1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 return success(); 407 } 408 409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 410 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 411 Type redType; 412 Type resType; 413 CombiningKindAttr kindAttr; 414 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 415 result.attributes) || 416 parser.parseComma() || parser.parseOperandList(operandsInfo) || 417 parser.parseColonType(redType) || 418 parser.parseKeywordType("into", resType) || 419 (!operandsInfo.empty() && 420 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 421 (operandsInfo.size() > 1 && 422 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 423 parser.addTypeToList(resType, result.types)) 424 return failure(); 425 if (operandsInfo.empty() || operandsInfo.size() > 2) 426 return parser.emitError(parser.getNameLoc(), 427 "unsupported number of operands"); 428 return success(); 429 } 430 431 void ReductionOp::print(OpAsmPrinter &p) { 432 p << " "; 433 getKindAttr().print(p); 434 p << ", " << getVector(); 435 if (getAcc()) 436 p << ", " << getAcc(); 437 p << " : " << getVector().getType() << " into " << getDest().getType(); 438 } 439 440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 441 OpBuilder &builder, Location loc, 442 Value vector) { 443 switch (op) { 444 case arith::AtomicRMWKind::addf: 445 case arith::AtomicRMWKind::addi: 446 return builder.create<vector::ReductionOp>(vector.getLoc(), 447 CombiningKind::ADD, vector); 448 case arith::AtomicRMWKind::mulf: 449 case arith::AtomicRMWKind::muli: 450 return builder.create<vector::ReductionOp>(vector.getLoc(), 451 CombiningKind::MUL, vector); 452 case arith::AtomicRMWKind::minf: 453 return builder.create<vector::ReductionOp>(vector.getLoc(), 454 CombiningKind::MINF, vector); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MINSI, vector); 458 case arith::AtomicRMWKind::minu: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINUI, vector); 461 case arith::AtomicRMWKind::maxf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MAXF, vector); 464 case arith::AtomicRMWKind::maxs: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MAXSI, vector); 467 case arith::AtomicRMWKind::maxu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXUI, vector); 470 case arith::AtomicRMWKind::andi: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::AND, vector); 473 case arith::AtomicRMWKind::ori: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::OR, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 485 return llvm::to_vector<4>(getVectorType().getShape()); 486 } 487 488 namespace { 489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 490 using OpRewritePattern::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(ReductionOp reductionOp, 493 PatternRewriter &rewriter) const override { 494 if (reductionOp.getVectorType().getDimSize(0) != 1) 495 return failure(); 496 497 Location loc = reductionOp.getLoc(); 498 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 499 reductionOp.getVector(), 500 rewriter.getI64ArrayAttr(0)); 501 502 if (Value acc = reductionOp.getAcc()) { 503 assert(reductionOp.getType().isa<FloatType>()); 504 switch (reductionOp.getKind()) { 505 case CombiningKind::ADD: 506 result = rewriter.create<arith::AddFOp>(loc, result, acc); 507 break; 508 case CombiningKind::MUL: 509 result = rewriter.create<arith::MulFOp>(loc, result, acc); 510 break; 511 default: 512 assert(false && "invalid op!"); 513 } 514 } 515 516 rewriter.replaceOp(reductionOp, result); 517 return success(); 518 } 519 }; 520 } // namespace 521 522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 523 MLIRContext *context) { 524 results.add<ElideSingleElementReduction>(context); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ContractionOp 529 //===----------------------------------------------------------------------===// 530 531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 532 Value lhs, Value rhs, Value acc, 533 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 534 ArrayRef<StringRef> iteratorTypes) { 535 result.addOperands({lhs, rhs, acc}); 536 result.addTypes(acc.getType()); 537 result.addAttribute(::mlir::getIndexingMapsAttrName(), 538 builder.getAffineMapArrayAttr( 539 AffineMap::inferFromExprList(indexingExprs))); 540 result.addAttribute(::mlir::getIteratorTypesAttrName(), 541 builder.getStrArrayAttr(iteratorTypes)); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes) { 548 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 549 ContractionOp::getDefaultKind()); 550 } 551 552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 553 Value lhs, Value rhs, Value acc, 554 ArrayAttr indexingMaps, 555 ArrayAttr iteratorTypes, CombiningKind kind) { 556 result.addOperands({lhs, rhs, acc}); 557 result.addTypes(acc.getType()); 558 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 559 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 560 result.addAttribute(ContractionOp::getKindAttrStrName(), 561 CombiningKindAttr::get(kind, builder.getContext())); 562 } 563 564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 565 OpAsmParser::UnresolvedOperand lhsInfo; 566 OpAsmParser::UnresolvedOperand rhsInfo; 567 OpAsmParser::UnresolvedOperand accInfo; 568 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 569 SmallVector<Type, 2> types; 570 Type resultType; 571 auto loc = parser.getCurrentLocation(); 572 DictionaryAttr dictAttr; 573 // TODO: Unify linalg op attribute parsing. 574 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 575 parser.parseOperand(lhsInfo) || parser.parseComma() || 576 parser.parseOperand(rhsInfo) || parser.parseComma() || 577 parser.parseOperand(accInfo) || 578 parser.parseTrailingOperandList(masksInfo) || 579 parser.parseOptionalAttrDict(result.attributes) || 580 parser.parseColonTypeList(types) || 581 parser.parseKeywordType("into", resultType) || 582 parser.resolveOperand(lhsInfo, types[0], result.operands) || 583 parser.resolveOperand(rhsInfo, types[1], result.operands) || 584 parser.resolveOperand(accInfo, resultType, result.operands) || 585 parser.addTypeToList(resultType, result.types)) 586 return failure(); 587 result.attributes.assign(dictAttr.getValue().begin(), 588 dictAttr.getValue().end()); 589 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 590 result.addAttribute(ContractionOp::getKindAttrStrName(), 591 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 592 result.getContext())); 593 } 594 if (masksInfo.empty()) 595 return success(); 596 if (masksInfo.size() != 2) 597 return parser.emitError(parser.getNameLoc(), 598 "expected zero or exactly 2 vector mask operands"); 599 auto lhsType = types[0].cast<VectorType>(); 600 auto rhsType = types[1].cast<VectorType>(); 601 auto maskElementType = parser.getBuilder().getI1Type(); 602 std::array<Type, 2> maskTypes = { 603 VectorType::Builder(lhsType).setElementType(maskElementType), 604 VectorType::Builder(rhsType).setElementType(maskElementType)}; 605 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 606 return failure(); 607 return success(); 608 } 609 610 void ContractionOp::print(OpAsmPrinter &p) { 611 // TODO: Unify printing code with linalg ops. 612 auto attrNames = getTraitAttrNames(); 613 llvm::StringSet<> traitAttrsSet; 614 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 615 SmallVector<NamedAttribute, 8> attrs; 616 for (auto attr : (*this)->getAttrs()) 617 if (traitAttrsSet.count(attr.getName().strref()) > 0) 618 attrs.push_back(attr); 619 620 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 621 p << " " << dictAttr << " " << getLhs() << ", "; 622 p << getRhs() << ", " << getAcc(); 623 if (getMasks().size() == 2) 624 p << ", " << getMasks(); 625 626 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 627 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 628 << getResultType(); 629 } 630 631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 632 const std::vector<std::pair<int64_t, int64_t>> &map) { 633 for (auto &dimPair : map) { 634 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 635 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 636 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 637 return false; 638 } 639 return true; 640 } 641 642 static LogicalResult verifyOutputShape( 643 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 644 Type resType, 645 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 646 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 647 DenseSet<int64_t> lhsContractingDimSet; 648 DenseSet<int64_t> rhsContractingDimSet; 649 for (auto &dimPair : contractingDimMap) { 650 lhsContractingDimSet.insert(dimPair.first); 651 rhsContractingDimSet.insert(dimPair.second); 652 } 653 DenseSet<int64_t> rhsBatchDimSet; 654 for (auto &dimPair : batchDimMap) 655 rhsBatchDimSet.insert(dimPair.second); 656 657 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 658 SmallVector<int64_t, 4> expectedResultDims; 659 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 660 if (lhsContractingDimSet.count(i) > 0) 661 continue; 662 expectedResultDims.push_back(lhsType.getDimSize(i)); 663 } 664 665 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 666 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 667 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 668 continue; 669 expectedResultDims.push_back(rhsType.getDimSize(i)); 670 } 671 672 // Verify 'expectedResultDims'. 673 if (expectedResultDims.empty()) { 674 // No batch or free dimension implies a scalar result. 675 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 676 return op.emitOpError("invalid accumulator/result vector shape"); 677 } else { 678 // At least one batch or free dimension implies a vector result. 679 auto resVectorType = resType.dyn_cast<VectorType>(); 680 auto accVectorType = accType.dyn_cast<VectorType>(); 681 if (!resVectorType || !accVectorType) 682 return op.emitOpError("invalid accumulator/result vector shape"); 683 684 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 685 // types fully define the result vector type. This assumes the affine maps 686 // are well-formed, which must have been verified already. 687 MLIRContext *ctx = op.getContext(); 688 AffineMap lhsMap = op.getIndexingMaps()[0]; 689 AffineMap rhsMap = op.getIndexingMaps()[1]; 690 if (getUnusedDimsBitVector({lhsMap, rhsMap}).any()) 691 return op.emitOpError( 692 "expected all dimensions to be either a LHS or a RHS dimension"); 693 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 694 for (auto pair : 695 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 696 VectorType v = pair.first; 697 auto map = pair.second; 698 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 699 unsigned pos = map.getDimPosition(idx); 700 if (!extents[pos]) 701 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 702 } 703 } 704 if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) 705 return op.emitOpError("expected all dimensions to get an extent as " 706 "either a LHS or a RHS dimension"); 707 708 AffineMap resMap = op.getIndexingMaps()[2]; 709 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 710 /*symCount=*/0, extents, ctx); 711 // Compose the resMap with the extentsMap, which is a constant map. 712 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 713 assert(llvm::all_of( 714 expectedMap.getResults(), 715 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 716 "expected constant extent along all dimensions."); 717 // Extract the expected shape and build the type. 718 auto expectedShape = llvm::to_vector<4>( 719 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 720 return e.cast<AffineConstantExpr>().getValue(); 721 })); 722 auto expected = 723 VectorType::get(expectedShape, resVectorType.getElementType()); 724 if (resVectorType != expected || accVectorType != expected) 725 return op.emitOpError( 726 "invalid accumulator/result vector shape, expected: ") 727 << expected; 728 } 729 return success(); 730 } 731 732 LogicalResult ContractionOp::verify() { 733 auto lhsType = getLhsType(); 734 auto rhsType = getRhsType(); 735 auto accType = getAccType(); 736 auto resType = getResultType(); 737 738 // Verify that an indexing map was specified for each vector operand. 739 if (getIndexingMaps().size() != 3) 740 return emitOpError("expected an indexing map for each vector operand"); 741 742 // Verify that each index map has 'numIterators' inputs, no symbols, and 743 // that the number of map outputs equals the rank of its associated 744 // vector operand. 745 unsigned numIterators = getIteratorTypes().getValue().size(); 746 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 747 auto index = it.index(); 748 auto map = it.value(); 749 if (map.getNumSymbols() != 0) 750 return emitOpError("expected indexing map ") 751 << index << " to have no symbols"; 752 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 753 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 754 // Verify that the map has the right number of inputs, outputs, and indices. 755 // This also correctly accounts for (..) -> () for rank-0 results. 756 if (map.getNumDims() != numIterators) 757 return emitOpError("expected indexing map ") 758 << index << " to have " << numIterators << " number of inputs"; 759 if (map.getNumResults() != rank) 760 return emitOpError("expected indexing map ") 761 << index << " to have " << rank << " number of outputs"; 762 if (!map.isProjectedPermutation()) 763 return emitOpError("expected indexing map ") 764 << index << " to be a projected permutation of its inputs"; 765 } 766 767 auto contractingDimMap = getContractingDimMap(); 768 auto batchDimMap = getBatchDimMap(); 769 770 // Verify at least one contracting dimension pair was specified. 771 if (contractingDimMap.empty()) 772 return emitOpError("expected at least one contracting dimension pair"); 773 774 // Verify contracting dimension map was properly constructed. 775 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 776 return emitOpError("invalid contracting dimension map"); 777 778 // Verify batch dimension map was properly constructed. 779 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 780 return emitOpError("invalid batch dimension map"); 781 782 // Verify 'accType' and 'resType' shape. 783 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 784 contractingDimMap, batchDimMap))) 785 return failure(); 786 787 // Verify that either two vector masks are set or none are set. 788 auto lhsMaskType = getLHSVectorMaskType(); 789 auto rhsMaskType = getRHSVectorMaskType(); 790 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 791 return emitOpError("invalid number of vector masks specified"); 792 if (lhsMaskType && rhsMaskType) { 793 // Verify mask rank == argument rank. 794 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 795 rhsMaskType.getShape().size() != rhsType.getShape().size()) 796 return emitOpError("invalid vector mask rank"); 797 } 798 799 // Verify supported combining kind. 800 auto vectorType = resType.dyn_cast<VectorType>(); 801 auto elementType = vectorType ? vectorType.getElementType() : resType; 802 if (!isSupportedCombiningKind(getKind(), elementType)) 803 return emitOpError("unsupported contraction type"); 804 805 return success(); 806 } 807 808 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 809 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 810 ::mlir::getIteratorTypesAttrName(), 811 ContractionOp::getKindAttrStrName()}; 812 return llvm::makeArrayRef(names); 813 } 814 815 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 816 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 817 if (targetExpr == map.getResult(i)) 818 return i; 819 return -1; 820 } 821 822 static std::vector<std::pair<int64_t, int64_t>> 823 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 824 StringRef targetIteratorTypeName, MLIRContext *context) { 825 std::vector<std::pair<int64_t, int64_t>> dimMap; 826 for (const auto &it : llvm::enumerate(iteratorTypes)) { 827 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 828 if (iteratorTypeName != targetIteratorTypeName) 829 continue; 830 // Search lhs/rhs map results for 'targetExpr'. 831 auto targetExpr = getAffineDimExpr(it.index(), context); 832 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 833 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 834 if (lhsDim >= 0 && rhsDim >= 0) 835 dimMap.emplace_back(lhsDim, rhsDim); 836 } 837 return dimMap; 838 } 839 840 void ContractionOp::getIterationBounds( 841 SmallVectorImpl<int64_t> &iterationBounds) { 842 auto lhsShape = getLhsType().getShape(); 843 auto resVectorType = getResultType().dyn_cast<VectorType>(); 844 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 845 SmallVector<int64_t, 2> iterationShape; 846 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 847 // Search lhs/rhs map results for 'targetExpr'. 848 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 849 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 850 if (iteratorTypeName == getReductionIteratorTypeName()) { 851 // Get reduction dim size from lhs shape (same size in rhsShape). 852 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 853 assert(lhsDimIndex >= 0); 854 iterationBounds.push_back(lhsShape[lhsDimIndex]); 855 continue; 856 } 857 // Get parallel dimension size from result shape. 858 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 859 assert(resDimIndex >= 0); 860 assert(resVectorType != nullptr); 861 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 862 } 863 } 864 865 void ContractionOp::getIterationIndexMap( 866 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 867 unsigned numMaps = getIndexingMaps().size(); 868 iterationIndexMap.resize(numMaps); 869 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 870 auto index = it.index(); 871 auto map = it.value(); 872 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 873 auto dim = map.getResult(i).cast<AffineDimExpr>(); 874 iterationIndexMap[index][dim.getPosition()] = i; 875 } 876 } 877 } 878 879 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 880 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 881 return getDimMap(indexingMaps, getIteratorTypes(), 882 getReductionIteratorTypeName(), getContext()); 883 } 884 885 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 886 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 887 return getDimMap(indexingMaps, getIteratorTypes(), 888 getParallelIteratorTypeName(), getContext()); 889 } 890 891 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 892 SmallVector<int64_t, 4> shape; 893 getIterationBounds(shape); 894 return shape; 895 } 896 897 /// Return a fused vector::ContractionOp which represents a patterns such as: 898 /// 899 /// ```mlir 900 /// %c0 = vector.constant 0: ... 901 /// %c = vector.contract %a, %b, %c0: ... 902 /// %e = add %c, %d: ... 903 /// ``` 904 /// 905 /// by: 906 /// 907 /// ```mlir 908 /// %e = vector.contract %a, %b, %d: ... 909 /// ``` 910 /// 911 /// Return null if the canonicalization does not apply. 912 // TODO: This should be a folding of Add into Contract in core but while they 913 // live in different dialects, it is not possible without unnatural 914 // dependencies. 915 template <typename AddOpType> 916 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 917 using OpRewritePattern<AddOpType>::OpRewritePattern; 918 919 LogicalResult matchAndRewrite(AddOpType addOp, 920 PatternRewriter &rewriter) const override { 921 auto canonicalize = [&](Value maybeContraction, 922 Value otherOperand) -> vector::ContractionOp { 923 vector::ContractionOp contractionOp = 924 dyn_cast_or_null<vector::ContractionOp>( 925 maybeContraction.getDefiningOp()); 926 if (!contractionOp) 927 return vector::ContractionOp(); 928 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 929 contractionOp.getAcc().getDefiningOp())) { 930 if (maybeZero.getValue() == 931 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 932 BlockAndValueMapping bvm; 933 bvm.map(contractionOp.getAcc(), otherOperand); 934 auto newContraction = 935 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 936 rewriter.replaceOp(addOp, newContraction.getResult()); 937 return newContraction; 938 } 939 } 940 return vector::ContractionOp(); 941 }; 942 943 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 944 vector::ContractionOp contract = canonicalize(a, b); 945 contract = contract ? contract : canonicalize(b, a); 946 return contract ? success() : failure(); 947 } 948 }; 949 950 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 951 MLIRContext *context) { 952 results.add<CanonicalizeContractAdd<arith::AddIOp>, 953 CanonicalizeContractAdd<arith::AddFOp>>(context); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // ExtractElementOp 958 //===----------------------------------------------------------------------===// 959 960 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 961 Value source) { 962 result.addOperands({source}); 963 result.addTypes(source.getType().cast<VectorType>().getElementType()); 964 } 965 966 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 967 Value source, Value position) { 968 result.addOperands({source, position}); 969 result.addTypes(source.getType().cast<VectorType>().getElementType()); 970 } 971 972 LogicalResult vector::ExtractElementOp::verify() { 973 VectorType vectorType = getVectorType(); 974 if (vectorType.getRank() == 0) { 975 if (getPosition()) 976 return emitOpError("expected position to be empty with 0-D vector"); 977 return success(); 978 } 979 if (vectorType.getRank() != 1) 980 return emitOpError("unexpected >1 vector rank"); 981 if (!getPosition()) 982 return emitOpError("expected position for 1-D vector"); 983 return success(); 984 } 985 986 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 987 // Skip the 0-D vector here now. 988 if (operands.size() < 2) 989 return {}; 990 991 Attribute src = operands[0]; 992 Attribute pos = operands[1]; 993 994 // Fold extractelement (splat X) -> X. 995 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 996 return splat.getInput(); 997 998 if (!pos || !src) 999 return {}; 1000 1001 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 1002 1003 auto attr = pos.dyn_cast<IntegerAttr>(); 1004 uint64_t posIdx = attr.getInt(); 1005 1006 return srcElements[posIdx]; 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // ExtractOp 1011 //===----------------------------------------------------------------------===// 1012 1013 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1014 Value source, ArrayRef<int64_t> position) { 1015 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1016 } 1017 1018 // Convenience builder which assumes the values are constant indices. 1019 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1020 Value source, ValueRange position) { 1021 SmallVector<int64_t, 4> positionConstants = 1022 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1023 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1024 })); 1025 build(builder, result, source, positionConstants); 1026 } 1027 1028 LogicalResult 1029 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1030 ValueRange operands, DictionaryAttr attributes, 1031 RegionRange, 1032 SmallVectorImpl<Type> &inferredReturnTypes) { 1033 ExtractOp::Adaptor op(operands, attributes); 1034 auto vectorType = op.getVector().getType().cast<VectorType>(); 1035 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1036 inferredReturnTypes.push_back(vectorType.getElementType()); 1037 } else { 1038 auto n = 1039 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1040 inferredReturnTypes.push_back(VectorType::get( 1041 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1042 } 1043 return success(); 1044 } 1045 1046 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1047 // Allow extracting 1-element vectors instead of scalars. 1048 auto isCompatible = [](TypeRange l, TypeRange r) { 1049 auto vectorType = l.front().dyn_cast<VectorType>(); 1050 return vectorType && vectorType.getShape().equals({1}) && 1051 vectorType.getElementType() == r.front(); 1052 }; 1053 if (l.size() == 1 && r.size() == 1 && 1054 (isCompatible(l, r) || isCompatible(r, l))) 1055 return true; 1056 return l == r; 1057 } 1058 1059 LogicalResult vector::ExtractOp::verify() { 1060 auto positionAttr = getPosition().getValue(); 1061 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1062 return emitOpError( 1063 "expected position attribute of rank smaller than vector rank"); 1064 for (const auto &en : llvm::enumerate(positionAttr)) { 1065 auto attr = en.value().dyn_cast<IntegerAttr>(); 1066 if (!attr || attr.getInt() < 0 || 1067 attr.getInt() >= getVectorType().getDimSize(en.index())) 1068 return emitOpError("expected position attribute #") 1069 << (en.index() + 1) 1070 << " to be a non-negative integer smaller than the corresponding " 1071 "vector dimension"; 1072 } 1073 return success(); 1074 } 1075 1076 template <typename IntType> 1077 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1078 return llvm::to_vector<4>(llvm::map_range( 1079 arrayAttr.getAsRange<IntegerAttr>(), 1080 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1081 } 1082 1083 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1084 /// positions. 1085 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1086 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1087 return failure(); 1088 1089 SmallVector<int64_t, 4> globalPosition; 1090 ExtractOp currentOp = extractOp; 1091 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1092 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1093 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1094 currentOp = nextOp; 1095 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1096 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1097 } 1098 extractOp.setOperand(currentOp.getVector()); 1099 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1100 OpBuilder b(extractOp.getContext()); 1101 std::reverse(globalPosition.begin(), globalPosition.end()); 1102 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1103 b.getI64ArrayAttr(globalPosition)); 1104 return success(); 1105 } 1106 1107 namespace { 1108 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1109 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1110 /// Compose TransposeOp permutations as we walk back. 1111 /// This helper class keeps an updated extraction position `extractPosition` 1112 /// with extra trailing sentinels. 1113 /// The sentinels encode the internal transposition status of the result vector. 1114 /// As we iterate, extractPosition is permuted and updated. 1115 class ExtractFromInsertTransposeChainState { 1116 public: 1117 ExtractFromInsertTransposeChainState(ExtractOp e); 1118 1119 /// Iterate over producing insert and transpose ops until we find a fold. 1120 Value fold(); 1121 1122 private: 1123 /// Return true if the vector at position `a` is contained within the vector 1124 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1125 /// is a prefix of `b`. 1126 template <typename ContainerA, typename ContainerB> 1127 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1128 return a.size() <= b.size() && 1129 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1130 } 1131 1132 /// Return true if the vector at position `a` intersects the vector at 1133 /// position `b`. Under insert/extract semantics, this is the same as equality 1134 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1135 /// Comparison is on the common prefix (i.e. zip). 1136 template <typename ContainerA, typename ContainerB> 1137 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1138 for (auto it : llvm::zip(a, b)) { 1139 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1140 continue; 1141 if (std::get<0>(it) != std::get<1>(it)) 1142 return false; 1143 } 1144 return true; 1145 } 1146 1147 /// Folding is only possible in the absence of an internal permutation in the 1148 /// result vector. 1149 bool canFold() { 1150 return (sentinels == 1151 makeArrayRef(extractPosition).drop_front(extractedRank)); 1152 } 1153 1154 // Helper to get the next defining op of interest. 1155 void updateStateForNextIteration(Value v) { 1156 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1157 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1158 }; 1159 1160 // Case 1. If we hit a transpose, just compose the map and iterate. 1161 // Invariant: insert + transpose do not change rank, we can always compose. 1162 LogicalResult handleTransposeOp(); 1163 1164 // Case 2: the insert position matches extractPosition exactly, early return. 1165 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1166 1167 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1168 /// portion of the source of the insert. 1169 /// Example: 1170 /// ``` 1171 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1172 /// // extractPosition == [1, 2, 3] 1173 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1174 /// // can fold to vector.extract %source[0, 3] 1175 /// %ext = vector.extract %source[3]: vector<5x6> 1176 /// ``` 1177 /// To traverse through %source, we need to set the leading dims to 0 and 1178 /// drop the extra leading dims. 1179 /// This method updates the internal state. 1180 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1181 1182 /// Try to fold in place to extract(source, extractPosition) and return the 1183 /// folded result. Return null if folding is not possible (e.g. due to an 1184 /// internal tranposition in the result). 1185 Value tryToFoldExtractOpInPlace(Value source); 1186 1187 ExtractOp extractOp; 1188 int64_t vectorRank; 1189 int64_t extractedRank; 1190 1191 InsertOp nextInsertOp; 1192 TransposeOp nextTransposeOp; 1193 1194 /// Sentinel values that encode the internal permutation status of the result. 1195 /// They are set to (-1, ... , -k) at the beginning and appended to 1196 /// `extractPosition`. 1197 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1198 /// ensure that there is no internal transposition. 1199 /// Internal transposition cannot be accounted for with a folding pattern. 1200 // TODO: We could relax the internal transposition with an extra transposition 1201 // operation in a future canonicalizer. 1202 SmallVector<int64_t> sentinels; 1203 SmallVector<int64_t> extractPosition; 1204 }; 1205 } // namespace 1206 1207 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1208 ExtractOp e) 1209 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1210 extractedRank(extractOp.getPosition().size()) { 1211 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1212 sentinels.reserve(vectorRank - extractedRank); 1213 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1214 sentinels.push_back(-(i + 1)); 1215 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1216 llvm::append_range(extractPosition, sentinels); 1217 } 1218 1219 // Case 1. If we hit a transpose, just compose the map and iterate. 1220 // Invariant: insert + transpose do not change rank, we can always compose. 1221 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1222 if (!nextTransposeOp) 1223 return failure(); 1224 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1225 AffineMap m = inversePermutation( 1226 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1227 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1228 return success(); 1229 } 1230 1231 // Case 2: the insert position matches extractPosition exactly, early return. 1232 LogicalResult 1233 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1234 Value &res) { 1235 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1236 if (makeArrayRef(insertedPos) != 1237 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1238 return failure(); 1239 // Case 2.a. early-exit fold. 1240 res = nextInsertOp.getSource(); 1241 // Case 2.b. if internal transposition is present, canFold will be false. 1242 return success(); 1243 } 1244 1245 /// Case 3: if inserted position is a prefix of extractPosition, 1246 /// extract a portion of the source of the insertion. 1247 /// This method updates the internal state. 1248 LogicalResult 1249 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1250 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1251 if (!isContainedWithin(insertedPos, extractPosition)) 1252 return failure(); 1253 // Set leading dims to zero. 1254 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1255 // Drop extra leading dims. 1256 extractPosition.erase(extractPosition.begin(), 1257 extractPosition.begin() + insertedPos.size()); 1258 extractedRank = extractPosition.size() - sentinels.size(); 1259 // Case 3.a. early-exit fold (break and delegate to post-while path). 1260 res = nextInsertOp.getSource(); 1261 // Case 3.b. if internal transposition is present, canFold will be false. 1262 return success(); 1263 } 1264 1265 /// Try to fold in place to extract(source, extractPosition) and return the 1266 /// folded result. Return null if folding is not possible (e.g. due to an 1267 /// internal tranposition in the result). 1268 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1269 Value source) { 1270 // If we can't fold (either internal transposition, or nothing to fold), bail. 1271 bool nothingToFold = (source == extractOp.getVector()); 1272 if (nothingToFold || !canFold()) 1273 return Value(); 1274 // Otherwise, fold by updating the op inplace and return its result. 1275 OpBuilder b(extractOp.getContext()); 1276 extractOp->setAttr( 1277 extractOp.getPositionAttrName(), 1278 b.getI64ArrayAttr( 1279 makeArrayRef(extractPosition).take_front(extractedRank))); 1280 extractOp.getVectorMutable().assign(source); 1281 return extractOp.getResult(); 1282 } 1283 1284 /// Iterate over producing insert and transpose ops until we find a fold. 1285 Value ExtractFromInsertTransposeChainState::fold() { 1286 Value valueToExtractFrom = extractOp.getVector(); 1287 updateStateForNextIteration(valueToExtractFrom); 1288 while (nextInsertOp || nextTransposeOp) { 1289 // Case 1. If we hit a transpose, just compose the map and iterate. 1290 // Invariant: insert + transpose do not change rank, we can always compose. 1291 if (succeeded(handleTransposeOp())) { 1292 valueToExtractFrom = nextTransposeOp.getVector(); 1293 updateStateForNextIteration(valueToExtractFrom); 1294 continue; 1295 } 1296 1297 Value result; 1298 // Case 2: the position match exactly. 1299 if (succeeded(handleInsertOpWithMatchingPos(result))) 1300 return result; 1301 1302 // Case 3: if the inserted position is a prefix of extractPosition, we can 1303 // just extract a portion of the source of the insert. 1304 if (succeeded(handleInsertOpWithPrefixPos(result))) 1305 return tryToFoldExtractOpInPlace(result); 1306 1307 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1308 // values. This is a more difficult case and we bail. 1309 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1310 if (isContainedWithin(extractPosition, insertedPos) || 1311 intersectsWhereNonNegative(extractPosition, insertedPos)) 1312 return Value(); 1313 1314 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1315 valueToExtractFrom = nextInsertOp.getDest(); 1316 updateStateForNextIteration(valueToExtractFrom); 1317 } 1318 // If after all this we can fold, go for it. 1319 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1320 } 1321 1322 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1323 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1324 Operation *defOp = extractOp.getVector().getDefiningOp(); 1325 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1326 return Value(); 1327 Value source = defOp->getOperand(0); 1328 if (extractOp.getType() == source.getType()) 1329 return source; 1330 auto getRank = [](Type type) { 1331 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1332 }; 1333 unsigned broadcastSrcRank = getRank(source.getType()); 1334 unsigned extractResultRank = getRank(extractOp.getType()); 1335 if (extractResultRank >= broadcastSrcRank) 1336 return Value(); 1337 // Check that the dimension of the result haven't been broadcasted. 1338 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1339 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1340 if (extractVecType && broadcastVecType && 1341 extractVecType.getShape() != 1342 broadcastVecType.getShape().take_back(extractResultRank)) 1343 return Value(); 1344 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1345 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1346 extractPos.erase(extractPos.begin(), 1347 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1348 extractOp.setOperand(source); 1349 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1350 OpBuilder b(extractOp.getContext()); 1351 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1352 b.getI64ArrayAttr(extractPos)); 1353 return extractOp.getResult(); 1354 } 1355 1356 // Fold extractOp with source coming from ShapeCast op. 1357 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1358 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1359 if (!shapeCastOp) 1360 return Value(); 1361 // Get the nth dimension size starting from lowest dimension. 1362 auto getDimReverse = [](VectorType type, int64_t n) { 1363 return type.getShape().take_back(n + 1).front(); 1364 }; 1365 int64_t destinationRank = 1366 extractOp.getType().isa<VectorType>() 1367 ? extractOp.getType().cast<VectorType>().getRank() 1368 : 0; 1369 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1370 return Value(); 1371 if (destinationRank > 0) { 1372 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1373 for (int64_t i = 0; i < destinationRank; i++) { 1374 // The lowest dimension of of the destination must match the lowest 1375 // dimension of the shapecast op source. 1376 // TODO: This case could be support in a canonicalization pattern. 1377 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1378 getDimReverse(destinationType, i)) 1379 return Value(); 1380 } 1381 } 1382 // Extract the strides associated with the extract op vector source. Then use 1383 // this to calculate a linearized position for the extract. 1384 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1385 std::reverse(extractedPos.begin(), extractedPos.end()); 1386 SmallVector<int64_t, 4> strides; 1387 int64_t stride = 1; 1388 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1389 strides.push_back(stride); 1390 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1391 } 1392 1393 int64_t position = linearize(extractedPos, strides); 1394 // Then extract the strides associated to the shapeCast op vector source and 1395 // delinearize the position using those strides. 1396 SmallVector<int64_t, 4> newStrides; 1397 int64_t numDimension = 1398 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1399 stride = 1; 1400 for (int64_t i = 0; i < numDimension; i++) { 1401 newStrides.push_back(stride); 1402 stride *= 1403 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1404 } 1405 std::reverse(newStrides.begin(), newStrides.end()); 1406 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1407 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1408 OpBuilder b(extractOp.getContext()); 1409 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1410 b.getI64ArrayAttr(newPosition)); 1411 extractOp.setOperand(shapeCastOp.getSource()); 1412 return extractOp.getResult(); 1413 } 1414 1415 /// Fold an ExtractOp from ExtractStridedSliceOp. 1416 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1417 auto extractStridedSliceOp = 1418 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1419 if (!extractStridedSliceOp) 1420 return Value(); 1421 // Return if 'extractStridedSliceOp' has non-unit strides. 1422 if (extractStridedSliceOp.hasNonUnitStrides()) 1423 return Value(); 1424 1425 // Trim offsets for dimensions fully extracted. 1426 auto sliceOffsets = 1427 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1428 while (!sliceOffsets.empty()) { 1429 size_t lastOffset = sliceOffsets.size() - 1; 1430 if (sliceOffsets.back() != 0 || 1431 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1432 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1433 break; 1434 sliceOffsets.pop_back(); 1435 } 1436 unsigned destinationRank = 0; 1437 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1438 destinationRank = vecType.getRank(); 1439 // The dimensions of the result need to be untouched by the 1440 // extractStridedSlice op. 1441 if (destinationRank > 1442 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1443 return Value(); 1444 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1445 assert(extractedPos.size() >= sliceOffsets.size()); 1446 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1447 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1448 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1449 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1450 OpBuilder b(extractOp.getContext()); 1451 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1452 b.getI64ArrayAttr(extractedPos)); 1453 return extractOp.getResult(); 1454 } 1455 1456 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1457 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1458 int64_t destinationRank = op.getType().isa<VectorType>() 1459 ? op.getType().cast<VectorType>().getRank() 1460 : 0; 1461 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1462 while (insertOp) { 1463 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1464 insertOp.getSourceVectorType().getRank(); 1465 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1466 return Value(); 1467 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1468 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1469 1470 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1471 return attr.cast<IntegerAttr>().getInt() != 1; 1472 })) 1473 return Value(); 1474 bool disjoint = false; 1475 SmallVector<int64_t, 4> offsetDiffs; 1476 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1477 int64_t start = insertOffsets[dim]; 1478 int64_t size = 1479 (dim < insertRankDiff) 1480 ? 1 1481 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1482 int64_t end = start + size; 1483 int64_t offset = extractOffsets[dim]; 1484 // Check if the start of the extract offset is in the interval inserted. 1485 if (start <= offset && offset < end) { 1486 if (dim >= insertRankDiff) 1487 offsetDiffs.push_back(offset - start); 1488 continue; 1489 } 1490 disjoint = true; 1491 break; 1492 } 1493 // The extract element chunk overlap with the vector inserted. 1494 if (!disjoint) { 1495 // If any of the inner dimensions are only partially inserted we have a 1496 // partial overlap. 1497 int64_t srcRankDiff = 1498 insertOp.getSourceVectorType().getRank() - destinationRank; 1499 for (int64_t i = 0; i < destinationRank; i++) { 1500 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1501 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1502 insertRankDiff)) 1503 return Value(); 1504 } 1505 op.getVectorMutable().assign(insertOp.getSource()); 1506 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1507 OpBuilder b(op.getContext()); 1508 op->setAttr(ExtractOp::getPositionAttrStrName(), 1509 b.getI64ArrayAttr(offsetDiffs)); 1510 return op.getResult(); 1511 } 1512 // If the chunk extracted is disjoint from the chunk inserted, keep 1513 // looking in the insert chain. 1514 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1515 } 1516 return Value(); 1517 } 1518 1519 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1520 if (getPosition().empty()) 1521 return getVector(); 1522 if (succeeded(foldExtractOpFromExtractChain(*this))) 1523 return getResult(); 1524 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1525 return res; 1526 if (auto res = foldExtractFromBroadcast(*this)) 1527 return res; 1528 if (auto res = foldExtractFromShapeCast(*this)) 1529 return res; 1530 if (auto val = foldExtractFromExtractStrided(*this)) 1531 return val; 1532 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1533 return val; 1534 return OpFoldResult(); 1535 } 1536 1537 namespace { 1538 1539 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1540 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1541 public: 1542 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1543 1544 LogicalResult matchAndRewrite(ExtractOp extractOp, 1545 PatternRewriter &rewriter) const override { 1546 Operation *defOp = extractOp.getVector().getDefiningOp(); 1547 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1548 return failure(); 1549 1550 Value source = defOp->getOperand(0); 1551 if (extractOp.getType() == source.getType()) 1552 return failure(); 1553 auto getRank = [](Type type) { 1554 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1555 }; 1556 unsigned broadcastSrcRank = getRank(source.getType()); 1557 unsigned extractResultRank = getRank(extractOp.getType()); 1558 // We only consider the case where the rank of the source is less than or 1559 // equal to the rank of the extract dst. The other cases are handled in the 1560 // folding patterns. 1561 if (extractResultRank < broadcastSrcRank) 1562 return failure(); 1563 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1564 extractOp, extractOp.getType(), source); 1565 return success(); 1566 } 1567 }; 1568 1569 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1570 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1571 public: 1572 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1573 1574 LogicalResult matchAndRewrite(ExtractOp extractOp, 1575 PatternRewriter &rewriter) const override { 1576 // Return if 'extractStridedSliceOp' operand is not defined by a 1577 // ConstantOp. 1578 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1579 if (!constantOp) 1580 return failure(); 1581 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1582 if (!dense) 1583 return failure(); 1584 Attribute newAttr = dense.getSplatValue<Attribute>(); 1585 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1586 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1587 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1588 return success(); 1589 } 1590 }; 1591 1592 } // namespace 1593 1594 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1595 MLIRContext *context) { 1596 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1597 } 1598 1599 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1600 SmallVectorImpl<int64_t> &results) { 1601 for (auto attr : arrayAttr) 1602 results.push_back(attr.cast<IntegerAttr>().getInt()); 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // ExtractMapOp 1607 //===----------------------------------------------------------------------===// 1608 1609 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1610 Value vector, ValueRange ids, 1611 ArrayRef<int64_t> multiplicity, 1612 AffineMap permutationMap) { 1613 assert(ids.size() == multiplicity.size() && 1614 ids.size() == permutationMap.getNumResults()); 1615 assert(permutationMap.isProjectedPermutation()); 1616 VectorType type = vector.getType().cast<VectorType>(); 1617 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1618 type.getShape().end()); 1619 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1620 AffineExpr expr = permutationMap.getResult(i); 1621 auto dim = expr.cast<AffineDimExpr>(); 1622 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1623 } 1624 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1625 ExtractMapOp::build(builder, result, resultType, vector, ids); 1626 } 1627 1628 LogicalResult ExtractMapOp::verify() { 1629 if (getSourceVectorType().getRank() != getResultType().getRank()) 1630 return emitOpError("expected source and destination vectors of same rank"); 1631 unsigned numId = 0; 1632 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1633 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1634 0) 1635 return emitOpError("source vector dimensions must be a multiple of " 1636 "destination vector dimensions"); 1637 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1638 numId++; 1639 } 1640 if (numId != getIds().size()) 1641 return emitOpError("expected number of ids must match the number of " 1642 "dimensions distributed"); 1643 return success(); 1644 } 1645 1646 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1647 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1648 if (insert == nullptr || getType() != insert.getVector().getType() || 1649 getIds() != insert.getIds()) 1650 return {}; 1651 return insert.getVector(); 1652 } 1653 1654 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1655 assert(multiplicity.empty()); 1656 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1657 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1658 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1659 getResultType().getDimSize(i)); 1660 } 1661 } 1662 1663 template <typename MapOp> 1664 AffineMap calculateImplicitMap(MapOp op) { 1665 SmallVector<AffineExpr, 4> perm; 1666 // Check which dimension have a multiplicity greater than 1 and associated 1667 // them to the IDs in order. 1668 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1669 if (op.getSourceVectorType().getDimSize(i) != 1670 op.getResultType().getDimSize(i)) 1671 perm.push_back(getAffineDimExpr(i, op.getContext())); 1672 } 1673 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1674 op.getContext()); 1675 return map; 1676 } 1677 1678 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1679 1680 //===----------------------------------------------------------------------===// 1681 // FmaOp 1682 //===----------------------------------------------------------------------===// 1683 1684 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1685 return llvm::to_vector<4>(getVectorType().getShape()); 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // BroadcastOp 1690 //===----------------------------------------------------------------------===// 1691 1692 BroadcastableToResult 1693 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1694 std::pair<int, int> *mismatchingDims) { 1695 // Broadcast scalar to vector of the same element type. 1696 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1697 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1698 return BroadcastableToResult::Success; 1699 // From now on, only vectors broadcast. 1700 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1701 if (!srcVectorType) 1702 return BroadcastableToResult::SourceTypeNotAVector; 1703 1704 int64_t srcRank = srcVectorType.getRank(); 1705 int64_t dstRank = dstVectorType.getRank(); 1706 if (srcRank > dstRank) 1707 return BroadcastableToResult::SourceRankHigher; 1708 // Source has an exact match or singleton value for all trailing dimensions 1709 // (all leading dimensions are simply duplicated). 1710 int64_t lead = dstRank - srcRank; 1711 for (int64_t r = 0; r < srcRank; ++r) { 1712 int64_t srcDim = srcVectorType.getDimSize(r); 1713 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1714 if (srcDim != 1 && srcDim != dstDim) { 1715 if (mismatchingDims) { 1716 mismatchingDims->first = srcDim; 1717 mismatchingDims->second = dstDim; 1718 } 1719 return BroadcastableToResult::DimensionMismatch; 1720 } 1721 } 1722 1723 return BroadcastableToResult::Success; 1724 } 1725 1726 LogicalResult BroadcastOp::verify() { 1727 std::pair<int, int> mismatchingDims; 1728 BroadcastableToResult res = 1729 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1730 if (res == BroadcastableToResult::Success) 1731 return success(); 1732 if (res == BroadcastableToResult::SourceRankHigher) 1733 return emitOpError("source rank higher than destination rank"); 1734 if (res == BroadcastableToResult::DimensionMismatch) 1735 return emitOpError("dimension mismatch (") 1736 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1737 if (res == BroadcastableToResult::SourceTypeNotAVector) 1738 return emitOpError("source type is not a vector"); 1739 llvm_unreachable("unexpected vector.broadcast op error"); 1740 } 1741 1742 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1743 if (getSourceType() == getVectorType()) 1744 return getSource(); 1745 if (!operands[0]) 1746 return {}; 1747 auto vectorType = getVectorType(); 1748 if (operands[0].getType().isIntOrIndexOrFloat()) 1749 return DenseElementsAttr::get(vectorType, operands[0]); 1750 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1751 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1752 return {}; 1753 } 1754 1755 namespace { 1756 1757 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1758 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1759 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1760 1761 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1762 PatternRewriter &rewriter) const override { 1763 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1764 if (!srcBroadcast) 1765 return failure(); 1766 rewriter.replaceOpWithNewOp<BroadcastOp>( 1767 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1768 return success(); 1769 } 1770 }; 1771 } // namespace 1772 1773 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1774 MLIRContext *context) { 1775 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1776 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1777 results.add<BroadcastFolder>(context); 1778 } 1779 1780 //===----------------------------------------------------------------------===// 1781 // ShuffleOp 1782 //===----------------------------------------------------------------------===// 1783 1784 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1785 Value v2, ArrayRef<int64_t> mask) { 1786 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1787 } 1788 1789 LogicalResult ShuffleOp::verify() { 1790 VectorType resultType = getVectorType(); 1791 VectorType v1Type = getV1VectorType(); 1792 VectorType v2Type = getV2VectorType(); 1793 // Verify ranks. 1794 int64_t resRank = resultType.getRank(); 1795 int64_t v1Rank = v1Type.getRank(); 1796 int64_t v2Rank = v2Type.getRank(); 1797 if (resRank != v1Rank || v1Rank != v2Rank) 1798 return emitOpError("rank mismatch"); 1799 // Verify all but leading dimension sizes. 1800 for (int64_t r = 1; r < v1Rank; ++r) { 1801 int64_t resDim = resultType.getDimSize(r); 1802 int64_t v1Dim = v1Type.getDimSize(r); 1803 int64_t v2Dim = v2Type.getDimSize(r); 1804 if (resDim != v1Dim || v1Dim != v2Dim) 1805 return emitOpError("dimension mismatch"); 1806 } 1807 // Verify mask length. 1808 auto maskAttr = getMask().getValue(); 1809 int64_t maskLength = maskAttr.size(); 1810 if (maskLength <= 0) 1811 return emitOpError("invalid mask length"); 1812 if (maskLength != resultType.getDimSize(0)) 1813 return emitOpError("mask length mismatch"); 1814 // Verify all indices. 1815 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1816 for (const auto &en : llvm::enumerate(maskAttr)) { 1817 auto attr = en.value().dyn_cast<IntegerAttr>(); 1818 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1819 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1820 } 1821 return success(); 1822 } 1823 1824 LogicalResult 1825 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1826 ValueRange operands, DictionaryAttr attributes, 1827 RegionRange, 1828 SmallVectorImpl<Type> &inferredReturnTypes) { 1829 ShuffleOp::Adaptor op(operands, attributes); 1830 auto v1Type = op.getV1().getType().cast<VectorType>(); 1831 // Construct resulting type: leading dimension matches mask length, 1832 // all trailing dimensions match the operands. 1833 SmallVector<int64_t, 4> shape; 1834 shape.reserve(v1Type.getRank()); 1835 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1836 llvm::append_range(shape, v1Type.getShape().drop_front()); 1837 inferredReturnTypes.push_back( 1838 VectorType::get(shape, v1Type.getElementType())); 1839 return success(); 1840 } 1841 1842 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1843 uint64_t expected = begin; 1844 return idxArr.size() == width && 1845 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1846 [&expected](auto attr) { 1847 return attr.getZExtValue() == expected++; 1848 }); 1849 } 1850 1851 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1852 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1853 if (!getV1VectorType().isScalable() && 1854 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1855 return getV1(); 1856 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1857 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1858 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1859 getV2VectorType().getDimSize(0))) 1860 return getV2(); 1861 1862 Attribute lhs = operands.front(), rhs = operands.back(); 1863 if (!lhs || !rhs) 1864 return {}; 1865 1866 auto lhsType = lhs.getType().cast<VectorType>(); 1867 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1868 // manipulation. 1869 if (lhsType.getRank() != 1) 1870 return {}; 1871 int64_t lhsSize = lhsType.getDimSize(0); 1872 1873 SmallVector<Attribute> results; 1874 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1875 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1876 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1877 int64_t i = index.getZExtValue(); 1878 if (i >= lhsSize) { 1879 results.push_back(rhsElements[i - lhsSize]); 1880 } else { 1881 results.push_back(lhsElements[i]); 1882 } 1883 } 1884 1885 return DenseElementsAttr::get(getVectorType(), results); 1886 } 1887 1888 namespace { 1889 1890 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. 1891 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { 1892 public: 1893 using OpRewritePattern<ShuffleOp>::OpRewritePattern; 1894 1895 LogicalResult matchAndRewrite(ShuffleOp op, 1896 PatternRewriter &rewriter) const override { 1897 auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); 1898 auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); 1899 1900 if (!v1Splat || !v2Splat) 1901 return failure(); 1902 1903 if (v1Splat.getInput() != v2Splat.getInput()) 1904 return failure(); 1905 1906 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); 1907 return success(); 1908 } 1909 }; 1910 1911 } // namespace 1912 1913 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, 1914 MLIRContext *context) { 1915 results.add<ShuffleSplat>(context); 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // InsertElementOp 1920 //===----------------------------------------------------------------------===// 1921 1922 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1923 Value source, Value dest) { 1924 build(builder, result, source, dest, {}); 1925 } 1926 1927 LogicalResult InsertElementOp::verify() { 1928 auto dstVectorType = getDestVectorType(); 1929 if (dstVectorType.getRank() == 0) { 1930 if (getPosition()) 1931 return emitOpError("expected position to be empty with 0-D vector"); 1932 return success(); 1933 } 1934 if (dstVectorType.getRank() != 1) 1935 return emitOpError("unexpected >1 vector rank"); 1936 if (!getPosition()) 1937 return emitOpError("expected position for 1-D vector"); 1938 return success(); 1939 } 1940 1941 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1942 // Skip the 0-D vector here. 1943 if (operands.size() < 3) 1944 return {}; 1945 1946 Attribute src = operands[0]; 1947 Attribute dst = operands[1]; 1948 Attribute pos = operands[2]; 1949 if (!src || !dst || !pos) 1950 return {}; 1951 1952 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1953 1954 SmallVector<Attribute> results(dstElements); 1955 1956 auto attr = pos.dyn_cast<IntegerAttr>(); 1957 uint64_t posIdx = attr.getInt(); 1958 1959 results[posIdx] = src; 1960 1961 return DenseElementsAttr::get(getDestVectorType(), results); 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // InsertOp 1966 //===----------------------------------------------------------------------===// 1967 1968 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1969 Value dest, ArrayRef<int64_t> position) { 1970 result.addOperands({source, dest}); 1971 auto positionAttr = getVectorSubscriptAttr(builder, position); 1972 result.addTypes(dest.getType()); 1973 result.addAttribute(getPositionAttrStrName(), positionAttr); 1974 } 1975 1976 // Convenience builder which assumes the values are constant indices. 1977 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1978 Value dest, ValueRange position) { 1979 SmallVector<int64_t, 4> positionConstants = 1980 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1981 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1982 })); 1983 build(builder, result, source, dest, positionConstants); 1984 } 1985 1986 LogicalResult InsertOp::verify() { 1987 auto positionAttr = getPosition().getValue(); 1988 auto destVectorType = getDestVectorType(); 1989 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1990 return emitOpError( 1991 "expected position attribute of rank smaller than dest vector rank"); 1992 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1993 if (srcVectorType && 1994 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1995 static_cast<unsigned>(destVectorType.getRank()))) 1996 return emitOpError("expected position attribute rank + source rank to " 1997 "match dest vector rank"); 1998 if (!srcVectorType && 1999 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 2000 return emitOpError( 2001 "expected position attribute rank to match the dest vector rank"); 2002 for (const auto &en : llvm::enumerate(positionAttr)) { 2003 auto attr = en.value().dyn_cast<IntegerAttr>(); 2004 if (!attr || attr.getInt() < 0 || 2005 attr.getInt() >= destVectorType.getDimSize(en.index())) 2006 return emitOpError("expected position attribute #") 2007 << (en.index() + 1) 2008 << " to be a non-negative integer smaller than the corresponding " 2009 "dest vector dimension"; 2010 } 2011 return success(); 2012 } 2013 2014 namespace { 2015 2016 // If insertOp is only inserting unit dimensions it can be transformed to a 2017 // broadcast. 2018 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 2019 public: 2020 using OpRewritePattern<InsertOp>::OpRewritePattern; 2021 2022 LogicalResult matchAndRewrite(InsertOp insertOp, 2023 PatternRewriter &rewriter) const override { 2024 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 2025 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 2026 srcVecType.getNumElements()) 2027 return failure(); 2028 rewriter.replaceOpWithNewOp<BroadcastOp>( 2029 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 2030 return success(); 2031 } 2032 }; 2033 2034 } // namespace 2035 2036 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2037 MLIRContext *context) { 2038 results.add<InsertToBroadcast, BroadcastFolder>(context); 2039 } 2040 2041 // Eliminates insert operations that produce values identical to their source 2042 // value. This happens when the source and destination vectors have identical 2043 // sizes. 2044 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2045 if (getPosition().empty()) 2046 return getSource(); 2047 return {}; 2048 } 2049 2050 //===----------------------------------------------------------------------===// 2051 // InsertMapOp 2052 //===----------------------------------------------------------------------===// 2053 2054 LogicalResult InsertMapOp::verify() { 2055 if (getSourceVectorType().getRank() != getResultType().getRank()) 2056 return emitOpError("expected source and destination vectors of same rank"); 2057 unsigned numId = 0; 2058 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2059 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2060 0) 2061 return emitOpError( 2062 "destination vector size must be a multiple of source vector size"); 2063 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2064 numId++; 2065 } 2066 if (numId != getIds().size()) 2067 return emitOpError("expected number of ids must match the number of " 2068 "dimensions distributed"); 2069 return success(); 2070 } 2071 2072 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2073 2074 //===----------------------------------------------------------------------===// 2075 // InsertStridedSliceOp 2076 //===----------------------------------------------------------------------===// 2077 2078 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2079 Value source, Value dest, 2080 ArrayRef<int64_t> offsets, 2081 ArrayRef<int64_t> strides) { 2082 result.addOperands({source, dest}); 2083 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2084 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2085 result.addTypes(dest.getType()); 2086 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2087 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2088 } 2089 2090 // TODO: Should be moved to Tablegen Confined attributes. 2091 template <typename OpType> 2092 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2093 ArrayAttr arrayAttr, 2094 ArrayRef<int64_t> shape, 2095 StringRef attrName) { 2096 if (arrayAttr.size() > shape.size()) 2097 return op.emitOpError("expected ") 2098 << attrName << " attribute of rank smaller than vector rank"; 2099 return success(); 2100 } 2101 2102 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2103 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2104 // Otherwise, the admissible interval is [min, max]. 2105 template <typename OpType> 2106 static LogicalResult 2107 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2108 int64_t max, StringRef attrName, 2109 bool halfOpen = true) { 2110 for (auto attr : arrayAttr) { 2111 auto val = attr.cast<IntegerAttr>().getInt(); 2112 auto upper = max; 2113 if (!halfOpen) 2114 upper += 1; 2115 if (val < min || val >= upper) 2116 return op.emitOpError("expected ") << attrName << " to be confined to [" 2117 << min << ", " << upper << ")"; 2118 } 2119 return success(); 2120 } 2121 2122 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2123 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2124 // Otherwise, the admissible interval is [min, max]. 2125 template <typename OpType> 2126 static LogicalResult 2127 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2128 ArrayRef<int64_t> shape, StringRef attrName, 2129 bool halfOpen = true, int64_t min = 0) { 2130 assert(arrayAttr.size() <= shape.size()); 2131 unsigned index = 0; 2132 for (auto it : llvm::zip(arrayAttr, shape)) { 2133 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2134 auto max = std::get<1>(it); 2135 if (!halfOpen) 2136 max += 1; 2137 if (val < min || val >= max) 2138 return op.emitOpError("expected ") 2139 << attrName << " dimension " << index << " to be confined to [" 2140 << min << ", " << max << ")"; 2141 ++index; 2142 } 2143 return success(); 2144 } 2145 2146 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2147 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2148 // Otherwise, the admissible interval is [min, max]. 2149 template <typename OpType> 2150 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2151 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2152 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2153 bool halfOpen = true, int64_t min = 1) { 2154 assert(arrayAttr1.size() <= shape.size()); 2155 assert(arrayAttr2.size() <= shape.size()); 2156 unsigned index = 0; 2157 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2158 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2159 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2160 auto max = std::get<2>(it); 2161 if (!halfOpen) 2162 max += 1; 2163 if (val1 + val2 < 0 || val1 + val2 >= max) 2164 return op.emitOpError("expected sum(") 2165 << attrName1 << ", " << attrName2 << ") dimension " << index 2166 << " to be confined to [" << min << ", " << max << ")"; 2167 ++index; 2168 } 2169 return success(); 2170 } 2171 2172 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2173 MLIRContext *context) { 2174 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2175 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2176 }); 2177 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2178 } 2179 2180 LogicalResult InsertStridedSliceOp::verify() { 2181 auto sourceVectorType = getSourceVectorType(); 2182 auto destVectorType = getDestVectorType(); 2183 auto offsets = getOffsetsAttr(); 2184 auto strides = getStridesAttr(); 2185 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2186 return emitOpError( 2187 "expected offsets of same size as destination vector rank"); 2188 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2189 return emitOpError("expected strides of same size as source vector rank"); 2190 if (sourceVectorType.getRank() > destVectorType.getRank()) 2191 return emitOpError( 2192 "expected source rank to be smaller than destination rank"); 2193 2194 auto sourceShape = sourceVectorType.getShape(); 2195 auto destShape = destVectorType.getShape(); 2196 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2197 destShape.size() - sourceShape.size(), 0); 2198 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2199 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2200 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2201 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2202 offName)) || 2203 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2204 stridesName, 2205 /*halfOpen=*/false)) || 2206 failed(isSumOfIntegerArrayAttrConfinedToShape( 2207 *this, offsets, 2208 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2209 offName, "source vector shape", 2210 /*halfOpen=*/false, /*min=*/1))) 2211 return failure(); 2212 2213 return success(); 2214 } 2215 2216 namespace { 2217 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, 2218 /// SplatOp(X):dst_type) to SplatOp(X):dst_type. 2219 class FoldInsertStridedSliceSplat final 2220 : public OpRewritePattern<InsertStridedSliceOp> { 2221 public: 2222 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2223 2224 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2225 PatternRewriter &rewriter) const override { 2226 auto srcSplatOp = 2227 insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>(); 2228 auto destSplatOp = 2229 insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); 2230 2231 if (!srcSplatOp || !destSplatOp) 2232 return failure(); 2233 2234 if (srcSplatOp.getInput() != destSplatOp.getInput()) 2235 return failure(); 2236 2237 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2238 return success(); 2239 } 2240 }; 2241 2242 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) 2243 /// to dst. 2244 class FoldInsertStridedSliceOfExtract final 2245 : public OpRewritePattern<InsertStridedSliceOp> { 2246 public: 2247 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2248 2249 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2250 PatternRewriter &rewriter) const override { 2251 auto extractStridedSliceOp = 2252 insertStridedSliceOp.getSource() 2253 .getDefiningOp<vector::ExtractStridedSliceOp>(); 2254 2255 if (!extractStridedSliceOp) 2256 return failure(); 2257 2258 if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) 2259 return failure(); 2260 2261 // Check if have the same strides and offsets. 2262 if (extractStridedSliceOp.getStrides() != 2263 insertStridedSliceOp.getStrides() || 2264 extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) 2265 return failure(); 2266 2267 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2268 return success(); 2269 } 2270 }; 2271 2272 } // namespace 2273 2274 void vector::InsertStridedSliceOp::getCanonicalizationPatterns( 2275 RewritePatternSet &results, MLIRContext *context) { 2276 results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>( 2277 context); 2278 } 2279 2280 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2281 if (getSourceVectorType() == getDestVectorType()) 2282 return getSource(); 2283 return {}; 2284 } 2285 2286 //===----------------------------------------------------------------------===// 2287 // OuterProductOp 2288 //===----------------------------------------------------------------------===// 2289 2290 /// Build an op without mask, use the type of `acc` as the return type. 2291 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2292 Value lhs, Value rhs, Value acc) { 2293 result.addOperands({lhs, rhs, acc}); 2294 result.addTypes(acc.getType()); 2295 } 2296 2297 void OuterProductOp::print(OpAsmPrinter &p) { 2298 p << " " << getLhs() << ", " << getRhs(); 2299 if (!getAcc().empty()) { 2300 p << ", " << getAcc(); 2301 p.printOptionalAttrDict((*this)->getAttrs()); 2302 } 2303 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2304 } 2305 2306 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2307 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2308 Type tLHS, tRHS; 2309 if (parser.parseOperandList(operandsInfo) || 2310 parser.parseOptionalAttrDict(result.attributes) || 2311 parser.parseColonType(tLHS) || parser.parseComma() || 2312 parser.parseType(tRHS)) 2313 return failure(); 2314 if (operandsInfo.size() < 2) 2315 return parser.emitError(parser.getNameLoc(), 2316 "expected at least 2 operands"); 2317 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2318 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2319 if (!vLHS) 2320 return parser.emitError(parser.getNameLoc(), 2321 "expected vector type for operand #1"); 2322 VectorType resType = 2323 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2324 vLHS.getElementType()) 2325 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2326 2327 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2328 result.attributes.append( 2329 OuterProductOp::getKindAttrStrName(), 2330 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2331 result.getContext())); 2332 } 2333 2334 return failure( 2335 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2336 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2337 (operandsInfo.size() > 2 && 2338 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2339 parser.addTypeToList(resType, result.types)); 2340 } 2341 2342 LogicalResult OuterProductOp::verify() { 2343 Type tRHS = getOperandTypeRHS(); 2344 VectorType vLHS = getOperandVectorTypeLHS(), 2345 vRHS = tRHS.dyn_cast<VectorType>(), 2346 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2347 2348 if (vLHS.getRank() != 1) 2349 return emitOpError("expected 1-d vector for operand #1"); 2350 2351 if (vRHS) { 2352 // Proper OUTER operation. 2353 if (vRHS.getRank() != 1) 2354 return emitOpError("expected 1-d vector for operand #2"); 2355 if (vRES.getRank() != 2) 2356 return emitOpError("expected 2-d vector result"); 2357 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2358 return emitOpError("expected #1 operand dim to match result dim #1"); 2359 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2360 return emitOpError("expected #2 operand dim to match result dim #2"); 2361 } else { 2362 // An AXPY operation. 2363 if (vRES.getRank() != 1) 2364 return emitOpError("expected 1-d vector result"); 2365 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2366 return emitOpError("expected #1 operand dim to match result dim #1"); 2367 } 2368 2369 if (vACC && vACC != vRES) 2370 return emitOpError("expected operand #3 of same type as result type"); 2371 2372 // Verify supported combining kind. 2373 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2374 return emitOpError("unsupported outerproduct type"); 2375 2376 return success(); 2377 } 2378 2379 //===----------------------------------------------------------------------===// 2380 // ReshapeOp 2381 //===----------------------------------------------------------------------===// 2382 2383 LogicalResult ReshapeOp::verify() { 2384 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2385 auto inputVectorType = getInputVectorType(); 2386 auto outputVectorType = getOutputVectorType(); 2387 int64_t inputShapeRank = getNumInputShapeSizes(); 2388 int64_t outputShapeRank = getNumOutputShapeSizes(); 2389 SmallVector<int64_t, 4> fixedVectorSizes; 2390 getFixedVectorSizes(fixedVectorSizes); 2391 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2392 2393 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2394 return emitError("invalid input shape for vector type ") << inputVectorType; 2395 2396 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2397 return emitError("invalid output shape for vector type ") 2398 << outputVectorType; 2399 2400 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2401 // suffix. 2402 unsigned inputVectorRank = inputVectorType.getRank(); 2403 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2404 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2405 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2406 return emitError("fixed vector size must match input vector for dim ") 2407 << i; 2408 } 2409 2410 unsigned outputVectorRank = outputVectorType.getRank(); 2411 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2412 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2413 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2414 return emitError("fixed vector size must match output vector for dim ") 2415 << i; 2416 } 2417 2418 // If all shape operands are produced by constant ops, verify that product 2419 // of dimensions for input/output shape match. 2420 auto isDefByConstant = [](Value operand) { 2421 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2422 }; 2423 if (llvm::all_of(getInputShape(), isDefByConstant) && 2424 llvm::all_of(getOutputShape(), isDefByConstant)) { 2425 int64_t numInputElements = 1; 2426 for (auto operand : getInputShape()) 2427 numInputElements *= 2428 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2429 int64_t numOutputElements = 1; 2430 for (auto operand : getOutputShape()) 2431 numOutputElements *= 2432 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2433 if (numInputElements != numOutputElements) 2434 return emitError("product of input and output shape sizes must match"); 2435 } 2436 return success(); 2437 } 2438 2439 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2440 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2441 } 2442 2443 //===----------------------------------------------------------------------===// 2444 // ExtractStridedSliceOp 2445 //===----------------------------------------------------------------------===// 2446 2447 // Inference works as follows: 2448 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2449 // 2. Add sizes from 'vectorType' for remaining dims. 2450 static Type inferStridedSliceOpResultType(VectorType vectorType, 2451 ArrayAttr offsets, ArrayAttr sizes, 2452 ArrayAttr strides) { 2453 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2454 SmallVector<int64_t, 4> shape; 2455 shape.reserve(vectorType.getRank()); 2456 unsigned idx = 0; 2457 for (unsigned e = offsets.size(); idx < e; ++idx) 2458 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2459 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2460 shape.push_back(vectorType.getShape()[idx]); 2461 2462 return VectorType::get(shape, vectorType.getElementType()); 2463 } 2464 2465 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2466 Value source, ArrayRef<int64_t> offsets, 2467 ArrayRef<int64_t> sizes, 2468 ArrayRef<int64_t> strides) { 2469 result.addOperands(source); 2470 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2471 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2472 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2473 result.addTypes( 2474 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2475 offsetsAttr, sizesAttr, stridesAttr)); 2476 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2477 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2478 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2479 } 2480 2481 LogicalResult ExtractStridedSliceOp::verify() { 2482 auto type = getVectorType(); 2483 auto offsets = getOffsetsAttr(); 2484 auto sizes = getSizesAttr(); 2485 auto strides = getStridesAttr(); 2486 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2487 return emitOpError( 2488 "expected offsets, sizes and strides attributes of same size"); 2489 2490 auto shape = type.getShape(); 2491 auto offName = getOffsetsAttrName(); 2492 auto sizesName = getSizesAttrName(); 2493 auto stridesName = getStridesAttrName(); 2494 if (failed( 2495 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2496 failed( 2497 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2498 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2499 stridesName)) || 2500 failed( 2501 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2502 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2503 /*halfOpen=*/false, 2504 /*min=*/1)) || 2505 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2506 stridesName, 2507 /*halfOpen=*/false)) || 2508 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2509 shape, offName, sizesName, 2510 /*halfOpen=*/false))) 2511 return failure(); 2512 2513 auto resultType = 2514 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2515 if (getResult().getType() != resultType) 2516 return emitOpError("expected result type to be ") << resultType; 2517 2518 return success(); 2519 } 2520 2521 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2522 // to use the source of the InsertStrided ops if we can detect that the 2523 // extracted vector is a subset of one of the vector inserted. 2524 static LogicalResult 2525 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2526 // Helper to extract integer out of ArrayAttr. 2527 auto getElement = [](ArrayAttr array, int idx) { 2528 return array[idx].cast<IntegerAttr>().getInt(); 2529 }; 2530 ArrayAttr extractOffsets = op.getOffsets(); 2531 ArrayAttr extractStrides = op.getStrides(); 2532 ArrayAttr extractSizes = op.getSizes(); 2533 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2534 while (insertOp) { 2535 if (op.getVectorType().getRank() != 2536 insertOp.getSourceVectorType().getRank()) 2537 return failure(); 2538 ArrayAttr insertOffsets = insertOp.getOffsets(); 2539 ArrayAttr insertStrides = insertOp.getStrides(); 2540 // If the rank of extract is greater than the rank of insert, we are likely 2541 // extracting a partial chunk of the vector inserted. 2542 if (extractOffsets.size() > insertOffsets.size()) 2543 return failure(); 2544 bool patialoverlap = false; 2545 bool disjoint = false; 2546 SmallVector<int64_t, 4> offsetDiffs; 2547 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2548 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2549 return failure(); 2550 int64_t start = getElement(insertOffsets, dim); 2551 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2552 int64_t offset = getElement(extractOffsets, dim); 2553 int64_t size = getElement(extractSizes, dim); 2554 // Check if the start of the extract offset is in the interval inserted. 2555 if (start <= offset && offset < end) { 2556 // If the extract interval overlaps but is not fully included we may 2557 // have a partial overlap that will prevent any folding. 2558 if (offset + size > end) 2559 patialoverlap = true; 2560 offsetDiffs.push_back(offset - start); 2561 continue; 2562 } 2563 disjoint = true; 2564 break; 2565 } 2566 // The extract element chunk is a subset of the insert element. 2567 if (!disjoint && !patialoverlap) { 2568 op.setOperand(insertOp.getSource()); 2569 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2570 OpBuilder b(op.getContext()); 2571 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2572 b.getI64ArrayAttr(offsetDiffs)); 2573 return success(); 2574 } 2575 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2576 // in the insert chain. 2577 if (disjoint) 2578 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2579 else { 2580 // The extracted vector partially overlap the inserted vector, we cannot 2581 // fold. 2582 return failure(); 2583 } 2584 } 2585 return failure(); 2586 } 2587 2588 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2589 if (getVectorType() == getResult().getType()) 2590 return getVector(); 2591 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2592 return getResult(); 2593 return {}; 2594 } 2595 2596 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2597 populateFromInt64AttrArray(getOffsets(), results); 2598 } 2599 2600 namespace { 2601 2602 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2603 // ConstantMaskOp. 2604 class StridedSliceConstantMaskFolder final 2605 : public OpRewritePattern<ExtractStridedSliceOp> { 2606 public: 2607 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2608 2609 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2610 PatternRewriter &rewriter) const override { 2611 // Return if 'extractStridedSliceOp' operand is not defined by a 2612 // ConstantMaskOp. 2613 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2614 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2615 if (!constantMaskOp) 2616 return failure(); 2617 // Return if 'extractStridedSliceOp' has non-unit strides. 2618 if (extractStridedSliceOp.hasNonUnitStrides()) 2619 return failure(); 2620 // Gather constant mask dimension sizes. 2621 SmallVector<int64_t, 4> maskDimSizes; 2622 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2623 // Gather strided slice offsets and sizes. 2624 SmallVector<int64_t, 4> sliceOffsets; 2625 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2626 sliceOffsets); 2627 SmallVector<int64_t, 4> sliceSizes; 2628 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2629 2630 // Compute slice of vector mask region. 2631 SmallVector<int64_t, 4> sliceMaskDimSizes; 2632 assert(sliceOffsets.size() == maskDimSizes.size()); 2633 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2634 int64_t maskDimSize = std::get<0>(it); 2635 int64_t sliceOffset = std::get<1>(it); 2636 int64_t sliceSize = std::get<2>(it); 2637 int64_t sliceMaskDimSize = std::max( 2638 static_cast<int64_t>(0), 2639 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2640 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2641 } 2642 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2643 // region is a conjunction of mask dim intervals). 2644 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2645 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2646 2647 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2648 // region. 2649 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2650 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2651 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2652 return success(); 2653 } 2654 }; 2655 2656 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2657 class StridedSliceConstantFolder final 2658 : public OpRewritePattern<ExtractStridedSliceOp> { 2659 public: 2660 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2661 2662 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2663 PatternRewriter &rewriter) const override { 2664 // Return if 'extractStridedSliceOp' operand is not defined by a 2665 // ConstantOp. 2666 auto constantOp = 2667 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2668 if (!constantOp) 2669 return failure(); 2670 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2671 if (!dense) 2672 return failure(); 2673 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2674 dense.getSplatValue<Attribute>()); 2675 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2676 newAttr); 2677 return success(); 2678 } 2679 }; 2680 2681 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2682 // BroadcastOp(ExtractStrideSliceOp). 2683 class StridedSliceBroadcast final 2684 : public OpRewritePattern<ExtractStridedSliceOp> { 2685 public: 2686 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2687 2688 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2689 PatternRewriter &rewriter) const override { 2690 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2691 if (!broadcast) 2692 return failure(); 2693 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2694 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2695 auto dstVecType = op.getType().cast<VectorType>(); 2696 unsigned dstRank = dstVecType.getRank(); 2697 unsigned rankDiff = dstRank - srcRank; 2698 // Check if the most inner dimensions of the source of the broadcast are the 2699 // same as the destination of the extract. If this is the case we can just 2700 // use a broadcast as the original dimensions are untouched. 2701 bool lowerDimMatch = true; 2702 for (unsigned i = 0; i < srcRank; i++) { 2703 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2704 lowerDimMatch = false; 2705 break; 2706 } 2707 } 2708 Value source = broadcast.getSource(); 2709 // If the inner dimensions don't match, it means we need to extract from the 2710 // source of the orignal broadcast and then broadcast the extracted value. 2711 // We also need to handle degenerated cases where the source is effectively 2712 // just a single scalar. 2713 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2714 if (!lowerDimMatch && !isScalarSrc) { 2715 source = rewriter.create<ExtractStridedSliceOp>( 2716 op->getLoc(), source, 2717 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2718 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2719 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2720 } 2721 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2722 return success(); 2723 } 2724 }; 2725 2726 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2727 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2728 public: 2729 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2730 2731 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2732 PatternRewriter &rewriter) const override { 2733 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2734 if (!splat) 2735 return failure(); 2736 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2737 return success(); 2738 } 2739 }; 2740 2741 } // namespace 2742 2743 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2744 RewritePatternSet &results, MLIRContext *context) { 2745 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2746 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2747 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2748 StridedSliceBroadcast, StridedSliceSplat>(context); 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // TransferReadOp 2753 //===----------------------------------------------------------------------===// 2754 2755 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2756 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2757 VectorType vectorType, Value source, 2758 ValueRange indices, AffineMapAttr permutationMapAttr, 2759 /*optional*/ ArrayAttr inBoundsAttr) { 2760 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2761 Value padding = builder.create<arith::ConstantOp>( 2762 result.location, elemType, builder.getZeroAttr(elemType)); 2763 build(builder, result, vectorType, source, indices, permutationMapAttr, 2764 padding, /*mask=*/Value(), inBoundsAttr); 2765 } 2766 2767 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2768 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2769 VectorType vectorType, Value source, 2770 ValueRange indices, AffineMap permutationMap, 2771 Optional<ArrayRef<bool>> inBounds) { 2772 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2773 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2774 ? builder.getBoolArrayAttr(inBounds.getValue()) 2775 : ArrayAttr(); 2776 build(builder, result, vectorType, source, indices, permutationMapAttr, 2777 inBoundsAttr); 2778 } 2779 2780 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2781 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2782 VectorType vectorType, Value source, 2783 ValueRange indices, Value padding, 2784 Optional<ArrayRef<bool>> inBounds) { 2785 AffineMap permutationMap = getTransferMinorIdentityMap( 2786 source.getType().cast<ShapedType>(), vectorType); 2787 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2788 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2789 ? builder.getBoolArrayAttr(inBounds.getValue()) 2790 : ArrayAttr(); 2791 build(builder, result, vectorType, source, indices, permutationMapAttr, 2792 padding, 2793 /*mask=*/Value(), inBoundsAttr); 2794 } 2795 2796 /// 4. Builder that sets padding to zero and permutation map to 2797 /// 'getMinorIdentityMap'. 2798 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2799 VectorType vectorType, Value source, 2800 ValueRange indices, 2801 Optional<ArrayRef<bool>> inBounds) { 2802 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2803 Value padding = builder.create<arith::ConstantOp>( 2804 result.location, elemType, builder.getZeroAttr(elemType)); 2805 build(builder, result, vectorType, source, indices, padding, inBounds); 2806 } 2807 2808 template <typename EmitFun> 2809 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2810 EmitFun emitOpError) { 2811 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2812 for (auto expr : permutationMap.getResults()) { 2813 auto dim = expr.dyn_cast<AffineDimExpr>(); 2814 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2815 if (zero) { 2816 if (zero.getValue() != 0) { 2817 return emitOpError( 2818 "requires a projected permutation_map (at most one dim or the zero " 2819 "constant can appear in each result)"); 2820 } 2821 continue; 2822 } 2823 if (!dim) { 2824 return emitOpError("requires a projected permutation_map (at most one " 2825 "dim or the zero constant can appear in each result)"); 2826 } 2827 if (seen[dim.getPosition()]) { 2828 return emitOpError( 2829 "requires a permutation_map that is a permutation (found one dim " 2830 "used more than once)"); 2831 } 2832 seen[dim.getPosition()] = true; 2833 } 2834 return success(); 2835 } 2836 2837 static LogicalResult 2838 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2839 VectorType vectorType, VectorType maskType, 2840 AffineMap permutationMap, ArrayAttr inBounds) { 2841 if (op->hasAttr("masked")) { 2842 return op->emitOpError("masked attribute has been removed. " 2843 "Use in_bounds instead."); 2844 } 2845 2846 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2847 return op->emitOpError( 2848 "requires source to be a memref or ranked tensor type"); 2849 2850 auto elementType = shapedType.getElementType(); 2851 DataLayout dataLayout = DataLayout::closest(op); 2852 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2853 // Memref or tensor has vector element type. 2854 unsigned sourceVecSize = 2855 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2856 vectorElementType.getShape().back(); 2857 unsigned resultVecSize = 2858 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2859 vectorType.getShape().back(); 2860 if (resultVecSize % sourceVecSize != 0) 2861 return op->emitOpError( 2862 "requires the bitwidth of the minor 1-D vector to be an integral " 2863 "multiple of the bitwidth of the minor 1-D vector of the source"); 2864 2865 unsigned sourceVecEltRank = vectorElementType.getRank(); 2866 unsigned resultVecRank = vectorType.getRank(); 2867 if (sourceVecEltRank > resultVecRank) 2868 return op->emitOpError( 2869 "requires source vector element and vector result ranks to match."); 2870 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2871 // Check that permutation map results match 'rankOffset' of vector type. 2872 if (permutationMap.getNumResults() != rankOffset) 2873 return op->emitOpError("requires a permutation_map with result dims of " 2874 "the same rank as the vector type"); 2875 2876 if (maskType) 2877 return op->emitOpError("does not support masks with vector element type"); 2878 } else { 2879 // Memref or tensor has scalar element type. 2880 unsigned minorSize = 2881 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2882 unsigned resultVecSize = 2883 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2884 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2885 return op->emitOpError( 2886 "requires the bitwidth of the minor 1-D vector to be an integral " 2887 "multiple of the bitwidth of the source element type"); 2888 2889 // Check that permutation map results match rank of vector type. 2890 if (permutationMap.getNumResults() != vectorType.getRank()) 2891 return op->emitOpError("requires a permutation_map with result dims of " 2892 "the same rank as the vector type"); 2893 2894 VectorType expectedMaskType = 2895 vector::detail::transferMaskType(vectorType, permutationMap); 2896 if (maskType && expectedMaskType != maskType) 2897 return op->emitOpError("expects mask type consistent with permutation " 2898 "map: ") 2899 << maskType; 2900 } 2901 2902 if (permutationMap.getNumSymbols() != 0) 2903 return op->emitOpError("requires permutation_map without symbols"); 2904 2905 if (permutationMap.getNumInputs() != shapedType.getRank()) 2906 return op->emitOpError("requires a permutation_map with input dims of the " 2907 "same rank as the source type"); 2908 2909 if (inBounds) { 2910 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2911 return op->emitOpError("expects the optional in_bounds attr of same rank " 2912 "as permutation_map results: ") 2913 << AffineMapAttr::get(permutationMap) 2914 << " vs inBounds of size: " << inBounds.size(); 2915 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2916 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2917 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2918 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2919 } 2920 2921 return success(); 2922 } 2923 2924 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2925 SmallVector<StringRef, 3> elidedAttrs; 2926 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2927 if (op.permutation_map().isMinorIdentity()) 2928 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2929 bool elideInBounds = true; 2930 if (auto inBounds = op.in_bounds()) { 2931 for (auto attr : *inBounds) { 2932 if (attr.template cast<BoolAttr>().getValue()) { 2933 elideInBounds = false; 2934 break; 2935 } 2936 } 2937 } 2938 if (elideInBounds) 2939 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2940 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2941 } 2942 2943 void TransferReadOp::print(OpAsmPrinter &p) { 2944 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2945 if (getMask()) 2946 p << ", " << getMask(); 2947 printTransferAttrs(p, *this); 2948 p << " : " << getShapedType() << ", " << getVectorType(); 2949 } 2950 2951 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2952 auto &builder = parser.getBuilder(); 2953 SMLoc typesLoc; 2954 OpAsmParser::UnresolvedOperand sourceInfo; 2955 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2956 OpAsmParser::UnresolvedOperand paddingInfo; 2957 SmallVector<Type, 2> types; 2958 OpAsmParser::UnresolvedOperand maskInfo; 2959 // Parsing with support for paddingValue. 2960 if (parser.parseOperand(sourceInfo) || 2961 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2962 parser.parseComma() || parser.parseOperand(paddingInfo)) 2963 return failure(); 2964 ParseResult hasMask = parser.parseOptionalComma(); 2965 if (hasMask.succeeded()) { 2966 if (parser.parseOperand(maskInfo)) 2967 return failure(); 2968 } 2969 if (parser.parseOptionalAttrDict(result.attributes) || 2970 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2971 return failure(); 2972 if (types.size() != 2) 2973 return parser.emitError(typesLoc, "requires two types"); 2974 auto indexType = builder.getIndexType(); 2975 auto shapedType = types[0].dyn_cast<ShapedType>(); 2976 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2977 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2978 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2979 if (!vectorType) 2980 return parser.emitError(typesLoc, "requires vector type"); 2981 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2982 Attribute mapAttr = result.attributes.get(permutationAttrName); 2983 if (!mapAttr) { 2984 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2985 // Update `mapAttr` that is used later to determine mask type. 2986 mapAttr = AffineMapAttr::get(permMap); 2987 result.attributes.set(permutationAttrName, mapAttr); 2988 } 2989 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2990 parser.resolveOperands(indexInfo, indexType, result.operands) || 2991 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2992 result.operands)) 2993 return failure(); 2994 if (hasMask.succeeded()) { 2995 if (shapedType.getElementType().dyn_cast<VectorType>()) 2996 return parser.emitError( 2997 maskInfo.location, "does not support masks with vector element type"); 2998 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2999 // Instead of adding the mask type as an op type, compute it based on the 3000 // vector type and the permutation map (to keep the type signature small). 3001 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 3002 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3003 return failure(); 3004 } 3005 result.addAttribute( 3006 TransferReadOp::getOperandSegmentSizeAttr(), 3007 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 3008 static_cast<int32_t>(hasMask.succeeded())})); 3009 return parser.addTypeToList(vectorType, result.types); 3010 } 3011 3012 LogicalResult TransferReadOp::verify() { 3013 // Consistency of elemental types in source and vector. 3014 ShapedType shapedType = getShapedType(); 3015 VectorType vectorType = getVectorType(); 3016 VectorType maskType = getMaskType(); 3017 auto paddingType = getPadding().getType(); 3018 auto permutationMap = getPermutationMap(); 3019 auto sourceElementType = shapedType.getElementType(); 3020 3021 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 3022 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3023 3024 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3025 shapedType, vectorType, maskType, permutationMap, 3026 getInBounds() ? *getInBounds() : ArrayAttr()))) 3027 return failure(); 3028 3029 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 3030 // Source has vector element type. 3031 // Check that 'sourceVectorElementType' and 'paddingType' types match. 3032 if (sourceVectorElementType != paddingType) 3033 return emitOpError( 3034 "requires source element type and padding type to match."); 3035 3036 } else { 3037 // Check that 'paddingType' is valid to store in a vector type. 3038 if (!VectorType::isValidElementType(paddingType)) 3039 return emitOpError("requires valid padding vector elemental type"); 3040 3041 // Check that padding type and vector element types match. 3042 if (paddingType != sourceElementType) 3043 return emitOpError( 3044 "requires formal padding and source of the same elemental type"); 3045 } 3046 3047 return verifyPermutationMap(permutationMap, 3048 [&](Twine t) { return emitOpError(t); }); 3049 } 3050 3051 /// This is a common class used for patterns of the form 3052 /// ``` 3053 /// someop(memrefcast) -> someop 3054 /// ``` 3055 /// It folds the source of the memref.cast into the root operation directly. 3056 static LogicalResult foldMemRefCast(Operation *op) { 3057 bool folded = false; 3058 for (OpOperand &operand : op->getOpOperands()) { 3059 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 3060 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 3061 operand.set(castOp.getOperand()); 3062 folded = true; 3063 } 3064 } 3065 return success(folded); 3066 } 3067 3068 static LogicalResult foldTensorCast(Operation *op) { 3069 bool folded = false; 3070 for (OpOperand &operand : op->getOpOperands()) { 3071 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 3072 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 3073 operand.set(castOp.getOperand()); 3074 folded = true; 3075 } 3076 } 3077 return success(folded); 3078 } 3079 3080 template <typename TransferOp> 3081 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 3082 // TODO: support more aggressive createOrFold on: 3083 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 3084 if (op.getShapedType().isDynamicDim(indicesIdx)) 3085 return false; 3086 Value index = op.getIndices()[indicesIdx]; 3087 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 3088 if (!cstOp) 3089 return false; 3090 3091 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 3092 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 3093 3094 return cstOp.value() + vectorSize <= sourceSize; 3095 } 3096 3097 template <typename TransferOp> 3098 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3099 // TODO: support 0-d corner case. 3100 // TODO: Be less conservative. 3101 if (op.getTransferRank() == 0) 3102 return failure(); 3103 AffineMap permutationMap = op.getPermutationMap(); 3104 bool changed = false; 3105 SmallVector<bool, 4> newInBounds; 3106 newInBounds.reserve(op.getTransferRank()); 3107 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3108 // Already marked as in-bounds, nothing to see here. 3109 if (op.isDimInBounds(i)) { 3110 newInBounds.push_back(true); 3111 continue; 3112 } 3113 // Currently out-of-bounds, check whether we can statically determine it is 3114 // inBounds. 3115 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3116 assert(dimExpr && "Broadcast dims must be in-bounds"); 3117 auto inBounds = 3118 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3119 newInBounds.push_back(inBounds); 3120 // We commit the pattern if it is "more inbounds". 3121 changed |= inBounds; 3122 } 3123 if (!changed) 3124 return failure(); 3125 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3126 OpBuilder b(op.getContext()); 3127 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3128 b.getBoolArrayAttr(newInBounds)); 3129 return success(); 3130 } 3131 3132 /// ``` 3133 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3134 /// : vector<1x4xf32>, tensor<4x4xf32> 3135 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3136 /// : tensor<4x4xf32>, vector<1x4xf32> 3137 /// ``` 3138 /// -> Folds into 3139 /// ``` 3140 /// %v0 3141 /// ``` 3142 static Value foldRAW(TransferReadOp readOp) { 3143 if (!readOp.getShapedType().isa<RankedTensorType>()) 3144 return {}; 3145 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3146 while (defWrite) { 3147 if (checkSameValueRAW(defWrite, readOp)) 3148 return defWrite.getVector(); 3149 if (!isDisjointTransferIndices( 3150 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3151 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3152 break; 3153 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3154 } 3155 return {}; 3156 } 3157 3158 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3159 if (Value vec = foldRAW(*this)) 3160 return vec; 3161 /// transfer_read(memrefcast) -> transfer_read 3162 if (succeeded(foldTransferInBoundsAttribute(*this))) 3163 return getResult(); 3164 if (succeeded(foldMemRefCast(*this))) 3165 return getResult(); 3166 if (succeeded(foldTensorCast(*this))) 3167 return getResult(); 3168 return OpFoldResult(); 3169 } 3170 3171 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3172 return llvm::to_vector<4>(getVectorType().getShape()); 3173 } 3174 3175 void TransferReadOp::getEffects( 3176 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3177 &effects) { 3178 if (getShapedType().isa<MemRefType>()) 3179 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3180 SideEffects::DefaultResource::get()); 3181 } 3182 3183 namespace { 3184 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3185 /// 3186 /// ``` 3187 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3188 /// : tensor<?x?xf32> to tensor<?x?xf32> 3189 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3190 /// : tensor<?x?xf32>, vector<4x5xf32> 3191 /// ``` 3192 /// is rewritten to: 3193 /// ``` 3194 /// %p0 = arith.addi %a, %e : index 3195 /// %p1 = arith.addi %b, %f : index 3196 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3197 /// : tensor<?x?xf32>, vector<4x5xf32> 3198 /// ``` 3199 struct FoldExtractSliceIntoTransferRead 3200 : public OpRewritePattern<TransferReadOp> { 3201 public: 3202 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3203 3204 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3205 PatternRewriter &rewriter) const override { 3206 // TODO: support 0-d corner case. 3207 if (xferOp.getTransferRank() == 0) 3208 return failure(); 3209 if (xferOp.hasOutOfBoundsDim()) 3210 return failure(); 3211 if (!xferOp.getPermutationMap().isIdentity()) 3212 return failure(); 3213 if (xferOp.getMask()) 3214 return failure(); 3215 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3216 if (!extractOp) 3217 return failure(); 3218 if (!extractOp.hasUnitStride()) 3219 return failure(); 3220 3221 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3222 // dims are exactly the leading dims. I.e. the following is illegal: 3223 // ``` 3224 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3225 // tensor<2x1x4xf32> to tensor<2x4xf32> 3226 // %1 = vector.transfer_read %0[0,0], %cst : 3227 // tensor<2x4xf32>, vector<2x4xf32> 3228 // ``` 3229 // 3230 // Cannot fold into: 3231 // ``` 3232 // %0 = vector.transfer_read %t[0,0,0], %cst : 3233 // tensor<2x1x4xf32>, vector<2x4xf32> 3234 // ``` 3235 // For this, check the trailing `vectorRank` dims of the extract_slice 3236 // result tensor match the trailing dims of the inferred result tensor. 3237 int64_t rankReduced = 3238 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3239 int64_t vectorRank = xferOp.getVectorType().getRank(); 3240 RankedTensorType inferredDestTensorType = 3241 tensor::ExtractSliceOp::inferResultType( 3242 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3243 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3244 auto actualDestTensorShape = extractOp.getType().getShape(); 3245 if (rankReduced > 0 && 3246 actualDestTensorShape.take_back(vectorRank) != 3247 inferredDestTensorType.getShape().take_back(vectorRank)) 3248 return failure(); 3249 3250 SmallVector<Value> newIndices; 3251 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3252 // indices first. 3253 for (int64_t i = 0; i < rankReduced; ++i) { 3254 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3255 newIndices.push_back(getValueOrCreateConstantIndexOp( 3256 rewriter, extractOp.getLoc(), offset)); 3257 } 3258 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3259 OpFoldResult offset = 3260 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3261 newIndices.push_back(rewriter.create<arith::AddIOp>( 3262 xferOp->getLoc(), it.value(), 3263 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3264 offset))); 3265 } 3266 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3267 rewriter.replaceOpWithNewOp<TransferReadOp>( 3268 xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices, 3269 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3270 3271 return success(); 3272 } 3273 }; 3274 } // namespace 3275 3276 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3277 MLIRContext *context) { 3278 results.add<FoldExtractSliceIntoTransferRead>(context); 3279 } 3280 3281 //===----------------------------------------------------------------------===// 3282 // TransferWriteOp 3283 //===----------------------------------------------------------------------===// 3284 3285 /// 1. Builder with type inference. 3286 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3287 Value vector, Value dest, ValueRange indices, 3288 AffineMapAttr permutationMapAttr, 3289 /*optional*/ Value mask, 3290 /*optional*/ ArrayAttr inBoundsAttr) { 3291 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3292 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3293 mask, inBoundsAttr); 3294 } 3295 3296 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3297 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3298 Value vector, Value dest, ValueRange indices, 3299 AffineMapAttr permutationMapAttr, 3300 /*optional*/ ArrayAttr inBoundsAttr) { 3301 build(builder, result, vector, dest, indices, permutationMapAttr, 3302 /*mask=*/Value(), inBoundsAttr); 3303 } 3304 3305 /// 3. Builder with type inference that sets an empty mask (variant without 3306 /// attrs) 3307 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3308 Value vector, Value dest, ValueRange indices, 3309 AffineMap permutationMap, 3310 Optional<ArrayRef<bool>> inBounds) { 3311 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3312 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3313 ? builder.getBoolArrayAttr(inBounds.getValue()) 3314 : ArrayAttr(); 3315 build(builder, result, vector, dest, indices, permutationMapAttr, 3316 /*mask=*/Value(), inBoundsAttr); 3317 } 3318 3319 /// 4. Builder with type inference that sets an empty mask and sets permutation 3320 /// map to 'getMinorIdentityMap'. 3321 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3322 Value vector, Value dest, ValueRange indices, 3323 Optional<ArrayRef<bool>> inBounds) { 3324 auto vectorType = vector.getType().cast<VectorType>(); 3325 AffineMap permutationMap = getTransferMinorIdentityMap( 3326 dest.getType().cast<ShapedType>(), vectorType); 3327 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3328 } 3329 3330 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3331 OperationState &result) { 3332 auto &builder = parser.getBuilder(); 3333 SMLoc typesLoc; 3334 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3335 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3336 SmallVector<Type, 2> types; 3337 OpAsmParser::UnresolvedOperand maskInfo; 3338 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3339 parser.parseOperand(sourceInfo) || 3340 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3341 return failure(); 3342 ParseResult hasMask = parser.parseOptionalComma(); 3343 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3344 return failure(); 3345 if (parser.parseOptionalAttrDict(result.attributes) || 3346 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3347 return failure(); 3348 if (types.size() != 2) 3349 return parser.emitError(typesLoc, "requires two types"); 3350 auto indexType = builder.getIndexType(); 3351 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3352 if (!vectorType) 3353 return parser.emitError(typesLoc, "requires vector type"); 3354 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3355 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3356 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3357 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3358 auto attr = result.attributes.get(permutationAttrName); 3359 if (!attr) { 3360 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3361 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3362 } 3363 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3364 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3365 parser.resolveOperands(indexInfo, indexType, result.operands)) 3366 return failure(); 3367 if (hasMask.succeeded()) { 3368 if (shapedType.getElementType().dyn_cast<VectorType>()) 3369 return parser.emitError( 3370 maskInfo.location, "does not support masks with vector element type"); 3371 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3372 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3373 return failure(); 3374 } 3375 result.addAttribute( 3376 TransferWriteOp::getOperandSegmentSizeAttr(), 3377 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3378 static_cast<int32_t>(hasMask.succeeded())})); 3379 return failure(shapedType.isa<RankedTensorType>() && 3380 parser.addTypeToList(shapedType, result.types)); 3381 } 3382 3383 void TransferWriteOp::print(OpAsmPrinter &p) { 3384 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3385 if (getMask()) 3386 p << ", " << getMask(); 3387 printTransferAttrs(p, *this); 3388 p << " : " << getVectorType() << ", " << getShapedType(); 3389 } 3390 3391 LogicalResult TransferWriteOp::verify() { 3392 // Consistency of elemental types in shape and vector. 3393 ShapedType shapedType = getShapedType(); 3394 VectorType vectorType = getVectorType(); 3395 VectorType maskType = getMaskType(); 3396 auto permutationMap = getPermutationMap(); 3397 3398 if (llvm::size(getIndices()) != shapedType.getRank()) 3399 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3400 3401 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3402 // as the semantics is unclear. This can be revisited later if necessary. 3403 if (hasBroadcastDim()) 3404 return emitOpError("should not have broadcast dimensions"); 3405 3406 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3407 shapedType, vectorType, maskType, permutationMap, 3408 getInBounds() ? *getInBounds() : ArrayAttr()))) 3409 return failure(); 3410 3411 return verifyPermutationMap(permutationMap, 3412 [&](Twine t) { return emitOpError(t); }); 3413 } 3414 3415 /// Fold: 3416 /// ``` 3417 /// %t1 = ... 3418 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3419 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3420 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3421 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3422 /// ``` 3423 /// 3424 /// into: 3425 /// 3426 /// ``` 3427 /// %t0 3428 /// ``` 3429 /// 3430 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3431 /// block argument or has side effects. 3432 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3433 ArrayRef<Attribute>, 3434 SmallVectorImpl<OpFoldResult> &results) { 3435 // TODO: support 0-d corner case. 3436 if (write.getTransferRank() == 0) 3437 return failure(); 3438 auto rankedTensorType = 3439 write.getSource().getType().dyn_cast<RankedTensorType>(); 3440 // If not operating on tensors, bail. 3441 if (!rankedTensorType) 3442 return failure(); 3443 // If no read, bail. 3444 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3445 if (!read) 3446 return failure(); 3447 // TODO: support 0-d corner case. 3448 if (read.getTransferRank() == 0) 3449 return failure(); 3450 // For now, only accept minor identity. Future: composition is minor identity. 3451 if (!read.getPermutationMap().isMinorIdentity() || 3452 !write.getPermutationMap().isMinorIdentity()) 3453 return failure(); 3454 // Bail on mismatching ranks. 3455 if (read.getTransferRank() != write.getTransferRank()) 3456 return failure(); 3457 // Bail on potential out-of-bounds accesses. 3458 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3459 return failure(); 3460 // Tensor types must be the same. 3461 if (read.getSource().getType() != rankedTensorType) 3462 return failure(); 3463 // Vector types must be the same. 3464 if (read.getVectorType() != write.getVectorType()) 3465 return failure(); 3466 // Vector and Tensor shapes must match. 3467 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3468 return failure(); 3469 // If any index is nonzero. 3470 auto isNotConstantZero = [](Value v) { 3471 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3472 return !cstOp || cstOp.value() != 0; 3473 }; 3474 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3475 llvm::any_of(write.getIndices(), isNotConstantZero)) 3476 return failure(); 3477 // Success. 3478 results.push_back(read.getSource()); 3479 return success(); 3480 } 3481 3482 static bool checkSameValueWAR(vector::TransferReadOp read, 3483 vector::TransferWriteOp write) { 3484 return read.getSource() == write.getSource() && 3485 read.getIndices() == write.getIndices() && 3486 read.getPermutationMap() == write.getPermutationMap() && 3487 read.getVectorType() == write.getVectorType() && !read.getMask() && 3488 !write.getMask(); 3489 } 3490 /// Fold transfer_write write after read: 3491 /// ``` 3492 /// %t0 = ... 3493 /// %v = vector.transfer_read %t0[%c0...] : 3494 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3495 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3496 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3497 /// ``` 3498 /// 3499 /// into: 3500 /// 3501 /// ``` 3502 /// %t0 3503 /// ``` 3504 static LogicalResult foldWAR(TransferWriteOp write, 3505 SmallVectorImpl<OpFoldResult> &results) { 3506 if (!write.getSource().getType().isa<RankedTensorType>()) 3507 return failure(); 3508 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3509 if (!read) 3510 return failure(); 3511 3512 if (!checkSameValueWAR(read, write)) 3513 return failure(); 3514 results.push_back(read.getSource()); 3515 return success(); 3516 } 3517 3518 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3519 SmallVectorImpl<OpFoldResult> &results) { 3520 if (succeeded(foldReadInitWrite(*this, operands, results))) 3521 return success(); 3522 if (succeeded(foldWAR(*this, results))) 3523 return success(); 3524 if (succeeded(foldTransferInBoundsAttribute(*this))) 3525 return success(); 3526 return foldMemRefCast(*this); 3527 } 3528 3529 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3530 return llvm::to_vector<4>(getVectorType().getShape()); 3531 } 3532 3533 void TransferWriteOp::getEffects( 3534 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3535 &effects) { 3536 if (getShapedType().isa<MemRefType>()) 3537 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3538 SideEffects::DefaultResource::get()); 3539 } 3540 3541 namespace { 3542 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3543 /// DCE 3544 /// ``` 3545 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3546 /// : vector<1x4xf32>, tensor<4x4xf32> 3547 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3548 /// : vector<1x4xf32>, tensor<4x4xf32> 3549 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3550 /// : vector<1x4xf32>, tensor<4x4xf32> 3551 /// ``` 3552 /// 3553 /// into: 3554 /// 3555 /// ``` 3556 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3557 /// : vector<1x4xf32>, tensor<4x4xf32> 3558 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3559 /// : vector<1x4xf32>, tensor<4x4xf32> 3560 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3561 /// : vector<1x4xf32>, tensor<4x4xf32> 3562 /// ``` 3563 /// 3564 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3565 /// any other uses. 3566 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3567 public: 3568 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3569 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3570 PatternRewriter &rewriter) const override { 3571 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3572 return failure(); 3573 vector::TransferWriteOp writeToModify = writeOp; 3574 3575 auto defWrite = 3576 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3577 while (defWrite) { 3578 if (checkSameValueWAW(writeOp, defWrite)) { 3579 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3580 return success(); 3581 } 3582 if (!isDisjointTransferIndices( 3583 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3584 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3585 break; 3586 // If the previous write op doesn't have any other use we an safely look 3587 // at the previous store to see if it can be removed. 3588 if (!defWrite->hasOneUse()) 3589 break; 3590 writeToModify = defWrite; 3591 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3592 } 3593 return failure(); 3594 } 3595 }; 3596 3597 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3598 /// could directly write to the insert_slice's destination. E.g.: 3599 /// 3600 /// ``` 3601 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3602 /// : vector<4x5xf32>, tensor<4x5xf32> 3603 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3604 /// : tensor<4x5xf32> into tensor<?x?xf32> 3605 /// ``` 3606 /// is rewritten to: 3607 /// ``` 3608 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3609 /// : vector<4x5xf32>, tensor<?x?xf32> 3610 /// ``` 3611 struct FoldInsertSliceIntoTransferWrite 3612 : public OpRewritePattern<tensor::InsertSliceOp> { 3613 public: 3614 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3615 3616 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3617 PatternRewriter &rewriter) const override { 3618 if (!insertOp.hasUnitStride()) 3619 return failure(); 3620 3621 auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>(); 3622 if (!xferOp) 3623 return failure(); 3624 // TODO: support 0-d corner case. 3625 if (xferOp.getTransferRank() == 0) 3626 return failure(); 3627 3628 if (xferOp.hasOutOfBoundsDim()) 3629 return failure(); 3630 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3631 return failure(); 3632 if (xferOp.getMask()) 3633 return failure(); 3634 // Fold only if the TransferWriteOp completely overwrites the `source` with 3635 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3636 // content is the data of the vector. 3637 if (!llvm::equal(xferOp.getVectorType().getShape(), 3638 xferOp.getShapedType().getShape())) 3639 return failure(); 3640 if (!xferOp.getPermutationMap().isIdentity()) 3641 return failure(); 3642 3643 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3644 // dims are exactly the leading dims. I.e. the following is illegal: 3645 // ``` 3646 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3647 // vector<2x4xf32>, tensor<2x4xf32> 3648 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3649 // tensor<2x4xf32> into tensor<2x1x4xf32> 3650 // ``` 3651 // 3652 // Cannot fold into: 3653 // ``` 3654 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3655 // vector<2x4xf32>, tensor<2x1x4xf32> 3656 // ``` 3657 // For this, check the trailing `vectorRank` dims of the insert_slice result 3658 // tensor match the trailing dims of the inferred result tensor. 3659 int64_t rankReduced = 3660 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3661 int64_t vectorRank = xferOp.getVectorType().getRank(); 3662 RankedTensorType inferredSourceTensorType = 3663 tensor::ExtractSliceOp::inferResultType( 3664 insertOp.getType(), insertOp.getMixedOffsets(), 3665 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3666 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3667 if (rankReduced > 0 && 3668 actualSourceTensorShape.take_back(vectorRank) != 3669 inferredSourceTensorType.getShape().take_back(vectorRank)) 3670 return failure(); 3671 3672 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3673 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3674 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3675 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3676 insertOp.getDest(), indices, 3677 ArrayRef<bool>{inBounds}); 3678 return success(); 3679 } 3680 }; 3681 3682 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3683 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3684 /// overwritten and inserted into another tensor. After this rewrite, the 3685 /// operations bufferize in-place since all of them work on the same slice. 3686 /// 3687 /// For example: 3688 /// ```mlir 3689 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3690 /// : vector<8x16xf32>, tensor<8x16xf32> 3691 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3692 /// : tensor<8x16xf32> to tensor<?x?xf32> 3693 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3694 /// : tensor<?x?xf32> into tensor<27x37xf32> 3695 /// ``` 3696 /// folds to 3697 /// ```mlir 3698 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3699 /// : tensor<27x37xf32> to tensor<?x?xf32> 3700 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3701 /// : vector<8x16xf32>, tensor<?x?xf32> 3702 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3703 /// : tensor<?x?xf32> into tensor<27x37xf32> 3704 /// ``` 3705 struct SwapExtractSliceOfTransferWrite 3706 : public OpRewritePattern<tensor::InsertSliceOp> { 3707 public: 3708 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3709 3710 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3711 PatternRewriter &rewriter) const override { 3712 if (!insertOp.hasUnitStride()) 3713 return failure(); 3714 auto extractOp = 3715 insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3716 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3717 return failure(); 3718 auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); 3719 if (!transferOp || !transferOp->hasOneUse()) 3720 return failure(); 3721 3722 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3723 // rank-reducing. 3724 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3725 return rewriter.notifyMatchFailure(insertOp, 3726 "use-def chain is rank-reducing"); 3727 } 3728 3729 // Fail if tensor::ExtractSliceOp has non-zero offset. 3730 if (!extractOp.hasZeroOffset()) { 3731 return rewriter.notifyMatchFailure(insertOp, 3732 "ExtractSliceOp has non-zero offset"); 3733 } 3734 3735 // Fail if tensor::TransferWriteOp has non-zero offset. 3736 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3737 return getConstantIntValue(value) == static_cast<int64_t>(0); 3738 })) { 3739 return rewriter.notifyMatchFailure(insertOp, 3740 "TranferWriteOp has non-zero offset"); 3741 } 3742 3743 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3744 for (const auto &it : 3745 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3746 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3747 return rewriter.notifyMatchFailure( 3748 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3749 } 3750 } 3751 3752 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3753 assert(transferOp.getVectorType().hasStaticShape() && 3754 "expected vector to have a static shape"); 3755 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3756 SmallVector<int64_t> resultShape = applyPermutationMap( 3757 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3758 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3759 return rewriter.notifyMatchFailure( 3760 insertOp, "TransferWriteOp may not write the full tensor."); 3761 } 3762 3763 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3764 SmallVector<int64_t> newResultShape = applyPermutationMap( 3765 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3766 SmallVector<bool> newInBounds; 3767 for (const auto &en : enumerate(newResultShape)) 3768 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3769 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3770 extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), 3771 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3772 insertOp.getMixedStrides()); 3773 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3774 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3775 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3776 rewriter.getBoolArrayAttr(newInBounds)); 3777 rewriter.updateRootInPlace(insertOp, [&]() { 3778 insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); 3779 }); 3780 return success(); 3781 } 3782 }; 3783 3784 } // namespace 3785 3786 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3787 MLIRContext *context) { 3788 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3789 SwapExtractSliceOfTransferWrite>(context); 3790 } 3791 3792 //===----------------------------------------------------------------------===// 3793 // LoadOp 3794 //===----------------------------------------------------------------------===// 3795 3796 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3797 MemRefType memRefTy) { 3798 if (!isLastMemrefDimUnitStride(memRefTy)) 3799 return op->emitOpError("most minor memref dim must have unit stride"); 3800 return success(); 3801 } 3802 3803 LogicalResult vector::LoadOp::verify() { 3804 VectorType resVecTy = getVectorType(); 3805 MemRefType memRefTy = getMemRefType(); 3806 3807 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3808 return failure(); 3809 3810 // Checks for vector memrefs. 3811 Type memElemTy = memRefTy.getElementType(); 3812 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3813 if (memVecTy != resVecTy) 3814 return emitOpError("base memref and result vector types should match"); 3815 memElemTy = memVecTy.getElementType(); 3816 } 3817 3818 if (resVecTy.getElementType() != memElemTy) 3819 return emitOpError("base and result element types should match"); 3820 if (llvm::size(getIndices()) != memRefTy.getRank()) 3821 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3822 return success(); 3823 } 3824 3825 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3826 if (succeeded(foldMemRefCast(*this))) 3827 return getResult(); 3828 return OpFoldResult(); 3829 } 3830 3831 //===----------------------------------------------------------------------===// 3832 // StoreOp 3833 //===----------------------------------------------------------------------===// 3834 3835 LogicalResult vector::StoreOp::verify() { 3836 VectorType valueVecTy = getVectorType(); 3837 MemRefType memRefTy = getMemRefType(); 3838 3839 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3840 return failure(); 3841 3842 // Checks for vector memrefs. 3843 Type memElemTy = memRefTy.getElementType(); 3844 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3845 if (memVecTy != valueVecTy) 3846 return emitOpError( 3847 "base memref and valueToStore vector types should match"); 3848 memElemTy = memVecTy.getElementType(); 3849 } 3850 3851 if (valueVecTy.getElementType() != memElemTy) 3852 return emitOpError("base and valueToStore element type should match"); 3853 if (llvm::size(getIndices()) != memRefTy.getRank()) 3854 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3855 return success(); 3856 } 3857 3858 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3859 SmallVectorImpl<OpFoldResult> &results) { 3860 return foldMemRefCast(*this); 3861 } 3862 3863 //===----------------------------------------------------------------------===// 3864 // MaskedLoadOp 3865 //===----------------------------------------------------------------------===// 3866 3867 LogicalResult MaskedLoadOp::verify() { 3868 VectorType maskVType = getMaskVectorType(); 3869 VectorType passVType = getPassThruVectorType(); 3870 VectorType resVType = getVectorType(); 3871 MemRefType memType = getMemRefType(); 3872 3873 if (resVType.getElementType() != memType.getElementType()) 3874 return emitOpError("base and result element type should match"); 3875 if (llvm::size(getIndices()) != memType.getRank()) 3876 return emitOpError("requires ") << memType.getRank() << " indices"; 3877 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3878 return emitOpError("expected result dim to match mask dim"); 3879 if (resVType != passVType) 3880 return emitOpError("expected pass_thru of same type as result type"); 3881 return success(); 3882 } 3883 3884 namespace { 3885 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3886 public: 3887 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3888 LogicalResult matchAndRewrite(MaskedLoadOp load, 3889 PatternRewriter &rewriter) const override { 3890 switch (get1DMaskFormat(load.getMask())) { 3891 case MaskFormat::AllTrue: 3892 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3893 load, load.getType(), load.getBase(), load.getIndices()); 3894 return success(); 3895 case MaskFormat::AllFalse: 3896 rewriter.replaceOp(load, load.getPassThru()); 3897 return success(); 3898 case MaskFormat::Unknown: 3899 return failure(); 3900 } 3901 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3902 } 3903 }; 3904 } // namespace 3905 3906 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3907 MLIRContext *context) { 3908 results.add<MaskedLoadFolder>(context); 3909 } 3910 3911 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3912 if (succeeded(foldMemRefCast(*this))) 3913 return getResult(); 3914 return OpFoldResult(); 3915 } 3916 3917 //===----------------------------------------------------------------------===// 3918 // MaskedStoreOp 3919 //===----------------------------------------------------------------------===// 3920 3921 LogicalResult MaskedStoreOp::verify() { 3922 VectorType maskVType = getMaskVectorType(); 3923 VectorType valueVType = getVectorType(); 3924 MemRefType memType = getMemRefType(); 3925 3926 if (valueVType.getElementType() != memType.getElementType()) 3927 return emitOpError("base and valueToStore element type should match"); 3928 if (llvm::size(getIndices()) != memType.getRank()) 3929 return emitOpError("requires ") << memType.getRank() << " indices"; 3930 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3931 return emitOpError("expected valueToStore dim to match mask dim"); 3932 return success(); 3933 } 3934 3935 namespace { 3936 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3937 public: 3938 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3939 LogicalResult matchAndRewrite(MaskedStoreOp store, 3940 PatternRewriter &rewriter) const override { 3941 switch (get1DMaskFormat(store.getMask())) { 3942 case MaskFormat::AllTrue: 3943 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3944 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3945 return success(); 3946 case MaskFormat::AllFalse: 3947 rewriter.eraseOp(store); 3948 return success(); 3949 case MaskFormat::Unknown: 3950 return failure(); 3951 } 3952 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3953 } 3954 }; 3955 } // namespace 3956 3957 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3958 MLIRContext *context) { 3959 results.add<MaskedStoreFolder>(context); 3960 } 3961 3962 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3963 SmallVectorImpl<OpFoldResult> &results) { 3964 return foldMemRefCast(*this); 3965 } 3966 3967 //===----------------------------------------------------------------------===// 3968 // GatherOp 3969 //===----------------------------------------------------------------------===// 3970 3971 LogicalResult GatherOp::verify() { 3972 VectorType indVType = getIndexVectorType(); 3973 VectorType maskVType = getMaskVectorType(); 3974 VectorType resVType = getVectorType(); 3975 MemRefType memType = getMemRefType(); 3976 3977 if (resVType.getElementType() != memType.getElementType()) 3978 return emitOpError("base and result element type should match"); 3979 if (llvm::size(getIndices()) != memType.getRank()) 3980 return emitOpError("requires ") << memType.getRank() << " indices"; 3981 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3982 return emitOpError("expected result dim to match indices dim"); 3983 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3984 return emitOpError("expected result dim to match mask dim"); 3985 if (resVType != getPassThruVectorType()) 3986 return emitOpError("expected pass_thru of same type as result type"); 3987 return success(); 3988 } 3989 3990 namespace { 3991 class GatherFolder final : public OpRewritePattern<GatherOp> { 3992 public: 3993 using OpRewritePattern<GatherOp>::OpRewritePattern; 3994 LogicalResult matchAndRewrite(GatherOp gather, 3995 PatternRewriter &rewriter) const override { 3996 switch (get1DMaskFormat(gather.getMask())) { 3997 case MaskFormat::AllTrue: 3998 return failure(); // no unmasked equivalent 3999 case MaskFormat::AllFalse: 4000 rewriter.replaceOp(gather, gather.getPassThru()); 4001 return success(); 4002 case MaskFormat::Unknown: 4003 return failure(); 4004 } 4005 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 4006 } 4007 }; 4008 } // namespace 4009 4010 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 4011 MLIRContext *context) { 4012 results.add<GatherFolder>(context); 4013 } 4014 4015 //===----------------------------------------------------------------------===// 4016 // ScatterOp 4017 //===----------------------------------------------------------------------===// 4018 4019 LogicalResult ScatterOp::verify() { 4020 VectorType indVType = getIndexVectorType(); 4021 VectorType maskVType = getMaskVectorType(); 4022 VectorType valueVType = getVectorType(); 4023 MemRefType memType = getMemRefType(); 4024 4025 if (valueVType.getElementType() != memType.getElementType()) 4026 return emitOpError("base and valueToStore element type should match"); 4027 if (llvm::size(getIndices()) != memType.getRank()) 4028 return emitOpError("requires ") << memType.getRank() << " indices"; 4029 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 4030 return emitOpError("expected valueToStore dim to match indices dim"); 4031 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4032 return emitOpError("expected valueToStore dim to match mask dim"); 4033 return success(); 4034 } 4035 4036 namespace { 4037 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 4038 public: 4039 using OpRewritePattern<ScatterOp>::OpRewritePattern; 4040 LogicalResult matchAndRewrite(ScatterOp scatter, 4041 PatternRewriter &rewriter) const override { 4042 switch (get1DMaskFormat(scatter.getMask())) { 4043 case MaskFormat::AllTrue: 4044 return failure(); // no unmasked equivalent 4045 case MaskFormat::AllFalse: 4046 rewriter.eraseOp(scatter); 4047 return success(); 4048 case MaskFormat::Unknown: 4049 return failure(); 4050 } 4051 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 4052 } 4053 }; 4054 } // namespace 4055 4056 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 4057 MLIRContext *context) { 4058 results.add<ScatterFolder>(context); 4059 } 4060 4061 //===----------------------------------------------------------------------===// 4062 // ExpandLoadOp 4063 //===----------------------------------------------------------------------===// 4064 4065 LogicalResult ExpandLoadOp::verify() { 4066 VectorType maskVType = getMaskVectorType(); 4067 VectorType passVType = getPassThruVectorType(); 4068 VectorType resVType = getVectorType(); 4069 MemRefType memType = getMemRefType(); 4070 4071 if (resVType.getElementType() != memType.getElementType()) 4072 return emitOpError("base and result element type should match"); 4073 if (llvm::size(getIndices()) != memType.getRank()) 4074 return emitOpError("requires ") << memType.getRank() << " indices"; 4075 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 4076 return emitOpError("expected result dim to match mask dim"); 4077 if (resVType != passVType) 4078 return emitOpError("expected pass_thru of same type as result type"); 4079 return success(); 4080 } 4081 4082 namespace { 4083 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 4084 public: 4085 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 4086 LogicalResult matchAndRewrite(ExpandLoadOp expand, 4087 PatternRewriter &rewriter) const override { 4088 switch (get1DMaskFormat(expand.getMask())) { 4089 case MaskFormat::AllTrue: 4090 rewriter.replaceOpWithNewOp<vector::LoadOp>( 4091 expand, expand.getType(), expand.getBase(), expand.getIndices()); 4092 return success(); 4093 case MaskFormat::AllFalse: 4094 rewriter.replaceOp(expand, expand.getPassThru()); 4095 return success(); 4096 case MaskFormat::Unknown: 4097 return failure(); 4098 } 4099 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4100 } 4101 }; 4102 } // namespace 4103 4104 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4105 MLIRContext *context) { 4106 results.add<ExpandLoadFolder>(context); 4107 } 4108 4109 //===----------------------------------------------------------------------===// 4110 // CompressStoreOp 4111 //===----------------------------------------------------------------------===// 4112 4113 LogicalResult CompressStoreOp::verify() { 4114 VectorType maskVType = getMaskVectorType(); 4115 VectorType valueVType = getVectorType(); 4116 MemRefType memType = getMemRefType(); 4117 4118 if (valueVType.getElementType() != memType.getElementType()) 4119 return emitOpError("base and valueToStore element type should match"); 4120 if (llvm::size(getIndices()) != memType.getRank()) 4121 return emitOpError("requires ") << memType.getRank() << " indices"; 4122 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4123 return emitOpError("expected valueToStore dim to match mask dim"); 4124 return success(); 4125 } 4126 4127 namespace { 4128 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4129 public: 4130 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4131 LogicalResult matchAndRewrite(CompressStoreOp compress, 4132 PatternRewriter &rewriter) const override { 4133 switch (get1DMaskFormat(compress.getMask())) { 4134 case MaskFormat::AllTrue: 4135 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4136 compress, compress.getValueToStore(), compress.getBase(), 4137 compress.getIndices()); 4138 return success(); 4139 case MaskFormat::AllFalse: 4140 rewriter.eraseOp(compress); 4141 return success(); 4142 case MaskFormat::Unknown: 4143 return failure(); 4144 } 4145 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4146 } 4147 }; 4148 } // namespace 4149 4150 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4151 MLIRContext *context) { 4152 results.add<CompressStoreFolder>(context); 4153 } 4154 4155 //===----------------------------------------------------------------------===// 4156 // ShapeCastOp 4157 //===----------------------------------------------------------------------===// 4158 4159 /// Returns true if each element of 'a' is equal to the product of a contiguous 4160 /// sequence of the elements of 'b'. Returns false otherwise. 4161 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4162 unsigned rankA = a.size(); 4163 unsigned rankB = b.size(); 4164 assert(rankA < rankB); 4165 4166 unsigned i = 0; 4167 unsigned j = 0; 4168 while (i < rankA && j < rankB) { 4169 int64_t dimA = a[i]; 4170 int64_t dimB = 1; 4171 while (dimB < dimA && j < rankB) 4172 dimB *= b[j++]; 4173 if (dimA != dimB) 4174 break; 4175 ++i; 4176 4177 // Handle the case when trailing dimensions are of size 1. 4178 // Include them into the contiguous sequence. 4179 auto isOne = [](int64_t v) { return v == 1; }; 4180 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4181 i = rankA; 4182 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4183 j = rankB; 4184 } 4185 4186 return i == rankA && j == rankB; 4187 } 4188 4189 static LogicalResult verifyVectorShapeCast(Operation *op, 4190 VectorType sourceVectorType, 4191 VectorType resultVectorType) { 4192 // Check that element type is the same. 4193 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4194 return op->emitOpError("source/result vectors must have same element type"); 4195 auto sourceShape = sourceVectorType.getShape(); 4196 auto resultShape = resultVectorType.getShape(); 4197 4198 // Check that product of source dim sizes matches product of result dim sizes. 4199 int64_t sourceDimProduct = std::accumulate( 4200 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4201 int64_t resultDimProduct = std::accumulate( 4202 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4203 if (sourceDimProduct != resultDimProduct) 4204 return op->emitOpError("source/result number of elements must match"); 4205 4206 // Check that expanding/contracting rank cases. 4207 unsigned sourceRank = sourceVectorType.getRank(); 4208 unsigned resultRank = resultVectorType.getRank(); 4209 if (sourceRank < resultRank) { 4210 if (!isValidShapeCast(sourceShape, resultShape)) 4211 return op->emitOpError("invalid shape cast"); 4212 } else if (sourceRank > resultRank) { 4213 if (!isValidShapeCast(resultShape, sourceShape)) 4214 return op->emitOpError("invalid shape cast"); 4215 } 4216 return success(); 4217 } 4218 4219 LogicalResult ShapeCastOp::verify() { 4220 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4221 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4222 4223 // Check if source/result are of vector type. 4224 if (sourceVectorType && resultVectorType) 4225 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4226 4227 return success(); 4228 } 4229 4230 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4231 // No-op shape cast. 4232 if (getSource().getType() == getResult().getType()) 4233 return getSource(); 4234 4235 // Canceling shape casts. 4236 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4237 if (getResult().getType() == otherOp.getSource().getType()) 4238 return otherOp.getSource(); 4239 4240 // Only allows valid transitive folding. 4241 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4242 VectorType resultType = getResult().getType().cast<VectorType>(); 4243 if (srcType.getRank() < resultType.getRank()) { 4244 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4245 return {}; 4246 } else if (srcType.getRank() > resultType.getRank()) { 4247 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4248 return {}; 4249 } else { 4250 return {}; 4251 } 4252 4253 setOperand(otherOp.getSource()); 4254 return getResult(); 4255 } 4256 4257 // Cancelling broadcast and shape cast ops. 4258 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4259 if (bcastOp.getSourceType() == getType()) 4260 return bcastOp.getSource(); 4261 } 4262 4263 return {}; 4264 } 4265 4266 namespace { 4267 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4268 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4269 public: 4270 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4271 4272 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4273 PatternRewriter &rewriter) const override { 4274 auto constantOp = 4275 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4276 if (!constantOp) 4277 return failure(); 4278 // Only handle splat for now. 4279 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4280 if (!dense) 4281 return failure(); 4282 auto newAttr = 4283 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4284 dense.getSplatValue<Attribute>()); 4285 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4286 return success(); 4287 } 4288 }; 4289 4290 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. 4291 /// This only applies when the shape of the broadcast source is a suffix of the 4292 /// shape of the result (i.e. when broadcast without reshape is expressive 4293 /// enough to capture the result in a single op). 4294 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { 4295 public: 4296 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4297 4298 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4299 PatternRewriter &rewriter) const override { 4300 auto broadcastOp = 4301 shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); 4302 if (!broadcastOp) 4303 return failure(); 4304 4305 auto broadcastSourceVectorType = 4306 broadcastOp.getSourceType().dyn_cast<VectorType>(); 4307 auto broadcastSourceShape = broadcastSourceVectorType 4308 ? broadcastSourceVectorType.getShape() 4309 : ArrayRef<int64_t>{}; 4310 auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); 4311 4312 // Bail if `broadcastSourceShape` is not a suffix of the result. 4313 bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back( 4314 broadcastSourceShape.size())); 4315 if (!isSuffix) 4316 return failure(); 4317 4318 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4319 shapeCastOp, shapeCastOp.getResultVectorType(), 4320 broadcastOp.getSource()); 4321 return success(); 4322 } 4323 }; 4324 4325 } // namespace 4326 4327 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4328 MLIRContext *context) { 4329 results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context); 4330 } 4331 4332 //===----------------------------------------------------------------------===// 4333 // VectorBitCastOp 4334 //===----------------------------------------------------------------------===// 4335 4336 LogicalResult BitCastOp::verify() { 4337 auto sourceVectorType = getSourceVectorType(); 4338 auto resultVectorType = getResultVectorType(); 4339 4340 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4341 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4342 return emitOpError("dimension size mismatch at: ") << i; 4343 } 4344 4345 DataLayout dataLayout = DataLayout::closest(*this); 4346 auto sourceElementBits = 4347 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4348 auto resultElementBits = 4349 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4350 4351 if (sourceVectorType.getRank() == 0) { 4352 if (sourceElementBits != resultElementBits) 4353 return emitOpError("source/result bitwidth of the 0-D vector element " 4354 "types must be equal"); 4355 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4356 resultElementBits * resultVectorType.getShape().back()) { 4357 return emitOpError( 4358 "source/result bitwidth of the minor 1-D vectors must be equal"); 4359 } 4360 4361 return success(); 4362 } 4363 4364 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4365 // Nop cast. 4366 if (getSource().getType() == getResult().getType()) 4367 return getSource(); 4368 4369 // Canceling bitcasts. 4370 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4371 if (getResult().getType() == otherOp.getSource().getType()) 4372 return otherOp.getSource(); 4373 4374 setOperand(otherOp.getSource()); 4375 return getResult(); 4376 } 4377 4378 Attribute sourceConstant = operands.front(); 4379 if (!sourceConstant) 4380 return {}; 4381 4382 Type srcElemType = getSourceVectorType().getElementType(); 4383 Type dstElemType = getResultVectorType().getElementType(); 4384 4385 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4386 if (floatPack.isSplat()) { 4387 auto splat = floatPack.getSplatValue<FloatAttr>(); 4388 4389 // Casting fp16 into fp32. 4390 if (srcElemType.isF16() && dstElemType.isF32()) { 4391 uint32_t bits = static_cast<uint32_t>( 4392 splat.getValue().bitcastToAPInt().getZExtValue()); 4393 // Duplicate the 16-bit pattern. 4394 bits = (bits << 16) | (bits & 0xffff); 4395 APInt intBits(32, bits); 4396 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4397 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4398 } 4399 } 4400 } 4401 4402 return {}; 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // TypeCastOp 4407 //===----------------------------------------------------------------------===// 4408 4409 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4410 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4411 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4412 memRefType.getShape().end()); 4413 if (vectorType) 4414 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4415 return res; 4416 } 4417 4418 /// Build the canonical memRefType with a single vector. 4419 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4420 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4421 Value source) { 4422 result.addOperands(source); 4423 MemRefType memRefType = source.getType().cast<MemRefType>(); 4424 VectorType vectorType = 4425 VectorType::get(extractShape(memRefType), 4426 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4427 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4428 memRefType.getMemorySpace())); 4429 } 4430 4431 LogicalResult TypeCastOp::verify() { 4432 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4433 if (!canonicalType.getLayout().isIdentity()) 4434 return emitOpError("expects operand to be a memref with identity layout"); 4435 if (!getResultMemRefType().getLayout().isIdentity()) 4436 return emitOpError("expects result to be a memref with identity layout"); 4437 if (getResultMemRefType().getMemorySpace() != 4438 getMemRefType().getMemorySpace()) 4439 return emitOpError("expects result in same memory space"); 4440 4441 auto sourceType = getMemRefType(); 4442 auto resultType = getResultMemRefType(); 4443 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4444 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4445 return emitOpError( 4446 "expects result and operand with same underlying scalar type: ") 4447 << resultType; 4448 if (extractShape(sourceType) != extractShape(resultType)) 4449 return emitOpError( 4450 "expects concatenated result and operand shapes to be equal: ") 4451 << resultType; 4452 return success(); 4453 } 4454 4455 //===----------------------------------------------------------------------===// 4456 // TransposeOp 4457 //===----------------------------------------------------------------------===// 4458 4459 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4460 Value vector, ArrayRef<int64_t> transp) { 4461 VectorType vt = vector.getType().cast<VectorType>(); 4462 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4463 for (unsigned i = 0; i < transp.size(); ++i) 4464 transposedShape[i] = vt.getShape()[transp[i]]; 4465 4466 result.addOperands(vector); 4467 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4468 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4469 } 4470 4471 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4472 // Eliminate splat constant transpose ops. 4473 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4474 if (attr.isSplat()) 4475 return attr.reshape(getResultType()); 4476 4477 // Eliminate identity transpose ops. This happens when the dimensions of the 4478 // input vector remain in their original order after the transpose operation. 4479 SmallVector<int64_t, 4> transp; 4480 getTransp(transp); 4481 4482 // Check if the permutation of the dimensions contains sequential values: 4483 // {0, 1, 2, ...}. 4484 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4485 if (transp[i] != i) 4486 return {}; 4487 } 4488 4489 return getVector(); 4490 } 4491 4492 LogicalResult vector::TransposeOp::verify() { 4493 VectorType vectorType = getVectorType(); 4494 VectorType resultType = getResultType(); 4495 int64_t rank = resultType.getRank(); 4496 if (vectorType.getRank() != rank) 4497 return emitOpError("vector result rank mismatch: ") << rank; 4498 // Verify transposition array. 4499 auto transpAttr = getTransp().getValue(); 4500 int64_t size = transpAttr.size(); 4501 if (rank != size) 4502 return emitOpError("transposition length mismatch: ") << size; 4503 SmallVector<bool, 8> seen(rank, false); 4504 for (const auto &ta : llvm::enumerate(transpAttr)) { 4505 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4506 if (i < 0 || i >= rank) 4507 return emitOpError("transposition index out of range: ") << i; 4508 if (seen[i]) 4509 return emitOpError("duplicate position index: ") << i; 4510 seen[i] = true; 4511 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4512 return emitOpError("dimension size mismatch at: ") << i; 4513 } 4514 return success(); 4515 } 4516 4517 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4518 return llvm::to_vector<4>(getResultType().getShape()); 4519 } 4520 4521 namespace { 4522 4523 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4524 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4525 public: 4526 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4527 4528 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4529 PatternRewriter &rewriter) const override { 4530 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4531 auto getPermutation = [](vector::TransposeOp transpose) { 4532 SmallVector<int64_t, 4> permutation; 4533 transpose.getTransp(permutation); 4534 return permutation; 4535 }; 4536 4537 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4538 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4539 ArrayRef<int64_t> permutation2) { 4540 SmallVector<int64_t, 4> result; 4541 for (auto index : permutation2) 4542 result.push_back(permutation1[index]); 4543 return result; 4544 }; 4545 4546 // Return if the input of 'transposeOp' is not defined by another transpose. 4547 vector::TransposeOp parentTransposeOp = 4548 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4549 if (!parentTransposeOp) 4550 return failure(); 4551 4552 SmallVector<int64_t, 4> permutation = composePermutations( 4553 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4554 // Replace 'transposeOp' with a new transpose operation. 4555 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4556 transposeOp, transposeOp.getResult().getType(), 4557 parentTransposeOp.getVector(), 4558 vector::getVectorSubscriptAttr(rewriter, permutation)); 4559 return success(); 4560 } 4561 }; 4562 4563 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4564 struct FoldTransposedScalarBroadcast final 4565 : public OpRewritePattern<vector::TransposeOp> { 4566 using OpRewritePattern::OpRewritePattern; 4567 4568 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4569 PatternRewriter &rewriter) const override { 4570 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4571 if (!bcastOp) 4572 return failure(); 4573 4574 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4575 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4576 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4577 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4578 return success(); 4579 } 4580 4581 return failure(); 4582 } 4583 }; 4584 4585 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4586 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4587 public: 4588 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4589 4590 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4591 PatternRewriter &rewriter) const override { 4592 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4593 if (!splatOp) 4594 return failure(); 4595 4596 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4597 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4598 return success(); 4599 } 4600 }; 4601 4602 } // namespace 4603 4604 void vector::TransposeOp::getCanonicalizationPatterns( 4605 RewritePatternSet &results, MLIRContext *context) { 4606 results 4607 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4608 context); 4609 } 4610 4611 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4612 populateFromInt64AttrArray(getTransp(), results); 4613 } 4614 4615 //===----------------------------------------------------------------------===// 4616 // ConstantMaskOp 4617 //===----------------------------------------------------------------------===// 4618 4619 LogicalResult ConstantMaskOp::verify() { 4620 auto resultType = getResult().getType().cast<VectorType>(); 4621 // Check the corner case of 0-D vectors first. 4622 if (resultType.getRank() == 0) { 4623 if (getMaskDimSizes().size() != 1) 4624 return emitError("array attr must have length 1 for 0-D vectors"); 4625 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4626 if (dim != 0 && dim != 1) 4627 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4628 return success(); 4629 } 4630 4631 // Verify that array attr size matches the rank of the vector result. 4632 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4633 return emitOpError( 4634 "must specify array attr of size equal vector result rank"); 4635 // Verify that each array attr element is in bounds of corresponding vector 4636 // result dimension size. 4637 auto resultShape = resultType.getShape(); 4638 SmallVector<int64_t, 4> maskDimSizes; 4639 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4640 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4641 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4642 return emitOpError( 4643 "array attr of size out of bounds of vector result dimension size"); 4644 maskDimSizes.push_back(attrValue); 4645 } 4646 // Verify that if one mask dim size is zero, they all should be zero (because 4647 // the mask region is a conjunction of each mask dimension interval). 4648 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4649 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4650 if (anyZeros && !allZeros) 4651 return emitOpError("expected all mask dim sizes to be zeros, " 4652 "as a result of conjunction with zero mask dim"); 4653 // Verify that if the mask type is scalable, dimensions should be zero because 4654 // constant scalable masks can only be defined for the "none set" or "all set" 4655 // cases, and there is no VLA way to define an "all set" case for 4656 // `vector.constant_mask`. In the future, a convention could be established 4657 // to decide if a specific dimension value could be considered as "all set". 4658 if (resultType.isScalable() && 4659 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4660 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4661 return success(); 4662 } 4663 4664 //===----------------------------------------------------------------------===// 4665 // CreateMaskOp 4666 //===----------------------------------------------------------------------===// 4667 4668 LogicalResult CreateMaskOp::verify() { 4669 auto vectorType = getResult().getType().cast<VectorType>(); 4670 // Verify that an operand was specified for each result vector each dimension. 4671 if (vectorType.getRank() == 0) { 4672 if (getNumOperands() != 1) 4673 return emitOpError( 4674 "must specify exactly one operand for 0-D create_mask"); 4675 } else if (getNumOperands() != 4676 getResult().getType().cast<VectorType>().getRank()) { 4677 return emitOpError( 4678 "must specify an operand for each result vector dimension"); 4679 } 4680 return success(); 4681 } 4682 4683 namespace { 4684 4685 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4686 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4687 public: 4688 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4689 4690 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4691 PatternRewriter &rewriter) const override { 4692 // Return if any of 'createMaskOp' operands are not defined by a constant. 4693 auto isNotDefByConstant = [](Value operand) { 4694 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4695 }; 4696 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4697 return failure(); 4698 4699 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4700 // are negative or zero. 4701 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4702 if (vType.isScalable()) 4703 for (auto opDim : createMaskOp.getOperands()) { 4704 APInt intVal; 4705 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4706 intVal.isStrictlyPositive()) 4707 return failure(); 4708 } 4709 } 4710 4711 // Gather constant mask dimension sizes. 4712 SmallVector<int64_t, 4> maskDimSizes; 4713 for (auto it : llvm::zip(createMaskOp.operands(), 4714 createMaskOp.getType().getShape())) { 4715 auto *defOp = std::get<0>(it).getDefiningOp(); 4716 int64_t maxDimSize = std::get<1>(it); 4717 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4718 dimSize = std::min(dimSize, maxDimSize); 4719 // If one of dim sizes is zero, set all dims to zero. 4720 if (dimSize <= 0) { 4721 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4722 break; 4723 } 4724 maskDimSizes.push_back(dimSize); 4725 } 4726 // Replace 'createMaskOp' with ConstantMaskOp. 4727 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4728 createMaskOp, createMaskOp.getResult().getType(), 4729 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4730 return success(); 4731 } 4732 }; 4733 4734 } // namespace 4735 4736 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4737 MLIRContext *context) { 4738 results.add<CreateMaskFolder>(context); 4739 } 4740 4741 //===----------------------------------------------------------------------===// 4742 // ScanOp 4743 //===----------------------------------------------------------------------===// 4744 4745 LogicalResult ScanOp::verify() { 4746 VectorType srcType = getSourceType(); 4747 VectorType initialType = getInitialValueType(); 4748 // Check reduction dimension < rank. 4749 int64_t srcRank = srcType.getRank(); 4750 int64_t reductionDim = getReductionDim(); 4751 if (reductionDim >= srcRank) 4752 return emitOpError("reduction dimension ") 4753 << reductionDim << " has to be less than " << srcRank; 4754 4755 // Check that rank(initial_value) = rank(src) - 1. 4756 int64_t initialValueRank = initialType.getRank(); 4757 if (initialValueRank != srcRank - 1) 4758 return emitOpError("initial value rank ") 4759 << initialValueRank << " has to be equal to " << srcRank - 1; 4760 4761 // Check shapes of initial value and src. 4762 ArrayRef<int64_t> srcShape = srcType.getShape(); 4763 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4764 SmallVector<int64_t> expectedShape; 4765 for (int i = 0; i < srcRank; i++) { 4766 if (i != reductionDim) 4767 expectedShape.push_back(srcShape[i]); 4768 } 4769 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4770 [](std::tuple<int64_t, int64_t> s) { 4771 return std::get<0>(s) != std::get<1>(s); 4772 })) { 4773 return emitOpError("incompatible input/initial value shapes"); 4774 } 4775 4776 // Verify supported reduction kind. 4777 Type eltType = getDestType().getElementType(); 4778 if (!isSupportedCombiningKind(getKind(), eltType)) 4779 return emitOpError("unsupported reduction type ") 4780 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4781 << "'"; 4782 4783 return success(); 4784 } 4785 4786 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4787 RewritePatternSet &patterns) { 4788 patterns 4789 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4790 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4791 StridedSliceConstantMaskFolder, TransposeFolder>( 4792 patterns.getContext()); 4793 } 4794 4795 //===----------------------------------------------------------------------===// 4796 // SplatOp 4797 //===----------------------------------------------------------------------===// 4798 4799 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4800 auto constOperand = operands.front(); 4801 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4802 return {}; 4803 4804 // SplatElementsAttr::get treats single value for second arg as being a splat. 4805 return SplatElementsAttr::get(getType(), {constOperand}); 4806 } 4807 4808 //===----------------------------------------------------------------------===// 4809 // WarpExecuteOnLane0Op 4810 //===----------------------------------------------------------------------===// 4811 4812 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4813 p << "(" << getLaneid() << ")"; 4814 4815 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4816 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4817 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4818 4819 if (!getArgs().empty()) 4820 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4821 if (!getResults().empty()) 4822 p << " -> (" << getResults().getTypes() << ')'; 4823 p << " "; 4824 p.printRegion(getRegion(), 4825 /*printEntryBlockArgs=*/true, 4826 /*printBlockTerminators=*/!getResults().empty()); 4827 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4828 } 4829 4830 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4831 OperationState &result) { 4832 // Create the region. 4833 result.regions.reserve(1); 4834 Region *warpRegion = result.addRegion(); 4835 4836 auto &builder = parser.getBuilder(); 4837 OpAsmParser::UnresolvedOperand laneId; 4838 4839 // Parse predicate operand. 4840 if (parser.parseLParen() || 4841 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4842 parser.parseRParen()) 4843 return failure(); 4844 4845 int64_t warpSize; 4846 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4847 parser.parseRSquare()) 4848 return failure(); 4849 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4850 builder.getContext())), 4851 builder.getI64IntegerAttr(warpSize)); 4852 4853 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4854 return failure(); 4855 4856 llvm::SMLoc inputsOperandsLoc; 4857 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4858 SmallVector<Type> inputTypes; 4859 if (succeeded(parser.parseOptionalKeyword("args"))) { 4860 if (parser.parseLParen()) 4861 return failure(); 4862 4863 inputsOperandsLoc = parser.getCurrentLocation(); 4864 if (parser.parseOperandList(inputsOperands) || 4865 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4866 return failure(); 4867 } 4868 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4869 result.operands)) 4870 return failure(); 4871 4872 // Parse optional results type list. 4873 if (parser.parseOptionalArrowTypeList(result.types)) 4874 return failure(); 4875 // Parse the region. 4876 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4877 /*argTypes=*/{})) 4878 return failure(); 4879 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4880 4881 // Parse the optional attribute list. 4882 if (parser.parseOptionalAttrDict(result.attributes)) 4883 return failure(); 4884 return success(); 4885 } 4886 4887 void WarpExecuteOnLane0Op::getSuccessorRegions( 4888 Optional<unsigned> index, ArrayRef<Attribute> operands, 4889 SmallVectorImpl<RegionSuccessor> ®ions) { 4890 if (index) { 4891 regions.push_back(RegionSuccessor(getResults())); 4892 return; 4893 } 4894 4895 // The warp region is always executed 4896 regions.push_back(RegionSuccessor(&getWarpRegion())); 4897 } 4898 4899 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4900 TypeRange resultTypes, Value laneId, 4901 int64_t warpSize) { 4902 build(builder, result, resultTypes, laneId, warpSize, 4903 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4904 } 4905 4906 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4907 TypeRange resultTypes, Value laneId, 4908 int64_t warpSize, ValueRange args, 4909 TypeRange blockArgTypes) { 4910 result.addOperands(laneId); 4911 result.addAttribute(getAttributeNames()[0], 4912 builder.getI64IntegerAttr(warpSize)); 4913 result.addTypes(resultTypes); 4914 result.addOperands(args); 4915 assert(args.size() == blockArgTypes.size()); 4916 OpBuilder::InsertionGuard guard(builder); 4917 Region *warpRegion = result.addRegion(); 4918 Block *block = builder.createBlock(warpRegion); 4919 for (auto it : llvm::zip(blockArgTypes, args)) 4920 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4921 } 4922 4923 /// Helper check if the distributed vector type is consistent with the expanded 4924 /// type and distributed size. 4925 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4926 int64_t warpSize, Operation *op) { 4927 // If the types matches there is no distribution. 4928 if (expanded == distributed) 4929 return success(); 4930 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4931 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4932 if (!expandedVecType || !distributedVecType) 4933 return op->emitOpError("expected vector type for distributed operands."); 4934 if (expandedVecType.getRank() != distributedVecType.getRank() || 4935 expandedVecType.getElementType() != distributedVecType.getElementType()) 4936 return op->emitOpError( 4937 "expected distributed vectors to have same rank and element type."); 4938 bool foundDistributedDim = false; 4939 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4940 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4941 continue; 4942 if (expandedVecType.getDimSize(i) == 4943 distributedVecType.getDimSize(i) * warpSize) { 4944 if (foundDistributedDim) 4945 return op->emitOpError() 4946 << "expected only one dimension to be distributed from " 4947 << expandedVecType << " to " << distributedVecType; 4948 foundDistributedDim = true; 4949 continue; 4950 } 4951 return op->emitOpError() << "incompatible distribution dimensions from " 4952 << expandedVecType << " to " << distributedVecType; 4953 } 4954 return success(); 4955 } 4956 4957 LogicalResult WarpExecuteOnLane0Op::verify() { 4958 if (getArgs().size() != getWarpRegion().getNumArguments()) 4959 return emitOpError( 4960 "expected same number op arguments and block arguments."); 4961 auto yield = 4962 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4963 if (yield.getNumOperands() != getNumResults()) 4964 return emitOpError( 4965 "expected same number of yield operands and return values."); 4966 int64_t warpSize = getWarpSize(); 4967 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4968 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4969 std::get<1>(it).getType(), warpSize, 4970 getOperation()))) 4971 return failure(); 4972 } 4973 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4974 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4975 std::get<1>(it).getType(), warpSize, 4976 getOperation()))) 4977 return failure(); 4978 } 4979 return success(); 4980 } 4981 4982 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4983 return succeeded( 4984 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4985 } 4986 4987 //===----------------------------------------------------------------------===// 4988 // TableGen'd op method definitions 4989 //===----------------------------------------------------------------------===// 4990 4991 #define GET_OP_CLASSES 4992 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4993