1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   return success();
407 }
408 
409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
410   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
411   Type redType;
412   Type resType;
413   CombiningKindAttr kindAttr;
414   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
415                                               result.attributes) ||
416       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
417       parser.parseColonType(redType) ||
418       parser.parseKeywordType("into", resType) ||
419       (!operandsInfo.empty() &&
420        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
421       (operandsInfo.size() > 1 &&
422        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
423       parser.addTypeToList(resType, result.types))
424     return failure();
425   if (operandsInfo.empty() || operandsInfo.size() > 2)
426     return parser.emitError(parser.getNameLoc(),
427                             "unsupported number of operands");
428   return success();
429 }
430 
431 void ReductionOp::print(OpAsmPrinter &p) {
432   p << " ";
433   getKindAttr().print(p);
434   p << ", " << getVector();
435   if (getAcc())
436     p << ", " << getAcc();
437   p << " : " << getVector().getType() << " into " << getDest().getType();
438 }
439 
440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
441                                          OpBuilder &builder, Location loc,
442                                          Value vector) {
443   switch (op) {
444   case arith::AtomicRMWKind::addf:
445   case arith::AtomicRMWKind::addi:
446     return builder.create<vector::ReductionOp>(vector.getLoc(),
447                                                CombiningKind::ADD, vector);
448   case arith::AtomicRMWKind::mulf:
449   case arith::AtomicRMWKind::muli:
450     return builder.create<vector::ReductionOp>(vector.getLoc(),
451                                                CombiningKind::MUL, vector);
452   case arith::AtomicRMWKind::minf:
453     return builder.create<vector::ReductionOp>(vector.getLoc(),
454                                                CombiningKind::MINF, vector);
455   case arith::AtomicRMWKind::mins:
456     return builder.create<vector::ReductionOp>(vector.getLoc(),
457                                                CombiningKind::MINSI, vector);
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MINUI, vector);
461   case arith::AtomicRMWKind::maxf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MAXF, vector);
464   case arith::AtomicRMWKind::maxs:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MAXSI, vector);
467   case arith::AtomicRMWKind::maxu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MAXUI, vector);
470   case arith::AtomicRMWKind::andi:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::AND, vector);
473   case arith::AtomicRMWKind::ori:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::OR, vector);
476   // TODO: Add remaining reduction operations.
477   default:
478     (void)emitOptionalError(loc, "Reduction operation type not supported");
479     break;
480   }
481   return nullptr;
482 }
483 
484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
485   return llvm::to_vector<4>(getVectorType().getShape());
486 }
487 
488 namespace {
489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
490   using OpRewritePattern::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(ReductionOp reductionOp,
493                                 PatternRewriter &rewriter) const override {
494     if (reductionOp.getVectorType().getDimSize(0) != 1)
495       return failure();
496 
497     Location loc = reductionOp.getLoc();
498     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
499                                               reductionOp.getVector(),
500                                               rewriter.getI64ArrayAttr(0));
501 
502     if (Value acc = reductionOp.getAcc()) {
503       assert(reductionOp.getType().isa<FloatType>());
504       switch (reductionOp.getKind()) {
505       case CombiningKind::ADD:
506         result = rewriter.create<arith::AddFOp>(loc, result, acc);
507         break;
508       case CombiningKind::MUL:
509         result = rewriter.create<arith::MulFOp>(loc, result, acc);
510         break;
511       default:
512         assert(false && "invalid op!");
513       }
514     }
515 
516     rewriter.replaceOp(reductionOp, result);
517     return success();
518   }
519 };
520 } // namespace
521 
522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
523                                               MLIRContext *context) {
524   results.add<ElideSingleElementReduction>(context);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // ContractionOp
529 //===----------------------------------------------------------------------===//
530 
531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
532                                   Value lhs, Value rhs, Value acc,
533                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
534                                   ArrayRef<StringRef> iteratorTypes) {
535   result.addOperands({lhs, rhs, acc});
536   result.addTypes(acc.getType());
537   result.addAttribute(::mlir::getIndexingMapsAttrName(),
538                       builder.getAffineMapArrayAttr(
539                           AffineMap::inferFromExprList(indexingExprs)));
540   result.addAttribute(::mlir::getIteratorTypesAttrName(),
541                       builder.getStrArrayAttr(iteratorTypes));
542 }
543 
544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
545                                   Value lhs, Value rhs, Value acc,
546                                   ArrayAttr indexingMaps,
547                                   ArrayAttr iteratorTypes) {
548   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
549         ContractionOp::getDefaultKind());
550 }
551 
552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
553                                   Value lhs, Value rhs, Value acc,
554                                   ArrayAttr indexingMaps,
555                                   ArrayAttr iteratorTypes, CombiningKind kind) {
556   result.addOperands({lhs, rhs, acc});
557   result.addTypes(acc.getType());
558   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
559   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
560   result.addAttribute(ContractionOp::getKindAttrStrName(),
561                       CombiningKindAttr::get(kind, builder.getContext()));
562 }
563 
564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
565   OpAsmParser::UnresolvedOperand lhsInfo;
566   OpAsmParser::UnresolvedOperand rhsInfo;
567   OpAsmParser::UnresolvedOperand accInfo;
568   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
569   SmallVector<Type, 2> types;
570   Type resultType;
571   auto loc = parser.getCurrentLocation();
572   DictionaryAttr dictAttr;
573   // TODO: Unify linalg op attribute parsing.
574   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
575       parser.parseOperand(lhsInfo) || parser.parseComma() ||
576       parser.parseOperand(rhsInfo) || parser.parseComma() ||
577       parser.parseOperand(accInfo) ||
578       parser.parseTrailingOperandList(masksInfo) ||
579       parser.parseOptionalAttrDict(result.attributes) ||
580       parser.parseColonTypeList(types) ||
581       parser.parseKeywordType("into", resultType) ||
582       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
583       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
584       parser.resolveOperand(accInfo, resultType, result.operands) ||
585       parser.addTypeToList(resultType, result.types))
586     return failure();
587   result.attributes.assign(dictAttr.getValue().begin(),
588                            dictAttr.getValue().end());
589   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
590     result.addAttribute(ContractionOp::getKindAttrStrName(),
591                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
592                                                result.getContext()));
593   }
594   if (masksInfo.empty())
595     return success();
596   if (masksInfo.size() != 2)
597     return parser.emitError(parser.getNameLoc(),
598                             "expected zero or exactly 2 vector mask operands");
599   auto lhsType = types[0].cast<VectorType>();
600   auto rhsType = types[1].cast<VectorType>();
601   auto maskElementType = parser.getBuilder().getI1Type();
602   std::array<Type, 2> maskTypes = {
603       VectorType::Builder(lhsType).setElementType(maskElementType),
604       VectorType::Builder(rhsType).setElementType(maskElementType)};
605   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
606     return failure();
607   return success();
608 }
609 
610 void ContractionOp::print(OpAsmPrinter &p) {
611   // TODO: Unify printing code with linalg ops.
612   auto attrNames = getTraitAttrNames();
613   llvm::StringSet<> traitAttrsSet;
614   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
615   SmallVector<NamedAttribute, 8> attrs;
616   for (auto attr : (*this)->getAttrs())
617     if (traitAttrsSet.count(attr.getName().strref()) > 0)
618       attrs.push_back(attr);
619 
620   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
621   p << " " << dictAttr << " " << getLhs() << ", ";
622   p << getRhs() << ", " << getAcc();
623   if (getMasks().size() == 2)
624     p << ", " << getMasks();
625 
626   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
627   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
628     << getResultType();
629 }
630 
631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
632                          const std::vector<std::pair<int64_t, int64_t>> &map) {
633   for (auto &dimPair : map) {
634     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
635         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
636         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
637       return false;
638   }
639   return true;
640 }
641 
642 static LogicalResult verifyOutputShape(
643     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
644     Type resType,
645     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
646     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
647   DenseSet<int64_t> lhsContractingDimSet;
648   DenseSet<int64_t> rhsContractingDimSet;
649   for (auto &dimPair : contractingDimMap) {
650     lhsContractingDimSet.insert(dimPair.first);
651     rhsContractingDimSet.insert(dimPair.second);
652   }
653   DenseSet<int64_t> rhsBatchDimSet;
654   for (auto &dimPair : batchDimMap)
655     rhsBatchDimSet.insert(dimPair.second);
656 
657   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
658   SmallVector<int64_t, 4> expectedResultDims;
659   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
660     if (lhsContractingDimSet.count(i) > 0)
661       continue;
662     expectedResultDims.push_back(lhsType.getDimSize(i));
663   }
664 
665   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
666   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
667     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
668       continue;
669     expectedResultDims.push_back(rhsType.getDimSize(i));
670   }
671 
672   // Verify 'expectedResultDims'.
673   if (expectedResultDims.empty()) {
674     // No batch or free dimension implies a scalar result.
675     if (resType.isa<VectorType>() || accType.isa<VectorType>())
676       return op.emitOpError("invalid accumulator/result vector shape");
677   } else {
678     // At least one batch or free dimension implies a vector result.
679     auto resVectorType = resType.dyn_cast<VectorType>();
680     auto accVectorType = accType.dyn_cast<VectorType>();
681     if (!resVectorType || !accVectorType)
682       return op.emitOpError("invalid accumulator/result vector shape");
683 
684     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
685     // types fully define the result vector type. This assumes the affine maps
686     // are well-formed, which must have been verified already.
687     MLIRContext *ctx = op.getContext();
688     AffineMap lhsMap = op.getIndexingMaps()[0];
689     AffineMap rhsMap = op.getIndexingMaps()[1];
690     if (getUnusedDimsBitVector({lhsMap, rhsMap}).any())
691       return op.emitOpError(
692           "expected all dimensions to be either a LHS or a RHS dimension");
693     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
694     for (auto pair :
695          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
696       VectorType v = pair.first;
697       auto map = pair.second;
698       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
699         unsigned pos = map.getDimPosition(idx);
700         if (!extents[pos])
701           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
702       }
703     }
704     if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
705       return op.emitOpError("expected all dimensions to get an extent as "
706                             "either a LHS or a RHS dimension");
707 
708     AffineMap resMap = op.getIndexingMaps()[2];
709     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
710                                      /*symCount=*/0, extents, ctx);
711     // Compose the resMap with the extentsMap, which is a constant map.
712     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
713     assert(llvm::all_of(
714                expectedMap.getResults(),
715                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
716            "expected constant extent along all dimensions.");
717     // Extract the expected shape and build the type.
718     auto expectedShape = llvm::to_vector<4>(
719         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
720           return e.cast<AffineConstantExpr>().getValue();
721         }));
722     auto expected =
723         VectorType::get(expectedShape, resVectorType.getElementType());
724     if (resVectorType != expected || accVectorType != expected)
725       return op.emitOpError(
726                  "invalid accumulator/result vector shape, expected: ")
727              << expected;
728   }
729   return success();
730 }
731 
732 LogicalResult ContractionOp::verify() {
733   auto lhsType = getLhsType();
734   auto rhsType = getRhsType();
735   auto accType = getAccType();
736   auto resType = getResultType();
737 
738   // Verify that an indexing map was specified for each vector operand.
739   if (getIndexingMaps().size() != 3)
740     return emitOpError("expected an indexing map for each vector operand");
741 
742   // Verify that each index map has 'numIterators' inputs, no symbols, and
743   // that the number of map outputs equals the rank of its associated
744   // vector operand.
745   unsigned numIterators = getIteratorTypes().getValue().size();
746   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
747     auto index = it.index();
748     auto map = it.value();
749     if (map.getNumSymbols() != 0)
750       return emitOpError("expected indexing map ")
751              << index << " to have no symbols";
752     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
753     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
754     // Verify that the map has the right number of inputs, outputs, and indices.
755     // This also correctly accounts for (..) -> () for rank-0 results.
756     if (map.getNumDims() != numIterators)
757       return emitOpError("expected indexing map ")
758              << index << " to have " << numIterators << " number of inputs";
759     if (map.getNumResults() != rank)
760       return emitOpError("expected indexing map ")
761              << index << " to have " << rank << " number of outputs";
762     if (!map.isProjectedPermutation())
763       return emitOpError("expected indexing map ")
764              << index << " to be a projected permutation of its inputs";
765   }
766 
767   auto contractingDimMap = getContractingDimMap();
768   auto batchDimMap = getBatchDimMap();
769 
770   // Verify at least one contracting dimension pair was specified.
771   if (contractingDimMap.empty())
772     return emitOpError("expected at least one contracting dimension pair");
773 
774   // Verify contracting dimension map was properly constructed.
775   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
776     return emitOpError("invalid contracting dimension map");
777 
778   // Verify batch dimension map was properly constructed.
779   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
780     return emitOpError("invalid batch dimension map");
781 
782   // Verify 'accType' and 'resType' shape.
783   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
784                                contractingDimMap, batchDimMap)))
785     return failure();
786 
787   // Verify that either two vector masks are set or none are set.
788   auto lhsMaskType = getLHSVectorMaskType();
789   auto rhsMaskType = getRHSVectorMaskType();
790   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
791     return emitOpError("invalid number of vector masks specified");
792   if (lhsMaskType && rhsMaskType) {
793     // Verify mask rank == argument rank.
794     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
795         rhsMaskType.getShape().size() != rhsType.getShape().size())
796       return emitOpError("invalid vector mask rank");
797   }
798 
799   // Verify supported combining kind.
800   auto vectorType = resType.dyn_cast<VectorType>();
801   auto elementType = vectorType ? vectorType.getElementType() : resType;
802   if (!isSupportedCombiningKind(getKind(), elementType))
803     return emitOpError("unsupported contraction type");
804 
805   return success();
806 }
807 
808 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
809   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
810                                          ::mlir::getIteratorTypesAttrName(),
811                                          ContractionOp::getKindAttrStrName()};
812   return llvm::makeArrayRef(names);
813 }
814 
815 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
816   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
817     if (targetExpr == map.getResult(i))
818       return i;
819   return -1;
820 }
821 
822 static std::vector<std::pair<int64_t, int64_t>>
823 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
824           StringRef targetIteratorTypeName, MLIRContext *context) {
825   std::vector<std::pair<int64_t, int64_t>> dimMap;
826   for (const auto &it : llvm::enumerate(iteratorTypes)) {
827     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
828     if (iteratorTypeName != targetIteratorTypeName)
829       continue;
830     // Search lhs/rhs map results for 'targetExpr'.
831     auto targetExpr = getAffineDimExpr(it.index(), context);
832     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
833     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
834     if (lhsDim >= 0 && rhsDim >= 0)
835       dimMap.emplace_back(lhsDim, rhsDim);
836   }
837   return dimMap;
838 }
839 
840 void ContractionOp::getIterationBounds(
841     SmallVectorImpl<int64_t> &iterationBounds) {
842   auto lhsShape = getLhsType().getShape();
843   auto resVectorType = getResultType().dyn_cast<VectorType>();
844   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
845   SmallVector<int64_t, 2> iterationShape;
846   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
847     // Search lhs/rhs map results for 'targetExpr'.
848     auto targetExpr = getAffineDimExpr(it.index(), getContext());
849     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
850     if (iteratorTypeName == getReductionIteratorTypeName()) {
851       // Get reduction dim size from lhs shape (same size in rhsShape).
852       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
853       assert(lhsDimIndex >= 0);
854       iterationBounds.push_back(lhsShape[lhsDimIndex]);
855       continue;
856     }
857     // Get parallel dimension size from result shape.
858     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
859     assert(resDimIndex >= 0);
860     assert(resVectorType != nullptr);
861     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
862   }
863 }
864 
865 void ContractionOp::getIterationIndexMap(
866     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
867   unsigned numMaps = getIndexingMaps().size();
868   iterationIndexMap.resize(numMaps);
869   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
870     auto index = it.index();
871     auto map = it.value();
872     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
873       auto dim = map.getResult(i).cast<AffineDimExpr>();
874       iterationIndexMap[index][dim.getPosition()] = i;
875     }
876   }
877 }
878 
879 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
880   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
881   return getDimMap(indexingMaps, getIteratorTypes(),
882                    getReductionIteratorTypeName(), getContext());
883 }
884 
885 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
886   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
887   return getDimMap(indexingMaps, getIteratorTypes(),
888                    getParallelIteratorTypeName(), getContext());
889 }
890 
891 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
892   SmallVector<int64_t, 4> shape;
893   getIterationBounds(shape);
894   return shape;
895 }
896 
897 /// Return a fused vector::ContractionOp which represents a patterns such as:
898 ///
899 /// ```mlir
900 ///    %c0 = vector.constant 0: ...
901 ///    %c = vector.contract %a, %b, %c0: ...
902 ///    %e = add %c, %d: ...
903 /// ```
904 ///
905 /// by:
906 ///
907 /// ```mlir
908 ///    %e = vector.contract %a, %b, %d: ...
909 /// ```
910 ///
911 /// Return null if the canonicalization does not apply.
912 // TODO: This should be a folding of Add into Contract in core but while they
913 // live in different dialects, it is not possible without unnatural
914 // dependencies.
915 template <typename AddOpType>
916 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
917   using OpRewritePattern<AddOpType>::OpRewritePattern;
918 
919   LogicalResult matchAndRewrite(AddOpType addOp,
920                                 PatternRewriter &rewriter) const override {
921     auto canonicalize = [&](Value maybeContraction,
922                             Value otherOperand) -> vector::ContractionOp {
923       vector::ContractionOp contractionOp =
924           dyn_cast_or_null<vector::ContractionOp>(
925               maybeContraction.getDefiningOp());
926       if (!contractionOp)
927         return vector::ContractionOp();
928       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
929               contractionOp.getAcc().getDefiningOp())) {
930         if (maybeZero.getValue() ==
931             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
932           BlockAndValueMapping bvm;
933           bvm.map(contractionOp.getAcc(), otherOperand);
934           auto newContraction =
935               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
936           rewriter.replaceOp(addOp, newContraction.getResult());
937           return newContraction;
938         }
939       }
940       return vector::ContractionOp();
941     };
942 
943     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
944     vector::ContractionOp contract = canonicalize(a, b);
945     contract = contract ? contract : canonicalize(b, a);
946     return contract ? success() : failure();
947   }
948 };
949 
950 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
951                                                 MLIRContext *context) {
952   results.add<CanonicalizeContractAdd<arith::AddIOp>,
953               CanonicalizeContractAdd<arith::AddFOp>>(context);
954 }
955 
956 //===----------------------------------------------------------------------===//
957 // ExtractElementOp
958 //===----------------------------------------------------------------------===//
959 
960 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
961                                      Value source) {
962   result.addOperands({source});
963   result.addTypes(source.getType().cast<VectorType>().getElementType());
964 }
965 
966 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
967                                      Value source, Value position) {
968   result.addOperands({source, position});
969   result.addTypes(source.getType().cast<VectorType>().getElementType());
970 }
971 
972 LogicalResult vector::ExtractElementOp::verify() {
973   VectorType vectorType = getVectorType();
974   if (vectorType.getRank() == 0) {
975     if (getPosition())
976       return emitOpError("expected position to be empty with 0-D vector");
977     return success();
978   }
979   if (vectorType.getRank() != 1)
980     return emitOpError("unexpected >1 vector rank");
981   if (!getPosition())
982     return emitOpError("expected position for 1-D vector");
983   return success();
984 }
985 
986 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
987   // Skip the 0-D vector here now.
988   if (operands.size() < 2)
989     return {};
990 
991   Attribute src = operands[0];
992   Attribute pos = operands[1];
993 
994   // Fold extractelement (splat X) -> X.
995   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
996     return splat.getInput();
997 
998   if (!pos || !src)
999     return {};
1000 
1001   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
1002 
1003   auto attr = pos.dyn_cast<IntegerAttr>();
1004   uint64_t posIdx = attr.getInt();
1005 
1006   return srcElements[posIdx];
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // ExtractOp
1011 //===----------------------------------------------------------------------===//
1012 
1013 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1014                               Value source, ArrayRef<int64_t> position) {
1015   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1016 }
1017 
1018 // Convenience builder which assumes the values are constant indices.
1019 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1020                               Value source, ValueRange position) {
1021   SmallVector<int64_t, 4> positionConstants =
1022       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1023         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1024       }));
1025   build(builder, result, source, positionConstants);
1026 }
1027 
1028 LogicalResult
1029 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1030                             ValueRange operands, DictionaryAttr attributes,
1031                             RegionRange,
1032                             SmallVectorImpl<Type> &inferredReturnTypes) {
1033   ExtractOp::Adaptor op(operands, attributes);
1034   auto vectorType = op.getVector().getType().cast<VectorType>();
1035   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1036     inferredReturnTypes.push_back(vectorType.getElementType());
1037   } else {
1038     auto n =
1039         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1040     inferredReturnTypes.push_back(VectorType::get(
1041         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1042   }
1043   return success();
1044 }
1045 
1046 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1047   // Allow extracting 1-element vectors instead of scalars.
1048   auto isCompatible = [](TypeRange l, TypeRange r) {
1049     auto vectorType = l.front().dyn_cast<VectorType>();
1050     return vectorType && vectorType.getShape().equals({1}) &&
1051            vectorType.getElementType() == r.front();
1052   };
1053   if (l.size() == 1 && r.size() == 1 &&
1054       (isCompatible(l, r) || isCompatible(r, l)))
1055     return true;
1056   return l == r;
1057 }
1058 
1059 LogicalResult vector::ExtractOp::verify() {
1060   auto positionAttr = getPosition().getValue();
1061   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1062     return emitOpError(
1063         "expected position attribute of rank smaller than vector rank");
1064   for (const auto &en : llvm::enumerate(positionAttr)) {
1065     auto attr = en.value().dyn_cast<IntegerAttr>();
1066     if (!attr || attr.getInt() < 0 ||
1067         attr.getInt() >= getVectorType().getDimSize(en.index()))
1068       return emitOpError("expected position attribute #")
1069              << (en.index() + 1)
1070              << " to be a non-negative integer smaller than the corresponding "
1071                 "vector dimension";
1072   }
1073   return success();
1074 }
1075 
1076 template <typename IntType>
1077 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1078   return llvm::to_vector<4>(llvm::map_range(
1079       arrayAttr.getAsRange<IntegerAttr>(),
1080       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1081 }
1082 
1083 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1084 /// positions.
1085 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1086   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1087     return failure();
1088 
1089   SmallVector<int64_t, 4> globalPosition;
1090   ExtractOp currentOp = extractOp;
1091   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1092   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1093   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1094     currentOp = nextOp;
1095     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1096     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1097   }
1098   extractOp.setOperand(currentOp.getVector());
1099   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1100   OpBuilder b(extractOp.getContext());
1101   std::reverse(globalPosition.begin(), globalPosition.end());
1102   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1103                      b.getI64ArrayAttr(globalPosition));
1104   return success();
1105 }
1106 
1107 namespace {
1108 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1109 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1110 /// Compose TransposeOp permutations as we walk back.
1111 /// This helper class keeps an updated extraction position `extractPosition`
1112 /// with extra trailing sentinels.
1113 /// The sentinels encode the internal transposition status of the result vector.
1114 /// As we iterate, extractPosition is permuted and updated.
1115 class ExtractFromInsertTransposeChainState {
1116 public:
1117   ExtractFromInsertTransposeChainState(ExtractOp e);
1118 
1119   /// Iterate over producing insert and transpose ops until we find a fold.
1120   Value fold();
1121 
1122 private:
1123   /// Return true if the vector at position `a` is contained within the vector
1124   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1125   /// is a prefix of `b`.
1126   template <typename ContainerA, typename ContainerB>
1127   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1128     return a.size() <= b.size() &&
1129            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1130   }
1131 
1132   /// Return true if the vector at position `a` intersects the vector at
1133   /// position `b`. Under insert/extract semantics, this is the same as equality
1134   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1135   /// Comparison is on the common prefix (i.e. zip).
1136   template <typename ContainerA, typename ContainerB>
1137   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1138     for (auto it : llvm::zip(a, b)) {
1139       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1140         continue;
1141       if (std::get<0>(it) != std::get<1>(it))
1142         return false;
1143     }
1144     return true;
1145   }
1146 
1147   /// Folding is only possible in the absence of an internal permutation in the
1148   /// result vector.
1149   bool canFold() {
1150     return (sentinels ==
1151             makeArrayRef(extractPosition).drop_front(extractedRank));
1152   }
1153 
1154   // Helper to get the next defining op of interest.
1155   void updateStateForNextIteration(Value v) {
1156     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1157     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1158   };
1159 
1160   // Case 1. If we hit a transpose, just compose the map and iterate.
1161   // Invariant: insert + transpose do not change rank, we can always compose.
1162   LogicalResult handleTransposeOp();
1163 
1164   // Case 2: the insert position matches extractPosition exactly, early return.
1165   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1166 
1167   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1168   /// portion of the source of the insert.
1169   /// Example:
1170   /// ```
1171   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1172   /// // extractPosition == [1, 2, 3]
1173   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1174   /// // can fold to vector.extract %source[0, 3]
1175   /// %ext = vector.extract %source[3]: vector<5x6>
1176   /// ```
1177   /// To traverse through %source, we need to set the leading dims to 0 and
1178   /// drop the extra leading dims.
1179   /// This method updates the internal state.
1180   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1181 
1182   /// Try to fold in place to extract(source, extractPosition) and return the
1183   /// folded result. Return null if folding is not possible (e.g. due to an
1184   /// internal tranposition in the result).
1185   Value tryToFoldExtractOpInPlace(Value source);
1186 
1187   ExtractOp extractOp;
1188   int64_t vectorRank;
1189   int64_t extractedRank;
1190 
1191   InsertOp nextInsertOp;
1192   TransposeOp nextTransposeOp;
1193 
1194   /// Sentinel values that encode the internal permutation status of the result.
1195   /// They are set to (-1, ... , -k) at the beginning and appended to
1196   /// `extractPosition`.
1197   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1198   /// ensure that there is no internal transposition.
1199   /// Internal transposition cannot be accounted for with a folding pattern.
1200   // TODO: We could relax the internal transposition with an extra transposition
1201   // operation in a future canonicalizer.
1202   SmallVector<int64_t> sentinels;
1203   SmallVector<int64_t> extractPosition;
1204 };
1205 } // namespace
1206 
1207 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1208     ExtractOp e)
1209     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1210       extractedRank(extractOp.getPosition().size()) {
1211   assert(vectorRank >= extractedRank && "extracted pos overflow");
1212   sentinels.reserve(vectorRank - extractedRank);
1213   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1214     sentinels.push_back(-(i + 1));
1215   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1216   llvm::append_range(extractPosition, sentinels);
1217 }
1218 
1219 // Case 1. If we hit a transpose, just compose the map and iterate.
1220 // Invariant: insert + transpose do not change rank, we can always compose.
1221 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1222   if (!nextTransposeOp)
1223     return failure();
1224   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1225   AffineMap m = inversePermutation(
1226       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1227   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1228   return success();
1229 }
1230 
1231 // Case 2: the insert position matches extractPosition exactly, early return.
1232 LogicalResult
1233 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1234     Value &res) {
1235   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1236   if (makeArrayRef(insertedPos) !=
1237       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1238     return failure();
1239   // Case 2.a. early-exit fold.
1240   res = nextInsertOp.getSource();
1241   // Case 2.b. if internal transposition is present, canFold will be false.
1242   return success();
1243 }
1244 
1245 /// Case 3: if inserted position is a prefix of extractPosition,
1246 /// extract a portion of the source of the insertion.
1247 /// This method updates the internal state.
1248 LogicalResult
1249 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1250   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1251   if (!isContainedWithin(insertedPos, extractPosition))
1252     return failure();
1253   // Set leading dims to zero.
1254   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1255   // Drop extra leading dims.
1256   extractPosition.erase(extractPosition.begin(),
1257                         extractPosition.begin() + insertedPos.size());
1258   extractedRank = extractPosition.size() - sentinels.size();
1259   // Case 3.a. early-exit fold (break and delegate to post-while path).
1260   res = nextInsertOp.getSource();
1261   // Case 3.b. if internal transposition is present, canFold will be false.
1262   return success();
1263 }
1264 
1265 /// Try to fold in place to extract(source, extractPosition) and return the
1266 /// folded result. Return null if folding is not possible (e.g. due to an
1267 /// internal tranposition in the result).
1268 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1269     Value source) {
1270   // If we can't fold (either internal transposition, or nothing to fold), bail.
1271   bool nothingToFold = (source == extractOp.getVector());
1272   if (nothingToFold || !canFold())
1273     return Value();
1274   // Otherwise, fold by updating the op inplace and return its result.
1275   OpBuilder b(extractOp.getContext());
1276   extractOp->setAttr(
1277       extractOp.getPositionAttrName(),
1278       b.getI64ArrayAttr(
1279           makeArrayRef(extractPosition).take_front(extractedRank)));
1280   extractOp.getVectorMutable().assign(source);
1281   return extractOp.getResult();
1282 }
1283 
1284 /// Iterate over producing insert and transpose ops until we find a fold.
1285 Value ExtractFromInsertTransposeChainState::fold() {
1286   Value valueToExtractFrom = extractOp.getVector();
1287   updateStateForNextIteration(valueToExtractFrom);
1288   while (nextInsertOp || nextTransposeOp) {
1289     // Case 1. If we hit a transpose, just compose the map and iterate.
1290     // Invariant: insert + transpose do not change rank, we can always compose.
1291     if (succeeded(handleTransposeOp())) {
1292       valueToExtractFrom = nextTransposeOp.getVector();
1293       updateStateForNextIteration(valueToExtractFrom);
1294       continue;
1295     }
1296 
1297     Value result;
1298     // Case 2: the position match exactly.
1299     if (succeeded(handleInsertOpWithMatchingPos(result)))
1300       return result;
1301 
1302     // Case 3: if the inserted position is a prefix of extractPosition, we can
1303     // just extract a portion of the source of the insert.
1304     if (succeeded(handleInsertOpWithPrefixPos(result)))
1305       return tryToFoldExtractOpInPlace(result);
1306 
1307     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1308     // values. This is a more difficult case and we bail.
1309     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1310     if (isContainedWithin(extractPosition, insertedPos) ||
1311         intersectsWhereNonNegative(extractPosition, insertedPos))
1312       return Value();
1313 
1314     // Case 5: No intersection, we forward the extract to insertOp.dest().
1315     valueToExtractFrom = nextInsertOp.getDest();
1316     updateStateForNextIteration(valueToExtractFrom);
1317   }
1318   // If after all this we can fold, go for it.
1319   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1320 }
1321 
1322 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1323 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1324   Operation *defOp = extractOp.getVector().getDefiningOp();
1325   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1326     return Value();
1327   Value source = defOp->getOperand(0);
1328   if (extractOp.getType() == source.getType())
1329     return source;
1330   auto getRank = [](Type type) {
1331     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1332   };
1333   unsigned broadcastSrcRank = getRank(source.getType());
1334   unsigned extractResultRank = getRank(extractOp.getType());
1335   if (extractResultRank >= broadcastSrcRank)
1336     return Value();
1337   // Check that the dimension of the result haven't been broadcasted.
1338   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1339   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1340   if (extractVecType && broadcastVecType &&
1341       extractVecType.getShape() !=
1342           broadcastVecType.getShape().take_back(extractResultRank))
1343     return Value();
1344   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1345   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1346   extractPos.erase(extractPos.begin(),
1347                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1348   extractOp.setOperand(source);
1349   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1350   OpBuilder b(extractOp.getContext());
1351   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1352                      b.getI64ArrayAttr(extractPos));
1353   return extractOp.getResult();
1354 }
1355 
1356 // Fold extractOp with source coming from ShapeCast op.
1357 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1358   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1359   if (!shapeCastOp)
1360     return Value();
1361   // Get the nth dimension size starting from lowest dimension.
1362   auto getDimReverse = [](VectorType type, int64_t n) {
1363     return type.getShape().take_back(n + 1).front();
1364   };
1365   int64_t destinationRank =
1366       extractOp.getType().isa<VectorType>()
1367           ? extractOp.getType().cast<VectorType>().getRank()
1368           : 0;
1369   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1370     return Value();
1371   if (destinationRank > 0) {
1372     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1373     for (int64_t i = 0; i < destinationRank; i++) {
1374       // The lowest dimension of of the destination must match the lowest
1375       // dimension of the shapecast op source.
1376       // TODO: This case could be support in a canonicalization pattern.
1377       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1378           getDimReverse(destinationType, i))
1379         return Value();
1380     }
1381   }
1382   // Extract the strides associated with the extract op vector source. Then use
1383   // this to calculate a linearized position for the extract.
1384   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1385   std::reverse(extractedPos.begin(), extractedPos.end());
1386   SmallVector<int64_t, 4> strides;
1387   int64_t stride = 1;
1388   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1389     strides.push_back(stride);
1390     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1391   }
1392 
1393   int64_t position = linearize(extractedPos, strides);
1394   // Then extract the strides associated to the shapeCast op vector source and
1395   // delinearize the position using those strides.
1396   SmallVector<int64_t, 4> newStrides;
1397   int64_t numDimension =
1398       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1399   stride = 1;
1400   for (int64_t i = 0; i < numDimension; i++) {
1401     newStrides.push_back(stride);
1402     stride *=
1403         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1404   }
1405   std::reverse(newStrides.begin(), newStrides.end());
1406   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1407   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1408   OpBuilder b(extractOp.getContext());
1409   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1410                      b.getI64ArrayAttr(newPosition));
1411   extractOp.setOperand(shapeCastOp.getSource());
1412   return extractOp.getResult();
1413 }
1414 
1415 /// Fold an ExtractOp from ExtractStridedSliceOp.
1416 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1417   auto extractStridedSliceOp =
1418       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1419   if (!extractStridedSliceOp)
1420     return Value();
1421   // Return if 'extractStridedSliceOp' has non-unit strides.
1422   if (extractStridedSliceOp.hasNonUnitStrides())
1423     return Value();
1424 
1425   // Trim offsets for dimensions fully extracted.
1426   auto sliceOffsets =
1427       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1428   while (!sliceOffsets.empty()) {
1429     size_t lastOffset = sliceOffsets.size() - 1;
1430     if (sliceOffsets.back() != 0 ||
1431         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1432             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1433       break;
1434     sliceOffsets.pop_back();
1435   }
1436   unsigned destinationRank = 0;
1437   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1438     destinationRank = vecType.getRank();
1439   // The dimensions of the result need to be untouched by the
1440   // extractStridedSlice op.
1441   if (destinationRank >
1442       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1443     return Value();
1444   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1445   assert(extractedPos.size() >= sliceOffsets.size());
1446   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1447     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1448   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1449   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1450   OpBuilder b(extractOp.getContext());
1451   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1452                      b.getI64ArrayAttr(extractedPos));
1453   return extractOp.getResult();
1454 }
1455 
1456 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1457 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1458   int64_t destinationRank = op.getType().isa<VectorType>()
1459                                 ? op.getType().cast<VectorType>().getRank()
1460                                 : 0;
1461   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1462   while (insertOp) {
1463     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1464                              insertOp.getSourceVectorType().getRank();
1465     if (destinationRank > insertOp.getSourceVectorType().getRank())
1466       return Value();
1467     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1468     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1469 
1470     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1471           return attr.cast<IntegerAttr>().getInt() != 1;
1472         }))
1473       return Value();
1474     bool disjoint = false;
1475     SmallVector<int64_t, 4> offsetDiffs;
1476     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1477       int64_t start = insertOffsets[dim];
1478       int64_t size =
1479           (dim < insertRankDiff)
1480               ? 1
1481               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1482       int64_t end = start + size;
1483       int64_t offset = extractOffsets[dim];
1484       // Check if the start of the extract offset is in the interval inserted.
1485       if (start <= offset && offset < end) {
1486         if (dim >= insertRankDiff)
1487           offsetDiffs.push_back(offset - start);
1488         continue;
1489       }
1490       disjoint = true;
1491       break;
1492     }
1493     // The extract element chunk overlap with the vector inserted.
1494     if (!disjoint) {
1495       // If any of the inner dimensions are only partially inserted we have a
1496       // partial overlap.
1497       int64_t srcRankDiff =
1498           insertOp.getSourceVectorType().getRank() - destinationRank;
1499       for (int64_t i = 0; i < destinationRank; i++) {
1500         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1501             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1502                                                     insertRankDiff))
1503           return Value();
1504       }
1505       op.getVectorMutable().assign(insertOp.getSource());
1506       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1507       OpBuilder b(op.getContext());
1508       op->setAttr(ExtractOp::getPositionAttrStrName(),
1509                   b.getI64ArrayAttr(offsetDiffs));
1510       return op.getResult();
1511     }
1512     // If the chunk extracted is disjoint from the chunk inserted, keep
1513     // looking in the insert chain.
1514     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1515   }
1516   return Value();
1517 }
1518 
1519 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1520   if (getPosition().empty())
1521     return getVector();
1522   if (succeeded(foldExtractOpFromExtractChain(*this)))
1523     return getResult();
1524   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1525     return res;
1526   if (auto res = foldExtractFromBroadcast(*this))
1527     return res;
1528   if (auto res = foldExtractFromShapeCast(*this))
1529     return res;
1530   if (auto val = foldExtractFromExtractStrided(*this))
1531     return val;
1532   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1533     return val;
1534   return OpFoldResult();
1535 }
1536 
1537 namespace {
1538 
1539 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1540 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1541 public:
1542   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1543 
1544   LogicalResult matchAndRewrite(ExtractOp extractOp,
1545                                 PatternRewriter &rewriter) const override {
1546     Operation *defOp = extractOp.getVector().getDefiningOp();
1547     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1548       return failure();
1549 
1550     Value source = defOp->getOperand(0);
1551     if (extractOp.getType() == source.getType())
1552       return failure();
1553     auto getRank = [](Type type) {
1554       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1555     };
1556     unsigned broadcastSrcRank = getRank(source.getType());
1557     unsigned extractResultRank = getRank(extractOp.getType());
1558     // We only consider the case where the rank of the source is less than or
1559     // equal to the rank of the extract dst. The other cases are handled in the
1560     // folding patterns.
1561     if (extractResultRank < broadcastSrcRank)
1562       return failure();
1563     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1564         extractOp, extractOp.getType(), source);
1565     return success();
1566   }
1567 };
1568 
1569 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1570 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1571 public:
1572   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1573 
1574   LogicalResult matchAndRewrite(ExtractOp extractOp,
1575                                 PatternRewriter &rewriter) const override {
1576     // Return if 'extractStridedSliceOp' operand is not defined by a
1577     // ConstantOp.
1578     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1579     if (!constantOp)
1580       return failure();
1581     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1582     if (!dense)
1583       return failure();
1584     Attribute newAttr = dense.getSplatValue<Attribute>();
1585     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1586       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1587     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1588     return success();
1589   }
1590 };
1591 
1592 } // namespace
1593 
1594 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1595                                             MLIRContext *context) {
1596   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1597 }
1598 
1599 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1600                                        SmallVectorImpl<int64_t> &results) {
1601   for (auto attr : arrayAttr)
1602     results.push_back(attr.cast<IntegerAttr>().getInt());
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 // ExtractMapOp
1607 //===----------------------------------------------------------------------===//
1608 
1609 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1610                          Value vector, ValueRange ids,
1611                          ArrayRef<int64_t> multiplicity,
1612                          AffineMap permutationMap) {
1613   assert(ids.size() == multiplicity.size() &&
1614          ids.size() == permutationMap.getNumResults());
1615   assert(permutationMap.isProjectedPermutation());
1616   VectorType type = vector.getType().cast<VectorType>();
1617   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1618                                    type.getShape().end());
1619   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1620     AffineExpr expr = permutationMap.getResult(i);
1621     auto dim = expr.cast<AffineDimExpr>();
1622     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1623   }
1624   VectorType resultType = VectorType::get(newShape, type.getElementType());
1625   ExtractMapOp::build(builder, result, resultType, vector, ids);
1626 }
1627 
1628 LogicalResult ExtractMapOp::verify() {
1629   if (getSourceVectorType().getRank() != getResultType().getRank())
1630     return emitOpError("expected source and destination vectors of same rank");
1631   unsigned numId = 0;
1632   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1633     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1634         0)
1635       return emitOpError("source vector dimensions must be a multiple of "
1636                          "destination vector dimensions");
1637     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1638       numId++;
1639   }
1640   if (numId != getIds().size())
1641     return emitOpError("expected number of ids must match the number of "
1642                        "dimensions distributed");
1643   return success();
1644 }
1645 
1646 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1647   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1648   if (insert == nullptr || getType() != insert.getVector().getType() ||
1649       getIds() != insert.getIds())
1650     return {};
1651   return insert.getVector();
1652 }
1653 
1654 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1655   assert(multiplicity.empty());
1656   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1657     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1658       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1659                              getResultType().getDimSize(i));
1660   }
1661 }
1662 
1663 template <typename MapOp>
1664 AffineMap calculateImplicitMap(MapOp op) {
1665   SmallVector<AffineExpr, 4> perm;
1666   // Check which dimension have a multiplicity greater than 1 and associated
1667   // them to the IDs in order.
1668   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1669     if (op.getSourceVectorType().getDimSize(i) !=
1670         op.getResultType().getDimSize(i))
1671       perm.push_back(getAffineDimExpr(i, op.getContext()));
1672   }
1673   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1674                             op.getContext());
1675   return map;
1676 }
1677 
1678 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1679 
1680 //===----------------------------------------------------------------------===//
1681 // FmaOp
1682 //===----------------------------------------------------------------------===//
1683 
1684 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1685   return llvm::to_vector<4>(getVectorType().getShape());
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 // BroadcastOp
1690 //===----------------------------------------------------------------------===//
1691 
1692 BroadcastableToResult
1693 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1694                                 std::pair<int, int> *mismatchingDims) {
1695   // Broadcast scalar to vector of the same element type.
1696   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1697       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1698     return BroadcastableToResult::Success;
1699   // From now on, only vectors broadcast.
1700   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1701   if (!srcVectorType)
1702     return BroadcastableToResult::SourceTypeNotAVector;
1703 
1704   int64_t srcRank = srcVectorType.getRank();
1705   int64_t dstRank = dstVectorType.getRank();
1706   if (srcRank > dstRank)
1707     return BroadcastableToResult::SourceRankHigher;
1708   // Source has an exact match or singleton value for all trailing dimensions
1709   // (all leading dimensions are simply duplicated).
1710   int64_t lead = dstRank - srcRank;
1711   for (int64_t r = 0; r < srcRank; ++r) {
1712     int64_t srcDim = srcVectorType.getDimSize(r);
1713     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1714     if (srcDim != 1 && srcDim != dstDim) {
1715       if (mismatchingDims) {
1716         mismatchingDims->first = srcDim;
1717         mismatchingDims->second = dstDim;
1718       }
1719       return BroadcastableToResult::DimensionMismatch;
1720     }
1721   }
1722 
1723   return BroadcastableToResult::Success;
1724 }
1725 
1726 LogicalResult BroadcastOp::verify() {
1727   std::pair<int, int> mismatchingDims;
1728   BroadcastableToResult res =
1729       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1730   if (res == BroadcastableToResult::Success)
1731     return success();
1732   if (res == BroadcastableToResult::SourceRankHigher)
1733     return emitOpError("source rank higher than destination rank");
1734   if (res == BroadcastableToResult::DimensionMismatch)
1735     return emitOpError("dimension mismatch (")
1736            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1737   if (res == BroadcastableToResult::SourceTypeNotAVector)
1738     return emitOpError("source type is not a vector");
1739   llvm_unreachable("unexpected vector.broadcast op error");
1740 }
1741 
1742 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1743   if (getSourceType() == getVectorType())
1744     return getSource();
1745   if (!operands[0])
1746     return {};
1747   auto vectorType = getVectorType();
1748   if (operands[0].getType().isIntOrIndexOrFloat())
1749     return DenseElementsAttr::get(vectorType, operands[0]);
1750   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1751     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1752   return {};
1753 }
1754 
1755 namespace {
1756 
1757 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1758 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1759   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1760 
1761   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1762                                 PatternRewriter &rewriter) const override {
1763     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1764     if (!srcBroadcast)
1765       return failure();
1766     rewriter.replaceOpWithNewOp<BroadcastOp>(
1767         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1768     return success();
1769   }
1770 };
1771 } // namespace
1772 
1773 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1774                                               MLIRContext *context) {
1775   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1776   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1777   results.add<BroadcastFolder>(context);
1778 }
1779 
1780 //===----------------------------------------------------------------------===//
1781 // ShuffleOp
1782 //===----------------------------------------------------------------------===//
1783 
1784 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1785                       Value v2, ArrayRef<int64_t> mask) {
1786   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1787 }
1788 
1789 LogicalResult ShuffleOp::verify() {
1790   VectorType resultType = getVectorType();
1791   VectorType v1Type = getV1VectorType();
1792   VectorType v2Type = getV2VectorType();
1793   // Verify ranks.
1794   int64_t resRank = resultType.getRank();
1795   int64_t v1Rank = v1Type.getRank();
1796   int64_t v2Rank = v2Type.getRank();
1797   if (resRank != v1Rank || v1Rank != v2Rank)
1798     return emitOpError("rank mismatch");
1799   // Verify all but leading dimension sizes.
1800   for (int64_t r = 1; r < v1Rank; ++r) {
1801     int64_t resDim = resultType.getDimSize(r);
1802     int64_t v1Dim = v1Type.getDimSize(r);
1803     int64_t v2Dim = v2Type.getDimSize(r);
1804     if (resDim != v1Dim || v1Dim != v2Dim)
1805       return emitOpError("dimension mismatch");
1806   }
1807   // Verify mask length.
1808   auto maskAttr = getMask().getValue();
1809   int64_t maskLength = maskAttr.size();
1810   if (maskLength <= 0)
1811     return emitOpError("invalid mask length");
1812   if (maskLength != resultType.getDimSize(0))
1813     return emitOpError("mask length mismatch");
1814   // Verify all indices.
1815   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1816   for (const auto &en : llvm::enumerate(maskAttr)) {
1817     auto attr = en.value().dyn_cast<IntegerAttr>();
1818     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1819       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1820   }
1821   return success();
1822 }
1823 
1824 LogicalResult
1825 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1826                             ValueRange operands, DictionaryAttr attributes,
1827                             RegionRange,
1828                             SmallVectorImpl<Type> &inferredReturnTypes) {
1829   ShuffleOp::Adaptor op(operands, attributes);
1830   auto v1Type = op.getV1().getType().cast<VectorType>();
1831   // Construct resulting type: leading dimension matches mask length,
1832   // all trailing dimensions match the operands.
1833   SmallVector<int64_t, 4> shape;
1834   shape.reserve(v1Type.getRank());
1835   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1836   llvm::append_range(shape, v1Type.getShape().drop_front());
1837   inferredReturnTypes.push_back(
1838       VectorType::get(shape, v1Type.getElementType()));
1839   return success();
1840 }
1841 
1842 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1843   uint64_t expected = begin;
1844   return idxArr.size() == width &&
1845          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1846                       [&expected](auto attr) {
1847                         return attr.getZExtValue() == expected++;
1848                       });
1849 }
1850 
1851 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1852   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1853   if (!getV1VectorType().isScalable() &&
1854       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1855     return getV1();
1856   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1857   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1858       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1859                        getV2VectorType().getDimSize(0)))
1860     return getV2();
1861 
1862   Attribute lhs = operands.front(), rhs = operands.back();
1863   if (!lhs || !rhs)
1864     return {};
1865 
1866   auto lhsType = lhs.getType().cast<VectorType>();
1867   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1868   // manipulation.
1869   if (lhsType.getRank() != 1)
1870     return {};
1871   int64_t lhsSize = lhsType.getDimSize(0);
1872 
1873   SmallVector<Attribute> results;
1874   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1875   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1876   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1877     int64_t i = index.getZExtValue();
1878     if (i >= lhsSize) {
1879       results.push_back(rhsElements[i - lhsSize]);
1880     } else {
1881       results.push_back(lhsElements[i]);
1882     }
1883   }
1884 
1885   return DenseElementsAttr::get(getVectorType(), results);
1886 }
1887 
1888 namespace {
1889 
1890 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp.
1891 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
1892 public:
1893   using OpRewritePattern<ShuffleOp>::OpRewritePattern;
1894 
1895   LogicalResult matchAndRewrite(ShuffleOp op,
1896                                 PatternRewriter &rewriter) const override {
1897     auto v1Splat = op.getV1().getDefiningOp<SplatOp>();
1898     auto v2Splat = op.getV2().getDefiningOp<SplatOp>();
1899 
1900     if (!v1Splat || !v2Splat)
1901       return failure();
1902 
1903     if (v1Splat.getInput() != v2Splat.getInput())
1904       return failure();
1905 
1906     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput());
1907     return success();
1908   }
1909 };
1910 
1911 } // namespace
1912 
1913 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
1914                                             MLIRContext *context) {
1915   results.add<ShuffleSplat>(context);
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // InsertElementOp
1920 //===----------------------------------------------------------------------===//
1921 
1922 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1923                             Value source, Value dest) {
1924   build(builder, result, source, dest, {});
1925 }
1926 
1927 LogicalResult InsertElementOp::verify() {
1928   auto dstVectorType = getDestVectorType();
1929   if (dstVectorType.getRank() == 0) {
1930     if (getPosition())
1931       return emitOpError("expected position to be empty with 0-D vector");
1932     return success();
1933   }
1934   if (dstVectorType.getRank() != 1)
1935     return emitOpError("unexpected >1 vector rank");
1936   if (!getPosition())
1937     return emitOpError("expected position for 1-D vector");
1938   return success();
1939 }
1940 
1941 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1942   // Skip the 0-D vector here.
1943   if (operands.size() < 3)
1944     return {};
1945 
1946   Attribute src = operands[0];
1947   Attribute dst = operands[1];
1948   Attribute pos = operands[2];
1949   if (!src || !dst || !pos)
1950     return {};
1951 
1952   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1953 
1954   SmallVector<Attribute> results(dstElements);
1955 
1956   auto attr = pos.dyn_cast<IntegerAttr>();
1957   uint64_t posIdx = attr.getInt();
1958 
1959   results[posIdx] = src;
1960 
1961   return DenseElementsAttr::get(getDestVectorType(), results);
1962 }
1963 
1964 //===----------------------------------------------------------------------===//
1965 // InsertOp
1966 //===----------------------------------------------------------------------===//
1967 
1968 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1969                      Value dest, ArrayRef<int64_t> position) {
1970   result.addOperands({source, dest});
1971   auto positionAttr = getVectorSubscriptAttr(builder, position);
1972   result.addTypes(dest.getType());
1973   result.addAttribute(getPositionAttrStrName(), positionAttr);
1974 }
1975 
1976 // Convenience builder which assumes the values are constant indices.
1977 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1978                      Value dest, ValueRange position) {
1979   SmallVector<int64_t, 4> positionConstants =
1980       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1981         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1982       }));
1983   build(builder, result, source, dest, positionConstants);
1984 }
1985 
1986 LogicalResult InsertOp::verify() {
1987   auto positionAttr = getPosition().getValue();
1988   auto destVectorType = getDestVectorType();
1989   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1990     return emitOpError(
1991         "expected position attribute of rank smaller than dest vector rank");
1992   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1993   if (srcVectorType &&
1994       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1995        static_cast<unsigned>(destVectorType.getRank())))
1996     return emitOpError("expected position attribute rank + source rank to "
1997                        "match dest vector rank");
1998   if (!srcVectorType &&
1999       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
2000     return emitOpError(
2001         "expected position attribute rank to match the dest vector rank");
2002   for (const auto &en : llvm::enumerate(positionAttr)) {
2003     auto attr = en.value().dyn_cast<IntegerAttr>();
2004     if (!attr || attr.getInt() < 0 ||
2005         attr.getInt() >= destVectorType.getDimSize(en.index()))
2006       return emitOpError("expected position attribute #")
2007              << (en.index() + 1)
2008              << " to be a non-negative integer smaller than the corresponding "
2009                 "dest vector dimension";
2010   }
2011   return success();
2012 }
2013 
2014 namespace {
2015 
2016 // If insertOp is only inserting unit dimensions it can be transformed to a
2017 // broadcast.
2018 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
2019 public:
2020   using OpRewritePattern<InsertOp>::OpRewritePattern;
2021 
2022   LogicalResult matchAndRewrite(InsertOp insertOp,
2023                                 PatternRewriter &rewriter) const override {
2024     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
2025     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
2026                            srcVecType.getNumElements())
2027       return failure();
2028     rewriter.replaceOpWithNewOp<BroadcastOp>(
2029         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
2030     return success();
2031   }
2032 };
2033 
2034 } // namespace
2035 
2036 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2037                                            MLIRContext *context) {
2038   results.add<InsertToBroadcast, BroadcastFolder>(context);
2039 }
2040 
2041 // Eliminates insert operations that produce values identical to their source
2042 // value. This happens when the source and destination vectors have identical
2043 // sizes.
2044 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2045   if (getPosition().empty())
2046     return getSource();
2047   return {};
2048 }
2049 
2050 //===----------------------------------------------------------------------===//
2051 // InsertMapOp
2052 //===----------------------------------------------------------------------===//
2053 
2054 LogicalResult InsertMapOp::verify() {
2055   if (getSourceVectorType().getRank() != getResultType().getRank())
2056     return emitOpError("expected source and destination vectors of same rank");
2057   unsigned numId = 0;
2058   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2059     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2060         0)
2061       return emitOpError(
2062           "destination vector size must be a multiple of source vector size");
2063     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2064       numId++;
2065   }
2066   if (numId != getIds().size())
2067     return emitOpError("expected number of ids must match the number of "
2068                        "dimensions distributed");
2069   return success();
2070 }
2071 
2072 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2073 
2074 //===----------------------------------------------------------------------===//
2075 // InsertStridedSliceOp
2076 //===----------------------------------------------------------------------===//
2077 
2078 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2079                                  Value source, Value dest,
2080                                  ArrayRef<int64_t> offsets,
2081                                  ArrayRef<int64_t> strides) {
2082   result.addOperands({source, dest});
2083   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2084   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2085   result.addTypes(dest.getType());
2086   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2087   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2088 }
2089 
2090 // TODO: Should be moved to Tablegen Confined attributes.
2091 template <typename OpType>
2092 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2093                                                         ArrayAttr arrayAttr,
2094                                                         ArrayRef<int64_t> shape,
2095                                                         StringRef attrName) {
2096   if (arrayAttr.size() > shape.size())
2097     return op.emitOpError("expected ")
2098            << attrName << " attribute of rank smaller than vector rank";
2099   return success();
2100 }
2101 
2102 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2103 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2104 // Otherwise, the admissible interval is [min, max].
2105 template <typename OpType>
2106 static LogicalResult
2107 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2108                                   int64_t max, StringRef attrName,
2109                                   bool halfOpen = true) {
2110   for (auto attr : arrayAttr) {
2111     auto val = attr.cast<IntegerAttr>().getInt();
2112     auto upper = max;
2113     if (!halfOpen)
2114       upper += 1;
2115     if (val < min || val >= upper)
2116       return op.emitOpError("expected ") << attrName << " to be confined to ["
2117                                          << min << ", " << upper << ")";
2118   }
2119   return success();
2120 }
2121 
2122 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2123 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2124 // Otherwise, the admissible interval is [min, max].
2125 template <typename OpType>
2126 static LogicalResult
2127 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2128                                   ArrayRef<int64_t> shape, StringRef attrName,
2129                                   bool halfOpen = true, int64_t min = 0) {
2130   assert(arrayAttr.size() <= shape.size());
2131   unsigned index = 0;
2132   for (auto it : llvm::zip(arrayAttr, shape)) {
2133     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2134     auto max = std::get<1>(it);
2135     if (!halfOpen)
2136       max += 1;
2137     if (val < min || val >= max)
2138       return op.emitOpError("expected ")
2139              << attrName << " dimension " << index << " to be confined to ["
2140              << min << ", " << max << ")";
2141     ++index;
2142   }
2143   return success();
2144 }
2145 
2146 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2147 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2148 // Otherwise, the admissible interval is [min, max].
2149 template <typename OpType>
2150 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2151     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2152     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2153     bool halfOpen = true, int64_t min = 1) {
2154   assert(arrayAttr1.size() <= shape.size());
2155   assert(arrayAttr2.size() <= shape.size());
2156   unsigned index = 0;
2157   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2158     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2159     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2160     auto max = std::get<2>(it);
2161     if (!halfOpen)
2162       max += 1;
2163     if (val1 + val2 < 0 || val1 + val2 >= max)
2164       return op.emitOpError("expected sum(")
2165              << attrName1 << ", " << attrName2 << ") dimension " << index
2166              << " to be confined to [" << min << ", " << max << ")";
2167     ++index;
2168   }
2169   return success();
2170 }
2171 
2172 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2173                                   MLIRContext *context) {
2174   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2175     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2176   });
2177   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2178 }
2179 
2180 LogicalResult InsertStridedSliceOp::verify() {
2181   auto sourceVectorType = getSourceVectorType();
2182   auto destVectorType = getDestVectorType();
2183   auto offsets = getOffsetsAttr();
2184   auto strides = getStridesAttr();
2185   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2186     return emitOpError(
2187         "expected offsets of same size as destination vector rank");
2188   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2189     return emitOpError("expected strides of same size as source vector rank");
2190   if (sourceVectorType.getRank() > destVectorType.getRank())
2191     return emitOpError(
2192         "expected source rank to be smaller than destination rank");
2193 
2194   auto sourceShape = sourceVectorType.getShape();
2195   auto destShape = destVectorType.getShape();
2196   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2197       destShape.size() - sourceShape.size(), 0);
2198   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2199   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2200   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2201   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2202                                                offName)) ||
2203       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2204                                                stridesName,
2205                                                /*halfOpen=*/false)) ||
2206       failed(isSumOfIntegerArrayAttrConfinedToShape(
2207           *this, offsets,
2208           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2209           offName, "source vector shape",
2210           /*halfOpen=*/false, /*min=*/1)))
2211     return failure();
2212 
2213   return success();
2214 }
2215 
2216 namespace {
2217 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
2218 /// SplatOp(X):dst_type) to SplatOp(X):dst_type.
2219 class FoldInsertStridedSliceSplat final
2220     : public OpRewritePattern<InsertStridedSliceOp> {
2221 public:
2222   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2223 
2224   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2225                                 PatternRewriter &rewriter) const override {
2226     auto srcSplatOp =
2227         insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>();
2228     auto destSplatOp =
2229         insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
2230 
2231     if (!srcSplatOp || !destSplatOp)
2232       return failure();
2233 
2234     if (srcSplatOp.getInput() != destSplatOp.getInput())
2235       return failure();
2236 
2237     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2238     return success();
2239   }
2240 };
2241 
2242 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst)
2243 /// to dst.
2244 class FoldInsertStridedSliceOfExtract final
2245     : public OpRewritePattern<InsertStridedSliceOp> {
2246 public:
2247   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2248 
2249   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2250                                 PatternRewriter &rewriter) const override {
2251     auto extractStridedSliceOp =
2252         insertStridedSliceOp.getSource()
2253             .getDefiningOp<vector::ExtractStridedSliceOp>();
2254 
2255     if (!extractStridedSliceOp)
2256       return failure();
2257 
2258     if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest())
2259       return failure();
2260 
2261     // Check if have the same strides and offsets.
2262     if (extractStridedSliceOp.getStrides() !=
2263             insertStridedSliceOp.getStrides() ||
2264         extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets())
2265       return failure();
2266 
2267     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2268     return success();
2269   }
2270 };
2271 
2272 } // namespace
2273 
2274 void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
2275     RewritePatternSet &results, MLIRContext *context) {
2276   results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>(
2277       context);
2278 }
2279 
2280 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2281   if (getSourceVectorType() == getDestVectorType())
2282     return getSource();
2283   return {};
2284 }
2285 
2286 //===----------------------------------------------------------------------===//
2287 // OuterProductOp
2288 //===----------------------------------------------------------------------===//
2289 
2290 /// Build an op without mask, use the type of `acc` as the return type.
2291 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2292                            Value lhs, Value rhs, Value acc) {
2293   result.addOperands({lhs, rhs, acc});
2294   result.addTypes(acc.getType());
2295 }
2296 
2297 void OuterProductOp::print(OpAsmPrinter &p) {
2298   p << " " << getLhs() << ", " << getRhs();
2299   if (!getAcc().empty()) {
2300     p << ", " << getAcc();
2301     p.printOptionalAttrDict((*this)->getAttrs());
2302   }
2303   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2304 }
2305 
2306 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2307   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2308   Type tLHS, tRHS;
2309   if (parser.parseOperandList(operandsInfo) ||
2310       parser.parseOptionalAttrDict(result.attributes) ||
2311       parser.parseColonType(tLHS) || parser.parseComma() ||
2312       parser.parseType(tRHS))
2313     return failure();
2314   if (operandsInfo.size() < 2)
2315     return parser.emitError(parser.getNameLoc(),
2316                             "expected at least 2 operands");
2317   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2318   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2319   if (!vLHS)
2320     return parser.emitError(parser.getNameLoc(),
2321                             "expected vector type for operand #1");
2322   VectorType resType =
2323       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2324                              vLHS.getElementType())
2325            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2326 
2327   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2328     result.attributes.append(
2329         OuterProductOp::getKindAttrStrName(),
2330         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2331                                result.getContext()));
2332   }
2333 
2334   return failure(
2335       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2336       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2337       (operandsInfo.size() > 2 &&
2338        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2339       parser.addTypeToList(resType, result.types));
2340 }
2341 
2342 LogicalResult OuterProductOp::verify() {
2343   Type tRHS = getOperandTypeRHS();
2344   VectorType vLHS = getOperandVectorTypeLHS(),
2345              vRHS = tRHS.dyn_cast<VectorType>(),
2346              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2347 
2348   if (vLHS.getRank() != 1)
2349     return emitOpError("expected 1-d vector for operand #1");
2350 
2351   if (vRHS) {
2352     // Proper OUTER operation.
2353     if (vRHS.getRank() != 1)
2354       return emitOpError("expected 1-d vector for operand #2");
2355     if (vRES.getRank() != 2)
2356       return emitOpError("expected 2-d vector result");
2357     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2358       return emitOpError("expected #1 operand dim to match result dim #1");
2359     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2360       return emitOpError("expected #2 operand dim to match result dim #2");
2361   } else {
2362     // An AXPY operation.
2363     if (vRES.getRank() != 1)
2364       return emitOpError("expected 1-d vector result");
2365     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2366       return emitOpError("expected #1 operand dim to match result dim #1");
2367   }
2368 
2369   if (vACC && vACC != vRES)
2370     return emitOpError("expected operand #3 of same type as result type");
2371 
2372   // Verify supported combining kind.
2373   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2374     return emitOpError("unsupported outerproduct type");
2375 
2376   return success();
2377 }
2378 
2379 //===----------------------------------------------------------------------===//
2380 // ReshapeOp
2381 //===----------------------------------------------------------------------===//
2382 
2383 LogicalResult ReshapeOp::verify() {
2384   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2385   auto inputVectorType = getInputVectorType();
2386   auto outputVectorType = getOutputVectorType();
2387   int64_t inputShapeRank = getNumInputShapeSizes();
2388   int64_t outputShapeRank = getNumOutputShapeSizes();
2389   SmallVector<int64_t, 4> fixedVectorSizes;
2390   getFixedVectorSizes(fixedVectorSizes);
2391   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2392 
2393   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2394     return emitError("invalid input shape for vector type ") << inputVectorType;
2395 
2396   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2397     return emitError("invalid output shape for vector type ")
2398            << outputVectorType;
2399 
2400   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2401   // suffix.
2402   unsigned inputVectorRank = inputVectorType.getRank();
2403   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2404     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2405     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2406       return emitError("fixed vector size must match input vector for dim ")
2407              << i;
2408   }
2409 
2410   unsigned outputVectorRank = outputVectorType.getRank();
2411   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2412     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2413     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2414       return emitError("fixed vector size must match output vector for dim ")
2415              << i;
2416   }
2417 
2418   // If all shape operands are produced by constant ops, verify that product
2419   // of dimensions for input/output shape match.
2420   auto isDefByConstant = [](Value operand) {
2421     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2422   };
2423   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2424       llvm::all_of(getOutputShape(), isDefByConstant)) {
2425     int64_t numInputElements = 1;
2426     for (auto operand : getInputShape())
2427       numInputElements *=
2428           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2429     int64_t numOutputElements = 1;
2430     for (auto operand : getOutputShape())
2431       numOutputElements *=
2432           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2433     if (numInputElements != numOutputElements)
2434       return emitError("product of input and output shape sizes must match");
2435   }
2436   return success();
2437 }
2438 
2439 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2440   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2441 }
2442 
2443 //===----------------------------------------------------------------------===//
2444 // ExtractStridedSliceOp
2445 //===----------------------------------------------------------------------===//
2446 
2447 // Inference works as follows:
2448 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2449 //   2. Add sizes from 'vectorType' for remaining dims.
2450 static Type inferStridedSliceOpResultType(VectorType vectorType,
2451                                           ArrayAttr offsets, ArrayAttr sizes,
2452                                           ArrayAttr strides) {
2453   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2454   SmallVector<int64_t, 4> shape;
2455   shape.reserve(vectorType.getRank());
2456   unsigned idx = 0;
2457   for (unsigned e = offsets.size(); idx < e; ++idx)
2458     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2459   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2460     shape.push_back(vectorType.getShape()[idx]);
2461 
2462   return VectorType::get(shape, vectorType.getElementType());
2463 }
2464 
2465 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2466                                   Value source, ArrayRef<int64_t> offsets,
2467                                   ArrayRef<int64_t> sizes,
2468                                   ArrayRef<int64_t> strides) {
2469   result.addOperands(source);
2470   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2471   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2472   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2473   result.addTypes(
2474       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2475                                     offsetsAttr, sizesAttr, stridesAttr));
2476   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2477   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2478   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2479 }
2480 
2481 LogicalResult ExtractStridedSliceOp::verify() {
2482   auto type = getVectorType();
2483   auto offsets = getOffsetsAttr();
2484   auto sizes = getSizesAttr();
2485   auto strides = getStridesAttr();
2486   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2487     return emitOpError(
2488         "expected offsets, sizes and strides attributes of same size");
2489 
2490   auto shape = type.getShape();
2491   auto offName = getOffsetsAttrName();
2492   auto sizesName = getSizesAttrName();
2493   auto stridesName = getStridesAttrName();
2494   if (failed(
2495           isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2496       failed(
2497           isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2498       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2499                                                 stridesName)) ||
2500       failed(
2501           isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2502       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2503                                                /*halfOpen=*/false,
2504                                                /*min=*/1)) ||
2505       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2506                                                stridesName,
2507                                                /*halfOpen=*/false)) ||
2508       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
2509                                                     shape, offName, sizesName,
2510                                                     /*halfOpen=*/false)))
2511     return failure();
2512 
2513   auto resultType =
2514       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2515   if (getResult().getType() != resultType)
2516     return emitOpError("expected result type to be ") << resultType;
2517 
2518   return success();
2519 }
2520 
2521 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2522 // to use the source of the InsertStrided ops if we can detect that the
2523 // extracted vector is a subset of one of the vector inserted.
2524 static LogicalResult
2525 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2526   // Helper to extract integer out of ArrayAttr.
2527   auto getElement = [](ArrayAttr array, int idx) {
2528     return array[idx].cast<IntegerAttr>().getInt();
2529   };
2530   ArrayAttr extractOffsets = op.getOffsets();
2531   ArrayAttr extractStrides = op.getStrides();
2532   ArrayAttr extractSizes = op.getSizes();
2533   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2534   while (insertOp) {
2535     if (op.getVectorType().getRank() !=
2536         insertOp.getSourceVectorType().getRank())
2537       return failure();
2538     ArrayAttr insertOffsets = insertOp.getOffsets();
2539     ArrayAttr insertStrides = insertOp.getStrides();
2540     // If the rank of extract is greater than the rank of insert, we are likely
2541     // extracting a partial chunk of the vector inserted.
2542     if (extractOffsets.size() > insertOffsets.size())
2543       return failure();
2544     bool patialoverlap = false;
2545     bool disjoint = false;
2546     SmallVector<int64_t, 4> offsetDiffs;
2547     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2548       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2549         return failure();
2550       int64_t start = getElement(insertOffsets, dim);
2551       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2552       int64_t offset = getElement(extractOffsets, dim);
2553       int64_t size = getElement(extractSizes, dim);
2554       // Check if the start of the extract offset is in the interval inserted.
2555       if (start <= offset && offset < end) {
2556         // If the extract interval overlaps but is not fully included we may
2557         // have a partial overlap that will prevent any folding.
2558         if (offset + size > end)
2559           patialoverlap = true;
2560         offsetDiffs.push_back(offset - start);
2561         continue;
2562       }
2563       disjoint = true;
2564       break;
2565     }
2566     // The extract element chunk is a subset of the insert element.
2567     if (!disjoint && !patialoverlap) {
2568       op.setOperand(insertOp.getSource());
2569       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2570       OpBuilder b(op.getContext());
2571       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2572                   b.getI64ArrayAttr(offsetDiffs));
2573       return success();
2574     }
2575     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2576     // in the insert chain.
2577     if (disjoint)
2578       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2579     else {
2580       // The extracted vector partially overlap the inserted vector, we cannot
2581       // fold.
2582       return failure();
2583     }
2584   }
2585   return failure();
2586 }
2587 
2588 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2589   if (getVectorType() == getResult().getType())
2590     return getVector();
2591   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2592     return getResult();
2593   return {};
2594 }
2595 
2596 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2597   populateFromInt64AttrArray(getOffsets(), results);
2598 }
2599 
2600 namespace {
2601 
2602 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2603 // ConstantMaskOp.
2604 class StridedSliceConstantMaskFolder final
2605     : public OpRewritePattern<ExtractStridedSliceOp> {
2606 public:
2607   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2608 
2609   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2610                                 PatternRewriter &rewriter) const override {
2611     // Return if 'extractStridedSliceOp' operand is not defined by a
2612     // ConstantMaskOp.
2613     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2614     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2615     if (!constantMaskOp)
2616       return failure();
2617     // Return if 'extractStridedSliceOp' has non-unit strides.
2618     if (extractStridedSliceOp.hasNonUnitStrides())
2619       return failure();
2620     // Gather constant mask dimension sizes.
2621     SmallVector<int64_t, 4> maskDimSizes;
2622     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2623     // Gather strided slice offsets and sizes.
2624     SmallVector<int64_t, 4> sliceOffsets;
2625     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2626                                sliceOffsets);
2627     SmallVector<int64_t, 4> sliceSizes;
2628     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2629 
2630     // Compute slice of vector mask region.
2631     SmallVector<int64_t, 4> sliceMaskDimSizes;
2632     assert(sliceOffsets.size() == maskDimSizes.size());
2633     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2634       int64_t maskDimSize = std::get<0>(it);
2635       int64_t sliceOffset = std::get<1>(it);
2636       int64_t sliceSize = std::get<2>(it);
2637       int64_t sliceMaskDimSize = std::max(
2638           static_cast<int64_t>(0),
2639           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2640       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2641     }
2642     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2643     // region is a conjunction of mask dim intervals).
2644     if (llvm::is_contained(sliceMaskDimSizes, 0))
2645       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2646 
2647     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2648     // region.
2649     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2650         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2651         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2652     return success();
2653   }
2654 };
2655 
2656 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2657 class StridedSliceConstantFolder final
2658     : public OpRewritePattern<ExtractStridedSliceOp> {
2659 public:
2660   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2661 
2662   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2663                                 PatternRewriter &rewriter) const override {
2664     // Return if 'extractStridedSliceOp' operand is not defined by a
2665     // ConstantOp.
2666     auto constantOp =
2667         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2668     if (!constantOp)
2669       return failure();
2670     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2671     if (!dense)
2672       return failure();
2673     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2674                                           dense.getSplatValue<Attribute>());
2675     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2676                                                    newAttr);
2677     return success();
2678   }
2679 };
2680 
2681 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2682 // BroadcastOp(ExtractStrideSliceOp).
2683 class StridedSliceBroadcast final
2684     : public OpRewritePattern<ExtractStridedSliceOp> {
2685 public:
2686   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2687 
2688   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2689                                 PatternRewriter &rewriter) const override {
2690     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2691     if (!broadcast)
2692       return failure();
2693     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2694     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2695     auto dstVecType = op.getType().cast<VectorType>();
2696     unsigned dstRank = dstVecType.getRank();
2697     unsigned rankDiff = dstRank - srcRank;
2698     // Check if the most inner dimensions of the source of the broadcast are the
2699     // same as the destination of the extract. If this is the case we can just
2700     // use a broadcast as the original dimensions are untouched.
2701     bool lowerDimMatch = true;
2702     for (unsigned i = 0; i < srcRank; i++) {
2703       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2704         lowerDimMatch = false;
2705         break;
2706       }
2707     }
2708     Value source = broadcast.getSource();
2709     // If the inner dimensions don't match, it means we need to extract from the
2710     // source of the orignal broadcast and then broadcast the extracted value.
2711     // We also need to handle degenerated cases where the source is effectively
2712     // just a single scalar.
2713     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2714     if (!lowerDimMatch && !isScalarSrc) {
2715       source = rewriter.create<ExtractStridedSliceOp>(
2716           op->getLoc(), source,
2717           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2718           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2719           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2720     }
2721     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2722     return success();
2723   }
2724 };
2725 
2726 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2727 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2728 public:
2729   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2730 
2731   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2732                                 PatternRewriter &rewriter) const override {
2733     auto splat = op.getVector().getDefiningOp<SplatOp>();
2734     if (!splat)
2735       return failure();
2736     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2737     return success();
2738   }
2739 };
2740 
2741 } // namespace
2742 
2743 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2744     RewritePatternSet &results, MLIRContext *context) {
2745   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2746   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2747   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2748               StridedSliceBroadcast, StridedSliceSplat>(context);
2749 }
2750 
2751 //===----------------------------------------------------------------------===//
2752 // TransferReadOp
2753 //===----------------------------------------------------------------------===//
2754 
2755 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2756 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2757                            VectorType vectorType, Value source,
2758                            ValueRange indices, AffineMapAttr permutationMapAttr,
2759                            /*optional*/ ArrayAttr inBoundsAttr) {
2760   Type elemType = source.getType().cast<ShapedType>().getElementType();
2761   Value padding = builder.create<arith::ConstantOp>(
2762       result.location, elemType, builder.getZeroAttr(elemType));
2763   build(builder, result, vectorType, source, indices, permutationMapAttr,
2764         padding, /*mask=*/Value(), inBoundsAttr);
2765 }
2766 
2767 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2768 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2769                            VectorType vectorType, Value source,
2770                            ValueRange indices, AffineMap permutationMap,
2771                            Optional<ArrayRef<bool>> inBounds) {
2772   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2773   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2774                           ? builder.getBoolArrayAttr(inBounds.getValue())
2775                           : ArrayAttr();
2776   build(builder, result, vectorType, source, indices, permutationMapAttr,
2777         inBoundsAttr);
2778 }
2779 
2780 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2781 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2782                            VectorType vectorType, Value source,
2783                            ValueRange indices, Value padding,
2784                            Optional<ArrayRef<bool>> inBounds) {
2785   AffineMap permutationMap = getTransferMinorIdentityMap(
2786       source.getType().cast<ShapedType>(), vectorType);
2787   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2788   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2789                           ? builder.getBoolArrayAttr(inBounds.getValue())
2790                           : ArrayAttr();
2791   build(builder, result, vectorType, source, indices, permutationMapAttr,
2792         padding,
2793         /*mask=*/Value(), inBoundsAttr);
2794 }
2795 
2796 /// 4. Builder that sets padding to zero and permutation map to
2797 /// 'getMinorIdentityMap'.
2798 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2799                            VectorType vectorType, Value source,
2800                            ValueRange indices,
2801                            Optional<ArrayRef<bool>> inBounds) {
2802   Type elemType = source.getType().cast<ShapedType>().getElementType();
2803   Value padding = builder.create<arith::ConstantOp>(
2804       result.location, elemType, builder.getZeroAttr(elemType));
2805   build(builder, result, vectorType, source, indices, padding, inBounds);
2806 }
2807 
2808 template <typename EmitFun>
2809 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2810                                           EmitFun emitOpError) {
2811   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2812   for (auto expr : permutationMap.getResults()) {
2813     auto dim = expr.dyn_cast<AffineDimExpr>();
2814     auto zero = expr.dyn_cast<AffineConstantExpr>();
2815     if (zero) {
2816       if (zero.getValue() != 0) {
2817         return emitOpError(
2818             "requires a projected permutation_map (at most one dim or the zero "
2819             "constant can appear in each result)");
2820       }
2821       continue;
2822     }
2823     if (!dim) {
2824       return emitOpError("requires a projected permutation_map (at most one "
2825                          "dim or the zero constant can appear in each result)");
2826     }
2827     if (seen[dim.getPosition()]) {
2828       return emitOpError(
2829           "requires a permutation_map that is a permutation (found one dim "
2830           "used more than once)");
2831     }
2832     seen[dim.getPosition()] = true;
2833   }
2834   return success();
2835 }
2836 
2837 static LogicalResult
2838 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2839                  VectorType vectorType, VectorType maskType,
2840                  AffineMap permutationMap, ArrayAttr inBounds) {
2841   if (op->hasAttr("masked")) {
2842     return op->emitOpError("masked attribute has been removed. "
2843                            "Use in_bounds instead.");
2844   }
2845 
2846   if (!shapedType.isa<MemRefType, RankedTensorType>())
2847     return op->emitOpError(
2848         "requires source to be a memref or ranked tensor type");
2849 
2850   auto elementType = shapedType.getElementType();
2851   DataLayout dataLayout = DataLayout::closest(op);
2852   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2853     // Memref or tensor has vector element type.
2854     unsigned sourceVecSize =
2855         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2856         vectorElementType.getShape().back();
2857     unsigned resultVecSize =
2858         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2859         vectorType.getShape().back();
2860     if (resultVecSize % sourceVecSize != 0)
2861       return op->emitOpError(
2862           "requires the bitwidth of the minor 1-D vector to be an integral "
2863           "multiple of the bitwidth of the minor 1-D vector of the source");
2864 
2865     unsigned sourceVecEltRank = vectorElementType.getRank();
2866     unsigned resultVecRank = vectorType.getRank();
2867     if (sourceVecEltRank > resultVecRank)
2868       return op->emitOpError(
2869           "requires source vector element and vector result ranks to match.");
2870     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2871     // Check that permutation map results match 'rankOffset' of vector type.
2872     if (permutationMap.getNumResults() != rankOffset)
2873       return op->emitOpError("requires a permutation_map with result dims of "
2874                              "the same rank as the vector type");
2875 
2876     if (maskType)
2877       return op->emitOpError("does not support masks with vector element type");
2878   } else {
2879     // Memref or tensor has scalar element type.
2880     unsigned minorSize =
2881         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2882     unsigned resultVecSize =
2883         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2884     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2885       return op->emitOpError(
2886           "requires the bitwidth of the minor 1-D vector to be an integral "
2887           "multiple of the bitwidth of the source element type");
2888 
2889     // Check that permutation map results match rank of vector type.
2890     if (permutationMap.getNumResults() != vectorType.getRank())
2891       return op->emitOpError("requires a permutation_map with result dims of "
2892                              "the same rank as the vector type");
2893 
2894     VectorType expectedMaskType =
2895         vector::detail::transferMaskType(vectorType, permutationMap);
2896     if (maskType && expectedMaskType != maskType)
2897       return op->emitOpError("expects mask type consistent with permutation "
2898                              "map: ")
2899              << maskType;
2900   }
2901 
2902   if (permutationMap.getNumSymbols() != 0)
2903     return op->emitOpError("requires permutation_map without symbols");
2904 
2905   if (permutationMap.getNumInputs() != shapedType.getRank())
2906     return op->emitOpError("requires a permutation_map with input dims of the "
2907                            "same rank as the source type");
2908 
2909   if (inBounds) {
2910     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2911       return op->emitOpError("expects the optional in_bounds attr of same rank "
2912                              "as permutation_map results: ")
2913              << AffineMapAttr::get(permutationMap)
2914              << " vs inBounds of size: " << inBounds.size();
2915     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2916       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2917           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2918         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2919   }
2920 
2921   return success();
2922 }
2923 
2924 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2925   SmallVector<StringRef, 3> elidedAttrs;
2926   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2927   if (op.permutation_map().isMinorIdentity())
2928     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2929   bool elideInBounds = true;
2930   if (auto inBounds = op.in_bounds()) {
2931     for (auto attr : *inBounds) {
2932       if (attr.template cast<BoolAttr>().getValue()) {
2933         elideInBounds = false;
2934         break;
2935       }
2936     }
2937   }
2938   if (elideInBounds)
2939     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2940   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2941 }
2942 
2943 void TransferReadOp::print(OpAsmPrinter &p) {
2944   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2945   if (getMask())
2946     p << ", " << getMask();
2947   printTransferAttrs(p, *this);
2948   p << " : " << getShapedType() << ", " << getVectorType();
2949 }
2950 
2951 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2952   auto &builder = parser.getBuilder();
2953   SMLoc typesLoc;
2954   OpAsmParser::UnresolvedOperand sourceInfo;
2955   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2956   OpAsmParser::UnresolvedOperand paddingInfo;
2957   SmallVector<Type, 2> types;
2958   OpAsmParser::UnresolvedOperand maskInfo;
2959   // Parsing with support for paddingValue.
2960   if (parser.parseOperand(sourceInfo) ||
2961       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2962       parser.parseComma() || parser.parseOperand(paddingInfo))
2963     return failure();
2964   ParseResult hasMask = parser.parseOptionalComma();
2965   if (hasMask.succeeded()) {
2966     if (parser.parseOperand(maskInfo))
2967       return failure();
2968   }
2969   if (parser.parseOptionalAttrDict(result.attributes) ||
2970       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2971     return failure();
2972   if (types.size() != 2)
2973     return parser.emitError(typesLoc, "requires two types");
2974   auto indexType = builder.getIndexType();
2975   auto shapedType = types[0].dyn_cast<ShapedType>();
2976   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2977     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2978   VectorType vectorType = types[1].dyn_cast<VectorType>();
2979   if (!vectorType)
2980     return parser.emitError(typesLoc, "requires vector type");
2981   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2982   Attribute mapAttr = result.attributes.get(permutationAttrName);
2983   if (!mapAttr) {
2984     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2985     // Update `mapAttr` that is used later to determine mask type.
2986     mapAttr = AffineMapAttr::get(permMap);
2987     result.attributes.set(permutationAttrName, mapAttr);
2988   }
2989   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2990       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2991       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2992                             result.operands))
2993     return failure();
2994   if (hasMask.succeeded()) {
2995     if (shapedType.getElementType().dyn_cast<VectorType>())
2996       return parser.emitError(
2997           maskInfo.location, "does not support masks with vector element type");
2998     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2999     // Instead of adding the mask type as an op type, compute it based on the
3000     // vector type and the permutation map (to keep the type signature small).
3001     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
3002     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3003       return failure();
3004   }
3005   result.addAttribute(
3006       TransferReadOp::getOperandSegmentSizeAttr(),
3007       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
3008                                 static_cast<int32_t>(hasMask.succeeded())}));
3009   return parser.addTypeToList(vectorType, result.types);
3010 }
3011 
3012 LogicalResult TransferReadOp::verify() {
3013   // Consistency of elemental types in source and vector.
3014   ShapedType shapedType = getShapedType();
3015   VectorType vectorType = getVectorType();
3016   VectorType maskType = getMaskType();
3017   auto paddingType = getPadding().getType();
3018   auto permutationMap = getPermutationMap();
3019   auto sourceElementType = shapedType.getElementType();
3020 
3021   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
3022     return emitOpError("requires ") << shapedType.getRank() << " indices";
3023 
3024   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3025                               shapedType, vectorType, maskType, permutationMap,
3026                               getInBounds() ? *getInBounds() : ArrayAttr())))
3027     return failure();
3028 
3029   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
3030     // Source has vector element type.
3031     // Check that 'sourceVectorElementType' and 'paddingType' types match.
3032     if (sourceVectorElementType != paddingType)
3033       return emitOpError(
3034           "requires source element type and padding type to match.");
3035 
3036   } else {
3037     // Check that 'paddingType' is valid to store in a vector type.
3038     if (!VectorType::isValidElementType(paddingType))
3039       return emitOpError("requires valid padding vector elemental type");
3040 
3041     // Check that padding type and vector element types match.
3042     if (paddingType != sourceElementType)
3043       return emitOpError(
3044           "requires formal padding and source of the same elemental type");
3045   }
3046 
3047   return verifyPermutationMap(permutationMap,
3048                               [&](Twine t) { return emitOpError(t); });
3049 }
3050 
3051 /// This is a common class used for patterns of the form
3052 /// ```
3053 ///    someop(memrefcast) -> someop
3054 /// ```
3055 /// It folds the source of the memref.cast into the root operation directly.
3056 static LogicalResult foldMemRefCast(Operation *op) {
3057   bool folded = false;
3058   for (OpOperand &operand : op->getOpOperands()) {
3059     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
3060     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
3061       operand.set(castOp.getOperand());
3062       folded = true;
3063     }
3064   }
3065   return success(folded);
3066 }
3067 
3068 static LogicalResult foldTensorCast(Operation *op) {
3069   bool folded = false;
3070   for (OpOperand &operand : op->getOpOperands()) {
3071     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
3072     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
3073       operand.set(castOp.getOperand());
3074       folded = true;
3075     }
3076   }
3077   return success(folded);
3078 }
3079 
3080 template <typename TransferOp>
3081 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
3082   // TODO: support more aggressive createOrFold on:
3083   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
3084   if (op.getShapedType().isDynamicDim(indicesIdx))
3085     return false;
3086   Value index = op.getIndices()[indicesIdx];
3087   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
3088   if (!cstOp)
3089     return false;
3090 
3091   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
3092   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
3093 
3094   return cstOp.value() + vectorSize <= sourceSize;
3095 }
3096 
3097 template <typename TransferOp>
3098 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3099   // TODO: support 0-d corner case.
3100   // TODO: Be less conservative.
3101   if (op.getTransferRank() == 0)
3102     return failure();
3103   AffineMap permutationMap = op.getPermutationMap();
3104   bool changed = false;
3105   SmallVector<bool, 4> newInBounds;
3106   newInBounds.reserve(op.getTransferRank());
3107   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3108     // Already marked as in-bounds, nothing to see here.
3109     if (op.isDimInBounds(i)) {
3110       newInBounds.push_back(true);
3111       continue;
3112     }
3113     // Currently out-of-bounds, check whether we can statically determine it is
3114     // inBounds.
3115     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3116     assert(dimExpr && "Broadcast dims must be in-bounds");
3117     auto inBounds =
3118         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3119     newInBounds.push_back(inBounds);
3120     // We commit the pattern if it is "more inbounds".
3121     changed |= inBounds;
3122   }
3123   if (!changed)
3124     return failure();
3125   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3126   OpBuilder b(op.getContext());
3127   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3128               b.getBoolArrayAttr(newInBounds));
3129   return success();
3130 }
3131 
3132 ///  ```
3133 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3134 ///    : vector<1x4xf32>, tensor<4x4xf32>
3135 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3136 ///    : tensor<4x4xf32>, vector<1x4xf32>
3137 ///  ```
3138 ///  -> Folds into
3139 ///  ```
3140 ///  %v0
3141 ///  ```
3142 static Value foldRAW(TransferReadOp readOp) {
3143   if (!readOp.getShapedType().isa<RankedTensorType>())
3144     return {};
3145   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3146   while (defWrite) {
3147     if (checkSameValueRAW(defWrite, readOp))
3148       return defWrite.getVector();
3149     if (!isDisjointTransferIndices(
3150             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3151             cast<VectorTransferOpInterface>(readOp.getOperation())))
3152       break;
3153     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3154   }
3155   return {};
3156 }
3157 
3158 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3159   if (Value vec = foldRAW(*this))
3160     return vec;
3161   /// transfer_read(memrefcast) -> transfer_read
3162   if (succeeded(foldTransferInBoundsAttribute(*this)))
3163     return getResult();
3164   if (succeeded(foldMemRefCast(*this)))
3165     return getResult();
3166   if (succeeded(foldTensorCast(*this)))
3167     return getResult();
3168   return OpFoldResult();
3169 }
3170 
3171 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3172   return llvm::to_vector<4>(getVectorType().getShape());
3173 }
3174 
3175 void TransferReadOp::getEffects(
3176     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3177         &effects) {
3178   if (getShapedType().isa<MemRefType>())
3179     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3180                          SideEffects::DefaultResource::get());
3181 }
3182 
3183 namespace {
3184 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3185 ///
3186 /// ```
3187 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3188 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3189 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3190 ///     : tensor<?x?xf32>, vector<4x5xf32>
3191 /// ```
3192 /// is rewritten to:
3193 /// ```
3194 /// %p0 = arith.addi %a, %e : index
3195 /// %p1 = arith.addi %b, %f : index
3196 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3197 ///     : tensor<?x?xf32>, vector<4x5xf32>
3198 /// ```
3199 struct FoldExtractSliceIntoTransferRead
3200     : public OpRewritePattern<TransferReadOp> {
3201 public:
3202   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3203 
3204   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3205                                 PatternRewriter &rewriter) const override {
3206     // TODO: support 0-d corner case.
3207     if (xferOp.getTransferRank() == 0)
3208       return failure();
3209     if (xferOp.hasOutOfBoundsDim())
3210       return failure();
3211     if (!xferOp.getPermutationMap().isIdentity())
3212       return failure();
3213     if (xferOp.getMask())
3214       return failure();
3215     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3216     if (!extractOp)
3217       return failure();
3218     if (!extractOp.hasUnitStride())
3219       return failure();
3220 
3221     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3222     // dims are exactly the leading dims. I.e. the following is illegal:
3223     // ```
3224     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3225     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3226     //    %1 = vector.transfer_read %0[0,0], %cst :
3227     //      tensor<2x4xf32>, vector<2x4xf32>
3228     // ```
3229     //
3230     // Cannot fold into:
3231     // ```
3232     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3233     //      tensor<2x1x4xf32>, vector<2x4xf32>
3234     // ```
3235     // For this, check the trailing `vectorRank` dims of the extract_slice
3236     // result tensor match the trailing dims of the inferred result tensor.
3237     int64_t rankReduced =
3238         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3239     int64_t vectorRank = xferOp.getVectorType().getRank();
3240     RankedTensorType inferredDestTensorType =
3241         tensor::ExtractSliceOp::inferResultType(
3242             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3243             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3244     auto actualDestTensorShape = extractOp.getType().getShape();
3245     if (rankReduced > 0 &&
3246         actualDestTensorShape.take_back(vectorRank) !=
3247             inferredDestTensorType.getShape().take_back(vectorRank))
3248       return failure();
3249 
3250     SmallVector<Value> newIndices;
3251     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3252     // indices first.
3253     for (int64_t i = 0; i < rankReduced; ++i) {
3254       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3255       newIndices.push_back(getValueOrCreateConstantIndexOp(
3256           rewriter, extractOp.getLoc(), offset));
3257     }
3258     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3259       OpFoldResult offset =
3260           extractOp.getMixedOffsets()[it.index() + rankReduced];
3261       newIndices.push_back(rewriter.create<arith::AddIOp>(
3262           xferOp->getLoc(), it.value(),
3263           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3264                                           offset)));
3265     }
3266     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3267     rewriter.replaceOpWithNewOp<TransferReadOp>(
3268         xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices,
3269         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3270 
3271     return success();
3272   }
3273 };
3274 } // namespace
3275 
3276 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3277                                                  MLIRContext *context) {
3278   results.add<FoldExtractSliceIntoTransferRead>(context);
3279 }
3280 
3281 //===----------------------------------------------------------------------===//
3282 // TransferWriteOp
3283 //===----------------------------------------------------------------------===//
3284 
3285 /// 1. Builder with type inference.
3286 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3287                             Value vector, Value dest, ValueRange indices,
3288                             AffineMapAttr permutationMapAttr,
3289                             /*optional*/ Value mask,
3290                             /*optional*/ ArrayAttr inBoundsAttr) {
3291   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3292   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3293         mask, inBoundsAttr);
3294 }
3295 
3296 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3297 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3298                             Value vector, Value dest, ValueRange indices,
3299                             AffineMapAttr permutationMapAttr,
3300                             /*optional*/ ArrayAttr inBoundsAttr) {
3301   build(builder, result, vector, dest, indices, permutationMapAttr,
3302         /*mask=*/Value(), inBoundsAttr);
3303 }
3304 
3305 /// 3. Builder with type inference that sets an empty mask (variant without
3306 /// attrs)
3307 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3308                             Value vector, Value dest, ValueRange indices,
3309                             AffineMap permutationMap,
3310                             Optional<ArrayRef<bool>> inBounds) {
3311   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3312   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3313                           ? builder.getBoolArrayAttr(inBounds.getValue())
3314                           : ArrayAttr();
3315   build(builder, result, vector, dest, indices, permutationMapAttr,
3316         /*mask=*/Value(), inBoundsAttr);
3317 }
3318 
3319 /// 4. Builder with type inference that sets an empty mask and sets permutation
3320 ///    map to 'getMinorIdentityMap'.
3321 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3322                             Value vector, Value dest, ValueRange indices,
3323                             Optional<ArrayRef<bool>> inBounds) {
3324   auto vectorType = vector.getType().cast<VectorType>();
3325   AffineMap permutationMap = getTransferMinorIdentityMap(
3326       dest.getType().cast<ShapedType>(), vectorType);
3327   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3328 }
3329 
3330 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3331                                    OperationState &result) {
3332   auto &builder = parser.getBuilder();
3333   SMLoc typesLoc;
3334   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3335   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3336   SmallVector<Type, 2> types;
3337   OpAsmParser::UnresolvedOperand maskInfo;
3338   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3339       parser.parseOperand(sourceInfo) ||
3340       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3341     return failure();
3342   ParseResult hasMask = parser.parseOptionalComma();
3343   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3344     return failure();
3345   if (parser.parseOptionalAttrDict(result.attributes) ||
3346       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3347     return failure();
3348   if (types.size() != 2)
3349     return parser.emitError(typesLoc, "requires two types");
3350   auto indexType = builder.getIndexType();
3351   VectorType vectorType = types[0].dyn_cast<VectorType>();
3352   if (!vectorType)
3353     return parser.emitError(typesLoc, "requires vector type");
3354   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3355   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3356     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3357   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3358   auto attr = result.attributes.get(permutationAttrName);
3359   if (!attr) {
3360     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3361     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3362   }
3363   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3364       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3365       parser.resolveOperands(indexInfo, indexType, result.operands))
3366     return failure();
3367   if (hasMask.succeeded()) {
3368     if (shapedType.getElementType().dyn_cast<VectorType>())
3369       return parser.emitError(
3370           maskInfo.location, "does not support masks with vector element type");
3371     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3372     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3373       return failure();
3374   }
3375   result.addAttribute(
3376       TransferWriteOp::getOperandSegmentSizeAttr(),
3377       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3378                                 static_cast<int32_t>(hasMask.succeeded())}));
3379   return failure(shapedType.isa<RankedTensorType>() &&
3380                  parser.addTypeToList(shapedType, result.types));
3381 }
3382 
3383 void TransferWriteOp::print(OpAsmPrinter &p) {
3384   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3385   if (getMask())
3386     p << ", " << getMask();
3387   printTransferAttrs(p, *this);
3388   p << " : " << getVectorType() << ", " << getShapedType();
3389 }
3390 
3391 LogicalResult TransferWriteOp::verify() {
3392   // Consistency of elemental types in shape and vector.
3393   ShapedType shapedType = getShapedType();
3394   VectorType vectorType = getVectorType();
3395   VectorType maskType = getMaskType();
3396   auto permutationMap = getPermutationMap();
3397 
3398   if (llvm::size(getIndices()) != shapedType.getRank())
3399     return emitOpError("requires ") << shapedType.getRank() << " indices";
3400 
3401   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3402   // as the semantics is unclear. This can be revisited later if necessary.
3403   if (hasBroadcastDim())
3404     return emitOpError("should not have broadcast dimensions");
3405 
3406   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3407                               shapedType, vectorType, maskType, permutationMap,
3408                               getInBounds() ? *getInBounds() : ArrayAttr())))
3409     return failure();
3410 
3411   return verifyPermutationMap(permutationMap,
3412                               [&](Twine t) { return emitOpError(t); });
3413 }
3414 
3415 /// Fold:
3416 /// ```
3417 ///    %t1 = ...
3418 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3419 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3420 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3421 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3422 /// ```
3423 ///
3424 /// into:
3425 ///
3426 /// ```
3427 ///    %t0
3428 /// ```
3429 ///
3430 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3431 /// block argument or has side effects.
3432 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3433                                        ArrayRef<Attribute>,
3434                                        SmallVectorImpl<OpFoldResult> &results) {
3435   // TODO: support 0-d corner case.
3436   if (write.getTransferRank() == 0)
3437     return failure();
3438   auto rankedTensorType =
3439       write.getSource().getType().dyn_cast<RankedTensorType>();
3440   // If not operating on tensors, bail.
3441   if (!rankedTensorType)
3442     return failure();
3443   // If no read, bail.
3444   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3445   if (!read)
3446     return failure();
3447   // TODO: support 0-d corner case.
3448   if (read.getTransferRank() == 0)
3449     return failure();
3450   // For now, only accept minor identity. Future: composition is minor identity.
3451   if (!read.getPermutationMap().isMinorIdentity() ||
3452       !write.getPermutationMap().isMinorIdentity())
3453     return failure();
3454   // Bail on mismatching ranks.
3455   if (read.getTransferRank() != write.getTransferRank())
3456     return failure();
3457   // Bail on potential out-of-bounds accesses.
3458   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3459     return failure();
3460   // Tensor types must be the same.
3461   if (read.getSource().getType() != rankedTensorType)
3462     return failure();
3463   // Vector types must be the same.
3464   if (read.getVectorType() != write.getVectorType())
3465     return failure();
3466   // Vector and Tensor shapes must match.
3467   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3468     return failure();
3469   // If any index is nonzero.
3470   auto isNotConstantZero = [](Value v) {
3471     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3472     return !cstOp || cstOp.value() != 0;
3473   };
3474   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3475       llvm::any_of(write.getIndices(), isNotConstantZero))
3476     return failure();
3477   // Success.
3478   results.push_back(read.getSource());
3479   return success();
3480 }
3481 
3482 static bool checkSameValueWAR(vector::TransferReadOp read,
3483                               vector::TransferWriteOp write) {
3484   return read.getSource() == write.getSource() &&
3485          read.getIndices() == write.getIndices() &&
3486          read.getPermutationMap() == write.getPermutationMap() &&
3487          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3488          !write.getMask();
3489 }
3490 /// Fold transfer_write write after read:
3491 /// ```
3492 ///    %t0 = ...
3493 ///    %v = vector.transfer_read %t0[%c0...] :
3494 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3495 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3496 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3497 /// ```
3498 ///
3499 /// into:
3500 ///
3501 /// ```
3502 ///    %t0
3503 /// ```
3504 static LogicalResult foldWAR(TransferWriteOp write,
3505                              SmallVectorImpl<OpFoldResult> &results) {
3506   if (!write.getSource().getType().isa<RankedTensorType>())
3507     return failure();
3508   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3509   if (!read)
3510     return failure();
3511 
3512   if (!checkSameValueWAR(read, write))
3513     return failure();
3514   results.push_back(read.getSource());
3515   return success();
3516 }
3517 
3518 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3519                                     SmallVectorImpl<OpFoldResult> &results) {
3520   if (succeeded(foldReadInitWrite(*this, operands, results)))
3521     return success();
3522   if (succeeded(foldWAR(*this, results)))
3523     return success();
3524   if (succeeded(foldTransferInBoundsAttribute(*this)))
3525     return success();
3526   return foldMemRefCast(*this);
3527 }
3528 
3529 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3530   return llvm::to_vector<4>(getVectorType().getShape());
3531 }
3532 
3533 void TransferWriteOp::getEffects(
3534     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3535         &effects) {
3536   if (getShapedType().isa<MemRefType>())
3537     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3538                          SideEffects::DefaultResource::get());
3539 }
3540 
3541 namespace {
3542 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3543 /// DCE
3544 /// ```
3545 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3546 ///    : vector<1x4xf32>, tensor<4x4xf32>
3547 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3548 ///    : vector<1x4xf32>, tensor<4x4xf32>
3549 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3550 ///    : vector<1x4xf32>, tensor<4x4xf32>
3551 /// ```
3552 ///
3553 /// into:
3554 ///
3555 /// ```
3556 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3557 ///    : vector<1x4xf32>, tensor<4x4xf32>
3558 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3559 ///    : vector<1x4xf32>, tensor<4x4xf32>
3560 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3561 ///    : vector<1x4xf32>, tensor<4x4xf32>
3562 /// ```
3563 ///
3564 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3565 /// any other uses.
3566 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3567 public:
3568   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3569   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3570                                 PatternRewriter &rewriter) const override {
3571     if (!writeOp.getShapedType().isa<RankedTensorType>())
3572       return failure();
3573     vector::TransferWriteOp writeToModify = writeOp;
3574 
3575     auto defWrite =
3576         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3577     while (defWrite) {
3578       if (checkSameValueWAW(writeOp, defWrite)) {
3579         writeToModify.getSourceMutable().assign(defWrite.getSource());
3580         return success();
3581       }
3582       if (!isDisjointTransferIndices(
3583               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3584               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3585         break;
3586       // If the previous write op doesn't have any other use we an safely look
3587       // at the previous store to see if it can be removed.
3588       if (!defWrite->hasOneUse())
3589         break;
3590       writeToModify = defWrite;
3591       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3592     }
3593     return failure();
3594   }
3595 };
3596 
3597 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3598 /// could directly write to the insert_slice's destination. E.g.:
3599 ///
3600 /// ```
3601 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3602 ///     : vector<4x5xf32>, tensor<4x5xf32>
3603 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3604 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3605 /// ```
3606 /// is rewritten to:
3607 /// ```
3608 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3609 ///     : vector<4x5xf32>, tensor<?x?xf32>
3610 /// ```
3611 struct FoldInsertSliceIntoTransferWrite
3612     : public OpRewritePattern<tensor::InsertSliceOp> {
3613 public:
3614   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3615 
3616   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3617                                 PatternRewriter &rewriter) const override {
3618     if (!insertOp.hasUnitStride())
3619       return failure();
3620 
3621     auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>();
3622     if (!xferOp)
3623       return failure();
3624     // TODO: support 0-d corner case.
3625     if (xferOp.getTransferRank() == 0)
3626       return failure();
3627 
3628     if (xferOp.hasOutOfBoundsDim())
3629       return failure();
3630     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3631       return failure();
3632     if (xferOp.getMask())
3633       return failure();
3634     // Fold only if the TransferWriteOp completely overwrites the `source` with
3635     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3636     // content is the data of the vector.
3637     if (!llvm::equal(xferOp.getVectorType().getShape(),
3638                      xferOp.getShapedType().getShape()))
3639       return failure();
3640     if (!xferOp.getPermutationMap().isIdentity())
3641       return failure();
3642 
3643     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3644     // dims are exactly the leading dims. I.e. the following is illegal:
3645     // ```
3646     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3647     //      vector<2x4xf32>, tensor<2x4xf32>
3648     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3649     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3650     // ```
3651     //
3652     // Cannot fold into:
3653     // ```
3654     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3655     //      vector<2x4xf32>, tensor<2x1x4xf32>
3656     // ```
3657     // For this, check the trailing `vectorRank` dims of the insert_slice result
3658     // tensor match the trailing dims of the inferred result tensor.
3659     int64_t rankReduced =
3660         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3661     int64_t vectorRank = xferOp.getVectorType().getRank();
3662     RankedTensorType inferredSourceTensorType =
3663         tensor::ExtractSliceOp::inferResultType(
3664             insertOp.getType(), insertOp.getMixedOffsets(),
3665             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3666     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3667     if (rankReduced > 0 &&
3668         actualSourceTensorShape.take_back(vectorRank) !=
3669             inferredSourceTensorType.getShape().take_back(vectorRank))
3670       return failure();
3671 
3672     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3673         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3674     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3675     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3676                                                  insertOp.getDest(), indices,
3677                                                  ArrayRef<bool>{inBounds});
3678     return success();
3679   }
3680 };
3681 
3682 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3683 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3684 /// overwritten and inserted into another tensor. After this rewrite, the
3685 /// operations bufferize in-place since all of them work on the same slice.
3686 ///
3687 /// For example:
3688 /// ```mlir
3689 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3690 ///        : vector<8x16xf32>, tensor<8x16xf32>
3691 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3692 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3693 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3694 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3695 /// ```
3696 /// folds to
3697 /// ```mlir
3698 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3699 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3700 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3701 ///        : vector<8x16xf32>, tensor<?x?xf32>
3702 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3703 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3704 /// ```
3705 struct SwapExtractSliceOfTransferWrite
3706     : public OpRewritePattern<tensor::InsertSliceOp> {
3707 public:
3708   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3709 
3710   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3711                                 PatternRewriter &rewriter) const override {
3712     if (!insertOp.hasUnitStride())
3713       return failure();
3714     auto extractOp =
3715         insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3716     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3717       return failure();
3718     auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
3719     if (!transferOp || !transferOp->hasOneUse())
3720       return failure();
3721 
3722     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3723     // rank-reducing.
3724     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3725       return rewriter.notifyMatchFailure(insertOp,
3726                                          "use-def chain is rank-reducing");
3727     }
3728 
3729     // Fail if tensor::ExtractSliceOp has non-zero offset.
3730     if (!extractOp.hasZeroOffset()) {
3731       return rewriter.notifyMatchFailure(insertOp,
3732                                          "ExtractSliceOp has non-zero offset");
3733     }
3734 
3735     // Fail if tensor::TransferWriteOp has non-zero offset.
3736     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3737           return getConstantIntValue(value) == static_cast<int64_t>(0);
3738         })) {
3739       return rewriter.notifyMatchFailure(insertOp,
3740                                          "TranferWriteOp has non-zero offset");
3741     }
3742 
3743     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3744     for (const auto &it :
3745          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3746       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3747         return rewriter.notifyMatchFailure(
3748             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3749       }
3750     }
3751 
3752     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3753     assert(transferOp.getVectorType().hasStaticShape() &&
3754            "expected vector to have a static shape");
3755     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3756     SmallVector<int64_t> resultShape = applyPermutationMap(
3757         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3758     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3759       return rewriter.notifyMatchFailure(
3760           insertOp, "TransferWriteOp may not write the full tensor.");
3761     }
3762 
3763     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3764     SmallVector<int64_t> newResultShape = applyPermutationMap(
3765         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3766     SmallVector<bool> newInBounds;
3767     for (const auto &en : enumerate(newResultShape))
3768       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3769     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3770         extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
3771         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3772         insertOp.getMixedStrides());
3773     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3774         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3775         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3776         rewriter.getBoolArrayAttr(newInBounds));
3777     rewriter.updateRootInPlace(insertOp, [&]() {
3778       insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
3779     });
3780     return success();
3781   }
3782 };
3783 
3784 } // namespace
3785 
3786 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3787                                                   MLIRContext *context) {
3788   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3789               SwapExtractSliceOfTransferWrite>(context);
3790 }
3791 
3792 //===----------------------------------------------------------------------===//
3793 // LoadOp
3794 //===----------------------------------------------------------------------===//
3795 
3796 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3797                                                  MemRefType memRefTy) {
3798   if (!isLastMemrefDimUnitStride(memRefTy))
3799     return op->emitOpError("most minor memref dim must have unit stride");
3800   return success();
3801 }
3802 
3803 LogicalResult vector::LoadOp::verify() {
3804   VectorType resVecTy = getVectorType();
3805   MemRefType memRefTy = getMemRefType();
3806 
3807   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3808     return failure();
3809 
3810   // Checks for vector memrefs.
3811   Type memElemTy = memRefTy.getElementType();
3812   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3813     if (memVecTy != resVecTy)
3814       return emitOpError("base memref and result vector types should match");
3815     memElemTy = memVecTy.getElementType();
3816   }
3817 
3818   if (resVecTy.getElementType() != memElemTy)
3819     return emitOpError("base and result element types should match");
3820   if (llvm::size(getIndices()) != memRefTy.getRank())
3821     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3822   return success();
3823 }
3824 
3825 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3826   if (succeeded(foldMemRefCast(*this)))
3827     return getResult();
3828   return OpFoldResult();
3829 }
3830 
3831 //===----------------------------------------------------------------------===//
3832 // StoreOp
3833 //===----------------------------------------------------------------------===//
3834 
3835 LogicalResult vector::StoreOp::verify() {
3836   VectorType valueVecTy = getVectorType();
3837   MemRefType memRefTy = getMemRefType();
3838 
3839   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3840     return failure();
3841 
3842   // Checks for vector memrefs.
3843   Type memElemTy = memRefTy.getElementType();
3844   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3845     if (memVecTy != valueVecTy)
3846       return emitOpError(
3847           "base memref and valueToStore vector types should match");
3848     memElemTy = memVecTy.getElementType();
3849   }
3850 
3851   if (valueVecTy.getElementType() != memElemTy)
3852     return emitOpError("base and valueToStore element type should match");
3853   if (llvm::size(getIndices()) != memRefTy.getRank())
3854     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3855   return success();
3856 }
3857 
3858 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3859                             SmallVectorImpl<OpFoldResult> &results) {
3860   return foldMemRefCast(*this);
3861 }
3862 
3863 //===----------------------------------------------------------------------===//
3864 // MaskedLoadOp
3865 //===----------------------------------------------------------------------===//
3866 
3867 LogicalResult MaskedLoadOp::verify() {
3868   VectorType maskVType = getMaskVectorType();
3869   VectorType passVType = getPassThruVectorType();
3870   VectorType resVType = getVectorType();
3871   MemRefType memType = getMemRefType();
3872 
3873   if (resVType.getElementType() != memType.getElementType())
3874     return emitOpError("base and result element type should match");
3875   if (llvm::size(getIndices()) != memType.getRank())
3876     return emitOpError("requires ") << memType.getRank() << " indices";
3877   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3878     return emitOpError("expected result dim to match mask dim");
3879   if (resVType != passVType)
3880     return emitOpError("expected pass_thru of same type as result type");
3881   return success();
3882 }
3883 
3884 namespace {
3885 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3886 public:
3887   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3888   LogicalResult matchAndRewrite(MaskedLoadOp load,
3889                                 PatternRewriter &rewriter) const override {
3890     switch (get1DMaskFormat(load.getMask())) {
3891     case MaskFormat::AllTrue:
3892       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3893           load, load.getType(), load.getBase(), load.getIndices());
3894       return success();
3895     case MaskFormat::AllFalse:
3896       rewriter.replaceOp(load, load.getPassThru());
3897       return success();
3898     case MaskFormat::Unknown:
3899       return failure();
3900     }
3901     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3902   }
3903 };
3904 } // namespace
3905 
3906 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3907                                                MLIRContext *context) {
3908   results.add<MaskedLoadFolder>(context);
3909 }
3910 
3911 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3912   if (succeeded(foldMemRefCast(*this)))
3913     return getResult();
3914   return OpFoldResult();
3915 }
3916 
3917 //===----------------------------------------------------------------------===//
3918 // MaskedStoreOp
3919 //===----------------------------------------------------------------------===//
3920 
3921 LogicalResult MaskedStoreOp::verify() {
3922   VectorType maskVType = getMaskVectorType();
3923   VectorType valueVType = getVectorType();
3924   MemRefType memType = getMemRefType();
3925 
3926   if (valueVType.getElementType() != memType.getElementType())
3927     return emitOpError("base and valueToStore element type should match");
3928   if (llvm::size(getIndices()) != memType.getRank())
3929     return emitOpError("requires ") << memType.getRank() << " indices";
3930   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3931     return emitOpError("expected valueToStore dim to match mask dim");
3932   return success();
3933 }
3934 
3935 namespace {
3936 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3937 public:
3938   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3939   LogicalResult matchAndRewrite(MaskedStoreOp store,
3940                                 PatternRewriter &rewriter) const override {
3941     switch (get1DMaskFormat(store.getMask())) {
3942     case MaskFormat::AllTrue:
3943       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3944           store, store.getValueToStore(), store.getBase(), store.getIndices());
3945       return success();
3946     case MaskFormat::AllFalse:
3947       rewriter.eraseOp(store);
3948       return success();
3949     case MaskFormat::Unknown:
3950       return failure();
3951     }
3952     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3953   }
3954 };
3955 } // namespace
3956 
3957 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3958                                                 MLIRContext *context) {
3959   results.add<MaskedStoreFolder>(context);
3960 }
3961 
3962 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3963                                   SmallVectorImpl<OpFoldResult> &results) {
3964   return foldMemRefCast(*this);
3965 }
3966 
3967 //===----------------------------------------------------------------------===//
3968 // GatherOp
3969 //===----------------------------------------------------------------------===//
3970 
3971 LogicalResult GatherOp::verify() {
3972   VectorType indVType = getIndexVectorType();
3973   VectorType maskVType = getMaskVectorType();
3974   VectorType resVType = getVectorType();
3975   MemRefType memType = getMemRefType();
3976 
3977   if (resVType.getElementType() != memType.getElementType())
3978     return emitOpError("base and result element type should match");
3979   if (llvm::size(getIndices()) != memType.getRank())
3980     return emitOpError("requires ") << memType.getRank() << " indices";
3981   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3982     return emitOpError("expected result dim to match indices dim");
3983   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3984     return emitOpError("expected result dim to match mask dim");
3985   if (resVType != getPassThruVectorType())
3986     return emitOpError("expected pass_thru of same type as result type");
3987   return success();
3988 }
3989 
3990 namespace {
3991 class GatherFolder final : public OpRewritePattern<GatherOp> {
3992 public:
3993   using OpRewritePattern<GatherOp>::OpRewritePattern;
3994   LogicalResult matchAndRewrite(GatherOp gather,
3995                                 PatternRewriter &rewriter) const override {
3996     switch (get1DMaskFormat(gather.getMask())) {
3997     case MaskFormat::AllTrue:
3998       return failure(); // no unmasked equivalent
3999     case MaskFormat::AllFalse:
4000       rewriter.replaceOp(gather, gather.getPassThru());
4001       return success();
4002     case MaskFormat::Unknown:
4003       return failure();
4004     }
4005     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
4006   }
4007 };
4008 } // namespace
4009 
4010 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
4011                                            MLIRContext *context) {
4012   results.add<GatherFolder>(context);
4013 }
4014 
4015 //===----------------------------------------------------------------------===//
4016 // ScatterOp
4017 //===----------------------------------------------------------------------===//
4018 
4019 LogicalResult ScatterOp::verify() {
4020   VectorType indVType = getIndexVectorType();
4021   VectorType maskVType = getMaskVectorType();
4022   VectorType valueVType = getVectorType();
4023   MemRefType memType = getMemRefType();
4024 
4025   if (valueVType.getElementType() != memType.getElementType())
4026     return emitOpError("base and valueToStore element type should match");
4027   if (llvm::size(getIndices()) != memType.getRank())
4028     return emitOpError("requires ") << memType.getRank() << " indices";
4029   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
4030     return emitOpError("expected valueToStore dim to match indices dim");
4031   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4032     return emitOpError("expected valueToStore dim to match mask dim");
4033   return success();
4034 }
4035 
4036 namespace {
4037 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
4038 public:
4039   using OpRewritePattern<ScatterOp>::OpRewritePattern;
4040   LogicalResult matchAndRewrite(ScatterOp scatter,
4041                                 PatternRewriter &rewriter) const override {
4042     switch (get1DMaskFormat(scatter.getMask())) {
4043     case MaskFormat::AllTrue:
4044       return failure(); // no unmasked equivalent
4045     case MaskFormat::AllFalse:
4046       rewriter.eraseOp(scatter);
4047       return success();
4048     case MaskFormat::Unknown:
4049       return failure();
4050     }
4051     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
4052   }
4053 };
4054 } // namespace
4055 
4056 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
4057                                             MLIRContext *context) {
4058   results.add<ScatterFolder>(context);
4059 }
4060 
4061 //===----------------------------------------------------------------------===//
4062 // ExpandLoadOp
4063 //===----------------------------------------------------------------------===//
4064 
4065 LogicalResult ExpandLoadOp::verify() {
4066   VectorType maskVType = getMaskVectorType();
4067   VectorType passVType = getPassThruVectorType();
4068   VectorType resVType = getVectorType();
4069   MemRefType memType = getMemRefType();
4070 
4071   if (resVType.getElementType() != memType.getElementType())
4072     return emitOpError("base and result element type should match");
4073   if (llvm::size(getIndices()) != memType.getRank())
4074     return emitOpError("requires ") << memType.getRank() << " indices";
4075   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
4076     return emitOpError("expected result dim to match mask dim");
4077   if (resVType != passVType)
4078     return emitOpError("expected pass_thru of same type as result type");
4079   return success();
4080 }
4081 
4082 namespace {
4083 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
4084 public:
4085   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
4086   LogicalResult matchAndRewrite(ExpandLoadOp expand,
4087                                 PatternRewriter &rewriter) const override {
4088     switch (get1DMaskFormat(expand.getMask())) {
4089     case MaskFormat::AllTrue:
4090       rewriter.replaceOpWithNewOp<vector::LoadOp>(
4091           expand, expand.getType(), expand.getBase(), expand.getIndices());
4092       return success();
4093     case MaskFormat::AllFalse:
4094       rewriter.replaceOp(expand, expand.getPassThru());
4095       return success();
4096     case MaskFormat::Unknown:
4097       return failure();
4098     }
4099     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4100   }
4101 };
4102 } // namespace
4103 
4104 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4105                                                MLIRContext *context) {
4106   results.add<ExpandLoadFolder>(context);
4107 }
4108 
4109 //===----------------------------------------------------------------------===//
4110 // CompressStoreOp
4111 //===----------------------------------------------------------------------===//
4112 
4113 LogicalResult CompressStoreOp::verify() {
4114   VectorType maskVType = getMaskVectorType();
4115   VectorType valueVType = getVectorType();
4116   MemRefType memType = getMemRefType();
4117 
4118   if (valueVType.getElementType() != memType.getElementType())
4119     return emitOpError("base and valueToStore element type should match");
4120   if (llvm::size(getIndices()) != memType.getRank())
4121     return emitOpError("requires ") << memType.getRank() << " indices";
4122   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4123     return emitOpError("expected valueToStore dim to match mask dim");
4124   return success();
4125 }
4126 
4127 namespace {
4128 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4129 public:
4130   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4131   LogicalResult matchAndRewrite(CompressStoreOp compress,
4132                                 PatternRewriter &rewriter) const override {
4133     switch (get1DMaskFormat(compress.getMask())) {
4134     case MaskFormat::AllTrue:
4135       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4136           compress, compress.getValueToStore(), compress.getBase(),
4137           compress.getIndices());
4138       return success();
4139     case MaskFormat::AllFalse:
4140       rewriter.eraseOp(compress);
4141       return success();
4142     case MaskFormat::Unknown:
4143       return failure();
4144     }
4145     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4146   }
4147 };
4148 } // namespace
4149 
4150 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4151                                                   MLIRContext *context) {
4152   results.add<CompressStoreFolder>(context);
4153 }
4154 
4155 //===----------------------------------------------------------------------===//
4156 // ShapeCastOp
4157 //===----------------------------------------------------------------------===//
4158 
4159 /// Returns true if each element of 'a' is equal to the product of a contiguous
4160 /// sequence of the elements of 'b'. Returns false otherwise.
4161 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4162   unsigned rankA = a.size();
4163   unsigned rankB = b.size();
4164   assert(rankA < rankB);
4165 
4166   unsigned i = 0;
4167   unsigned j = 0;
4168   while (i < rankA && j < rankB) {
4169     int64_t dimA = a[i];
4170     int64_t dimB = 1;
4171     while (dimB < dimA && j < rankB)
4172       dimB *= b[j++];
4173     if (dimA != dimB)
4174       break;
4175     ++i;
4176 
4177     // Handle the case when trailing dimensions are of size 1.
4178     // Include them into the contiguous sequence.
4179     auto isOne = [](int64_t v) { return v == 1; };
4180     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4181       i = rankA;
4182     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4183       j = rankB;
4184   }
4185 
4186   return i == rankA && j == rankB;
4187 }
4188 
4189 static LogicalResult verifyVectorShapeCast(Operation *op,
4190                                            VectorType sourceVectorType,
4191                                            VectorType resultVectorType) {
4192   // Check that element type is the same.
4193   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4194     return op->emitOpError("source/result vectors must have same element type");
4195   auto sourceShape = sourceVectorType.getShape();
4196   auto resultShape = resultVectorType.getShape();
4197 
4198   // Check that product of source dim sizes matches product of result dim sizes.
4199   int64_t sourceDimProduct = std::accumulate(
4200       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4201   int64_t resultDimProduct = std::accumulate(
4202       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4203   if (sourceDimProduct != resultDimProduct)
4204     return op->emitOpError("source/result number of elements must match");
4205 
4206   // Check that expanding/contracting rank cases.
4207   unsigned sourceRank = sourceVectorType.getRank();
4208   unsigned resultRank = resultVectorType.getRank();
4209   if (sourceRank < resultRank) {
4210     if (!isValidShapeCast(sourceShape, resultShape))
4211       return op->emitOpError("invalid shape cast");
4212   } else if (sourceRank > resultRank) {
4213     if (!isValidShapeCast(resultShape, sourceShape))
4214       return op->emitOpError("invalid shape cast");
4215   }
4216   return success();
4217 }
4218 
4219 LogicalResult ShapeCastOp::verify() {
4220   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4221   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4222 
4223   // Check if source/result are of vector type.
4224   if (sourceVectorType && resultVectorType)
4225     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4226 
4227   return success();
4228 }
4229 
4230 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4231   // No-op shape cast.
4232   if (getSource().getType() == getResult().getType())
4233     return getSource();
4234 
4235   // Canceling shape casts.
4236   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4237     if (getResult().getType() == otherOp.getSource().getType())
4238       return otherOp.getSource();
4239 
4240     // Only allows valid transitive folding.
4241     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4242     VectorType resultType = getResult().getType().cast<VectorType>();
4243     if (srcType.getRank() < resultType.getRank()) {
4244       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4245         return {};
4246     } else if (srcType.getRank() > resultType.getRank()) {
4247       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4248         return {};
4249     } else {
4250       return {};
4251     }
4252 
4253     setOperand(otherOp.getSource());
4254     return getResult();
4255   }
4256 
4257   // Cancelling broadcast and shape cast ops.
4258   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4259     if (bcastOp.getSourceType() == getType())
4260       return bcastOp.getSource();
4261   }
4262 
4263   return {};
4264 }
4265 
4266 namespace {
4267 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4268 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4269 public:
4270   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4271 
4272   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4273                                 PatternRewriter &rewriter) const override {
4274     auto constantOp =
4275         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4276     if (!constantOp)
4277       return failure();
4278     // Only handle splat for now.
4279     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4280     if (!dense)
4281       return failure();
4282     auto newAttr =
4283         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4284                                dense.getSplatValue<Attribute>());
4285     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4286     return success();
4287   }
4288 };
4289 
4290 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast.
4291 /// This only applies when the shape of the broadcast source is a suffix of the
4292 /// shape of the result (i.e. when broadcast without reshape is expressive
4293 /// enough to capture the result in a single op).
4294 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
4295 public:
4296   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4297 
4298   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4299                                 PatternRewriter &rewriter) const override {
4300     auto broadcastOp =
4301         shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
4302     if (!broadcastOp)
4303       return failure();
4304 
4305     auto broadcastSourceVectorType =
4306         broadcastOp.getSourceType().dyn_cast<VectorType>();
4307     auto broadcastSourceShape = broadcastSourceVectorType
4308                                     ? broadcastSourceVectorType.getShape()
4309                                     : ArrayRef<int64_t>{};
4310     auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape();
4311 
4312     // Bail if `broadcastSourceShape` is not a suffix of the result.
4313     bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back(
4314                                                  broadcastSourceShape.size()));
4315     if (!isSuffix)
4316       return failure();
4317 
4318     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4319         shapeCastOp, shapeCastOp.getResultVectorType(),
4320         broadcastOp.getSource());
4321     return success();
4322   }
4323 };
4324 
4325 } // namespace
4326 
4327 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4328                                               MLIRContext *context) {
4329   results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context);
4330 }
4331 
4332 //===----------------------------------------------------------------------===//
4333 // VectorBitCastOp
4334 //===----------------------------------------------------------------------===//
4335 
4336 LogicalResult BitCastOp::verify() {
4337   auto sourceVectorType = getSourceVectorType();
4338   auto resultVectorType = getResultVectorType();
4339 
4340   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4341     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4342       return emitOpError("dimension size mismatch at: ") << i;
4343   }
4344 
4345   DataLayout dataLayout = DataLayout::closest(*this);
4346   auto sourceElementBits =
4347       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4348   auto resultElementBits =
4349       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4350 
4351   if (sourceVectorType.getRank() == 0) {
4352     if (sourceElementBits != resultElementBits)
4353       return emitOpError("source/result bitwidth of the 0-D vector element "
4354                          "types must be equal");
4355   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4356              resultElementBits * resultVectorType.getShape().back()) {
4357     return emitOpError(
4358         "source/result bitwidth of the minor 1-D vectors must be equal");
4359   }
4360 
4361   return success();
4362 }
4363 
4364 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4365   // Nop cast.
4366   if (getSource().getType() == getResult().getType())
4367     return getSource();
4368 
4369   // Canceling bitcasts.
4370   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4371     if (getResult().getType() == otherOp.getSource().getType())
4372       return otherOp.getSource();
4373 
4374     setOperand(otherOp.getSource());
4375     return getResult();
4376   }
4377 
4378   Attribute sourceConstant = operands.front();
4379   if (!sourceConstant)
4380     return {};
4381 
4382   Type srcElemType = getSourceVectorType().getElementType();
4383   Type dstElemType = getResultVectorType().getElementType();
4384 
4385   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4386     if (floatPack.isSplat()) {
4387       auto splat = floatPack.getSplatValue<FloatAttr>();
4388 
4389       // Casting fp16 into fp32.
4390       if (srcElemType.isF16() && dstElemType.isF32()) {
4391         uint32_t bits = static_cast<uint32_t>(
4392             splat.getValue().bitcastToAPInt().getZExtValue());
4393         // Duplicate the 16-bit pattern.
4394         bits = (bits << 16) | (bits & 0xffff);
4395         APInt intBits(32, bits);
4396         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4397         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4398       }
4399     }
4400   }
4401 
4402   return {};
4403 }
4404 
4405 //===----------------------------------------------------------------------===//
4406 // TypeCastOp
4407 //===----------------------------------------------------------------------===//
4408 
4409 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4410   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4411   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4412                               memRefType.getShape().end());
4413   if (vectorType)
4414     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4415   return res;
4416 }
4417 
4418 /// Build the canonical memRefType with a single vector.
4419 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4420 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4421                        Value source) {
4422   result.addOperands(source);
4423   MemRefType memRefType = source.getType().cast<MemRefType>();
4424   VectorType vectorType =
4425       VectorType::get(extractShape(memRefType),
4426                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4427   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4428                                   memRefType.getMemorySpace()));
4429 }
4430 
4431 LogicalResult TypeCastOp::verify() {
4432   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4433   if (!canonicalType.getLayout().isIdentity())
4434     return emitOpError("expects operand to be a memref with identity layout");
4435   if (!getResultMemRefType().getLayout().isIdentity())
4436     return emitOpError("expects result to be a memref with identity layout");
4437   if (getResultMemRefType().getMemorySpace() !=
4438       getMemRefType().getMemorySpace())
4439     return emitOpError("expects result in same memory space");
4440 
4441   auto sourceType = getMemRefType();
4442   auto resultType = getResultMemRefType();
4443   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4444       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4445     return emitOpError(
4446                "expects result and operand with same underlying scalar type: ")
4447            << resultType;
4448   if (extractShape(sourceType) != extractShape(resultType))
4449     return emitOpError(
4450                "expects concatenated result and operand shapes to be equal: ")
4451            << resultType;
4452   return success();
4453 }
4454 
4455 //===----------------------------------------------------------------------===//
4456 // TransposeOp
4457 //===----------------------------------------------------------------------===//
4458 
4459 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4460                                 Value vector, ArrayRef<int64_t> transp) {
4461   VectorType vt = vector.getType().cast<VectorType>();
4462   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4463   for (unsigned i = 0; i < transp.size(); ++i)
4464     transposedShape[i] = vt.getShape()[transp[i]];
4465 
4466   result.addOperands(vector);
4467   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4468   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4469 }
4470 
4471 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4472   // Eliminate splat constant transpose ops.
4473   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4474     if (attr.isSplat())
4475       return attr.reshape(getResultType());
4476 
4477   // Eliminate identity transpose ops. This happens when the dimensions of the
4478   // input vector remain in their original order after the transpose operation.
4479   SmallVector<int64_t, 4> transp;
4480   getTransp(transp);
4481 
4482   // Check if the permutation of the dimensions contains sequential values:
4483   // {0, 1, 2, ...}.
4484   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4485     if (transp[i] != i)
4486       return {};
4487   }
4488 
4489   return getVector();
4490 }
4491 
4492 LogicalResult vector::TransposeOp::verify() {
4493   VectorType vectorType = getVectorType();
4494   VectorType resultType = getResultType();
4495   int64_t rank = resultType.getRank();
4496   if (vectorType.getRank() != rank)
4497     return emitOpError("vector result rank mismatch: ") << rank;
4498   // Verify transposition array.
4499   auto transpAttr = getTransp().getValue();
4500   int64_t size = transpAttr.size();
4501   if (rank != size)
4502     return emitOpError("transposition length mismatch: ") << size;
4503   SmallVector<bool, 8> seen(rank, false);
4504   for (const auto &ta : llvm::enumerate(transpAttr)) {
4505     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4506     if (i < 0 || i >= rank)
4507       return emitOpError("transposition index out of range: ") << i;
4508     if (seen[i])
4509       return emitOpError("duplicate position index: ") << i;
4510     seen[i] = true;
4511     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4512       return emitOpError("dimension size mismatch at: ") << i;
4513   }
4514   return success();
4515 }
4516 
4517 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4518   return llvm::to_vector<4>(getResultType().getShape());
4519 }
4520 
4521 namespace {
4522 
4523 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4524 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4525 public:
4526   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4527 
4528   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4529                                 PatternRewriter &rewriter) const override {
4530     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4531     auto getPermutation = [](vector::TransposeOp transpose) {
4532       SmallVector<int64_t, 4> permutation;
4533       transpose.getTransp(permutation);
4534       return permutation;
4535     };
4536 
4537     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4538     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4539                                   ArrayRef<int64_t> permutation2) {
4540       SmallVector<int64_t, 4> result;
4541       for (auto index : permutation2)
4542         result.push_back(permutation1[index]);
4543       return result;
4544     };
4545 
4546     // Return if the input of 'transposeOp' is not defined by another transpose.
4547     vector::TransposeOp parentTransposeOp =
4548         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4549     if (!parentTransposeOp)
4550       return failure();
4551 
4552     SmallVector<int64_t, 4> permutation = composePermutations(
4553         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4554     // Replace 'transposeOp' with a new transpose operation.
4555     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4556         transposeOp, transposeOp.getResult().getType(),
4557         parentTransposeOp.getVector(),
4558         vector::getVectorSubscriptAttr(rewriter, permutation));
4559     return success();
4560   }
4561 };
4562 
4563 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4564 struct FoldTransposedScalarBroadcast final
4565     : public OpRewritePattern<vector::TransposeOp> {
4566   using OpRewritePattern::OpRewritePattern;
4567 
4568   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4569                                 PatternRewriter &rewriter) const override {
4570     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4571     if (!bcastOp)
4572       return failure();
4573 
4574     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4575     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4576       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4577           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4578       return success();
4579     }
4580 
4581     return failure();
4582   }
4583 };
4584 
4585 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4586 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4587 public:
4588   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4589 
4590   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4591                                 PatternRewriter &rewriter) const override {
4592     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4593     if (!splatOp)
4594       return failure();
4595 
4596     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4597         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4598     return success();
4599   }
4600 };
4601 
4602 } // namespace
4603 
4604 void vector::TransposeOp::getCanonicalizationPatterns(
4605     RewritePatternSet &results, MLIRContext *context) {
4606   results
4607       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4608           context);
4609 }
4610 
4611 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4612   populateFromInt64AttrArray(getTransp(), results);
4613 }
4614 
4615 //===----------------------------------------------------------------------===//
4616 // ConstantMaskOp
4617 //===----------------------------------------------------------------------===//
4618 
4619 LogicalResult ConstantMaskOp::verify() {
4620   auto resultType = getResult().getType().cast<VectorType>();
4621   // Check the corner case of 0-D vectors first.
4622   if (resultType.getRank() == 0) {
4623     if (getMaskDimSizes().size() != 1)
4624       return emitError("array attr must have length 1 for 0-D vectors");
4625     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4626     if (dim != 0 && dim != 1)
4627       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4628     return success();
4629   }
4630 
4631   // Verify that array attr size matches the rank of the vector result.
4632   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4633     return emitOpError(
4634         "must specify array attr of size equal vector result rank");
4635   // Verify that each array attr element is in bounds of corresponding vector
4636   // result dimension size.
4637   auto resultShape = resultType.getShape();
4638   SmallVector<int64_t, 4> maskDimSizes;
4639   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4640     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4641     if (attrValue < 0 || attrValue > resultShape[it.index()])
4642       return emitOpError(
4643           "array attr of size out of bounds of vector result dimension size");
4644     maskDimSizes.push_back(attrValue);
4645   }
4646   // Verify that if one mask dim size is zero, they all should be zero (because
4647   // the mask region is a conjunction of each mask dimension interval).
4648   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4649   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4650   if (anyZeros && !allZeros)
4651     return emitOpError("expected all mask dim sizes to be zeros, "
4652                        "as a result of conjunction with zero mask dim");
4653   // Verify that if the mask type is scalable, dimensions should be zero because
4654   // constant scalable masks can only be defined for the "none set" or "all set"
4655   // cases, and there is no VLA way to define an "all set" case for
4656   // `vector.constant_mask`. In the future, a convention could be established
4657   // to decide if a specific dimension value could be considered as "all set".
4658   if (resultType.isScalable() &&
4659       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4660     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4661   return success();
4662 }
4663 
4664 //===----------------------------------------------------------------------===//
4665 // CreateMaskOp
4666 //===----------------------------------------------------------------------===//
4667 
4668 LogicalResult CreateMaskOp::verify() {
4669   auto vectorType = getResult().getType().cast<VectorType>();
4670   // Verify that an operand was specified for each result vector each dimension.
4671   if (vectorType.getRank() == 0) {
4672     if (getNumOperands() != 1)
4673       return emitOpError(
4674           "must specify exactly one operand for 0-D create_mask");
4675   } else if (getNumOperands() !=
4676              getResult().getType().cast<VectorType>().getRank()) {
4677     return emitOpError(
4678         "must specify an operand for each result vector dimension");
4679   }
4680   return success();
4681 }
4682 
4683 namespace {
4684 
4685 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4686 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4687 public:
4688   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4689 
4690   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4691                                 PatternRewriter &rewriter) const override {
4692     // Return if any of 'createMaskOp' operands are not defined by a constant.
4693     auto isNotDefByConstant = [](Value operand) {
4694       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4695     };
4696     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4697       return failure();
4698 
4699     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4700     // are negative or zero.
4701     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4702       if (vType.isScalable())
4703         for (auto opDim : createMaskOp.getOperands()) {
4704           APInt intVal;
4705           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4706               intVal.isStrictlyPositive())
4707             return failure();
4708         }
4709     }
4710 
4711     // Gather constant mask dimension sizes.
4712     SmallVector<int64_t, 4> maskDimSizes;
4713     for (auto it : llvm::zip(createMaskOp.operands(),
4714                              createMaskOp.getType().getShape())) {
4715       auto *defOp = std::get<0>(it).getDefiningOp();
4716       int64_t maxDimSize = std::get<1>(it);
4717       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4718       dimSize = std::min(dimSize, maxDimSize);
4719       // If one of dim sizes is zero, set all dims to zero.
4720       if (dimSize <= 0) {
4721         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4722         break;
4723       }
4724       maskDimSizes.push_back(dimSize);
4725     }
4726     // Replace 'createMaskOp' with ConstantMaskOp.
4727     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4728         createMaskOp, createMaskOp.getResult().getType(),
4729         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4730     return success();
4731   }
4732 };
4733 
4734 } // namespace
4735 
4736 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4737                                                MLIRContext *context) {
4738   results.add<CreateMaskFolder>(context);
4739 }
4740 
4741 //===----------------------------------------------------------------------===//
4742 // ScanOp
4743 //===----------------------------------------------------------------------===//
4744 
4745 LogicalResult ScanOp::verify() {
4746   VectorType srcType = getSourceType();
4747   VectorType initialType = getInitialValueType();
4748   // Check reduction dimension < rank.
4749   int64_t srcRank = srcType.getRank();
4750   int64_t reductionDim = getReductionDim();
4751   if (reductionDim >= srcRank)
4752     return emitOpError("reduction dimension ")
4753            << reductionDim << " has to be less than " << srcRank;
4754 
4755   // Check that rank(initial_value) = rank(src) - 1.
4756   int64_t initialValueRank = initialType.getRank();
4757   if (initialValueRank != srcRank - 1)
4758     return emitOpError("initial value rank ")
4759            << initialValueRank << " has to be equal to " << srcRank - 1;
4760 
4761   // Check shapes of initial value and src.
4762   ArrayRef<int64_t> srcShape = srcType.getShape();
4763   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4764   SmallVector<int64_t> expectedShape;
4765   for (int i = 0; i < srcRank; i++) {
4766     if (i != reductionDim)
4767       expectedShape.push_back(srcShape[i]);
4768   }
4769   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4770                    [](std::tuple<int64_t, int64_t> s) {
4771                      return std::get<0>(s) != std::get<1>(s);
4772                    })) {
4773     return emitOpError("incompatible input/initial value shapes");
4774   }
4775 
4776   // Verify supported reduction kind.
4777   Type eltType = getDestType().getElementType();
4778   if (!isSupportedCombiningKind(getKind(), eltType))
4779     return emitOpError("unsupported reduction type ")
4780            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4781            << "'";
4782 
4783   return success();
4784 }
4785 
4786 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4787     RewritePatternSet &patterns) {
4788   patterns
4789       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4790            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4791            StridedSliceConstantMaskFolder, TransposeFolder>(
4792           patterns.getContext());
4793 }
4794 
4795 //===----------------------------------------------------------------------===//
4796 // SplatOp
4797 //===----------------------------------------------------------------------===//
4798 
4799 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4800   auto constOperand = operands.front();
4801   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4802     return {};
4803 
4804   // SplatElementsAttr::get treats single value for second arg as being a splat.
4805   return SplatElementsAttr::get(getType(), {constOperand});
4806 }
4807 
4808 //===----------------------------------------------------------------------===//
4809 // WarpExecuteOnLane0Op
4810 //===----------------------------------------------------------------------===//
4811 
4812 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4813   p << "(" << getLaneid() << ")";
4814 
4815   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4816   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4817   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4818 
4819   if (!getArgs().empty())
4820     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4821   if (!getResults().empty())
4822     p << " -> (" << getResults().getTypes() << ')';
4823   p << " ";
4824   p.printRegion(getRegion(),
4825                 /*printEntryBlockArgs=*/true,
4826                 /*printBlockTerminators=*/!getResults().empty());
4827   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4828 }
4829 
4830 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4831                                         OperationState &result) {
4832   // Create the region.
4833   result.regions.reserve(1);
4834   Region *warpRegion = result.addRegion();
4835 
4836   auto &builder = parser.getBuilder();
4837   OpAsmParser::UnresolvedOperand laneId;
4838 
4839   // Parse predicate operand.
4840   if (parser.parseLParen() ||
4841       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4842       parser.parseRParen())
4843     return failure();
4844 
4845   int64_t warpSize;
4846   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4847       parser.parseRSquare())
4848     return failure();
4849   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4850                                                         builder.getContext())),
4851                       builder.getI64IntegerAttr(warpSize));
4852 
4853   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4854     return failure();
4855 
4856   llvm::SMLoc inputsOperandsLoc;
4857   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4858   SmallVector<Type> inputTypes;
4859   if (succeeded(parser.parseOptionalKeyword("args"))) {
4860     if (parser.parseLParen())
4861       return failure();
4862 
4863     inputsOperandsLoc = parser.getCurrentLocation();
4864     if (parser.parseOperandList(inputsOperands) ||
4865         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4866       return failure();
4867   }
4868   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4869                              result.operands))
4870     return failure();
4871 
4872   // Parse optional results type list.
4873   if (parser.parseOptionalArrowTypeList(result.types))
4874     return failure();
4875   // Parse the region.
4876   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4877                          /*argTypes=*/{}))
4878     return failure();
4879   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4880 
4881   // Parse the optional attribute list.
4882   if (parser.parseOptionalAttrDict(result.attributes))
4883     return failure();
4884   return success();
4885 }
4886 
4887 void WarpExecuteOnLane0Op::getSuccessorRegions(
4888     Optional<unsigned> index, ArrayRef<Attribute> operands,
4889     SmallVectorImpl<RegionSuccessor> &regions) {
4890   if (index) {
4891     regions.push_back(RegionSuccessor(getResults()));
4892     return;
4893   }
4894 
4895   // The warp region is always executed
4896   regions.push_back(RegionSuccessor(&getWarpRegion()));
4897 }
4898 
4899 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4900                                  TypeRange resultTypes, Value laneId,
4901                                  int64_t warpSize) {
4902   build(builder, result, resultTypes, laneId, warpSize,
4903         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4904 }
4905 
4906 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4907                                  TypeRange resultTypes, Value laneId,
4908                                  int64_t warpSize, ValueRange args,
4909                                  TypeRange blockArgTypes) {
4910   result.addOperands(laneId);
4911   result.addAttribute(getAttributeNames()[0],
4912                       builder.getI64IntegerAttr(warpSize));
4913   result.addTypes(resultTypes);
4914   result.addOperands(args);
4915   assert(args.size() == blockArgTypes.size());
4916   OpBuilder::InsertionGuard guard(builder);
4917   Region *warpRegion = result.addRegion();
4918   Block *block = builder.createBlock(warpRegion);
4919   for (auto it : llvm::zip(blockArgTypes, args))
4920     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4921 }
4922 
4923 /// Helper check if the distributed vector type is consistent with the expanded
4924 /// type and distributed size.
4925 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4926                                            int64_t warpSize, Operation *op) {
4927   // If the types matches there is no distribution.
4928   if (expanded == distributed)
4929     return success();
4930   auto expandedVecType = expanded.dyn_cast<VectorType>();
4931   auto distributedVecType = distributed.dyn_cast<VectorType>();
4932   if (!expandedVecType || !distributedVecType)
4933     return op->emitOpError("expected vector type for distributed operands.");
4934   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4935       expandedVecType.getElementType() != distributedVecType.getElementType())
4936     return op->emitOpError(
4937         "expected distributed vectors to have same rank and element type.");
4938   bool foundDistributedDim = false;
4939   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4940     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4941       continue;
4942     if (expandedVecType.getDimSize(i) ==
4943         distributedVecType.getDimSize(i) * warpSize) {
4944       if (foundDistributedDim)
4945         return op->emitOpError()
4946                << "expected only one dimension to be distributed from "
4947                << expandedVecType << " to " << distributedVecType;
4948       foundDistributedDim = true;
4949       continue;
4950     }
4951     return op->emitOpError() << "incompatible distribution dimensions from "
4952                              << expandedVecType << " to " << distributedVecType;
4953   }
4954   return success();
4955 }
4956 
4957 LogicalResult WarpExecuteOnLane0Op::verify() {
4958   if (getArgs().size() != getWarpRegion().getNumArguments())
4959     return emitOpError(
4960         "expected same number op arguments and block arguments.");
4961   auto yield =
4962       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4963   if (yield.getNumOperands() != getNumResults())
4964     return emitOpError(
4965         "expected same number of yield operands and return values.");
4966   int64_t warpSize = getWarpSize();
4967   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4968     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4969                                      std::get<1>(it).getType(), warpSize,
4970                                      getOperation())))
4971       return failure();
4972   }
4973   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4974     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4975                                      std::get<1>(it).getType(), warpSize,
4976                                      getOperation())))
4977       return failure();
4978   }
4979   return success();
4980 }
4981 
4982 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4983   return succeeded(
4984       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4985 }
4986 
4987 //===----------------------------------------------------------------------===//
4988 // TableGen'd op method definitions
4989 //===----------------------------------------------------------------------===//
4990 
4991 #define GET_OP_CLASSES
4992 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4993