1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.mask_dim_sizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() &&
144          defWrite.indices() == read.indices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.permutation_map() == read.permutation_map();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.indices() == write.indices() &&
152          priorWrite.mask() == write.mask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.permutation_map() == write.permutation_map();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.source().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.reduction_dims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return source();
371   return {};
372 }
373 
374 //===----------------------------------------------------------------------===//
375 // ReductionOp
376 //===----------------------------------------------------------------------===//
377 
378 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
379                                 CombiningKind kind, Value vector) {
380   build(builder, result, kind, vector, /*acc=*/Value());
381 }
382 
383 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
384                                 CombiningKind kind, Value vector, Value acc) {
385   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
386         kind, vector, acc);
387 }
388 
389 LogicalResult ReductionOp::verify() {
390   // Verify for 1-D vector.
391   int64_t rank = getVectorType().getRank();
392   if (rank != 1)
393     return emitOpError("unsupported reduction rank: ") << rank;
394 
395   // Verify supported reduction kind.
396   Type eltType = dest().getType();
397   if (!isSupportedCombiningKind(kind(), eltType))
398     return emitOpError("unsupported reduction type '")
399            << eltType << "' for kind '" << stringifyCombiningKind(kind())
400            << "'";
401 
402   // Verify optional accumulator.
403   if (acc()) {
404     if (kind() != CombiningKind::ADD && kind() != CombiningKind::MUL)
405       return emitOpError("no accumulator for reduction kind: ")
406              << stringifyCombiningKind(kind());
407     if (!eltType.isa<FloatType>())
408       return emitOpError("no accumulator for type: ") << eltType;
409   }
410 
411   return success();
412 }
413 
414 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
415   SmallVector<OpAsmParser::OperandType, 2> operandsInfo;
416   Type redType;
417   Type resType;
418   CombiningKindAttr kindAttr;
419   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
420                                               result.attributes) ||
421       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
422       parser.parseColonType(redType) ||
423       parser.parseKeywordType("into", resType) ||
424       (!operandsInfo.empty() &&
425        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
426       (operandsInfo.size() > 1 &&
427        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
428       parser.addTypeToList(resType, result.types))
429     return failure();
430   if (operandsInfo.empty() || operandsInfo.size() > 2)
431     return parser.emitError(parser.getNameLoc(),
432                             "unsupported number of operands");
433   return success();
434 }
435 
436 void ReductionOp::print(OpAsmPrinter &p) {
437   p << " ";
438   kindAttr().print(p);
439   p << ", " << vector();
440   if (acc())
441     p << ", " << acc();
442   p << " : " << vector().getType() << " into " << dest().getType();
443 }
444 
445 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
446                                          OpBuilder &builder, Location loc,
447                                          Value vector) {
448   switch (op) {
449   case arith::AtomicRMWKind::addf:
450   case arith::AtomicRMWKind::addi:
451     return builder.create<vector::ReductionOp>(vector.getLoc(),
452                                                CombiningKind::ADD, vector);
453   case arith::AtomicRMWKind::mulf:
454   case arith::AtomicRMWKind::muli:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::MUL, vector);
457   case arith::AtomicRMWKind::minf:
458     return builder.create<vector::ReductionOp>(vector.getLoc(),
459                                                CombiningKind::MINF, vector);
460   case arith::AtomicRMWKind::mins:
461     return builder.create<vector::ReductionOp>(vector.getLoc(),
462                                                CombiningKind::MINSI, vector);
463   case arith::AtomicRMWKind::minu:
464     return builder.create<vector::ReductionOp>(vector.getLoc(),
465                                                CombiningKind::MINUI, vector);
466   case arith::AtomicRMWKind::maxf:
467     return builder.create<vector::ReductionOp>(vector.getLoc(),
468                                                CombiningKind::MAXF, vector);
469   case arith::AtomicRMWKind::maxs:
470     return builder.create<vector::ReductionOp>(vector.getLoc(),
471                                                CombiningKind::MAXSI, vector);
472   case arith::AtomicRMWKind::maxu:
473     return builder.create<vector::ReductionOp>(vector.getLoc(),
474                                                CombiningKind::MAXUI, vector);
475   // TODO: Add remaining reduction operations.
476   default:
477     (void)emitOptionalError(loc, "Reduction operation type not supported");
478     break;
479   }
480   return nullptr;
481 }
482 
483 //===----------------------------------------------------------------------===//
484 // ContractionOp
485 //===----------------------------------------------------------------------===//
486 
487 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
488                                   Value lhs, Value rhs, Value acc,
489                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
490                                   ArrayRef<StringRef> iteratorTypes) {
491   result.addOperands({lhs, rhs, acc});
492   result.addTypes(acc.getType());
493   result.addAttribute(::mlir::getIndexingMapsAttrName(),
494                       builder.getAffineMapArrayAttr(
495                           AffineMap::inferFromExprList(indexingExprs)));
496   result.addAttribute(::mlir::getIteratorTypesAttrName(),
497                       builder.getStrArrayAttr(iteratorTypes));
498 }
499 
500 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
501                                   Value lhs, Value rhs, Value acc,
502                                   ArrayAttr indexingMaps,
503                                   ArrayAttr iteratorTypes) {
504   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
505         ContractionOp::getDefaultKind());
506 }
507 
508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
509                                   Value lhs, Value rhs, Value acc,
510                                   ArrayAttr indexingMaps,
511                                   ArrayAttr iteratorTypes, CombiningKind kind) {
512   result.addOperands({lhs, rhs, acc});
513   result.addTypes(acc.getType());
514   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
515   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
516   result.addAttribute(ContractionOp::getKindAttrStrName(),
517                       CombiningKindAttr::get(kind, builder.getContext()));
518 }
519 
520 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
521   OpAsmParser::OperandType lhsInfo;
522   OpAsmParser::OperandType rhsInfo;
523   OpAsmParser::OperandType accInfo;
524   SmallVector<OpAsmParser::OperandType, 2> masksInfo;
525   SmallVector<Type, 2> types;
526   Type resultType;
527   auto loc = parser.getCurrentLocation();
528   DictionaryAttr dictAttr;
529   // TODO: Unify linalg op attribute parsing.
530   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
531       parser.parseOperand(lhsInfo) || parser.parseComma() ||
532       parser.parseOperand(rhsInfo) || parser.parseComma() ||
533       parser.parseOperand(accInfo) ||
534       parser.parseTrailingOperandList(masksInfo) ||
535       parser.parseOptionalAttrDict(result.attributes) ||
536       parser.parseColonTypeList(types) ||
537       parser.parseKeywordType("into", resultType) ||
538       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
539       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
540       parser.resolveOperand(accInfo, resultType, result.operands) ||
541       parser.addTypeToList(resultType, result.types))
542     return failure();
543   result.attributes.assign(dictAttr.getValue().begin(),
544                            dictAttr.getValue().end());
545   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
546     result.addAttribute(ContractionOp::getKindAttrStrName(),
547                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
548                                                result.getContext()));
549   }
550   if (masksInfo.empty())
551     return success();
552   if (masksInfo.size() != 2)
553     return parser.emitError(parser.getNameLoc(),
554                             "expected zero or exactly 2 vector mask operands");
555   auto lhsType = types[0].cast<VectorType>();
556   auto rhsType = types[1].cast<VectorType>();
557   auto maskElementType = parser.getBuilder().getI1Type();
558   std::array<Type, 2> maskTypes = {
559       VectorType::Builder(lhsType).setElementType(maskElementType),
560       VectorType::Builder(rhsType).setElementType(maskElementType)};
561   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
562     return failure();
563   return success();
564 }
565 
566 void ContractionOp::print(OpAsmPrinter &p) {
567   // TODO: Unify printing code with linalg ops.
568   auto attrNames = getTraitAttrNames();
569   llvm::StringSet<> traitAttrsSet;
570   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
571   SmallVector<NamedAttribute, 8> attrs;
572   for (auto attr : (*this)->getAttrs())
573     if (traitAttrsSet.count(attr.getName().strref()) > 0)
574       attrs.push_back(attr);
575 
576   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
577   p << " " << dictAttr << " " << lhs() << ", ";
578   p << rhs() << ", " << acc();
579   if (masks().size() == 2)
580     p << ", " << masks();
581 
582   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
583   p << " : " << lhs().getType() << ", " << rhs().getType() << " into "
584     << getResultType();
585 }
586 
587 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
588                          const std::vector<std::pair<int64_t, int64_t>> &map) {
589   for (auto &dimPair : map) {
590     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
591         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
592         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
593       return false;
594   }
595   return true;
596 }
597 
598 static LogicalResult verifyOutputShape(
599     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
600     Type resType,
601     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
602     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
603   DenseSet<int64_t> lhsContractingDimSet;
604   DenseSet<int64_t> rhsContractingDimSet;
605   for (auto &dimPair : contractingDimMap) {
606     lhsContractingDimSet.insert(dimPair.first);
607     rhsContractingDimSet.insert(dimPair.second);
608   }
609   DenseSet<int64_t> rhsBatchDimSet;
610   for (auto &dimPair : batchDimMap)
611     rhsBatchDimSet.insert(dimPair.second);
612 
613   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
614   SmallVector<int64_t, 4> expectedResultDims;
615   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
616     if (lhsContractingDimSet.count(i) > 0)
617       continue;
618     expectedResultDims.push_back(lhsType.getDimSize(i));
619   }
620 
621   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
622   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
623     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
624       continue;
625     expectedResultDims.push_back(rhsType.getDimSize(i));
626   }
627 
628   // Verify 'expectedResultDims'.
629   if (expectedResultDims.empty()) {
630     // No batch or free dimension implies a scalar result.
631     if (resType.isa<VectorType>() || accType.isa<VectorType>())
632       return op.emitOpError("invalid accumulator/result vector shape");
633   } else {
634     // At least one batch or free dimension implies a vector result.
635     auto resVectorType = resType.dyn_cast<VectorType>();
636     auto accVectorType = accType.dyn_cast<VectorType>();
637     if (!resVectorType || !accVectorType)
638       return op.emitOpError("invalid accumulator/result vector shape");
639 
640     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
641     // types fully define the result vector type. This assumes the affine maps
642     // are well-formed, which must have been verified already.
643     MLIRContext *ctx = op.getContext();
644     AffineMap lhsMap = op.getIndexingMaps()[0];
645     AffineMap rhsMap = op.getIndexingMaps()[1];
646     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
647     for (auto pair :
648          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
649       VectorType v = pair.first;
650       auto map = pair.second;
651       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
652         unsigned pos = map.getDimPosition(idx);
653         if (!extents[pos])
654           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
655       }
656     }
657     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
658            "expected extent along all dimensions.");
659 
660     AffineMap resMap = op.getIndexingMaps()[2];
661     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
662                                      /*symCount=*/0, extents, ctx);
663     // Compose the resMap with the extentsMap, which is a constant map.
664     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
665     assert(llvm::all_of(
666                expectedMap.getResults(),
667                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
668            "expected constant extent along all dimensions.");
669     // Extract the expected shape and build the type.
670     auto expectedShape = llvm::to_vector<4>(
671         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
672           return e.cast<AffineConstantExpr>().getValue();
673         }));
674     auto expected =
675         VectorType::get(expectedShape, resVectorType.getElementType());
676     if (resVectorType != expected || accVectorType != expected)
677       return op.emitOpError(
678                  "invalid accumulator/result vector shape, expected: ")
679              << expected;
680   }
681   return success();
682 }
683 
684 LogicalResult ContractionOp::verify() {
685   auto lhsType = getLhsType();
686   auto rhsType = getRhsType();
687   auto accType = getAccType();
688   auto resType = getResultType();
689 
690   // Verify that an indexing map was specified for each vector operand.
691   if (indexing_maps().size() != 3)
692     return emitOpError("expected an indexing map for each vector operand");
693 
694   // Verify that each index map has 'numIterators' inputs, no symbols, and
695   // that the number of map outputs equals the rank of its associated
696   // vector operand.
697   unsigned numIterators = iterator_types().getValue().size();
698   for (const auto &it : llvm::enumerate(indexing_maps())) {
699     auto index = it.index();
700     auto map = it.value();
701     if (map.getNumSymbols() != 0)
702       return emitOpError("expected indexing map ")
703              << index << " to have no symbols";
704     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
705     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
706     // Verify that the map has the right number of inputs, outputs, and indices.
707     // This also correctly accounts for (..) -> () for rank-0 results.
708     if (map.getNumDims() != numIterators)
709       return emitOpError("expected indexing map ")
710              << index << " to have " << numIterators << " number of inputs";
711     if (map.getNumResults() != rank)
712       return emitOpError("expected indexing map ")
713              << index << " to have " << rank << " number of outputs";
714     if (!map.isProjectedPermutation())
715       return emitOpError("expected indexing map ")
716              << index << " to be a projected permutation of its inputs";
717   }
718 
719   auto contractingDimMap = getContractingDimMap();
720   auto batchDimMap = getBatchDimMap();
721 
722   // Verify at least one contracting dimension pair was specified.
723   if (contractingDimMap.empty())
724     return emitOpError("expected at least one contracting dimension pair");
725 
726   // Verify contracting dimension map was properly constructed.
727   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
728     return emitOpError("invalid contracting dimension map");
729 
730   // Verify batch dimension map was properly constructed.
731   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
732     return emitOpError("invalid batch dimension map");
733 
734   // Verify 'accType' and 'resType' shape.
735   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
736                                contractingDimMap, batchDimMap)))
737     return failure();
738 
739   // Verify that either two vector masks are set or none are set.
740   auto lhsMaskType = getLHSVectorMaskType();
741   auto rhsMaskType = getRHSVectorMaskType();
742   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
743     return emitOpError("invalid number of vector masks specified");
744   if (lhsMaskType && rhsMaskType) {
745     // Verify mask rank == argument rank.
746     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
747         rhsMaskType.getShape().size() != rhsType.getShape().size())
748       return emitOpError("invalid vector mask rank");
749   }
750 
751   // Verify supported combining kind.
752   auto vectorType = resType.dyn_cast<VectorType>();
753   auto elementType = vectorType ? vectorType.getElementType() : resType;
754   if (!isSupportedCombiningKind(kind(), elementType))
755     return emitOpError("unsupported contraction type");
756 
757   return success();
758 }
759 
760 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
761   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
762                                          ::mlir::getIteratorTypesAttrName(),
763                                          ContractionOp::getKindAttrStrName()};
764   return llvm::makeArrayRef(names);
765 }
766 
767 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
768   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
769     if (targetExpr == map.getResult(i))
770       return i;
771   return -1;
772 }
773 
774 static std::vector<std::pair<int64_t, int64_t>>
775 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
776           StringRef targetIteratorTypeName, MLIRContext *context) {
777   std::vector<std::pair<int64_t, int64_t>> dimMap;
778   for (const auto &it : llvm::enumerate(iteratorTypes)) {
779     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
780     if (iteratorTypeName != targetIteratorTypeName)
781       continue;
782     // Search lhs/rhs map results for 'targetExpr'.
783     auto targetExpr = getAffineDimExpr(it.index(), context);
784     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
785     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
786     if (lhsDim >= 0 && rhsDim >= 0)
787       dimMap.emplace_back(lhsDim, rhsDim);
788   }
789   return dimMap;
790 }
791 
792 void ContractionOp::getIterationBounds(
793     SmallVectorImpl<int64_t> &iterationBounds) {
794   auto lhsShape = getLhsType().getShape();
795   auto resVectorType = getResultType().dyn_cast<VectorType>();
796   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
797   SmallVector<int64_t, 2> iterationShape;
798   for (const auto &it : llvm::enumerate(iterator_types())) {
799     // Search lhs/rhs map results for 'targetExpr'.
800     auto targetExpr = getAffineDimExpr(it.index(), getContext());
801     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
802     if (iteratorTypeName == getReductionIteratorTypeName()) {
803       // Get reduction dim size from lhs shape (same size in rhsShape).
804       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
805       assert(lhsDimIndex >= 0);
806       iterationBounds.push_back(lhsShape[lhsDimIndex]);
807       continue;
808     }
809     // Get parallel dimension size from result shape.
810     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
811     assert(resDimIndex >= 0);
812     assert(resVectorType != nullptr);
813     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
814   }
815 }
816 
817 void ContractionOp::getIterationIndexMap(
818     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
819   unsigned numMaps = indexing_maps().size();
820   iterationIndexMap.resize(numMaps);
821   for (const auto &it : llvm::enumerate(indexing_maps())) {
822     auto index = it.index();
823     auto map = it.value();
824     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
825       auto dim = map.getResult(i).cast<AffineDimExpr>();
826       iterationIndexMap[index][dim.getPosition()] = i;
827     }
828   }
829 }
830 
831 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
832   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
833   return getDimMap(indexingMaps, iterator_types(),
834                    getReductionIteratorTypeName(), getContext());
835 }
836 
837 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
838   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
839   return getDimMap(indexingMaps, iterator_types(),
840                    getParallelIteratorTypeName(), getContext());
841 }
842 
843 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
844   SmallVector<int64_t, 4> shape;
845   getIterationBounds(shape);
846   return shape;
847 }
848 
849 /// Return a fused vector::ContractionOp which represents a patterns such as:
850 ///
851 /// ```mlir
852 ///    %c0 = vector.constant 0: ...
853 ///    %c = vector.contract %a, %b, %c0: ...
854 ///    %e = add %c, %d: ...
855 /// ```
856 ///
857 /// by:
858 ///
859 /// ```mlir
860 ///    %e = vector.contract %a, %b, %d: ...
861 /// ```
862 ///
863 /// Return null if the canonicalization does not apply.
864 // TODO: This should be a folding of Add into Contract in core but while they
865 // live in different dialects, it is not possible without unnatural
866 // dependencies.
867 template <typename AddOpType>
868 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
869   using OpRewritePattern<AddOpType>::OpRewritePattern;
870 
871   LogicalResult matchAndRewrite(AddOpType addOp,
872                                 PatternRewriter &rewriter) const override {
873     auto canonicalize = [&](Value maybeContraction,
874                             Value otherOperand) -> vector::ContractionOp {
875       vector::ContractionOp contractionOp =
876           dyn_cast_or_null<vector::ContractionOp>(
877               maybeContraction.getDefiningOp());
878       if (!contractionOp)
879         return vector::ContractionOp();
880       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
881               contractionOp.acc().getDefiningOp())) {
882         if (maybeZero.getValue() ==
883             rewriter.getZeroAttr(contractionOp.acc().getType())) {
884           BlockAndValueMapping bvm;
885           bvm.map(contractionOp.acc(), otherOperand);
886           auto newContraction =
887               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
888           rewriter.replaceOp(addOp, newContraction.getResult());
889           return newContraction;
890         }
891       }
892       return vector::ContractionOp();
893     };
894 
895     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
896     vector::ContractionOp contract = canonicalize(a, b);
897     contract = contract ? contract : canonicalize(b, a);
898     return contract ? success() : failure();
899   }
900 };
901 
902 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
903                                                 MLIRContext *context) {
904   results.add<CanonicalizeContractAdd<arith::AddIOp>,
905               CanonicalizeContractAdd<arith::AddFOp>>(context);
906 }
907 
908 //===----------------------------------------------------------------------===//
909 // ExtractElementOp
910 //===----------------------------------------------------------------------===//
911 
912 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
913                                      Value source) {
914   result.addOperands({source});
915   result.addTypes(source.getType().cast<VectorType>().getElementType());
916 }
917 
918 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
919                                      Value source, Value position) {
920   result.addOperands({source, position});
921   result.addTypes(source.getType().cast<VectorType>().getElementType());
922 }
923 
924 LogicalResult vector::ExtractElementOp::verify() {
925   VectorType vectorType = getVectorType();
926   if (vectorType.getRank() == 0) {
927     if (position())
928       return emitOpError("expected position to be empty with 0-D vector");
929     return success();
930   }
931   if (vectorType.getRank() != 1)
932     return emitOpError("unexpected >1 vector rank");
933   if (!position())
934     return emitOpError("expected position for 1-D vector");
935   return success();
936 }
937 
938 //===----------------------------------------------------------------------===//
939 // ExtractOp
940 //===----------------------------------------------------------------------===//
941 
942 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
943                               Value source, ArrayRef<int64_t> position) {
944   build(builder, result, source, getVectorSubscriptAttr(builder, position));
945 }
946 
947 // Convenience builder which assumes the values are constant indices.
948 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
949                               Value source, ValueRange position) {
950   SmallVector<int64_t, 4> positionConstants =
951       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
952         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
953       }));
954   build(builder, result, source, positionConstants);
955 }
956 
957 LogicalResult
958 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
959                             ValueRange operands, DictionaryAttr attributes,
960                             RegionRange,
961                             SmallVectorImpl<Type> &inferredReturnTypes) {
962   ExtractOp::Adaptor op(operands, attributes);
963   auto vectorType = op.vector().getType().cast<VectorType>();
964   if (static_cast<int64_t>(op.position().size()) == vectorType.getRank()) {
965     inferredReturnTypes.push_back(vectorType.getElementType());
966   } else {
967     auto n = std::min<size_t>(op.position().size(), vectorType.getRank() - 1);
968     inferredReturnTypes.push_back(VectorType::get(
969         vectorType.getShape().drop_front(n), vectorType.getElementType()));
970   }
971   return success();
972 }
973 
974 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
975   // Allow extracting 1-element vectors instead of scalars.
976   auto isCompatible = [](TypeRange l, TypeRange r) {
977     auto vectorType = l.front().dyn_cast<VectorType>();
978     return vectorType && vectorType.getShape().equals({1}) &&
979            vectorType.getElementType() == r.front();
980   };
981   if (l.size() == 1 && r.size() == 1 &&
982       (isCompatible(l, r) || isCompatible(r, l)))
983     return true;
984   return l == r;
985 }
986 
987 LogicalResult vector::ExtractOp::verify() {
988   auto positionAttr = position().getValue();
989   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
990     return emitOpError(
991         "expected position attribute of rank smaller than vector rank");
992   for (const auto &en : llvm::enumerate(positionAttr)) {
993     auto attr = en.value().dyn_cast<IntegerAttr>();
994     if (!attr || attr.getInt() < 0 ||
995         attr.getInt() >= getVectorType().getDimSize(en.index()))
996       return emitOpError("expected position attribute #")
997              << (en.index() + 1)
998              << " to be a non-negative integer smaller than the corresponding "
999                 "vector dimension";
1000   }
1001   return success();
1002 }
1003 
1004 template <typename IntType>
1005 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1006   return llvm::to_vector<4>(llvm::map_range(
1007       arrayAttr.getAsRange<IntegerAttr>(),
1008       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1009 }
1010 
1011 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1012 /// positions.
1013 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1014   if (!extractOp.vector().getDefiningOp<ExtractOp>())
1015     return failure();
1016 
1017   SmallVector<int64_t, 4> globalPosition;
1018   ExtractOp currentOp = extractOp;
1019   auto extrPos = extractVector<int64_t>(currentOp.position());
1020   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1021   while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) {
1022     currentOp = nextOp;
1023     auto extrPos = extractVector<int64_t>(currentOp.position());
1024     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1025   }
1026   extractOp.setOperand(currentOp.vector());
1027   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1028   OpBuilder b(extractOp.getContext());
1029   std::reverse(globalPosition.begin(), globalPosition.end());
1030   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1031                      b.getI64ArrayAttr(globalPosition));
1032   return success();
1033 }
1034 
1035 namespace {
1036 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1037 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1038 /// Compose TransposeOp permutations as we walk back.
1039 /// This helper class keeps an updated extraction position `extractPosition`
1040 /// with extra trailing sentinels.
1041 /// The sentinels encode the internal transposition status of the result vector.
1042 /// As we iterate, extractPosition is permuted and updated.
1043 class ExtractFromInsertTransposeChainState {
1044 public:
1045   ExtractFromInsertTransposeChainState(ExtractOp e);
1046 
1047   /// Iterate over producing insert and transpose ops until we find a fold.
1048   Value fold();
1049 
1050 private:
1051   /// Return true if the vector at position `a` is contained within the vector
1052   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1053   /// is a prefix of `b`.
1054   template <typename ContainerA, typename ContainerB>
1055   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1056     return a.size() <= b.size() &&
1057            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1058   }
1059 
1060   /// Return true if the vector at position `a` intersects the vector at
1061   /// position `b`. Under insert/extract semantics, this is the same as equality
1062   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1063   /// Comparison is on the common prefix (i.e. zip).
1064   template <typename ContainerA, typename ContainerB>
1065   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1066     for (auto it : llvm::zip(a, b)) {
1067       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1068         continue;
1069       if (std::get<0>(it) != std::get<1>(it))
1070         return false;
1071     }
1072     return true;
1073   }
1074 
1075   /// Folding is only possible in the absence of an internal permutation in the
1076   /// result vector.
1077   bool canFold() {
1078     return (sentinels ==
1079             makeArrayRef(extractPosition).drop_front(extractedRank));
1080   }
1081 
1082   // Helper to get the next defining op of interest.
1083   void updateStateForNextIteration(Value v) {
1084     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1085     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1086   };
1087 
1088   // Case 1. If we hit a transpose, just compose the map and iterate.
1089   // Invariant: insert + transpose do not change rank, we can always compose.
1090   LogicalResult handleTransposeOp();
1091 
1092   // Case 2: the insert position matches extractPosition exactly, early return.
1093   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1094 
1095   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1096   /// portion of the source of the insert.
1097   /// Example:
1098   /// ```
1099   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1100   /// // extractPosition == [1, 2, 3]
1101   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1102   /// // can fold to vector.extract %source[0, 3]
1103   /// %ext = vector.extract %source[3]: vector<5x6>
1104   /// ```
1105   /// To traverse through %source, we need to set the leading dims to 0 and
1106   /// drop the extra leading dims.
1107   /// This method updates the internal state.
1108   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1109 
1110   /// Try to fold in place to extract(source, extractPosition) and return the
1111   /// folded result. Return null if folding is not possible (e.g. due to an
1112   /// internal tranposition in the result).
1113   Value tryToFoldExtractOpInPlace(Value source);
1114 
1115   ExtractOp extractOp;
1116   int64_t vectorRank;
1117   int64_t extractedRank;
1118 
1119   InsertOp nextInsertOp;
1120   TransposeOp nextTransposeOp;
1121 
1122   /// Sentinel values that encode the internal permutation status of the result.
1123   /// They are set to (-1, ... , -k) at the beginning and appended to
1124   /// `extractPosition`.
1125   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1126   /// ensure that there is no internal transposition.
1127   /// Internal transposition cannot be accounted for with a folding pattern.
1128   // TODO: We could relax the internal transposition with an extra transposition
1129   // operation in a future canonicalizer.
1130   SmallVector<int64_t> sentinels;
1131   SmallVector<int64_t> extractPosition;
1132 };
1133 } // namespace
1134 
1135 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1136     ExtractOp e)
1137     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1138       extractedRank(extractOp.position().size()) {
1139   assert(vectorRank >= extractedRank && "extracted pos overflow");
1140   sentinels.reserve(vectorRank - extractedRank);
1141   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1142     sentinels.push_back(-(i + 1));
1143   extractPosition = extractVector<int64_t>(extractOp.position());
1144   llvm::append_range(extractPosition, sentinels);
1145 }
1146 
1147 // Case 1. If we hit a transpose, just compose the map and iterate.
1148 // Invariant: insert + transpose do not change rank, we can always compose.
1149 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1150   if (!nextTransposeOp)
1151     return failure();
1152   auto permutation = extractVector<unsigned>(nextTransposeOp.transp());
1153   AffineMap m = inversePermutation(
1154       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1155   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1156   return success();
1157 }
1158 
1159 // Case 2: the insert position matches extractPosition exactly, early return.
1160 LogicalResult
1161 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1162     Value &res) {
1163   auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1164   if (makeArrayRef(insertedPos) !=
1165       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1166     return failure();
1167   // Case 2.a. early-exit fold.
1168   res = nextInsertOp.source();
1169   // Case 2.b. if internal transposition is present, canFold will be false.
1170   return success();
1171 }
1172 
1173 /// Case 3: if inserted position is a prefix of extractPosition,
1174 /// extract a portion of the source of the insertion.
1175 /// This method updates the internal state.
1176 LogicalResult
1177 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1178   auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1179   if (!isContainedWithin(insertedPos, extractPosition))
1180     return failure();
1181   // Set leading dims to zero.
1182   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1183   // Drop extra leading dims.
1184   extractPosition.erase(extractPosition.begin(),
1185                         extractPosition.begin() + insertedPos.size());
1186   extractedRank = extractPosition.size() - sentinels.size();
1187   // Case 3.a. early-exit fold (break and delegate to post-while path).
1188   res = nextInsertOp.source();
1189   // Case 3.b. if internal transposition is present, canFold will be false.
1190   return success();
1191 }
1192 
1193 /// Try to fold in place to extract(source, extractPosition) and return the
1194 /// folded result. Return null if folding is not possible (e.g. due to an
1195 /// internal tranposition in the result).
1196 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1197     Value source) {
1198   // If we can't fold (either internal transposition, or nothing to fold), bail.
1199   bool nothingToFold = (source == extractOp.vector());
1200   if (nothingToFold || !canFold())
1201     return Value();
1202   // Otherwise, fold by updating the op inplace and return its result.
1203   OpBuilder b(extractOp.getContext());
1204   extractOp->setAttr(
1205       extractOp.positionAttrName(),
1206       b.getI64ArrayAttr(
1207           makeArrayRef(extractPosition).take_front(extractedRank)));
1208   extractOp.vectorMutable().assign(source);
1209   return extractOp.getResult();
1210 }
1211 
1212 /// Iterate over producing insert and transpose ops until we find a fold.
1213 Value ExtractFromInsertTransposeChainState::fold() {
1214   Value valueToExtractFrom = extractOp.vector();
1215   updateStateForNextIteration(valueToExtractFrom);
1216   while (nextInsertOp || nextTransposeOp) {
1217     // Case 1. If we hit a transpose, just compose the map and iterate.
1218     // Invariant: insert + transpose do not change rank, we can always compose.
1219     if (succeeded(handleTransposeOp())) {
1220       valueToExtractFrom = nextTransposeOp.vector();
1221       updateStateForNextIteration(valueToExtractFrom);
1222       continue;
1223     }
1224 
1225     Value result;
1226     // Case 2: the position match exactly.
1227     if (succeeded(handleInsertOpWithMatchingPos(result)))
1228       return result;
1229 
1230     // Case 3: if the inserted position is a prefix of extractPosition, we can
1231     // just extract a portion of the source of the insert.
1232     if (succeeded(handleInsertOpWithPrefixPos(result)))
1233       return tryToFoldExtractOpInPlace(result);
1234 
1235     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1236     // values. This is a more difficult case and we bail.
1237     auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1238     if (isContainedWithin(extractPosition, insertedPos) ||
1239         intersectsWhereNonNegative(extractPosition, insertedPos))
1240       return Value();
1241 
1242     // Case 5: No intersection, we forward the extract to insertOp.dest().
1243     valueToExtractFrom = nextInsertOp.dest();
1244     updateStateForNextIteration(valueToExtractFrom);
1245   }
1246   // If after all this we can fold, go for it.
1247   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1248 }
1249 
1250 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1251 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1252   Operation *defOp = extractOp.vector().getDefiningOp();
1253   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1254     return Value();
1255   Value source = defOp->getOperand(0);
1256   if (extractOp.getType() == source.getType())
1257     return source;
1258   auto getRank = [](Type type) {
1259     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1260   };
1261   unsigned broadcastSrcRank = getRank(source.getType());
1262   unsigned extractResultRank = getRank(extractOp.getType());
1263   if (extractResultRank < broadcastSrcRank) {
1264     auto extractPos = extractVector<int64_t>(extractOp.position());
1265     unsigned rankDiff = broadcastSrcRank - extractResultRank;
1266     extractPos.erase(
1267         extractPos.begin(),
1268         std::next(extractPos.begin(), extractPos.size() - rankDiff));
1269     extractOp.setOperand(source);
1270     // OpBuilder is only used as a helper to build an I64ArrayAttr.
1271     OpBuilder b(extractOp.getContext());
1272     extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1273                        b.getI64ArrayAttr(extractPos));
1274     return extractOp.getResult();
1275   }
1276   return Value();
1277 }
1278 
1279 // Fold extractOp with source coming from ShapeCast op.
1280 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1281   auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>();
1282   if (!shapeCastOp)
1283     return Value();
1284   // Get the nth dimension size starting from lowest dimension.
1285   auto getDimReverse = [](VectorType type, int64_t n) {
1286     return type.getShape().take_back(n + 1).front();
1287   };
1288   int64_t destinationRank =
1289       extractOp.getType().isa<VectorType>()
1290           ? extractOp.getType().cast<VectorType>().getRank()
1291           : 0;
1292   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1293     return Value();
1294   if (destinationRank > 0) {
1295     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1296     for (int64_t i = 0; i < destinationRank; i++) {
1297       // The lowest dimension of of the destination must match the lowest
1298       // dimension of the shapecast op source.
1299       // TODO: This case could be support in a canonicalization pattern.
1300       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1301           getDimReverse(destinationType, i))
1302         return Value();
1303     }
1304   }
1305   // Extract the strides associated with the extract op vector source. Then use
1306   // this to calculate a linearized position for the extract.
1307   auto extractedPos = extractVector<int64_t>(extractOp.position());
1308   std::reverse(extractedPos.begin(), extractedPos.end());
1309   SmallVector<int64_t, 4> strides;
1310   int64_t stride = 1;
1311   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1312     strides.push_back(stride);
1313     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1314   }
1315 
1316   int64_t position = linearize(extractedPos, strides);
1317   // Then extract the strides associated to the shapeCast op vector source and
1318   // delinearize the position using those strides.
1319   SmallVector<int64_t, 4> newStrides;
1320   int64_t numDimension =
1321       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1322   stride = 1;
1323   for (int64_t i = 0; i < numDimension; i++) {
1324     newStrides.push_back(stride);
1325     stride *=
1326         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1327   }
1328   std::reverse(newStrides.begin(), newStrides.end());
1329   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1330   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1331   OpBuilder b(extractOp.getContext());
1332   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1333                      b.getI64ArrayAttr(newPosition));
1334   extractOp.setOperand(shapeCastOp.source());
1335   return extractOp.getResult();
1336 }
1337 
1338 /// Fold an ExtractOp from ExtractStridedSliceOp.
1339 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1340   auto extractStridedSliceOp =
1341       extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>();
1342   if (!extractStridedSliceOp)
1343     return Value();
1344   // Return if 'extractStridedSliceOp' has non-unit strides.
1345   if (extractStridedSliceOp.hasNonUnitStrides())
1346     return Value();
1347 
1348   // Trim offsets for dimensions fully extracted.
1349   auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets());
1350   while (!sliceOffsets.empty()) {
1351     size_t lastOffset = sliceOffsets.size() - 1;
1352     if (sliceOffsets.back() != 0 ||
1353         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1354             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1355       break;
1356     sliceOffsets.pop_back();
1357   }
1358   unsigned destinationRank = 0;
1359   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1360     destinationRank = vecType.getRank();
1361   // The dimensions of the result need to be untouched by the
1362   // extractStridedSlice op.
1363   if (destinationRank >
1364       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1365     return Value();
1366   auto extractedPos = extractVector<int64_t>(extractOp.position());
1367   assert(extractedPos.size() >= sliceOffsets.size());
1368   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1369     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1370   extractOp.vectorMutable().assign(extractStridedSliceOp.vector());
1371   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1372   OpBuilder b(extractOp.getContext());
1373   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1374                      b.getI64ArrayAttr(extractedPos));
1375   return extractOp.getResult();
1376 }
1377 
1378 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1379 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1380   int64_t destinationRank = op.getType().isa<VectorType>()
1381                                 ? op.getType().cast<VectorType>().getRank()
1382                                 : 0;
1383   auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>();
1384   while (insertOp) {
1385     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1386                              insertOp.getSourceVectorType().getRank();
1387     if (destinationRank > insertOp.getSourceVectorType().getRank())
1388       return Value();
1389     auto insertOffsets = extractVector<int64_t>(insertOp.offsets());
1390     auto extractOffsets = extractVector<int64_t>(op.position());
1391 
1392     if (llvm::any_of(insertOp.strides(), [](Attribute attr) {
1393           return attr.cast<IntegerAttr>().getInt() != 1;
1394         }))
1395       return Value();
1396     bool disjoint = false;
1397     SmallVector<int64_t, 4> offsetDiffs;
1398     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1399       int64_t start = insertOffsets[dim];
1400       int64_t size =
1401           (dim < insertRankDiff)
1402               ? 1
1403               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1404       int64_t end = start + size;
1405       int64_t offset = extractOffsets[dim];
1406       // Check if the start of the extract offset is in the interval inserted.
1407       if (start <= offset && offset < end) {
1408         if (dim >= insertRankDiff)
1409           offsetDiffs.push_back(offset - start);
1410         continue;
1411       }
1412       disjoint = true;
1413       break;
1414     }
1415     // The extract element chunk overlap with the vector inserted.
1416     if (!disjoint) {
1417       // If any of the inner dimensions are only partially inserted we have a
1418       // partial overlap.
1419       int64_t srcRankDiff =
1420           insertOp.getSourceVectorType().getRank() - destinationRank;
1421       for (int64_t i = 0; i < destinationRank; i++) {
1422         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1423             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1424                                                     insertRankDiff))
1425           return Value();
1426       }
1427       op.vectorMutable().assign(insertOp.source());
1428       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1429       OpBuilder b(op.getContext());
1430       op->setAttr(ExtractOp::getPositionAttrStrName(),
1431                   b.getI64ArrayAttr(offsetDiffs));
1432       return op.getResult();
1433     }
1434     // If the chunk extracted is disjoint from the chunk inserted, keep
1435     // looking in the insert chain.
1436     insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>();
1437   }
1438   return Value();
1439 }
1440 
1441 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1442   if (position().empty())
1443     return vector();
1444   if (succeeded(foldExtractOpFromExtractChain(*this)))
1445     return getResult();
1446   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1447     return res;
1448   if (auto res = foldExtractFromBroadcast(*this))
1449     return res;
1450   if (auto res = foldExtractFromShapeCast(*this))
1451     return res;
1452   if (auto val = foldExtractFromExtractStrided(*this))
1453     return val;
1454   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1455     return val;
1456   return OpFoldResult();
1457 }
1458 
1459 namespace {
1460 
1461 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1462 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1463 public:
1464   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1465 
1466   LogicalResult matchAndRewrite(ExtractOp extractOp,
1467                                 PatternRewriter &rewriter) const override {
1468     Operation *defOp = extractOp.vector().getDefiningOp();
1469     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1470       return failure();
1471     Value source = defOp->getOperand(0);
1472     if (extractOp.getType() == source.getType())
1473       return failure();
1474     auto getRank = [](Type type) {
1475       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1476     };
1477     unsigned broadcastSrcRank = getRank(source.getType());
1478     unsigned extractResultRank = getRank(extractOp.getType());
1479     // We only consider the case where the rank of the source is smaller than
1480     // the rank of the extract dst. The other cases are handled in the folding
1481     // patterns.
1482     if (extractResultRank <= broadcastSrcRank)
1483       return failure();
1484     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1485         extractOp, extractOp.getType(), source);
1486     return success();
1487   }
1488 };
1489 
1490 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1491 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1492 public:
1493   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1494 
1495   LogicalResult matchAndRewrite(ExtractOp extractOp,
1496                                 PatternRewriter &rewriter) const override {
1497     // Return if 'extractStridedSliceOp' operand is not defined by a
1498     // ConstantOp.
1499     auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>();
1500     if (!constantOp)
1501       return failure();
1502     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1503     if (!dense)
1504       return failure();
1505     Attribute newAttr = dense.getSplatValue<Attribute>();
1506     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1507       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1508     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1509     return success();
1510   }
1511 };
1512 
1513 } // namespace
1514 
1515 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1516                                             MLIRContext *context) {
1517   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1518 }
1519 
1520 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1521                                        SmallVectorImpl<int64_t> &results) {
1522   for (auto attr : arrayAttr)
1523     results.push_back(attr.cast<IntegerAttr>().getInt());
1524 }
1525 
1526 //===----------------------------------------------------------------------===//
1527 // ExtractMapOp
1528 //===----------------------------------------------------------------------===//
1529 
1530 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1531                          Value vector, ValueRange ids,
1532                          ArrayRef<int64_t> multiplicity,
1533                          AffineMap permutationMap) {
1534   assert(ids.size() == multiplicity.size() &&
1535          ids.size() == permutationMap.getNumResults());
1536   assert(permutationMap.isProjectedPermutation());
1537   VectorType type = vector.getType().cast<VectorType>();
1538   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1539                                    type.getShape().end());
1540   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1541     AffineExpr expr = permutationMap.getResult(i);
1542     auto dim = expr.cast<AffineDimExpr>();
1543     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1544   }
1545   VectorType resultType = VectorType::get(newShape, type.getElementType());
1546   ExtractMapOp::build(builder, result, resultType, vector, ids);
1547 }
1548 
1549 LogicalResult ExtractMapOp::verify() {
1550   if (getSourceVectorType().getRank() != getResultType().getRank())
1551     return emitOpError("expected source and destination vectors of same rank");
1552   unsigned numId = 0;
1553   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1554     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1555         0)
1556       return emitOpError("source vector dimensions must be a multiple of "
1557                          "destination vector dimensions");
1558     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1559       numId++;
1560   }
1561   if (numId != ids().size())
1562     return emitOpError("expected number of ids must match the number of "
1563                        "dimensions distributed");
1564   return success();
1565 }
1566 
1567 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1568   auto insert = vector().getDefiningOp<vector::InsertMapOp>();
1569   if (insert == nullptr || getType() != insert.vector().getType() ||
1570       ids() != insert.ids())
1571     return {};
1572   return insert.vector();
1573 }
1574 
1575 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1576   assert(multiplicity.empty());
1577   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1578     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1579       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1580                              getResultType().getDimSize(i));
1581   }
1582 }
1583 
1584 template <typename MapOp>
1585 AffineMap calculateImplicitMap(MapOp op) {
1586   SmallVector<AffineExpr, 4> perm;
1587   // Check which dimension have a multiplicity greater than 1 and associated
1588   // them to the IDs in order.
1589   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1590     if (op.getSourceVectorType().getDimSize(i) !=
1591         op.getResultType().getDimSize(i))
1592       perm.push_back(getAffineDimExpr(i, op.getContext()));
1593   }
1594   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1595                             op.getContext());
1596   return map;
1597 }
1598 
1599 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1600 
1601 //===----------------------------------------------------------------------===//
1602 // FmaOp
1603 //===----------------------------------------------------------------------===//
1604 
1605 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1606   return llvm::to_vector<4>(getVectorType().getShape());
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 // BroadcastOp
1611 //===----------------------------------------------------------------------===//
1612 
1613 BroadcastableToResult
1614 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1615                                 std::pair<int, int> *mismatchingDims) {
1616   // Broadcast scalar to vector of the same element type.
1617   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1618       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1619     return BroadcastableToResult::Success;
1620   // From now on, only vectors broadcast.
1621   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1622   if (!srcVectorType)
1623     return BroadcastableToResult::SourceTypeNotAVector;
1624 
1625   int64_t srcRank = srcVectorType.getRank();
1626   int64_t dstRank = dstVectorType.getRank();
1627   if (srcRank > dstRank)
1628     return BroadcastableToResult::SourceRankHigher;
1629   // Source has an exact match or singleton value for all trailing dimensions
1630   // (all leading dimensions are simply duplicated).
1631   int64_t lead = dstRank - srcRank;
1632   for (int64_t r = 0; r < srcRank; ++r) {
1633     int64_t srcDim = srcVectorType.getDimSize(r);
1634     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1635     if (srcDim != 1 && srcDim != dstDim) {
1636       if (mismatchingDims) {
1637         mismatchingDims->first = srcDim;
1638         mismatchingDims->second = dstDim;
1639       }
1640       return BroadcastableToResult::DimensionMismatch;
1641     }
1642   }
1643 
1644   return BroadcastableToResult::Success;
1645 }
1646 
1647 LogicalResult BroadcastOp::verify() {
1648   std::pair<int, int> mismatchingDims;
1649   BroadcastableToResult res =
1650       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1651   if (res == BroadcastableToResult::Success)
1652     return success();
1653   if (res == BroadcastableToResult::SourceRankHigher)
1654     return emitOpError("source rank higher than destination rank");
1655   if (res == BroadcastableToResult::DimensionMismatch)
1656     return emitOpError("dimension mismatch (")
1657            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1658   if (res == BroadcastableToResult::SourceTypeNotAVector)
1659     return emitOpError("source type is not a vector");
1660   llvm_unreachable("unexpected vector.broadcast op error");
1661 }
1662 
1663 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1664   if (getSourceType() == getVectorType())
1665     return source();
1666   if (!operands[0])
1667     return {};
1668   auto vectorType = getVectorType();
1669   if (operands[0].getType().isIntOrIndexOrFloat())
1670     return DenseElementsAttr::get(vectorType, operands[0]);
1671   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1672     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1673   return {};
1674 }
1675 
1676 namespace {
1677 
1678 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1679 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1680   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1681 
1682   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1683                                 PatternRewriter &rewriter) const override {
1684     auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>();
1685     if (!srcBroadcast)
1686       return failure();
1687     rewriter.replaceOpWithNewOp<BroadcastOp>(
1688         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source());
1689     return success();
1690   }
1691 };
1692 } // namespace
1693 
1694 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1695                                               MLIRContext *context) {
1696   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1697   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1698   results.add<BroadcastFolder>(context);
1699 }
1700 
1701 //===----------------------------------------------------------------------===//
1702 // ShuffleOp
1703 //===----------------------------------------------------------------------===//
1704 
1705 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1706                       Value v2, ArrayRef<int64_t> mask) {
1707   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1708 }
1709 
1710 LogicalResult ShuffleOp::verify() {
1711   VectorType resultType = getVectorType();
1712   VectorType v1Type = getV1VectorType();
1713   VectorType v2Type = getV2VectorType();
1714   // Verify ranks.
1715   int64_t resRank = resultType.getRank();
1716   int64_t v1Rank = v1Type.getRank();
1717   int64_t v2Rank = v2Type.getRank();
1718   if (resRank != v1Rank || v1Rank != v2Rank)
1719     return emitOpError("rank mismatch");
1720   // Verify all but leading dimension sizes.
1721   for (int64_t r = 1; r < v1Rank; ++r) {
1722     int64_t resDim = resultType.getDimSize(r);
1723     int64_t v1Dim = v1Type.getDimSize(r);
1724     int64_t v2Dim = v2Type.getDimSize(r);
1725     if (resDim != v1Dim || v1Dim != v2Dim)
1726       return emitOpError("dimension mismatch");
1727   }
1728   // Verify mask length.
1729   auto maskAttr = mask().getValue();
1730   int64_t maskLength = maskAttr.size();
1731   if (maskLength <= 0)
1732     return emitOpError("invalid mask length");
1733   if (maskLength != resultType.getDimSize(0))
1734     return emitOpError("mask length mismatch");
1735   // Verify all indices.
1736   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1737   for (const auto &en : llvm::enumerate(maskAttr)) {
1738     auto attr = en.value().dyn_cast<IntegerAttr>();
1739     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1740       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1741   }
1742   return success();
1743 }
1744 
1745 LogicalResult
1746 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1747                             ValueRange operands, DictionaryAttr attributes,
1748                             RegionRange,
1749                             SmallVectorImpl<Type> &inferredReturnTypes) {
1750   ShuffleOp::Adaptor op(operands, attributes);
1751   auto v1Type = op.v1().getType().cast<VectorType>();
1752   // Construct resulting type: leading dimension matches mask length,
1753   // all trailing dimensions match the operands.
1754   SmallVector<int64_t, 4> shape;
1755   shape.reserve(v1Type.getRank());
1756   shape.push_back(std::max<size_t>(1, op.mask().size()));
1757   llvm::append_range(shape, v1Type.getShape().drop_front());
1758   inferredReturnTypes.push_back(
1759       VectorType::get(shape, v1Type.getElementType()));
1760   return success();
1761 }
1762 
1763 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1764   Attribute lhs = operands.front(), rhs = operands.back();
1765   if (!lhs || !rhs)
1766     return {};
1767 
1768   auto lhsType = lhs.getType().cast<VectorType>();
1769   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1770   // manipulation.
1771   if (lhsType.getRank() != 1)
1772     return {};
1773   int64_t lhsSize = lhsType.getDimSize(0);
1774 
1775   SmallVector<Attribute> results;
1776   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1777   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1778   for (const auto &index : this->mask().getAsValueRange<IntegerAttr>()) {
1779     int64_t i = index.getZExtValue();
1780     if (i >= lhsSize) {
1781       results.push_back(rhsElements[i - lhsSize]);
1782     } else {
1783       results.push_back(lhsElements[i]);
1784     }
1785   }
1786 
1787   return DenseElementsAttr::get(getVectorType(), results);
1788 }
1789 
1790 //===----------------------------------------------------------------------===//
1791 // InsertElementOp
1792 //===----------------------------------------------------------------------===//
1793 
1794 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1795                             Value source, Value dest) {
1796   build(builder, result, source, dest, {});
1797 }
1798 
1799 LogicalResult InsertElementOp::verify() {
1800   auto dstVectorType = getDestVectorType();
1801   if (dstVectorType.getRank() == 0) {
1802     if (position())
1803       return emitOpError("expected position to be empty with 0-D vector");
1804     return success();
1805   }
1806   if (dstVectorType.getRank() != 1)
1807     return emitOpError("unexpected >1 vector rank");
1808   if (!position())
1809     return emitOpError("expected position for 1-D vector");
1810   return success();
1811 }
1812 
1813 //===----------------------------------------------------------------------===//
1814 // InsertOp
1815 //===----------------------------------------------------------------------===//
1816 
1817 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1818                      Value dest, ArrayRef<int64_t> position) {
1819   result.addOperands({source, dest});
1820   auto positionAttr = getVectorSubscriptAttr(builder, position);
1821   result.addTypes(dest.getType());
1822   result.addAttribute(getPositionAttrStrName(), positionAttr);
1823 }
1824 
1825 // Convenience builder which assumes the values are constant indices.
1826 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1827                      Value dest, ValueRange position) {
1828   SmallVector<int64_t, 4> positionConstants =
1829       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1830         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1831       }));
1832   build(builder, result, source, dest, positionConstants);
1833 }
1834 
1835 LogicalResult InsertOp::verify() {
1836   auto positionAttr = position().getValue();
1837   auto destVectorType = getDestVectorType();
1838   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1839     return emitOpError(
1840         "expected position attribute of rank smaller than dest vector rank");
1841   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1842   if (srcVectorType &&
1843       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1844        static_cast<unsigned>(destVectorType.getRank())))
1845     return emitOpError("expected position attribute rank + source rank to "
1846                           "match dest vector rank");
1847   if (!srcVectorType &&
1848       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1849     return emitOpError(
1850         "expected position attribute rank to match the dest vector rank");
1851   for (const auto &en : llvm::enumerate(positionAttr)) {
1852     auto attr = en.value().dyn_cast<IntegerAttr>();
1853     if (!attr || attr.getInt() < 0 ||
1854         attr.getInt() >= destVectorType.getDimSize(en.index()))
1855       return emitOpError("expected position attribute #")
1856              << (en.index() + 1)
1857              << " to be a non-negative integer smaller than the corresponding "
1858                 "dest vector dimension";
1859   }
1860   return success();
1861 }
1862 
1863 namespace {
1864 
1865 // If insertOp is only inserting unit dimensions it can be transformed to a
1866 // broadcast.
1867 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1868 public:
1869   using OpRewritePattern<InsertOp>::OpRewritePattern;
1870 
1871   LogicalResult matchAndRewrite(InsertOp insertOp,
1872                                 PatternRewriter &rewriter) const override {
1873     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1874     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1875                            srcVecType.getNumElements())
1876       return failure();
1877     rewriter.replaceOpWithNewOp<BroadcastOp>(
1878         insertOp, insertOp.getDestVectorType(), insertOp.source());
1879     return success();
1880   }
1881 };
1882 
1883 } // namespace
1884 
1885 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1886                                            MLIRContext *context) {
1887   results.add<InsertToBroadcast, BroadcastFolder>(context);
1888 }
1889 
1890 // Eliminates insert operations that produce values identical to their source
1891 // value. This happens when the source and destination vectors have identical
1892 // sizes.
1893 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1894   if (position().empty())
1895     return source();
1896   return {};
1897 }
1898 
1899 //===----------------------------------------------------------------------===//
1900 // InsertMapOp
1901 //===----------------------------------------------------------------------===//
1902 
1903 LogicalResult InsertMapOp::verify() {
1904   if (getSourceVectorType().getRank() != getResultType().getRank())
1905     return emitOpError("expected source and destination vectors of same rank");
1906   unsigned numId = 0;
1907   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1908     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1909         0)
1910       return emitOpError(
1911           "destination vector size must be a multiple of source vector size");
1912     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1913       numId++;
1914   }
1915   if (numId != ids().size())
1916     return emitOpError("expected number of ids must match the number of "
1917                        "dimensions distributed");
1918   return success();
1919 }
1920 
1921 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
1922 
1923 //===----------------------------------------------------------------------===//
1924 // InsertStridedSliceOp
1925 //===----------------------------------------------------------------------===//
1926 
1927 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
1928                                  Value source, Value dest,
1929                                  ArrayRef<int64_t> offsets,
1930                                  ArrayRef<int64_t> strides) {
1931   result.addOperands({source, dest});
1932   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
1933   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
1934   result.addTypes(dest.getType());
1935   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
1936   result.addAttribute(getStridesAttrStrName(), stridesAttr);
1937 }
1938 
1939 // TODO: Should be moved to Tablegen Confined attributes.
1940 template <typename OpType>
1941 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
1942                                                         ArrayAttr arrayAttr,
1943                                                         ArrayRef<int64_t> shape,
1944                                                         StringRef attrName) {
1945   if (arrayAttr.size() > shape.size())
1946     return op.emitOpError("expected ")
1947            << attrName << " attribute of rank smaller than vector rank";
1948   return success();
1949 }
1950 
1951 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
1952 // interval. If `halfOpen` is true then the admissible interval is [min, max).
1953 // Otherwise, the admissible interval is [min, max].
1954 template <typename OpType>
1955 static LogicalResult
1956 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
1957                                   int64_t max, StringRef attrName,
1958                                   bool halfOpen = true) {
1959   for (auto attr : arrayAttr) {
1960     auto val = attr.cast<IntegerAttr>().getInt();
1961     auto upper = max;
1962     if (!halfOpen)
1963       upper += 1;
1964     if (val < min || val >= upper)
1965       return op.emitOpError("expected ") << attrName << " to be confined to ["
1966                                          << min << ", " << upper << ")";
1967   }
1968   return success();
1969 }
1970 
1971 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
1972 // interval. If `halfOpen` is true then the admissible interval is [min, max).
1973 // Otherwise, the admissible interval is [min, max].
1974 template <typename OpType>
1975 static LogicalResult
1976 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
1977                                   ArrayRef<int64_t> shape, StringRef attrName,
1978                                   bool halfOpen = true, int64_t min = 0) {
1979   assert(arrayAttr.size() <= shape.size());
1980   unsigned index = 0;
1981   for (auto it : llvm::zip(arrayAttr, shape)) {
1982     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
1983     auto max = std::get<1>(it);
1984     if (!halfOpen)
1985       max += 1;
1986     if (val < min || val >= max)
1987       return op.emitOpError("expected ")
1988              << attrName << " dimension " << index << " to be confined to ["
1989              << min << ", " << max << ")";
1990     ++index;
1991   }
1992   return success();
1993 }
1994 
1995 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
1996 // interval. If `halfOpen` is true then the admissible interval is [min, max).
1997 // Otherwise, the admissible interval is [min, max].
1998 template <typename OpType>
1999 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2000     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2001     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2002     bool halfOpen = true, int64_t min = 1) {
2003   assert(arrayAttr1.size() <= shape.size());
2004   assert(arrayAttr2.size() <= shape.size());
2005   unsigned index = 0;
2006   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2007     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2008     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2009     auto max = std::get<2>(it);
2010     if (!halfOpen)
2011       max += 1;
2012     if (val1 + val2 < 0 || val1 + val2 >= max)
2013       return op.emitOpError("expected sum(")
2014              << attrName1 << ", " << attrName2 << ") dimension " << index
2015              << " to be confined to [" << min << ", " << max << ")";
2016     ++index;
2017   }
2018   return success();
2019 }
2020 
2021 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2022                                   MLIRContext *context) {
2023   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2024     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2025   });
2026   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2027 }
2028 
2029 LogicalResult InsertStridedSliceOp::verify() {
2030   auto sourceVectorType = getSourceVectorType();
2031   auto destVectorType = getDestVectorType();
2032   auto offsets = offsetsAttr();
2033   auto strides = stridesAttr();
2034   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2035     return emitOpError(
2036         "expected offsets of same size as destination vector rank");
2037   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2038     return emitOpError("expected strides of same size as source vector rank");
2039   if (sourceVectorType.getRank() > destVectorType.getRank())
2040     return emitOpError(
2041         "expected source rank to be smaller than destination rank");
2042 
2043   auto sourceShape = sourceVectorType.getShape();
2044   auto destShape = destVectorType.getShape();
2045   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2046       destShape.size() - sourceShape.size(), 0);
2047   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2048   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2049   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2050   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2051                                                offName)) ||
2052       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2053                                                stridesName,
2054                                                /*halfOpen=*/false)) ||
2055       failed(isSumOfIntegerArrayAttrConfinedToShape(
2056           *this, offsets,
2057           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2058           offName, "source vector shape",
2059           /*halfOpen=*/false, /*min=*/1)))
2060     return failure();
2061 
2062   return success();
2063 }
2064 
2065 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2066   if (getSourceVectorType() == getDestVectorType())
2067     return source();
2068   return {};
2069 }
2070 
2071 //===----------------------------------------------------------------------===//
2072 // OuterProductOp
2073 //===----------------------------------------------------------------------===//
2074 
2075 /// Build an op without mask, use the type of `acc` as the return type.
2076 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2077                            Value lhs, Value rhs, Value acc) {
2078   result.addOperands({lhs, rhs, acc});
2079   result.addTypes(acc.getType());
2080 }
2081 
2082 void OuterProductOp::print(OpAsmPrinter &p) {
2083   p << " " << lhs() << ", " << rhs();
2084   if (!acc().empty()) {
2085     p << ", " << acc();
2086     p.printOptionalAttrDict((*this)->getAttrs());
2087   }
2088   p << " : " << lhs().getType() << ", " << rhs().getType();
2089 }
2090 
2091 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2092   SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
2093   Type tLHS, tRHS;
2094   if (parser.parseOperandList(operandsInfo) ||
2095       parser.parseOptionalAttrDict(result.attributes) ||
2096       parser.parseColonType(tLHS) || parser.parseComma() ||
2097       parser.parseType(tRHS))
2098     return failure();
2099   if (operandsInfo.size() < 2)
2100     return parser.emitError(parser.getNameLoc(),
2101                             "expected at least 2 operands");
2102   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2103   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2104   if (!vLHS)
2105     return parser.emitError(parser.getNameLoc(),
2106                             "expected vector type for operand #1");
2107   VectorType resType =
2108       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2109                              vLHS.getElementType())
2110            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2111 
2112   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2113     result.attributes.append(
2114         OuterProductOp::getKindAttrStrName(),
2115         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2116                                result.getContext()));
2117   }
2118 
2119   return failure(
2120       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2121       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2122       (operandsInfo.size() > 2 &&
2123        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2124       parser.addTypeToList(resType, result.types));
2125 }
2126 
2127 LogicalResult OuterProductOp::verify() {
2128   Type tRHS = getOperandTypeRHS();
2129   VectorType vLHS = getOperandVectorTypeLHS(),
2130              vRHS = tRHS.dyn_cast<VectorType>(),
2131              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2132 
2133   if (vLHS.getRank() != 1)
2134     return emitOpError("expected 1-d vector for operand #1");
2135 
2136   if (vRHS) {
2137     // Proper OUTER operation.
2138     if (vRHS.getRank() != 1)
2139       return emitOpError("expected 1-d vector for operand #2");
2140     if (vRES.getRank() != 2)
2141       return emitOpError("expected 2-d vector result");
2142     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2143       return emitOpError("expected #1 operand dim to match result dim #1");
2144     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2145       return emitOpError("expected #2 operand dim to match result dim #2");
2146   } else {
2147     // An AXPY operation.
2148     if (vRES.getRank() != 1)
2149       return emitOpError("expected 1-d vector result");
2150     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2151       return emitOpError("expected #1 operand dim to match result dim #1");
2152   }
2153 
2154   if (vACC && vACC != vRES)
2155     return emitOpError("expected operand #3 of same type as result type");
2156 
2157   // Verify supported combining kind.
2158   if (!isSupportedCombiningKind(kind(), vRES.getElementType()))
2159     return emitOpError("unsupported outerproduct type");
2160 
2161   return success();
2162 }
2163 
2164 //===----------------------------------------------------------------------===//
2165 // ReshapeOp
2166 //===----------------------------------------------------------------------===//
2167 
2168 LogicalResult ReshapeOp::verify() {
2169   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2170   auto inputVectorType = getInputVectorType();
2171   auto outputVectorType = getOutputVectorType();
2172   int64_t inputShapeRank = getNumInputShapeSizes();
2173   int64_t outputShapeRank = getNumOutputShapeSizes();
2174   SmallVector<int64_t, 4> fixedVectorSizes;
2175   getFixedVectorSizes(fixedVectorSizes);
2176   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2177 
2178   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2179     return emitError("invalid input shape for vector type ")
2180            << inputVectorType;
2181 
2182   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2183     return emitError("invalid output shape for vector type ")
2184            << outputVectorType;
2185 
2186   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2187   // suffix.
2188   unsigned inputVectorRank = inputVectorType.getRank();
2189   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2190     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2191     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2192       return emitError("fixed vector size must match input vector for dim ")
2193              << i;
2194   }
2195 
2196   unsigned outputVectorRank = outputVectorType.getRank();
2197   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2198     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2199     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2200       return emitError("fixed vector size must match output vector for dim ")
2201              << i;
2202   }
2203 
2204   // If all shape operands are produced by constant ops, verify that product
2205   // of dimensions for input/output shape match.
2206   auto isDefByConstant = [](Value operand) {
2207     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2208   };
2209   if (llvm::all_of(input_shape(), isDefByConstant) &&
2210       llvm::all_of(output_shape(), isDefByConstant)) {
2211     int64_t numInputElements = 1;
2212     for (auto operand : input_shape())
2213       numInputElements *=
2214           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2215     int64_t numOutputElements = 1;
2216     for (auto operand : output_shape())
2217       numOutputElements *=
2218           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2219     if (numInputElements != numOutputElements)
2220       return emitError("product of input and output shape sizes must match");
2221   }
2222   return success();
2223 }
2224 
2225 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2226   populateFromInt64AttrArray(fixed_vector_sizes(), results);
2227 }
2228 
2229 //===----------------------------------------------------------------------===//
2230 // ExtractStridedSliceOp
2231 //===----------------------------------------------------------------------===//
2232 
2233 // Inference works as follows:
2234 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2235 //   2. Add sizes from 'vectorType' for remaining dims.
2236 static Type inferStridedSliceOpResultType(VectorType vectorType,
2237                                           ArrayAttr offsets, ArrayAttr sizes,
2238                                           ArrayAttr strides) {
2239   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2240   SmallVector<int64_t, 4> shape;
2241   shape.reserve(vectorType.getRank());
2242   unsigned idx = 0;
2243   for (unsigned e = offsets.size(); idx < e; ++idx)
2244     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2245   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2246     shape.push_back(vectorType.getShape()[idx]);
2247 
2248   return VectorType::get(shape, vectorType.getElementType());
2249 }
2250 
2251 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2252                                   Value source, ArrayRef<int64_t> offsets,
2253                                   ArrayRef<int64_t> sizes,
2254                                   ArrayRef<int64_t> strides) {
2255   result.addOperands(source);
2256   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2257   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2258   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2259   result.addTypes(
2260       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2261                                     offsetsAttr, sizesAttr, stridesAttr));
2262   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2263   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2264   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2265 }
2266 
2267 LogicalResult ExtractStridedSliceOp::verify() {
2268   auto type = getVectorType();
2269   auto offsets = offsetsAttr();
2270   auto sizes = sizesAttr();
2271   auto strides = stridesAttr();
2272   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2273     return emitOpError("expected offsets, sizes and strides attributes of same size");
2274 
2275   auto shape = type.getShape();
2276   auto offName = getOffsetsAttrName();
2277   auto sizesName = getSizesAttrName();
2278   auto stridesName = getStridesAttrName();
2279   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2280       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2281       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2282                                                 stridesName)) ||
2283       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2284       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2285                                                /*halfOpen=*/false,
2286                                                /*min=*/1)) ||
2287       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2288                                                /*halfOpen=*/false)) ||
2289       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2290                                                     offName, sizesName,
2291                                                     /*halfOpen=*/false)))
2292     return failure();
2293 
2294   auto resultType =
2295       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2296   if (getResult().getType() != resultType)
2297     return emitOpError("expected result type to be ") << resultType;
2298 
2299   return success();
2300 }
2301 
2302 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2303 // to use the source of the InsertStrided ops if we can detect that the
2304 // extracted vector is a subset of one of the vector inserted.
2305 static LogicalResult
2306 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2307   // Helper to extract integer out of ArrayAttr.
2308   auto getElement = [](ArrayAttr array, int idx) {
2309     return array[idx].cast<IntegerAttr>().getInt();
2310   };
2311   ArrayAttr extractOffsets = op.offsets();
2312   ArrayAttr extractStrides = op.strides();
2313   ArrayAttr extractSizes = op.sizes();
2314   auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>();
2315   while (insertOp) {
2316     if (op.getVectorType().getRank() !=
2317         insertOp.getSourceVectorType().getRank())
2318       return failure();
2319     ArrayAttr insertOffsets = insertOp.offsets();
2320     ArrayAttr insertStrides = insertOp.strides();
2321     // If the rank of extract is greater than the rank of insert, we are likely
2322     // extracting a partial chunk of the vector inserted.
2323     if (extractOffsets.size() > insertOffsets.size())
2324       return failure();
2325     bool patialoverlap = false;
2326     bool disjoint = false;
2327     SmallVector<int64_t, 4> offsetDiffs;
2328     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2329       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2330         return failure();
2331       int64_t start = getElement(insertOffsets, dim);
2332       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2333       int64_t offset = getElement(extractOffsets, dim);
2334       int64_t size = getElement(extractSizes, dim);
2335       // Check if the start of the extract offset is in the interval inserted.
2336       if (start <= offset && offset < end) {
2337         // If the extract interval overlaps but is not fully included we may
2338         // have a partial overlap that will prevent any folding.
2339         if (offset + size > end)
2340           patialoverlap = true;
2341         offsetDiffs.push_back(offset - start);
2342         continue;
2343       }
2344       disjoint = true;
2345       break;
2346     }
2347     // The extract element chunk is a subset of the insert element.
2348     if (!disjoint && !patialoverlap) {
2349       op.setOperand(insertOp.source());
2350       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2351       OpBuilder b(op.getContext());
2352       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2353                   b.getI64ArrayAttr(offsetDiffs));
2354       return success();
2355     }
2356     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2357     // in the insert chain.
2358     if (disjoint)
2359       insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>();
2360     else {
2361       // The extracted vector partially overlap the inserted vector, we cannot
2362       // fold.
2363       return failure();
2364     }
2365   }
2366   return failure();
2367 }
2368 
2369 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2370   if (getVectorType() == getResult().getType())
2371     return vector();
2372   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2373     return getResult();
2374   return {};
2375 }
2376 
2377 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2378   populateFromInt64AttrArray(offsets(), results);
2379 }
2380 
2381 namespace {
2382 
2383 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2384 // ConstantMaskOp.
2385 class StridedSliceConstantMaskFolder final
2386     : public OpRewritePattern<ExtractStridedSliceOp> {
2387 public:
2388   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2389 
2390   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2391                                 PatternRewriter &rewriter) const override {
2392     // Return if 'extractStridedSliceOp' operand is not defined by a
2393     // ConstantMaskOp.
2394     auto *defOp = extractStridedSliceOp.vector().getDefiningOp();
2395     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2396     if (!constantMaskOp)
2397       return failure();
2398     // Return if 'extractStridedSliceOp' has non-unit strides.
2399     if (extractStridedSliceOp.hasNonUnitStrides())
2400       return failure();
2401     // Gather constant mask dimension sizes.
2402     SmallVector<int64_t, 4> maskDimSizes;
2403     populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
2404     // Gather strided slice offsets and sizes.
2405     SmallVector<int64_t, 4> sliceOffsets;
2406     populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets);
2407     SmallVector<int64_t, 4> sliceSizes;
2408     populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes);
2409 
2410     // Compute slice of vector mask region.
2411     SmallVector<int64_t, 4> sliceMaskDimSizes;
2412     assert(sliceOffsets.size() == maskDimSizes.size());
2413     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2414       int64_t maskDimSize = std::get<0>(it);
2415       int64_t sliceOffset = std::get<1>(it);
2416       int64_t sliceSize = std::get<2>(it);
2417       int64_t sliceMaskDimSize = std::max(
2418           static_cast<int64_t>(0),
2419           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2420       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2421     }
2422     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2423     // region is a conjunction of mask dim intervals).
2424     if (llvm::is_contained(sliceMaskDimSizes, 0))
2425       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2426 
2427     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2428     // region.
2429     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2430         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2431         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2432     return success();
2433   }
2434 };
2435 
2436 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2437 class StridedSliceConstantFolder final
2438     : public OpRewritePattern<ExtractStridedSliceOp> {
2439 public:
2440   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2441 
2442   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2443                                 PatternRewriter &rewriter) const override {
2444     // Return if 'extractStridedSliceOp' operand is not defined by a
2445     // ConstantOp.
2446     auto constantOp =
2447         extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>();
2448     if (!constantOp)
2449       return failure();
2450     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2451     if (!dense)
2452       return failure();
2453     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2454                                           dense.getSplatValue<Attribute>());
2455     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2456                                                    newAttr);
2457     return success();
2458   }
2459 };
2460 
2461 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2462 // BroadcastOp(ExtractStrideSliceOp).
2463 class StridedSliceBroadcast final
2464     : public OpRewritePattern<ExtractStridedSliceOp> {
2465 public:
2466   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2467 
2468   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2469                                 PatternRewriter &rewriter) const override {
2470     auto broadcast = op.vector().getDefiningOp<BroadcastOp>();
2471     if (!broadcast)
2472       return failure();
2473     auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>();
2474     unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0;
2475     auto dstVecType = op.getType().cast<VectorType>();
2476     unsigned dstRank = dstVecType.getRank();
2477     unsigned rankDiff = dstRank - srcRrank;
2478     // Check if the most inner dimensions of the source of the broadcast are the
2479     // same as the destination of the extract. If this is the case we can just
2480     // use a broadcast as the original dimensions are untouched.
2481     bool lowerDimMatch = true;
2482     for (unsigned i = 0; i < srcRrank; i++) {
2483       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2484         lowerDimMatch = false;
2485         break;
2486       }
2487     }
2488     Value source = broadcast.source();
2489     if (!lowerDimMatch) {
2490       // The inner dimensions don't match, it means we need to extract from the
2491       // source of the orignal broadcast and then broadcast the extracted value.
2492       source = rewriter.create<ExtractStridedSliceOp>(
2493           op->getLoc(), source,
2494           getI64SubArray(op.offsets(), /* dropFront=*/rankDiff),
2495           getI64SubArray(op.sizes(), /* dropFront=*/rankDiff),
2496           getI64SubArray(op.strides(), /* dropFront=*/rankDiff));
2497     }
2498     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2499     return success();
2500   }
2501 };
2502 
2503 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2504 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2505 public:
2506   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2507 
2508   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2509                                 PatternRewriter &rewriter) const override {
2510     auto splat = op.vector().getDefiningOp<SplatOp>();
2511     if (!splat)
2512       return failure();
2513     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input());
2514     return success();
2515   }
2516 };
2517 
2518 } // namespace
2519 
2520 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2521     RewritePatternSet &results, MLIRContext *context) {
2522   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2523   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2524   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2525               StridedSliceBroadcast, StridedSliceSplat>(context);
2526 }
2527 
2528 //===----------------------------------------------------------------------===//
2529 // TransferReadOp
2530 //===----------------------------------------------------------------------===//
2531 
2532 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2533 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2534                            VectorType vectorType, Value source,
2535                            ValueRange indices, AffineMapAttr permutationMapAttr,
2536                            /*optional*/ ArrayAttr inBoundsAttr) {
2537   Type elemType = source.getType().cast<ShapedType>().getElementType();
2538   Value padding = builder.create<arith::ConstantOp>(
2539       result.location, elemType, builder.getZeroAttr(elemType));
2540   build(builder, result, vectorType, source, indices, permutationMapAttr,
2541         padding, /*mask=*/Value(), inBoundsAttr);
2542 }
2543 
2544 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2545 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2546                            VectorType vectorType, Value source,
2547                            ValueRange indices, AffineMap permutationMap,
2548                            Optional<ArrayRef<bool>> inBounds) {
2549   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2550   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2551                           ? builder.getBoolArrayAttr(inBounds.getValue())
2552                           : ArrayAttr();
2553   build(builder, result, vectorType, source, indices, permutationMapAttr,
2554         inBoundsAttr);
2555 }
2556 
2557 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2558 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2559                            VectorType vectorType, Value source,
2560                            ValueRange indices, Value padding,
2561                            Optional<ArrayRef<bool>> inBounds) {
2562   AffineMap permutationMap = getTransferMinorIdentityMap(
2563       source.getType().cast<ShapedType>(), vectorType);
2564   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2565   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2566                           ? builder.getBoolArrayAttr(inBounds.getValue())
2567                           : ArrayAttr();
2568   build(builder, result, vectorType, source, indices, permutationMapAttr,
2569         padding,
2570         /*mask=*/Value(), inBoundsAttr);
2571 }
2572 
2573 /// 4. Builder that sets padding to zero and permutation map to
2574 /// 'getMinorIdentityMap'.
2575 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2576                            VectorType vectorType, Value source,
2577                            ValueRange indices,
2578                            Optional<ArrayRef<bool>> inBounds) {
2579   Type elemType = source.getType().cast<ShapedType>().getElementType();
2580   Value padding = builder.create<arith::ConstantOp>(
2581       result.location, elemType, builder.getZeroAttr(elemType));
2582   build(builder, result, vectorType, source, indices, padding, inBounds);
2583 }
2584 
2585 template <typename EmitFun>
2586 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2587                                           EmitFun emitOpError) {
2588   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2589   for (auto expr : permutationMap.getResults()) {
2590     auto dim = expr.dyn_cast<AffineDimExpr>();
2591     auto zero = expr.dyn_cast<AffineConstantExpr>();
2592     if (zero) {
2593       if (zero.getValue() != 0) {
2594         return emitOpError(
2595             "requires a projected permutation_map (at most one dim or the zero "
2596             "constant can appear in each result)");
2597       }
2598       continue;
2599     }
2600     if (!dim) {
2601       return emitOpError("requires a projected permutation_map (at most one "
2602                          "dim or the zero constant can appear in each result)");
2603     }
2604     if (seen[dim.getPosition()]) {
2605       return emitOpError(
2606           "requires a permutation_map that is a permutation (found one dim "
2607           "used more than once)");
2608     }
2609     seen[dim.getPosition()] = true;
2610   }
2611   return success();
2612 }
2613 
2614 static LogicalResult
2615 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2616                  VectorType vectorType, VectorType maskType,
2617                  AffineMap permutationMap, ArrayAttr inBounds) {
2618   if (op->hasAttr("masked")) {
2619     return op->emitOpError("masked attribute has been removed. "
2620                            "Use in_bounds instead.");
2621   }
2622 
2623   if (!shapedType.isa<MemRefType, RankedTensorType>())
2624     return op->emitOpError(
2625         "requires source to be a memref or ranked tensor type");
2626 
2627   auto elementType = shapedType.getElementType();
2628   DataLayout dataLayout = DataLayout::closest(op);
2629   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2630     // Memref or tensor has vector element type.
2631     unsigned sourceVecSize =
2632         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2633         vectorElementType.getShape().back();
2634     unsigned resultVecSize =
2635         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2636         vectorType.getShape().back();
2637     if (resultVecSize % sourceVecSize != 0)
2638       return op->emitOpError(
2639           "requires the bitwidth of the minor 1-D vector to be an integral "
2640           "multiple of the bitwidth of the minor 1-D vector of the source");
2641 
2642     unsigned sourceVecEltRank = vectorElementType.getRank();
2643     unsigned resultVecRank = vectorType.getRank();
2644     if (sourceVecEltRank > resultVecRank)
2645       return op->emitOpError(
2646           "requires source vector element and vector result ranks to match.");
2647     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2648     // Check that permutation map results match 'rankOffset' of vector type.
2649     if (permutationMap.getNumResults() != rankOffset)
2650       return op->emitOpError("requires a permutation_map with result dims of "
2651                              "the same rank as the vector type");
2652 
2653     if (maskType)
2654       return op->emitOpError("does not support masks with vector element type");
2655   } else {
2656     // Memref or tensor has scalar element type.
2657     unsigned minorSize =
2658         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2659     unsigned resultVecSize =
2660         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2661     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2662       return op->emitOpError(
2663           "requires the bitwidth of the minor 1-D vector to be an integral "
2664           "multiple of the bitwidth of the source element type");
2665 
2666     // Check that permutation map results match rank of vector type.
2667     if (permutationMap.getNumResults() != vectorType.getRank())
2668       return op->emitOpError("requires a permutation_map with result dims of "
2669                              "the same rank as the vector type");
2670 
2671     VectorType expectedMaskType =
2672         vector::detail::transferMaskType(vectorType, permutationMap);
2673     if (maskType && expectedMaskType != maskType)
2674       return op->emitOpError("expects mask type consistent with permutation "
2675                              "map: ")
2676              << maskType;
2677   }
2678 
2679   if (permutationMap.getNumSymbols() != 0)
2680     return op->emitOpError("requires permutation_map without symbols");
2681 
2682   if (permutationMap.getNumInputs() != shapedType.getRank())
2683     return op->emitOpError("requires a permutation_map with input dims of the "
2684                            "same rank as the source type");
2685 
2686   if (inBounds) {
2687     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2688       return op->emitOpError("expects the optional in_bounds attr of same rank "
2689                              "as permutation_map results: ")
2690              << AffineMapAttr::get(permutationMap)
2691              << " vs inBounds of size: " << inBounds.size();
2692     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2693       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2694           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2695         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2696   }
2697 
2698   return success();
2699 }
2700 
2701 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2702   SmallVector<StringRef, 3> elidedAttrs;
2703   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2704   if (op.permutation_map().isMinorIdentity())
2705     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2706   bool elideInBounds = true;
2707   if (auto inBounds = op.in_bounds()) {
2708     for (auto attr : *inBounds) {
2709       if (attr.template cast<BoolAttr>().getValue()) {
2710         elideInBounds = false;
2711         break;
2712       }
2713     }
2714   }
2715   if (elideInBounds)
2716     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2717   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2718 }
2719 
2720 void TransferReadOp::print(OpAsmPrinter &p) {
2721   p << " " << source() << "[" << indices() << "], " << padding();
2722   if (mask())
2723     p << ", " << mask();
2724   printTransferAttrs(p, *this);
2725   p << " : " << getShapedType() << ", " << getVectorType();
2726 }
2727 
2728 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2729   auto &builder = parser.getBuilder();
2730   SMLoc typesLoc;
2731   OpAsmParser::OperandType sourceInfo;
2732   SmallVector<OpAsmParser::OperandType, 8> indexInfo;
2733   OpAsmParser::OperandType paddingInfo;
2734   SmallVector<Type, 2> types;
2735   OpAsmParser::OperandType maskInfo;
2736   // Parsing with support for paddingValue.
2737   if (parser.parseOperand(sourceInfo) ||
2738       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2739       parser.parseComma() || parser.parseOperand(paddingInfo))
2740     return failure();
2741   ParseResult hasMask = parser.parseOptionalComma();
2742   if (hasMask.succeeded()) {
2743     parser.parseOperand(maskInfo);
2744   }
2745   if (parser.parseOptionalAttrDict(result.attributes) ||
2746       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2747     return failure();
2748   if (types.size() != 2)
2749     return parser.emitError(typesLoc, "requires two types");
2750   auto indexType = builder.getIndexType();
2751   auto shapedType = types[0].dyn_cast<ShapedType>();
2752   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2753     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2754   VectorType vectorType = types[1].dyn_cast<VectorType>();
2755   if (!vectorType)
2756     return parser.emitError(typesLoc, "requires vector type");
2757   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2758   Attribute mapAttr = result.attributes.get(permutationAttrName);
2759   if (!mapAttr) {
2760     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2761     // Update `mapAttr` that is used later to determine mask type.
2762     mapAttr = AffineMapAttr::get(permMap);
2763     result.attributes.set(permutationAttrName, mapAttr);
2764   }
2765   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2766       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2767       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2768                             result.operands))
2769     return failure();
2770   if (hasMask.succeeded()) {
2771     if (shapedType.getElementType().dyn_cast<VectorType>())
2772       return parser.emitError(
2773           maskInfo.location, "does not support masks with vector element type");
2774     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2775     // Instead of adding the mask type as an op type, compute it based on the
2776     // vector type and the permutation map (to keep the type signature small).
2777     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2778     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2779       return failure();
2780   }
2781   result.addAttribute(
2782       TransferReadOp::getOperandSegmentSizeAttr(),
2783       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2784                                 static_cast<int32_t>(hasMask.succeeded())}));
2785   return parser.addTypeToList(vectorType, result.types);
2786 }
2787 
2788 LogicalResult TransferReadOp::verify() {
2789   // Consistency of elemental types in source and vector.
2790   ShapedType shapedType = getShapedType();
2791   VectorType vectorType = getVectorType();
2792   VectorType maskType = getMaskType();
2793   auto paddingType = padding().getType();
2794   auto permutationMap = permutation_map();
2795   auto sourceElementType = shapedType.getElementType();
2796 
2797   if (static_cast<int64_t>(indices().size()) != shapedType.getRank())
2798     return emitOpError("requires ") << shapedType.getRank() << " indices";
2799 
2800   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2801                               shapedType, vectorType, maskType, permutationMap,
2802                               in_bounds() ? *in_bounds() : ArrayAttr())))
2803     return failure();
2804 
2805   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2806     // Source has vector element type.
2807     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2808     if (sourceVectorElementType != paddingType)
2809       return emitOpError(
2810           "requires source element type and padding type to match.");
2811 
2812   } else {
2813     // Check that 'paddingType' is valid to store in a vector type.
2814     if (!VectorType::isValidElementType(paddingType))
2815       return emitOpError("requires valid padding vector elemental type");
2816 
2817     // Check that padding type and vector element types match.
2818     if (paddingType != sourceElementType)
2819       return emitOpError(
2820           "requires formal padding and source of the same elemental type");
2821   }
2822 
2823   return verifyPermutationMap(permutationMap,
2824                               [&](Twine t) { return emitOpError(t); });
2825 }
2826 
2827 /// This is a common class used for patterns of the form
2828 /// ```
2829 ///    someop(memrefcast) -> someop
2830 /// ```
2831 /// It folds the source of the memref.cast into the root operation directly.
2832 static LogicalResult foldMemRefCast(Operation *op) {
2833   bool folded = false;
2834   for (OpOperand &operand : op->getOpOperands()) {
2835     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2836     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2837       operand.set(castOp.getOperand());
2838       folded = true;
2839     }
2840   }
2841   return success(folded);
2842 }
2843 
2844 static LogicalResult foldTensorCast(Operation *op) {
2845   bool folded = false;
2846   for (OpOperand &operand : op->getOpOperands()) {
2847     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2848     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2849       operand.set(castOp.getOperand());
2850       folded = true;
2851     }
2852   }
2853   return success(folded);
2854 }
2855 
2856 template <typename TransferOp>
2857 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2858   // TODO: support more aggressive createOrFold on:
2859   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2860   if (op.getShapedType().isDynamicDim(indicesIdx))
2861     return false;
2862   Value index = op.indices()[indicesIdx];
2863   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2864   if (!cstOp)
2865     return false;
2866 
2867   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2868   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2869 
2870   return cstOp.value() + vectorSize <= sourceSize;
2871 }
2872 
2873 template <typename TransferOp>
2874 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2875   // TODO: support 0-d corner case.
2876   // TODO: Be less conservative.
2877   if (op.getTransferRank() == 0)
2878     return failure();
2879   AffineMap permutationMap = op.permutation_map();
2880   bool changed = false;
2881   SmallVector<bool, 4> newInBounds;
2882   newInBounds.reserve(op.getTransferRank());
2883   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2884     // Already marked as in-bounds, nothing to see here.
2885     if (op.isDimInBounds(i)) {
2886       newInBounds.push_back(true);
2887       continue;
2888     }
2889     // Currently out-of-bounds, check whether we can statically determine it is
2890     // inBounds.
2891     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2892     assert(dimExpr && "Broadcast dims must be in-bounds");
2893     auto inBounds =
2894         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2895     newInBounds.push_back(inBounds);
2896     // We commit the pattern if it is "more inbounds".
2897     changed |= inBounds;
2898   }
2899   if (!changed)
2900     return failure();
2901   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2902   OpBuilder b(op.getContext());
2903   op->setAttr(TransferOp::getInBoundsAttrStrName(),
2904               b.getBoolArrayAttr(newInBounds));
2905   return success();
2906 }
2907 
2908 ///  ```
2909 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2910 ///    : vector<1x4xf32>, tensor<4x4xf32>
2911 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2912 ///    : tensor<4x4xf32>, vector<1x4xf32>
2913 ///  ```
2914 ///  -> Folds into
2915 ///  ```
2916 ///  %v0
2917 ///  ```
2918 static Value foldRAW(TransferReadOp readOp) {
2919   if (!readOp.getShapedType().isa<RankedTensorType>())
2920     return {};
2921   auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>();
2922   while (defWrite) {
2923     if (checkSameValueRAW(defWrite, readOp))
2924       return defWrite.vector();
2925     if (!isDisjointTransferIndices(
2926             cast<VectorTransferOpInterface>(defWrite.getOperation()),
2927             cast<VectorTransferOpInterface>(readOp.getOperation())))
2928       break;
2929     defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>();
2930   }
2931   return {};
2932 }
2933 
2934 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
2935   if (Value vec = foldRAW(*this))
2936     return vec;
2937   /// transfer_read(memrefcast) -> transfer_read
2938   if (succeeded(foldTransferInBoundsAttribute(*this)))
2939     return getResult();
2940   if (succeeded(foldMemRefCast(*this)))
2941     return getResult();
2942   if (succeeded(foldTensorCast(*this)))
2943     return getResult();
2944   return OpFoldResult();
2945 }
2946 
2947 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
2948   return llvm::to_vector<4>(getVectorType().getShape());
2949 }
2950 
2951 void TransferReadOp::getEffects(
2952     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
2953         &effects) {
2954   if (getShapedType().isa<MemRefType>())
2955     effects.emplace_back(MemoryEffects::Read::get(), source(),
2956                          SideEffects::DefaultResource::get());
2957 }
2958 
2959 namespace {
2960 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
2961 ///
2962 /// ```
2963 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
2964 ///     : tensor<?x?xf32> to tensor<?x?xf32>
2965 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
2966 ///     : tensor<?x?xf32>, vector<4x5xf32>
2967 /// ```
2968 /// is rewritten to:
2969 /// ```
2970 /// %p0 = arith.addi %a, %e : index
2971 /// %p1 = arith.addi %b, %f : index
2972 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
2973 ///     : tensor<?x?xf32>, vector<4x5xf32>
2974 /// ```
2975 struct FoldExtractSliceIntoTransferRead
2976     : public OpRewritePattern<TransferReadOp> {
2977 public:
2978   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
2979 
2980   LogicalResult matchAndRewrite(TransferReadOp xferOp,
2981                                 PatternRewriter &rewriter) const override {
2982     // TODO: support 0-d corner case.
2983     if (xferOp.getTransferRank() == 0)
2984       return failure();
2985     if (xferOp.hasOutOfBoundsDim())
2986       return failure();
2987     if (!xferOp.permutation_map().isIdentity())
2988       return failure();
2989     if (xferOp.mask())
2990       return failure();
2991     auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>();
2992     if (!extractOp)
2993       return failure();
2994     if (!extractOp.hasUnitStride())
2995       return failure();
2996 
2997     // Bail on illegal rank-reduction: we need to check that the rank-reduced
2998     // dims are exactly the leading dims. I.e. the following is illegal:
2999     // ```
3000     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3001     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3002     //    %1 = vector.transfer_read %0[0,0], %cst :
3003     //      tensor<2x4xf32>, vector<2x4xf32>
3004     // ```
3005     //
3006     // Cannot fold into:
3007     // ```
3008     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3009     //      tensor<2x1x4xf32>, vector<2x4xf32>
3010     // ```
3011     // For this, check the trailing `vectorRank` dims of the extract_slice
3012     // result tensor match the trailing dims of the inferred result tensor.
3013     int64_t rankReduced =
3014         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3015     int64_t vectorRank = xferOp.getVectorType().getRank();
3016     RankedTensorType inferredDestTensorType =
3017         tensor::ExtractSliceOp::inferResultType(
3018             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3019             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3020     auto actualDestTensorShape = extractOp.getType().getShape();
3021     if (rankReduced > 0 &&
3022         actualDestTensorShape.take_back(vectorRank) !=
3023             inferredDestTensorType.getShape().take_back(vectorRank))
3024       return failure();
3025 
3026     SmallVector<Value> newIndices;
3027     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3028     // indices first.
3029     for (int64_t i = 0; i < rankReduced; ++i) {
3030       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3031       newIndices.push_back(getValueOrCreateConstantIndexOp(
3032           rewriter, extractOp.getLoc(), offset));
3033     }
3034     for (const auto &it : llvm::enumerate(xferOp.indices())) {
3035       OpFoldResult offset =
3036           extractOp.getMixedOffsets()[it.index() + rankReduced];
3037       newIndices.push_back(rewriter.create<arith::AddIOp>(
3038           xferOp->getLoc(), it.value(),
3039           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3040                                           offset)));
3041     }
3042     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3043     rewriter.replaceOpWithNewOp<TransferReadOp>(
3044         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3045         xferOp.padding(), ArrayRef<bool>{inBounds});
3046 
3047     return success();
3048   }
3049 };
3050 } // namespace
3051 
3052 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3053                                                  MLIRContext *context) {
3054   results.add<FoldExtractSliceIntoTransferRead>(context);
3055 }
3056 
3057 //===----------------------------------------------------------------------===//
3058 // TransferWriteOp
3059 //===----------------------------------------------------------------------===//
3060 
3061 /// 1. Builder with type inference.
3062 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3063                             Value vector, Value dest, ValueRange indices,
3064                             AffineMapAttr permutationMapAttr,
3065                             /*optional*/ Value mask,
3066                             /*optional*/ ArrayAttr inBoundsAttr) {
3067   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3068   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3069         mask, inBoundsAttr);
3070 }
3071 
3072 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3073 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3074                             Value vector, Value dest, ValueRange indices,
3075                             AffineMapAttr permutationMapAttr,
3076                             /*optional*/ ArrayAttr inBoundsAttr) {
3077   build(builder, result, vector, dest, indices, permutationMapAttr,
3078         /*mask=*/Value(), inBoundsAttr);
3079 }
3080 
3081 /// 3. Builder with type inference that sets an empty mask (variant without
3082 /// attrs)
3083 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3084                             Value vector, Value dest, ValueRange indices,
3085                             AffineMap permutationMap,
3086                             Optional<ArrayRef<bool>> inBounds) {
3087   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3088   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3089                           ? builder.getBoolArrayAttr(inBounds.getValue())
3090                           : ArrayAttr();
3091   build(builder, result, vector, dest, indices, permutationMapAttr,
3092         /*mask=*/Value(), inBoundsAttr);
3093 }
3094 
3095 /// 4. Builder with type inference that sets an empty mask and sets permutation
3096 ///    map to 'getMinorIdentityMap'.
3097 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3098                             Value vector, Value dest, ValueRange indices,
3099                             Optional<ArrayRef<bool>> inBounds) {
3100   auto vectorType = vector.getType().cast<VectorType>();
3101   AffineMap permutationMap = getTransferMinorIdentityMap(
3102       dest.getType().cast<ShapedType>(), vectorType);
3103   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3104 }
3105 
3106 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3107                                    OperationState &result) {
3108   auto &builder = parser.getBuilder();
3109   SMLoc typesLoc;
3110   OpAsmParser::OperandType vectorInfo, sourceInfo;
3111   SmallVector<OpAsmParser::OperandType, 8> indexInfo;
3112   SmallVector<Type, 2> types;
3113   OpAsmParser::OperandType maskInfo;
3114   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3115       parser.parseOperand(sourceInfo) ||
3116       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3117     return failure();
3118   ParseResult hasMask = parser.parseOptionalComma();
3119   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3120     return failure();
3121   if (parser.parseOptionalAttrDict(result.attributes) ||
3122       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3123     return failure();
3124   if (types.size() != 2)
3125     return parser.emitError(typesLoc, "requires two types");
3126   auto indexType = builder.getIndexType();
3127   VectorType vectorType = types[0].dyn_cast<VectorType>();
3128   if (!vectorType)
3129     return parser.emitError(typesLoc, "requires vector type");
3130   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3131   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3132     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3133   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3134   auto attr = result.attributes.get(permutationAttrName);
3135   if (!attr) {
3136     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3137     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3138   }
3139   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3140       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3141       parser.resolveOperands(indexInfo, indexType, result.operands))
3142     return failure();
3143   if (hasMask.succeeded()) {
3144     if (shapedType.getElementType().dyn_cast<VectorType>())
3145       return parser.emitError(
3146           maskInfo.location, "does not support masks with vector element type");
3147     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3148     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3149       return failure();
3150   }
3151   result.addAttribute(
3152       TransferWriteOp::getOperandSegmentSizeAttr(),
3153       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3154                                 static_cast<int32_t>(hasMask.succeeded())}));
3155   return failure(shapedType.isa<RankedTensorType>() &&
3156                  parser.addTypeToList(shapedType, result.types));
3157 }
3158 
3159 void TransferWriteOp::print(OpAsmPrinter &p) {
3160   p << " " << vector() << ", " << source() << "[" << indices() << "]";
3161   if (mask())
3162     p << ", " << mask();
3163   printTransferAttrs(p, *this);
3164   p << " : " << getVectorType() << ", " << getShapedType();
3165 }
3166 
3167 LogicalResult TransferWriteOp::verify() {
3168   // Consistency of elemental types in shape and vector.
3169   ShapedType shapedType = getShapedType();
3170   VectorType vectorType = getVectorType();
3171   VectorType maskType = getMaskType();
3172   auto permutationMap = permutation_map();
3173 
3174   if (llvm::size(indices()) != shapedType.getRank())
3175     return emitOpError("requires ") << shapedType.getRank() << " indices";
3176 
3177   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3178   // as the semantics is unclear. This can be revisited later if necessary.
3179   if (hasBroadcastDim())
3180     return emitOpError("should not have broadcast dimensions");
3181 
3182   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3183                               shapedType, vectorType, maskType, permutationMap,
3184                               in_bounds() ? *in_bounds() : ArrayAttr())))
3185     return failure();
3186 
3187   return verifyPermutationMap(permutationMap,
3188                               [&](Twine t) { return emitOpError(t); });
3189 }
3190 
3191 /// Fold:
3192 /// ```
3193 ///    %t1 = ...
3194 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3195 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3196 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3197 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3198 /// ```
3199 ///
3200 /// into:
3201 ///
3202 /// ```
3203 ///    %t0
3204 /// ```
3205 ///
3206 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3207 /// block argument or has side effects.
3208 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3209                                        ArrayRef<Attribute>,
3210                                        SmallVectorImpl<OpFoldResult> &results) {
3211   // TODO: support 0-d corner case.
3212   if (write.getTransferRank() == 0)
3213     return failure();
3214   auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>();
3215   // If not operating on tensors, bail.
3216   if (!rankedTensorType)
3217     return failure();
3218   // If no read, bail.
3219   auto read = write.vector().getDefiningOp<vector::TransferReadOp>();
3220   if (!read)
3221     return failure();
3222   // TODO: support 0-d corner case.
3223   if (read.getTransferRank() == 0)
3224     return failure();
3225   // For now, only accept minor identity. Future: composition is minor identity.
3226   if (!read.permutation_map().isMinorIdentity() ||
3227       !write.permutation_map().isMinorIdentity())
3228     return failure();
3229   // Bail on mismatching ranks.
3230   if (read.getTransferRank() != write.getTransferRank())
3231     return failure();
3232   // Bail on potential out-of-bounds accesses.
3233   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3234     return failure();
3235   // Tensor types must be the same.
3236   if (read.source().getType() != rankedTensorType)
3237     return failure();
3238   // Vector types must be the same.
3239   if (read.getVectorType() != write.getVectorType())
3240     return failure();
3241   // Vector and Tensor shapes must match.
3242   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3243     return failure();
3244   // If any index is nonzero.
3245   auto isNotConstantZero = [](Value v) {
3246     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3247     return !cstOp || cstOp.value() != 0;
3248   };
3249   if (llvm::any_of(read.indices(), isNotConstantZero) ||
3250       llvm::any_of(write.indices(), isNotConstantZero))
3251     return failure();
3252   // Success.
3253   results.push_back(read.source());
3254   return success();
3255 }
3256 
3257 static bool checkSameValueWAR(vector::TransferReadOp read,
3258                               vector::TransferWriteOp write) {
3259   return read.source() == write.source() && read.indices() == write.indices() &&
3260          read.permutation_map() == write.permutation_map() &&
3261          read.getVectorType() == write.getVectorType() && !read.mask() &&
3262          !write.mask();
3263 }
3264 /// Fold transfer_write write after read:
3265 /// ```
3266 ///    %t0 = ...
3267 ///    %v = vector.transfer_read %t0[%c0...] :
3268 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3269 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3270 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3271 /// ```
3272 ///
3273 /// into:
3274 ///
3275 /// ```
3276 ///    %t0
3277 /// ```
3278 static LogicalResult foldWAR(TransferWriteOp write,
3279                              SmallVectorImpl<OpFoldResult> &results) {
3280   if (!write.source().getType().isa<RankedTensorType>())
3281     return failure();
3282   auto read = write.vector().getDefiningOp<vector::TransferReadOp>();
3283   if (!read)
3284     return failure();
3285 
3286   if (!checkSameValueWAR(read, write))
3287     return failure();
3288   results.push_back(read.source());
3289   return success();
3290 }
3291 
3292 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3293                                     SmallVectorImpl<OpFoldResult> &results) {
3294   if (succeeded(foldReadInitWrite(*this, operands, results)))
3295     return success();
3296   if (succeeded(foldWAR(*this, results)))
3297     return success();
3298   if (succeeded(foldTransferInBoundsAttribute(*this)))
3299     return success();
3300   return foldMemRefCast(*this);
3301 }
3302 
3303 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3304   return llvm::to_vector<4>(getVectorType().getShape());
3305 }
3306 
3307 void TransferWriteOp::getEffects(
3308     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3309         &effects) {
3310   if (getShapedType().isa<MemRefType>())
3311     effects.emplace_back(MemoryEffects::Write::get(), source(),
3312                          SideEffects::DefaultResource::get());
3313 }
3314 
3315 namespace {
3316 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3317 /// DCE
3318 /// ```
3319 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3320 ///    : vector<1x4xf32>, tensor<4x4xf32>
3321 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3322 ///    : vector<1x4xf32>, tensor<4x4xf32>
3323 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3324 ///    : vector<1x4xf32>, tensor<4x4xf32>
3325 /// ```
3326 ///
3327 /// into:
3328 ///
3329 /// ```
3330 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3331 ///    : vector<1x4xf32>, tensor<4x4xf32>
3332 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3333 ///    : vector<1x4xf32>, tensor<4x4xf32>
3334 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3335 ///    : vector<1x4xf32>, tensor<4x4xf32>
3336 /// ```
3337 ///
3338 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3339 /// any other uses.
3340 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3341 public:
3342   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3343   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3344                                 PatternRewriter &rewriter) const override {
3345     if (!writeOp.getShapedType().isa<RankedTensorType>())
3346       return failure();
3347     vector::TransferWriteOp writeToModify = writeOp;
3348 
3349     auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>();
3350     while (defWrite) {
3351       if (checkSameValueWAW(writeOp, defWrite)) {
3352         writeToModify.sourceMutable().assign(defWrite.source());
3353         return success();
3354       }
3355       if (!isDisjointTransferIndices(
3356               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3357               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3358         break;
3359       // If the previous write op doesn't have any other use we an safely look
3360       // at the previous store to see if it can be removed.
3361       if (!defWrite->hasOneUse())
3362         break;
3363       writeToModify = defWrite;
3364       defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>();
3365     }
3366     return failure();
3367   }
3368 };
3369 
3370 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3371 /// could directly write to the insert_slice's destination. E.g.:
3372 ///
3373 /// ```
3374 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3375 ///     : vector<4x5xf32>, tensor<4x5xf32>
3376 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3377 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3378 /// ```
3379 /// is rewritten to:
3380 /// ```
3381 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3382 ///     : vector<4x5xf32>, tensor<?x?xf32>
3383 /// ```
3384 struct FoldInsertSliceIntoTransferWrite
3385     : public OpRewritePattern<tensor::InsertSliceOp> {
3386 public:
3387   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3388 
3389   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3390                                 PatternRewriter &rewriter) const override {
3391     if (!insertOp.hasUnitStride())
3392       return failure();
3393 
3394     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3395     if (!xferOp)
3396       return failure();
3397     // TODO: support 0-d corner case.
3398     if (xferOp.getTransferRank() == 0)
3399       return failure();
3400 
3401     if (xferOp.hasOutOfBoundsDim())
3402       return failure();
3403     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3404       return failure();
3405     if (xferOp.mask())
3406       return failure();
3407     // Fold only if the TransferWriteOp completely overwrites the `source` with
3408     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3409     // content is the data of the vector.
3410     if (!llvm::equal(xferOp.getVectorType().getShape(),
3411                      xferOp.getShapedType().getShape()))
3412       return failure();
3413     if (!xferOp.permutation_map().isIdentity())
3414       return failure();
3415 
3416     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3417     // dims are exactly the leading dims. I.e. the following is illegal:
3418     // ```
3419     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3420     //      vector<2x4xf32>, tensor<2x4xf32>
3421     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3422     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3423     // ```
3424     //
3425     // Cannot fold into:
3426     // ```
3427     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3428     //      vector<2x4xf32>, tensor<2x1x4xf32>
3429     // ```
3430     // For this, check the trailing `vectorRank` dims of the insert_slice result
3431     // tensor match the trailing dims of the inferred result tensor.
3432     int64_t rankReduced =
3433         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3434     int64_t vectorRank = xferOp.getVectorType().getRank();
3435     RankedTensorType inferredSourceTensorType =
3436         tensor::ExtractSliceOp::inferResultType(
3437             insertOp.getType(), insertOp.getMixedOffsets(),
3438             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3439     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3440     if (rankReduced > 0 &&
3441         actualSourceTensorShape.take_back(vectorRank) !=
3442             inferredSourceTensorType.getShape().take_back(vectorRank))
3443       return failure();
3444 
3445     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3446         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3447     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3448     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(),
3449                                                  insertOp.dest(), indices,
3450                                                  ArrayRef<bool>{inBounds});
3451     return success();
3452   }
3453 };
3454 } // namespace
3455 
3456 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3457                                                   MLIRContext *context) {
3458   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context);
3459 }
3460 
3461 //===----------------------------------------------------------------------===//
3462 // LoadOp
3463 //===----------------------------------------------------------------------===//
3464 
3465 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3466                                                  MemRefType memRefTy) {
3467   if (!isLastMemrefDimUnitStride(memRefTy))
3468     return op->emitOpError("most minor memref dim must have unit stride");
3469   return success();
3470 }
3471 
3472 LogicalResult vector::LoadOp::verify() {
3473   VectorType resVecTy = getVectorType();
3474   MemRefType memRefTy = getMemRefType();
3475 
3476   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3477     return failure();
3478 
3479   // Checks for vector memrefs.
3480   Type memElemTy = memRefTy.getElementType();
3481   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3482     if (memVecTy != resVecTy)
3483       return emitOpError("base memref and result vector types should match");
3484     memElemTy = memVecTy.getElementType();
3485   }
3486 
3487   if (resVecTy.getElementType() != memElemTy)
3488     return emitOpError("base and result element types should match");
3489   if (llvm::size(indices()) != memRefTy.getRank())
3490     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3491   return success();
3492 }
3493 
3494 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3495   if (succeeded(foldMemRefCast(*this)))
3496     return getResult();
3497   return OpFoldResult();
3498 }
3499 
3500 //===----------------------------------------------------------------------===//
3501 // StoreOp
3502 //===----------------------------------------------------------------------===//
3503 
3504 LogicalResult vector::StoreOp::verify() {
3505   VectorType valueVecTy = getVectorType();
3506   MemRefType memRefTy = getMemRefType();
3507 
3508   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3509     return failure();
3510 
3511   // Checks for vector memrefs.
3512   Type memElemTy = memRefTy.getElementType();
3513   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3514     if (memVecTy != valueVecTy)
3515       return emitOpError(
3516           "base memref and valueToStore vector types should match");
3517     memElemTy = memVecTy.getElementType();
3518   }
3519 
3520   if (valueVecTy.getElementType() != memElemTy)
3521     return emitOpError("base and valueToStore element type should match");
3522   if (llvm::size(indices()) != memRefTy.getRank())
3523     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3524   return success();
3525 }
3526 
3527 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3528                             SmallVectorImpl<OpFoldResult> &results) {
3529   return foldMemRefCast(*this);
3530 }
3531 
3532 //===----------------------------------------------------------------------===//
3533 // MaskedLoadOp
3534 //===----------------------------------------------------------------------===//
3535 
3536 LogicalResult MaskedLoadOp::verify() {
3537   VectorType maskVType = getMaskVectorType();
3538   VectorType passVType = getPassThruVectorType();
3539   VectorType resVType = getVectorType();
3540   MemRefType memType = getMemRefType();
3541 
3542   if (resVType.getElementType() != memType.getElementType())
3543     return emitOpError("base and result element type should match");
3544   if (llvm::size(indices()) != memType.getRank())
3545     return emitOpError("requires ") << memType.getRank() << " indices";
3546   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3547     return emitOpError("expected result dim to match mask dim");
3548   if (resVType != passVType)
3549     return emitOpError("expected pass_thru of same type as result type");
3550   return success();
3551 }
3552 
3553 namespace {
3554 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3555 public:
3556   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3557   LogicalResult matchAndRewrite(MaskedLoadOp load,
3558                                 PatternRewriter &rewriter) const override {
3559     switch (get1DMaskFormat(load.mask())) {
3560     case MaskFormat::AllTrue:
3561       rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(),
3562                                                   load.base(), load.indices());
3563       return success();
3564     case MaskFormat::AllFalse:
3565       rewriter.replaceOp(load, load.pass_thru());
3566       return success();
3567     case MaskFormat::Unknown:
3568       return failure();
3569     }
3570     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3571   }
3572 };
3573 } // namespace
3574 
3575 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3576                                                MLIRContext *context) {
3577   results.add<MaskedLoadFolder>(context);
3578 }
3579 
3580 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3581   if (succeeded(foldMemRefCast(*this)))
3582     return getResult();
3583   return OpFoldResult();
3584 }
3585 
3586 //===----------------------------------------------------------------------===//
3587 // MaskedStoreOp
3588 //===----------------------------------------------------------------------===//
3589 
3590 LogicalResult MaskedStoreOp::verify() {
3591   VectorType maskVType = getMaskVectorType();
3592   VectorType valueVType = getVectorType();
3593   MemRefType memType = getMemRefType();
3594 
3595   if (valueVType.getElementType() != memType.getElementType())
3596     return emitOpError("base and valueToStore element type should match");
3597   if (llvm::size(indices()) != memType.getRank())
3598     return emitOpError("requires ") << memType.getRank() << " indices";
3599   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3600     return emitOpError("expected valueToStore dim to match mask dim");
3601   return success();
3602 }
3603 
3604 namespace {
3605 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3606 public:
3607   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3608   LogicalResult matchAndRewrite(MaskedStoreOp store,
3609                                 PatternRewriter &rewriter) const override {
3610     switch (get1DMaskFormat(store.mask())) {
3611     case MaskFormat::AllTrue:
3612       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3613           store, store.valueToStore(), store.base(), store.indices());
3614       return success();
3615     case MaskFormat::AllFalse:
3616       rewriter.eraseOp(store);
3617       return success();
3618     case MaskFormat::Unknown:
3619       return failure();
3620     }
3621     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3622   }
3623 };
3624 } // namespace
3625 
3626 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3627                                                 MLIRContext *context) {
3628   results.add<MaskedStoreFolder>(context);
3629 }
3630 
3631 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3632                                   SmallVectorImpl<OpFoldResult> &results) {
3633   return foldMemRefCast(*this);
3634 }
3635 
3636 //===----------------------------------------------------------------------===//
3637 // GatherOp
3638 //===----------------------------------------------------------------------===//
3639 
3640 LogicalResult GatherOp::verify() {
3641   VectorType indVType = getIndexVectorType();
3642   VectorType maskVType = getMaskVectorType();
3643   VectorType resVType = getVectorType();
3644   MemRefType memType = getMemRefType();
3645 
3646   if (resVType.getElementType() != memType.getElementType())
3647     return emitOpError("base and result element type should match");
3648   if (llvm::size(indices()) != memType.getRank())
3649     return emitOpError("requires ") << memType.getRank() << " indices";
3650   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3651     return emitOpError("expected result dim to match indices dim");
3652   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3653     return emitOpError("expected result dim to match mask dim");
3654   if (resVType != getPassThruVectorType())
3655     return emitOpError("expected pass_thru of same type as result type");
3656   return success();
3657 }
3658 
3659 namespace {
3660 class GatherFolder final : public OpRewritePattern<GatherOp> {
3661 public:
3662   using OpRewritePattern<GatherOp>::OpRewritePattern;
3663   LogicalResult matchAndRewrite(GatherOp gather,
3664                                 PatternRewriter &rewriter) const override {
3665     switch (get1DMaskFormat(gather.mask())) {
3666     case MaskFormat::AllTrue:
3667       return failure(); // no unmasked equivalent
3668     case MaskFormat::AllFalse:
3669       rewriter.replaceOp(gather, gather.pass_thru());
3670       return success();
3671     case MaskFormat::Unknown:
3672       return failure();
3673     }
3674     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3675   }
3676 };
3677 } // namespace
3678 
3679 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3680                                            MLIRContext *context) {
3681   results.add<GatherFolder>(context);
3682 }
3683 
3684 //===----------------------------------------------------------------------===//
3685 // ScatterOp
3686 //===----------------------------------------------------------------------===//
3687 
3688 LogicalResult ScatterOp::verify() {
3689   VectorType indVType = getIndexVectorType();
3690   VectorType maskVType = getMaskVectorType();
3691   VectorType valueVType = getVectorType();
3692   MemRefType memType = getMemRefType();
3693 
3694   if (valueVType.getElementType() != memType.getElementType())
3695     return emitOpError("base and valueToStore element type should match");
3696   if (llvm::size(indices()) != memType.getRank())
3697     return emitOpError("requires ") << memType.getRank() << " indices";
3698   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3699     return emitOpError("expected valueToStore dim to match indices dim");
3700   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3701     return emitOpError("expected valueToStore dim to match mask dim");
3702   return success();
3703 }
3704 
3705 namespace {
3706 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3707 public:
3708   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3709   LogicalResult matchAndRewrite(ScatterOp scatter,
3710                                 PatternRewriter &rewriter) const override {
3711     switch (get1DMaskFormat(scatter.mask())) {
3712     case MaskFormat::AllTrue:
3713       return failure(); // no unmasked equivalent
3714     case MaskFormat::AllFalse:
3715       rewriter.eraseOp(scatter);
3716       return success();
3717     case MaskFormat::Unknown:
3718       return failure();
3719     }
3720     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3721   }
3722 };
3723 } // namespace
3724 
3725 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3726                                             MLIRContext *context) {
3727   results.add<ScatterFolder>(context);
3728 }
3729 
3730 //===----------------------------------------------------------------------===//
3731 // ExpandLoadOp
3732 //===----------------------------------------------------------------------===//
3733 
3734 LogicalResult ExpandLoadOp::verify() {
3735   VectorType maskVType = getMaskVectorType();
3736   VectorType passVType = getPassThruVectorType();
3737   VectorType resVType = getVectorType();
3738   MemRefType memType = getMemRefType();
3739 
3740   if (resVType.getElementType() != memType.getElementType())
3741     return emitOpError("base and result element type should match");
3742   if (llvm::size(indices()) != memType.getRank())
3743     return emitOpError("requires ") << memType.getRank() << " indices";
3744   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3745     return emitOpError("expected result dim to match mask dim");
3746   if (resVType != passVType)
3747     return emitOpError("expected pass_thru of same type as result type");
3748   return success();
3749 }
3750 
3751 namespace {
3752 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3753 public:
3754   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3755   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3756                                 PatternRewriter &rewriter) const override {
3757     switch (get1DMaskFormat(expand.mask())) {
3758     case MaskFormat::AllTrue:
3759       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3760           expand, expand.getType(), expand.base(), expand.indices());
3761       return success();
3762     case MaskFormat::AllFalse:
3763       rewriter.replaceOp(expand, expand.pass_thru());
3764       return success();
3765     case MaskFormat::Unknown:
3766       return failure();
3767     }
3768     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3769   }
3770 };
3771 } // namespace
3772 
3773 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3774                                                MLIRContext *context) {
3775   results.add<ExpandLoadFolder>(context);
3776 }
3777 
3778 //===----------------------------------------------------------------------===//
3779 // CompressStoreOp
3780 //===----------------------------------------------------------------------===//
3781 
3782 LogicalResult CompressStoreOp::verify() {
3783   VectorType maskVType = getMaskVectorType();
3784   VectorType valueVType = getVectorType();
3785   MemRefType memType = getMemRefType();
3786 
3787   if (valueVType.getElementType() != memType.getElementType())
3788     return emitOpError("base and valueToStore element type should match");
3789   if (llvm::size(indices()) != memType.getRank())
3790     return emitOpError("requires ") << memType.getRank() << " indices";
3791   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3792     return emitOpError("expected valueToStore dim to match mask dim");
3793   return success();
3794 }
3795 
3796 namespace {
3797 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3798 public:
3799   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3800   LogicalResult matchAndRewrite(CompressStoreOp compress,
3801                                 PatternRewriter &rewriter) const override {
3802     switch (get1DMaskFormat(compress.mask())) {
3803     case MaskFormat::AllTrue:
3804       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3805           compress, compress.valueToStore(), compress.base(),
3806           compress.indices());
3807       return success();
3808     case MaskFormat::AllFalse:
3809       rewriter.eraseOp(compress);
3810       return success();
3811     case MaskFormat::Unknown:
3812       return failure();
3813     }
3814     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
3815   }
3816 };
3817 } // namespace
3818 
3819 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3820                                                   MLIRContext *context) {
3821   results.add<CompressStoreFolder>(context);
3822 }
3823 
3824 //===----------------------------------------------------------------------===//
3825 // ShapeCastOp
3826 //===----------------------------------------------------------------------===//
3827 
3828 /// Returns true if each element of 'a' is equal to the product of a contiguous
3829 /// sequence of the elements of 'b'. Returns false otherwise.
3830 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
3831   unsigned rankA = a.size();
3832   unsigned rankB = b.size();
3833   assert(rankA < rankB);
3834 
3835   unsigned i = 0;
3836   unsigned j = 0;
3837   while (i < rankA && j < rankB) {
3838     int64_t dimA = a[i];
3839     int64_t dimB = 1;
3840     while (dimB < dimA && j < rankB)
3841       dimB *= b[j++];
3842     if (dimA != dimB)
3843       break;
3844     ++i;
3845 
3846     // Handle the case when trailing dimensions are of size 1.
3847     // Include them into the contiguous sequence.
3848     auto isOne = [](int64_t v) { return v == 1; };
3849     if (i < rankA && llvm::all_of(a.slice(i), isOne))
3850       i = rankA;
3851     if (j < rankB && llvm::all_of(b.slice(j), isOne))
3852       j = rankB;
3853   }
3854 
3855   return i == rankA && j == rankB;
3856 }
3857 
3858 static LogicalResult verifyVectorShapeCast(Operation *op,
3859                                            VectorType sourceVectorType,
3860                                            VectorType resultVectorType) {
3861   // Check that element type is the same.
3862   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
3863     return op->emitOpError("source/result vectors must have same element type");
3864   auto sourceShape = sourceVectorType.getShape();
3865   auto resultShape = resultVectorType.getShape();
3866 
3867   // Check that product of source dim sizes matches product of result dim sizes.
3868   int64_t sourceDimProduct = std::accumulate(
3869       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
3870   int64_t resultDimProduct = std::accumulate(
3871       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
3872   if (sourceDimProduct != resultDimProduct)
3873     return op->emitOpError("source/result number of elements must match");
3874 
3875   // Check that expanding/contracting rank cases.
3876   unsigned sourceRank = sourceVectorType.getRank();
3877   unsigned resultRank = resultVectorType.getRank();
3878   if (sourceRank < resultRank) {
3879     if (!isValidShapeCast(sourceShape, resultShape))
3880       return op->emitOpError("invalid shape cast");
3881   } else if (sourceRank > resultRank) {
3882     if (!isValidShapeCast(resultShape, sourceShape))
3883       return op->emitOpError("invalid shape cast");
3884   }
3885   return success();
3886 }
3887 
3888 LogicalResult ShapeCastOp::verify() {
3889   auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>();
3890   auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>();
3891 
3892   // Check if source/result are of vector type.
3893   if (sourceVectorType && resultVectorType)
3894     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
3895 
3896   return success();
3897 }
3898 
3899 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
3900   // Nop shape cast.
3901   if (source().getType() == result().getType())
3902     return source();
3903 
3904   // Canceling shape casts.
3905   if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) {
3906     if (result().getType() == otherOp.source().getType())
3907       return otherOp.source();
3908 
3909     // Only allows valid transitive folding.
3910     VectorType srcType = otherOp.source().getType().cast<VectorType>();
3911     VectorType resultType = getResult().getType().cast<VectorType>();
3912     if (srcType.getRank() < resultType.getRank()) {
3913       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
3914         return {};
3915     } else if (srcType.getRank() > resultType.getRank()) {
3916       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
3917         return {};
3918     } else {
3919       return {};
3920     }
3921 
3922     setOperand(otherOp.source());
3923     return getResult();
3924   }
3925   return {};
3926 }
3927 
3928 namespace {
3929 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
3930 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
3931 public:
3932   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
3933 
3934   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
3935                                 PatternRewriter &rewriter) const override {
3936     auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>();
3937     if (!constantOp)
3938       return failure();
3939     // Only handle splat for now.
3940     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
3941     if (!dense)
3942       return failure();
3943     auto newAttr =
3944         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
3945                                dense.getSplatValue<Attribute>());
3946     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
3947     return success();
3948   }
3949 };
3950 
3951 } // namespace
3952 
3953 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
3954                                               MLIRContext *context) {
3955   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
3956   results.add<ShapeCastConstantFolder>(context);
3957 }
3958 
3959 //===----------------------------------------------------------------------===//
3960 // VectorBitCastOp
3961 //===----------------------------------------------------------------------===//
3962 
3963 LogicalResult BitCastOp::verify() {
3964   auto sourceVectorType = getSourceVectorType();
3965   auto resultVectorType = getResultVectorType();
3966 
3967   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
3968     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
3969       return emitOpError("dimension size mismatch at: ") << i;
3970   }
3971 
3972   DataLayout dataLayout = DataLayout::closest(*this);
3973   auto sourceElementBits =
3974       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
3975   auto resultElementBits =
3976       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
3977 
3978   if (sourceVectorType.getRank() == 0) {
3979     if (sourceElementBits != resultElementBits)
3980       return emitOpError("source/result bitwidth of the 0-D vector element "
3981                             "types must be equal");
3982   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
3983              resultElementBits * resultVectorType.getShape().back()) {
3984     return emitOpError(
3985         "source/result bitwidth of the minor 1-D vectors must be equal");
3986   }
3987 
3988   return success();
3989 }
3990 
3991 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
3992   // Nop cast.
3993   if (source().getType() == result().getType())
3994     return source();
3995 
3996   // Canceling bitcasts.
3997   if (auto otherOp = source().getDefiningOp<BitCastOp>())
3998     if (result().getType() == otherOp.source().getType())
3999       return otherOp.source();
4000 
4001   Attribute sourceConstant = operands.front();
4002   if (!sourceConstant)
4003     return {};
4004 
4005   Type srcElemType = getSourceVectorType().getElementType();
4006   Type dstElemType = getResultVectorType().getElementType();
4007 
4008   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4009     if (floatPack.isSplat()) {
4010       auto splat = floatPack.getSplatValue<FloatAttr>();
4011 
4012       // Casting fp16 into fp32.
4013       if (srcElemType.isF16() && dstElemType.isF32()) {
4014         uint32_t bits = static_cast<uint32_t>(
4015             splat.getValue().bitcastToAPInt().getZExtValue());
4016         // Duplicate the 16-bit pattern.
4017         bits = (bits << 16) | (bits & 0xffff);
4018         APInt intBits(32, bits);
4019         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4020         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4021       }
4022     }
4023   }
4024 
4025   return {};
4026 }
4027 
4028 //===----------------------------------------------------------------------===//
4029 // TypeCastOp
4030 //===----------------------------------------------------------------------===//
4031 
4032 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4033   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4034   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4035                               memRefType.getShape().end());
4036   if (vectorType)
4037     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4038   return res;
4039 }
4040 
4041 /// Build the canonical memRefType with a single vector.
4042 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4043 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4044                        Value source) {
4045   result.addOperands(source);
4046   MemRefType memRefType = source.getType().cast<MemRefType>();
4047   VectorType vectorType =
4048       VectorType::get(extractShape(memRefType),
4049                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4050   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4051                                   memRefType.getMemorySpace()));
4052 }
4053 
4054 LogicalResult TypeCastOp::verify() {
4055   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4056   if (!canonicalType.getLayout().isIdentity())
4057     return emitOpError("expects operand to be a memref with identity layout");
4058   if (!getResultMemRefType().getLayout().isIdentity())
4059     return emitOpError("expects result to be a memref with identity layout");
4060   if (getResultMemRefType().getMemorySpace() !=
4061       getMemRefType().getMemorySpace())
4062     return emitOpError("expects result in same memory space");
4063 
4064   auto sourceType = getMemRefType();
4065   auto resultType = getResultMemRefType();
4066   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4067       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4068     return emitOpError(
4069                "expects result and operand with same underlying scalar type: ")
4070            << resultType;
4071   if (extractShape(sourceType) != extractShape(resultType))
4072     return emitOpError(
4073                "expects concatenated result and operand shapes to be equal: ")
4074            << resultType;
4075   return success();
4076 }
4077 
4078 //===----------------------------------------------------------------------===//
4079 // TransposeOp
4080 //===----------------------------------------------------------------------===//
4081 
4082 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4083                                 Value vector, ArrayRef<int64_t> transp) {
4084   VectorType vt = vector.getType().cast<VectorType>();
4085   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4086   for (unsigned i = 0; i < transp.size(); ++i)
4087     transposedShape[i] = vt.getShape()[transp[i]];
4088 
4089   result.addOperands(vector);
4090   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4091   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4092 }
4093 
4094 // Eliminates transpose operations, which produce values identical to their
4095 // input values. This happens when the dimensions of the input vector remain in
4096 // their original order after the transpose operation.
4097 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4098   SmallVector<int64_t, 4> transp;
4099   getTransp(transp);
4100 
4101   // Check if the permutation of the dimensions contains sequential values:
4102   // {0, 1, 2, ...}.
4103   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4104     if (transp[i] != i)
4105       return {};
4106   }
4107 
4108   return vector();
4109 }
4110 
4111 LogicalResult vector::TransposeOp::verify() {
4112   VectorType vectorType = getVectorType();
4113   VectorType resultType = getResultType();
4114   int64_t rank = resultType.getRank();
4115   if (vectorType.getRank() != rank)
4116     return emitOpError("vector result rank mismatch: ") << rank;
4117   // Verify transposition array.
4118   auto transpAttr = transp().getValue();
4119   int64_t size = transpAttr.size();
4120   if (rank != size)
4121     return emitOpError("transposition length mismatch: ") << size;
4122   SmallVector<bool, 8> seen(rank, false);
4123   for (const auto &ta : llvm::enumerate(transpAttr)) {
4124     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4125     if (i < 0 || i >= rank)
4126       return emitOpError("transposition index out of range: ") << i;
4127     if (seen[i])
4128       return emitOpError("duplicate position index: ") << i;
4129     seen[i] = true;
4130     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4131       return emitOpError("dimension size mismatch at: ") << i;
4132   }
4133   return success();
4134 }
4135 
4136 namespace {
4137 
4138 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4139 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4140 public:
4141   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4142 
4143   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4144                                 PatternRewriter &rewriter) const override {
4145     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4146     auto getPermutation = [](vector::TransposeOp transpose) {
4147       SmallVector<int64_t, 4> permutation;
4148       transpose.getTransp(permutation);
4149       return permutation;
4150     };
4151 
4152     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4153     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4154                                   ArrayRef<int64_t> permutation2) {
4155       SmallVector<int64_t, 4> result;
4156       for (auto index : permutation2)
4157         result.push_back(permutation1[index]);
4158       return result;
4159     };
4160 
4161     // Return if the input of 'transposeOp' is not defined by another transpose.
4162     vector::TransposeOp parentTransposeOp =
4163         transposeOp.vector().getDefiningOp<vector::TransposeOp>();
4164     if (!parentTransposeOp)
4165       return failure();
4166 
4167     SmallVector<int64_t, 4> permutation = composePermutations(
4168         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4169     // Replace 'transposeOp' with a new transpose operation.
4170     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4171         transposeOp, transposeOp.getResult().getType(),
4172         parentTransposeOp.vector(),
4173         vector::getVectorSubscriptAttr(rewriter, permutation));
4174     return success();
4175   }
4176 };
4177 
4178 } // namespace
4179 
4180 void vector::TransposeOp::getCanonicalizationPatterns(
4181     RewritePatternSet &results, MLIRContext *context) {
4182   results.add<TransposeFolder>(context);
4183 }
4184 
4185 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4186   populateFromInt64AttrArray(transp(), results);
4187 }
4188 
4189 //===----------------------------------------------------------------------===//
4190 // ConstantMaskOp
4191 //===----------------------------------------------------------------------===//
4192 
4193 LogicalResult ConstantMaskOp::verify() {
4194   auto resultType = getResult().getType().cast<VectorType>();
4195   // Check the corner case of 0-D vectors first.
4196   if (resultType.getRank() == 0) {
4197     if (mask_dim_sizes().size() != 1)
4198       return emitError("array attr must have length 1 for 0-D vectors");
4199     auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt();
4200     if (dim != 0 && dim != 1)
4201       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4202     return success();
4203   }
4204 
4205   // Verify that array attr size matches the rank of the vector result.
4206   if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank())
4207     return emitOpError(
4208         "must specify array attr of size equal vector result rank");
4209   // Verify that each array attr element is in bounds of corresponding vector
4210   // result dimension size.
4211   auto resultShape = resultType.getShape();
4212   SmallVector<int64_t, 4> maskDimSizes;
4213   for (const auto &it : llvm::enumerate(mask_dim_sizes())) {
4214     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4215     if (attrValue < 0 || attrValue > resultShape[it.index()])
4216       return emitOpError(
4217           "array attr of size out of bounds of vector result dimension size");
4218     maskDimSizes.push_back(attrValue);
4219   }
4220   // Verify that if one mask dim size is zero, they all should be zero (because
4221   // the mask region is a conjunction of each mask dimension interval).
4222   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4223   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4224   if (anyZeros && !allZeros)
4225     return emitOpError("expected all mask dim sizes to be zeros, "
4226                        "as a result of conjunction with zero mask dim");
4227   return success();
4228 }
4229 
4230 //===----------------------------------------------------------------------===//
4231 // CreateMaskOp
4232 //===----------------------------------------------------------------------===//
4233 
4234 LogicalResult CreateMaskOp::verify() {
4235   auto vectorType = getResult().getType().cast<VectorType>();
4236   // Verify that an operand was specified for each result vector each dimension.
4237   if (vectorType.getRank() == 0) {
4238     if (getNumOperands() != 1)
4239       return emitOpError(
4240           "must specify exactly one operand for 0-D create_mask");
4241   } else if (getNumOperands() !=
4242              getResult().getType().cast<VectorType>().getRank()) {
4243     return emitOpError(
4244         "must specify an operand for each result vector dimension");
4245   }
4246   return success();
4247 }
4248 
4249 namespace {
4250 
4251 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4252 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4253 public:
4254   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4255 
4256   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4257                                 PatternRewriter &rewriter) const override {
4258     // Return if any of 'createMaskOp' operands are not defined by a constant.
4259     auto isNotDefByConstant = [](Value operand) {
4260       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4261     };
4262     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4263       return failure();
4264     // Gather constant mask dimension sizes.
4265     SmallVector<int64_t, 4> maskDimSizes;
4266     for (auto it : llvm::zip(createMaskOp.operands(),
4267                              createMaskOp.getType().getShape())) {
4268       auto *defOp = std::get<0>(it).getDefiningOp();
4269       int64_t maxDimSize = std::get<1>(it);
4270       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4271       dimSize = std::min(dimSize, maxDimSize);
4272       // If one of dim sizes is zero, set all dims to zero.
4273       if (dimSize <= 0) {
4274         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4275         break;
4276       }
4277       maskDimSizes.push_back(dimSize);
4278     }
4279     // Replace 'createMaskOp' with ConstantMaskOp.
4280     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4281         createMaskOp, createMaskOp.getResult().getType(),
4282         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4283     return success();
4284   }
4285 };
4286 
4287 } // namespace
4288 
4289 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4290                                                MLIRContext *context) {
4291   results.add<CreateMaskFolder>(context);
4292 }
4293 
4294 //===----------------------------------------------------------------------===//
4295 // ScanOp
4296 //===----------------------------------------------------------------------===//
4297 
4298 LogicalResult ScanOp::verify() {
4299   VectorType srcType = getSourceType();
4300   VectorType initialType = getInitialValueType();
4301   // Check reduction dimension < rank.
4302   int64_t srcRank = srcType.getRank();
4303   int64_t reductionDim = reduction_dim();
4304   if (reductionDim >= srcRank)
4305     return emitOpError("reduction dimension ")
4306            << reductionDim << " has to be less than " << srcRank;
4307 
4308   // Check that rank(initial_value) = rank(src) - 1.
4309   int64_t initialValueRank = initialType.getRank();
4310   if (initialValueRank != srcRank - 1)
4311     return emitOpError("initial value rank ")
4312            << initialValueRank << " has to be equal to " << srcRank - 1;
4313 
4314   // Check shapes of initial value and src.
4315   ArrayRef<int64_t> srcShape = srcType.getShape();
4316   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4317   SmallVector<int64_t> expectedShape;
4318   for (int i = 0; i < srcRank; i++) {
4319     if (i != reductionDim)
4320       expectedShape.push_back(srcShape[i]);
4321   }
4322   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4323                    [](std::tuple<int64_t, int64_t> s) {
4324                      return std::get<0>(s) != std::get<1>(s);
4325                    })) {
4326     return emitOpError("incompatible input/initial value shapes");
4327   }
4328 
4329   return success();
4330 }
4331 
4332 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4333     RewritePatternSet &patterns) {
4334   patterns
4335       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4336            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4337            StridedSliceConstantMaskFolder, TransposeFolder>(
4338           patterns.getContext());
4339 }
4340 
4341 //===----------------------------------------------------------------------===//
4342 // SplatOp
4343 //===----------------------------------------------------------------------===//
4344 
4345 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4346   auto constOperand = operands.front();
4347   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4348     return {};
4349 
4350   // SplatElementsAttr::get treats single value for second arg as being a splat.
4351   return SplatElementsAttr::get(getType(), {constOperand});
4352 }
4353 
4354 //===----------------------------------------------------------------------===//
4355 // TableGen'd op method definitions
4356 //===----------------------------------------------------------------------===//
4357 
4358 #define GET_OP_CLASSES
4359 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4360