertedPos))
1309       return Value();
1310 
1311     // Case 5: No intersection, we forward the extract to insertOp.dest().
1312     valueToExtractFrom = nextInsertOp.getDest();
1313     updateStateForNextIteration(valueToExtractFrom);
1314   }
1315   // If after all this we can fold, go for it.
1316   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1317 }
1318 
1319 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1320 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1321   Operation *defOp = extractOp.getVector().getDefiningOp();
1322   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1323     return Value();
1324   Value source = defOp->getOperand(0);
1325   if (extractOp.getType() == source.getType())
1326     return source;
1327   auto getRank = [](Type type) {
1328     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1329   };
1330   unsigned broadcastSrcRank = getRank(source.getType());
1331   unsigned extractResultRank = getRank(extractOp.getType());
1332   if (extractResultRank >= broadcastSrcRank)
1333     return Value();
1334   // Check that the dimension of the result haven't been broadcasted.
1335   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1336   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1337   if (extractVecType && broadcastVecType &&
1338       extractVecType.getShape() !=
1339           broadcastVecType.getShape().take_back(extractResultRank))
1340     return Value();
1341   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1342   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1343   extractPos.erase(extractPos.begin(),
1344                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1345   extractOp.setOperand(source);
1346   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1347   OpBuilder b(extractOp.getContext());
1348   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1349                      b.getI64ArrayAttr(extractPos));
1350   return extractOp.getResult();
1351 }
1352 
1353 // Fold extractOp with source coming from ShapeCast op.
1354 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1355   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1356   if (!shapeCastOp)
1357     return Value();
1358   // Get the nth dimension size starting from lowest dimension.
1359   auto getDimReverse = [](VectorType type, int64_t n) {
1360     return type.getShape().take_back(n + 1).front();
1361   };
1362   int64_t destinationRank =
1363       extractOp.getType().isa<VectorType>()
1364           ? extractOp.getType().cast<VectorType>().getRank()
1365           : 0;
1366   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1367     return Value();
1368   if (destinationRank > 0) {
1369     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1370     for (int64_t i = 0; i < destinationRank; i++) {
1371       // The lowest dimension of of the destination must match the lowest
1372       // dimension of the shapecast op source.
1373       // TODO: This case could be support in a canonicalization pattern.
1374       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1375           getDimReverse(destinationType, i))
1376         return Value();
1377     }
1378   }
1379   // Extract the strides associated with the extract op vector source. Then use
1380   // this to calculate a linearized position for the extract.
1381   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1382   std::reverse(extractedPos.begin(), extractedPos.end());
1383   SmallVector<int64_t, 4> strides;
1384   int64_t stride = 1;
1385   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1386     strides.push_back(stride);
1387     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1388   }
1389 
1390   int64_t position = linearize(extractedPos, strides);
1391   // Then extract the strides associated to the shapeCast op vector source and
1392   // delinearize the position using those strides.
1393   SmallVector<int64_t, 4> newStrides;
1394   int64_t numDimension =
1395       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1396   stride = 1;
1397   for (int64_t i = 0; i < numDimension; i++) {
1398     newStrides.push_back(stride);
1399     stride *=
1400         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1401   }
1402   std::reverse(newStrides.begin(), newStrides.end());
1403   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1404   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1405   OpBuilder b(extractOp.getContext());
1406   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1407                      b.getI64ArrayAttr(newPosition));
1408   extractOp.setOperand(shapeCastOp.getSource());
1409   return extractOp.getResult();
1410 }
1411 
1412 /// Fold an ExtractOp from ExtractStridedSliceOp.
1413 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1414   auto extractStridedSliceOp =
1415       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1416   if (!extractStridedSliceOp)
1417     return Value();
1418   // Return if 'extractStridedSliceOp' has non-unit strides.
1419   if (extractStridedSliceOp.hasNonUnitStrides())
1420     return Value();
1421 
1422   // Trim offsets for dimensions fully extracted.
1423   auto sliceOffsets =
1424       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1425   while (!sliceOffsets.empty()) {
1426     size_t lastOffset = sliceOffsets.size() - 1;
1427     if (sliceOffsets.back() != 0 ||
1428         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1429             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1430       break;
1431     sliceOffsets.pop_back();
1432   }
1433   unsigned destinationRank = 0;
1434   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1435     destinationRank = vecType.getRank();
1436   // The dimensions of the result need to be untouched by the
1437   // extractStridedSlice op.
1438   if (destinationRank >
1439       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1440     return Value();
1441   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1442   assert(extractedPos.size() >= sliceOffsets.size());
1443   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1444     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1445   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1446   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1447   OpBuilder b(extractOp.getContext());
1448   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1449                      b.getI64ArrayAttr(extractedPos));
1450   return extractOp.getResult();
1451 }
1452 
1453 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1454 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1455   int64_t destinationRank = op.getType().isa<VectorType>()
1456                                 ? op.getType().cast<VectorType>().getRank()
1457                                 : 0;
1458   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1459   while (insertOp) {
1460     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1461                              insertOp.getSourceVectorType().getRank();
1462     if (destinationRank > insertOp.getSourceVectorType().getRank())
1463       return Value();
1464     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1465     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1466 
1467     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1468           return attr.cast<IntegerAttr>().getInt() != 1;
1469         }))
1470       return Value();
1471     bool disjoint = false;
1472     SmallVector<int64_t, 4> offsetDiffs;
1473     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1474       int64_t start = insertOffsets[dim];
1475       int64_t size =
1476           (dim < insertRankDiff)
1477               ? 1
1478               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1479       int64_t end = start + size;
1480       int64_t offset = extractOffsets[dim];
1481       // Check if the start of the extract offset is in the interval inserted.
1482       if (start <= offset && offset < end) {
1483         if (dim >= insertRankDiff)
1484           offsetDiffs.push_back(offset - start);
1485         continue;
1486       }
1487       disjoint = true;
1488       break;
1489     }
1490     // The extract element chunk overlap with the vector inserted.
1491     if (!disjoint) {
1492       // If any of the inner dimensions are only partially inserted we have a
1493       // partial overlap.
1494       int64_t srcRankDiff =
1495           insertOp.getSourceVectorType().getRank() - destinationRank;
1496       for (int64_t i = 0; i < destinationRank; i++) {
1497         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1498             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1499                                                     insertRankDiff))
1500           return Value();
1501       }
1502       op.getVectorMutable().assign(insertOp.getSource());
1503       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1504       OpBuilder b(op.getContext());
1505       op->setAttr(ExtractOp::getPositionAttrStrName(),
1506                   b.getI64ArrayAttr(offsetDiffs));
1507       return op.getResult();
1508     }
1509     // If the chunk extracted is disjoint from the chunk inserted, keep
1510     // looking in the insert chain.
1511     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1512   }
1513   return Value();
1514 }
1515 
1516 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1517   if (getPosition().empty())
1518     return getVector();
1519   if (succeeded(foldExtractOpFromExtractChain(*this)))
1520     return getResult();
1521   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1522     return res;
1523   if (auto res = foldExtractFromBroadcast(*this))
1524     return res;
1525   if (auto res = foldExtractFromShapeCast(*this))
1526     return res;
1527   if (auto val = foldExtractFromExtractStrided(*this))
1528     return val;
1529   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1530     return val;
1531   return OpFoldResult();
1532 }
1533 
1534 namespace {
1535 
1536 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1537 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1538 public:
1539   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1540 
1541   LogicalResult matchAndRewrite(ExtractOp extractOp,
1542                                 PatternRewriter &rewriter) const override {
1543     Operation *defOp = extractOp.getVector().getDefiningOp();
1544     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1545       return failure();
1546 
1547     Value source = defOp->getOperand(0);
1548     if (extractOp.getType() == source.getType())
1549       return failure();
1550     auto getRank = [](Type type) {
1551       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1552     };
1553     unsigned broadcastSrcRank = getRank(source.getType());
1554     unsigned extractResultRank = getRank(extractOp.getType());
1555     // We only consider the case where the rank of the source is less than or
1556     // equal to the rank of the extract dst. The other cases are handled in the
1557     // folding patterns.
1558     if (extractResultRank < broadcastSrcRank)
1559       return failure();
1560     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1561         extractOp, extractOp.getType(), source);
1562     return success();
1563   }
1564 };
1565 
1566 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1567 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1568 public:
1569   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1570 
1571   LogicalResult matchAndRewrite(ExtractOp extractOp,
1572                                 PatternRewriter &rewriter) const override {
1573     // Return if 'extractStridedSliceOp' operand is not defined by a
1574     // ConstantOp.
1575     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1576     if (!constantOp)
1577       return failure();
1578     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1579     if (!dense)
1580       return failure();
1581     Attribute newAttr = dense.getSplatValue<Attribute>();
1582     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1583       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1584     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1585     return success();
1586   }
1587 };
1588 
1589 } // namespace
1590 
1591 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1592                                             MLIRContext *context) {
1593   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1594 }
1595 
1596 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1597                                        SmallVectorImpl<int64_t> &results) {
1598   for (auto attr : arrayAttr)
1599     results.push_back(attr.cast<IntegerAttr>().getInt());
1600 }
1601 
1602 //===----------------------------------------------------------------------===//
1603 // ExtractMapOp
1604 //===----------------------------------------------------------------------===//
1605 
1606 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1607                          Value vector, ValueRange ids,
1608                          ArrayRef<int64_t> multiplicity,
1609                          AffineMap permutationMap) {
1610   assert(ids.size() == multiplicity.size() &&
1611          ids.size() == permutationMap.getNumResults());
1612   assert(permutationMap.isProjectedPermutation());
1613   VectorType type = vector.getType().cast<VectorType>();
1614   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1615                                    type.getShape().end());
1616   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1617     AffineExpr expr = permutationMap.getResult(i);
1618     auto dim = expr.cast<AffineDimExpr>();
1619     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1620   }
1621   VectorType resultType = VectorType::get(newShape, type.getElementType());
1622   ExtractMapOp::build(builder, result, resultType, vector, ids);
1623 }
1624 
1625 LogicalResult ExtractMapOp::verify() {
1626   if (getSourceVectorType().getRank() != getResultType().getRank())
1627     return emitOpError("expected source and destination vectors of same rank");
1628   unsigned numId = 0;
1629   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1630     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1631         0)
1632       return emitOpError("source vector dimensions must be a multiple of "
1633                          "destination vector dimensions");
1634     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1635       numId++;
1636   }
1637   if (numId != getIds().size())
1638     return emitOpError("expected number of ids must match the number of "
1639                        "dimensions distributed");
1640   return success();
1641 }
1642 
1643 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1644   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1645   if (insert == nullptr || getType() != insert.getVector().getType() ||
1646       getIds() != insert.getIds())
1647     return {};
1648   return insert.getVector();
1649 }
1650 
1651 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1652   assert(multiplicity.empty());
1653   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1654     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1655       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1656                              getResultType().getDimSize(i));
1657   }
1658 }
1659 
1660 template <typename MapOp>
1661 AffineMap calculateImplicitMap(MapOp op) {
1662   SmallVector<AffineExpr, 4> perm;
1663   // Check which dimension have a multiplicity greater than 1 and associated
1664   // them to the IDs in order.
1665   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1666     if (op.getSourceVectorType().getDimSize(i) !=
1667         op.getResultType().getDimSize(i))
1668       perm.push_back(getAffineDimExpr(i, op.getContext()));
1669   }
1670   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1671                             op.getContext());
1672   return map;
1673 }
1674 
1675 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1676 
1677 //===----------------------------------------------------------------------===//
1678 // FmaOp
1679 //===----------------------------------------------------------------------===//
1680 
1681 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1682   return llvm::to_vector<4>(getVectorType().getShape());
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // BroadcastOp
1687 //===----------------------------------------------------------------------===//
1688 
1689 BroadcastableToResult
1690 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1691                                 std::pair<int, int> *mismatchingDims) {
1692   // Broadcast scalar to vector of the same element type.
1693   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1694       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1695     return BroadcastableToResult::Success;
1696   // From now on, only vectors broadcast.
1697   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1698   if (!srcVectorType)
1699     return BroadcastableToResult::SourceTypeNotAVector;
1700 
1701   int64_t srcRank = srcVectorType.getRank();
1702   int64_t dstRank = dstVectorType.getRank();
1703   if (srcRank > dstRank)
1704     return BroadcastableToResult::SourceRankHigher;
1705   // Source has an exact match or singleton value for all trailing dimensions
1706   // (all leading dimensions are simply duplicated).
1707   int64_t lead = dstRank - srcRank;
1708   for (int64_t r = 0; r < srcRank; ++r) {
1709     int64_t srcDim = srcVectorType.getDimSize(r);
1710     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1711     if (srcDim != 1 && srcDim != dstDim) {
1712       if (mismatchingDims) {
1713         mismatchingDims->first = srcDim;
1714         mismatchingDims->second = dstDim;
1715       }
1716       return BroadcastableToResult::DimensionMismatch;
1717     }
1718   }
1719 
1720   return BroadcastableToResult::Success;
1721 }
1722 
1723 LogicalResult BroadcastOp::verify() {
1724   std::pair<int, int> mismatchingDims;
1725   BroadcastableToResult res =
1726       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1727   if (res == BroadcastableToResult::Success)
1728     return success();
1729   if (res == BroadcastableToResult::SourceRankHigher)
1730     return emitOpError("source rank higher than destination rank");
1731   if (res == BroadcastableToResult::DimensionMismatch)
1732     return emitOpError("dimension mismatch (")
1733            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1734   if (res == BroadcastableToResult::SourceTypeNotAVector)
1735     return emitOpError("source type is not a vector");
1736   llvm_unreachable("unexpected vector.broadcast op error");
1737 }
1738 
1739 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1740   if (getSourceType() == getVectorType())
1741     return getSource();
1742   if (!operands[0])
1743     return {};
1744   auto vectorType = getVectorType();
1745   if (operands[0].getType().isIntOrIndexOrFloat())
1746     return DenseElementsAttr::get(vectorType, operands[0]);
1747   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1748     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1749   return {};
1750 }
1751 
1752 namespace {
1753 
1754 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1755 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1756   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1757 
1758   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1759                                 PatternRewriter &rewriter) const override {
1760     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1761     if (!srcBroadcast)
1762       return failure();
1763     rewriter.replaceOpWithNewOp<BroadcastOp>(
1764         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1765     return success();
1766   }
1767 };
1768 } // namespace
1769 
1770 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1771                                               MLIRContext *context) {
1772   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1773   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1774   results.add<BroadcastFolder>(context);
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 // ShuffleOp
1779 //===----------------------------------------------------------------------===//
1780 
1781 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1782                       Value v2, ArrayRef<int64_t> mask) {
1783   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1784 }
1785 
1786 LogicalResult ShuffleOp::verify() {
1787   VectorType resultType = getVectorType();
1788   VectorType v1Type = getV1VectorType();
1789   VectorType v2Type = getV2VectorType();
1790   // Verify ranks.
1791   int64_t resRank = resultType.getRank();
1792   int64_t v1Rank = v1Type.getRank();
1793   int64_t v2Rank = v2Type.getRank();
1794   if (resRank != v1Rank || v1Rank != v2Rank)
1795     return emitOpError("rank mismatch");
1796   // Verify all but leading dimension sizes.
1797   for (int64_t r = 1; r < v1Rank; ++r) {
1798     int64_t resDim = resultType.getDimSize(r);
1799     int64_t v1Dim = v1Type.getDimSize(r);
1800     int64_t v2Dim = v2Type.getDimSize(r);
1801     if (resDim != v1Dim || v1Dim != v2Dim)
1802       return emitOpError("dimension mismatch");
1803   }
1804   // Verify mask length.
1805   auto maskAttr = getMask().getValue();
1806   int64_t maskLength = maskAttr.size();
1807   if (maskLength <= 0)
1808     return emitOpError("invalid mask length");
1809   if (maskLength != resultType.getDimSize(0))
1810     return emitOpError("mask length mismatch");
1811   // Verify all indices.
1812   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1813   for (const auto &en : llvm::enumerate(maskAttr)) {
1814     auto attr = en.value().dyn_cast<IntegerAttr>();
1815     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1816       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1817   }
1818   return success();
1819 }
1820 
1821 LogicalResult
1822 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1823                             ValueRange operands, DictionaryAttr attributes,
1824                             RegionRange,
1825                             SmallVectorImpl<Type> &inferredReturnTypes) {
1826   ShuffleOp::Adaptor op(operands, attributes);
1827   auto v1Type = op.getV1().getType().cast<VectorType>();
1828   // Construct resulting type: leading dimension matches mask length,
1829   // all trailing dimensions match the operands.
1830   SmallVector<int64_t, 4> shape;
1831   shape.reserve(v1Type.getRank());
1832   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1833   llvm::append_range(shape, v1Type.getShape().drop_front());
1834   inferredReturnTypes.push_back(
1835       VectorType::get(shape, v1Type.getElementType()));
1836   return success();
1837 }
1838 
1839 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1840   uint64_t expected = begin;
1841   return idxArr.size() == width &&
1842          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1843                       [&expected](auto attr) {
1844                         return attr.getZExtValue() == expected++;
1845                       });
1846 }
1847 
1848 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1849   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1850   if (!getV1VectorType().isScalable() &&
1851       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1852     return getV1();
1853   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1854   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1855       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1856                        getV2VectorType().getDimSize(0)))
1857     return getV2();
1858 
1859   Attribute lhs = operands.front(), rhs = operands.back();
1860   if (!lhs || !rhs)
1861     return {};
1862 
1863   auto lhsType = lhs.getType().cast<VectorType>();
1864   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1865   // manipulation.
1866   if (lhsType.getRank() != 1)
1867     return {};
1868   int64_t lhsSize = lhsType.getDimSize(0);
1869 
1870   SmallVector<Attribute> results;
1871   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1872   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1873   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1874     int64_t i = index.getZExtValue();
1875     if (i >= lhsSize) {
1876       results.push_back(rhsElements[i - lhsSize]);
1877     } else {
1878       results.push_back(lhsElements[i]);
1879     }
1880   }
1881 
1882   return DenseElementsAttr::get(getVectorType(), results);
1883 }
1884 
1885 namespace {
1886 
1887 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp.
1888 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
1889 public:
1890   using OpRewritePattern<ShuffleOp>::OpRewritePattern;
1891 
1892   LogicalResult matchAndRewrite(ShuffleOp op,
1893                                 PatternRewriter &rewriter) const override {
1894     auto v1Splat = op.getV1().getDefiningOp<SplatOp>();
1895     auto v2Splat = op.getV2().getDefiningOp<SplatOp>();
1896 
1897     if (!v1Splat || !v2Splat)
1898       return failure();
1899 
1900     if (v1Splat.getInput() != v2Splat.getInput())
1901       return failure();
1902 
1903     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput());
1904     return success();
1905   }
1906 };
1907 
1908 } // namespace
1909 
1910 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
1911                                             MLIRContext *context) {
1912   results.add<ShuffleSplat>(context);
1913 }
1914 
1915 //===----------------------------------------------------------------------===//
1916 // InsertElementOp
1917 //===----------------------------------------------------------------------===//
1918 
1919 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1920                             Value source, Value dest) {
1921   build(builder, result, source, dest, {});
1922 }
1923 
1924 LogicalResult InsertElementOp::verify() {
1925   auto dstVectorType = getDestVectorType();
1926   if (dstVectorType.getRank() == 0) {
1927     if (getPosition())
1928       return emitOpError("expected position to be empty with 0-D vector");
1929     return success();
1930   }
1931   if (dstVectorType.getRank() != 1)
1932     return emitOpError("unexpected >1 vector rank");
1933   if (!getPosition())
1934     return emitOpError("expected position for 1-D vector");
1935   return success();
1936 }
1937 
1938 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1939   // Skip the 0-D vector here.
1940   if (operands.size() < 3)
1941     return {};
1942 
1943   Attribute src = operands[0];
1944   Attribute dst = operands[1];
1945   Attribute pos = operands[2];
1946   if (!src || !dst || !pos)
1947     return {};
1948 
1949   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1950 
1951   SmallVector<Attribute> results(dstElements);
1952 
1953   auto attr = pos.dyn_cast<IntegerAttr>();
1954   uint64_t posIdx = attr.getInt();
1955 
1956   results[posIdx] = src;
1957 
1958   return DenseElementsAttr::get(getDestVectorType(), results);
1959 }
1960 
1961 //===----------------------------------------------------------------------===//
1962 // InsertOp
1963 //===----------------------------------------------------------------------===//
1964 
1965 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1966                      Value dest, ArrayRef<int64_t> position) {
1967   result.addOperands({source, dest});
1968   auto positionAttr = getVectorSubscriptAttr(builder, position);
1969   result.addTypes(dest.getType());
1970   result.addAttribute(getPositionAttrStrName(), positionAttr);
1971 }
1972 
1973 // Convenience builder which assumes the values are constant indices.
1974 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1975                      Value dest, ValueRange position) {
1976   SmallVector<int64_t, 4> positionConstants =
1977       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1978         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1979       }));
1980   build(builder, result, source, dest, positionConstants);
1981 }
1982 
1983 LogicalResult InsertOp::verify() {
1984   auto positionAttr = getPosition().getValue();
1985   auto destVectorType = getDestVectorType();
1986   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1987     return emitOpError(
1988         "expected position attribute of rank smaller than dest vector rank");
1989   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1990   if (srcVectorType &&
1991       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1992        static_cast<unsigned>(destVectorType.getRank())))
1993     return emitOpError("expected position attribute rank + source rank to "
1994                        "match dest vector rank");
1995   if (!srcVectorType &&
1996       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1997     return emitOpError(
1998         "expected position attribute rank to match the dest vector rank");
1999   for (const auto &en : llvm::enumerate(positionAttr)) {
2000     auto attr = en.value().dyn_cast<IntegerAttr>();
2001     if (!attr || attr.getInt() < 0 ||
2002         attr.getInt() >= destVectorType.getDimSize(en.index()))
2003       return emitOpError("expected position attribute #")
2004              << (en.index() + 1)
2005              << " to be a non-negative integer smaller than the corresponding "
2006                 "dest vector dimension";
2007   }
2008   return success();
2009 }
2010 
2011 namespace {
2012 
2013 // If insertOp is only inserting unit dimensions it can be transformed to a
2014 // broadcast.
2015 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
2016 public:
2017   using OpRewritePattern<InsertOp>::OpRewritePattern;
2018 
2019   LogicalResult matchAndRewrite(InsertOp insertOp,
2020                                 PatternRewriter &rewriter) const override {
2021     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
2022     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
2023                            srcVecType.getNumElements())
2024       return failure();
2025     rewriter.replaceOpWithNewOp<BroadcastOp>(
2026         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
2027     return success();
2028   }
2029 };
2030 
2031 } // namespace
2032 
2033 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2034                                            MLIRContext *context) {
2035   results.add<InsertToBroadcast, BroadcastFolder>(context);
2036 }
2037 
2038 // Eliminates insert operations that produce values identical to their source
2039 // value. This happens when the source and destination vectors have identical
2040 // sizes.
2041 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2042   if (getPosition().empty())
2043     return getSource();
2044   return {};
2045 }
2046 
2047 //===----------------------------------------------------------------------===//
2048 // InsertMapOp
2049 //===----------------------------------------------------------------------===//
2050 
2051 LogicalResult InsertMapOp::verify() {
2052   if (getSourceVectorType().getRank() != getResultType().getRank())
2053     return emitOpError("expected source and destination vectors of same rank");
2054   unsigned numId = 0;
2055   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2056     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2057         0)
2058       return emitOpError(
2059           "destination vector size must be a multiple of source vector size");
2060     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2061       numId++;
2062   }
2063   if (numId != getIds().size())
2064     return emitOpError("expected number of ids must match the number of "
2065                        "dimensions distributed");
2066   return success();
2067 }
2068 
2069 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2070 
2071 //===----------------------------------------------------------------------===//
2072 // InsertStridedSliceOp
2073 //===----------------------------------------------------------------------===//
2074 
2075 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2076                                  Value source, Value dest,
2077                                  ArrayRef<int64_t> offsets,
2078                                  ArrayRef<int64_t> strides) {
2079   result.addOperands({source, dest});
2080   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2081   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2082   result.addTypes(dest.getType());
2083   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2084   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2085 }
2086 
2087 // TODO: Should be moved to Tablegen Confined attributes.
2088 template <typename OpType>
2089 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2090                                                         ArrayAttr arrayAttr,
2091                                                         ArrayRef<int64_t> shape,
2092                                                         StringRef attrName) {
2093   if (arrayAttr.size() > shape.size())
2094     return op.emitOpError("expected ")
2095            << attrName << " attribute of rank smaller than vector rank";
2096   return success();
2097 }
2098 
2099 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2100 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2101 // Otherwise, the admissible interval is [min, max].
2102 template <typename OpType>
2103 static LogicalResult
2104 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2105                                   int64_t max, StringRef attrName,
2106                                   bool halfOpen = true) {
2107   for (auto attr : arrayAttr) {
2108     auto val = attr.cast<IntegerAttr>().getInt();
2109     auto upper = max;
2110     if (!halfOpen)
2111       upper += 1;
2112     if (val < min || val >= upper)
2113       return op.emitOpError("expected ") << attrName << " to be confined to ["
2114                                          << min << ", " << upper << ")";
2115   }
2116   return success();
2117 }
2118 
2119 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2120 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2121 // Otherwise, the admissible interval is [min, max].
2122 template <typename OpType>
2123 static LogicalResult
2124 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2125                                   ArrayRef<int64_t> shape, StringRef attrName,
2126                                   bool halfOpen = true, int64_t min = 0) {
2127   assert(arrayAttr.size() <= shape.size());
2128   unsigned index = 0;
2129   for (auto it : llvm::zip(arrayAttr, shape)) {
2130     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2131     auto max = std::get<1>(it);
2132     if (!halfOpen)
2133       max += 1;
2134     if (val < min || val >= max)
2135       return op.emitOpError("expected ")
2136              << attrName << " dimension " << index << " to be confined to ["
2137              << min << ", " << max << ")";
2138     ++index;
2139   }
2140   return success();
2141 }
2142 
2143 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2144 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2145 // Otherwise, the admissible interval is [min, max].
2146 template <typename OpType>
2147 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2148     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2149     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2150     bool halfOpen = true, int64_t min = 1) {
2151   assert(arrayAttr1.size() <= shape.size());
2152   assert(arrayAttr2.size() <= shape.size());
2153   unsigned index = 0;
2154   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2155     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2156     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2157     auto max = std::get<2>(it);
2158     if (!halfOpen)
2159       max += 1;
2160     if (val1 + val2 < 0 || val1 + val2 >= max)
2161       return op.emitOpError("expected sum(")
2162              << attrName1 << ", " << attrName2 << ") dimension " << index
2163              << " to be confined to [" << min << ", " << max << ")";
2164     ++index;
2165   }
2166   return success();
2167 }
2168 
2169 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2170                                   MLIRContext *context) {
2171   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2172     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2173   });
2174   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2175 }
2176 
2177 LogicalResult InsertStridedSliceOp::verify() {
2178   auto sourceVectorType = getSourceVectorType();
2179   auto destVectorType = getDestVectorType();
2180   auto offsets = getOffsetsAttr();
2181   auto strides = getStridesAttr();
2182   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2183     return emitOpError(
2184         "expected offsets of same size as destination vector rank");
2185   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2186     return emitOpError("expected strides of same size as source vector rank");
2187   if (sourceVectorType.getRank() > destVectorType.getRank())
2188     return emitOpError(
2189         "expected source rank to be smaller than destination rank");
2190 
2191   auto sourceShape = sourceVectorType.getShape();
2192   auto destShape = destVectorType.getShape();
2193   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2194       destShape.size() - sourceShape.size(), 0);
2195   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2196   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2197   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2198   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2199                                                offName)) ||
2200       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2201                                                stridesName,
2202                                                /*halfOpen=*/false)) ||
2203       failed(isSumOfIntegerArrayAttrConfinedToShape(
2204           *this, offsets,
2205           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2206           offName, "source vector shape",
2207           /*halfOpen=*/false, /*min=*/1)))
2208     return failure();
2209 
2210   return success();
2211 }
2212 
2213 namespace {
2214 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
2215 /// SplatOp(X):dst_type) to SplatOp(X):dst_type.
2216 class FoldInsertStridedSliceSplat final
2217     : public OpRewritePattern<InsertStridedSliceOp> {
2218 public:
2219   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2220 
2221   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2222                                 PatternRewriter &rewriter) const override {
2223     auto srcSplatOp =
2224         insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>();
2225     auto destSplatOp =
2226         insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
2227 
2228     if (!srcSplatOp || !destSplatOp)
2229       return failure();
2230 
2231     if (srcSplatOp.getInput() != destSplatOp.getInput())
2232       return failure();
2233 
2234     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2235     return success();
2236   }
2237 };
2238 
2239 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst)
2240 /// to dst.
2241 class FoldInsertStridedSliceOfExtract final
2242     : public OpRewritePattern<InsertStridedSliceOp> {
2243 public:
2244   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2245 
2246   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2247                                 PatternRewriter &rewriter) const override {
2248     auto extractStridedSliceOp =
2249         insertStridedSliceOp.getSource()
2250             .getDefiningOp<vector::ExtractStridedSliceOp>();
2251 
2252     if (!extractStridedSliceOp)
2253       return failure();
2254 
2255     if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest())
2256       return failure();
2257 
2258     // Check if have the same strides and offsets.
2259     if (extractStridedSliceOp.getStrides() !=
2260             insertStridedSliceOp.getStrides() ||
2261         extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets())
2262       return failure();
2263 
2264     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2265     return success();
2266   }
2267 };
2268 
2269 } // namespace
2270 
2271 void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
2272     RewritePatternSet &results, MLIRContext *context) {
2273   results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>(
2274       context);
2275 }
2276 
2277 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2278   if (getSourceVectorType() == getDestVectorType())
2279     return getSource();
2280   return {};
2281 }
2282 
2283 //===----------------------------------------------------------------------===//
2284 // OuterProductOp
2285 //===----------------------------------------------------------------------===//
2286 
2287 /// Build an op without mask, use the type of `acc` as the return type.
2288 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2289                            Value lhs, Value rhs, Value acc) {
2290   result.addOperands({lhs, rhs, acc});
2291   result.addTypes(acc.getType());
2292 }
2293 
2294 void OuterProductOp::print(OpAsmPrinter &p) {
2295   p << " " << getLhs() << ", " << getRhs();
2296   if (!getAcc().empty()) {
2297     p << ", " << getAcc();
2298     p.printOptionalAttrDict((*this)->getAttrs());
2299   }
2300   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2301 }
2302 
2303 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2304   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2305   Type tLHS, tRHS;
2306   if (parser.parseOperandList(operandsInfo) ||
2307       parser.parseOptionalAttrDict(result.attributes) ||
2308       parser.parseColonType(tLHS) || parser.parseComma() ||
2309       parser.parseType(tRHS))
2310     return failure();
2311   if (operandsInfo.size() < 2)
2312     return parser.emitError(parser.getNameLoc(),
2313                             "expected at least 2 operands");
2314   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2315   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2316   if (!vLHS)
2317     return parser.emitError(parser.getNameLoc(),
2318                             "expected vector type for operand #1");
2319   VectorType resType =
2320       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2321                              vLHS.getElementType())
2322            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2323 
2324   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2325     result.attributes.append(
2326         OuterProductOp::getKindAttrStrName(),
2327         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2328                                result.getContext()));
2329   }
2330 
2331   return failure(
2332       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2333       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2334       (operandsInfo.size() > 2 &&
2335        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2336       parser.addTypeToList(resType, result.types));
2337 }
2338 
2339 LogicalResult OuterProductOp::verify() {
2340   Type tRHS = getOperandTypeRHS();
2341   VectorType vLHS = getOperandVectorTypeLHS(),
2342              vRHS = tRHS.dyn_cast<VectorType>(),
2343              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2344 
2345   if (vLHS.getRank() != 1)
2346     return emitOpError("expected 1-d vector for operand #1");
2347 
2348   if (vRHS) {
2349     // Proper OUTER operation.
2350     if (vRHS.getRank() != 1)
2351       return emitOpError("expected 1-d vector for operand #2");
2352     if (vRES.getRank() != 2)
2353       return emitOpError("expected 2-d vector result");
2354     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2355       return emitOpError("expected #1 operand dim to match result dim #1");
2356     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2357       return emitOpError("expected #2 operand dim to match result dim #2");
2358   } else {
2359     // An AXPY operation.
2360     if (vRES.getRank() != 1)
2361       return emitOpError("expected 1-d vector result");
2362     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2363       return emitOpError("expected #1 operand dim to match result dim #1");
2364   }
2365 
2366   if (vACC && vACC != vRES)
2367     return emitOpError("expected operand #3 of same type as result type");
2368 
2369   // Verify supported combining kind.
2370   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2371     return emitOpError("unsupported outerproduct type");
2372 
2373   return success();
2374 }
2375 
2376 //===----------------------------------------------------------------------===//
2377 // ReshapeOp
2378 //===----------------------------------------------------------------------===//
2379 
2380 LogicalResult ReshapeOp::verify() {
2381   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2382   auto inputVectorType = getInputVectorType();
2383   auto outputVectorType = getOutputVectorType();
2384   int64_t inputShapeRank = getNumInputShapeSizes();
2385   int64_t outputShapeRank = getNumOutputShapeSizes();
2386   SmallVector<int64_t, 4> fixedVectorSizes;
2387   getFixedVectorSizes(fixedVectorSizes);
2388   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2389 
2390   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2391     return emitError("invalid input shape for vector type ") << inputVectorType;
2392 
2393   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2394     return emitError("invalid output shape for vector type ")
2395            << outputVectorType;
2396 
2397   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2398   // suffix.
2399   unsigned inputVectorRank = inputVectorType.getRank();
2400   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2401     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2402     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2403       return emitError("fixed vector size must match input vector for dim ")
2404              << i;
2405   }
2406 
2407   unsigned outputVectorRank = outputVectorType.getRank();
2408   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2409     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2410     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2411       return emitError("fixed vector size must match output vector for dim ")
2412              << i;
2413   }
2414 
2415   // If all shape operands are produced by constant ops, verify that product
2416   // of dimensions for input/output shape match.
2417   auto isDefByConstant = [](Value operand) {
2418     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2419   };
2420   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2421       llvm::all_of(getOutputShape(), isDefByConstant)) {
2422     int64_t numInputElements = 1;
2423     for (auto operand : getInputShape())
2424       numInputElements *=
2425           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2426     int64_t numOutputElements = 1;
2427     for (auto operand : getOutputShape())
2428       numOutputElements *=
2429           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2430     if (numInputElements != numOutputElements)
2431       return emitError("product of input and output shape sizes must match");
2432   }
2433   return success();
2434 }
2435 
2436 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2437   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2438 }
2439 
2440 //===----------------------------------------------------------------------===//
2441 // ExtractStridedSliceOp
2442 //===----------------------------------------------------------------------===//
2443 
2444 // Inference works as follows:
2445 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2446 //   2. Add sizes from 'vectorType' for remaining dims.
2447 static Type inferStridedSliceOpResultType(VectorType vectorType,
2448                                           ArrayAttr offsets, ArrayAttr sizes,
2449                                           ArrayAttr strides) {
2450   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2451   SmallVector<int64_t, 4> shape;
2452   shape.reserve(vectorType.getRank());
2453   unsigned idx = 0;
2454   for (unsigned e = offsets.size(); idx < e; ++idx)
2455     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2456   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2457     shape.push_back(vectorType.getShape()[idx]);
2458 
2459   return VectorType::get(shape, vectorType.getElementType());
2460 }
2461 
2462 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2463                                   Value source, ArrayRef<int64_t> offsets,
2464                                   ArrayRef<int64_t> sizes,
2465                                   ArrayRef<int64_t> strides) {
2466   result.addOperands(source);
2467   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2468   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2469   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2470   result.addTypes(
2471       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2472                                     offsetsAttr, sizesAttr, stridesAttr));
2473   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2474   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2475   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2476 }
2477 
2478 LogicalResult ExtractStridedSliceOp::verify() {
2479   auto type = getVectorType();
2480   auto offsets = getOffsetsAttr();
2481   auto sizes = getSizesAttr();
2482   auto strides = getStridesAttr();
2483   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2484     return emitOpError(
2485         "expected offsets, sizes and strides attributes of same size");
2486 
2487   auto shape = type.getShape();
2488   auto offName = getOffsetsAttrName();
2489   auto sizesName = getSizesAttrName();
2490   auto stridesName = getStridesAttrName();
2491   if (failed(
2492           isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2493       failed(
2494           isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2495       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2496                                                 stridesName)) ||
2497       failed(
2498           isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2499       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2500                                                /*halfOpen=*/false,
2501                                                /*min=*/1)) ||
2502       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2503                                                stridesName,
2504                                                /*halfOpen=*/false)) ||
2505       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
2506                                                     shape, offName, sizesName,
2507                                                     /*halfOpen=*/false)))
2508     return failure();
2509 
2510   auto resultType =
2511       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2512   if (getResult().getType() != resultType)
2513     return emitOpError("expected result type to be ") << resultType;
2514 
2515   return success();
2516 }
2517 
2518 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2519 // to use the source of the InsertStrided ops if we can detect that the
2520 // extracted vector is a subset of one of the vector inserted.
2521 static LogicalResult
2522 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2523   // Helper to extract integer out of ArrayAttr.
2524   auto getElement = [](ArrayAttr array, int idx) {
2525     return array[idx].cast<IntegerAttr>().getInt();
2526   };
2527   ArrayAttr extractOffsets = op.getOffsets();
2528   ArrayAttr extractStrides = op.getStrides();
2529   ArrayAttr extractSizes = op.getSizes();
2530   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2531   while (insertOp) {
2532     if (op.getVectorType().getRank() !=
2533         insertOp.getSourceVectorType().getRank())
2534       return failure();
2535     ArrayAttr insertOffsets = insertOp.getOffsets();
2536     ArrayAttr insertStrides = insertOp.getStrides();
2537     // If the rank of extract is greater than the rank of insert, we are likely
2538     // extracting a partial chunk of the vector inserted.
2539     if (extractOffsets.size() > insertOffsets.size())
2540       return failure();
2541     bool patialoverlap = false;
2542     bool disjoint = false;
2543     SmallVector<int64_t, 4> offsetDiffs;
2544     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2545       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2546         return failure();
2547       int64_t start = getElement(insertOffsets, dim);
2548       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2549       int64_t offset = getElement(extractOffsets, dim);
2550       int64_t size = getElement(extractSizes, dim);
2551       // Check if the start of the extract offset is in the interval inserted.
2552       if (start <= offset && offset < end) {
2553         // If the extract interval overlaps but is not fully included we may
2554         // have a partial overlap that will prevent any folding.
2555         if (offset + size > end)
2556           patialoverlap = true;
2557         offsetDiffs.push_back(offset - start);
2558         continue;
2559       }
2560       disjoint = true;
2561       break;
2562     }
2563     // The extract element chunk is a subset of the insert element.
2564     if (!disjoint && !patialoverlap) {
2565       op.setOperand(insertOp.getSource());
2566       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2567       OpBuilder b(op.getContext());
2568       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2569                   b.getI64ArrayAttr(offsetDiffs));
2570       return success();
2571     }
2572     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2573     // in the insert chain.
2574     if (disjoint)
2575       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2576     else {
2577       // The extracted vector partially overlap the inserted vector, we cannot
2578       // fold.
2579       return failure();
2580     }
2581   }
2582   return failure();
2583 }
2584 
2585 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2586   if (getVectorType() == getResult().getType())
2587     return getVector();
2588   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2589     return getResult();
2590   return {};
2591 }
2592 
2593 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2594   populateFromInt64AttrArray(getOffsets(), results);
2595 }
2596 
2597 namespace {
2598 
2599 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2600 // ConstantMaskOp.
2601 class StridedSliceConstantMaskFolder final
2602     : public OpRewritePattern<ExtractStridedSliceOp> {
2603 public:
2604   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2605 
2606   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2607                                 PatternRewriter &rewriter) const override {
2608     // Return if 'extractStridedSliceOp' operand is not defined by a
2609     // ConstantMaskOp.
2610     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2611     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2612     if (!constantMaskOp)
2613       return failure();
2614     // Return if 'extractStridedSliceOp' has non-unit strides.
2615     if (extractStridedSliceOp.hasNonUnitStrides())
2616       return failure();
2617     // Gather constant mask dimension sizes.
2618     SmallVector<int64_t, 4> maskDimSizes;
2619     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2620     // Gather strided slice offsets and sizes.
2621     SmallVector<int64_t, 4> sliceOffsets;
2622     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2623                                sliceOffsets);
2624     SmallVector<int64_t, 4> sliceSizes;
2625     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2626 
2627     // Compute slice of vector mask region.
2628     SmallVector<int64_t, 4> sliceMaskDimSizes;
2629     assert(sliceOffsets.size() == maskDimSizes.size());
2630     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2631       int64_t maskDimSize = std::get<0>(it);
2632       int64_t sliceOffset = std::get<1>(it);
2633       int64_t sliceSize = std::get<2>(it);
2634       int64_t sliceMaskDimSize = std::max(
2635           static_cast<int64_t>(0),
2636           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2637       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2638     }
2639     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2640     // region is a conjunction of mask dim intervals).
2641     if (llvm::is_contained(sliceMaskDimSizes, 0))
2642       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2643 
2644     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2645     // region.
2646     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2647         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2648         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2649     return success();
2650   }
2651 };
2652 
2653 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2654 class StridedSliceConstantFolder final
2655     : public OpRewritePattern<ExtractStridedSliceOp> {
2656 public:
2657   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2658 
2659   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2660                                 PatternRewriter &rewriter) const override {
2661     // Return if 'extractStridedSliceOp' operand is not defined by a
2662     // ConstantOp.
2663     auto constantOp =
2664         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2665     if (!constantOp)
2666       return failure();
2667     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2668     if (!dense)
2669       return failure();
2670     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2671                                           dense.getSplatValue<Attribute>());
2672     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2673                                                    newAttr);
2674     return success();
2675   }
2676 };
2677 
2678 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2679 // BroadcastOp(ExtractStrideSliceOp).
2680 class StridedSliceBroadcast final
2681     : public OpRewritePattern<ExtractStridedSliceOp> {
2682 public:
2683   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2684 
2685   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2686                                 PatternRewriter &rewriter) const override {
2687     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2688     if (!broadcast)
2689       return failure();
2690     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2691     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2692     auto dstVecType = op.getType().cast<VectorType>();
2693     unsigned dstRank = dstVecType.getRank();
2694     unsigned rankDiff = dstRank - srcRank;
2695     // Check if the most inner dimensions of the source of the broadcast are the
2696     // same as the destination of the extract. If this is the case we can just
2697     // use a broadcast as the original dimensions are untouched.
2698     bool lowerDimMatch = true;
2699     for (unsigned i = 0; i < srcRank; i++) {
2700       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2701         lowerDimMatch = false;
2702         break;
2703       }
2704     }
2705     Value source = broadcast.getSource();
2706     // If the inner dimensions don't match, it means we need to extract from the
2707     // source of the orignal broadcast and then broadcast the extracted value.
2708     // We also need to handle degenerated cases where the source is effectively
2709     // just a single scalar.
2710     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2711     if (!lowerDimMatch && !isScalarSrc) {
2712       source = rewriter.create<ExtractStridedSliceOp>(
2713           op->getLoc(), source,
2714           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2715           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2716           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2717     }
2718     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2719     return success();
2720   }
2721 };
2722 
2723 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2724 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2725 public:
2726   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2727 
2728   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2729                                 PatternRewriter &rewriter) const override {
2730     auto splat = op.getVector().getDefiningOp<SplatOp>();
2731     if (!splat)
2732       return failure();
2733     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2734     return success();
2735   }
2736 };
2737 
2738 } // namespace
2739 
2740 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2741     RewritePatternSet &results, MLIRContext *context) {
2742   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2743   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2744   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2745               StridedSliceBroadcast, StridedSliceSplat>(context);
2746 }
2747 
2748 //===----------------------------------------------------------------------===//
2749 // TransferReadOp
2750 //===----------------------------------------------------------------------===//
2751 
2752 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2753 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2754                            VectorType vectorType, Value source,
2755                            ValueRange indices, AffineMapAttr permutationMapAttr,
2756                            /*optional*/ ArrayAttr inBoundsAttr) {
2757   Type elemType = source.getType().cast<ShapedType>().getElementType();
2758   Value padding = builder.create<arith::ConstantOp>(
2759       result.location, elemType, builder.getZeroAttr(elemType));
2760   build(builder, result, vectorType, source, indices, permutationMapAttr,
2761         padding, /*mask=*/Value(), inBoundsAttr);
2762 }
2763 
2764 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2765 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2766                            VectorType vectorType, Value source,
2767                            ValueRange indices, AffineMap permutationMap,
2768                            Optional<ArrayRef<bool>> inBounds) {
2769   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2770   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2771                           ? builder.getBoolArrayAttr(inBounds.getValue())
2772                           : ArrayAttr();
2773   build(builder, result, vectorType, source, indices, permutationMapAttr,
2774         inBoundsAttr);
2775 }
2776 
2777 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2778 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2779                            VectorType vectorType, Value source,
2780                            ValueRange indices, Value padding,
2781                            Optional<ArrayRef<bool>> inBounds) {
2782   AffineMap permutationMap = getTransferMinorIdentityMap(
2783       source.getType().cast<ShapedType>(), vectorType);
2784   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2785   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2786                           ? builder.getBoolArrayAttr(inBounds.getValue())
2787                           : ArrayAttr();
2788   build(builder, result, vectorType, source, indices, permutationMapAttr,
2789         padding,
2790         /*mask=*/Value(), inBoundsAttr);
2791 }
2792 
2793 /// 4. Builder that sets padding to zero and permutation map to
2794 /// 'getMinorIdentityMap'.
2795 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2796                            VectorType vectorType, Value source,
2797                            ValueRange indices,
2798                            Optional<ArrayRef<bool>> inBounds) {
2799   Type elemType = source.getType().cast<ShapedType>().getElementType();
2800   Value padding = builder.create<arith::ConstantOp>(
2801       result.location, elemType, builder.getZeroAttr(elemType));
2802   build(builder, result, vectorType, source, indices, padding, inBounds);
2803 }
2804 
2805 template <typename EmitFun>
2806 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2807                                           EmitFun emitOpError) {
2808   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2809   for (auto expr : permutationMap.getResults()) {
2810     auto dim = expr.dyn_cast<AffineDimExpr>();
2811     auto zero = expr.dyn_cast<AffineConstantExpr>();
2812     if (zero) {
2813       if (zero.getValue() != 0) {
2814         return emitOpError(
2815             "requires a projected permutation_map (at most one dim or the zero "
2816             "constant can appear in each result)");
2817       }
2818       continue;
2819     }
2820     if (!dim) {
2821       return emitOpError("requires a projected permutation_map (at most one "
2822                          "dim or the zero constant can appear in each result)");
2823     }
2824     if (seen[dim.getPosition()]) {
2825       return emitOpError(
2826           "requires a permutation_map that is a permutation (found one dim "
2827           "used more than once)");
2828     }
2829     seen[dim.getPosition()] = true;
2830   }
2831   return success();
2832 }
2833 
2834 static LogicalResult
2835 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2836                  VectorType vectorType, VectorType maskType,
2837                  AffineMap permutationMap, ArrayAttr inBounds) {
2838   if (op->hasAttr("masked")) {
2839     return op->emitOpError("masked attribute has been removed. "
2840                            "Use in_bounds instead.");
2841   }
2842 
2843   if (!shapedType.isa<MemRefType, RankedTensorType>())
2844     return op->emitOpError(
2845         "requires source to be a memref or ranked tensor type");
2846 
2847   auto elementType = shapedType.getElementType();
2848   DataLayout dataLayout = DataLayout::closest(op);
2849   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2850     // Memref or tensor has vector element type.
2851     unsigned sourceVecSize =
2852         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2853         vectorElementType.getShape().back();
2854     unsigned resultVecSize =
2855         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2856         vectorType.getShape().back();
2857     if (resultVecSize % sourceVecSize != 0)
2858       return op->emitOpError(
2859           "requires the bitwidth of the minor 1-D vector to be an integral "
2860           "multiple of the bitwidth of the minor 1-D vector of the source");
2861 
2862     unsigned sourceVecEltRank = vectorElementType.getRank();
2863     unsigned resultVecRank = vectorType.getRank();
2864     if (sourceVecEltRank > resultVecRank)
2865       return op->emitOpError(
2866           "requires source vector element and vector result ranks to match.");
2867     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2868     // Check that permutation map results match 'rankOffset' of vector type.
2869     if (permutationMap.getNumResults() != rankOffset)
2870       return op->emitOpError("requires a permutation_map with result dims of "
2871                              "the same rank as the vector type");
2872 
2873     if (maskType)
2874       return op->emitOpError("does not support masks with vector element type");
2875   } else {
2876     // Memref or tensor has scalar element type.
2877     unsigned minorSize =
2878         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2879     unsigned resultVecSize =
2880         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2881     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2882       return op->emitOpError(
2883           "requires the bitwidth of the minor 1-D vector to be an integral "
2884           "multiple of the bitwidth of the source element type");
2885 
2886     // Check that permutation map results match rank of vector type.
2887     if (permutationMap.getNumResults() != vectorType.getRank())
2888       return op->emitOpError("requires a permutation_map with result dims of "
2889                              "the same rank as the vector type");
2890 
2891     VectorType expectedMaskType =
2892         vector::detail::transferMaskType(vectorType, permutationMap);
2893     if (maskType && expectedMaskType != maskType)
2894       return op->emitOpError("expects mask type consistent with permutation "
2895                              "map: ")
2896              << maskType;
2897   }
2898 
2899   if (permutationMap.getNumSymbols() != 0)
2900     return op->emitOpError("requires permutation_map without symbols");
2901 
2902   if (permutationMap.getNumInputs() != shapedType.getRank())
2903     return op->emitOpError("requires a permutation_map with input dims of the "
2904                            "same rank as the source type");
2905 
2906   if (inBounds) {
2907     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2908       return op->emitOpError("expects the optional in_bounds attr of same rank "
2909                              "as permutation_map results: ")
2910              << AffineMapAttr::get(permutationMap)
2911              << " vs inBounds of size: " << inBounds.size();
2912     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2913       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2914           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2915         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2916   }
2917 
2918   return success();
2919 }
2920 
2921 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2922   SmallVector<StringRef, 3> elidedAttrs;
2923   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2924   if (op.permutation_map().isMinorIdentity())
2925     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2926   bool elideInBounds = true;
2927   if (auto inBounds = op.in_bounds()) {
2928     for (auto attr : *inBounds) {
2929       if (attr.template cast<BoolAttr>().getValue()) {
2930         elideInBounds = false;
2931         break;
2932       }
2933     }
2934   }
2935   if (elideInBounds)
2936     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2937   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2938 }
2939 
2940 void TransferReadOp::print(OpAsmPrinter &p) {
2941   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2942   if (getMask())
2943     p << ", " << getMask();
2944   printTransferAttrs(p, *this);
2945   p << " : " << getShapedType() << ", " << getVectorType();
2946 }
2947 
2948 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2949   auto &builder = parser.getBuilder();
2950   SMLoc typesLoc;
2951   OpAsmParser::UnresolvedOperand sourceInfo;
2952   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2953   OpAsmParser::UnresolvedOperand paddingInfo;
2954   SmallVector<Type, 2> types;
2955   OpAsmParser::UnresolvedOperand maskInfo;
2956   // Parsing with support for paddingValue.
2957   if (parser.parseOperand(sourceInfo) ||
2958       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2959       parser.parseComma() || parser.parseOperand(paddingInfo))
2960     return failure();
2961   ParseResult hasMask = parser.parseOptionalComma();
2962   if (hasMask.succeeded()) {
2963     if (parser.parseOperand(maskInfo))
2964       return failure();
2965   }
2966   if (parser.parseOptionalAttrDict(result.attributes) ||
2967       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2968     return failure();
2969   if (types.size() != 2)
2970     return parser.emitError(typesLoc, "requires two types");
2971   auto indexType = builder.getIndexType();
2972   auto shapedType = types[0].dyn_cast<ShapedType>();
2973   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2974     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2975   VectorType vectorType = types[1].dyn_cast<VectorType>();
2976   if (!vectorType)
2977     return parser.emitError(typesLoc, "requires vector type");
2978   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2979   Attribute mapAttr = result.attributes.get(permutationAttrName);
2980   if (!mapAttr) {
2981     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2982     // Update `mapAttr` that is used later to determine mask type.
2983     mapAttr = AffineMapAttr::get(permMap);
2984     result.attributes.set(permutationAttrName, mapAttr);
2985   }
2986   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2987       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2988       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2989                             result.operands))
2990     return failure();
2991   if (hasMask.succeeded()) {
2992     if (shapedType.getElementType().dyn_cast<VectorType>())
2993       return parser.emitError(
2994           maskInfo.location, "does not support masks with vector element type");
2995     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2996     // Instead of adding the mask type as an op type, compute it based on the
2997     // vector type and the permutation map (to keep the type signature small).
2998     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2999     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3000       return failure();
3001   }
3002   result.addAttribute(
3003       TransferReadOp::getOperandSegmentSizeAttr(),
3004       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
3005                                 static_cast<int32_t>(hasMask.succeeded())}));
3006   return parser.addTypeToList(vectorType, result.types);
3007 }
3008 
3009 LogicalResult TransferReadOp::verify() {
3010   // Consistency of elemental types in source and vector.
3011   ShapedType shapedType = getShapedType();
3012   VectorType vectorType = getVectorType();
3013   VectorType maskType = getMaskType();
3014   auto paddingType = getPadding().getType();
3015   auto permutationMap = getPermutationMap();
3016   auto sourceElementType = shapedType.getElementType();
3017 
3018   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
3019     return emitOpError("requires ") << shapedType.getRank() << " indices";
3020 
3021   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3022                               shapedType, vectorType, maskType, permutationMap,
3023                               getInBounds() ? *getInBounds() : ArrayAttr())))
3024     return failure();
3025 
3026   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
3027     // Source has vector element type.
3028     // Check that 'sourceVectorElementType' and 'paddingType' types match.
3029     if (sourceVectorElementType != paddingType)
3030       return emitOpError(
3031           "requires source element type and padding type to match.");
3032 
3033   } else {
3034     // Check that 'paddingType' is valid to store in a vector type.
3035     if (!VectorType::isValidElementType(paddingType))
3036       return emitOpError("requires valid padding vector elemental type");
3037 
3038     // Check that padding type and vector element types match.
3039     if (paddingType != sourceElementType)
3040       return emitOpError(
3041           "requires formal padding and source of the same elemental type");
3042   }
3043 
3044   return verifyPermutationMap(permutationMap,
3045                               [&](Twine t) { return emitOpError(t); });
3046 }
3047 
3048 /// This is a common class used for patterns of the form
3049 /// ```
3050 ///    someop(memrefcast) -> someop
3051 /// ```
3052 /// It folds the source of the memref.cast into the root operation directly.
3053 static LogicalResult foldMemRefCast(Operation *op) {
3054   bool folded = false;
3055   for (OpOperand &operand : op->getOpOperands()) {
3056     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
3057     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
3058       operand.set(castOp.getOperand());
3059       folded = true;
3060     }
3061   }
3062   return success(folded);
3063 }
3064 
3065 static LogicalResult foldTensorCast(Operation *op) {
3066   bool folded = false;
3067   for (OpOperand &operand : op->getOpOperands()) {
3068     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
3069     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
3070       operand.set(castOp.getOperand());
3071       folded = true;
3072     }
3073   }
3074   return success(folded);
3075 }
3076 
3077 template <typename TransferOp>
3078 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
3079   // TODO: support more aggressive createOrFold on:
3080   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
3081   if (op.getShapedType().isDynamicDim(indicesIdx))
3082     return false;
3083   Value index = op.getIndices()[indicesIdx];
3084   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
3085   if (!cstOp)
3086     return false;
3087 
3088   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
3089   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
3090 
3091   return cstOp.value() + vectorSize <= sourceSize;
3092 }
3093 
3094 template <typename TransferOp>
3095 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3096   // TODO: support 0-d corner case.
3097   // TODO: Be less conservative.
3098   if (op.getTransferRank() == 0)
3099     return failure();
3100   AffineMap permutationMap = op.getPermutationMap();
3101   bool changed = false;
3102   SmallVector<bool, 4> newInBounds;
3103   newInBounds.reserve(op.getTransferRank());
3104   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3105     // Already marked as in-bounds, nothing to see here.
3106     if (op.isDimInBounds(i)) {
3107       newInBounds.push_back(true);
3108       continue;
3109     }
3110     // Currently out-of-bounds, check whether we can statically determine it is
3111     // inBounds.
3112     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3113     assert(dimExpr && "Broadcast dims must be in-bounds");
3114     auto inBounds =
3115         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3116     newInBounds.push_back(inBounds);
3117     // We commit the pattern if it is "more inbounds".
3118     changed |= inBounds;
3119   }
3120   if (!changed)
3121     return failure();
3122   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3123   OpBuilder b(op.getContext());
3124   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3125               b.getBoolArrayAttr(newInBounds));
3126   return success();
3127 }
3128 
3129 ///  ```
3130 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3131 ///    : vector<1x4xf32>, tensor<4x4xf32>
3132 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3133 ///    : tensor<4x4xf32>, vector<1x4xf32>
3134 ///  ```
3135 ///  -> Folds into
3136 ///  ```
3137 ///  %v0
3138 ///  ```
3139 static Value foldRAW(TransferReadOp readOp) {
3140   if (!readOp.getShapedType().isa<RankedTensorType>())
3141     return {};
3142   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3143   while (defWrite) {
3144     if (checkSameValueRAW(defWrite, readOp))
3145       return defWrite.getVector();
3146     if (!isDisjointTransferIndices(
3147             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3148             cast<VectorTransferOpInterface>(readOp.getOperation())))
3149       break;
3150     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3151   }
3152   return {};
3153 }
3154 
3155 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3156   if (Value vec = foldRAW(*this))
3157     return vec;
3158   /// transfer_read(memrefcast) -> transfer_read
3159   if (succeeded(foldTransferInBoundsAttribute(*this)))
3160     return getResult();
3161   if (succeeded(foldMemRefCast(*this)))
3162     return getResult();
3163   if (succeeded(foldTensorCast(*this)))
3164     return getResult();
3165   return OpFoldResult();
3166 }
3167 
3168 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3169   return llvm::to_vector<4>(getVectorType().getShape());
3170 }
3171 
3172 void TransferReadOp::getEffects(
3173     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3174         &effects) {
3175   if (getShapedType().isa<MemRefType>())
3176     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3177                          SideEffects::DefaultResource::get());
3178 }
3179 
3180 namespace {
3181 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3182 ///
3183 /// ```
3184 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3185 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3186 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3187 ///     : tensor<?x?xf32>, vector<4x5xf32>
3188 /// ```
3189 /// is rewritten to:
3190 /// ```
3191 /// %p0 = arith.addi %a, %e : index
3192 /// %p1 = arith.addi %b, %f : index
3193 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3194 ///     : tensor<?x?xf32>, vector<4x5xf32>
3195 /// ```
3196 struct FoldExtractSliceIntoTransferRead
3197     : public OpRewritePattern<TransferReadOp> {
3198 public:
3199   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3200 
3201   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3202                                 PatternRewriter &rewriter) const override {
3203     // TODO: support 0-d corner case.
3204     if (xferOp.getTransferRank() == 0)
3205       return failure();
3206     if (xferOp.hasOutOfBoundsDim())
3207       return failure();
3208     if (!xferOp.getPermutationMap().isIdentity())
3209       return failure();
3210     if (xferOp.getMask())
3211       return failure();
3212     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3213     if (!extractOp)
3214       return failure();
3215     if (!extractOp.hasUnitStride())
3216       return failure();
3217 
3218     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3219     // dims are exactly the leading dims. I.e. the following is illegal:
3220     // ```
3221     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3222     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3223     //    %1 = vector.transfer_read %0[0,0], %cst :
3224     //      tensor<2x4xf32>, vector<2x4xf32>
3225     // ```
3226     //
3227     // Cannot fold into:
3228     // ```
3229     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3230     //      tensor<2x1x4xf32>, vector<2x4xf32>
3231     // ```
3232     // For this, check the trailing `vectorRank` dims of the extract_slice
3233     // result tensor match the trailing dims of the inferred result tensor.
3234     int64_t rankReduced =
3235         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3236     int64_t vectorRank = xferOp.getVectorType().getRank();
3237     RankedTensorType inferredDestTensorType =
3238         tensor::ExtractSliceOp::inferResultType(
3239             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3240             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3241     auto actualDestTensorShape = extractOp.getType().getShape();
3242     if (rankReduced > 0 &&
3243         actualDestTensorShape.take_back(vectorRank) !=
3244             inferredDestTensorType.getShape().take_back(vectorRank))
3245       return failure();
3246 
3247     SmallVector<Value> newIndices;
3248     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3249     // indices first.
3250     for (int64_t i = 0; i < rankReduced; ++i) {
3251       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3252       newIndices.push_back(getValueOrCreateConstantIndexOp(
3253           rewriter, extractOp.getLoc(), offset));
3254     }
3255     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3256       OpFoldResult offset =
3257           extractOp.getMixedOffsets()[it.index() + rankReduced];
3258       newIndices.push_back(rewriter.create<arith::AddIOp>(
3259           xferOp->getLoc(), it.value(),
3260           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3261                                           offset)));
3262     }
3263     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3264     rewriter.replaceOpWithNewOp<TransferReadOp>(
3265         xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices,
3266         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3267 
3268     return success();
3269   }
3270 };
3271 } // namespace
3272 
3273 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3274                                                  MLIRContext *context) {
3275   results.add<FoldExtractSliceIntoTransferRead>(context);
3276 }
3277 
3278 //===----------------------------------------------------------------------===//
3279 // TransferWriteOp
3280 //===----------------------------------------------------------------------===//
3281 
3282 /// 1. Builder with type inference.
3283 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3284                             Value vector, Value dest, ValueRange indices,
3285                             AffineMapAttr permutationMapAttr,
3286                             /*optional*/ Value mask,
3287                             /*optional*/ ArrayAttr inBoundsAttr) {
3288   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3289   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3290         mask, inBoundsAttr);
3291 }
3292 
3293 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3294 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3295                             Value vector, Value dest, ValueRange indices,
3296                             AffineMapAttr permutationMapAttr,
3297                             /*optional*/ ArrayAttr inBoundsAttr) {
3298   build(builder, result, vector, dest, indices, permutationMapAttr,
3299         /*mask=*/Value(), inBoundsAttr);
3300 }
3301 
3302 /// 3. Builder with type inference that sets an empty mask (variant without
3303 /// attrs)
3304 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3305                             Value vector, Value dest, ValueRange indices,
3306                             AffineMap permutationMap,
3307                             Optional<ArrayRef<bool>> inBounds) {
3308   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3309   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3310                           ? builder.getBoolArrayAttr(inBounds.getValue())
3311                           : ArrayAttr();
3312   build(builder, result, vector, dest, indices, permutationMapAttr,
3313         /*mask=*/Value(), inBoundsAttr);
3314 }
3315 
3316 /// 4. Builder with type inference that sets an empty mask and sets permutation
3317 ///    map to 'getMinorIdentityMap'.
3318 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3319                             Value vector, Value dest, ValueRange indices,
3320                             Optional<ArrayRef<bool>> inBounds) {
3321   auto vectorType = vector.getType().cast<VectorType>();
3322   AffineMap permutationMap = getTransferMinorIdentityMap(
3323       dest.getType().cast<ShapedType>(), vectorType);
3324   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3325 }
3326 
3327 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3328                                    OperationState &result) {
3329   auto &builder = parser.getBuilder();
3330   SMLoc typesLoc;
3331   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3332   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3333   SmallVector<Type, 2> types;
3334   OpAsmParser::UnresolvedOperand maskInfo;
3335   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3336       parser.parseOperand(sourceInfo) ||
3337       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3338     return failure();
3339   ParseResult hasMask = parser.parseOptionalComma();
3340   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3341     return failure();
3342   if (parser.parseOptionalAttrDict(result.attributes) ||
3343       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3344     return failure();
3345   if (types.size() != 2)
3346     return parser.emitError(typesLoc, "requires two types");
3347   auto indexType = builder.getIndexType();
3348   VectorType vectorType = types[0].dyn_cast<VectorType>();
3349   if (!vectorType)
3350     return parser.emitError(typesLoc, "requires vector type");
3351   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3352   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3353     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3354   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3355   auto attr = result.attributes.get(permutationAttrName);
3356   if (!attr) {
3357     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3358     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3359   }
3360   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3361       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3362       parser.resolveOperands(indexInfo, indexType, result.operands))
3363     return failure();
3364   if (hasMask.succeeded()) {
3365     if (shapedType.getElementType().dyn_cast<VectorType>())
3366       return parser.emitError(
3367           maskInfo.location, "does not support masks with vector element type");
3368     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3369     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3370       return failure();
3371   }
3372   result.addAttribute(
3373       TransferWriteOp::getOperandSegmentSizeAttr(),
3374       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3375                                 static_cast<int32_t>(hasMask.succeeded())}));
3376   return failure(shapedType.isa<RankedTensorType>() &&
3377                  parser.addTypeToList(shapedType, result.types));
3378 }
3379 
3380 void TransferWriteOp::print(OpAsmPrinter &p) {
3381   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3382   if (getMask())
3383     p << ", " << getMask();
3384   printTransferAttrs(p, *this);
3385   p << " : " << getVectorType() << ", " << getShapedType();
3386 }
3387 
3388 LogicalResult TransferWriteOp::verify() {
3389   // Consistency of elemental types in shape and vector.
3390   ShapedType shapedType = getShapedType();
3391   VectorType vectorType = getVectorType();
3392   VectorType maskType = getMaskType();
3393   auto permutationMap = getPermutationMap();
3394 
3395   if (llvm::size(getIndices()) != shapedType.getRank())
3396     return emitOpError("requires ") << shapedType.getRank() << " indices";
3397 
3398   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3399   // as the semantics is unclear. This can be revisited later if necessary.
3400   if (hasBroadcastDim())
3401     return emitOpError("should not have broadcast dimensions");
3402 
3403   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3404                               shapedType, vectorType, maskType, permutationMap,
3405                               getInBounds() ? *getInBounds() : ArrayAttr())))
3406     return failure();
3407 
3408   return verifyPermutationMap(permutationMap,
3409                               [&](Twine t) { return emitOpError(t); });
3410 }
3411 
3412 /// Fold:
3413 /// ```
3414 ///    %t1 = ...
3415 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3416 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3417 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3418 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3419 /// ```
3420 ///
3421 /// into:
3422 ///
3423 /// ```
3424 ///    %t0
3425 /// ```
3426 ///
3427 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3428 /// block argument or has side effects.
3429 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3430                                        ArrayRef<Attribute>,
3431                                        SmallVectorImpl<OpFoldResult> &results) {
3432   // TODO: support 0-d corner case.
3433   if (write.getTransferRank() == 0)
3434     return failure();
3435   auto rankedTensorType =
3436       write.getSource().getType().dyn_cast<RankedTensorType>();
3437   // If not operating on tensors, bail.
3438   if (!rankedTensorType)
3439     return failure();
3440   // If no read, bail.
3441   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3442   if (!read)
3443     return failure();
3444   // TODO: support 0-d corner case.
3445   if (read.getTransferRank() == 0)
3446     return failure();
3447   // For now, only accept minor identity. Future: composition is minor identity.
3448   if (!read.getPermutationMap().isMinorIdentity() ||
3449       !write.getPermutationMap().isMinorIdentity())
3450     return failure();
3451   // Bail on mismatching ranks.
3452   if (read.getTransferRank() != write.getTransferRank())
3453     return failure();
3454   // Bail on potential out-of-bounds accesses.
3455   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3456     return failure();
3457   // Tensor types must be the same.
3458   if (read.getSource().getType() != rankedTensorType)
3459     return failure();
3460   // Vector types must be the same.
3461   if (read.getVectorType() != write.getVectorType())
3462     return failure();
3463   // Vector and Tensor shapes must match.
3464   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3465     return failure();
3466   // If any index is nonzero.
3467   auto isNotConstantZero = [](Value v) {
3468     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3469     return !cstOp || cstOp.value() != 0;
3470   };
3471   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3472       llvm::any_of(write.getIndices(), isNotConstantZero))
3473     return failure();
3474   // Success.
3475   results.push_back(read.getSource());
3476   return success();
3477 }
3478 
3479 static bool checkSameValueWAR(vector::TransferReadOp read,
3480                               vector::TransferWriteOp write) {
3481   return read.getSource() == write.getSource() &&
3482          read.getIndices() == write.getIndices() &&
3483          read.getPermutationMap() == write.getPermutationMap() &&
3484          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3485          !write.getMask();
3486 }
3487 /// Fold transfer_write write after read:
3488 /// ```
3489 ///    %t0 = ...
3490 ///    %v = vector.transfer_read %t0[%c0...] :
3491 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3492 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3493 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3494 /// ```
3495 ///
3496 /// into:
3497 ///
3498 /// ```
3499 ///    %t0
3500 /// ```
3501 static LogicalResult foldWAR(TransferWriteOp write,
3502                              SmallVectorImpl<OpFoldResult> &results) {
3503   if (!write.getSource().getType().isa<RankedTensorType>())
3504     return failure();
3505   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3506   if (!read)
3507     return failure();
3508 
3509   if (!checkSameValueWAR(read, write))
3510     return failure();
3511   results.push_back(read.getSource());
3512   return success();
3513 }
3514 
3515 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3516                                     SmallVectorImpl<OpFoldResult> &results) {
3517   if (succeeded(foldReadInitWrite(*this, operands, results)))
3518     return success();
3519   if (succeeded(foldWAR(*this, results)))
3520     return success();
3521   if (succeeded(foldTransferInBoundsAttribute(*this)))
3522     return success();
3523   return foldMemRefCast(*this);
3524 }
3525 
3526 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3527   return llvm::to_vector<4>(getVectorType().getShape());
3528 }
3529 
3530 void TransferWriteOp::getEffects(
3531     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3532         &effects) {
3533   if (getShapedType().isa<MemRefType>())
3534     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3535                          SideEffects::DefaultResource::get());
3536 }
3537 
3538 namespace {
3539 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3540 /// DCE
3541 /// ```
3542 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3543 ///    : vector<1x4xf32>, tensor<4x4xf32>
3544 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3545 ///    : vector<1x4xf32>, tensor<4x4xf32>
3546 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3547 ///    : vector<1x4xf32>, tensor<4x4xf32>
3548 /// ```
3549 ///
3550 /// into:
3551 ///
3552 /// ```
3553 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3554 ///    : vector<1x4xf32>, tensor<4x4xf32>
3555 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3556 ///    : vector<1x4xf32>, tensor<4x4xf32>
3557 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3558 ///    : vector<1x4xf32>, tensor<4x4xf32>
3559 /// ```
3560 ///
3561 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3562 /// any other uses.
3563 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3564 public:
3565   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3566   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3567                                 PatternRewriter &rewriter) const override {
3568     if (!writeOp.getShapedType().isa<RankedTensorType>())
3569       return failure();
3570     vector::TransferWriteOp writeToModify = writeOp;
3571 
3572     auto defWrite =
3573         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3574     while (defWrite) {
3575       if (checkSameValueWAW(writeOp, defWrite)) {
3576         writeToModify.getSourceMutable().assign(defWrite.getSource());
3577         return success();
3578       }
3579       if (!isDisjointTransferIndices(
3580               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3581               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3582         break;
3583       // If the previous write op doesn't have any other use we an safely look
3584       // at the previous store to see if it can be removed.
3585       if (!defWrite->hasOneUse())
3586         break;
3587       writeToModify = defWrite;
3588       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3589     }
3590     return failure();
3591   }
3592 };
3593 
3594 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3595 /// could directly write to the insert_slice's destination. E.g.:
3596 ///
3597 /// ```
3598 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3599 ///     : vector<4x5xf32>, tensor<4x5xf32>
3600 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3601 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3602 /// ```
3603 /// is rewritten to:
3604 /// ```
3605 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3606 ///     : vector<4x5xf32>, tensor<?x?xf32>
3607 /// ```
3608 struct FoldInsertSliceIntoTransferWrite
3609     : public OpRewritePattern<tensor::InsertSliceOp> {
3610 public:
3611   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3612 
3613   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3614                                 PatternRewriter &rewriter) const override {
3615     if (!insertOp.hasUnitStride())
3616       return failure();
3617 
3618     auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>();
3619     if (!xferOp)
3620       return failure();
3621     // TODO: support 0-d corner case.
3622     if (xferOp.getTransferRank() == 0)
3623       return failure();
3624 
3625     if (xferOp.hasOutOfBoundsDim())
3626       return failure();
3627     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3628       return failure();
3629     if (xferOp.getMask())
3630       return failure();
3631     // Fold only if the TransferWriteOp completely overwrites the `source` with
3632     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3633     // content is the data of the vector.
3634     if (!llvm::equal(xferOp.getVectorType().getShape(),
3635                      xferOp.getShapedType().getShape()))
3636       return failure();
3637     if (!xferOp.getPermutationMap().isIdentity())
3638       return failure();
3639 
3640     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3641     // dims are exactly the leading dims. I.e. the following is illegal:
3642     // ```
3643     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3644     //      vector<2x4xf32>, tensor<2x4xf32>
3645     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3646     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3647     // ```
3648     //
3649     // Cannot fold into:
3650     // ```
3651     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3652     //      vector<2x4xf32>, tensor<2x1x4xf32>
3653     // ```
3654     // For this, check the trailing `vectorRank` dims of the insert_slice result
3655     // tensor match the trailing dims of the inferred result tensor.
3656     int64_t rankReduced =
3657         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3658     int64_t vectorRank = xferOp.getVectorType().getRank();
3659     RankedTensorType inferredSourceTensorType =
3660         tensor::ExtractSliceOp::inferResultType(
3661             insertOp.getType(), insertOp.getMixedOffsets(),
3662             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3663     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3664     if (rankReduced > 0 &&
3665         actualSourceTensorShape.take_back(vectorRank) !=
3666             inferredSourceTensorType.getShape().take_back(vectorRank))
3667       return failure();
3668 
3669     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3670         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3671     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3672     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3673                                                  insertOp.getDest(), indices,
3674                                                  ArrayRef<bool>{inBounds});
3675     return success();
3676   }
3677 };
3678 
3679 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3680 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3681 /// overwritten and inserted into another tensor. After this rewrite, the
3682 /// operations bufferize in-place since all of them work on the same slice.
3683 ///
3684 /// For example:
3685 /// ```mlir
3686 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3687 ///        : vector<8x16xf32>, tensor<8x16xf32>
3688 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3689 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3690 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3691 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3692 /// ```
3693 /// folds to
3694 /// ```mlir
3695 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3696 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3697 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3698 ///        : vector<8x16xf32>, tensor<?x?xf32>
3699 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3700 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3701 /// ```
3702 struct SwapExtractSliceOfTransferWrite
3703     : public OpRewritePattern<tensor::InsertSliceOp> {
3704 public:
3705   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3706 
3707   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3708                                 PatternRewriter &rewriter) const override {
3709     if (!insertOp.hasUnitStride())
3710       return failure();
3711     auto extractOp =
3712         insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3713     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3714       return failure();
3715     auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
3716     if (!transferOp || !transferOp->hasOneUse())
3717       return failure();
3718 
3719     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3720     // rank-reducing.
3721     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3722       return rewriter.notifyMatchFailure(insertOp,
3723                                          "use-def chain is rank-reducing");
3724     }
3725 
3726     // Fail if tensor::ExtractSliceOp has non-zero offset.
3727     if (!extractOp.hasZeroOffset()) {
3728       return rewriter.notifyMatchFailure(insertOp,
3729                                          "ExtractSliceOp has non-zero offset");
3730     }
3731 
3732     // Fail if tensor::TransferWriteOp has non-zero offset.
3733     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3734           return getConstantIntValue(value) == static_cast<int64_t>(0);
3735         })) {
3736       return rewriter.notifyMatchFailure(insertOp,
3737                                          "TranferWriteOp has non-zero offset");
3738     }
3739 
3740     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3741     for (const auto &it :
3742          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3743       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3744         return rewriter.notifyMatchFailure(
3745             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3746       }
3747     }
3748 
3749     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3750     assert(transferOp.getVectorType().hasStaticShape() &&
3751            "expected vector to have a static shape");
3752     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3753     SmallVector<int64_t> resultShape = applyPermutationMap(
3754         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3755     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3756       return rewriter.notifyMatchFailure(
3757           insertOp, "TransferWriteOp may not write the full tensor.");
3758     }
3759 
3760     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3761     SmallVector<int64_t> newResultShape = applyPermutationMap(
3762         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3763     SmallVector<bool> newInBounds;
3764     for (const auto &en : enumerate(newResultShape))
3765       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3766     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3767         extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
3768         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3769         insertOp.getMixedStrides());
3770     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3771         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3772         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3773         rewriter.getBoolArrayAttr(newInBounds));
3774     rewriter.updateRootInPlace(insertOp, [&]() {
3775       insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
3776     });
3777     return success();
3778   }
3779 };
3780 
3781 } // namespace
3782 
3783 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3784                                                   MLIRContext *context) {
3785   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3786               SwapExtractSliceOfTransferWrite>(context);
3787 }
3788 
3789 //===----------------------------------------------------------------------===//
3790 // LoadOp
3791 //===----------------------------------------------------------------------===//
3792 
3793 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3794                                                  MemRefType memRefTy) {
3795   if (!isLastMemrefDimUnitStride(memRefTy))
3796     return op->emitOpError("most minor memref dim must have unit stride");
3797   return success();
3798 }
3799 
3800 LogicalResult vector::LoadOp::verify() {
3801   VectorType resVecTy = getVectorType();
3802   MemRefType memRefTy = getMemRefType();
3803 
3804   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3805     return failure();
3806 
3807   // Checks for vector memrefs.
3808   Type memElemTy = memRefTy.getElementType();
3809   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3810     if (memVecTy != resVecTy)
3811       return emitOpError("base memref and result vector types should match");
3812     memElemTy = memVecTy.getElementType();
3813   }
3814 
3815   if (resVecTy.getElementType() != memElemTy)
3816     return emitOpError("base and result element types should match");
3817   if (llvm::size(getIndices()) != memRefTy.getRank())
3818     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3819   return success();
3820 }
3821 
3822 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3823   if (succeeded(foldMemRefCast(*this)))
3824     return getResult();
3825   return OpFoldResult();
3826 }
3827 
3828 //===----------------------------------------------------------------------===//
3829 // StoreOp
3830 //===----------------------------------------------------------------------===//
3831 
3832 LogicalResult vector::StoreOp::verify() {
3833   VectorType valueVecTy = getVectorType();
3834   MemRefType memRefTy = getMemRefType();
3835 
3836   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3837     return failure();
3838 
3839   // Checks for vector memrefs.
3840   Type memElemTy = memRefTy.getElementType();
3841   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3842     if (memVecTy != valueVecTy)
3843       return emitOpError(
3844           "base memref and valueToStore vector types should match");
3845     memElemTy = memVecTy.getElementType();
3846   }
3847 
3848   if (valueVecTy.getElementType() != memElemTy)
3849     return emitOpError("base and valueToStore element type should match");
3850   if (llvm::size(getIndices()) != memRefTy.getRank())
3851     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3852   return success();
3853 }
3854 
3855 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3856                             SmallVectorImpl<OpFoldResult> &results) {
3857   return foldMemRefCast(*this);
3858 }
3859 
3860 //===----------------------------------------------------------------------===//
3861 // MaskedLoadOp
3862 //===----------------------------------------------------------------------===//
3863 
3864 LogicalResult MaskedLoadOp::verify() {
3865   VectorType maskVType = getMaskVectorType();
3866   VectorType passVType = getPassThruVectorType();
3867   VectorType resVType = getVectorType();
3868   MemRefType memType = getMemRefType();
3869 
3870   if (resVType.getElementType() != memType.getElementType())
3871     return emitOpError("base and result element type should match");
3872   if (llvm::size(getIndices()) != memType.getRank())
3873     return emitOpError("requires ") << memType.getRank() << " indices";
3874   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3875     return emitOpError("expected result dim to match mask dim");
3876   if (resVType != passVType)
3877     return emitOpError("expected pass_thru of same type as result type");
3878   return success();
3879 }
3880 
3881 namespace {
3882 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3883 public:
3884   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3885   LogicalResult matchAndRewrite(MaskedLoadOp load,
3886                                 PatternRewriter &rewriter) const override {
3887     switch (get1DMaskFormat(load.getMask())) {
3888     case MaskFormat::AllTrue:
3889       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3890           load, load.getType(), load.getBase(), load.getIndices());
3891       return success();
3892     case MaskFormat::AllFalse:
3893       rewriter.replaceOp(load, load.getPassThru());
3894       return success();
3895     case MaskFormat::Unknown:
3896       return failure();
3897     }
3898     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3899   }
3900 };
3901 } // namespace
3902 
3903 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3904                                                MLIRContext *context) {
3905   results.add<MaskedLoadFolder>(context);
3906 }
3907 
3908 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3909   if (succeeded(foldMemRefCast(*this)))
3910     return getResult();
3911   return OpFoldResult();
3912 }
3913 
3914 //===----------------------------------------------------------------------===//
3915 // MaskedStoreOp
3916 //===----------------------------------------------------------------------===//
3917 
3918 LogicalResult MaskedStoreOp::verify() {
3919   VectorType maskVType = getMaskVectorType();
3920   VectorType valueVType = getVectorType();
3921   MemRefType memType = getMemRefType();
3922 
3923   if (valueVType.getElementType() != memType.getElementType())
3924     return emitOpError("base and valueToStore element type should match");
3925   if (llvm::size(getIndices()) != memType.getRank())
3926     return emitOpError("requires ") << memType.getRank() << " indices";
3927   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3928     return emitOpError("expected valueToStore dim to match mask dim");
3929   return success();
3930 }
3931 
3932 namespace {
3933 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3934 public:
3935   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3936   LogicalResult matchAndRewrite(MaskedStoreOp store,
3937                                 PatternRewriter &rewriter) const override {
3938     switch (get1DMaskFormat(store.getMask())) {
3939     case MaskFormat::AllTrue:
3940       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3941           store, store.getValueToStore(), store.getBase(), store.getIndices());
3942       return success();
3943     case MaskFormat::AllFalse:
3944       rewriter.eraseOp(store);
3945       return success();
3946     case MaskFormat::Unknown:
3947       return failure();
3948     }
3949     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3950   }
3951 };
3952 } // namespace
3953 
3954 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3955                                                 MLIRContext *context) {
3956   results.add<MaskedStoreFolder>(context);
3957 }
3958 
3959 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3960                                   SmallVectorImpl<OpFoldResult> &results) {
3961   return foldMemRefCast(*this);
3962 }
3963 
3964 //===----------------------------------------------------------------------===//
3965 // GatherOp
3966 //===----------------------------------------------------------------------===//
3967 
3968 LogicalResult GatherOp::verify() {
3969   VectorType indVType = getIndexVectorType();
3970   VectorType maskVType = getMaskVectorType();
3971   VectorType resVType = getVectorType();
3972   MemRefType memType = getMemRefType();
3973 
3974   if (resVType.getElementType() != memType.getElementType())
3975     return emitOpError("base and result element type should match");
3976   if (llvm::size(getIndices()) != memType.getRank())
3977     return emitOpError("requires ") << memType.getRank() << " indices";
3978   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3979     return emitOpError("expected result dim to match indices dim");
3980   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3981     return emitOpError("expected result dim to match mask dim");
3982   if (resVType != getPassThruVectorType())
3983     return emitOpError("expected pass_thru of same type as result type");
3984   return success();
3985 }
3986 
3987 namespace {
3988 class GatherFolder final : public OpRewritePattern<GatherOp> {
3989 public:
3990   using OpRewritePattern<GatherOp>::OpRewritePattern;
3991   LogicalResult matchAndRewrite(GatherOp gather,
3992                                 PatternRewriter &rewriter) const override {
3993     switch (get1DMaskFormat(gather.getMask())) {
3994     case MaskFormat::AllTrue:
3995       return failure(); // no unmasked equivalent
3996     case MaskFormat::AllFalse:
3997       rewriter.replaceOp(gather, gather.getPassThru());
3998       return success();
3999     case MaskFormat::Unknown:
4000       return failure();
4001     }
4002     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
4003   }
4004 };
4005 } // namespace
4006 
4007 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
4008                                            MLIRContext *context) {
4009   results.add<GatherFolder>(context);
4010 }
4011 
4012 //===----------------------------------------------------------------------===//
4013 // ScatterOp
4014 //===----------------------------------------------------------------------===//
4015 
4016 LogicalResult ScatterOp::verify() {
4017   VectorType indVType = getIndexVectorType();
4018   VectorType maskVType = getMaskVectorType();
4019   VectorType valueVType = getVectorType();
4020   MemRefType memType = getMemRefType();
4021 
4022   if (valueVType.getElementType() != memType.getElementType())
4023     return emitOpError("base and valueToStore element type should match");
4024   if (llvm::size(getIndices()) != memType.getRank())
4025     return emitOpError("requires ") << memType.getRank() << " indices";
4026   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
4027     return emitOpError("expected valueToStore dim to match indices dim");
4028   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4029     return emitOpError("expected valueToStore dim to match mask dim");
4030   return success();
4031 }
4032 
4033 namespace {
4034 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
4035 public:
4036   using OpRewritePattern<ScatterOp>::OpRewritePattern;
4037   LogicalResult matchAndRewrite(ScatterOp scatter,
4038                                 PatternRewriter &rewriter) const override {
4039     switch (get1DMaskFormat(scatter.getMask())) {
4040     case MaskFormat::AllTrue:
4041       return failure(); // no unmasked equivalent
4042     case MaskFormat::AllFalse:
4043       rewriter.eraseOp(scatter);
4044       return success();
4045     case MaskFormat::Unknown:
4046       return failure();
4047     }
4048     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
4049   }
4050 };
4051 } // namespace
4052 
4053 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
4054                                             MLIRContext *context) {
4055   results.add<ScatterFolder>(context);
4056 }
4057 
4058 //===----------------------------------------------------------------------===//
4059 // ExpandLoadOp
4060 //===----------------------------------------------------------------------===//
4061 
4062 LogicalResult ExpandLoadOp::verify() {
4063   VectorType maskVType = getMaskVectorType();
4064   VectorType passVType = getPassThruVectorType();
4065   VectorType resVType = getVectorType();
4066   MemRefType memType = getMemRefType();
4067 
4068   if (resVType.getElementType() != memType.getElementType())
4069     return emitOpError("base and result element type should match");
4070   if (llvm::size(getIndices()) != memType.getRank())
4071     return emitOpError("requires ") << memType.getRank() << " indices";
4072   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
4073     return emitOpError("expected result dim to match mask dim");
4074   if (resVType != passVType)
4075     return emitOpError("expected pass_thru of same type as result type");
4076   return success();
4077 }
4078 
4079 namespace {
4080 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
4081 public:
4082   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
4083   LogicalResult matchAndRewrite(ExpandLoadOp expand,
4084                                 PatternRewriter &rewriter) const override {
4085     switch (get1DMaskFormat(expand.getMask())) {
4086     case MaskFormat::AllTrue:
4087       rewriter.replaceOpWithNewOp<vector::LoadOp>(
4088           expand, expand.getType(), expand.getBase(), expand.getIndices());
4089       return success();
4090     case MaskFormat::AllFalse:
4091       rewriter.replaceOp(expand, expand.getPassThru());
4092       return success();
4093     case MaskFormat::Unknown:
4094       return failure();
4095     }
4096     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4097   }
4098 };
4099 } // namespace
4100 
4101 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4102                                                MLIRContext *context) {
4103   results.add<ExpandLoadFolder>(context);
4104 }
4105 
4106 //===----------------------------------------------------------------------===//
4107 // CompressStoreOp
4108 //===----------------------------------------------------------------------===//
4109 
4110 LogicalResult CompressStoreOp::verify() {
4111   VectorType maskVType = getMaskVectorType();
4112   VectorType valueVType = getVectorType();
4113   MemRefType memType = getMemRefType();
4114 
4115   if (valueVType.getElementType() != memType.getElementType())
4116     return emitOpError("base and valueToStore element type should match");
4117   if (llvm::size(getIndices()) != memType.getRank())
4118     return emitOpError("requires ") << memType.getRank() << " indices";
4119   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4120     return emitOpError("expected valueToStore dim to match mask dim");
4121   return success();
4122 }
4123 
4124 namespace {
4125 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4126 public:
4127   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4128   LogicalResult matchAndRewrite(CompressStoreOp compress,
4129                                 PatternRewriter &rewriter) const override {
4130     switch (get1DMaskFormat(compress.getMask())) {
4131     case MaskFormat::AllTrue:
4132       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4133           compress, compress.getValueToStore(), compress.getBase(),
4134           compress.getIndices());
4135       return success();
4136     case MaskFormat::AllFalse:
4137       rewriter.eraseOp(compress);
4138       return success();
4139     case MaskFormat::Unknown:
4140       return failure();
4141     }
4142     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4143   }
4144 };
4145 } // namespace
4146 
4147 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4148                                                   MLIRContext *context) {
4149   results.add<CompressStoreFolder>(context);
4150 }
4151 
4152 //===----------------------------------------------------------------------===//
4153 // ShapeCastOp
4154 //===----------------------------------------------------------------------===//
4155 
4156 /// Returns true if each element of 'a' is equal to the product of a contiguous
4157 /// sequence of the elements of 'b'. Returns false otherwise.
4158 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4159   unsigned rankA = a.size();
4160   unsigned rankB = b.size();
4161   assert(rankA < rankB);
4162 
4163   unsigned i = 0;
4164   unsigned j = 0;
4165   while (i < rankA && j < rankB) {
4166     int64_t dimA = a[i];
4167     int64_t dimB = 1;
4168     while (dimB < dimA && j < rankB)
4169       dimB *= b[j++];
4170     if (dimA != dimB)
4171       break;
4172     ++i;
4173 
4174     // Handle the case when trailing dimensions are of size 1.
4175     // Include them into the contiguous sequence.
4176     auto isOne = [](int64_t v) { return v == 1; };
4177     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4178       i = rankA;
4179     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4180       j = rankB;
4181   }
4182 
4183   return i == rankA && j == rankB;
4184 }
4185 
4186 static LogicalResult verifyVectorShapeCast(Operation *op,
4187                                            VectorType sourceVectorType,
4188                                            VectorType resultVectorType) {
4189   // Check that element type is the same.
4190   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4191     return op->emitOpError("source/result vectors must have same element type");
4192   auto sourceShape = sourceVectorType.getShape();
4193   auto resultShape = resultVectorType.getShape();
4194 
4195   // Check that product of source dim sizes matches product of result dim sizes.
4196   int64_t sourceDimProduct = std::accumulate(
4197       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4198   int64_t resultDimProduct = std::accumulate(
4199       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4200   if (sourceDimProduct != resultDimProduct)
4201     return op->emitOpError("source/result number of elements must match");
4202 
4203   // Check that expanding/contracting rank cases.
4204   unsigned sourceRank = sourceVectorType.getRank();
4205   unsigned resultRank = resultVectorType.getRank();
4206   if (sourceRank < resultRank) {
4207     if (!isValidShapeCast(sourceShape, resultShape))
4208       return op->emitOpError("invalid shape cast");
4209   } else if (sourceRank > resultRank) {
4210     if (!isValidShapeCast(resultShape, sourceShape))
4211       return op->emitOpError("invalid shape cast");
4212   }
4213   return success();
4214 }
4215 
4216 LogicalResult ShapeCastOp::verify() {
4217   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4218   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4219 
4220   // Check if source/result are of vector type.
4221   if (sourceVectorType && resultVectorType)
4222     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4223 
4224   return success();
4225 }
4226 
4227 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4228   // No-op shape cast.
4229   if (getSource().getType() == getResult().getType())
4230     return getSource();
4231 
4232   // Canceling shape casts.
4233   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4234     if (getResult().getType() == otherOp.getSource().getType())
4235       return otherOp.getSource();
4236 
4237     // Only allows valid transitive folding.
4238     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4239     VectorType resultType = getResult().getType().cast<VectorType>();
4240     if (srcType.getRank() < resultType.getRank()) {
4241       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4242         return {};
4243     } else if (srcType.getRank() > resultType.getRank()) {
4244       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4245         return {};
4246     } else {
4247       return {};
4248     }
4249 
4250     setOperand(otherOp.getSource());
4251     return getResult();
4252   }
4253 
4254   // Cancelling broadcast and shape cast ops.
4255   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4256     if (bcastOp.getSourceType() == getType())
4257       return bcastOp.getSource();
4258   }
4259 
4260   return {};
4261 }
4262 
4263 namespace {
4264 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4265 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4266 public:
4267   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4268 
4269   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4270                                 PatternRewriter &rewriter) const override {
4271     auto constantOp =
4272         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4273     if (!constantOp)
4274       return failure();
4275     // Only handle splat for now.
4276     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4277     if (!dense)
4278       return failure();
4279     auto newAttr =
4280         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4281                                dense.getSplatValue<Attribute>());
4282     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4283     return success();
4284   }
4285 };
4286 
4287 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast.
4288 /// This only applies when the shape of the broadcast source is a suffix of the
4289 /// shape of the result (i.e. when broadcast without reshape is expressive
4290 /// enough to capture the result in a single op).
4291 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
4292 public:
4293   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4294 
4295   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4296                                 PatternRewriter &rewriter) const override {
4297     auto broadcastOp =
4298         shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
4299     if (!broadcastOp)
4300       return failure();
4301 
4302     auto broadcastSourceVectorType =
4303         broadcastOp.getSourceType().dyn_cast<VectorType>();
4304     auto broadcastSourceShape = broadcastSourceVectorType
4305                                     ? broadcastSourceVectorType.getShape()
4306                                     : ArrayRef<int64_t>{};
4307     auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape();
4308 
4309     // Bail if `broadcastSourceShape` is not a suffix of the result.
4310     bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back(
4311                                                  broadcastSourceShape.size()));
4312     if (!isSuffix)
4313       return failure();
4314 
4315     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4316         shapeCastOp, shapeCastOp.getResultVectorType(),
4317         broadcastOp.getSource());
4318     return success();
4319   }
4320 };
4321 
4322 } // namespace
4323 
4324 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4325                                               MLIRContext *context) {
4326   results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context);
4327 }
4328 
4329 //===----------------------------------------------------------------------===//
4330 // VectorBitCastOp
4331 //===----------------------------------------------------------------------===//
4332 
4333 LogicalResult BitCastOp::verify() {
4334   auto sourceVectorType = getSourceVectorType();
4335   auto resultVectorType = getResultVectorType();
4336 
4337   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4338     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4339       return emitOpError("dimension size mismatch at: ") << i;
4340   }
4341 
4342   DataLayout dataLayout = DataLayout::closest(*this);
4343   auto sourceElementBits =
4344       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4345   auto resultElementBits =
4346       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4347 
4348   if (sourceVectorType.getRank() == 0) {
4349     if (sourceElementBits != resultElementBits)
4350       return emitOpError("source/result bitwidth of the 0-D vector element "
4351                          "types must be equal");
4352   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4353              resultElementBits * resultVectorType.getShape().back()) {
4354     return emitOpError(
4355         "source/result bitwidth of the minor 1-D vectors must be equal");
4356   }
4357 
4358   return success();
4359 }
4360 
4361 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4362   // Nop cast.
4363   if (getSource().getType() == getResult().getType())
4364     return getSource();
4365 
4366   // Canceling bitcasts.
4367   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4368     if (getResult().getType() == otherOp.getSource().getType())
4369       return otherOp.getSource();
4370 
4371     setOperand(otherOp.getSource());
4372     return getResult();
4373   }
4374 
4375   Attribute sourceConstant = operands.front();
4376   if (!sourceConstant)
4377     return {};
4378 
4379   Type srcElemType = getSourceVectorType().getElementType();
4380   Type dstElemType = getResultVectorType().getElementType();
4381 
4382   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4383     if (floatPack.isSplat()) {
4384       auto splat = floatPack.getSplatValue<FloatAttr>();
4385 
4386       // Casting fp16 into fp32.
4387       if (srcElemType.isF16() && dstElemType.isF32()) {
4388         uint32_t bits = static_cast<uint32_t>(
4389             splat.getValue().bitcastToAPInt().getZExtValue());
4390         // Duplicate the 16-bit pattern.
4391         bits = (bits << 16) | (bits & 0xffff);
4392         APInt intBits(32, bits);
4393         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4394         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4395       }
4396     }
4397   }
4398 
4399   return {};
4400 }
4401 
4402 //===----------------------------------------------------------------------===//
4403 // TypeCastOp
4404 //===----------------------------------------------------------------------===//
4405 
4406 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4407   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4408   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4409                               memRefType.getShape().end());
4410   if (vectorType)
4411     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4412   return res;
4413 }
4414 
4415 /// Build the canonical memRefType with a single vector.
4416 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4417 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4418                        Value source) {
4419   result.addOperands(source);
4420   MemRefType memRefType = source.getType().cast<MemRefType>();
4421   VectorType vectorType =
4422       VectorType::get(extractShape(memRefType),
4423                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4424   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4425                                   memRefType.getMemorySpace()));
4426 }
4427 
4428 LogicalResult TypeCastOp::verify() {
4429   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4430   if (!canonicalType.getLayout().isIdentity())
4431     return emitOpError("expects operand to be a memref with identity layout");
4432   if (!getResultMemRefType().getLayout().isIdentity())
4433     return emitOpError("expects result to be a memref with identity layout");
4434   if (getResultMemRefType().getMemorySpace() !=
4435       getMemRefType().getMemorySpace())
4436     return emitOpError("expects result in same memory space");
4437 
4438   auto sourceType = getMemRefType();
4439   auto resultType = getResultMemRefType();
4440   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4441       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4442     return emitOpError(
4443                "expects result and operand with same underlying scalar type: ")
4444            << resultType;
4445   if (extractShape(sourceType) != extractShape(resultType))
4446     return emitOpError(
4447                "expects concatenated result and operand shapes to be equal: ")
4448            << resultType;
4449   return success();
4450 }
4451 
4452 //===----------------------------------------------------------------------===//
4453 // TransposeOp
4454 //===----------------------------------------------------------------------===//
4455 
4456 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4457                                 Value vector, ArrayRef<int64_t> transp) {
4458   VectorType vt = vector.getType().cast<VectorType>();
4459   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4460   for (unsigned i = 0; i < transp.size(); ++i)
4461     transposedShape[i] = vt.getShape()[transp[i]];
4462 
4463   result.addOperands(vector);
4464   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4465   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4466 }
4467 
4468 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4469   // Eliminate splat constant transpose ops.
4470   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4471     if (attr.isSplat())
4472       return attr.reshape(getResultType());
4473 
4474   // Eliminate identity transpose ops. This happens when the dimensions of the
4475   // input vector remain in their original order after the transpose operation.
4476   SmallVector<int64_t, 4> transp;
4477   getTransp(transp);
4478 
4479   // Check if the permutation of the dimensions contains sequential values:
4480   // {0, 1, 2, ...}.
4481   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4482     if (transp[i] != i)
4483       return {};
4484   }
4485 
4486   return getVector();
4487 }
4488 
4489 LogicalResult vector::TransposeOp::verify() {
4490   VectorType vectorType = getVectorType();
4491   VectorType resultType = getResultType();
4492   int64_t rank = resultType.getRank();
4493   if (vectorType.getRank() != rank)
4494     return emitOpError("vector result rank mismatch: ") << rank;
4495   // Verify transposition array.
4496   auto transpAttr = getTransp().getValue();
4497   int64_t size = transpAttr.size();
4498   if (rank != size)
4499     return emitOpError("transposition length mismatch: ") << size;
4500   SmallVector<bool, 8> seen(rank, false);
4501   for (const auto &ta : llvm::enumerate(transpAttr)) {
4502     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4503     if (i < 0 || i >= rank)
4504       return emitOpError("transposition index out of range: ") << i;
4505     if (seen[i])
4506       return emitOpError("duplicate position index: ") << i;
4507     seen[i] = true;
4508     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4509       return emitOpError("dimension size mismatch at: ") << i;
4510   }
4511   return success();
4512 }
4513 
4514 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4515   return llvm::to_vector<4>(getResultType().getShape());
4516 }
4517 
4518 namespace {
4519 
4520 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4521 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4522 public:
4523   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4524 
4525   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4526                                 PatternRewriter &rewriter) const override {
4527     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4528     auto getPermutation = [](vector::TransposeOp transpose) {
4529       SmallVector<int64_t, 4> permutation;
4530       transpose.getTransp(permutation);
4531       return permutation;
4532     };
4533 
4534     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4535     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4536                                   ArrayRef<int64_t> permutation2) {
4537       SmallVector<int64_t, 4> result;
4538       for (auto index : permutation2)
4539         result.push_back(permutation1[index]);
4540       return result;
4541     };
4542 
4543     // Return if the input of 'transposeOp' is not defined by another transpose.
4544     vector::TransposeOp parentTransposeOp =
4545         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4546     if (!parentTransposeOp)
4547       return failure();
4548 
4549     SmallVector<int64_t, 4> permutation = composePermutations(
4550         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4551     // Replace 'transposeOp' with a new transpose operation.
4552     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4553         transposeOp, transposeOp.getResult().getType(),
4554         parentTransposeOp.getVector(),
4555         vector::getVectorSubscriptAttr(rewriter, permutation));
4556     return success();
4557   }
4558 };
4559 
4560 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4561 struct FoldTransposedScalarBroadcast final
4562     : public OpRewritePattern<vector::TransposeOp> {
4563   using OpRewritePattern::OpRewritePattern;
4564 
4565   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4566                                 PatternRewriter &rewriter) const override {
4567     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4568     if (!bcastOp)
4569       return failure();
4570 
4571     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4572     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4573       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4574           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4575       return success();
4576     }
4577 
4578     return failure();
4579   }
4580 };
4581 
4582 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4583 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4584 public:
4585   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4586 
4587   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4588                                 PatternRewriter &rewriter) const override {
4589     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4590     if (!splatOp)
4591       return failure();
4592 
4593     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4594         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4595     return success();
4596   }
4597 };
4598 
4599 } // namespace
4600 
4601 void vector::TransposeOp::getCanonicalizationPatterns(
4602     RewritePatternSet &results, MLIRContext *context) {
4603   results
4604       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4605           context);
4606 }
4607 
4608 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4609   populateFromInt64AttrArray(getTransp(), results);
4610 }
4611 
4612 //===----------------------------------------------------------------------===//
4613 // ConstantMaskOp
4614 //===----------------------------------------------------------------------===//
4615 
4616 LogicalResult ConstantMaskOp::verify() {
4617   auto resultType = getResult().getType().cast<VectorType>();
4618   // Check the corner case of 0-D vectors first.
4619   if (resultType.getRank() == 0) {
4620     if (getMaskDimSizes().size() != 1)
4621       return emitError("array attr must have length 1 for 0-D vectors");
4622     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4623     if (dim != 0 && dim != 1)
4624       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4625     return success();
4626   }
4627 
4628   // Verify that array attr size matches the rank of the vector result.
4629   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4630     return emitOpError(
4631         "must specify array attr of size equal vector result rank");
4632   // Verify that each array attr element is in bounds of corresponding vector
4633   // result dimension size.
4634   auto resultShape = resultType.getShape();
4635   SmallVector<int64_t, 4> maskDimSizes;
4636   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4637     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4638     if (attrValue < 0 || attrValue > resultShape[it.index()])
4639       return emitOpError(
4640           "array attr of size out of bounds of vector result dimension size");
4641     maskDimSizes.push_back(attrValue);
4642   }
4643   // Verify that if one mask dim size is zero, they all should be zero (because
4644   // the mask region is a conjunction of each mask dimension interval).
4645   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4646   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4647   if (anyZeros && !allZeros)
4648     return emitOpError("expected all mask dim sizes to be zeros, "
4649                        "as a result of conjunction with zero mask dim");
4650   // Verify that if the mask type is scalable, dimensions should be zero because
4651   // constant scalable masks can only be defined for the "none set" or "all set"
4652   // cases, and there is no VLA way to define an "all set" case for
4653   // `vector.constant_mask`. In the future, a convention could be established
4654   // to decide if a specific dimension value could be considered as "all set".
4655   if (resultType.isScalable() &&
4656       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4657     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4658   return success();
4659 }
4660 
4661 //===----------------------------------------------------------------------===//
4662 // CreateMaskOp
4663 //===----------------------------------------------------------------------===//
4664 
4665 LogicalResult CreateMaskOp::verify() {
4666   auto vectorType = getResult().getType().cast<VectorType>();
4667   // Verify that an operand was specified for each result vector each dimension.
4668   if (vectorType.getRank() == 0) {
4669     if (getNumOperands() != 1)
4670       return emitOpError(
4671           "must specify exactly one operand for 0-D create_mask");
4672   } else if (getNumOperands() !=
4673              getResult().getType().cast<VectorType>().getRank()) {
4674     return emitOpError(
4675         "must specify an operand for each result vector dimension");
4676   }
4677   return success();
4678 }
4679 
4680 namespace {
4681 
4682 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4683 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4684 public:
4685   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4686 
4687   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4688                                 PatternRewriter &rewriter) const override {
4689     // Return if any of 'createMaskOp' operands are not defined by a constant.
4690     auto isNotDefByConstant = [](Value operand) {
4691       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4692     };
4693     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4694       return failure();
4695 
4696     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4697     // are negative or zero.
4698     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4699       if (vType.isScalable())
4700         for (auto opDim : createMaskOp.getOperands()) {
4701           APInt intVal;
4702           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4703               intVal.isStrictlyPositive())
4704             return failure();
4705         }
4706     }
4707 
4708     // Gather constant mask dimension sizes.
4709     SmallVector<int64_t, 4> maskDimSizes;
4710     for (auto it : llvm::zip(createMaskOp.operands(),
4711                              createMaskOp.getType().getShape())) {
4712       auto *defOp = std::get<0>(it).getDefiningOp();
4713       int64_t maxDimSize = std::get<1>(it);
4714       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4715       dimSize = std::min(dimSize, maxDimSize);
4716       // If one of dim sizes is zero, set all dims to zero.
4717       if (dimSize <= 0) {
4718         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4719         break;
4720       }
4721       maskDimSizes.push_back(dimSize);
4722     }
4723     // Replace 'createMaskOp' with ConstantMaskOp.
4724     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4725         createMaskOp, createMaskOp.getResult().getType(),
4726         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4727     return success();
4728   }
4729 };
4730 
4731 } // namespace
4732 
4733 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4734                                                MLIRContext *context) {
4735   results.add<CreateMaskFolder>(context);
4736 }
4737 
4738 //===----------------------------------------------------------------------===//
4739 // ScanOp
4740 //===----------------------------------------------------------------------===//
4741 
4742 LogicalResult ScanOp::verify() {
4743   VectorType srcType = getSourceType();
4744   VectorType initialType = getInitialValueType();
4745   // Check reduction dimension < rank.
4746   int64_t srcRank = srcType.getRank();
4747   int64_t reductionDim = getReductionDim();
4748   if (reductionDim >= srcRank)
4749     return emitOpError("reduction dimension ")
4750            << reductionDim << " has to be less than " << srcRank;
4751 
4752   // Check that rank(initial_value) = rank(src) - 1.
4753   int64_t initialValueRank = initialType.getRank();
4754   if (initialValueRank != srcRank - 1)
4755     return emitOpError("initial value rank ")
4756            << initialValueRank << " has to be equal to " << srcRank - 1;
4757 
4758   // Check shapes of initial value and src.
4759   ArrayRef<int64_t> srcShape = srcType.getShape();
4760   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4761   SmallVector<int64_t> expectedShape;
4762   for (int i = 0; i < srcRank; i++) {
4763     if (i != reductionDim)
4764       expectedShape.push_back(srcShape[i]);
4765   }
4766   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4767                    [](std::tuple<int64_t, int64_t> s) {
4768                      return std::get<0>(s) != std::get<1>(s);
4769                    })) {
4770     return emitOpError("incompatible input/initial value shapes");
4771   }
4772 
4773   // Verify supported reduction kind.
4774   Type eltType = getDestType().getElementType();
4775   if (!isSupportedCombiningKind(getKind(), eltType))
4776     return emitOpError("unsupported reduction type ")
4777            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4778            << "'";
4779 
4780   return success();
4781 }
4782 
4783 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4784     RewritePatternSet &patterns) {
4785   patterns
4786       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4787            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4788            StridedSliceConstantMaskFolder, TransposeFolder>(
4789           patterns.getContext());
4790 }
4791 
4792 //===----------------------------------------------------------------------===//
4793 // SplatOp
4794 //===----------------------------------------------------------------------===//
4795 
4796 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4797   auto constOperand = operands.front();
4798   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4799     return {};
4800 
4801   // SplatElementsAttr::get treats single value for second arg as being a splat.
4802   return SplatElementsAttr::get(getType(), {constOperand});
4803 }
4804 
4805 //===----------------------------------------------------------------------===//
4806 // WarpExecuteOnLane0Op
4807 //===----------------------------------------------------------------------===//
4808 
4809 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4810   p << "(" << getLaneid() << ")";
4811 
4812   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4813   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4814   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4815 
4816   if (!getArgs().empty())
4817     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4818   if (!getResults().empty())
4819     p << " -> (" << getResults().getTypes() << ')';
4820   p << " ";
4821   p.printRegion(getRegion(),
4822                 /*printEntryBlockArgs=*/true,
4823                 /*printBlockTerminators=*/!getResults().empty());
4824   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4825 }
4826 
4827 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4828                                         OperationState &result) {
4829   // Create the region.
4830   result.regions.reserve(1);
4831   Region *warpRegion = result.addRegion();
4832 
4833   auto &builder = parser.getBuilder();
4834   OpAsmParser::UnresolvedOperand laneId;
4835 
4836   // Parse predicate operand.
4837   if (parser.parseLParen() ||
4838       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4839       parser.parseRParen())
4840     return failure();
4841 
4842   int64_t warpSize;
4843   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4844       parser.parseRSquare())
4845     return failure();
4846   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4847                                                         builder.getContext())),
4848                       builder.getI64IntegerAttr(warpSize));
4849 
4850   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4851     return failure();
4852 
4853   llvm::SMLoc inputsOperandsLoc;
4854   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4855   SmallVector<Type> inputTypes;
4856   if (succeeded(parser.parseOptionalKeyword("args"))) {
4857     if (parser.parseLParen())
4858       return failure();
4859 
4860     inputsOperandsLoc = parser.getCurrentLocation();
4861     if (parser.parseOperandList(inputsOperands) ||
4862         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4863       return failure();
4864   }
4865   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4866                              result.operands))
4867     return failure();
4868 
4869   // Parse optional results type list.
4870   if (parser.parseOptionalArrowTypeList(result.types))
4871     return failure();
4872   // Parse the region.
4873   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4874                          /*argTypes=*/{}))
4875     return failure();
4876   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4877 
4878   // Parse the optional attribute list.
4879   if (parser.parseOptionalAttrDict(result.attributes))
4880     return failure();
4881   return success();
4882 }
4883 
4884 void WarpExecuteOnLane0Op::getSuccessorRegions(
4885     Optional<unsigned> index, ArrayRef<Attribute> operands,
4886     SmallVectorImpl<RegionSuccessor> &regions) {
4887   if (index) {
4888     regions.push_back(RegionSuccessor(getResults()));
4889     return;
4890   }
4891 
4892   // The warp region is always executed
4893   regions.push_back(RegionSuccessor(&getWarpRegion()));
4894 }
4895 
4896 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4897                                  TypeRange resultTypes, Value laneId,
4898                                  int64_t warpSize) {
4899   build(builder, result, resultTypes, laneId, warpSize,
4900         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4901 }
4902 
4903 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4904                                  TypeRange resultTypes, Value laneId,
4905                                  int64_t warpSize, ValueRange args,
4906                                  TypeRange blockArgTypes) {
4907   result.addOperands(laneId);
4908   result.addAttribute(getAttributeNames()[0],
4909                       builder.getI64IntegerAttr(warpSize));
4910   result.addTypes(resultTypes);
4911   result.addOperands(args);
4912   assert(args.size() == blockArgTypes.size());
4913   OpBuilder::InsertionGuard guard(builder);
4914   Region *warpRegion = result.addRegion();
4915   Block *block = builder.createBlock(warpRegion);
4916   for (auto it : llvm::zip(blockArgTypes, args))
4917     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4918 }
4919 
4920 /// Helper check if the distributed vector type is consistent with the expanded
4921 /// type and distributed size.
4922 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4923                                            int64_t warpSize, Operation *op) {
4924   // If the types matches there is no distribution.
4925   if (expanded == distributed)
4926     return success();
4927   auto expandedVecType = expanded.dyn_cast<VectorType>();
4928   auto distributedVecType = distributed.dyn_cast<VectorType>();
4929   if (!expandedVecType || !distributedVecType)
4930     return op->emitOpError("expected vector type for distributed operands.");
4931   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4932       expandedVecType.getElementType() != distributedVecType.getElementType())
4933     return op->emitOpError(
4934         "expected distributed vectors to have same rank and element type.");
4935   bool foundDistributedDim = false;
4936   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4937     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4938       continue;
4939     if (expandedVecType.getDimSize(i) ==
4940         distributedVecType.getDimSize(i) * warpSize) {
4941       if (foundDistributedDim)
4942         return op->emitOpError()
4943                << "expected only one dimension to be distributed from "
4944                << expandedVecType << " to " << distributedVecType;
4945       foundDistributedDim = true;
4946       continue;
4947     }
4948     return op->emitOpError() << "incompatible distribution dimensions from "
4949                              << expandedVecType << " to " << distributedVecType;
4950   }
4951   return success();
4952 }
4953 
4954 LogicalResult WarpExecuteOnLane0Op::verify() {
4955   if (getArgs().size() != getWarpRegion().getNumArguments())
4956     return emitOpError(
4957         "expected same number op arguments and block arguments.");
4958   auto yield =
4959       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4960   if (yield.getNumOperands() != getNumResults())
4961     return emitOpError(
4962         "expected same number of yield operands and return values.");
4963   int64_t warpSize = getWarpSize();
4964   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4965     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4966                                      std::get<1>(it).getType(), warpSize,
4967                                      getOperation())))
4968       return failure();
4969   }
4970   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4971     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4972                                      std::get<1>(it).getType(), warpSize,
4973                                      getOperation())))
4974       return failure();
4975   }
4976   return success();
4977 }
4978 
4979 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4980   return succeeded(
4981       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4982 }
4983 
4984 //===----------------------------------------------------------------------===//
4985 // TableGen'd op method definitions
4986 //===----------------------------------------------------------------------===//
4987 
4988 #define GET_OP_CLASSES
4989 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4990