1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::UnresolvedOperand lhsInfo; 530 OpAsmParser::UnresolvedOperand rhsInfo; 531 OpAsmParser::UnresolvedOperand accInfo; 532 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << getLhs() << ", "; 586 p << getRhs() << ", " << getAcc(); 587 if (getMasks().size() == 2) 588 p << ", " << getMasks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (getIndexingMaps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = getIteratorTypes().getValue().size(); 706 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(getKind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = getIndexingMaps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, getIteratorTypes(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, getIteratorTypes(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.getAcc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.getAcc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (getPosition()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!getPosition()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 947 // Skip the 0-D vector here now. 948 if (operands.size() < 2) 949 return {}; 950 951 Attribute src = operands[0]; 952 Attribute pos = operands[1]; 953 954 // Fold extractelement (splat X) -> X. 955 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 956 return splat.getInput(); 957 958 if (!pos || !src) 959 return {}; 960 961 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 962 963 auto attr = pos.dyn_cast<IntegerAttr>(); 964 uint64_t posIdx = attr.getInt(); 965 966 return srcElements[posIdx]; 967 } 968 969 //===----------------------------------------------------------------------===// 970 // ExtractOp 971 //===----------------------------------------------------------------------===// 972 973 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 974 Value source, ArrayRef<int64_t> position) { 975 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 976 } 977 978 // Convenience builder which assumes the values are constant indices. 979 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 980 Value source, ValueRange position) { 981 SmallVector<int64_t, 4> positionConstants = 982 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 983 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 984 })); 985 build(builder, result, source, positionConstants); 986 } 987 988 LogicalResult 989 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 990 ValueRange operands, DictionaryAttr attributes, 991 RegionRange, 992 SmallVectorImpl<Type> &inferredReturnTypes) { 993 ExtractOp::Adaptor op(operands, attributes); 994 auto vectorType = op.getVector().getType().cast<VectorType>(); 995 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 996 inferredReturnTypes.push_back(vectorType.getElementType()); 997 } else { 998 auto n = 999 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1000 inferredReturnTypes.push_back(VectorType::get( 1001 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1002 } 1003 return success(); 1004 } 1005 1006 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1007 // Allow extracting 1-element vectors instead of scalars. 1008 auto isCompatible = [](TypeRange l, TypeRange r) { 1009 auto vectorType = l.front().dyn_cast<VectorType>(); 1010 return vectorType && vectorType.getShape().equals({1}) && 1011 vectorType.getElementType() == r.front(); 1012 }; 1013 if (l.size() == 1 && r.size() == 1 && 1014 (isCompatible(l, r) || isCompatible(r, l))) 1015 return true; 1016 return l == r; 1017 } 1018 1019 LogicalResult vector::ExtractOp::verify() { 1020 auto positionAttr = getPosition().getValue(); 1021 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1022 return emitOpError( 1023 "expected position attribute of rank smaller than vector rank"); 1024 for (const auto &en : llvm::enumerate(positionAttr)) { 1025 auto attr = en.value().dyn_cast<IntegerAttr>(); 1026 if (!attr || attr.getInt() < 0 || 1027 attr.getInt() >= getVectorType().getDimSize(en.index())) 1028 return emitOpError("expected position attribute #") 1029 << (en.index() + 1) 1030 << " to be a non-negative integer smaller than the corresponding " 1031 "vector dimension"; 1032 } 1033 return success(); 1034 } 1035 1036 template <typename IntType> 1037 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1038 return llvm::to_vector<4>(llvm::map_range( 1039 arrayAttr.getAsRange<IntegerAttr>(), 1040 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1041 } 1042 1043 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1044 /// positions. 1045 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1046 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1047 return failure(); 1048 1049 SmallVector<int64_t, 4> globalPosition; 1050 ExtractOp currentOp = extractOp; 1051 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1052 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1053 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1054 currentOp = nextOp; 1055 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1056 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1057 } 1058 extractOp.setOperand(currentOp.getVector()); 1059 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1060 OpBuilder b(extractOp.getContext()); 1061 std::reverse(globalPosition.begin(), globalPosition.end()); 1062 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1063 b.getI64ArrayAttr(globalPosition)); 1064 return success(); 1065 } 1066 1067 namespace { 1068 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1069 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1070 /// Compose TransposeOp permutations as we walk back. 1071 /// This helper class keeps an updated extraction position `extractPosition` 1072 /// with extra trailing sentinels. 1073 /// The sentinels encode the internal transposition status of the result vector. 1074 /// As we iterate, extractPosition is permuted and updated. 1075 class ExtractFromInsertTransposeChainState { 1076 public: 1077 ExtractFromInsertTransposeChainState(ExtractOp e); 1078 1079 /// Iterate over producing insert and transpose ops until we find a fold. 1080 Value fold(); 1081 1082 private: 1083 /// Return true if the vector at position `a` is contained within the vector 1084 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1085 /// is a prefix of `b`. 1086 template <typename ContainerA, typename ContainerB> 1087 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1088 return a.size() <= b.size() && 1089 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1090 } 1091 1092 /// Return true if the vector at position `a` intersects the vector at 1093 /// position `b`. Under insert/extract semantics, this is the same as equality 1094 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1095 /// Comparison is on the common prefix (i.e. zip). 1096 template <typename ContainerA, typename ContainerB> 1097 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1098 for (auto it : llvm::zip(a, b)) { 1099 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1100 continue; 1101 if (std::get<0>(it) != std::get<1>(it)) 1102 return false; 1103 } 1104 return true; 1105 } 1106 1107 /// Folding is only possible in the absence of an internal permutation in the 1108 /// result vector. 1109 bool canFold() { 1110 return (sentinels == 1111 makeArrayRef(extractPosition).drop_front(extractedRank)); 1112 } 1113 1114 // Helper to get the next defining op of interest. 1115 void updateStateForNextIteration(Value v) { 1116 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1117 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1118 }; 1119 1120 // Case 1. If we hit a transpose, just compose the map and iterate. 1121 // Invariant: insert + transpose do not change rank, we can always compose. 1122 LogicalResult handleTransposeOp(); 1123 1124 // Case 2: the insert position matches extractPosition exactly, early return. 1125 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1126 1127 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1128 /// portion of the source of the insert. 1129 /// Example: 1130 /// ``` 1131 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1132 /// // extractPosition == [1, 2, 3] 1133 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1134 /// // can fold to vector.extract %source[0, 3] 1135 /// %ext = vector.extract %source[3]: vector<5x6> 1136 /// ``` 1137 /// To traverse through %source, we need to set the leading dims to 0 and 1138 /// drop the extra leading dims. 1139 /// This method updates the internal state. 1140 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1141 1142 /// Try to fold in place to extract(source, extractPosition) and return the 1143 /// folded result. Return null if folding is not possible (e.g. due to an 1144 /// internal tranposition in the result). 1145 Value tryToFoldExtractOpInPlace(Value source); 1146 1147 ExtractOp extractOp; 1148 int64_t vectorRank; 1149 int64_t extractedRank; 1150 1151 InsertOp nextInsertOp; 1152 TransposeOp nextTransposeOp; 1153 1154 /// Sentinel values that encode the internal permutation status of the result. 1155 /// They are set to (-1, ... , -k) at the beginning and appended to 1156 /// `extractPosition`. 1157 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1158 /// ensure that there is no internal transposition. 1159 /// Internal transposition cannot be accounted for with a folding pattern. 1160 // TODO: We could relax the internal transposition with an extra transposition 1161 // operation in a future canonicalizer. 1162 SmallVector<int64_t> sentinels; 1163 SmallVector<int64_t> extractPosition; 1164 }; 1165 } // namespace 1166 1167 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1168 ExtractOp e) 1169 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1170 extractedRank(extractOp.getPosition().size()) { 1171 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1172 sentinels.reserve(vectorRank - extractedRank); 1173 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1174 sentinels.push_back(-(i + 1)); 1175 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1176 llvm::append_range(extractPosition, sentinels); 1177 } 1178 1179 // Case 1. If we hit a transpose, just compose the map and iterate. 1180 // Invariant: insert + transpose do not change rank, we can always compose. 1181 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1182 if (!nextTransposeOp) 1183 return failure(); 1184 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1185 AffineMap m = inversePermutation( 1186 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1187 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1188 return success(); 1189 } 1190 1191 // Case 2: the insert position matches extractPosition exactly, early return. 1192 LogicalResult 1193 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1194 Value &res) { 1195 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1196 if (makeArrayRef(insertedPos) != 1197 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1198 return failure(); 1199 // Case 2.a. early-exit fold. 1200 res = nextInsertOp.getSource(); 1201 // Case 2.b. if internal transposition is present, canFold will be false. 1202 return success(); 1203 } 1204 1205 /// Case 3: if inserted position is a prefix of extractPosition, 1206 /// extract a portion of the source of the insertion. 1207 /// This method updates the internal state. 1208 LogicalResult 1209 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1210 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1211 if (!isContainedWithin(insertedPos, extractPosition)) 1212 return failure(); 1213 // Set leading dims to zero. 1214 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1215 // Drop extra leading dims. 1216 extractPosition.erase(extractPosition.begin(), 1217 extractPosition.begin() + insertedPos.size()); 1218 extractedRank = extractPosition.size() - sentinels.size(); 1219 // Case 3.a. early-exit fold (break and delegate to post-while path). 1220 res = nextInsertOp.getSource(); 1221 // Case 3.b. if internal transposition is present, canFold will be false. 1222 return success(); 1223 } 1224 1225 /// Try to fold in place to extract(source, extractPosition) and return the 1226 /// folded result. Return null if folding is not possible (e.g. due to an 1227 /// internal tranposition in the result). 1228 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1229 Value source) { 1230 // If we can't fold (either internal transposition, or nothing to fold), bail. 1231 bool nothingToFold = (source == extractOp.getVector()); 1232 if (nothingToFold || !canFold()) 1233 return Value(); 1234 // Otherwise, fold by updating the op inplace and return its result. 1235 OpBuilder b(extractOp.getContext()); 1236 extractOp->setAttr( 1237 extractOp.getPositionAttrName(), 1238 b.getI64ArrayAttr( 1239 makeArrayRef(extractPosition).take_front(extractedRank))); 1240 extractOp.getVectorMutable().assign(source); 1241 return extractOp.getResult(); 1242 } 1243 1244 /// Iterate over producing insert and transpose ops until we find a fold. 1245 Value ExtractFromInsertTransposeChainState::fold() { 1246 Value valueToExtractFrom = extractOp.getVector(); 1247 updateStateForNextIteration(valueToExtractFrom); 1248 while (nextInsertOp || nextTransposeOp) { 1249 // Case 1. If we hit a transpose, just compose the map and iterate. 1250 // Invariant: insert + transpose do not change rank, we can always compose. 1251 if (succeeded(handleTransposeOp())) { 1252 valueToExtractFrom = nextTransposeOp.getVector(); 1253 updateStateForNextIteration(valueToExtractFrom); 1254 continue; 1255 } 1256 1257 Value result; 1258 // Case 2: the position match exactly. 1259 if (succeeded(handleInsertOpWithMatchingPos(result))) 1260 return result; 1261 1262 // Case 3: if the inserted position is a prefix of extractPosition, we can 1263 // just extract a portion of the source of the insert. 1264 if (succeeded(handleInsertOpWithPrefixPos(result))) 1265 return tryToFoldExtractOpInPlace(result); 1266 1267 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1268 // values. This is a more difficult case and we bail. 1269 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1270 if (isContainedWithin(extractPosition, insertedPos) || 1271 intersectsWhereNonNegative(extractPosition, insertedPos)) 1272 return Value(); 1273 1274 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1275 valueToExtractFrom = nextInsertOp.getDest(); 1276 updateStateForNextIteration(valueToExtractFrom); 1277 } 1278 // If after all this we can fold, go for it. 1279 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1280 } 1281 1282 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1283 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1284 Operation *defOp = extractOp.getVector().getDefiningOp(); 1285 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1286 return Value(); 1287 Value source = defOp->getOperand(0); 1288 if (extractOp.getType() == source.getType()) 1289 return source; 1290 auto getRank = [](Type type) { 1291 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1292 }; 1293 unsigned broadcastSrcRank = getRank(source.getType()); 1294 unsigned extractResultRank = getRank(extractOp.getType()); 1295 if (extractResultRank < broadcastSrcRank) { 1296 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1297 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1298 extractPos.erase( 1299 extractPos.begin(), 1300 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1301 extractOp.setOperand(source); 1302 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1303 OpBuilder b(extractOp.getContext()); 1304 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1305 b.getI64ArrayAttr(extractPos)); 1306 return extractOp.getResult(); 1307 } 1308 return Value(); 1309 } 1310 1311 // Fold extractOp with source coming from ShapeCast op. 1312 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1313 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1314 if (!shapeCastOp) 1315 return Value(); 1316 // Get the nth dimension size starting from lowest dimension. 1317 auto getDimReverse = [](VectorType type, int64_t n) { 1318 return type.getShape().take_back(n + 1).front(); 1319 }; 1320 int64_t destinationRank = 1321 extractOp.getType().isa<VectorType>() 1322 ? extractOp.getType().cast<VectorType>().getRank() 1323 : 0; 1324 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1325 return Value(); 1326 if (destinationRank > 0) { 1327 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1328 for (int64_t i = 0; i < destinationRank; i++) { 1329 // The lowest dimension of of the destination must match the lowest 1330 // dimension of the shapecast op source. 1331 // TODO: This case could be support in a canonicalization pattern. 1332 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1333 getDimReverse(destinationType, i)) 1334 return Value(); 1335 } 1336 } 1337 // Extract the strides associated with the extract op vector source. Then use 1338 // this to calculate a linearized position for the extract. 1339 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1340 std::reverse(extractedPos.begin(), extractedPos.end()); 1341 SmallVector<int64_t, 4> strides; 1342 int64_t stride = 1; 1343 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1344 strides.push_back(stride); 1345 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1346 } 1347 1348 int64_t position = linearize(extractedPos, strides); 1349 // Then extract the strides associated to the shapeCast op vector source and 1350 // delinearize the position using those strides. 1351 SmallVector<int64_t, 4> newStrides; 1352 int64_t numDimension = 1353 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1354 stride = 1; 1355 for (int64_t i = 0; i < numDimension; i++) { 1356 newStrides.push_back(stride); 1357 stride *= 1358 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1359 } 1360 std::reverse(newStrides.begin(), newStrides.end()); 1361 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1362 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1363 OpBuilder b(extractOp.getContext()); 1364 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1365 b.getI64ArrayAttr(newPosition)); 1366 extractOp.setOperand(shapeCastOp.getSource()); 1367 return extractOp.getResult(); 1368 } 1369 1370 /// Fold an ExtractOp from ExtractStridedSliceOp. 1371 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1372 auto extractStridedSliceOp = 1373 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1374 if (!extractStridedSliceOp) 1375 return Value(); 1376 // Return if 'extractStridedSliceOp' has non-unit strides. 1377 if (extractStridedSliceOp.hasNonUnitStrides()) 1378 return Value(); 1379 1380 // Trim offsets for dimensions fully extracted. 1381 auto sliceOffsets = 1382 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1383 while (!sliceOffsets.empty()) { 1384 size_t lastOffset = sliceOffsets.size() - 1; 1385 if (sliceOffsets.back() != 0 || 1386 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1387 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1388 break; 1389 sliceOffsets.pop_back(); 1390 } 1391 unsigned destinationRank = 0; 1392 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1393 destinationRank = vecType.getRank(); 1394 // The dimensions of the result need to be untouched by the 1395 // extractStridedSlice op. 1396 if (destinationRank > 1397 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1398 return Value(); 1399 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1400 assert(extractedPos.size() >= sliceOffsets.size()); 1401 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1402 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1403 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1404 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1405 OpBuilder b(extractOp.getContext()); 1406 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1407 b.getI64ArrayAttr(extractedPos)); 1408 return extractOp.getResult(); 1409 } 1410 1411 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1412 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1413 int64_t destinationRank = op.getType().isa<VectorType>() 1414 ? op.getType().cast<VectorType>().getRank() 1415 : 0; 1416 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1417 while (insertOp) { 1418 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1419 insertOp.getSourceVectorType().getRank(); 1420 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1421 return Value(); 1422 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1423 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1424 1425 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1426 return attr.cast<IntegerAttr>().getInt() != 1; 1427 })) 1428 return Value(); 1429 bool disjoint = false; 1430 SmallVector<int64_t, 4> offsetDiffs; 1431 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1432 int64_t start = insertOffsets[dim]; 1433 int64_t size = 1434 (dim < insertRankDiff) 1435 ? 1 1436 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1437 int64_t end = start + size; 1438 int64_t offset = extractOffsets[dim]; 1439 // Check if the start of the extract offset is in the interval inserted. 1440 if (start <= offset && offset < end) { 1441 if (dim >= insertRankDiff) 1442 offsetDiffs.push_back(offset - start); 1443 continue; 1444 } 1445 disjoint = true; 1446 break; 1447 } 1448 // The extract element chunk overlap with the vector inserted. 1449 if (!disjoint) { 1450 // If any of the inner dimensions are only partially inserted we have a 1451 // partial overlap. 1452 int64_t srcRankDiff = 1453 insertOp.getSourceVectorType().getRank() - destinationRank; 1454 for (int64_t i = 0; i < destinationRank; i++) { 1455 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1456 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1457 insertRankDiff)) 1458 return Value(); 1459 } 1460 op.getVectorMutable().assign(insertOp.getSource()); 1461 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1462 OpBuilder b(op.getContext()); 1463 op->setAttr(ExtractOp::getPositionAttrStrName(), 1464 b.getI64ArrayAttr(offsetDiffs)); 1465 return op.getResult(); 1466 } 1467 // If the chunk extracted is disjoint from the chunk inserted, keep 1468 // looking in the insert chain. 1469 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1470 } 1471 return Value(); 1472 } 1473 1474 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1475 if (getPosition().empty()) 1476 return getVector(); 1477 if (succeeded(foldExtractOpFromExtractChain(*this))) 1478 return getResult(); 1479 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1480 return res; 1481 if (auto res = foldExtractFromBroadcast(*this)) 1482 return res; 1483 if (auto res = foldExtractFromShapeCast(*this)) 1484 return res; 1485 if (auto val = foldExtractFromExtractStrided(*this)) 1486 return val; 1487 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1488 return val; 1489 return OpFoldResult(); 1490 } 1491 1492 namespace { 1493 1494 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1495 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1496 public: 1497 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1498 1499 LogicalResult matchAndRewrite(ExtractOp extractOp, 1500 PatternRewriter &rewriter) const override { 1501 Operation *defOp = extractOp.getVector().getDefiningOp(); 1502 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1503 return failure(); 1504 1505 Value source = defOp->getOperand(0); 1506 if (extractOp.getType() == source.getType()) 1507 return failure(); 1508 auto getRank = [](Type type) { 1509 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1510 }; 1511 unsigned broadcastSrcRank = getRank(source.getType()); 1512 unsigned extractResultRank = getRank(extractOp.getType()); 1513 // We only consider the case where the rank of the source is less than or 1514 // equal to the rank of the extract dst. The other cases are handled in the 1515 // folding patterns. 1516 if (extractResultRank < broadcastSrcRank) 1517 return failure(); 1518 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1519 extractOp, extractOp.getType(), source); 1520 return success(); 1521 } 1522 }; 1523 1524 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1525 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1526 public: 1527 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1528 1529 LogicalResult matchAndRewrite(ExtractOp extractOp, 1530 PatternRewriter &rewriter) const override { 1531 // Return if 'extractStridedSliceOp' operand is not defined by a 1532 // ConstantOp. 1533 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1534 if (!constantOp) 1535 return failure(); 1536 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1537 if (!dense) 1538 return failure(); 1539 Attribute newAttr = dense.getSplatValue<Attribute>(); 1540 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1541 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1542 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1543 return success(); 1544 } 1545 }; 1546 1547 } // namespace 1548 1549 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1550 MLIRContext *context) { 1551 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1552 } 1553 1554 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1555 SmallVectorImpl<int64_t> &results) { 1556 for (auto attr : arrayAttr) 1557 results.push_back(attr.cast<IntegerAttr>().getInt()); 1558 } 1559 1560 //===----------------------------------------------------------------------===// 1561 // ExtractMapOp 1562 //===----------------------------------------------------------------------===// 1563 1564 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1565 Value vector, ValueRange ids, 1566 ArrayRef<int64_t> multiplicity, 1567 AffineMap permutationMap) { 1568 assert(ids.size() == multiplicity.size() && 1569 ids.size() == permutationMap.getNumResults()); 1570 assert(permutationMap.isProjectedPermutation()); 1571 VectorType type = vector.getType().cast<VectorType>(); 1572 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1573 type.getShape().end()); 1574 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1575 AffineExpr expr = permutationMap.getResult(i); 1576 auto dim = expr.cast<AffineDimExpr>(); 1577 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1578 } 1579 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1580 ExtractMapOp::build(builder, result, resultType, vector, ids); 1581 } 1582 1583 LogicalResult ExtractMapOp::verify() { 1584 if (getSourceVectorType().getRank() != getResultType().getRank()) 1585 return emitOpError("expected source and destination vectors of same rank"); 1586 unsigned numId = 0; 1587 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1588 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1589 0) 1590 return emitOpError("source vector dimensions must be a multiple of " 1591 "destination vector dimensions"); 1592 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1593 numId++; 1594 } 1595 if (numId != getIds().size()) 1596 return emitOpError("expected number of ids must match the number of " 1597 "dimensions distributed"); 1598 return success(); 1599 } 1600 1601 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1602 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1603 if (insert == nullptr || getType() != insert.getVector().getType() || 1604 getIds() != insert.getIds()) 1605 return {}; 1606 return insert.getVector(); 1607 } 1608 1609 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1610 assert(multiplicity.empty()); 1611 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1612 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1613 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1614 getResultType().getDimSize(i)); 1615 } 1616 } 1617 1618 template <typename MapOp> 1619 AffineMap calculateImplicitMap(MapOp op) { 1620 SmallVector<AffineExpr, 4> perm; 1621 // Check which dimension have a multiplicity greater than 1 and associated 1622 // them to the IDs in order. 1623 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1624 if (op.getSourceVectorType().getDimSize(i) != 1625 op.getResultType().getDimSize(i)) 1626 perm.push_back(getAffineDimExpr(i, op.getContext())); 1627 } 1628 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1629 op.getContext()); 1630 return map; 1631 } 1632 1633 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1634 1635 //===----------------------------------------------------------------------===// 1636 // FmaOp 1637 //===----------------------------------------------------------------------===// 1638 1639 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1640 return llvm::to_vector<4>(getVectorType().getShape()); 1641 } 1642 1643 //===----------------------------------------------------------------------===// 1644 // BroadcastOp 1645 //===----------------------------------------------------------------------===// 1646 1647 BroadcastableToResult 1648 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1649 std::pair<int, int> *mismatchingDims) { 1650 // Broadcast scalar to vector of the same element type. 1651 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1652 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1653 return BroadcastableToResult::Success; 1654 // From now on, only vectors broadcast. 1655 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1656 if (!srcVectorType) 1657 return BroadcastableToResult::SourceTypeNotAVector; 1658 1659 int64_t srcRank = srcVectorType.getRank(); 1660 int64_t dstRank = dstVectorType.getRank(); 1661 if (srcRank > dstRank) 1662 return BroadcastableToResult::SourceRankHigher; 1663 // Source has an exact match or singleton value for all trailing dimensions 1664 // (all leading dimensions are simply duplicated). 1665 int64_t lead = dstRank - srcRank; 1666 for (int64_t r = 0; r < srcRank; ++r) { 1667 int64_t srcDim = srcVectorType.getDimSize(r); 1668 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1669 if (srcDim != 1 && srcDim != dstDim) { 1670 if (mismatchingDims) { 1671 mismatchingDims->first = srcDim; 1672 mismatchingDims->second = dstDim; 1673 } 1674 return BroadcastableToResult::DimensionMismatch; 1675 } 1676 } 1677 1678 return BroadcastableToResult::Success; 1679 } 1680 1681 LogicalResult BroadcastOp::verify() { 1682 std::pair<int, int> mismatchingDims; 1683 BroadcastableToResult res = 1684 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1685 if (res == BroadcastableToResult::Success) 1686 return success(); 1687 if (res == BroadcastableToResult::SourceRankHigher) 1688 return emitOpError("source rank higher than destination rank"); 1689 if (res == BroadcastableToResult::DimensionMismatch) 1690 return emitOpError("dimension mismatch (") 1691 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1692 if (res == BroadcastableToResult::SourceTypeNotAVector) 1693 return emitOpError("source type is not a vector"); 1694 llvm_unreachable("unexpected vector.broadcast op error"); 1695 } 1696 1697 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1698 if (getSourceType() == getVectorType()) 1699 return getSource(); 1700 if (!operands[0]) 1701 return {}; 1702 auto vectorType = getVectorType(); 1703 if (operands[0].getType().isIntOrIndexOrFloat()) 1704 return DenseElementsAttr::get(vectorType, operands[0]); 1705 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1706 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1707 return {}; 1708 } 1709 1710 namespace { 1711 1712 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1713 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1714 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1715 1716 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1717 PatternRewriter &rewriter) const override { 1718 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1719 if (!srcBroadcast) 1720 return failure(); 1721 rewriter.replaceOpWithNewOp<BroadcastOp>( 1722 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1723 return success(); 1724 } 1725 }; 1726 } // namespace 1727 1728 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1729 MLIRContext *context) { 1730 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1731 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1732 results.add<BroadcastFolder>(context); 1733 } 1734 1735 //===----------------------------------------------------------------------===// 1736 // ShuffleOp 1737 //===----------------------------------------------------------------------===// 1738 1739 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1740 Value v2, ArrayRef<int64_t> mask) { 1741 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1742 } 1743 1744 LogicalResult ShuffleOp::verify() { 1745 VectorType resultType = getVectorType(); 1746 VectorType v1Type = getV1VectorType(); 1747 VectorType v2Type = getV2VectorType(); 1748 // Verify ranks. 1749 int64_t resRank = resultType.getRank(); 1750 int64_t v1Rank = v1Type.getRank(); 1751 int64_t v2Rank = v2Type.getRank(); 1752 if (resRank != v1Rank || v1Rank != v2Rank) 1753 return emitOpError("rank mismatch"); 1754 // Verify all but leading dimension sizes. 1755 for (int64_t r = 1; r < v1Rank; ++r) { 1756 int64_t resDim = resultType.getDimSize(r); 1757 int64_t v1Dim = v1Type.getDimSize(r); 1758 int64_t v2Dim = v2Type.getDimSize(r); 1759 if (resDim != v1Dim || v1Dim != v2Dim) 1760 return emitOpError("dimension mismatch"); 1761 } 1762 // Verify mask length. 1763 auto maskAttr = getMask().getValue(); 1764 int64_t maskLength = maskAttr.size(); 1765 if (maskLength <= 0) 1766 return emitOpError("invalid mask length"); 1767 if (maskLength != resultType.getDimSize(0)) 1768 return emitOpError("mask length mismatch"); 1769 // Verify all indices. 1770 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1771 for (const auto &en : llvm::enumerate(maskAttr)) { 1772 auto attr = en.value().dyn_cast<IntegerAttr>(); 1773 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1774 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1775 } 1776 return success(); 1777 } 1778 1779 LogicalResult 1780 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1781 ValueRange operands, DictionaryAttr attributes, 1782 RegionRange, 1783 SmallVectorImpl<Type> &inferredReturnTypes) { 1784 ShuffleOp::Adaptor op(operands, attributes); 1785 auto v1Type = op.getV1().getType().cast<VectorType>(); 1786 // Construct resulting type: leading dimension matches mask length, 1787 // all trailing dimensions match the operands. 1788 SmallVector<int64_t, 4> shape; 1789 shape.reserve(v1Type.getRank()); 1790 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1791 llvm::append_range(shape, v1Type.getShape().drop_front()); 1792 inferredReturnTypes.push_back( 1793 VectorType::get(shape, v1Type.getElementType())); 1794 return success(); 1795 } 1796 1797 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1798 uint64_t expected = begin; 1799 return idxArr.size() == width && 1800 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1801 [&expected](auto attr) { 1802 return attr.getZExtValue() == expected++; 1803 }); 1804 } 1805 1806 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1807 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1808 if (!getV1VectorType().isScalable() && 1809 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1810 return getV1(); 1811 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1812 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1813 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1814 getV2VectorType().getDimSize(0))) 1815 return getV2(); 1816 1817 Attribute lhs = operands.front(), rhs = operands.back(); 1818 if (!lhs || !rhs) 1819 return {}; 1820 1821 auto lhsType = lhs.getType().cast<VectorType>(); 1822 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1823 // manipulation. 1824 if (lhsType.getRank() != 1) 1825 return {}; 1826 int64_t lhsSize = lhsType.getDimSize(0); 1827 1828 SmallVector<Attribute> results; 1829 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1830 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1831 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1832 int64_t i = index.getZExtValue(); 1833 if (i >= lhsSize) { 1834 results.push_back(rhsElements[i - lhsSize]); 1835 } else { 1836 results.push_back(lhsElements[i]); 1837 } 1838 } 1839 1840 return DenseElementsAttr::get(getVectorType(), results); 1841 } 1842 1843 //===----------------------------------------------------------------------===// 1844 // InsertElementOp 1845 //===----------------------------------------------------------------------===// 1846 1847 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1848 Value source, Value dest) { 1849 build(builder, result, source, dest, {}); 1850 } 1851 1852 LogicalResult InsertElementOp::verify() { 1853 auto dstVectorType = getDestVectorType(); 1854 if (dstVectorType.getRank() == 0) { 1855 if (getPosition()) 1856 return emitOpError("expected position to be empty with 0-D vector"); 1857 return success(); 1858 } 1859 if (dstVectorType.getRank() != 1) 1860 return emitOpError("unexpected >1 vector rank"); 1861 if (!getPosition()) 1862 return emitOpError("expected position for 1-D vector"); 1863 return success(); 1864 } 1865 1866 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1867 // Skip the 0-D vector here. 1868 if (operands.size() < 3) 1869 return {}; 1870 1871 Attribute src = operands[0]; 1872 Attribute dst = operands[1]; 1873 Attribute pos = operands[2]; 1874 if (!src || !dst || !pos) 1875 return {}; 1876 1877 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1878 1879 SmallVector<Attribute> results(dstElements); 1880 1881 auto attr = pos.dyn_cast<IntegerAttr>(); 1882 uint64_t posIdx = attr.getInt(); 1883 1884 results[posIdx] = src; 1885 1886 return DenseElementsAttr::get(getDestVectorType(), results); 1887 } 1888 1889 //===----------------------------------------------------------------------===// 1890 // InsertOp 1891 //===----------------------------------------------------------------------===// 1892 1893 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1894 Value dest, ArrayRef<int64_t> position) { 1895 result.addOperands({source, dest}); 1896 auto positionAttr = getVectorSubscriptAttr(builder, position); 1897 result.addTypes(dest.getType()); 1898 result.addAttribute(getPositionAttrStrName(), positionAttr); 1899 } 1900 1901 // Convenience builder which assumes the values are constant indices. 1902 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1903 Value dest, ValueRange position) { 1904 SmallVector<int64_t, 4> positionConstants = 1905 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1906 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1907 })); 1908 build(builder, result, source, dest, positionConstants); 1909 } 1910 1911 LogicalResult InsertOp::verify() { 1912 auto positionAttr = getPosition().getValue(); 1913 auto destVectorType = getDestVectorType(); 1914 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1915 return emitOpError( 1916 "expected position attribute of rank smaller than dest vector rank"); 1917 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1918 if (srcVectorType && 1919 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1920 static_cast<unsigned>(destVectorType.getRank()))) 1921 return emitOpError("expected position attribute rank + source rank to " 1922 "match dest vector rank"); 1923 if (!srcVectorType && 1924 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1925 return emitOpError( 1926 "expected position attribute rank to match the dest vector rank"); 1927 for (const auto &en : llvm::enumerate(positionAttr)) { 1928 auto attr = en.value().dyn_cast<IntegerAttr>(); 1929 if (!attr || attr.getInt() < 0 || 1930 attr.getInt() >= destVectorType.getDimSize(en.index())) 1931 return emitOpError("expected position attribute #") 1932 << (en.index() + 1) 1933 << " to be a non-negative integer smaller than the corresponding " 1934 "dest vector dimension"; 1935 } 1936 return success(); 1937 } 1938 1939 namespace { 1940 1941 // If insertOp is only inserting unit dimensions it can be transformed to a 1942 // broadcast. 1943 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1944 public: 1945 using OpRewritePattern<InsertOp>::OpRewritePattern; 1946 1947 LogicalResult matchAndRewrite(InsertOp insertOp, 1948 PatternRewriter &rewriter) const override { 1949 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1950 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1951 srcVecType.getNumElements()) 1952 return failure(); 1953 rewriter.replaceOpWithNewOp<BroadcastOp>( 1954 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1955 return success(); 1956 } 1957 }; 1958 1959 } // namespace 1960 1961 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1962 MLIRContext *context) { 1963 results.add<InsertToBroadcast, BroadcastFolder>(context); 1964 } 1965 1966 // Eliminates insert operations that produce values identical to their source 1967 // value. This happens when the source and destination vectors have identical 1968 // sizes. 1969 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1970 if (getPosition().empty()) 1971 return getSource(); 1972 return {}; 1973 } 1974 1975 //===----------------------------------------------------------------------===// 1976 // InsertMapOp 1977 //===----------------------------------------------------------------------===// 1978 1979 LogicalResult InsertMapOp::verify() { 1980 if (getSourceVectorType().getRank() != getResultType().getRank()) 1981 return emitOpError("expected source and destination vectors of same rank"); 1982 unsigned numId = 0; 1983 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1984 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1985 0) 1986 return emitOpError( 1987 "destination vector size must be a multiple of source vector size"); 1988 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1989 numId++; 1990 } 1991 if (numId != getIds().size()) 1992 return emitOpError("expected number of ids must match the number of " 1993 "dimensions distributed"); 1994 return success(); 1995 } 1996 1997 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1998 1999 //===----------------------------------------------------------------------===// 2000 // InsertStridedSliceOp 2001 //===----------------------------------------------------------------------===// 2002 2003 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2004 Value source, Value dest, 2005 ArrayRef<int64_t> offsets, 2006 ArrayRef<int64_t> strides) { 2007 result.addOperands({source, dest}); 2008 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2009 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2010 result.addTypes(dest.getType()); 2011 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2012 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2013 } 2014 2015 // TODO: Should be moved to Tablegen Confined attributes. 2016 template <typename OpType> 2017 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2018 ArrayAttr arrayAttr, 2019 ArrayRef<int64_t> shape, 2020 StringRef attrName) { 2021 if (arrayAttr.size() > shape.size()) 2022 return op.emitOpError("expected ") 2023 << attrName << " attribute of rank smaller than vector rank"; 2024 return success(); 2025 } 2026 2027 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2028 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2029 // Otherwise, the admissible interval is [min, max]. 2030 template <typename OpType> 2031 static LogicalResult 2032 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2033 int64_t max, StringRef attrName, 2034 bool halfOpen = true) { 2035 for (auto attr : arrayAttr) { 2036 auto val = attr.cast<IntegerAttr>().getInt(); 2037 auto upper = max; 2038 if (!halfOpen) 2039 upper += 1; 2040 if (val < min || val >= upper) 2041 return op.emitOpError("expected ") << attrName << " to be confined to [" 2042 << min << ", " << upper << ")"; 2043 } 2044 return success(); 2045 } 2046 2047 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2048 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2049 // Otherwise, the admissible interval is [min, max]. 2050 template <typename OpType> 2051 static LogicalResult 2052 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2053 ArrayRef<int64_t> shape, StringRef attrName, 2054 bool halfOpen = true, int64_t min = 0) { 2055 assert(arrayAttr.size() <= shape.size()); 2056 unsigned index = 0; 2057 for (auto it : llvm::zip(arrayAttr, shape)) { 2058 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2059 auto max = std::get<1>(it); 2060 if (!halfOpen) 2061 max += 1; 2062 if (val < min || val >= max) 2063 return op.emitOpError("expected ") 2064 << attrName << " dimension " << index << " to be confined to [" 2065 << min << ", " << max << ")"; 2066 ++index; 2067 } 2068 return success(); 2069 } 2070 2071 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2072 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2073 // Otherwise, the admissible interval is [min, max]. 2074 template <typename OpType> 2075 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2076 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2077 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2078 bool halfOpen = true, int64_t min = 1) { 2079 assert(arrayAttr1.size() <= shape.size()); 2080 assert(arrayAttr2.size() <= shape.size()); 2081 unsigned index = 0; 2082 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2083 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2084 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2085 auto max = std::get<2>(it); 2086 if (!halfOpen) 2087 max += 1; 2088 if (val1 + val2 < 0 || val1 + val2 >= max) 2089 return op.emitOpError("expected sum(") 2090 << attrName1 << ", " << attrName2 << ") dimension " << index 2091 << " to be confined to [" << min << ", " << max << ")"; 2092 ++index; 2093 } 2094 return success(); 2095 } 2096 2097 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2098 MLIRContext *context) { 2099 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2100 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2101 }); 2102 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2103 } 2104 2105 LogicalResult InsertStridedSliceOp::verify() { 2106 auto sourceVectorType = getSourceVectorType(); 2107 auto destVectorType = getDestVectorType(); 2108 auto offsets = getOffsetsAttr(); 2109 auto strides = getStridesAttr(); 2110 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2111 return emitOpError( 2112 "expected offsets of same size as destination vector rank"); 2113 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2114 return emitOpError("expected strides of same size as source vector rank"); 2115 if (sourceVectorType.getRank() > destVectorType.getRank()) 2116 return emitOpError( 2117 "expected source rank to be smaller than destination rank"); 2118 2119 auto sourceShape = sourceVectorType.getShape(); 2120 auto destShape = destVectorType.getShape(); 2121 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2122 destShape.size() - sourceShape.size(), 0); 2123 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2124 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2125 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2126 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2127 offName)) || 2128 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2129 stridesName, 2130 /*halfOpen=*/false)) || 2131 failed(isSumOfIntegerArrayAttrConfinedToShape( 2132 *this, offsets, 2133 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2134 offName, "source vector shape", 2135 /*halfOpen=*/false, /*min=*/1))) 2136 return failure(); 2137 2138 return success(); 2139 } 2140 2141 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2142 if (getSourceVectorType() == getDestVectorType()) 2143 return getSource(); 2144 return {}; 2145 } 2146 2147 //===----------------------------------------------------------------------===// 2148 // OuterProductOp 2149 //===----------------------------------------------------------------------===// 2150 2151 /// Build an op without mask, use the type of `acc` as the return type. 2152 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2153 Value lhs, Value rhs, Value acc) { 2154 result.addOperands({lhs, rhs, acc}); 2155 result.addTypes(acc.getType()); 2156 } 2157 2158 void OuterProductOp::print(OpAsmPrinter &p) { 2159 p << " " << getLhs() << ", " << getRhs(); 2160 if (!getAcc().empty()) { 2161 p << ", " << getAcc(); 2162 p.printOptionalAttrDict((*this)->getAttrs()); 2163 } 2164 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2165 } 2166 2167 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2168 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2169 Type tLHS, tRHS; 2170 if (parser.parseOperandList(operandsInfo) || 2171 parser.parseOptionalAttrDict(result.attributes) || 2172 parser.parseColonType(tLHS) || parser.parseComma() || 2173 parser.parseType(tRHS)) 2174 return failure(); 2175 if (operandsInfo.size() < 2) 2176 return parser.emitError(parser.getNameLoc(), 2177 "expected at least 2 operands"); 2178 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2179 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2180 if (!vLHS) 2181 return parser.emitError(parser.getNameLoc(), 2182 "expected vector type for operand #1"); 2183 VectorType resType = 2184 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2185 vLHS.getElementType()) 2186 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2187 2188 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2189 result.attributes.append( 2190 OuterProductOp::getKindAttrStrName(), 2191 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2192 result.getContext())); 2193 } 2194 2195 return failure( 2196 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2197 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2198 (operandsInfo.size() > 2 && 2199 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2200 parser.addTypeToList(resType, result.types)); 2201 } 2202 2203 LogicalResult OuterProductOp::verify() { 2204 Type tRHS = getOperandTypeRHS(); 2205 VectorType vLHS = getOperandVectorTypeLHS(), 2206 vRHS = tRHS.dyn_cast<VectorType>(), 2207 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2208 2209 if (vLHS.getRank() != 1) 2210 return emitOpError("expected 1-d vector for operand #1"); 2211 2212 if (vRHS) { 2213 // Proper OUTER operation. 2214 if (vRHS.getRank() != 1) 2215 return emitOpError("expected 1-d vector for operand #2"); 2216 if (vRES.getRank() != 2) 2217 return emitOpError("expected 2-d vector result"); 2218 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2219 return emitOpError("expected #1 operand dim to match result dim #1"); 2220 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2221 return emitOpError("expected #2 operand dim to match result dim #2"); 2222 } else { 2223 // An AXPY operation. 2224 if (vRES.getRank() != 1) 2225 return emitOpError("expected 1-d vector result"); 2226 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2227 return emitOpError("expected #1 operand dim to match result dim #1"); 2228 } 2229 2230 if (vACC && vACC != vRES) 2231 return emitOpError("expected operand #3 of same type as result type"); 2232 2233 // Verify supported combining kind. 2234 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2235 return emitOpError("unsupported outerproduct type"); 2236 2237 return success(); 2238 } 2239 2240 //===----------------------------------------------------------------------===// 2241 // ReshapeOp 2242 //===----------------------------------------------------------------------===// 2243 2244 LogicalResult ReshapeOp::verify() { 2245 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2246 auto inputVectorType = getInputVectorType(); 2247 auto outputVectorType = getOutputVectorType(); 2248 int64_t inputShapeRank = getNumInputShapeSizes(); 2249 int64_t outputShapeRank = getNumOutputShapeSizes(); 2250 SmallVector<int64_t, 4> fixedVectorSizes; 2251 getFixedVectorSizes(fixedVectorSizes); 2252 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2253 2254 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2255 return emitError("invalid input shape for vector type ") 2256 << inputVectorType; 2257 2258 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2259 return emitError("invalid output shape for vector type ") 2260 << outputVectorType; 2261 2262 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2263 // suffix. 2264 unsigned inputVectorRank = inputVectorType.getRank(); 2265 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2266 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2267 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2268 return emitError("fixed vector size must match input vector for dim ") 2269 << i; 2270 } 2271 2272 unsigned outputVectorRank = outputVectorType.getRank(); 2273 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2274 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2275 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2276 return emitError("fixed vector size must match output vector for dim ") 2277 << i; 2278 } 2279 2280 // If all shape operands are produced by constant ops, verify that product 2281 // of dimensions for input/output shape match. 2282 auto isDefByConstant = [](Value operand) { 2283 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2284 }; 2285 if (llvm::all_of(getInputShape(), isDefByConstant) && 2286 llvm::all_of(getOutputShape(), isDefByConstant)) { 2287 int64_t numInputElements = 1; 2288 for (auto operand : getInputShape()) 2289 numInputElements *= 2290 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2291 int64_t numOutputElements = 1; 2292 for (auto operand : getOutputShape()) 2293 numOutputElements *= 2294 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2295 if (numInputElements != numOutputElements) 2296 return emitError("product of input and output shape sizes must match"); 2297 } 2298 return success(); 2299 } 2300 2301 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2302 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2303 } 2304 2305 //===----------------------------------------------------------------------===// 2306 // ExtractStridedSliceOp 2307 //===----------------------------------------------------------------------===// 2308 2309 // Inference works as follows: 2310 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2311 // 2. Add sizes from 'vectorType' for remaining dims. 2312 static Type inferStridedSliceOpResultType(VectorType vectorType, 2313 ArrayAttr offsets, ArrayAttr sizes, 2314 ArrayAttr strides) { 2315 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2316 SmallVector<int64_t, 4> shape; 2317 shape.reserve(vectorType.getRank()); 2318 unsigned idx = 0; 2319 for (unsigned e = offsets.size(); idx < e; ++idx) 2320 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2321 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2322 shape.push_back(vectorType.getShape()[idx]); 2323 2324 return VectorType::get(shape, vectorType.getElementType()); 2325 } 2326 2327 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2328 Value source, ArrayRef<int64_t> offsets, 2329 ArrayRef<int64_t> sizes, 2330 ArrayRef<int64_t> strides) { 2331 result.addOperands(source); 2332 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2333 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2334 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2335 result.addTypes( 2336 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2337 offsetsAttr, sizesAttr, stridesAttr)); 2338 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2339 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2340 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2341 } 2342 2343 LogicalResult ExtractStridedSliceOp::verify() { 2344 auto type = getVectorType(); 2345 auto offsets = getOffsetsAttr(); 2346 auto sizes = getSizesAttr(); 2347 auto strides = getStridesAttr(); 2348 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2349 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2350 2351 auto shape = type.getShape(); 2352 auto offName = getOffsetsAttrName(); 2353 auto sizesName = getSizesAttrName(); 2354 auto stridesName = getStridesAttrName(); 2355 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2356 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2357 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2358 stridesName)) || 2359 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2360 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2361 /*halfOpen=*/false, 2362 /*min=*/1)) || 2363 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2364 /*halfOpen=*/false)) || 2365 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2366 offName, sizesName, 2367 /*halfOpen=*/false))) 2368 return failure(); 2369 2370 auto resultType = 2371 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2372 if (getResult().getType() != resultType) 2373 return emitOpError("expected result type to be ") << resultType; 2374 2375 return success(); 2376 } 2377 2378 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2379 // to use the source of the InsertStrided ops if we can detect that the 2380 // extracted vector is a subset of one of the vector inserted. 2381 static LogicalResult 2382 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2383 // Helper to extract integer out of ArrayAttr. 2384 auto getElement = [](ArrayAttr array, int idx) { 2385 return array[idx].cast<IntegerAttr>().getInt(); 2386 }; 2387 ArrayAttr extractOffsets = op.getOffsets(); 2388 ArrayAttr extractStrides = op.getStrides(); 2389 ArrayAttr extractSizes = op.getSizes(); 2390 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2391 while (insertOp) { 2392 if (op.getVectorType().getRank() != 2393 insertOp.getSourceVectorType().getRank()) 2394 return failure(); 2395 ArrayAttr insertOffsets = insertOp.getOffsets(); 2396 ArrayAttr insertStrides = insertOp.getStrides(); 2397 // If the rank of extract is greater than the rank of insert, we are likely 2398 // extracting a partial chunk of the vector inserted. 2399 if (extractOffsets.size() > insertOffsets.size()) 2400 return failure(); 2401 bool patialoverlap = false; 2402 bool disjoint = false; 2403 SmallVector<int64_t, 4> offsetDiffs; 2404 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2405 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2406 return failure(); 2407 int64_t start = getElement(insertOffsets, dim); 2408 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2409 int64_t offset = getElement(extractOffsets, dim); 2410 int64_t size = getElement(extractSizes, dim); 2411 // Check if the start of the extract offset is in the interval inserted. 2412 if (start <= offset && offset < end) { 2413 // If the extract interval overlaps but is not fully included we may 2414 // have a partial overlap that will prevent any folding. 2415 if (offset + size > end) 2416 patialoverlap = true; 2417 offsetDiffs.push_back(offset - start); 2418 continue; 2419 } 2420 disjoint = true; 2421 break; 2422 } 2423 // The extract element chunk is a subset of the insert element. 2424 if (!disjoint && !patialoverlap) { 2425 op.setOperand(insertOp.getSource()); 2426 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2427 OpBuilder b(op.getContext()); 2428 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2429 b.getI64ArrayAttr(offsetDiffs)); 2430 return success(); 2431 } 2432 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2433 // in the insert chain. 2434 if (disjoint) 2435 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2436 else { 2437 // The extracted vector partially overlap the inserted vector, we cannot 2438 // fold. 2439 return failure(); 2440 } 2441 } 2442 return failure(); 2443 } 2444 2445 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2446 if (getVectorType() == getResult().getType()) 2447 return getVector(); 2448 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2449 return getResult(); 2450 return {}; 2451 } 2452 2453 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2454 populateFromInt64AttrArray(getOffsets(), results); 2455 } 2456 2457 namespace { 2458 2459 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2460 // ConstantMaskOp. 2461 class StridedSliceConstantMaskFolder final 2462 : public OpRewritePattern<ExtractStridedSliceOp> { 2463 public: 2464 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2465 2466 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2467 PatternRewriter &rewriter) const override { 2468 // Return if 'extractStridedSliceOp' operand is not defined by a 2469 // ConstantMaskOp. 2470 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2471 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2472 if (!constantMaskOp) 2473 return failure(); 2474 // Return if 'extractStridedSliceOp' has non-unit strides. 2475 if (extractStridedSliceOp.hasNonUnitStrides()) 2476 return failure(); 2477 // Gather constant mask dimension sizes. 2478 SmallVector<int64_t, 4> maskDimSizes; 2479 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2480 // Gather strided slice offsets and sizes. 2481 SmallVector<int64_t, 4> sliceOffsets; 2482 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2483 sliceOffsets); 2484 SmallVector<int64_t, 4> sliceSizes; 2485 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2486 2487 // Compute slice of vector mask region. 2488 SmallVector<int64_t, 4> sliceMaskDimSizes; 2489 assert(sliceOffsets.size() == maskDimSizes.size()); 2490 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2491 int64_t maskDimSize = std::get<0>(it); 2492 int64_t sliceOffset = std::get<1>(it); 2493 int64_t sliceSize = std::get<2>(it); 2494 int64_t sliceMaskDimSize = std::max( 2495 static_cast<int64_t>(0), 2496 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2497 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2498 } 2499 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2500 // region is a conjunction of mask dim intervals). 2501 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2502 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2503 2504 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2505 // region. 2506 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2507 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2508 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2509 return success(); 2510 } 2511 }; 2512 2513 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2514 class StridedSliceConstantFolder final 2515 : public OpRewritePattern<ExtractStridedSliceOp> { 2516 public: 2517 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2518 2519 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2520 PatternRewriter &rewriter) const override { 2521 // Return if 'extractStridedSliceOp' operand is not defined by a 2522 // ConstantOp. 2523 auto constantOp = 2524 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2525 if (!constantOp) 2526 return failure(); 2527 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2528 if (!dense) 2529 return failure(); 2530 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2531 dense.getSplatValue<Attribute>()); 2532 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2533 newAttr); 2534 return success(); 2535 } 2536 }; 2537 2538 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2539 // BroadcastOp(ExtractStrideSliceOp). 2540 class StridedSliceBroadcast final 2541 : public OpRewritePattern<ExtractStridedSliceOp> { 2542 public: 2543 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2544 2545 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2546 PatternRewriter &rewriter) const override { 2547 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2548 if (!broadcast) 2549 return failure(); 2550 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2551 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2552 auto dstVecType = op.getType().cast<VectorType>(); 2553 unsigned dstRank = dstVecType.getRank(); 2554 unsigned rankDiff = dstRank - srcRank; 2555 // Check if the most inner dimensions of the source of the broadcast are the 2556 // same as the destination of the extract. If this is the case we can just 2557 // use a broadcast as the original dimensions are untouched. 2558 bool lowerDimMatch = true; 2559 for (unsigned i = 0; i < srcRank; i++) { 2560 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2561 lowerDimMatch = false; 2562 break; 2563 } 2564 } 2565 Value source = broadcast.getSource(); 2566 // If the inner dimensions don't match, it means we need to extract from the 2567 // source of the orignal broadcast and then broadcast the extracted value. 2568 // We also need to handle degenerated cases where the source is effectively 2569 // just a single scalar. 2570 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2571 if (!lowerDimMatch && !isScalarSrc) { 2572 source = rewriter.create<ExtractStridedSliceOp>( 2573 op->getLoc(), source, 2574 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2575 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2576 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2577 } 2578 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2579 return success(); 2580 } 2581 }; 2582 2583 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2584 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2585 public: 2586 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2587 2588 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2589 PatternRewriter &rewriter) const override { 2590 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2591 if (!splat) 2592 return failure(); 2593 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2594 return success(); 2595 } 2596 }; 2597 2598 } // namespace 2599 2600 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2601 RewritePatternSet &results, MLIRContext *context) { 2602 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2603 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2604 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2605 StridedSliceBroadcast, StridedSliceSplat>(context); 2606 } 2607 2608 //===----------------------------------------------------------------------===// 2609 // TransferReadOp 2610 //===----------------------------------------------------------------------===// 2611 2612 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2613 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2614 VectorType vectorType, Value source, 2615 ValueRange indices, AffineMapAttr permutationMapAttr, 2616 /*optional*/ ArrayAttr inBoundsAttr) { 2617 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2618 Value padding = builder.create<arith::ConstantOp>( 2619 result.location, elemType, builder.getZeroAttr(elemType)); 2620 build(builder, result, vectorType, source, indices, permutationMapAttr, 2621 padding, /*mask=*/Value(), inBoundsAttr); 2622 } 2623 2624 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2625 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2626 VectorType vectorType, Value source, 2627 ValueRange indices, AffineMap permutationMap, 2628 Optional<ArrayRef<bool>> inBounds) { 2629 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2630 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2631 ? builder.getBoolArrayAttr(inBounds.getValue()) 2632 : ArrayAttr(); 2633 build(builder, result, vectorType, source, indices, permutationMapAttr, 2634 inBoundsAttr); 2635 } 2636 2637 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2638 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2639 VectorType vectorType, Value source, 2640 ValueRange indices, Value padding, 2641 Optional<ArrayRef<bool>> inBounds) { 2642 AffineMap permutationMap = getTransferMinorIdentityMap( 2643 source.getType().cast<ShapedType>(), vectorType); 2644 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2645 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2646 ? builder.getBoolArrayAttr(inBounds.getValue()) 2647 : ArrayAttr(); 2648 build(builder, result, vectorType, source, indices, permutationMapAttr, 2649 padding, 2650 /*mask=*/Value(), inBoundsAttr); 2651 } 2652 2653 /// 4. Builder that sets padding to zero and permutation map to 2654 /// 'getMinorIdentityMap'. 2655 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2656 VectorType vectorType, Value source, 2657 ValueRange indices, 2658 Optional<ArrayRef<bool>> inBounds) { 2659 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2660 Value padding = builder.create<arith::ConstantOp>( 2661 result.location, elemType, builder.getZeroAttr(elemType)); 2662 build(builder, result, vectorType, source, indices, padding, inBounds); 2663 } 2664 2665 template <typename EmitFun> 2666 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2667 EmitFun emitOpError) { 2668 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2669 for (auto expr : permutationMap.getResults()) { 2670 auto dim = expr.dyn_cast<AffineDimExpr>(); 2671 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2672 if (zero) { 2673 if (zero.getValue() != 0) { 2674 return emitOpError( 2675 "requires a projected permutation_map (at most one dim or the zero " 2676 "constant can appear in each result)"); 2677 } 2678 continue; 2679 } 2680 if (!dim) { 2681 return emitOpError("requires a projected permutation_map (at most one " 2682 "dim or the zero constant can appear in each result)"); 2683 } 2684 if (seen[dim.getPosition()]) { 2685 return emitOpError( 2686 "requires a permutation_map that is a permutation (found one dim " 2687 "used more than once)"); 2688 } 2689 seen[dim.getPosition()] = true; 2690 } 2691 return success(); 2692 } 2693 2694 static LogicalResult 2695 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2696 VectorType vectorType, VectorType maskType, 2697 AffineMap permutationMap, ArrayAttr inBounds) { 2698 if (op->hasAttr("masked")) { 2699 return op->emitOpError("masked attribute has been removed. " 2700 "Use in_bounds instead."); 2701 } 2702 2703 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2704 return op->emitOpError( 2705 "requires source to be a memref or ranked tensor type"); 2706 2707 auto elementType = shapedType.getElementType(); 2708 DataLayout dataLayout = DataLayout::closest(op); 2709 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2710 // Memref or tensor has vector element type. 2711 unsigned sourceVecSize = 2712 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2713 vectorElementType.getShape().back(); 2714 unsigned resultVecSize = 2715 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2716 vectorType.getShape().back(); 2717 if (resultVecSize % sourceVecSize != 0) 2718 return op->emitOpError( 2719 "requires the bitwidth of the minor 1-D vector to be an integral " 2720 "multiple of the bitwidth of the minor 1-D vector of the source"); 2721 2722 unsigned sourceVecEltRank = vectorElementType.getRank(); 2723 unsigned resultVecRank = vectorType.getRank(); 2724 if (sourceVecEltRank > resultVecRank) 2725 return op->emitOpError( 2726 "requires source vector element and vector result ranks to match."); 2727 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2728 // Check that permutation map results match 'rankOffset' of vector type. 2729 if (permutationMap.getNumResults() != rankOffset) 2730 return op->emitOpError("requires a permutation_map with result dims of " 2731 "the same rank as the vector type"); 2732 2733 if (maskType) 2734 return op->emitOpError("does not support masks with vector element type"); 2735 } else { 2736 // Memref or tensor has scalar element type. 2737 unsigned minorSize = 2738 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2739 unsigned resultVecSize = 2740 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2741 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2742 return op->emitOpError( 2743 "requires the bitwidth of the minor 1-D vector to be an integral " 2744 "multiple of the bitwidth of the source element type"); 2745 2746 // Check that permutation map results match rank of vector type. 2747 if (permutationMap.getNumResults() != vectorType.getRank()) 2748 return op->emitOpError("requires a permutation_map with result dims of " 2749 "the same rank as the vector type"); 2750 2751 VectorType expectedMaskType = 2752 vector::detail::transferMaskType(vectorType, permutationMap); 2753 if (maskType && expectedMaskType != maskType) 2754 return op->emitOpError("expects mask type consistent with permutation " 2755 "map: ") 2756 << maskType; 2757 } 2758 2759 if (permutationMap.getNumSymbols() != 0) 2760 return op->emitOpError("requires permutation_map without symbols"); 2761 2762 if (permutationMap.getNumInputs() != shapedType.getRank()) 2763 return op->emitOpError("requires a permutation_map with input dims of the " 2764 "same rank as the source type"); 2765 2766 if (inBounds) { 2767 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2768 return op->emitOpError("expects the optional in_bounds attr of same rank " 2769 "as permutation_map results: ") 2770 << AffineMapAttr::get(permutationMap) 2771 << " vs inBounds of size: " << inBounds.size(); 2772 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2773 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2774 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2775 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2776 } 2777 2778 return success(); 2779 } 2780 2781 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2782 SmallVector<StringRef, 3> elidedAttrs; 2783 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2784 if (op.permutation_map().isMinorIdentity()) 2785 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2786 bool elideInBounds = true; 2787 if (auto inBounds = op.in_bounds()) { 2788 for (auto attr : *inBounds) { 2789 if (attr.template cast<BoolAttr>().getValue()) { 2790 elideInBounds = false; 2791 break; 2792 } 2793 } 2794 } 2795 if (elideInBounds) 2796 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2797 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2798 } 2799 2800 void TransferReadOp::print(OpAsmPrinter &p) { 2801 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2802 if (getMask()) 2803 p << ", " << getMask(); 2804 printTransferAttrs(p, *this); 2805 p << " : " << getShapedType() << ", " << getVectorType(); 2806 } 2807 2808 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2809 auto &builder = parser.getBuilder(); 2810 SMLoc typesLoc; 2811 OpAsmParser::UnresolvedOperand sourceInfo; 2812 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2813 OpAsmParser::UnresolvedOperand paddingInfo; 2814 SmallVector<Type, 2> types; 2815 OpAsmParser::UnresolvedOperand maskInfo; 2816 // Parsing with support for paddingValue. 2817 if (parser.parseOperand(sourceInfo) || 2818 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2819 parser.parseComma() || parser.parseOperand(paddingInfo)) 2820 return failure(); 2821 ParseResult hasMask = parser.parseOptionalComma(); 2822 if (hasMask.succeeded()) { 2823 parser.parseOperand(maskInfo); 2824 } 2825 if (parser.parseOptionalAttrDict(result.attributes) || 2826 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2827 return failure(); 2828 if (types.size() != 2) 2829 return parser.emitError(typesLoc, "requires two types"); 2830 auto indexType = builder.getIndexType(); 2831 auto shapedType = types[0].dyn_cast<ShapedType>(); 2832 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2833 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2834 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2835 if (!vectorType) 2836 return parser.emitError(typesLoc, "requires vector type"); 2837 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2838 Attribute mapAttr = result.attributes.get(permutationAttrName); 2839 if (!mapAttr) { 2840 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2841 // Update `mapAttr` that is used later to determine mask type. 2842 mapAttr = AffineMapAttr::get(permMap); 2843 result.attributes.set(permutationAttrName, mapAttr); 2844 } 2845 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2846 parser.resolveOperands(indexInfo, indexType, result.operands) || 2847 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2848 result.operands)) 2849 return failure(); 2850 if (hasMask.succeeded()) { 2851 if (shapedType.getElementType().dyn_cast<VectorType>()) 2852 return parser.emitError( 2853 maskInfo.location, "does not support masks with vector element type"); 2854 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2855 // Instead of adding the mask type as an op type, compute it based on the 2856 // vector type and the permutation map (to keep the type signature small). 2857 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2858 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2859 return failure(); 2860 } 2861 result.addAttribute( 2862 TransferReadOp::getOperandSegmentSizeAttr(), 2863 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2864 static_cast<int32_t>(hasMask.succeeded())})); 2865 return parser.addTypeToList(vectorType, result.types); 2866 } 2867 2868 LogicalResult TransferReadOp::verify() { 2869 // Consistency of elemental types in source and vector. 2870 ShapedType shapedType = getShapedType(); 2871 VectorType vectorType = getVectorType(); 2872 VectorType maskType = getMaskType(); 2873 auto paddingType = getPadding().getType(); 2874 auto permutationMap = getPermutationMap(); 2875 auto sourceElementType = shapedType.getElementType(); 2876 2877 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2878 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2879 2880 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2881 shapedType, vectorType, maskType, permutationMap, 2882 getInBounds() ? *getInBounds() : ArrayAttr()))) 2883 return failure(); 2884 2885 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2886 // Source has vector element type. 2887 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2888 if (sourceVectorElementType != paddingType) 2889 return emitOpError( 2890 "requires source element type and padding type to match."); 2891 2892 } else { 2893 // Check that 'paddingType' is valid to store in a vector type. 2894 if (!VectorType::isValidElementType(paddingType)) 2895 return emitOpError("requires valid padding vector elemental type"); 2896 2897 // Check that padding type and vector element types match. 2898 if (paddingType != sourceElementType) 2899 return emitOpError( 2900 "requires formal padding and source of the same elemental type"); 2901 } 2902 2903 return verifyPermutationMap(permutationMap, 2904 [&](Twine t) { return emitOpError(t); }); 2905 } 2906 2907 /// This is a common class used for patterns of the form 2908 /// ``` 2909 /// someop(memrefcast) -> someop 2910 /// ``` 2911 /// It folds the source of the memref.cast into the root operation directly. 2912 static LogicalResult foldMemRefCast(Operation *op) { 2913 bool folded = false; 2914 for (OpOperand &operand : op->getOpOperands()) { 2915 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2916 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2917 operand.set(castOp.getOperand()); 2918 folded = true; 2919 } 2920 } 2921 return success(folded); 2922 } 2923 2924 static LogicalResult foldTensorCast(Operation *op) { 2925 bool folded = false; 2926 for (OpOperand &operand : op->getOpOperands()) { 2927 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2928 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2929 operand.set(castOp.getOperand()); 2930 folded = true; 2931 } 2932 } 2933 return success(folded); 2934 } 2935 2936 template <typename TransferOp> 2937 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2938 // TODO: support more aggressive createOrFold on: 2939 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2940 if (op.getShapedType().isDynamicDim(indicesIdx)) 2941 return false; 2942 Value index = op.getIndices()[indicesIdx]; 2943 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2944 if (!cstOp) 2945 return false; 2946 2947 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2948 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2949 2950 return cstOp.value() + vectorSize <= sourceSize; 2951 } 2952 2953 template <typename TransferOp> 2954 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2955 // TODO: support 0-d corner case. 2956 // TODO: Be less conservative. 2957 if (op.getTransferRank() == 0) 2958 return failure(); 2959 AffineMap permutationMap = op.getPermutationMap(); 2960 bool changed = false; 2961 SmallVector<bool, 4> newInBounds; 2962 newInBounds.reserve(op.getTransferRank()); 2963 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2964 // Already marked as in-bounds, nothing to see here. 2965 if (op.isDimInBounds(i)) { 2966 newInBounds.push_back(true); 2967 continue; 2968 } 2969 // Currently out-of-bounds, check whether we can statically determine it is 2970 // inBounds. 2971 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2972 assert(dimExpr && "Broadcast dims must be in-bounds"); 2973 auto inBounds = 2974 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2975 newInBounds.push_back(inBounds); 2976 // We commit the pattern if it is "more inbounds". 2977 changed |= inBounds; 2978 } 2979 if (!changed) 2980 return failure(); 2981 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2982 OpBuilder b(op.getContext()); 2983 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2984 b.getBoolArrayAttr(newInBounds)); 2985 return success(); 2986 } 2987 2988 /// ``` 2989 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2990 /// : vector<1x4xf32>, tensor<4x4xf32> 2991 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2992 /// : tensor<4x4xf32>, vector<1x4xf32> 2993 /// ``` 2994 /// -> Folds into 2995 /// ``` 2996 /// %v0 2997 /// ``` 2998 static Value foldRAW(TransferReadOp readOp) { 2999 if (!readOp.getShapedType().isa<RankedTensorType>()) 3000 return {}; 3001 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3002 while (defWrite) { 3003 if (checkSameValueRAW(defWrite, readOp)) 3004 return defWrite.getVector(); 3005 if (!isDisjointTransferIndices( 3006 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3007 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3008 break; 3009 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3010 } 3011 return {}; 3012 } 3013 3014 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3015 if (Value vec = foldRAW(*this)) 3016 return vec; 3017 /// transfer_read(memrefcast) -> transfer_read 3018 if (succeeded(foldTransferInBoundsAttribute(*this))) 3019 return getResult(); 3020 if (succeeded(foldMemRefCast(*this))) 3021 return getResult(); 3022 if (succeeded(foldTensorCast(*this))) 3023 return getResult(); 3024 return OpFoldResult(); 3025 } 3026 3027 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3028 return llvm::to_vector<4>(getVectorType().getShape()); 3029 } 3030 3031 void TransferReadOp::getEffects( 3032 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3033 &effects) { 3034 if (getShapedType().isa<MemRefType>()) 3035 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3036 SideEffects::DefaultResource::get()); 3037 } 3038 3039 namespace { 3040 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3041 /// 3042 /// ``` 3043 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3044 /// : tensor<?x?xf32> to tensor<?x?xf32> 3045 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3046 /// : tensor<?x?xf32>, vector<4x5xf32> 3047 /// ``` 3048 /// is rewritten to: 3049 /// ``` 3050 /// %p0 = arith.addi %a, %e : index 3051 /// %p1 = arith.addi %b, %f : index 3052 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3053 /// : tensor<?x?xf32>, vector<4x5xf32> 3054 /// ``` 3055 struct FoldExtractSliceIntoTransferRead 3056 : public OpRewritePattern<TransferReadOp> { 3057 public: 3058 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3059 3060 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3061 PatternRewriter &rewriter) const override { 3062 // TODO: support 0-d corner case. 3063 if (xferOp.getTransferRank() == 0) 3064 return failure(); 3065 if (xferOp.hasOutOfBoundsDim()) 3066 return failure(); 3067 if (!xferOp.getPermutationMap().isIdentity()) 3068 return failure(); 3069 if (xferOp.getMask()) 3070 return failure(); 3071 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3072 if (!extractOp) 3073 return failure(); 3074 if (!extractOp.hasUnitStride()) 3075 return failure(); 3076 3077 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3078 // dims are exactly the leading dims. I.e. the following is illegal: 3079 // ``` 3080 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3081 // tensor<2x1x4xf32> to tensor<2x4xf32> 3082 // %1 = vector.transfer_read %0[0,0], %cst : 3083 // tensor<2x4xf32>, vector<2x4xf32> 3084 // ``` 3085 // 3086 // Cannot fold into: 3087 // ``` 3088 // %0 = vector.transfer_read %t[0,0,0], %cst : 3089 // tensor<2x1x4xf32>, vector<2x4xf32> 3090 // ``` 3091 // For this, check the trailing `vectorRank` dims of the extract_slice 3092 // result tensor match the trailing dims of the inferred result tensor. 3093 int64_t rankReduced = 3094 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3095 int64_t vectorRank = xferOp.getVectorType().getRank(); 3096 RankedTensorType inferredDestTensorType = 3097 tensor::ExtractSliceOp::inferResultType( 3098 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3099 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3100 auto actualDestTensorShape = extractOp.getType().getShape(); 3101 if (rankReduced > 0 && 3102 actualDestTensorShape.take_back(vectorRank) != 3103 inferredDestTensorType.getShape().take_back(vectorRank)) 3104 return failure(); 3105 3106 SmallVector<Value> newIndices; 3107 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3108 // indices first. 3109 for (int64_t i = 0; i < rankReduced; ++i) { 3110 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3111 newIndices.push_back(getValueOrCreateConstantIndexOp( 3112 rewriter, extractOp.getLoc(), offset)); 3113 } 3114 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3115 OpFoldResult offset = 3116 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3117 newIndices.push_back(rewriter.create<arith::AddIOp>( 3118 xferOp->getLoc(), it.value(), 3119 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3120 offset))); 3121 } 3122 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3123 rewriter.replaceOpWithNewOp<TransferReadOp>( 3124 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3125 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3126 3127 return success(); 3128 } 3129 }; 3130 } // namespace 3131 3132 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3133 MLIRContext *context) { 3134 results.add<FoldExtractSliceIntoTransferRead>(context); 3135 } 3136 3137 //===----------------------------------------------------------------------===// 3138 // TransferWriteOp 3139 //===----------------------------------------------------------------------===// 3140 3141 /// 1. Builder with type inference. 3142 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3143 Value vector, Value dest, ValueRange indices, 3144 AffineMapAttr permutationMapAttr, 3145 /*optional*/ Value mask, 3146 /*optional*/ ArrayAttr inBoundsAttr) { 3147 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3148 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3149 mask, inBoundsAttr); 3150 } 3151 3152 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3153 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3154 Value vector, Value dest, ValueRange indices, 3155 AffineMapAttr permutationMapAttr, 3156 /*optional*/ ArrayAttr inBoundsAttr) { 3157 build(builder, result, vector, dest, indices, permutationMapAttr, 3158 /*mask=*/Value(), inBoundsAttr); 3159 } 3160 3161 /// 3. Builder with type inference that sets an empty mask (variant without 3162 /// attrs) 3163 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3164 Value vector, Value dest, ValueRange indices, 3165 AffineMap permutationMap, 3166 Optional<ArrayRef<bool>> inBounds) { 3167 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3168 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3169 ? builder.getBoolArrayAttr(inBounds.getValue()) 3170 : ArrayAttr(); 3171 build(builder, result, vector, dest, indices, permutationMapAttr, 3172 /*mask=*/Value(), inBoundsAttr); 3173 } 3174 3175 /// 4. Builder with type inference that sets an empty mask and sets permutation 3176 /// map to 'getMinorIdentityMap'. 3177 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3178 Value vector, Value dest, ValueRange indices, 3179 Optional<ArrayRef<bool>> inBounds) { 3180 auto vectorType = vector.getType().cast<VectorType>(); 3181 AffineMap permutationMap = getTransferMinorIdentityMap( 3182 dest.getType().cast<ShapedType>(), vectorType); 3183 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3184 } 3185 3186 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3187 OperationState &result) { 3188 auto &builder = parser.getBuilder(); 3189 SMLoc typesLoc; 3190 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3191 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3192 SmallVector<Type, 2> types; 3193 OpAsmParser::UnresolvedOperand maskInfo; 3194 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3195 parser.parseOperand(sourceInfo) || 3196 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3197 return failure(); 3198 ParseResult hasMask = parser.parseOptionalComma(); 3199 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3200 return failure(); 3201 if (parser.parseOptionalAttrDict(result.attributes) || 3202 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3203 return failure(); 3204 if (types.size() != 2) 3205 return parser.emitError(typesLoc, "requires two types"); 3206 auto indexType = builder.getIndexType(); 3207 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3208 if (!vectorType) 3209 return parser.emitError(typesLoc, "requires vector type"); 3210 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3211 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3212 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3213 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3214 auto attr = result.attributes.get(permutationAttrName); 3215 if (!attr) { 3216 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3217 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3218 } 3219 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3220 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3221 parser.resolveOperands(indexInfo, indexType, result.operands)) 3222 return failure(); 3223 if (hasMask.succeeded()) { 3224 if (shapedType.getElementType().dyn_cast<VectorType>()) 3225 return parser.emitError( 3226 maskInfo.location, "does not support masks with vector element type"); 3227 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3228 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3229 return failure(); 3230 } 3231 result.addAttribute( 3232 TransferWriteOp::getOperandSegmentSizeAttr(), 3233 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3234 static_cast<int32_t>(hasMask.succeeded())})); 3235 return failure(shapedType.isa<RankedTensorType>() && 3236 parser.addTypeToList(shapedType, result.types)); 3237 } 3238 3239 void TransferWriteOp::print(OpAsmPrinter &p) { 3240 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3241 if (getMask()) 3242 p << ", " << getMask(); 3243 printTransferAttrs(p, *this); 3244 p << " : " << getVectorType() << ", " << getShapedType(); 3245 } 3246 3247 LogicalResult TransferWriteOp::verify() { 3248 // Consistency of elemental types in shape and vector. 3249 ShapedType shapedType = getShapedType(); 3250 VectorType vectorType = getVectorType(); 3251 VectorType maskType = getMaskType(); 3252 auto permutationMap = getPermutationMap(); 3253 3254 if (llvm::size(getIndices()) != shapedType.getRank()) 3255 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3256 3257 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3258 // as the semantics is unclear. This can be revisited later if necessary. 3259 if (hasBroadcastDim()) 3260 return emitOpError("should not have broadcast dimensions"); 3261 3262 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3263 shapedType, vectorType, maskType, permutationMap, 3264 getInBounds() ? *getInBounds() : ArrayAttr()))) 3265 return failure(); 3266 3267 return verifyPermutationMap(permutationMap, 3268 [&](Twine t) { return emitOpError(t); }); 3269 } 3270 3271 /// Fold: 3272 /// ``` 3273 /// %t1 = ... 3274 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3275 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3276 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3277 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3278 /// ``` 3279 /// 3280 /// into: 3281 /// 3282 /// ``` 3283 /// %t0 3284 /// ``` 3285 /// 3286 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3287 /// block argument or has side effects. 3288 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3289 ArrayRef<Attribute>, 3290 SmallVectorImpl<OpFoldResult> &results) { 3291 // TODO: support 0-d corner case. 3292 if (write.getTransferRank() == 0) 3293 return failure(); 3294 auto rankedTensorType = 3295 write.getSource().getType().dyn_cast<RankedTensorType>(); 3296 // If not operating on tensors, bail. 3297 if (!rankedTensorType) 3298 return failure(); 3299 // If no read, bail. 3300 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3301 if (!read) 3302 return failure(); 3303 // TODO: support 0-d corner case. 3304 if (read.getTransferRank() == 0) 3305 return failure(); 3306 // For now, only accept minor identity. Future: composition is minor identity. 3307 if (!read.getPermutationMap().isMinorIdentity() || 3308 !write.getPermutationMap().isMinorIdentity()) 3309 return failure(); 3310 // Bail on mismatching ranks. 3311 if (read.getTransferRank() != write.getTransferRank()) 3312 return failure(); 3313 // Bail on potential out-of-bounds accesses. 3314 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3315 return failure(); 3316 // Tensor types must be the same. 3317 if (read.getSource().getType() != rankedTensorType) 3318 return failure(); 3319 // Vector types must be the same. 3320 if (read.getVectorType() != write.getVectorType()) 3321 return failure(); 3322 // Vector and Tensor shapes must match. 3323 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3324 return failure(); 3325 // If any index is nonzero. 3326 auto isNotConstantZero = [](Value v) { 3327 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3328 return !cstOp || cstOp.value() != 0; 3329 }; 3330 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3331 llvm::any_of(write.getIndices(), isNotConstantZero)) 3332 return failure(); 3333 // Success. 3334 results.push_back(read.getSource()); 3335 return success(); 3336 } 3337 3338 static bool checkSameValueWAR(vector::TransferReadOp read, 3339 vector::TransferWriteOp write) { 3340 return read.getSource() == write.getSource() && 3341 read.getIndices() == write.getIndices() && 3342 read.getPermutationMap() == write.getPermutationMap() && 3343 read.getVectorType() == write.getVectorType() && !read.getMask() && 3344 !write.getMask(); 3345 } 3346 /// Fold transfer_write write after read: 3347 /// ``` 3348 /// %t0 = ... 3349 /// %v = vector.transfer_read %t0[%c0...] : 3350 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3351 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3352 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3353 /// ``` 3354 /// 3355 /// into: 3356 /// 3357 /// ``` 3358 /// %t0 3359 /// ``` 3360 static LogicalResult foldWAR(TransferWriteOp write, 3361 SmallVectorImpl<OpFoldResult> &results) { 3362 if (!write.getSource().getType().isa<RankedTensorType>()) 3363 return failure(); 3364 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3365 if (!read) 3366 return failure(); 3367 3368 if (!checkSameValueWAR(read, write)) 3369 return failure(); 3370 results.push_back(read.getSource()); 3371 return success(); 3372 } 3373 3374 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3375 SmallVectorImpl<OpFoldResult> &results) { 3376 if (succeeded(foldReadInitWrite(*this, operands, results))) 3377 return success(); 3378 if (succeeded(foldWAR(*this, results))) 3379 return success(); 3380 if (succeeded(foldTransferInBoundsAttribute(*this))) 3381 return success(); 3382 return foldMemRefCast(*this); 3383 } 3384 3385 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3386 return llvm::to_vector<4>(getVectorType().getShape()); 3387 } 3388 3389 void TransferWriteOp::getEffects( 3390 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3391 &effects) { 3392 if (getShapedType().isa<MemRefType>()) 3393 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3394 SideEffects::DefaultResource::get()); 3395 } 3396 3397 namespace { 3398 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3399 /// DCE 3400 /// ``` 3401 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3402 /// : vector<1x4xf32>, tensor<4x4xf32> 3403 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3404 /// : vector<1x4xf32>, tensor<4x4xf32> 3405 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3406 /// : vector<1x4xf32>, tensor<4x4xf32> 3407 /// ``` 3408 /// 3409 /// into: 3410 /// 3411 /// ``` 3412 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3413 /// : vector<1x4xf32>, tensor<4x4xf32> 3414 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3415 /// : vector<1x4xf32>, tensor<4x4xf32> 3416 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3417 /// : vector<1x4xf32>, tensor<4x4xf32> 3418 /// ``` 3419 /// 3420 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3421 /// any other uses. 3422 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3423 public: 3424 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3425 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3426 PatternRewriter &rewriter) const override { 3427 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3428 return failure(); 3429 vector::TransferWriteOp writeToModify = writeOp; 3430 3431 auto defWrite = 3432 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3433 while (defWrite) { 3434 if (checkSameValueWAW(writeOp, defWrite)) { 3435 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3436 return success(); 3437 } 3438 if (!isDisjointTransferIndices( 3439 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3440 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3441 break; 3442 // If the previous write op doesn't have any other use we an safely look 3443 // at the previous store to see if it can be removed. 3444 if (!defWrite->hasOneUse()) 3445 break; 3446 writeToModify = defWrite; 3447 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3448 } 3449 return failure(); 3450 } 3451 }; 3452 3453 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3454 /// could directly write to the insert_slice's destination. E.g.: 3455 /// 3456 /// ``` 3457 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3458 /// : vector<4x5xf32>, tensor<4x5xf32> 3459 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3460 /// : tensor<4x5xf32> into tensor<?x?xf32> 3461 /// ``` 3462 /// is rewritten to: 3463 /// ``` 3464 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3465 /// : vector<4x5xf32>, tensor<?x?xf32> 3466 /// ``` 3467 struct FoldInsertSliceIntoTransferWrite 3468 : public OpRewritePattern<tensor::InsertSliceOp> { 3469 public: 3470 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3471 3472 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3473 PatternRewriter &rewriter) const override { 3474 if (!insertOp.hasUnitStride()) 3475 return failure(); 3476 3477 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3478 if (!xferOp) 3479 return failure(); 3480 // TODO: support 0-d corner case. 3481 if (xferOp.getTransferRank() == 0) 3482 return failure(); 3483 3484 if (xferOp.hasOutOfBoundsDim()) 3485 return failure(); 3486 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3487 return failure(); 3488 if (xferOp.getMask()) 3489 return failure(); 3490 // Fold only if the TransferWriteOp completely overwrites the `source` with 3491 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3492 // content is the data of the vector. 3493 if (!llvm::equal(xferOp.getVectorType().getShape(), 3494 xferOp.getShapedType().getShape())) 3495 return failure(); 3496 if (!xferOp.getPermutationMap().isIdentity()) 3497 return failure(); 3498 3499 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3500 // dims are exactly the leading dims. I.e. the following is illegal: 3501 // ``` 3502 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3503 // vector<2x4xf32>, tensor<2x4xf32> 3504 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3505 // tensor<2x4xf32> into tensor<2x1x4xf32> 3506 // ``` 3507 // 3508 // Cannot fold into: 3509 // ``` 3510 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3511 // vector<2x4xf32>, tensor<2x1x4xf32> 3512 // ``` 3513 // For this, check the trailing `vectorRank` dims of the insert_slice result 3514 // tensor match the trailing dims of the inferred result tensor. 3515 int64_t rankReduced = 3516 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3517 int64_t vectorRank = xferOp.getVectorType().getRank(); 3518 RankedTensorType inferredSourceTensorType = 3519 tensor::ExtractSliceOp::inferResultType( 3520 insertOp.getType(), insertOp.getMixedOffsets(), 3521 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3522 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3523 if (rankReduced > 0 && 3524 actualSourceTensorShape.take_back(vectorRank) != 3525 inferredSourceTensorType.getShape().take_back(vectorRank)) 3526 return failure(); 3527 3528 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3529 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3530 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3531 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3532 insertOp.dest(), indices, 3533 ArrayRef<bool>{inBounds}); 3534 return success(); 3535 } 3536 }; 3537 } // namespace 3538 3539 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3540 MLIRContext *context) { 3541 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3542 } 3543 3544 //===----------------------------------------------------------------------===// 3545 // LoadOp 3546 //===----------------------------------------------------------------------===// 3547 3548 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3549 MemRefType memRefTy) { 3550 if (!isLastMemrefDimUnitStride(memRefTy)) 3551 return op->emitOpError("most minor memref dim must have unit stride"); 3552 return success(); 3553 } 3554 3555 LogicalResult vector::LoadOp::verify() { 3556 VectorType resVecTy = getVectorType(); 3557 MemRefType memRefTy = getMemRefType(); 3558 3559 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3560 return failure(); 3561 3562 // Checks for vector memrefs. 3563 Type memElemTy = memRefTy.getElementType(); 3564 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3565 if (memVecTy != resVecTy) 3566 return emitOpError("base memref and result vector types should match"); 3567 memElemTy = memVecTy.getElementType(); 3568 } 3569 3570 if (resVecTy.getElementType() != memElemTy) 3571 return emitOpError("base and result element types should match"); 3572 if (llvm::size(getIndices()) != memRefTy.getRank()) 3573 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3574 return success(); 3575 } 3576 3577 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3578 if (succeeded(foldMemRefCast(*this))) 3579 return getResult(); 3580 return OpFoldResult(); 3581 } 3582 3583 //===----------------------------------------------------------------------===// 3584 // StoreOp 3585 //===----------------------------------------------------------------------===// 3586 3587 LogicalResult vector::StoreOp::verify() { 3588 VectorType valueVecTy = getVectorType(); 3589 MemRefType memRefTy = getMemRefType(); 3590 3591 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3592 return failure(); 3593 3594 // Checks for vector memrefs. 3595 Type memElemTy = memRefTy.getElementType(); 3596 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3597 if (memVecTy != valueVecTy) 3598 return emitOpError( 3599 "base memref and valueToStore vector types should match"); 3600 memElemTy = memVecTy.getElementType(); 3601 } 3602 3603 if (valueVecTy.getElementType() != memElemTy) 3604 return emitOpError("base and valueToStore element type should match"); 3605 if (llvm::size(getIndices()) != memRefTy.getRank()) 3606 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3607 return success(); 3608 } 3609 3610 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3611 SmallVectorImpl<OpFoldResult> &results) { 3612 return foldMemRefCast(*this); 3613 } 3614 3615 //===----------------------------------------------------------------------===// 3616 // MaskedLoadOp 3617 //===----------------------------------------------------------------------===// 3618 3619 LogicalResult MaskedLoadOp::verify() { 3620 VectorType maskVType = getMaskVectorType(); 3621 VectorType passVType = getPassThruVectorType(); 3622 VectorType resVType = getVectorType(); 3623 MemRefType memType = getMemRefType(); 3624 3625 if (resVType.getElementType() != memType.getElementType()) 3626 return emitOpError("base and result element type should match"); 3627 if (llvm::size(getIndices()) != memType.getRank()) 3628 return emitOpError("requires ") << memType.getRank() << " indices"; 3629 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3630 return emitOpError("expected result dim to match mask dim"); 3631 if (resVType != passVType) 3632 return emitOpError("expected pass_thru of same type as result type"); 3633 return success(); 3634 } 3635 3636 namespace { 3637 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3638 public: 3639 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3640 LogicalResult matchAndRewrite(MaskedLoadOp load, 3641 PatternRewriter &rewriter) const override { 3642 switch (get1DMaskFormat(load.getMask())) { 3643 case MaskFormat::AllTrue: 3644 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3645 load, load.getType(), load.getBase(), load.getIndices()); 3646 return success(); 3647 case MaskFormat::AllFalse: 3648 rewriter.replaceOp(load, load.getPassThru()); 3649 return success(); 3650 case MaskFormat::Unknown: 3651 return failure(); 3652 } 3653 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3654 } 3655 }; 3656 } // namespace 3657 3658 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3659 MLIRContext *context) { 3660 results.add<MaskedLoadFolder>(context); 3661 } 3662 3663 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3664 if (succeeded(foldMemRefCast(*this))) 3665 return getResult(); 3666 return OpFoldResult(); 3667 } 3668 3669 //===----------------------------------------------------------------------===// 3670 // MaskedStoreOp 3671 //===----------------------------------------------------------------------===// 3672 3673 LogicalResult MaskedStoreOp::verify() { 3674 VectorType maskVType = getMaskVectorType(); 3675 VectorType valueVType = getVectorType(); 3676 MemRefType memType = getMemRefType(); 3677 3678 if (valueVType.getElementType() != memType.getElementType()) 3679 return emitOpError("base and valueToStore element type should match"); 3680 if (llvm::size(getIndices()) != memType.getRank()) 3681 return emitOpError("requires ") << memType.getRank() << " indices"; 3682 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3683 return emitOpError("expected valueToStore dim to match mask dim"); 3684 return success(); 3685 } 3686 3687 namespace { 3688 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3689 public: 3690 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3691 LogicalResult matchAndRewrite(MaskedStoreOp store, 3692 PatternRewriter &rewriter) const override { 3693 switch (get1DMaskFormat(store.getMask())) { 3694 case MaskFormat::AllTrue: 3695 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3696 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3697 return success(); 3698 case MaskFormat::AllFalse: 3699 rewriter.eraseOp(store); 3700 return success(); 3701 case MaskFormat::Unknown: 3702 return failure(); 3703 } 3704 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3705 } 3706 }; 3707 } // namespace 3708 3709 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3710 MLIRContext *context) { 3711 results.add<MaskedStoreFolder>(context); 3712 } 3713 3714 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3715 SmallVectorImpl<OpFoldResult> &results) { 3716 return foldMemRefCast(*this); 3717 } 3718 3719 //===----------------------------------------------------------------------===// 3720 // GatherOp 3721 //===----------------------------------------------------------------------===// 3722 3723 LogicalResult GatherOp::verify() { 3724 VectorType indVType = getIndexVectorType(); 3725 VectorType maskVType = getMaskVectorType(); 3726 VectorType resVType = getVectorType(); 3727 MemRefType memType = getMemRefType(); 3728 3729 if (resVType.getElementType() != memType.getElementType()) 3730 return emitOpError("base and result element type should match"); 3731 if (llvm::size(getIndices()) != memType.getRank()) 3732 return emitOpError("requires ") << memType.getRank() << " indices"; 3733 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3734 return emitOpError("expected result dim to match indices dim"); 3735 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3736 return emitOpError("expected result dim to match mask dim"); 3737 if (resVType != getPassThruVectorType()) 3738 return emitOpError("expected pass_thru of same type as result type"); 3739 return success(); 3740 } 3741 3742 namespace { 3743 class GatherFolder final : public OpRewritePattern<GatherOp> { 3744 public: 3745 using OpRewritePattern<GatherOp>::OpRewritePattern; 3746 LogicalResult matchAndRewrite(GatherOp gather, 3747 PatternRewriter &rewriter) const override { 3748 switch (get1DMaskFormat(gather.getMask())) { 3749 case MaskFormat::AllTrue: 3750 return failure(); // no unmasked equivalent 3751 case MaskFormat::AllFalse: 3752 rewriter.replaceOp(gather, gather.getPassThru()); 3753 return success(); 3754 case MaskFormat::Unknown: 3755 return failure(); 3756 } 3757 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3758 } 3759 }; 3760 } // namespace 3761 3762 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3763 MLIRContext *context) { 3764 results.add<GatherFolder>(context); 3765 } 3766 3767 //===----------------------------------------------------------------------===// 3768 // ScatterOp 3769 //===----------------------------------------------------------------------===// 3770 3771 LogicalResult ScatterOp::verify() { 3772 VectorType indVType = getIndexVectorType(); 3773 VectorType maskVType = getMaskVectorType(); 3774 VectorType valueVType = getVectorType(); 3775 MemRefType memType = getMemRefType(); 3776 3777 if (valueVType.getElementType() != memType.getElementType()) 3778 return emitOpError("base and valueToStore element type should match"); 3779 if (llvm::size(getIndices()) != memType.getRank()) 3780 return emitOpError("requires ") << memType.getRank() << " indices"; 3781 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3782 return emitOpError("expected valueToStore dim to match indices dim"); 3783 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3784 return emitOpError("expected valueToStore dim to match mask dim"); 3785 return success(); 3786 } 3787 3788 namespace { 3789 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3790 public: 3791 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3792 LogicalResult matchAndRewrite(ScatterOp scatter, 3793 PatternRewriter &rewriter) const override { 3794 switch (get1DMaskFormat(scatter.getMask())) { 3795 case MaskFormat::AllTrue: 3796 return failure(); // no unmasked equivalent 3797 case MaskFormat::AllFalse: 3798 rewriter.eraseOp(scatter); 3799 return success(); 3800 case MaskFormat::Unknown: 3801 return failure(); 3802 } 3803 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3804 } 3805 }; 3806 } // namespace 3807 3808 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3809 MLIRContext *context) { 3810 results.add<ScatterFolder>(context); 3811 } 3812 3813 //===----------------------------------------------------------------------===// 3814 // ExpandLoadOp 3815 //===----------------------------------------------------------------------===// 3816 3817 LogicalResult ExpandLoadOp::verify() { 3818 VectorType maskVType = getMaskVectorType(); 3819 VectorType passVType = getPassThruVectorType(); 3820 VectorType resVType = getVectorType(); 3821 MemRefType memType = getMemRefType(); 3822 3823 if (resVType.getElementType() != memType.getElementType()) 3824 return emitOpError("base and result element type should match"); 3825 if (llvm::size(getIndices()) != memType.getRank()) 3826 return emitOpError("requires ") << memType.getRank() << " indices"; 3827 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3828 return emitOpError("expected result dim to match mask dim"); 3829 if (resVType != passVType) 3830 return emitOpError("expected pass_thru of same type as result type"); 3831 return success(); 3832 } 3833 3834 namespace { 3835 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3836 public: 3837 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3838 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3839 PatternRewriter &rewriter) const override { 3840 switch (get1DMaskFormat(expand.getMask())) { 3841 case MaskFormat::AllTrue: 3842 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3843 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3844 return success(); 3845 case MaskFormat::AllFalse: 3846 rewriter.replaceOp(expand, expand.getPassThru()); 3847 return success(); 3848 case MaskFormat::Unknown: 3849 return failure(); 3850 } 3851 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3852 } 3853 }; 3854 } // namespace 3855 3856 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3857 MLIRContext *context) { 3858 results.add<ExpandLoadFolder>(context); 3859 } 3860 3861 //===----------------------------------------------------------------------===// 3862 // CompressStoreOp 3863 //===----------------------------------------------------------------------===// 3864 3865 LogicalResult CompressStoreOp::verify() { 3866 VectorType maskVType = getMaskVectorType(); 3867 VectorType valueVType = getVectorType(); 3868 MemRefType memType = getMemRefType(); 3869 3870 if (valueVType.getElementType() != memType.getElementType()) 3871 return emitOpError("base and valueToStore element type should match"); 3872 if (llvm::size(getIndices()) != memType.getRank()) 3873 return emitOpError("requires ") << memType.getRank() << " indices"; 3874 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3875 return emitOpError("expected valueToStore dim to match mask dim"); 3876 return success(); 3877 } 3878 3879 namespace { 3880 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3881 public: 3882 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3883 LogicalResult matchAndRewrite(CompressStoreOp compress, 3884 PatternRewriter &rewriter) const override { 3885 switch (get1DMaskFormat(compress.getMask())) { 3886 case MaskFormat::AllTrue: 3887 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3888 compress, compress.getValueToStore(), compress.getBase(), 3889 compress.getIndices()); 3890 return success(); 3891 case MaskFormat::AllFalse: 3892 rewriter.eraseOp(compress); 3893 return success(); 3894 case MaskFormat::Unknown: 3895 return failure(); 3896 } 3897 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3898 } 3899 }; 3900 } // namespace 3901 3902 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3903 MLIRContext *context) { 3904 results.add<CompressStoreFolder>(context); 3905 } 3906 3907 //===----------------------------------------------------------------------===// 3908 // ShapeCastOp 3909 //===----------------------------------------------------------------------===// 3910 3911 /// Returns true if each element of 'a' is equal to the product of a contiguous 3912 /// sequence of the elements of 'b'. Returns false otherwise. 3913 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3914 unsigned rankA = a.size(); 3915 unsigned rankB = b.size(); 3916 assert(rankA < rankB); 3917 3918 unsigned i = 0; 3919 unsigned j = 0; 3920 while (i < rankA && j < rankB) { 3921 int64_t dimA = a[i]; 3922 int64_t dimB = 1; 3923 while (dimB < dimA && j < rankB) 3924 dimB *= b[j++]; 3925 if (dimA != dimB) 3926 break; 3927 ++i; 3928 3929 // Handle the case when trailing dimensions are of size 1. 3930 // Include them into the contiguous sequence. 3931 auto isOne = [](int64_t v) { return v == 1; }; 3932 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3933 i = rankA; 3934 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3935 j = rankB; 3936 } 3937 3938 return i == rankA && j == rankB; 3939 } 3940 3941 static LogicalResult verifyVectorShapeCast(Operation *op, 3942 VectorType sourceVectorType, 3943 VectorType resultVectorType) { 3944 // Check that element type is the same. 3945 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3946 return op->emitOpError("source/result vectors must have same element type"); 3947 auto sourceShape = sourceVectorType.getShape(); 3948 auto resultShape = resultVectorType.getShape(); 3949 3950 // Check that product of source dim sizes matches product of result dim sizes. 3951 int64_t sourceDimProduct = std::accumulate( 3952 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3953 int64_t resultDimProduct = std::accumulate( 3954 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3955 if (sourceDimProduct != resultDimProduct) 3956 return op->emitOpError("source/result number of elements must match"); 3957 3958 // Check that expanding/contracting rank cases. 3959 unsigned sourceRank = sourceVectorType.getRank(); 3960 unsigned resultRank = resultVectorType.getRank(); 3961 if (sourceRank < resultRank) { 3962 if (!isValidShapeCast(sourceShape, resultShape)) 3963 return op->emitOpError("invalid shape cast"); 3964 } else if (sourceRank > resultRank) { 3965 if (!isValidShapeCast(resultShape, sourceShape)) 3966 return op->emitOpError("invalid shape cast"); 3967 } 3968 return success(); 3969 } 3970 3971 LogicalResult ShapeCastOp::verify() { 3972 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 3973 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 3974 3975 // Check if source/result are of vector type. 3976 if (sourceVectorType && resultVectorType) 3977 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3978 3979 return success(); 3980 } 3981 3982 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3983 // Nop shape cast. 3984 if (getSource().getType() == getResult().getType()) 3985 return getSource(); 3986 3987 // Canceling shape casts. 3988 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 3989 if (getResult().getType() == otherOp.getSource().getType()) 3990 return otherOp.getSource(); 3991 3992 // Only allows valid transitive folding. 3993 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 3994 VectorType resultType = getResult().getType().cast<VectorType>(); 3995 if (srcType.getRank() < resultType.getRank()) { 3996 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3997 return {}; 3998 } else if (srcType.getRank() > resultType.getRank()) { 3999 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4000 return {}; 4001 } else { 4002 return {}; 4003 } 4004 4005 setOperand(otherOp.getSource()); 4006 return getResult(); 4007 } 4008 return {}; 4009 } 4010 4011 namespace { 4012 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4013 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4014 public: 4015 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4016 4017 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4018 PatternRewriter &rewriter) const override { 4019 auto constantOp = 4020 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4021 if (!constantOp) 4022 return failure(); 4023 // Only handle splat for now. 4024 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4025 if (!dense) 4026 return failure(); 4027 auto newAttr = 4028 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4029 dense.getSplatValue<Attribute>()); 4030 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4031 return success(); 4032 } 4033 }; 4034 4035 } // namespace 4036 4037 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4038 MLIRContext *context) { 4039 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4040 results.add<ShapeCastConstantFolder>(context); 4041 } 4042 4043 //===----------------------------------------------------------------------===// 4044 // VectorBitCastOp 4045 //===----------------------------------------------------------------------===// 4046 4047 LogicalResult BitCastOp::verify() { 4048 auto sourceVectorType = getSourceVectorType(); 4049 auto resultVectorType = getResultVectorType(); 4050 4051 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4052 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4053 return emitOpError("dimension size mismatch at: ") << i; 4054 } 4055 4056 DataLayout dataLayout = DataLayout::closest(*this); 4057 auto sourceElementBits = 4058 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4059 auto resultElementBits = 4060 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4061 4062 if (sourceVectorType.getRank() == 0) { 4063 if (sourceElementBits != resultElementBits) 4064 return emitOpError("source/result bitwidth of the 0-D vector element " 4065 "types must be equal"); 4066 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4067 resultElementBits * resultVectorType.getShape().back()) { 4068 return emitOpError( 4069 "source/result bitwidth of the minor 1-D vectors must be equal"); 4070 } 4071 4072 return success(); 4073 } 4074 4075 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4076 // Nop cast. 4077 if (getSource().getType() == getResult().getType()) 4078 return getSource(); 4079 4080 // Canceling bitcasts. 4081 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4082 if (getResult().getType() == otherOp.getSource().getType()) 4083 return otherOp.getSource(); 4084 4085 Attribute sourceConstant = operands.front(); 4086 if (!sourceConstant) 4087 return {}; 4088 4089 Type srcElemType = getSourceVectorType().getElementType(); 4090 Type dstElemType = getResultVectorType().getElementType(); 4091 4092 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4093 if (floatPack.isSplat()) { 4094 auto splat = floatPack.getSplatValue<FloatAttr>(); 4095 4096 // Casting fp16 into fp32. 4097 if (srcElemType.isF16() && dstElemType.isF32()) { 4098 uint32_t bits = static_cast<uint32_t>( 4099 splat.getValue().bitcastToAPInt().getZExtValue()); 4100 // Duplicate the 16-bit pattern. 4101 bits = (bits << 16) | (bits & 0xffff); 4102 APInt intBits(32, bits); 4103 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4104 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4105 } 4106 } 4107 } 4108 4109 return {}; 4110 } 4111 4112 //===----------------------------------------------------------------------===// 4113 // TypeCastOp 4114 //===----------------------------------------------------------------------===// 4115 4116 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4117 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4118 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4119 memRefType.getShape().end()); 4120 if (vectorType) 4121 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4122 return res; 4123 } 4124 4125 /// Build the canonical memRefType with a single vector. 4126 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4127 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4128 Value source) { 4129 result.addOperands(source); 4130 MemRefType memRefType = source.getType().cast<MemRefType>(); 4131 VectorType vectorType = 4132 VectorType::get(extractShape(memRefType), 4133 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4134 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4135 memRefType.getMemorySpace())); 4136 } 4137 4138 LogicalResult TypeCastOp::verify() { 4139 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4140 if (!canonicalType.getLayout().isIdentity()) 4141 return emitOpError("expects operand to be a memref with identity layout"); 4142 if (!getResultMemRefType().getLayout().isIdentity()) 4143 return emitOpError("expects result to be a memref with identity layout"); 4144 if (getResultMemRefType().getMemorySpace() != 4145 getMemRefType().getMemorySpace()) 4146 return emitOpError("expects result in same memory space"); 4147 4148 auto sourceType = getMemRefType(); 4149 auto resultType = getResultMemRefType(); 4150 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4151 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4152 return emitOpError( 4153 "expects result and operand with same underlying scalar type: ") 4154 << resultType; 4155 if (extractShape(sourceType) != extractShape(resultType)) 4156 return emitOpError( 4157 "expects concatenated result and operand shapes to be equal: ") 4158 << resultType; 4159 return success(); 4160 } 4161 4162 //===----------------------------------------------------------------------===// 4163 // TransposeOp 4164 //===----------------------------------------------------------------------===// 4165 4166 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4167 Value vector, ArrayRef<int64_t> transp) { 4168 VectorType vt = vector.getType().cast<VectorType>(); 4169 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4170 for (unsigned i = 0; i < transp.size(); ++i) 4171 transposedShape[i] = vt.getShape()[transp[i]]; 4172 4173 result.addOperands(vector); 4174 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4175 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4176 } 4177 4178 // Eliminates transpose operations, which produce values identical to their 4179 // input values. This happens when the dimensions of the input vector remain in 4180 // their original order after the transpose operation. 4181 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4182 SmallVector<int64_t, 4> transp; 4183 getTransp(transp); 4184 4185 // Check if the permutation of the dimensions contains sequential values: 4186 // {0, 1, 2, ...}. 4187 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4188 if (transp[i] != i) 4189 return {}; 4190 } 4191 4192 return getVector(); 4193 } 4194 4195 LogicalResult vector::TransposeOp::verify() { 4196 VectorType vectorType = getVectorType(); 4197 VectorType resultType = getResultType(); 4198 int64_t rank = resultType.getRank(); 4199 if (vectorType.getRank() != rank) 4200 return emitOpError("vector result rank mismatch: ") << rank; 4201 // Verify transposition array. 4202 auto transpAttr = getTransp().getValue(); 4203 int64_t size = transpAttr.size(); 4204 if (rank != size) 4205 return emitOpError("transposition length mismatch: ") << size; 4206 SmallVector<bool, 8> seen(rank, false); 4207 for (const auto &ta : llvm::enumerate(transpAttr)) { 4208 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4209 if (i < 0 || i >= rank) 4210 return emitOpError("transposition index out of range: ") << i; 4211 if (seen[i]) 4212 return emitOpError("duplicate position index: ") << i; 4213 seen[i] = true; 4214 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4215 return emitOpError("dimension size mismatch at: ") << i; 4216 } 4217 return success(); 4218 } 4219 4220 namespace { 4221 4222 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4223 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4224 public: 4225 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4226 4227 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4228 PatternRewriter &rewriter) const override { 4229 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4230 auto getPermutation = [](vector::TransposeOp transpose) { 4231 SmallVector<int64_t, 4> permutation; 4232 transpose.getTransp(permutation); 4233 return permutation; 4234 }; 4235 4236 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4237 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4238 ArrayRef<int64_t> permutation2) { 4239 SmallVector<int64_t, 4> result; 4240 for (auto index : permutation2) 4241 result.push_back(permutation1[index]); 4242 return result; 4243 }; 4244 4245 // Return if the input of 'transposeOp' is not defined by another transpose. 4246 vector::TransposeOp parentTransposeOp = 4247 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4248 if (!parentTransposeOp) 4249 return failure(); 4250 4251 SmallVector<int64_t, 4> permutation = composePermutations( 4252 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4253 // Replace 'transposeOp' with a new transpose operation. 4254 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4255 transposeOp, transposeOp.getResult().getType(), 4256 parentTransposeOp.getVector(), 4257 vector::getVectorSubscriptAttr(rewriter, permutation)); 4258 return success(); 4259 } 4260 }; 4261 4262 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4263 struct FoldTransposedScalarBroadcast final 4264 : public OpRewritePattern<vector::TransposeOp> { 4265 using OpRewritePattern::OpRewritePattern; 4266 4267 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4268 PatternRewriter &rewriter) const override { 4269 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4270 if (!bcastOp) 4271 return failure(); 4272 4273 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4274 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4275 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4276 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4277 return success(); 4278 } 4279 4280 return failure(); 4281 } 4282 }; 4283 4284 } // namespace 4285 4286 void vector::TransposeOp::getCanonicalizationPatterns( 4287 RewritePatternSet &results, MLIRContext *context) { 4288 results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context); 4289 } 4290 4291 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4292 populateFromInt64AttrArray(getTransp(), results); 4293 } 4294 4295 //===----------------------------------------------------------------------===// 4296 // ConstantMaskOp 4297 //===----------------------------------------------------------------------===// 4298 4299 LogicalResult ConstantMaskOp::verify() { 4300 auto resultType = getResult().getType().cast<VectorType>(); 4301 // Check the corner case of 0-D vectors first. 4302 if (resultType.getRank() == 0) { 4303 if (getMaskDimSizes().size() != 1) 4304 return emitError("array attr must have length 1 for 0-D vectors"); 4305 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4306 if (dim != 0 && dim != 1) 4307 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4308 return success(); 4309 } 4310 4311 // Verify that array attr size matches the rank of the vector result. 4312 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4313 return emitOpError( 4314 "must specify array attr of size equal vector result rank"); 4315 // Verify that each array attr element is in bounds of corresponding vector 4316 // result dimension size. 4317 auto resultShape = resultType.getShape(); 4318 SmallVector<int64_t, 4> maskDimSizes; 4319 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4320 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4321 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4322 return emitOpError( 4323 "array attr of size out of bounds of vector result dimension size"); 4324 maskDimSizes.push_back(attrValue); 4325 } 4326 // Verify that if one mask dim size is zero, they all should be zero (because 4327 // the mask region is a conjunction of each mask dimension interval). 4328 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4329 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4330 if (anyZeros && !allZeros) 4331 return emitOpError("expected all mask dim sizes to be zeros, " 4332 "as a result of conjunction with zero mask dim"); 4333 // Verify that if the mask type is scalable, dimensions should be zero because 4334 // constant scalable masks can only be defined for the "none set" or "all set" 4335 // cases, and there is no VLA way to define an "all set" case for 4336 // `vector.constant_mask`. In the future, a convention could be established 4337 // to decide if a specific dimension value could be considered as "all set". 4338 if (resultType.isScalable() && 4339 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4340 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4341 return success(); 4342 } 4343 4344 //===----------------------------------------------------------------------===// 4345 // CreateMaskOp 4346 //===----------------------------------------------------------------------===// 4347 4348 LogicalResult CreateMaskOp::verify() { 4349 auto vectorType = getResult().getType().cast<VectorType>(); 4350 // Verify that an operand was specified for each result vector each dimension. 4351 if (vectorType.getRank() == 0) { 4352 if (getNumOperands() != 1) 4353 return emitOpError( 4354 "must specify exactly one operand for 0-D create_mask"); 4355 } else if (getNumOperands() != 4356 getResult().getType().cast<VectorType>().getRank()) { 4357 return emitOpError( 4358 "must specify an operand for each result vector dimension"); 4359 } 4360 return success(); 4361 } 4362 4363 namespace { 4364 4365 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4366 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4367 public: 4368 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4369 4370 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4371 PatternRewriter &rewriter) const override { 4372 // Return if any of 'createMaskOp' operands are not defined by a constant. 4373 auto isNotDefByConstant = [](Value operand) { 4374 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4375 }; 4376 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4377 return failure(); 4378 4379 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4380 // are negative or zero. 4381 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4382 if (vType.isScalable()) 4383 for (auto opDim : createMaskOp.getOperands()) { 4384 APInt intVal; 4385 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4386 intVal.isStrictlyPositive()) 4387 return failure(); 4388 } 4389 } 4390 4391 // Gather constant mask dimension sizes. 4392 SmallVector<int64_t, 4> maskDimSizes; 4393 for (auto it : llvm::zip(createMaskOp.operands(), 4394 createMaskOp.getType().getShape())) { 4395 auto *defOp = std::get<0>(it).getDefiningOp(); 4396 int64_t maxDimSize = std::get<1>(it); 4397 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4398 dimSize = std::min(dimSize, maxDimSize); 4399 // If one of dim sizes is zero, set all dims to zero. 4400 if (dimSize <= 0) { 4401 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4402 break; 4403 } 4404 maskDimSizes.push_back(dimSize); 4405 } 4406 // Replace 'createMaskOp' with ConstantMaskOp. 4407 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4408 createMaskOp, createMaskOp.getResult().getType(), 4409 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4410 return success(); 4411 } 4412 }; 4413 4414 } // namespace 4415 4416 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4417 MLIRContext *context) { 4418 results.add<CreateMaskFolder>(context); 4419 } 4420 4421 //===----------------------------------------------------------------------===// 4422 // ScanOp 4423 //===----------------------------------------------------------------------===// 4424 4425 LogicalResult ScanOp::verify() { 4426 VectorType srcType = getSourceType(); 4427 VectorType initialType = getInitialValueType(); 4428 // Check reduction dimension < rank. 4429 int64_t srcRank = srcType.getRank(); 4430 int64_t reductionDim = getReductionDim(); 4431 if (reductionDim >= srcRank) 4432 return emitOpError("reduction dimension ") 4433 << reductionDim << " has to be less than " << srcRank; 4434 4435 // Check that rank(initial_value) = rank(src) - 1. 4436 int64_t initialValueRank = initialType.getRank(); 4437 if (initialValueRank != srcRank - 1) 4438 return emitOpError("initial value rank ") 4439 << initialValueRank << " has to be equal to " << srcRank - 1; 4440 4441 // Check shapes of initial value and src. 4442 ArrayRef<int64_t> srcShape = srcType.getShape(); 4443 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4444 SmallVector<int64_t> expectedShape; 4445 for (int i = 0; i < srcRank; i++) { 4446 if (i != reductionDim) 4447 expectedShape.push_back(srcShape[i]); 4448 } 4449 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4450 [](std::tuple<int64_t, int64_t> s) { 4451 return std::get<0>(s) != std::get<1>(s); 4452 })) { 4453 return emitOpError("incompatible input/initial value shapes"); 4454 } 4455 4456 return success(); 4457 } 4458 4459 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4460 RewritePatternSet &patterns) { 4461 patterns 4462 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4463 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4464 StridedSliceConstantMaskFolder, TransposeFolder>( 4465 patterns.getContext()); 4466 } 4467 4468 //===----------------------------------------------------------------------===// 4469 // SplatOp 4470 //===----------------------------------------------------------------------===// 4471 4472 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4473 auto constOperand = operands.front(); 4474 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4475 return {}; 4476 4477 // SplatElementsAttr::get treats single value for second arg as being a splat. 4478 return SplatElementsAttr::get(getType(), {constOperand}); 4479 } 4480 4481 //===----------------------------------------------------------------------===// 4482 // TableGen'd op method definitions 4483 //===----------------------------------------------------------------------===// 4484 4485 #define GET_OP_CLASSES 4486 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4487