1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 return success(); 407 } 408 409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 410 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 411 Type redType; 412 Type resType; 413 CombiningKindAttr kindAttr; 414 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 415 result.attributes) || 416 parser.parseComma() || parser.parseOperandList(operandsInfo) || 417 parser.parseColonType(redType) || 418 parser.parseKeywordType("into", resType) || 419 (!operandsInfo.empty() && 420 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 421 (operandsInfo.size() > 1 && 422 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 423 parser.addTypeToList(resType, result.types)) 424 return failure(); 425 if (operandsInfo.empty() || operandsInfo.size() > 2) 426 return parser.emitError(parser.getNameLoc(), 427 "unsupported number of operands"); 428 return success(); 429 } 430 431 void ReductionOp::print(OpAsmPrinter &p) { 432 p << " "; 433 getKindAttr().print(p); 434 p << ", " << getVector(); 435 if (getAcc()) 436 p << ", " << getAcc(); 437 p << " : " << getVector().getType() << " into " << getDest().getType(); 438 } 439 440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 441 OpBuilder &builder, Location loc, 442 Value vector) { 443 switch (op) { 444 case arith::AtomicRMWKind::addf: 445 case arith::AtomicRMWKind::addi: 446 return builder.create<vector::ReductionOp>(vector.getLoc(), 447 CombiningKind::ADD, vector); 448 case arith::AtomicRMWKind::mulf: 449 case arith::AtomicRMWKind::muli: 450 return builder.create<vector::ReductionOp>(vector.getLoc(), 451 CombiningKind::MUL, vector); 452 case arith::AtomicRMWKind::minf: 453 return builder.create<vector::ReductionOp>(vector.getLoc(), 454 CombiningKind::MINF, vector); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MINSI, vector); 458 case arith::AtomicRMWKind::minu: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINUI, vector); 461 case arith::AtomicRMWKind::maxf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MAXF, vector); 464 case arith::AtomicRMWKind::maxs: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MAXSI, vector); 467 case arith::AtomicRMWKind::maxu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXUI, vector); 470 case arith::AtomicRMWKind::andi: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::AND, vector); 473 case arith::AtomicRMWKind::ori: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::OR, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 485 return llvm::to_vector<4>(getVectorType().getShape()); 486 } 487 488 namespace { 489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 490 using OpRewritePattern::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(ReductionOp reductionOp, 493 PatternRewriter &rewriter) const override { 494 if (reductionOp.getVectorType().getDimSize(0) != 1) 495 return failure(); 496 497 Location loc = reductionOp.getLoc(); 498 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 499 reductionOp.getVector(), 500 rewriter.getI64ArrayAttr(0)); 501 502 if (Value acc = reductionOp.getAcc()) { 503 assert(reductionOp.getType().isa<FloatType>()); 504 switch (reductionOp.getKind()) { 505 case CombiningKind::ADD: 506 result = rewriter.create<arith::AddFOp>(loc, result, acc); 507 break; 508 case CombiningKind::MUL: 509 result = rewriter.create<arith::MulFOp>(loc, result, acc); 510 break; 511 default: 512 assert(false && "invalid op!"); 513 } 514 } 515 516 rewriter.replaceOp(reductionOp, result); 517 return success(); 518 } 519 }; 520 } // namespace 521 522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 523 MLIRContext *context) { 524 results.add<ElideSingleElementReduction>(context); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ContractionOp 529 //===----------------------------------------------------------------------===// 530 531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 532 Value lhs, Value rhs, Value acc, 533 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 534 ArrayRef<StringRef> iteratorTypes) { 535 result.addOperands({lhs, rhs, acc}); 536 result.addTypes(acc.getType()); 537 result.addAttribute(::mlir::getIndexingMapsAttrName(), 538 builder.getAffineMapArrayAttr( 539 AffineMap::inferFromExprList(indexingExprs))); 540 result.addAttribute(::mlir::getIteratorTypesAttrName(), 541 builder.getStrArrayAttr(iteratorTypes)); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes) { 548 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 549 ContractionOp::getDefaultKind()); 550 } 551 552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 553 Value lhs, Value rhs, Value acc, 554 ArrayAttr indexingMaps, 555 ArrayAttr iteratorTypes, CombiningKind kind) { 556 result.addOperands({lhs, rhs, acc}); 557 result.addTypes(acc.getType()); 558 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 559 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 560 result.addAttribute(ContractionOp::getKindAttrStrName(), 561 CombiningKindAttr::get(kind, builder.getContext())); 562 } 563 564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 565 OpAsmParser::UnresolvedOperand lhsInfo; 566 OpAsmParser::UnresolvedOperand rhsInfo; 567 OpAsmParser::UnresolvedOperand accInfo; 568 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 569 SmallVector<Type, 2> types; 570 Type resultType; 571 auto loc = parser.getCurrentLocation(); 572 DictionaryAttr dictAttr; 573 // TODO: Unify linalg op attribute parsing. 574 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 575 parser.parseOperand(lhsInfo) || parser.parseComma() || 576 parser.parseOperand(rhsInfo) || parser.parseComma() || 577 parser.parseOperand(accInfo) || 578 parser.parseTrailingOperandList(masksInfo) || 579 parser.parseOptionalAttrDict(result.attributes) || 580 parser.parseColonTypeList(types) || 581 parser.parseKeywordType("into", resultType) || 582 parser.resolveOperand(lhsInfo, types[0], result.operands) || 583 parser.resolveOperand(rhsInfo, types[1], result.operands) || 584 parser.resolveOperand(accInfo, resultType, result.operands) || 585 parser.addTypeToList(resultType, result.types)) 586 return failure(); 587 result.attributes.assign(dictAttr.getValue().begin(), 588 dictAttr.getValue().end()); 589 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 590 result.addAttribute(ContractionOp::getKindAttrStrName(), 591 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 592 result.getContext())); 593 } 594 if (masksInfo.empty()) 595 return success(); 596 if (masksInfo.size() != 2) 597 return parser.emitError(parser.getNameLoc(), 598 "expected zero or exactly 2 vector mask operands"); 599 auto lhsType = types[0].cast<VectorType>(); 600 auto rhsType = types[1].cast<VectorType>(); 601 auto maskElementType = parser.getBuilder().getI1Type(); 602 std::array<Type, 2> maskTypes = { 603 VectorType::Builder(lhsType).setElementType(maskElementType), 604 VectorType::Builder(rhsType).setElementType(maskElementType)}; 605 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 606 return failure(); 607 return success(); 608 } 609 610 void ContractionOp::print(OpAsmPrinter &p) { 611 // TODO: Unify printing code with linalg ops. 612 auto attrNames = getTraitAttrNames(); 613 llvm::StringSet<> traitAttrsSet; 614 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 615 SmallVector<NamedAttribute, 8> attrs; 616 for (auto attr : (*this)->getAttrs()) 617 if (traitAttrsSet.count(attr.getName().strref()) > 0) 618 attrs.push_back(attr); 619 620 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 621 p << " " << dictAttr << " " << getLhs() << ", "; 622 p << getRhs() << ", " << getAcc(); 623 if (getMasks().size() == 2) 624 p << ", " << getMasks(); 625 626 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 627 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 628 << getResultType(); 629 } 630 631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 632 const std::vector<std::pair<int64_t, int64_t>> &map) { 633 for (auto &dimPair : map) { 634 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 635 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 636 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 637 return false; 638 } 639 return true; 640 } 641 642 static LogicalResult verifyOutputShape( 643 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 644 Type resType, 645 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 646 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 647 DenseSet<int64_t> lhsContractingDimSet; 648 DenseSet<int64_t> rhsContractingDimSet; 649 for (auto &dimPair : contractingDimMap) { 650 lhsContractingDimSet.insert(dimPair.first); 651 rhsContractingDimSet.insert(dimPair.second); 652 } 653 DenseSet<int64_t> rhsBatchDimSet; 654 for (auto &dimPair : batchDimMap) 655 rhsBatchDimSet.insert(dimPair.second); 656 657 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 658 SmallVector<int64_t, 4> expectedResultDims; 659 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 660 if (lhsContractingDimSet.count(i) > 0) 661 continue; 662 expectedResultDims.push_back(lhsType.getDimSize(i)); 663 } 664 665 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 666 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 667 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 668 continue; 669 expectedResultDims.push_back(rhsType.getDimSize(i)); 670 } 671 672 // Verify 'expectedResultDims'. 673 if (expectedResultDims.empty()) { 674 // No batch or free dimension implies a scalar result. 675 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 676 return op.emitOpError("invalid accumulator/result vector shape"); 677 } else { 678 // At least one batch or free dimension implies a vector result. 679 auto resVectorType = resType.dyn_cast<VectorType>(); 680 auto accVectorType = accType.dyn_cast<VectorType>(); 681 if (!resVectorType || !accVectorType) 682 return op.emitOpError("invalid accumulator/result vector shape"); 683 684 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 685 // types fully define the result vector type. This assumes the affine maps 686 // are well-formed, which must have been verified already. 687 MLIRContext *ctx = op.getContext(); 688 AffineMap lhsMap = op.getIndexingMaps()[0]; 689 AffineMap rhsMap = op.getIndexingMaps()[1]; 690 if (getUnusedDimsBitVector({lhsMap, rhsMap}).any()) 691 return op.emitOpError( 692 "expected all dimensions to be either a LHS or a RHS dimension"); 693 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 694 for (auto pair : 695 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 696 VectorType v = pair.first; 697 auto map = pair.second; 698 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 699 unsigned pos = map.getDimPosition(idx); 700 if (!extents[pos]) 701 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 702 } 703 } 704 if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) 705 return op.emitOpError("expected all dimensions to get an extent as " 706 "either a LHS or a RHS dimension"); 707 708 AffineMap resMap = op.getIndexingMaps()[2]; 709 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 710 /*symCount=*/0, extents, ctx); 711 // Compose the resMap with the extentsMap, which is a constant map. 712 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 713 assert(llvm::all_of( 714 expectedMap.getResults(), 715 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 716 "expected constant extent along all dimensions."); 717 // Extract the expected shape and build the type. 718 auto expectedShape = llvm::to_vector<4>( 719 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 720 return e.cast<AffineConstantExpr>().getValue(); 721 })); 722 auto expected = 723 VectorType::get(expectedShape, resVectorType.getElementType()); 724 if (resVectorType != expected || accVectorType != expected) 725 return op.emitOpError( 726 "invalid accumulator/result vector shape, expected: ") 727 << expected; 728 } 729 return success(); 730 } 731 732 LogicalResult ContractionOp::verify() { 733 auto lhsType = getLhsType(); 734 auto rhsType = getRhsType(); 735 auto accType = getAccType(); 736 auto resType = getResultType(); 737 738 // Verify that an indexing map was specified for each vector operand. 739 if (getIndexingMaps().size() != 3) 740 return emitOpError("expected an indexing map for each vector operand"); 741 742 // Verify that each index map has 'numIterators' inputs, no symbols, and 743 // that the number of map outputs equals the rank of its associated 744 // vector operand. 745 unsigned numIterators = getIteratorTypes().getValue().size(); 746 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 747 auto index = it.index(); 748 auto map = it.value(); 749 if (map.getNumSymbols() != 0) 750 return emitOpError("expected indexing map ") 751 << index << " to have no symbols"; 752 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 753 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 754 // Verify that the map has the right number of inputs, outputs, and indices. 755 // This also correctly accounts for (..) -> () for rank-0 results. 756 if (map.getNumDims() != numIterators) 757 return emitOpError("expected indexing map ") 758 << index << " to have " << numIterators << " number of inputs"; 759 if (map.getNumResults() != rank) 760 return emitOpError("expected indexing map ") 761 << index << " to have " << rank << " number of outputs"; 762 if (!map.isProjectedPermutation()) 763 return emitOpError("expected indexing map ") 764 << index << " to be a projected permutation of its inputs"; 765 } 766 767 auto contractingDimMap = getContractingDimMap(); 768 auto batchDimMap = getBatchDimMap(); 769 770 // Verify at least one contracting dimension pair was specified. 771 if (contractingDimMap.empty()) 772 return emitOpError("expected at least one contracting dimension pair"); 773 774 // Verify contracting dimension map was properly constructed. 775 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 776 return emitOpError("invalid contracting dimension map"); 777 778 // Verify batch dimension map was properly constructed. 779 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 780 return emitOpError("invalid batch dimension map"); 781 782 // Verify 'accType' and 'resType' shape. 783 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 784 contractingDimMap, batchDimMap))) 785 return failure(); 786 787 // Verify that either two vector masks are set or none are set. 788 auto lhsMaskType = getLHSVectorMaskType(); 789 auto rhsMaskType = getRHSVectorMaskType(); 790 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 791 return emitOpError("invalid number of vector masks specified"); 792 if (lhsMaskType && rhsMaskType) { 793 // Verify mask rank == argument rank. 794 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 795 rhsMaskType.getShape().size() != rhsType.getShape().size()) 796 return emitOpError("invalid vector mask rank"); 797 } 798 799 // Verify supported combining kind. 800 auto vectorType = resType.dyn_cast<VectorType>(); 801 auto elementType = vectorType ? vectorType.getElementType() : resType; 802 if (!isSupportedCombiningKind(getKind(), elementType)) 803 return emitOpError("unsupported contraction type"); 804 805 return success(); 806 } 807 808 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 809 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 810 ::mlir::getIteratorTypesAttrName(), 811 ContractionOp::getKindAttrStrName()}; 812 return llvm::makeArrayRef(names); 813 } 814 815 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 816 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 817 if (targetExpr == map.getResult(i)) 818 return i; 819 return -1; 820 } 821 822 static std::vector<std::pair<int64_t, int64_t>> 823 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 824 StringRef targetIteratorTypeName, MLIRContext *context) { 825 std::vector<std::pair<int64_t, int64_t>> dimMap; 826 for (const auto &it : llvm::enumerate(iteratorTypes)) { 827 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 828 if (iteratorTypeName != targetIteratorTypeName) 829 continue; 830 // Search lhs/rhs map results for 'targetExpr'. 831 auto targetExpr = getAffineDimExpr(it.index(), context); 832 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 833 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 834 if (lhsDim >= 0 && rhsDim >= 0) 835 dimMap.emplace_back(lhsDim, rhsDim); 836 } 837 return dimMap; 838 } 839 840 void ContractionOp::getIterationBounds( 841 SmallVectorImpl<int64_t> &iterationBounds) { 842 auto lhsShape = getLhsType().getShape(); 843 auto resVectorType = getResultType().dyn_cast<VectorType>(); 844 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 845 SmallVector<int64_t, 2> iterationShape; 846 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 847 // Search lhs/rhs map results for 'targetExpr'. 848 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 849 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 850 if (iteratorTypeName == getReductionIteratorTypeName()) { 851 // Get reduction dim size from lhs shape (same size in rhsShape). 852 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 853 assert(lhsDimIndex >= 0); 854 iterationBounds.push_back(lhsShape[lhsDimIndex]); 855 continue; 856 } 857 // Get parallel dimension size from result shape. 858 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 859 assert(resDimIndex >= 0); 860 assert(resVectorType != nullptr); 861 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 862 } 863 } 864 865 void ContractionOp::getIterationIndexMap( 866 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 867 unsigned numMaps = getIndexingMaps().size(); 868 iterationIndexMap.resize(numMaps); 869 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 870 auto index = it.index(); 871 auto map = it.value(); 872 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 873 auto dim = map.getResult(i).cast<AffineDimExpr>(); 874 iterationIndexMap[index][dim.getPosition()] = i; 875 } 876 } 877 } 878 879 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 880 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 881 return getDimMap(indexingMaps, getIteratorTypes(), 882 getReductionIteratorTypeName(), getContext()); 883 } 884 885 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 886 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 887 return getDimMap(indexingMaps, getIteratorTypes(), 888 getParallelIteratorTypeName(), getContext()); 889 } 890 891 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 892 SmallVector<int64_t, 4> shape; 893 getIterationBounds(shape); 894 return shape; 895 } 896 897 /// Return a fused vector::ContractionOp which represents a patterns such as: 898 /// 899 /// ```mlir 900 /// %c0 = vector.constant 0: ... 901 /// %c = vector.contract %a, %b, %c0: ... 902 /// %e = add %c, %d: ... 903 /// ``` 904 /// 905 /// by: 906 /// 907 /// ```mlir 908 /// %e = vector.contract %a, %b, %d: ... 909 /// ``` 910 /// 911 /// Return null if the canonicalization does not apply. 912 // TODO: This should be a folding of Add into Contract in core but while they 913 // live in different dialects, it is not possible without unnatural 914 // dependencies. 915 template <typename AddOpType> 916 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 917 using OpRewritePattern<AddOpType>::OpRewritePattern; 918 919 LogicalResult matchAndRewrite(AddOpType addOp, 920 PatternRewriter &rewriter) const override { 921 auto canonicalize = [&](Value maybeContraction, 922 Value otherOperand) -> vector::ContractionOp { 923 vector::ContractionOp contractionOp = 924 dyn_cast_or_null<vector::ContractionOp>( 925 maybeContraction.getDefiningOp()); 926 if (!contractionOp) 927 return vector::ContractionOp(); 928 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 929 contractionOp.getAcc().getDefiningOp())) { 930 if (maybeZero.getValue() == 931 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 932 BlockAndValueMapping bvm; 933 bvm.map(contractionOp.getAcc(), otherOperand); 934 auto newContraction = 935 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 936 rewriter.replaceOp(addOp, newContraction.getResult()); 937 return newContraction; 938 } 939 } 940 return vector::ContractionOp(); 941 }; 942 943 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 944 vector::ContractionOp contract = canonicalize(a, b); 945 contract = contract ? contract : canonicalize(b, a); 946 return contract ? success() : failure(); 947 } 948 }; 949 950 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 951 MLIRContext *context) { 952 results.add<CanonicalizeContractAdd<arith::AddIOp>, 953 CanonicalizeContractAdd<arith::AddFOp>>(context); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // ExtractElementOp 958 //===----------------------------------------------------------------------===// 959 960 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 961 Value source) { 962 result.addOperands({source}); 963 result.addTypes(source.getType().cast<VectorType>().getElementType()); 964 } 965 966 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 967 Value source, Value position) { 968 result.addOperands({source, position}); 969 result.addTypes(source.getType().cast<VectorType>().getElementType()); 970 } 971 972 LogicalResult vector::ExtractElementOp::verify() { 973 VectorType vectorType = getVectorType(); 974 if (vectorType.getRank() == 0) { 975 if (getPosition()) 976 return emitOpError("expected position to be empty with 0-D vector"); 977 return success(); 978 } 979 if (vectorType.getRank() != 1) 980 return emitOpError("unexpected >1 vector rank"); 981 if (!getPosition()) 982 return emitOpError("expected position for 1-D vector"); 983 return success(); 984 } 985 986 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 987 // Skip the 0-D vector here now. 988 if (operands.size() < 2) 989 return {}; 990 991 Attribute src = operands[0]; 992 Attribute pos = operands[1]; 993 994 // Fold extractelement (splat X) -> X. 995 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 996 return splat.getInput(); 997 998 if (!pos || !src) 999 return {}; 1000 1001 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 1002 1003 auto attr = pos.dyn_cast<IntegerAttr>(); 1004 uint64_t posIdx = attr.getInt(); 1005 1006 return srcElements[posIdx]; 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // ExtractOp 1011 //===----------------------------------------------------------------------===// 1012 1013 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1014 Value source, ArrayRef<int64_t> position) { 1015 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1016 } 1017 1018 // Convenience builder which assumes the values are constant indices. 1019 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1020 Value source, ValueRange position) { 1021 SmallVector<int64_t, 4> positionConstants = 1022 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1023 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1024 })); 1025 build(builder, result, source, positionConstants); 1026 } 1027 1028 LogicalResult 1029 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1030 ValueRange operands, DictionaryAttr attributes, 1031 RegionRange, 1032 SmallVectorImpl<Type> &inferredReturnTypes) { 1033 ExtractOp::Adaptor op(operands, attributes); 1034 auto vectorType = op.getVector().getType().cast<VectorType>(); 1035 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1036 inferredReturnTypes.push_back(vectorType.getElementType()); 1037 } else { 1038 auto n = 1039 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1040 inferredReturnTypes.push_back(VectorType::get( 1041 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1042 } 1043 return success(); 1044 } 1045 1046 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1047 // Allow extracting 1-element vectors instead of scalars. 1048 auto isCompatible = [](TypeRange l, TypeRange r) { 1049 auto vectorType = l.front().dyn_cast<VectorType>(); 1050 return vectorType && vectorType.getShape().equals({1}) && 1051 vectorType.getElementType() == r.front(); 1052 }; 1053 if (l.size() == 1 && r.size() == 1 && 1054 (isCompatible(l, r) || isCompatible(r, l))) 1055 return true; 1056 return l == r; 1057 } 1058 1059 LogicalResult vector::ExtractOp::verify() { 1060 auto positionAttr = getPosition().getValue(); 1061 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1062 return emitOpError( 1063 "expected position attribute of rank smaller than vector rank"); 1064 for (const auto &en : llvm::enumerate(positionAttr)) { 1065 auto attr = en.value().dyn_cast<IntegerAttr>(); 1066 if (!attr || attr.getInt() < 0 || 1067 attr.getInt() >= getVectorType().getDimSize(en.index())) 1068 return emitOpError("expected position attribute #") 1069 << (en.index() + 1) 1070 << " to be a non-negative integer smaller than the corresponding " 1071 "vector dimension"; 1072 } 1073 return success(); 1074 } 1075 1076 template <typename IntType> 1077 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1078 return llvm::to_vector<4>(llvm::map_range( 1079 arrayAttr.getAsRange<IntegerAttr>(), 1080 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1081 } 1082 1083 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1084 /// positions. 1085 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1086 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1087 return failure(); 1088 1089 SmallVector<int64_t, 4> globalPosition; 1090 ExtractOp currentOp = extractOp; 1091 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1092 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1093 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1094 currentOp = nextOp; 1095 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1096 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1097 } 1098 extractOp.setOperand(currentOp.getVector()); 1099 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1100 OpBuilder b(extractOp.getContext()); 1101 std::reverse(globalPosition.begin(), globalPosition.end()); 1102 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1103 b.getI64ArrayAttr(globalPosition)); 1104 return success(); 1105 } 1106 1107 namespace { 1108 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1109 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1110 /// Compose TransposeOp permutations as we walk back. 1111 /// This helper class keeps an updated extraction position `extractPosition` 1112 /// with extra trailing sentinels. 1113 /// The sentinels encode the internal transposition status of the result vector. 1114 /// As we iterate, extractPosition is permuted and updated. 1115 class ExtractFromInsertTransposeChainState { 1116 public: 1117 ExtractFromInsertTransposeChainState(ExtractOp e); 1118 1119 /// Iterate over producing insert and transpose ops until we find a fold. 1120 Value fold(); 1121 1122 private: 1123 /// Return true if the vector at position `a` is contained within the vector 1124 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1125 /// is a prefix of `b`. 1126 template <typename ContainerA, typename ContainerB> 1127 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1128 return a.size() <= b.size() && 1129 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1130 } 1131 1132 /// Return true if the vector at position `a` intersects the vector at 1133 /// position `b`. Under insert/extract semantics, this is the same as equality 1134 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1135 /// Comparison is on the common prefix (i.e. zip). 1136 template <typename ContainerA, typename ContainerB> 1137 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1138 for (auto it : llvm::zip(a, b)) { 1139 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1140 continue; 1141 if (std::get<0>(it) != std::get<1>(it)) 1142 return false; 1143 } 1144 return true; 1145 } 1146 1147 /// Folding is only possible in the absence of an internal permutation in the 1148 /// result vector. 1149 bool canFold() { 1150 return (sentinels == 1151 makeArrayRef(extractPosition).drop_front(extractedRank)); 1152 } 1153 1154 // Helper to get the next defining op of interest. 1155 void updateStateForNextIteration(Value v) { 1156 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1157 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1158 }; 1159 1160 // Case 1. If we hit a transpose, just compose the map and iterate. 1161 // Invariant: insert + transpose do not change rank, we can always compose. 1162 LogicalResult handleTransposeOp(); 1163 1164 // Case 2: the insert position matches extractPosition exactly, early return. 1165 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1166 1167 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1168 /// portion of the source of the insert. 1169 /// Example: 1170 /// ``` 1171 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1172 /// // extractPosition == [1, 2, 3] 1173 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1174 /// // can fold to vector.extract %source[0, 3] 1175 /// %ext = vector.extract %source[3]: vector<5x6> 1176 /// ``` 1177 /// To traverse through %source, we need to set the leading dims to 0 and 1178 /// drop the extra leading dims. 1179 /// This method updates the internal state. 1180 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1181 1182 /// Try to fold in place to extract(source, extractPosition) and return the 1183 /// folded result. Return null if folding is not possible (e.g. due to an 1184 /// internal tranposition in the result). 1185 Value tryToFoldExtractOpInPlace(Value source); 1186 1187 ExtractOp extractOp; 1188 int64_t vectorRank; 1189 int64_t extractedRank; 1190 1191 InsertOp nextInsertOp; 1192 TransposeOp nextTransposeOp; 1193 1194 /// Sentinel values that encode the internal permutation status of the result. 1195 /// They are set to (-1, ... , -k) at the beginning and appended to 1196 /// `extractPosition`. 1197 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1198 /// ensure that there is no internal transposition. 1199 /// Internal transposition cannot be accounted for with a folding pattern. 1200 // TODO: We could relax the internal transposition with an extra transposition 1201 // operation in a future canonicalizer. 1202 SmallVector<int64_t> sentinels; 1203 SmallVector<int64_t> extractPosition; 1204 }; 1205 } // namespace 1206 1207 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1208 ExtractOp e) 1209 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1210 extractedRank(extractOp.getPosition().size()) { 1211 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1212 sentinels.reserve(vectorRank - extractedRank); 1213 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1214 sentinels.push_back(-(i + 1)); 1215 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1216 llvm::append_range(extractPosition, sentinels); 1217 } 1218 1219 // Case 1. If we hit a transpose, just compose the map and iterate. 1220 // Invariant: insert + transpose do not change rank, we can always compose. 1221 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1222 if (!nextTransposeOp) 1223 return failure(); 1224 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1225 AffineMap m = inversePermutation( 1226 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1227 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1228 return success(); 1229 } 1230 1231 // Case 2: the insert position matches extractPosition exactly, early return. 1232 LogicalResult 1233 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1234 Value &res) { 1235 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1236 if (makeArrayRef(insertedPos) != 1237 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1238 return failure(); 1239 // Case 2.a. early-exit fold. 1240 res = nextInsertOp.getSource(); 1241 // Case 2.b. if internal transposition is present, canFold will be false. 1242 return success(); 1243 } 1244 1245 /// Case 3: if inserted position is a prefix of extractPosition, 1246 /// extract a portion of the source of the insertion. 1247 /// This method updates the internal state. 1248 LogicalResult 1249 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1250 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1251 if (!isContainedWithin(insertedPos, extractPosition)) 1252 return failure(); 1253 // Set leading dims to zero. 1254 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1255 // Drop extra leading dims. 1256 extractPosition.erase(extractPosition.begin(), 1257 extractPosition.begin() + insertedPos.size()); 1258 extractedRank = extractPosition.size() - sentinels.size(); 1259 // Case 3.a. early-exit fold (break and delegate to post-while path). 1260 res = nextInsertOp.getSource(); 1261 // Case 3.b. if internal transposition is present, canFold will be false. 1262 return success(); 1263 } 1264 1265 /// Try to fold in place to extract(source, extractPosition) and return the 1266 /// folded result. Return null if folding is not possible (e.g. due to an 1267 /// internal tranposition in the result). 1268 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1269 Value source) { 1270 // If we can't fold (either internal transposition, or nothing to fold), bail. 1271 bool nothingToFold = (source == extractOp.getVector()); 1272 if (nothingToFold || !canFold()) 1273 return Value(); 1274 // Otherwise, fold by updating the op inplace and return its result. 1275 OpBuilder b(extractOp.getContext()); 1276 extractOp->setAttr( 1277 extractOp.getPositionAttrName(), 1278 b.getI64ArrayAttr( 1279 makeArrayRef(extractPosition).take_front(extractedRank))); 1280 extractOp.getVectorMutable().assign(source); 1281 return extractOp.getResult(); 1282 } 1283 1284 /// Iterate over producing insert and transpose ops until we find a fold. 1285 Value ExtractFromInsertTransposeChainState::fold() { 1286 Value valueToExtractFrom = extractOp.getVector(); 1287 updateStateForNextIteration(valueToExtractFrom); 1288 while (nextInsertOp || nextTransposeOp) { 1289 // Case 1. If we hit a transpose, just compose the map and iterate. 1290 // Invariant: insert + transpose do not change rank, we can always compose. 1291 if (succeeded(handleTransposeOp())) { 1292 valueToExtractFrom = nextTransposeOp.getVector(); 1293 updateStateForNextIteration(valueToExtractFrom); 1294 continue; 1295 } 1296 1297 Value result; 1298 // Case 2: the position match exactly. 1299 if (succeeded(handleInsertOpWithMatchingPos(result))) 1300 return result; 1301 1302 // Case 3: if the inserted position is a prefix of extractPosition, we can 1303 // just extract a portion of the source of the insert. 1304 if (succeeded(handleInsertOpWithPrefixPos(result))) 1305 return tryToFoldExtractOpInPlace(result); 1306 1307 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1308 // values. This is a more difficult case and we bail. 1309 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1310 if (isContainedWithin(extractPosition, insertedPos) || 1311 intersectsWhereNonNegative(extractPosition, insertedPos)) 1312 return Value(); 1313 1314 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1315 valueToExtractFrom = nextInsertOp.getDest(); 1316 updateStateForNextIteration(valueToExtractFrom); 1317 } 1318 // If after all this we can fold, go for it. 1319 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1320 } 1321 1322 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1323 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1324 Operation *defOp = extractOp.getVector().getDefiningOp(); 1325 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1326 return Value(); 1327 Value source = defOp->getOperand(0); 1328 if (extractOp.getType() == source.getType()) 1329 return source; 1330 auto getRank = [](Type type) { 1331 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1332 }; 1333 unsigned broadcastSrcRank = getRank(source.getType()); 1334 unsigned extractResultRank = getRank(extractOp.getType()); 1335 if (extractResultRank >= broadcastSrcRank) 1336 return Value(); 1337 // Check that the dimension of the result haven't been broadcasted. 1338 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1339 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1340 if (extractVecType && broadcastVecType && 1341 extractVecType.getShape() != 1342 broadcastVecType.getShape().take_back(extractResultRank)) 1343 return Value(); 1344 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1345 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1346 extractPos.erase(extractPos.begin(), 1347 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1348 extractOp.setOperand(source); 1349 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1350 OpBuilder b(extractOp.getContext()); 1351 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1352 b.getI64ArrayAttr(extractPos)); 1353 return extractOp.getResult(); 1354 } 1355 1356 // Fold extractOp with source coming from ShapeCast op. 1357 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1358 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1359 if (!shapeCastOp) 1360 return Value(); 1361 // Get the nth dimension size starting from lowest dimension. 1362 auto getDimReverse = [](VectorType type, int64_t n) { 1363 return type.getShape().take_back(n + 1).front(); 1364 }; 1365 int64_t destinationRank = 1366 extractOp.getType().isa<VectorType>() 1367 ? extractOp.getType().cast<VectorType>().getRank() 1368 : 0; 1369 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1370 return Value(); 1371 if (destinationRank > 0) { 1372 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1373 for (int64_t i = 0; i < destinationRank; i++) { 1374 // The lowest dimension of of the destination must match the lowest 1375 // dimension of the shapecast op source. 1376 // TODO: This case could be support in a canonicalization pattern. 1377 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1378 getDimReverse(destinationType, i)) 1379 return Value(); 1380 } 1381 } 1382 // Extract the strides associated with the extract op vector source. Then use 1383 // this to calculate a linearized position for the extract. 1384 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1385 std::reverse(extractedPos.begin(), extractedPos.end()); 1386 SmallVector<int64_t, 4> strides; 1387 int64_t stride = 1; 1388 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1389 strides.push_back(stride); 1390 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1391 } 1392 1393 int64_t position = linearize(extractedPos, strides); 1394 // Then extract the strides associated to the shapeCast op vector source and 1395 // delinearize the position using those strides. 1396 SmallVector<int64_t, 4> newStrides; 1397 int64_t numDimension = 1398 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1399 stride = 1; 1400 for (int64_t i = 0; i < numDimension; i++) { 1401 newStrides.push_back(stride); 1402 stride *= 1403 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1404 } 1405 std::reverse(newStrides.begin(), newStrides.end()); 1406 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1407 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1408 OpBuilder b(extractOp.getContext()); 1409 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1410 b.getI64ArrayAttr(newPosition)); 1411 extractOp.setOperand(shapeCastOp.getSource()); 1412 return extractOp.getResult(); 1413 } 1414 1415 /// Fold an ExtractOp from ExtractStridedSliceOp. 1416 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1417 auto extractStridedSliceOp = 1418 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1419 if (!extractStridedSliceOp) 1420 return Value(); 1421 // Return if 'extractStridedSliceOp' has non-unit strides. 1422 if (extractStridedSliceOp.hasNonUnitStrides()) 1423 return Value(); 1424 1425 // Trim offsets for dimensions fully extracted. 1426 auto sliceOffsets = 1427 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1428 while (!sliceOffsets.empty()) { 1429 size_t lastOffset = sliceOffsets.size() - 1; 1430 if (sliceOffsets.back() != 0 || 1431 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1432 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1433 break; 1434 sliceOffsets.pop_back(); 1435 } 1436 unsigned destinationRank = 0; 1437 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1438 destinationRank = vecType.getRank(); 1439 // The dimensions of the result need to be untouched by the 1440 // extractStridedSlice op. 1441 if (destinationRank > 1442 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1443 return Value(); 1444 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1445 assert(extractedPos.size() >= sliceOffsets.size()); 1446 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1447 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1448 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1449 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1450 OpBuilder b(extractOp.getContext()); 1451 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1452 b.getI64ArrayAttr(extractedPos)); 1453 return extractOp.getResult(); 1454 } 1455 1456 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1457 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1458 int64_t destinationRank = op.getType().isa<VectorType>() 1459 ? op.getType().cast<VectorType>().getRank() 1460 : 0; 1461 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1462 while (insertOp) { 1463 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1464 insertOp.getSourceVectorType().getRank(); 1465 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1466 return Value(); 1467 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1468 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1469 1470 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1471 return attr.cast<IntegerAttr>().getInt() != 1; 1472 })) 1473 return Value(); 1474 bool disjoint = false; 1475 SmallVector<int64_t, 4> offsetDiffs; 1476 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1477 int64_t start = insertOffsets[dim]; 1478 int64_t size = 1479 (dim < insertRankDiff) 1480 ? 1 1481 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1482 int64_t end = start + size; 1483 int64_t offset = extractOffsets[dim]; 1484 // Check if the start of the extract offset is in the interval inserted. 1485 if (start <= offset && offset < end) { 1486 if (dim >= insertRankDiff) 1487 offsetDiffs.push_back(offset - start); 1488 continue; 1489 } 1490 disjoint = true; 1491 break; 1492 } 1493 // The extract element chunk overlap with the vector inserted. 1494 if (!disjoint) { 1495 // If any of the inner dimensions are only partially inserted we have a 1496 // partial overlap. 1497 int64_t srcRankDiff = 1498 insertOp.getSourceVectorType().getRank() - destinationRank; 1499 for (int64_t i = 0; i < destinationRank; i++) { 1500 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1501 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1502 insertRankDiff)) 1503 return Value(); 1504 } 1505 op.getVectorMutable().assign(insertOp.getSource()); 1506 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1507 OpBuilder b(op.getContext()); 1508 op->setAttr(ExtractOp::getPositionAttrStrName(), 1509 b.getI64ArrayAttr(offsetDiffs)); 1510 return op.getResult(); 1511 } 1512 // If the chunk extracted is disjoint from the chunk inserted, keep 1513 // looking in the insert chain. 1514 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1515 } 1516 return Value(); 1517 } 1518 1519 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1520 if (getPosition().empty()) 1521 return getVector(); 1522 if (succeeded(foldExtractOpFromExtractChain(*this))) 1523 return getResult(); 1524 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1525 return res; 1526 if (auto res = foldExtractFromBroadcast(*this)) 1527 return res; 1528 if (auto res = foldExtractFromShapeCast(*this)) 1529 return res; 1530 if (auto val = foldExtractFromExtractStrided(*this)) 1531 return val; 1532 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1533 return val; 1534 return OpFoldResult(); 1535 } 1536 1537 namespace { 1538 1539 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1540 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1541 public: 1542 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1543 1544 LogicalResult matchAndRewrite(ExtractOp extractOp, 1545 PatternRewriter &rewriter) const override { 1546 Operation *defOp = extractOp.getVector().getDefiningOp(); 1547 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1548 return failure(); 1549 1550 Value source = defOp->getOperand(0); 1551 if (extractOp.getType() == source.getType()) 1552 return failure(); 1553 auto getRank = [](Type type) { 1554 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1555 }; 1556 unsigned broadcastSrcRank = getRank(source.getType()); 1557 unsigned extractResultRank = getRank(extractOp.getType()); 1558 // We only consider the case where the rank of the source is less than or 1559 // equal to the rank of the extract dst. The other cases are handled in the 1560 // folding patterns. 1561 if (extractResultRank < broadcastSrcRank) 1562 return failure(); 1563 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1564 extractOp, extractOp.getType(), source); 1565 return success(); 1566 } 1567 }; 1568 1569 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1570 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1571 public: 1572 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1573 1574 LogicalResult matchAndRewrite(ExtractOp extractOp, 1575 PatternRewriter &rewriter) const override { 1576 // Return if 'extractStridedSliceOp' operand is not defined by a 1577 // ConstantOp. 1578 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1579 if (!constantOp) 1580 return failure(); 1581 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1582 if (!dense) 1583 return failure(); 1584 Attribute newAttr = dense.getSplatValue<Attribute>(); 1585 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1586 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1587 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1588 return success(); 1589 } 1590 }; 1591 1592 } // namespace 1593 1594 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1595 MLIRContext *context) { 1596 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1597 } 1598 1599 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1600 SmallVectorImpl<int64_t> &results) { 1601 for (auto attr : arrayAttr) 1602 results.push_back(attr.cast<IntegerAttr>().getInt()); 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // ExtractMapOp 1607 //===----------------------------------------------------------------------===// 1608 1609 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1610 Value vector, ValueRange ids, 1611 ArrayRef<int64_t> multiplicity, 1612 AffineMap permutationMap) { 1613 assert(ids.size() == multiplicity.size() && 1614 ids.size() == permutationMap.getNumResults()); 1615 assert(permutationMap.isProjectedPermutation()); 1616 VectorType type = vector.getType().cast<VectorType>(); 1617 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1618 type.getShape().end()); 1619 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1620 AffineExpr expr = permutationMap.getResult(i); 1621 auto dim = expr.cast<AffineDimExpr>(); 1622 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1623 } 1624 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1625 ExtractMapOp::build(builder, result, resultType, vector, ids); 1626 } 1627 1628 LogicalResult ExtractMapOp::verify() { 1629 if (getSourceVectorType().getRank() != getResultType().getRank()) 1630 return emitOpError("expected source and destination vectors of same rank"); 1631 unsigned numId = 0; 1632 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1633 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1634 0) 1635 return emitOpError("source vector dimensions must be a multiple of " 1636 "destination vector dimensions"); 1637 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1638 numId++; 1639 } 1640 if (numId != getIds().size()) 1641 return emitOpError("expected number of ids must match the number of " 1642 "dimensions distributed"); 1643 return success(); 1644 } 1645 1646 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1647 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1648 if (insert == nullptr || getType() != insert.getVector().getType() || 1649 getIds() != insert.getIds()) 1650 return {}; 1651 return insert.getVector(); 1652 } 1653 1654 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1655 assert(multiplicity.empty()); 1656 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1657 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1658 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1659 getResultType().getDimSize(i)); 1660 } 1661 } 1662 1663 template <typename MapOp> 1664 AffineMap calculateImplicitMap(MapOp op) { 1665 SmallVector<AffineExpr, 4> perm; 1666 // Check which dimension have a multiplicity greater than 1 and associated 1667 // them to the IDs in order. 1668 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1669 if (op.getSourceVectorType().getDimSize(i) != 1670 op.getResultType().getDimSize(i)) 1671 perm.push_back(getAffineDimExpr(i, op.getContext())); 1672 } 1673 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1674 op.getContext()); 1675 return map; 1676 } 1677 1678 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1679 1680 //===----------------------------------------------------------------------===// 1681 // FmaOp 1682 //===----------------------------------------------------------------------===// 1683 1684 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1685 return llvm::to_vector<4>(getVectorType().getShape()); 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // BroadcastOp 1690 //===----------------------------------------------------------------------===// 1691 1692 BroadcastableToResult 1693 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1694 std::pair<int, int> *mismatchingDims) { 1695 // Broadcast scalar to vector of the same element type. 1696 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1697 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1698 return BroadcastableToResult::Success; 1699 // From now on, only vectors broadcast. 1700 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1701 if (!srcVectorType) 1702 return BroadcastableToResult::SourceTypeNotAVector; 1703 1704 int64_t srcRank = srcVectorType.getRank(); 1705 int64_t dstRank = dstVectorType.getRank(); 1706 if (srcRank > dstRank) 1707 return BroadcastableToResult::SourceRankHigher; 1708 // Source has an exact match or singleton value for all trailing dimensions 1709 // (all leading dimensions are simply duplicated). 1710 int64_t lead = dstRank - srcRank; 1711 for (int64_t r = 0; r < srcRank; ++r) { 1712 int64_t srcDim = srcVectorType.getDimSize(r); 1713 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1714 if (srcDim != 1 && srcDim != dstDim) { 1715 if (mismatchingDims) { 1716 mismatchingDims->first = srcDim; 1717 mismatchingDims->second = dstDim; 1718 } 1719 return BroadcastableToResult::DimensionMismatch; 1720 } 1721 } 1722 1723 return BroadcastableToResult::Success; 1724 } 1725 1726 LogicalResult BroadcastOp::verify() { 1727 std::pair<int, int> mismatchingDims; 1728 BroadcastableToResult res = 1729 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1730 if (res == BroadcastableToResult::Success) 1731 return success(); 1732 if (res == BroadcastableToResult::SourceRankHigher) 1733 return emitOpError("source rank higher than destination rank"); 1734 if (res == BroadcastableToResult::DimensionMismatch) 1735 return emitOpError("dimension mismatch (") 1736 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1737 if (res == BroadcastableToResult::SourceTypeNotAVector) 1738 return emitOpError("source type is not a vector"); 1739 llvm_unreachable("unexpected vector.broadcast op error"); 1740 } 1741 1742 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1743 if (getSourceType() == getVectorType()) 1744 return getSource(); 1745 if (!operands[0]) 1746 return {}; 1747 auto vectorType = getVectorType(); 1748 if (operands[0].getType().isIntOrIndexOrFloat()) 1749 return DenseElementsAttr::get(vectorType, operands[0]); 1750 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1751 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1752 return {}; 1753 } 1754 1755 namespace { 1756 1757 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1758 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1759 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1760 1761 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1762 PatternRewriter &rewriter) const override { 1763 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1764 if (!srcBroadcast) 1765 return failure(); 1766 rewriter.replaceOpWithNewOp<BroadcastOp>( 1767 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1768 return success(); 1769 } 1770 }; 1771 } // namespace 1772 1773 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1774 MLIRContext *context) { 1775 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1776 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1777 results.add<BroadcastFolder>(context); 1778 } 1779 1780 //===----------------------------------------------------------------------===// 1781 // ShuffleOp 1782 //===----------------------------------------------------------------------===// 1783 1784 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1785 Value v2, ArrayRef<int64_t> mask) { 1786 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1787 } 1788 1789 LogicalResult ShuffleOp::verify() { 1790 VectorType resultType = getVectorType(); 1791 VectorType v1Type = getV1VectorType(); 1792 VectorType v2Type = getV2VectorType(); 1793 // Verify ranks. 1794 int64_t resRank = resultType.getRank(); 1795 int64_t v1Rank = v1Type.getRank(); 1796 int64_t v2Rank = v2Type.getRank(); 1797 if (resRank != v1Rank || v1Rank != v2Rank) 1798 return emitOpError("rank mismatch"); 1799 // Verify all but leading dimension sizes. 1800 for (int64_t r = 1; r < v1Rank; ++r) { 1801 int64_t resDim = resultType.getDimSize(r); 1802 int64_t v1Dim = v1Type.getDimSize(r); 1803 int64_t v2Dim = v2Type.getDimSize(r); 1804 if (resDim != v1Dim || v1Dim != v2Dim) 1805 return emitOpError("dimension mismatch"); 1806 } 1807 // Verify mask length. 1808 auto maskAttr = getMask().getValue(); 1809 int64_t maskLength = maskAttr.size(); 1810 if (maskLength <= 0) 1811 return emitOpError("invalid mask length"); 1812 if (maskLength != resultType.getDimSize(0)) 1813 return emitOpError("mask length mismatch"); 1814 // Verify all indices. 1815 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1816 for (const auto &en : llvm::enumerate(maskAttr)) { 1817 auto attr = en.value().dyn_cast<IntegerAttr>(); 1818 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1819 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1820 } 1821 return success(); 1822 } 1823 1824 LogicalResult 1825 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1826 ValueRange operands, DictionaryAttr attributes, 1827 RegionRange, 1828 SmallVectorImpl<Type> &inferredReturnTypes) { 1829 ShuffleOp::Adaptor op(operands, attributes); 1830 auto v1Type = op.getV1().getType().cast<VectorType>(); 1831 // Construct resulting type: leading dimension matches mask length, 1832 // all trailing dimensions match the operands. 1833 SmallVector<int64_t, 4> shape; 1834 shape.reserve(v1Type.getRank()); 1835 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1836 llvm::append_range(shape, v1Type.getShape().drop_front()); 1837 inferredReturnTypes.push_back( 1838 VectorType::get(shape, v1Type.getElementType())); 1839 return success(); 1840 } 1841 1842 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1843 uint64_t expected = begin; 1844 return idxArr.size() == width && 1845 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1846 [&expected](auto attr) { 1847 return attr.getZExtValue() == expected++; 1848 }); 1849 } 1850 1851 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1852 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1853 if (!getV1VectorType().isScalable() && 1854 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1855 return getV1(); 1856 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1857 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1858 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1859 getV2VectorType().getDimSize(0))) 1860 return getV2(); 1861 1862 Attribute lhs = operands.front(), rhs = operands.back(); 1863 if (!lhs || !rhs) 1864 return {}; 1865 1866 auto lhsType = lhs.getType().cast<VectorType>(); 1867 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1868 // manipulation. 1869 if (lhsType.getRank() != 1) 1870 return {}; 1871 int64_t lhsSize = lhsType.getDimSize(0); 1872 1873 SmallVector<Attribute> results; 1874 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1875 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1876 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1877 int64_t i = index.getZExtValue(); 1878 if (i >= lhsSize) { 1879 results.push_back(rhsElements[i - lhsSize]); 1880 } else { 1881 results.push_back(lhsElements[i]); 1882 } 1883 } 1884 1885 return DenseElementsAttr::get(getVectorType(), results); 1886 } 1887 1888 namespace { 1889 1890 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. 1891 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { 1892 public: 1893 using OpRewritePattern<ShuffleOp>::OpRewritePattern; 1894 1895 LogicalResult matchAndRewrite(ShuffleOp op, 1896 PatternRewriter &rewriter) const override { 1897 auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); 1898 auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); 1899 1900 if (!v1Splat || !v2Splat) 1901 return failure(); 1902 1903 if (v1Splat.getInput() != v2Splat.getInput()) 1904 return failure(); 1905 1906 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); 1907 return success(); 1908 } 1909 }; 1910 1911 } // namespace 1912 1913 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, 1914 MLIRContext *context) { 1915 results.add<ShuffleSplat>(context); 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // InsertElementOp 1920 //===----------------------------------------------------------------------===// 1921 1922 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1923 Value source, Value dest) { 1924 build(builder, result, source, dest, {}); 1925 } 1926 1927 LogicalResult InsertElementOp::verify() { 1928 auto dstVectorType = getDestVectorType(); 1929 if (dstVectorType.getRank() == 0) { 1930 if (getPosition()) 1931 return emitOpError("expected position to be empty with 0-D vector"); 1932 return success(); 1933 } 1934 if (dstVectorType.getRank() != 1) 1935 return emitOpError("unexpected >1 vector rank"); 1936 if (!getPosition()) 1937 return emitOpError("expected position for 1-D vector"); 1938 return success(); 1939 } 1940 1941 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1942 // Skip the 0-D vector here. 1943 if (operands.size() < 3) 1944 return {}; 1945 1946 Attribute src = operands[0]; 1947 Attribute dst = operands[1]; 1948 Attribute pos = operands[2]; 1949 if (!src || !dst || !pos) 1950 return {}; 1951 1952 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1953 1954 SmallVector<Attribute> results(dstElements); 1955 1956 auto attr = pos.dyn_cast<IntegerAttr>(); 1957 uint64_t posIdx = attr.getInt(); 1958 1959 results[posIdx] = src; 1960 1961 return DenseElementsAttr::get(getDestVectorType(), results); 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // InsertOp 1966 //===----------------------------------------------------------------------===// 1967 1968 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1969 Value dest, ArrayRef<int64_t> position) { 1970 result.addOperands({source, dest}); 1971 auto positionAttr = getVectorSubscriptAttr(builder, position); 1972 result.addTypes(dest.getType()); 1973 result.addAttribute(getPositionAttrStrName(), positionAttr); 1974 } 1975 1976 // Convenience builder which assumes the values are constant indices. 1977 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1978 Value dest, ValueRange position) { 1979 SmallVector<int64_t, 4> positionConstants = 1980 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1981 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1982 })); 1983 build(builder, result, source, dest, positionConstants); 1984 } 1985 1986 LogicalResult InsertOp::verify() { 1987 auto positionAttr = getPosition().getValue(); 1988 auto destVectorType = getDestVectorType(); 1989 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1990 return emitOpError( 1991 "expected position attribute of rank smaller than dest vector rank"); 1992 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1993 if (srcVectorType && 1994 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1995 static_cast<unsigned>(destVectorType.getRank()))) 1996 return emitOpError("expected position attribute rank + source rank to " 1997 "match dest vector rank"); 1998 if (!srcVectorType && 1999 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 2000 return emitOpError( 2001 "expected position attribute rank to match the dest vector rank"); 2002 for (const auto &en : llvm::enumerate(positionAttr)) { 2003 auto attr = en.value().dyn_cast<IntegerAttr>(); 2004 if (!attr || attr.getInt() < 0 || 2005 attr.getInt() >= destVectorType.getDimSize(en.index())) 2006 return emitOpError("expected position attribute #") 2007 << (en.index() + 1) 2008 << " to be a non-negative integer smaller than the corresponding " 2009 "dest vector dimension"; 2010 } 2011 return success(); 2012 } 2013 2014 namespace { 2015 2016 // If insertOp is only inserting unit dimensions it can be transformed to a 2017 // broadcast. 2018 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 2019 public: 2020 using OpRewritePattern<InsertOp>::OpRewritePattern; 2021 2022 LogicalResult matchAndRewrite(InsertOp insertOp, 2023 PatternRewriter &rewriter) const override { 2024 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 2025 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 2026 srcVecType.getNumElements()) 2027 return failure(); 2028 rewriter.replaceOpWithNewOp<BroadcastOp>( 2029 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 2030 return success(); 2031 } 2032 }; 2033 2034 /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. 2035 class InsertSplatToSplat final : public OpRewritePattern<InsertOp> { 2036 public: 2037 using OpRewritePattern<InsertOp>::OpRewritePattern; 2038 2039 LogicalResult matchAndRewrite(InsertOp op, 2040 PatternRewriter &rewriter) const override { 2041 auto srcSplat = op.getSource().getDefiningOp<SplatOp>(); 2042 auto dstSplat = op.getDest().getDefiningOp<SplatOp>(); 2043 2044 if (!srcSplat || !dstSplat) 2045 return failure(); 2046 2047 if (srcSplat.getInput() != dstSplat.getInput()) 2048 return failure(); 2049 2050 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput()); 2051 return success(); 2052 } 2053 }; 2054 2055 } // namespace 2056 2057 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2058 MLIRContext *context) { 2059 results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context); 2060 } 2061 2062 // Eliminates insert operations that produce values identical to their source 2063 // value. This happens when the source and destination vectors have identical 2064 // sizes. 2065 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2066 if (getPosition().empty()) 2067 return getSource(); 2068 return {}; 2069 } 2070 2071 //===----------------------------------------------------------------------===// 2072 // InsertMapOp 2073 //===----------------------------------------------------------------------===// 2074 2075 LogicalResult InsertMapOp::verify() { 2076 if (getSourceVectorType().getRank() != getResultType().getRank()) 2077 return emitOpError("expected source and destination vectors of same rank"); 2078 unsigned numId = 0; 2079 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2080 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2081 0) 2082 return emitOpError( 2083 "destination vector size must be a multiple of source vector size"); 2084 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2085 numId++; 2086 } 2087 if (numId != getIds().size()) 2088 return emitOpError("expected number of ids must match the number of " 2089 "dimensions distributed"); 2090 return success(); 2091 } 2092 2093 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2094 2095 //===----------------------------------------------------------------------===// 2096 // InsertStridedSliceOp 2097 //===----------------------------------------------------------------------===// 2098 2099 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2100 Value source, Value dest, 2101 ArrayRef<int64_t> offsets, 2102 ArrayRef<int64_t> strides) { 2103 result.addOperands({source, dest}); 2104 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2105 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2106 result.addTypes(dest.getType()); 2107 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2108 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2109 } 2110 2111 // TODO: Should be moved to Tablegen Confined attributes. 2112 template <typename OpType> 2113 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2114 ArrayAttr arrayAttr, 2115 ArrayRef<int64_t> shape, 2116 StringRef attrName) { 2117 if (arrayAttr.size() > shape.size()) 2118 return op.emitOpError("expected ") 2119 << attrName << " attribute of rank smaller than vector rank"; 2120 return success(); 2121 } 2122 2123 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2124 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2125 // Otherwise, the admissible interval is [min, max]. 2126 template <typename OpType> 2127 static LogicalResult 2128 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2129 int64_t max, StringRef attrName, 2130 bool halfOpen = true) { 2131 for (auto attr : arrayAttr) { 2132 auto val = attr.cast<IntegerAttr>().getInt(); 2133 auto upper = max; 2134 if (!halfOpen) 2135 upper += 1; 2136 if (val < min || val >= upper) 2137 return op.emitOpError("expected ") << attrName << " to be confined to [" 2138 << min << ", " << upper << ")"; 2139 } 2140 return success(); 2141 } 2142 2143 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2144 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2145 // Otherwise, the admissible interval is [min, max]. 2146 template <typename OpType> 2147 static LogicalResult 2148 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2149 ArrayRef<int64_t> shape, StringRef attrName, 2150 bool halfOpen = true, int64_t min = 0) { 2151 assert(arrayAttr.size() <= shape.size()); 2152 unsigned index = 0; 2153 for (auto it : llvm::zip(arrayAttr, shape)) { 2154 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2155 auto max = std::get<1>(it); 2156 if (!halfOpen) 2157 max += 1; 2158 if (val < min || val >= max) 2159 return op.emitOpError("expected ") 2160 << attrName << " dimension " << index << " to be confined to [" 2161 << min << ", " << max << ")"; 2162 ++index; 2163 } 2164 return success(); 2165 } 2166 2167 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2168 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2169 // Otherwise, the admissible interval is [min, max]. 2170 template <typename OpType> 2171 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2172 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2173 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2174 bool halfOpen = true, int64_t min = 1) { 2175 assert(arrayAttr1.size() <= shape.size()); 2176 assert(arrayAttr2.size() <= shape.size()); 2177 unsigned index = 0; 2178 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2179 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2180 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2181 auto max = std::get<2>(it); 2182 if (!halfOpen) 2183 max += 1; 2184 if (val1 + val2 < 0 || val1 + val2 >= max) 2185 return op.emitOpError("expected sum(") 2186 << attrName1 << ", " << attrName2 << ") dimension " << index 2187 << " to be confined to [" << min << ", " << max << ")"; 2188 ++index; 2189 } 2190 return success(); 2191 } 2192 2193 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2194 MLIRContext *context) { 2195 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2196 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2197 }); 2198 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2199 } 2200 2201 LogicalResult InsertStridedSliceOp::verify() { 2202 auto sourceVectorType = getSourceVectorType(); 2203 auto destVectorType = getDestVectorType(); 2204 auto offsets = getOffsetsAttr(); 2205 auto strides = getStridesAttr(); 2206 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2207 return emitOpError( 2208 "expected offsets of same size as destination vector rank"); 2209 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2210 return emitOpError("expected strides of same size as source vector rank"); 2211 if (sourceVectorType.getRank() > destVectorType.getRank()) 2212 return emitOpError( 2213 "expected source rank to be smaller than destination rank"); 2214 2215 auto sourceShape = sourceVectorType.getShape(); 2216 auto destShape = destVectorType.getShape(); 2217 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2218 destShape.size() - sourceShape.size(), 0); 2219 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2220 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2221 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2222 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2223 offName)) || 2224 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2225 stridesName, 2226 /*halfOpen=*/false)) || 2227 failed(isSumOfIntegerArrayAttrConfinedToShape( 2228 *this, offsets, 2229 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2230 offName, "source vector shape", 2231 /*halfOpen=*/false, /*min=*/1))) 2232 return failure(); 2233 2234 return success(); 2235 } 2236 2237 namespace { 2238 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, 2239 /// SplatOp(X):dst_type) to SplatOp(X):dst_type. 2240 class FoldInsertStridedSliceSplat final 2241 : public OpRewritePattern<InsertStridedSliceOp> { 2242 public: 2243 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2244 2245 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2246 PatternRewriter &rewriter) const override { 2247 auto srcSplatOp = 2248 insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>(); 2249 auto destSplatOp = 2250 insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); 2251 2252 if (!srcSplatOp || !destSplatOp) 2253 return failure(); 2254 2255 if (srcSplatOp.getInput() != destSplatOp.getInput()) 2256 return failure(); 2257 2258 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2259 return success(); 2260 } 2261 }; 2262 2263 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) 2264 /// to dst. 2265 class FoldInsertStridedSliceOfExtract final 2266 : public OpRewritePattern<InsertStridedSliceOp> { 2267 public: 2268 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2269 2270 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2271 PatternRewriter &rewriter) const override { 2272 auto extractStridedSliceOp = 2273 insertStridedSliceOp.getSource() 2274 .getDefiningOp<vector::ExtractStridedSliceOp>(); 2275 2276 if (!extractStridedSliceOp) 2277 return failure(); 2278 2279 if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) 2280 return failure(); 2281 2282 // Check if have the same strides and offsets. 2283 if (extractStridedSliceOp.getStrides() != 2284 insertStridedSliceOp.getStrides() || 2285 extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) 2286 return failure(); 2287 2288 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2289 return success(); 2290 } 2291 }; 2292 2293 } // namespace 2294 2295 void vector::InsertStridedSliceOp::getCanonicalizationPatterns( 2296 RewritePatternSet &results, MLIRContext *context) { 2297 results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>( 2298 context); 2299 } 2300 2301 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2302 if (getSourceVectorType() == getDestVectorType()) 2303 return getSource(); 2304 return {}; 2305 } 2306 2307 //===----------------------------------------------------------------------===// 2308 // OuterProductOp 2309 //===----------------------------------------------------------------------===// 2310 2311 /// Build an op without mask, use the type of `acc` as the return type. 2312 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2313 Value lhs, Value rhs, Value acc) { 2314 result.addOperands({lhs, rhs, acc}); 2315 result.addTypes(acc.getType()); 2316 } 2317 2318 void OuterProductOp::print(OpAsmPrinter &p) { 2319 p << " " << getLhs() << ", " << getRhs(); 2320 if (!getAcc().empty()) { 2321 p << ", " << getAcc(); 2322 p.printOptionalAttrDict((*this)->getAttrs()); 2323 } 2324 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2325 } 2326 2327 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2328 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2329 Type tLHS, tRHS; 2330 if (parser.parseOperandList(operandsInfo) || 2331 parser.parseOptionalAttrDict(result.attributes) || 2332 parser.parseColonType(tLHS) || parser.parseComma() || 2333 parser.parseType(tRHS)) 2334 return failure(); 2335 if (operandsInfo.size() < 2) 2336 return parser.emitError(parser.getNameLoc(), 2337 "expected at least 2 operands"); 2338 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2339 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2340 if (!vLHS) 2341 return parser.emitError(parser.getNameLoc(), 2342 "expected vector type for operand #1"); 2343 VectorType resType = 2344 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2345 vLHS.getElementType()) 2346 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2347 2348 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2349 result.attributes.append( 2350 OuterProductOp::getKindAttrStrName(), 2351 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2352 result.getContext())); 2353 } 2354 2355 return failure( 2356 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2357 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2358 (operandsInfo.size() > 2 && 2359 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2360 parser.addTypeToList(resType, result.types)); 2361 } 2362 2363 LogicalResult OuterProductOp::verify() { 2364 Type tRHS = getOperandTypeRHS(); 2365 VectorType vLHS = getOperandVectorTypeLHS(), 2366 vRHS = tRHS.dyn_cast<VectorType>(), 2367 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2368 2369 if (vLHS.getRank() != 1) 2370 return emitOpError("expected 1-d vector for operand #1"); 2371 2372 if (vRHS) { 2373 // Proper OUTER operation. 2374 if (vRHS.getRank() != 1) 2375 return emitOpError("expected 1-d vector for operand #2"); 2376 if (vRES.getRank() != 2) 2377 return emitOpError("expected 2-d vector result"); 2378 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2379 return emitOpError("expected #1 operand dim to match result dim #1"); 2380 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2381 return emitOpError("expected #2 operand dim to match result dim #2"); 2382 } else { 2383 // An AXPY operation. 2384 if (vRES.getRank() != 1) 2385 return emitOpError("expected 1-d vector result"); 2386 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2387 return emitOpError("expected #1 operand dim to match result dim #1"); 2388 } 2389 2390 if (vACC && vACC != vRES) 2391 return emitOpError("expected operand #3 of same type as result type"); 2392 2393 // Verify supported combining kind. 2394 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2395 return emitOpError("unsupported outerproduct type"); 2396 2397 return success(); 2398 } 2399 2400 //===----------------------------------------------------------------------===// 2401 // ReshapeOp 2402 //===----------------------------------------------------------------------===// 2403 2404 LogicalResult ReshapeOp::verify() { 2405 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2406 auto inputVectorType = getInputVectorType(); 2407 auto outputVectorType = getOutputVectorType(); 2408 int64_t inputShapeRank = getNumInputShapeSizes(); 2409 int64_t outputShapeRank = getNumOutputShapeSizes(); 2410 SmallVector<int64_t, 4> fixedVectorSizes; 2411 getFixedVectorSizes(fixedVectorSizes); 2412 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2413 2414 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2415 return emitError("invalid input shape for vector type ") << inputVectorType; 2416 2417 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2418 return emitError("invalid output shape for vector type ") 2419 << outputVectorType; 2420 2421 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2422 // suffix. 2423 unsigned inputVectorRank = inputVectorType.getRank(); 2424 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2425 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2426 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2427 return emitError("fixed vector size must match input vector for dim ") 2428 << i; 2429 } 2430 2431 unsigned outputVectorRank = outputVectorType.getRank(); 2432 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2433 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2434 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2435 return emitError("fixed vector size must match output vector for dim ") 2436 << i; 2437 } 2438 2439 // If all shape operands are produced by constant ops, verify that product 2440 // of dimensions for input/output shape match. 2441 auto isDefByConstant = [](Value operand) { 2442 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2443 }; 2444 if (llvm::all_of(getInputShape(), isDefByConstant) && 2445 llvm::all_of(getOutputShape(), isDefByConstant)) { 2446 int64_t numInputElements = 1; 2447 for (auto operand : getInputShape()) 2448 numInputElements *= 2449 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2450 int64_t numOutputElements = 1; 2451 for (auto operand : getOutputShape()) 2452 numOutputElements *= 2453 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2454 if (numInputElements != numOutputElements) 2455 return emitError("product of input and output shape sizes must match"); 2456 } 2457 return success(); 2458 } 2459 2460 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2461 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2462 } 2463 2464 //===----------------------------------------------------------------------===// 2465 // ExtractStridedSliceOp 2466 //===----------------------------------------------------------------------===// 2467 2468 // Inference works as follows: 2469 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2470 // 2. Add sizes from 'vectorType' for remaining dims. 2471 static Type inferStridedSliceOpResultType(VectorType vectorType, 2472 ArrayAttr offsets, ArrayAttr sizes, 2473 ArrayAttr strides) { 2474 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2475 SmallVector<int64_t, 4> shape; 2476 shape.reserve(vectorType.getRank()); 2477 unsigned idx = 0; 2478 for (unsigned e = offsets.size(); idx < e; ++idx) 2479 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2480 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2481 shape.push_back(vectorType.getShape()[idx]); 2482 2483 return VectorType::get(shape, vectorType.getElementType()); 2484 } 2485 2486 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2487 Value source, ArrayRef<int64_t> offsets, 2488 ArrayRef<int64_t> sizes, 2489 ArrayRef<int64_t> strides) { 2490 result.addOperands(source); 2491 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2492 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2493 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2494 result.addTypes( 2495 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2496 offsetsAttr, sizesAttr, stridesAttr)); 2497 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2498 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2499 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2500 } 2501 2502 LogicalResult ExtractStridedSliceOp::verify() { 2503 auto type = getVectorType(); 2504 auto offsets = getOffsetsAttr(); 2505 auto sizes = getSizesAttr(); 2506 auto strides = getStridesAttr(); 2507 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2508 return emitOpError( 2509 "expected offsets, sizes and strides attributes of same size"); 2510 2511 auto shape = type.getShape(); 2512 auto offName = getOffsetsAttrName(); 2513 auto sizesName = getSizesAttrName(); 2514 auto stridesName = getStridesAttrName(); 2515 if (failed( 2516 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2517 failed( 2518 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2519 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2520 stridesName)) || 2521 failed( 2522 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2523 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2524 /*halfOpen=*/false, 2525 /*min=*/1)) || 2526 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2527 stridesName, 2528 /*halfOpen=*/false)) || 2529 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2530 shape, offName, sizesName, 2531 /*halfOpen=*/false))) 2532 return failure(); 2533 2534 auto resultType = 2535 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2536 if (getResult().getType() != resultType) 2537 return emitOpError("expected result type to be ") << resultType; 2538 2539 return success(); 2540 } 2541 2542 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2543 // to use the source of the InsertStrided ops if we can detect that the 2544 // extracted vector is a subset of one of the vector inserted. 2545 static LogicalResult 2546 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2547 // Helper to extract integer out of ArrayAttr. 2548 auto getElement = [](ArrayAttr array, int idx) { 2549 return array[idx].cast<IntegerAttr>().getInt(); 2550 }; 2551 ArrayAttr extractOffsets = op.getOffsets(); 2552 ArrayAttr extractStrides = op.getStrides(); 2553 ArrayAttr extractSizes = op.getSizes(); 2554 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2555 while (insertOp) { 2556 if (op.getVectorType().getRank() != 2557 insertOp.getSourceVectorType().getRank()) 2558 return failure(); 2559 ArrayAttr insertOffsets = insertOp.getOffsets(); 2560 ArrayAttr insertStrides = insertOp.getStrides(); 2561 // If the rank of extract is greater than the rank of insert, we are likely 2562 // extracting a partial chunk of the vector inserted. 2563 if (extractOffsets.size() > insertOffsets.size()) 2564 return failure(); 2565 bool patialoverlap = false; 2566 bool disjoint = false; 2567 SmallVector<int64_t, 4> offsetDiffs; 2568 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2569 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2570 return failure(); 2571 int64_t start = getElement(insertOffsets, dim); 2572 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2573 int64_t offset = getElement(extractOffsets, dim); 2574 int64_t size = getElement(extractSizes, dim); 2575 // Check if the start of the extract offset is in the interval inserted. 2576 if (start <= offset && offset < end) { 2577 // If the extract interval overlaps but is not fully included we may 2578 // have a partial overlap that will prevent any folding. 2579 if (offset + size > end) 2580 patialoverlap = true; 2581 offsetDiffs.push_back(offset - start); 2582 continue; 2583 } 2584 disjoint = true; 2585 break; 2586 } 2587 // The extract element chunk is a subset of the insert element. 2588 if (!disjoint && !patialoverlap) { 2589 op.setOperand(insertOp.getSource()); 2590 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2591 OpBuilder b(op.getContext()); 2592 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2593 b.getI64ArrayAttr(offsetDiffs)); 2594 return success(); 2595 } 2596 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2597 // in the insert chain. 2598 if (disjoint) 2599 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2600 else { 2601 // The extracted vector partially overlap the inserted vector, we cannot 2602 // fold. 2603 return failure(); 2604 } 2605 } 2606 return failure(); 2607 } 2608 2609 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2610 if (getVectorType() == getResult().getType()) 2611 return getVector(); 2612 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2613 return getResult(); 2614 return {}; 2615 } 2616 2617 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2618 populateFromInt64AttrArray(getOffsets(), results); 2619 } 2620 2621 namespace { 2622 2623 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2624 // ConstantMaskOp. 2625 class StridedSliceConstantMaskFolder final 2626 : public OpRewritePattern<ExtractStridedSliceOp> { 2627 public: 2628 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2629 2630 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2631 PatternRewriter &rewriter) const override { 2632 // Return if 'extractStridedSliceOp' operand is not defined by a 2633 // ConstantMaskOp. 2634 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2635 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2636 if (!constantMaskOp) 2637 return failure(); 2638 // Return if 'extractStridedSliceOp' has non-unit strides. 2639 if (extractStridedSliceOp.hasNonUnitStrides()) 2640 return failure(); 2641 // Gather constant mask dimension sizes. 2642 SmallVector<int64_t, 4> maskDimSizes; 2643 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2644 // Gather strided slice offsets and sizes. 2645 SmallVector<int64_t, 4> sliceOffsets; 2646 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2647 sliceOffsets); 2648 SmallVector<int64_t, 4> sliceSizes; 2649 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2650 2651 // Compute slice of vector mask region. 2652 SmallVector<int64_t, 4> sliceMaskDimSizes; 2653 assert(sliceOffsets.size() == maskDimSizes.size()); 2654 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2655 int64_t maskDimSize = std::get<0>(it); 2656 int64_t sliceOffset = std::get<1>(it); 2657 int64_t sliceSize = std::get<2>(it); 2658 int64_t sliceMaskDimSize = std::max( 2659 static_cast<int64_t>(0), 2660 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2661 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2662 } 2663 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2664 // region is a conjunction of mask dim intervals). 2665 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2666 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2667 2668 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2669 // region. 2670 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2671 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2672 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2673 return success(); 2674 } 2675 }; 2676 2677 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2678 class StridedSliceConstantFolder final 2679 : public OpRewritePattern<ExtractStridedSliceOp> { 2680 public: 2681 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2682 2683 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2684 PatternRewriter &rewriter) const override { 2685 // Return if 'extractStridedSliceOp' operand is not defined by a 2686 // ConstantOp. 2687 auto constantOp = 2688 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2689 if (!constantOp) 2690 return failure(); 2691 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2692 if (!dense) 2693 return failure(); 2694 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2695 dense.getSplatValue<Attribute>()); 2696 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2697 newAttr); 2698 return success(); 2699 } 2700 }; 2701 2702 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2703 // BroadcastOp(ExtractStrideSliceOp). 2704 class StridedSliceBroadcast final 2705 : public OpRewritePattern<ExtractStridedSliceOp> { 2706 public: 2707 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2708 2709 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2710 PatternRewriter &rewriter) const override { 2711 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2712 if (!broadcast) 2713 return failure(); 2714 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2715 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2716 auto dstVecType = op.getType().cast<VectorType>(); 2717 unsigned dstRank = dstVecType.getRank(); 2718 unsigned rankDiff = dstRank - srcRank; 2719 // Check if the most inner dimensions of the source of the broadcast are the 2720 // same as the destination of the extract. If this is the case we can just 2721 // use a broadcast as the original dimensions are untouched. 2722 bool lowerDimMatch = true; 2723 for (unsigned i = 0; i < srcRank; i++) { 2724 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2725 lowerDimMatch = false; 2726 break; 2727 } 2728 } 2729 Value source = broadcast.getSource(); 2730 // If the inner dimensions don't match, it means we need to extract from the 2731 // source of the orignal broadcast and then broadcast the extracted value. 2732 // We also need to handle degenerated cases where the source is effectively 2733 // just a single scalar. 2734 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2735 if (!lowerDimMatch && !isScalarSrc) { 2736 source = rewriter.create<ExtractStridedSliceOp>( 2737 op->getLoc(), source, 2738 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2739 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2740 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2741 } 2742 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2743 return success(); 2744 } 2745 }; 2746 2747 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2748 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2749 public: 2750 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2751 2752 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2753 PatternRewriter &rewriter) const override { 2754 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2755 if (!splat) 2756 return failure(); 2757 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2758 return success(); 2759 } 2760 }; 2761 2762 } // namespace 2763 2764 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2765 RewritePatternSet &results, MLIRContext *context) { 2766 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2767 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2768 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2769 StridedSliceBroadcast, StridedSliceSplat>(context); 2770 } 2771 2772 //===----------------------------------------------------------------------===// 2773 // TransferReadOp 2774 //===----------------------------------------------------------------------===// 2775 2776 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2777 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2778 VectorType vectorType, Value source, 2779 ValueRange indices, AffineMapAttr permutationMapAttr, 2780 /*optional*/ ArrayAttr inBoundsAttr) { 2781 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2782 Value padding = builder.create<arith::ConstantOp>( 2783 result.location, elemType, builder.getZeroAttr(elemType)); 2784 build(builder, result, vectorType, source, indices, permutationMapAttr, 2785 padding, /*mask=*/Value(), inBoundsAttr); 2786 } 2787 2788 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2789 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2790 VectorType vectorType, Value source, 2791 ValueRange indices, AffineMap permutationMap, 2792 Optional<ArrayRef<bool>> inBounds) { 2793 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2794 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2795 ? builder.getBoolArrayAttr(inBounds.getValue()) 2796 : ArrayAttr(); 2797 build(builder, result, vectorType, source, indices, permutationMapAttr, 2798 inBoundsAttr); 2799 } 2800 2801 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2802 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2803 VectorType vectorType, Value source, 2804 ValueRange indices, Value padding, 2805 Optional<ArrayRef<bool>> inBounds) { 2806 AffineMap permutationMap = getTransferMinorIdentityMap( 2807 source.getType().cast<ShapedType>(), vectorType); 2808 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2809 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2810 ? builder.getBoolArrayAttr(inBounds.getValue()) 2811 : ArrayAttr(); 2812 build(builder, result, vectorType, source, indices, permutationMapAttr, 2813 padding, 2814 /*mask=*/Value(), inBoundsAttr); 2815 } 2816 2817 /// 4. Builder that sets padding to zero and permutation map to 2818 /// 'getMinorIdentityMap'. 2819 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2820 VectorType vectorType, Value source, 2821 ValueRange indices, 2822 Optional<ArrayRef<bool>> inBounds) { 2823 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2824 Value padding = builder.create<arith::ConstantOp>( 2825 result.location, elemType, builder.getZeroAttr(elemType)); 2826 build(builder, result, vectorType, source, indices, padding, inBounds); 2827 } 2828 2829 template <typename EmitFun> 2830 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2831 EmitFun emitOpError) { 2832 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2833 for (auto expr : permutationMap.getResults()) { 2834 auto dim = expr.dyn_cast<AffineDimExpr>(); 2835 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2836 if (zero) { 2837 if (zero.getValue() != 0) { 2838 return emitOpError( 2839 "requires a projected permutation_map (at most one dim or the zero " 2840 "constant can appear in each result)"); 2841 } 2842 continue; 2843 } 2844 if (!dim) { 2845 return emitOpError("requires a projected permutation_map (at most one " 2846 "dim or the zero constant can appear in each result)"); 2847 } 2848 if (seen[dim.getPosition()]) { 2849 return emitOpError( 2850 "requires a permutation_map that is a permutation (found one dim " 2851 "used more than once)"); 2852 } 2853 seen[dim.getPosition()] = true; 2854 } 2855 return success(); 2856 } 2857 2858 static LogicalResult 2859 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2860 VectorType vectorType, VectorType maskType, 2861 AffineMap permutationMap, ArrayAttr inBounds) { 2862 if (op->hasAttr("masked")) { 2863 return op->emitOpError("masked attribute has been removed. " 2864 "Use in_bounds instead."); 2865 } 2866 2867 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2868 return op->emitOpError( 2869 "requires source to be a memref or ranked tensor type"); 2870 2871 auto elementType = shapedType.getElementType(); 2872 DataLayout dataLayout = DataLayout::closest(op); 2873 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2874 // Memref or tensor has vector element type. 2875 unsigned sourceVecSize = 2876 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2877 vectorElementType.getShape().back(); 2878 unsigned resultVecSize = 2879 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2880 vectorType.getShape().back(); 2881 if (resultVecSize % sourceVecSize != 0) 2882 return op->emitOpError( 2883 "requires the bitwidth of the minor 1-D vector to be an integral " 2884 "multiple of the bitwidth of the minor 1-D vector of the source"); 2885 2886 unsigned sourceVecEltRank = vectorElementType.getRank(); 2887 unsigned resultVecRank = vectorType.getRank(); 2888 if (sourceVecEltRank > resultVecRank) 2889 return op->emitOpError( 2890 "requires source vector element and vector result ranks to match."); 2891 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2892 // Check that permutation map results match 'rankOffset' of vector type. 2893 if (permutationMap.getNumResults() != rankOffset) 2894 return op->emitOpError("requires a permutation_map with result dims of " 2895 "the same rank as the vector type"); 2896 2897 if (maskType) 2898 return op->emitOpError("does not support masks with vector element type"); 2899 } else { 2900 // Memref or tensor has scalar element type. 2901 unsigned minorSize = 2902 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2903 unsigned resultVecSize = 2904 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2905 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2906 return op->emitOpError( 2907 "requires the bitwidth of the minor 1-D vector to be an integral " 2908 "multiple of the bitwidth of the source element type"); 2909 2910 // Check that permutation map results match rank of vector type. 2911 if (permutationMap.getNumResults() != vectorType.getRank()) 2912 return op->emitOpError("requires a permutation_map with result dims of " 2913 "the same rank as the vector type"); 2914 2915 VectorType expectedMaskType = 2916 vector::detail::transferMaskType(vectorType, permutationMap); 2917 if (maskType && expectedMaskType != maskType) 2918 return op->emitOpError("expects mask type consistent with permutation " 2919 "map: ") 2920 << maskType; 2921 } 2922 2923 if (permutationMap.getNumSymbols() != 0) 2924 return op->emitOpError("requires permutation_map without symbols"); 2925 2926 if (permutationMap.getNumInputs() != shapedType.getRank()) 2927 return op->emitOpError("requires a permutation_map with input dims of the " 2928 "same rank as the source type"); 2929 2930 if (inBounds) { 2931 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2932 return op->emitOpError("expects the optional in_bounds attr of same rank " 2933 "as permutation_map results: ") 2934 << AffineMapAttr::get(permutationMap) 2935 << " vs inBounds of size: " << inBounds.size(); 2936 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2937 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2938 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2939 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2940 } 2941 2942 return success(); 2943 } 2944 2945 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2946 SmallVector<StringRef, 3> elidedAttrs; 2947 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2948 if (op.permutation_map().isMinorIdentity()) 2949 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2950 bool elideInBounds = true; 2951 if (auto inBounds = op.in_bounds()) { 2952 for (auto attr : *inBounds) { 2953 if (attr.template cast<BoolAttr>().getValue()) { 2954 elideInBounds = false; 2955 break; 2956 } 2957 } 2958 } 2959 if (elideInBounds) 2960 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2961 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2962 } 2963 2964 void TransferReadOp::print(OpAsmPrinter &p) { 2965 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2966 if (getMask()) 2967 p << ", " << getMask(); 2968 printTransferAttrs(p, *this); 2969 p << " : " << getShapedType() << ", " << getVectorType(); 2970 } 2971 2972 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2973 auto &builder = parser.getBuilder(); 2974 SMLoc typesLoc; 2975 OpAsmParser::UnresolvedOperand sourceInfo; 2976 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2977 OpAsmParser::UnresolvedOperand paddingInfo; 2978 SmallVector<Type, 2> types; 2979 OpAsmParser::UnresolvedOperand maskInfo; 2980 // Parsing with support for paddingValue. 2981 if (parser.parseOperand(sourceInfo) || 2982 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2983 parser.parseComma() || parser.parseOperand(paddingInfo)) 2984 return failure(); 2985 ParseResult hasMask = parser.parseOptionalComma(); 2986 if (hasMask.succeeded()) { 2987 if (parser.parseOperand(maskInfo)) 2988 return failure(); 2989 } 2990 if (parser.parseOptionalAttrDict(result.attributes) || 2991 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2992 return failure(); 2993 if (types.size() != 2) 2994 return parser.emitError(typesLoc, "requires two types"); 2995 auto indexType = builder.getIndexType(); 2996 auto shapedType = types[0].dyn_cast<ShapedType>(); 2997 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2998 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2999 VectorType vectorType = types[1].dyn_cast<VectorType>(); 3000 if (!vectorType) 3001 return parser.emitError(typesLoc, "requires vector type"); 3002 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 3003 Attribute mapAttr = result.attributes.get(permutationAttrName); 3004 if (!mapAttr) { 3005 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3006 // Update `mapAttr` that is used later to determine mask type. 3007 mapAttr = AffineMapAttr::get(permMap); 3008 result.attributes.set(permutationAttrName, mapAttr); 3009 } 3010 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3011 parser.resolveOperands(indexInfo, indexType, result.operands) || 3012 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 3013 result.operands)) 3014 return failure(); 3015 if (hasMask.succeeded()) { 3016 if (shapedType.getElementType().dyn_cast<VectorType>()) 3017 return parser.emitError( 3018 maskInfo.location, "does not support masks with vector element type"); 3019 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 3020 // Instead of adding the mask type as an op type, compute it based on the 3021 // vector type and the permutation map (to keep the type signature small). 3022 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 3023 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3024 return failure(); 3025 } 3026 result.addAttribute( 3027 TransferReadOp::getOperandSegmentSizeAttr(), 3028 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 3029 static_cast<int32_t>(hasMask.succeeded())})); 3030 return parser.addTypeToList(vectorType, result.types); 3031 } 3032 3033 LogicalResult TransferReadOp::verify() { 3034 // Consistency of elemental types in source and vector. 3035 ShapedType shapedType = getShapedType(); 3036 VectorType vectorType = getVectorType(); 3037 VectorType maskType = getMaskType(); 3038 auto paddingType = getPadding().getType(); 3039 auto permutationMap = getPermutationMap(); 3040 auto sourceElementType = shapedType.getElementType(); 3041 3042 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 3043 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3044 3045 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3046 shapedType, vectorType, maskType, permutationMap, 3047 getInBounds() ? *getInBounds() : ArrayAttr()))) 3048 return failure(); 3049 3050 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 3051 // Source has vector element type. 3052 // Check that 'sourceVectorElementType' and 'paddingType' types match. 3053 if (sourceVectorElementType != paddingType) 3054 return emitOpError( 3055 "requires source element type and padding type to match."); 3056 3057 } else { 3058 // Check that 'paddingType' is valid to store in a vector type. 3059 if (!VectorType::isValidElementType(paddingType)) 3060 return emitOpError("requires valid padding vector elemental type"); 3061 3062 // Check that padding type and vector element types match. 3063 if (paddingType != sourceElementType) 3064 return emitOpError( 3065 "requires formal padding and source of the same elemental type"); 3066 } 3067 3068 return verifyPermutationMap(permutationMap, 3069 [&](Twine t) { return emitOpError(t); }); 3070 } 3071 3072 /// This is a common class used for patterns of the form 3073 /// ``` 3074 /// someop(memrefcast) -> someop 3075 /// ``` 3076 /// It folds the source of the memref.cast into the root operation directly. 3077 static LogicalResult foldMemRefCast(Operation *op) { 3078 bool folded = false; 3079 for (OpOperand &operand : op->getOpOperands()) { 3080 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 3081 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 3082 operand.set(castOp.getOperand()); 3083 folded = true; 3084 } 3085 } 3086 return success(folded); 3087 } 3088 3089 static LogicalResult foldTensorCast(Operation *op) { 3090 bool folded = false; 3091 for (OpOperand &operand : op->getOpOperands()) { 3092 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 3093 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 3094 operand.set(castOp.getOperand()); 3095 folded = true; 3096 } 3097 } 3098 return success(folded); 3099 } 3100 3101 template <typename TransferOp> 3102 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 3103 // TODO: support more aggressive createOrFold on: 3104 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 3105 if (op.getShapedType().isDynamicDim(indicesIdx)) 3106 return false; 3107 Value index = op.getIndices()[indicesIdx]; 3108 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 3109 if (!cstOp) 3110 return false; 3111 3112 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 3113 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 3114 3115 return cstOp.value() + vectorSize <= sourceSize; 3116 } 3117 3118 template <typename TransferOp> 3119 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3120 // TODO: support 0-d corner case. 3121 // TODO: Be less conservative. 3122 if (op.getTransferRank() == 0) 3123 return failure(); 3124 AffineMap permutationMap = op.getPermutationMap(); 3125 bool changed = false; 3126 SmallVector<bool, 4> newInBounds; 3127 newInBounds.reserve(op.getTransferRank()); 3128 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3129 // Already marked as in-bounds, nothing to see here. 3130 if (op.isDimInBounds(i)) { 3131 newInBounds.push_back(true); 3132 continue; 3133 } 3134 // Currently out-of-bounds, check whether we can statically determine it is 3135 // inBounds. 3136 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3137 assert(dimExpr && "Broadcast dims must be in-bounds"); 3138 auto inBounds = 3139 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3140 newInBounds.push_back(inBounds); 3141 // We commit the pattern if it is "more inbounds". 3142 changed |= inBounds; 3143 } 3144 if (!changed) 3145 return failure(); 3146 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3147 OpBuilder b(op.getContext()); 3148 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3149 b.getBoolArrayAttr(newInBounds)); 3150 return success(); 3151 } 3152 3153 /// ``` 3154 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3155 /// : vector<1x4xf32>, tensor<4x4xf32> 3156 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3157 /// : tensor<4x4xf32>, vector<1x4xf32> 3158 /// ``` 3159 /// -> Folds into 3160 /// ``` 3161 /// %v0 3162 /// ``` 3163 static Value foldRAW(TransferReadOp readOp) { 3164 if (!readOp.getShapedType().isa<RankedTensorType>()) 3165 return {}; 3166 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3167 while (defWrite) { 3168 if (checkSameValueRAW(defWrite, readOp)) 3169 return defWrite.getVector(); 3170 if (!isDisjointTransferIndices( 3171 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3172 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3173 break; 3174 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3175 } 3176 return {}; 3177 } 3178 3179 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3180 if (Value vec = foldRAW(*this)) 3181 return vec; 3182 /// transfer_read(memrefcast) -> transfer_read 3183 if (succeeded(foldTransferInBoundsAttribute(*this))) 3184 return getResult(); 3185 if (succeeded(foldMemRefCast(*this))) 3186 return getResult(); 3187 if (succeeded(foldTensorCast(*this))) 3188 return getResult(); 3189 return OpFoldResult(); 3190 } 3191 3192 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3193 return llvm::to_vector<4>(getVectorType().getShape()); 3194 } 3195 3196 void TransferReadOp::getEffects( 3197 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3198 &effects) { 3199 if (getShapedType().isa<MemRefType>()) 3200 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3201 SideEffects::DefaultResource::get()); 3202 } 3203 3204 namespace { 3205 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3206 /// 3207 /// ``` 3208 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3209 /// : tensor<?x?xf32> to tensor<?x?xf32> 3210 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3211 /// : tensor<?x?xf32>, vector<4x5xf32> 3212 /// ``` 3213 /// is rewritten to: 3214 /// ``` 3215 /// %p0 = arith.addi %a, %e : index 3216 /// %p1 = arith.addi %b, %f : index 3217 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3218 /// : tensor<?x?xf32>, vector<4x5xf32> 3219 /// ``` 3220 struct FoldExtractSliceIntoTransferRead 3221 : public OpRewritePattern<TransferReadOp> { 3222 public: 3223 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3224 3225 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3226 PatternRewriter &rewriter) const override { 3227 // TODO: support 0-d corner case. 3228 if (xferOp.getTransferRank() == 0) 3229 return failure(); 3230 if (xferOp.hasOutOfBoundsDim()) 3231 return failure(); 3232 if (!xferOp.getPermutationMap().isIdentity()) 3233 return failure(); 3234 if (xferOp.getMask()) 3235 return failure(); 3236 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3237 if (!extractOp) 3238 return failure(); 3239 if (!extractOp.hasUnitStride()) 3240 return failure(); 3241 3242 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3243 // dims are exactly the leading dims. I.e. the following is illegal: 3244 // ``` 3245 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3246 // tensor<2x1x4xf32> to tensor<2x4xf32> 3247 // %1 = vector.transfer_read %0[0,0], %cst : 3248 // tensor<2x4xf32>, vector<2x4xf32> 3249 // ``` 3250 // 3251 // Cannot fold into: 3252 // ``` 3253 // %0 = vector.transfer_read %t[0,0,0], %cst : 3254 // tensor<2x1x4xf32>, vector<2x4xf32> 3255 // ``` 3256 // For this, check the trailing `vectorRank` dims of the extract_slice 3257 // result tensor match the trailing dims of the inferred result tensor. 3258 int64_t rankReduced = 3259 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3260 int64_t vectorRank = xferOp.getVectorType().getRank(); 3261 RankedTensorType inferredDestTensorType = 3262 tensor::ExtractSliceOp::inferResultType( 3263 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3264 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3265 auto actualDestTensorShape = extractOp.getType().getShape(); 3266 if (rankReduced > 0 && 3267 actualDestTensorShape.take_back(vectorRank) != 3268 inferredDestTensorType.getShape().take_back(vectorRank)) 3269 return failure(); 3270 3271 SmallVector<Value> newIndices; 3272 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3273 // indices first. 3274 for (int64_t i = 0; i < rankReduced; ++i) { 3275 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3276 newIndices.push_back(getValueOrCreateConstantIndexOp( 3277 rewriter, extractOp.getLoc(), offset)); 3278 } 3279 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3280 OpFoldResult offset = 3281 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3282 newIndices.push_back(rewriter.create<arith::AddIOp>( 3283 xferOp->getLoc(), it.value(), 3284 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3285 offset))); 3286 } 3287 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3288 rewriter.replaceOpWithNewOp<TransferReadOp>( 3289 xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices, 3290 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3291 3292 return success(); 3293 } 3294 }; 3295 } // namespace 3296 3297 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3298 MLIRContext *context) { 3299 results.add<FoldExtractSliceIntoTransferRead>(context); 3300 } 3301 3302 //===----------------------------------------------------------------------===// 3303 // TransferWriteOp 3304 //===----------------------------------------------------------------------===// 3305 3306 /// 1. Builder with type inference. 3307 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3308 Value vector, Value dest, ValueRange indices, 3309 AffineMapAttr permutationMapAttr, 3310 /*optional*/ Value mask, 3311 /*optional*/ ArrayAttr inBoundsAttr) { 3312 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3313 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3314 mask, inBoundsAttr); 3315 } 3316 3317 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3318 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3319 Value vector, Value dest, ValueRange indices, 3320 AffineMapAttr permutationMapAttr, 3321 /*optional*/ ArrayAttr inBoundsAttr) { 3322 build(builder, result, vector, dest, indices, permutationMapAttr, 3323 /*mask=*/Value(), inBoundsAttr); 3324 } 3325 3326 /// 3. Builder with type inference that sets an empty mask (variant without 3327 /// attrs) 3328 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3329 Value vector, Value dest, ValueRange indices, 3330 AffineMap permutationMap, 3331 Optional<ArrayRef<bool>> inBounds) { 3332 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3333 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3334 ? builder.getBoolArrayAttr(inBounds.getValue()) 3335 : ArrayAttr(); 3336 build(builder, result, vector, dest, indices, permutationMapAttr, 3337 /*mask=*/Value(), inBoundsAttr); 3338 } 3339 3340 /// 4. Builder with type inference that sets an empty mask and sets permutation 3341 /// map to 'getMinorIdentityMap'. 3342 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3343 Value vector, Value dest, ValueRange indices, 3344 Optional<ArrayRef<bool>> inBounds) { 3345 auto vectorType = vector.getType().cast<VectorType>(); 3346 AffineMap permutationMap = getTransferMinorIdentityMap( 3347 dest.getType().cast<ShapedType>(), vectorType); 3348 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3349 } 3350 3351 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3352 OperationState &result) { 3353 auto &builder = parser.getBuilder(); 3354 SMLoc typesLoc; 3355 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3356 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3357 SmallVector<Type, 2> types; 3358 OpAsmParser::UnresolvedOperand maskInfo; 3359 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3360 parser.parseOperand(sourceInfo) || 3361 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3362 return failure(); 3363 ParseResult hasMask = parser.parseOptionalComma(); 3364 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3365 return failure(); 3366 if (parser.parseOptionalAttrDict(result.attributes) || 3367 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3368 return failure(); 3369 if (types.size() != 2) 3370 return parser.emitError(typesLoc, "requires two types"); 3371 auto indexType = builder.getIndexType(); 3372 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3373 if (!vectorType) 3374 return parser.emitError(typesLoc, "requires vector type"); 3375 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3376 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3377 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3378 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3379 auto attr = result.attributes.get(permutationAttrName); 3380 if (!attr) { 3381 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3382 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3383 } 3384 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3385 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3386 parser.resolveOperands(indexInfo, indexType, result.operands)) 3387 return failure(); 3388 if (hasMask.succeeded()) { 3389 if (shapedType.getElementType().dyn_cast<VectorType>()) 3390 return parser.emitError( 3391 maskInfo.location, "does not support masks with vector element type"); 3392 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3393 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3394 return failure(); 3395 } 3396 result.addAttribute( 3397 TransferWriteOp::getOperandSegmentSizeAttr(), 3398 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3399 static_cast<int32_t>(hasMask.succeeded())})); 3400 return failure(shapedType.isa<RankedTensorType>() && 3401 parser.addTypeToList(shapedType, result.types)); 3402 } 3403 3404 void TransferWriteOp::print(OpAsmPrinter &p) { 3405 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3406 if (getMask()) 3407 p << ", " << getMask(); 3408 printTransferAttrs(p, *this); 3409 p << " : " << getVectorType() << ", " << getShapedType(); 3410 } 3411 3412 LogicalResult TransferWriteOp::verify() { 3413 // Consistency of elemental types in shape and vector. 3414 ShapedType shapedType = getShapedType(); 3415 VectorType vectorType = getVectorType(); 3416 VectorType maskType = getMaskType(); 3417 auto permutationMap = getPermutationMap(); 3418 3419 if (llvm::size(getIndices()) != shapedType.getRank()) 3420 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3421 3422 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3423 // as the semantics is unclear. This can be revisited later if necessary. 3424 if (hasBroadcastDim()) 3425 return emitOpError("should not have broadcast dimensions"); 3426 3427 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3428 shapedType, vectorType, maskType, permutationMap, 3429 getInBounds() ? *getInBounds() : ArrayAttr()))) 3430 return failure(); 3431 3432 return verifyPermutationMap(permutationMap, 3433 [&](Twine t) { return emitOpError(t); }); 3434 } 3435 3436 /// Fold: 3437 /// ``` 3438 /// %t1 = ... 3439 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3440 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3441 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3442 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3443 /// ``` 3444 /// 3445 /// into: 3446 /// 3447 /// ``` 3448 /// %t0 3449 /// ``` 3450 /// 3451 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3452 /// block argument or has side effects. 3453 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3454 ArrayRef<Attribute>, 3455 SmallVectorImpl<OpFoldResult> &results) { 3456 // TODO: support 0-d corner case. 3457 if (write.getTransferRank() == 0) 3458 return failure(); 3459 auto rankedTensorType = 3460 write.getSource().getType().dyn_cast<RankedTensorType>(); 3461 // If not operating on tensors, bail. 3462 if (!rankedTensorType) 3463 return failure(); 3464 // If no read, bail. 3465 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3466 if (!read) 3467 return failure(); 3468 // TODO: support 0-d corner case. 3469 if (read.getTransferRank() == 0) 3470 return failure(); 3471 // For now, only accept minor identity. Future: composition is minor identity. 3472 if (!read.getPermutationMap().isMinorIdentity() || 3473 !write.getPermutationMap().isMinorIdentity()) 3474 return failure(); 3475 // Bail on mismatching ranks. 3476 if (read.getTransferRank() != write.getTransferRank()) 3477 return failure(); 3478 // Bail on potential out-of-bounds accesses. 3479 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3480 return failure(); 3481 // Tensor types must be the same. 3482 if (read.getSource().getType() != rankedTensorType) 3483 return failure(); 3484 // Vector types must be the same. 3485 if (read.getVectorType() != write.getVectorType()) 3486 return failure(); 3487 // Vector and Tensor shapes must match. 3488 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3489 return failure(); 3490 // If any index is nonzero. 3491 auto isNotConstantZero = [](Value v) { 3492 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3493 return !cstOp || cstOp.value() != 0; 3494 }; 3495 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3496 llvm::any_of(write.getIndices(), isNotConstantZero)) 3497 return failure(); 3498 // Success. 3499 results.push_back(read.getSource()); 3500 return success(); 3501 } 3502 3503 static bool checkSameValueWAR(vector::TransferReadOp read, 3504 vector::TransferWriteOp write) { 3505 return read.getSource() == write.getSource() && 3506 read.getIndices() == write.getIndices() && 3507 read.getPermutationMap() == write.getPermutationMap() && 3508 read.getVectorType() == write.getVectorType() && !read.getMask() && 3509 !write.getMask(); 3510 } 3511 /// Fold transfer_write write after read: 3512 /// ``` 3513 /// %t0 = ... 3514 /// %v = vector.transfer_read %t0[%c0...] : 3515 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3516 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3517 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3518 /// ``` 3519 /// 3520 /// into: 3521 /// 3522 /// ``` 3523 /// %t0 3524 /// ``` 3525 static LogicalResult foldWAR(TransferWriteOp write, 3526 SmallVectorImpl<OpFoldResult> &results) { 3527 if (!write.getSource().getType().isa<RankedTensorType>()) 3528 return failure(); 3529 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3530 if (!read) 3531 return failure(); 3532 3533 if (!checkSameValueWAR(read, write)) 3534 return failure(); 3535 results.push_back(read.getSource()); 3536 return success(); 3537 } 3538 3539 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3540 SmallVectorImpl<OpFoldResult> &results) { 3541 if (succeeded(foldReadInitWrite(*this, operands, results))) 3542 return success(); 3543 if (succeeded(foldWAR(*this, results))) 3544 return success(); 3545 if (succeeded(foldTransferInBoundsAttribute(*this))) 3546 return success(); 3547 return foldMemRefCast(*this); 3548 } 3549 3550 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3551 return llvm::to_vector<4>(getVectorType().getShape()); 3552 } 3553 3554 void TransferWriteOp::getEffects( 3555 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3556 &effects) { 3557 if (getShapedType().isa<MemRefType>()) 3558 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3559 SideEffects::DefaultResource::get()); 3560 } 3561 3562 namespace { 3563 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3564 /// DCE 3565 /// ``` 3566 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3567 /// : vector<1x4xf32>, tensor<4x4xf32> 3568 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3569 /// : vector<1x4xf32>, tensor<4x4xf32> 3570 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3571 /// : vector<1x4xf32>, tensor<4x4xf32> 3572 /// ``` 3573 /// 3574 /// into: 3575 /// 3576 /// ``` 3577 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3578 /// : vector<1x4xf32>, tensor<4x4xf32> 3579 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3580 /// : vector<1x4xf32>, tensor<4x4xf32> 3581 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3582 /// : vector<1x4xf32>, tensor<4x4xf32> 3583 /// ``` 3584 /// 3585 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3586 /// any other uses. 3587 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3588 public: 3589 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3590 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3591 PatternRewriter &rewriter) const override { 3592 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3593 return failure(); 3594 vector::TransferWriteOp writeToModify = writeOp; 3595 3596 auto defWrite = 3597 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3598 while (defWrite) { 3599 if (checkSameValueWAW(writeOp, defWrite)) { 3600 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3601 return success(); 3602 } 3603 if (!isDisjointTransferIndices( 3604 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3605 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3606 break; 3607 // If the previous write op doesn't have any other use we an safely look 3608 // at the previous store to see if it can be removed. 3609 if (!defWrite->hasOneUse()) 3610 break; 3611 writeToModify = defWrite; 3612 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3613 } 3614 return failure(); 3615 } 3616 }; 3617 3618 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3619 /// could directly write to the insert_slice's destination. E.g.: 3620 /// 3621 /// ``` 3622 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3623 /// : vector<4x5xf32>, tensor<4x5xf32> 3624 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3625 /// : tensor<4x5xf32> into tensor<?x?xf32> 3626 /// ``` 3627 /// is rewritten to: 3628 /// ``` 3629 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3630 /// : vector<4x5xf32>, tensor<?x?xf32> 3631 /// ``` 3632 struct FoldInsertSliceIntoTransferWrite 3633 : public OpRewritePattern<tensor::InsertSliceOp> { 3634 public: 3635 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3636 3637 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3638 PatternRewriter &rewriter) const override { 3639 if (!insertOp.hasUnitStride()) 3640 return failure(); 3641 3642 auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>(); 3643 if (!xferOp) 3644 return failure(); 3645 // TODO: support 0-d corner case. 3646 if (xferOp.getTransferRank() == 0) 3647 return failure(); 3648 3649 if (xferOp.hasOutOfBoundsDim()) 3650 return failure(); 3651 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3652 return failure(); 3653 if (xferOp.getMask()) 3654 return failure(); 3655 // Fold only if the TransferWriteOp completely overwrites the `source` with 3656 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3657 // content is the data of the vector. 3658 if (!llvm::equal(xferOp.getVectorType().getShape(), 3659 xferOp.getShapedType().getShape())) 3660 return failure(); 3661 if (!xferOp.getPermutationMap().isIdentity()) 3662 return failure(); 3663 3664 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3665 // dims are exactly the leading dims. I.e. the following is illegal: 3666 // ``` 3667 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3668 // vector<2x4xf32>, tensor<2x4xf32> 3669 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3670 // tensor<2x4xf32> into tensor<2x1x4xf32> 3671 // ``` 3672 // 3673 // Cannot fold into: 3674 // ``` 3675 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3676 // vector<2x4xf32>, tensor<2x1x4xf32> 3677 // ``` 3678 // For this, check the trailing `vectorRank` dims of the insert_slice result 3679 // tensor match the trailing dims of the inferred result tensor. 3680 int64_t rankReduced = 3681 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3682 int64_t vectorRank = xferOp.getVectorType().getRank(); 3683 RankedTensorType inferredSourceTensorType = 3684 tensor::ExtractSliceOp::inferResultType( 3685 insertOp.getType(), insertOp.getMixedOffsets(), 3686 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3687 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3688 if (rankReduced > 0 && 3689 actualSourceTensorShape.take_back(vectorRank) != 3690 inferredSourceTensorType.getShape().take_back(vectorRank)) 3691 return failure(); 3692 3693 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3694 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3695 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3696 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3697 insertOp.getDest(), indices, 3698 ArrayRef<bool>{inBounds}); 3699 return success(); 3700 } 3701 }; 3702 3703 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3704 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3705 /// overwritten and inserted into another tensor. After this rewrite, the 3706 /// operations bufferize in-place since all of them work on the same slice. 3707 /// 3708 /// For example: 3709 /// ```mlir 3710 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3711 /// : vector<8x16xf32>, tensor<8x16xf32> 3712 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3713 /// : tensor<8x16xf32> to tensor<?x?xf32> 3714 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3715 /// : tensor<?x?xf32> into tensor<27x37xf32> 3716 /// ``` 3717 /// folds to 3718 /// ```mlir 3719 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3720 /// : tensor<27x37xf32> to tensor<?x?xf32> 3721 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3722 /// : vector<8x16xf32>, tensor<?x?xf32> 3723 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3724 /// : tensor<?x?xf32> into tensor<27x37xf32> 3725 /// ``` 3726 struct SwapExtractSliceOfTransferWrite 3727 : public OpRewritePattern<tensor::InsertSliceOp> { 3728 public: 3729 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3730 3731 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3732 PatternRewriter &rewriter) const override { 3733 if (!insertOp.hasUnitStride()) 3734 return failure(); 3735 auto extractOp = 3736 insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3737 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3738 return failure(); 3739 auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); 3740 if (!transferOp || !transferOp->hasOneUse()) 3741 return failure(); 3742 3743 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3744 // rank-reducing. 3745 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3746 return rewriter.notifyMatchFailure(insertOp, 3747 "use-def chain is rank-reducing"); 3748 } 3749 3750 // Fail if tensor::ExtractSliceOp has non-zero offset. 3751 if (!extractOp.hasZeroOffset()) { 3752 return rewriter.notifyMatchFailure(insertOp, 3753 "ExtractSliceOp has non-zero offset"); 3754 } 3755 3756 // Fail if tensor::TransferWriteOp has non-zero offset. 3757 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3758 return getConstantIntValue(value) == static_cast<int64_t>(0); 3759 })) { 3760 return rewriter.notifyMatchFailure(insertOp, 3761 "TranferWriteOp has non-zero offset"); 3762 } 3763 3764 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3765 for (const auto &it : 3766 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3767 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3768 return rewriter.notifyMatchFailure( 3769 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3770 } 3771 } 3772 3773 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3774 assert(transferOp.getVectorType().hasStaticShape() && 3775 "expected vector to have a static shape"); 3776 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3777 SmallVector<int64_t> resultShape = applyPermutationMap( 3778 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3779 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3780 return rewriter.notifyMatchFailure( 3781 insertOp, "TransferWriteOp may not write the full tensor."); 3782 } 3783 3784 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3785 SmallVector<int64_t> newResultShape = applyPermutationMap( 3786 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3787 SmallVector<bool> newInBounds; 3788 for (const auto &en : enumerate(newResultShape)) 3789 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3790 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3791 extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), 3792 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3793 insertOp.getMixedStrides()); 3794 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3795 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3796 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3797 rewriter.getBoolArrayAttr(newInBounds)); 3798 rewriter.updateRootInPlace(insertOp, [&]() { 3799 insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); 3800 }); 3801 return success(); 3802 } 3803 }; 3804 3805 } // namespace 3806 3807 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3808 MLIRContext *context) { 3809 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3810 SwapExtractSliceOfTransferWrite>(context); 3811 } 3812 3813 //===----------------------------------------------------------------------===// 3814 // LoadOp 3815 //===----------------------------------------------------------------------===// 3816 3817 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3818 MemRefType memRefTy) { 3819 if (!isLastMemrefDimUnitStride(memRefTy)) 3820 return op->emitOpError("most minor memref dim must have unit stride"); 3821 return success(); 3822 } 3823 3824 LogicalResult vector::LoadOp::verify() { 3825 VectorType resVecTy = getVectorType(); 3826 MemRefType memRefTy = getMemRefType(); 3827 3828 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3829 return failure(); 3830 3831 // Checks for vector memrefs. 3832 Type memElemTy = memRefTy.getElementType(); 3833 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3834 if (memVecTy != resVecTy) 3835 return emitOpError("base memref and result vector types should match"); 3836 memElemTy = memVecTy.getElementType(); 3837 } 3838 3839 if (resVecTy.getElementType() != memElemTy) 3840 return emitOpError("base and result element types should match"); 3841 if (llvm::size(getIndices()) != memRefTy.getRank()) 3842 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3843 return success(); 3844 } 3845 3846 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3847 if (succeeded(foldMemRefCast(*this))) 3848 return getResult(); 3849 return OpFoldResult(); 3850 } 3851 3852 //===----------------------------------------------------------------------===// 3853 // StoreOp 3854 //===----------------------------------------------------------------------===// 3855 3856 LogicalResult vector::StoreOp::verify() { 3857 VectorType valueVecTy = getVectorType(); 3858 MemRefType memRefTy = getMemRefType(); 3859 3860 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3861 return failure(); 3862 3863 // Checks for vector memrefs. 3864 Type memElemTy = memRefTy.getElementType(); 3865 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3866 if (memVecTy != valueVecTy) 3867 return emitOpError( 3868 "base memref and valueToStore vector types should match"); 3869 memElemTy = memVecTy.getElementType(); 3870 } 3871 3872 if (valueVecTy.getElementType() != memElemTy) 3873 return emitOpError("base and valueToStore element type should match"); 3874 if (llvm::size(getIndices()) != memRefTy.getRank()) 3875 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3876 return success(); 3877 } 3878 3879 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3880 SmallVectorImpl<OpFoldResult> &results) { 3881 return foldMemRefCast(*this); 3882 } 3883 3884 //===----------------------------------------------------------------------===// 3885 // MaskedLoadOp 3886 //===----------------------------------------------------------------------===// 3887 3888 LogicalResult MaskedLoadOp::verify() { 3889 VectorType maskVType = getMaskVectorType(); 3890 VectorType passVType = getPassThruVectorType(); 3891 VectorType resVType = getVectorType(); 3892 MemRefType memType = getMemRefType(); 3893 3894 if (resVType.getElementType() != memType.getElementType()) 3895 return emitOpError("base and result element type should match"); 3896 if (llvm::size(getIndices()) != memType.getRank()) 3897 return emitOpError("requires ") << memType.getRank() << " indices"; 3898 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3899 return emitOpError("expected result dim to match mask dim"); 3900 if (resVType != passVType) 3901 return emitOpError("expected pass_thru of same type as result type"); 3902 return success(); 3903 } 3904 3905 namespace { 3906 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3907 public: 3908 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3909 LogicalResult matchAndRewrite(MaskedLoadOp load, 3910 PatternRewriter &rewriter) const override { 3911 switch (get1DMaskFormat(load.getMask())) { 3912 case MaskFormat::AllTrue: 3913 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3914 load, load.getType(), load.getBase(), load.getIndices()); 3915 return success(); 3916 case MaskFormat::AllFalse: 3917 rewriter.replaceOp(load, load.getPassThru()); 3918 return success(); 3919 case MaskFormat::Unknown: 3920 return failure(); 3921 } 3922 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3923 } 3924 }; 3925 } // namespace 3926 3927 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3928 MLIRContext *context) { 3929 results.add<MaskedLoadFolder>(context); 3930 } 3931 3932 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3933 if (succeeded(foldMemRefCast(*this))) 3934 return getResult(); 3935 return OpFoldResult(); 3936 } 3937 3938 //===----------------------------------------------------------------------===// 3939 // MaskedStoreOp 3940 //===----------------------------------------------------------------------===// 3941 3942 LogicalResult MaskedStoreOp::verify() { 3943 VectorType maskVType = getMaskVectorType(); 3944 VectorType valueVType = getVectorType(); 3945 MemRefType memType = getMemRefType(); 3946 3947 if (valueVType.getElementType() != memType.getElementType()) 3948 return emitOpError("base and valueToStore element type should match"); 3949 if (llvm::size(getIndices()) != memType.getRank()) 3950 return emitOpError("requires ") << memType.getRank() << " indices"; 3951 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3952 return emitOpError("expected valueToStore dim to match mask dim"); 3953 return success(); 3954 } 3955 3956 namespace { 3957 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3958 public: 3959 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3960 LogicalResult matchAndRewrite(MaskedStoreOp store, 3961 PatternRewriter &rewriter) const override { 3962 switch (get1DMaskFormat(store.getMask())) { 3963 case MaskFormat::AllTrue: 3964 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3965 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3966 return success(); 3967 case MaskFormat::AllFalse: 3968 rewriter.eraseOp(store); 3969 return success(); 3970 case MaskFormat::Unknown: 3971 return failure(); 3972 } 3973 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3974 } 3975 }; 3976 } // namespace 3977 3978 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3979 MLIRContext *context) { 3980 results.add<MaskedStoreFolder>(context); 3981 } 3982 3983 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3984 SmallVectorImpl<OpFoldResult> &results) { 3985 return foldMemRefCast(*this); 3986 } 3987 3988 //===----------------------------------------------------------------------===// 3989 // GatherOp 3990 //===----------------------------------------------------------------------===// 3991 3992 LogicalResult GatherOp::verify() { 3993 VectorType indVType = getIndexVectorType(); 3994 VectorType maskVType = getMaskVectorType(); 3995 VectorType resVType = getVectorType(); 3996 MemRefType memType = getMemRefType(); 3997 3998 if (resVType.getElementType() != memType.getElementType()) 3999 return emitOpError("base and result element type should match"); 4000 if (llvm::size(getIndices()) != memType.getRank()) 4001 return emitOpError("requires ") << memType.getRank() << " indices"; 4002 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 4003 return emitOpError("expected result dim to match indices dim"); 4004 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 4005 return emitOpError("expected result dim to match mask dim"); 4006 if (resVType != getPassThruVectorType()) 4007 return emitOpError("expected pass_thru of same type as result type"); 4008 return success(); 4009 } 4010 4011 namespace { 4012 class GatherFolder final : public OpRewritePattern<GatherOp> { 4013 public: 4014 using OpRewritePattern<GatherOp>::OpRewritePattern; 4015 LogicalResult matchAndRewrite(GatherOp gather, 4016 PatternRewriter &rewriter) const override { 4017 switch (get1DMaskFormat(gather.getMask())) { 4018 case MaskFormat::AllTrue: 4019 return failure(); // no unmasked equivalent 4020 case MaskFormat::AllFalse: 4021 rewriter.replaceOp(gather, gather.getPassThru()); 4022 return success(); 4023 case MaskFormat::Unknown: 4024 return failure(); 4025 } 4026 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 4027 } 4028 }; 4029 } // namespace 4030 4031 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 4032 MLIRContext *context) { 4033 results.add<GatherFolder>(context); 4034 } 4035 4036 //===----------------------------------------------------------------------===// 4037 // ScatterOp 4038 //===----------------------------------------------------------------------===// 4039 4040 LogicalResult ScatterOp::verify() { 4041 VectorType indVType = getIndexVectorType(); 4042 VectorType maskVType = getMaskVectorType(); 4043 VectorType valueVType = getVectorType(); 4044 MemRefType memType = getMemRefType(); 4045 4046 if (valueVType.getElementType() != memType.getElementType()) 4047 return emitOpError("base and valueToStore element type should match"); 4048 if (llvm::size(getIndices()) != memType.getRank()) 4049 return emitOpError("requires ") << memType.getRank() << " indices"; 4050 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 4051 return emitOpError("expected valueToStore dim to match indices dim"); 4052 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4053 return emitOpError("expected valueToStore dim to match mask dim"); 4054 return success(); 4055 } 4056 4057 namespace { 4058 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 4059 public: 4060 using OpRewritePattern<ScatterOp>::OpRewritePattern; 4061 LogicalResult matchAndRewrite(ScatterOp scatter, 4062 PatternRewriter &rewriter) const override { 4063 switch (get1DMaskFormat(scatter.getMask())) { 4064 case MaskFormat::AllTrue: 4065 return failure(); // no unmasked equivalent 4066 case MaskFormat::AllFalse: 4067 rewriter.eraseOp(scatter); 4068 return success(); 4069 case MaskFormat::Unknown: 4070 return failure(); 4071 } 4072 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 4073 } 4074 }; 4075 } // namespace 4076 4077 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 4078 MLIRContext *context) { 4079 results.add<ScatterFolder>(context); 4080 } 4081 4082 //===----------------------------------------------------------------------===// 4083 // ExpandLoadOp 4084 //===----------------------------------------------------------------------===// 4085 4086 LogicalResult ExpandLoadOp::verify() { 4087 VectorType maskVType = getMaskVectorType(); 4088 VectorType passVType = getPassThruVectorType(); 4089 VectorType resVType = getVectorType(); 4090 MemRefType memType = getMemRefType(); 4091 4092 if (resVType.getElementType() != memType.getElementType()) 4093 return emitOpError("base and result element type should match"); 4094 if (llvm::size(getIndices()) != memType.getRank()) 4095 return emitOpError("requires ") << memType.getRank() << " indices"; 4096 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 4097 return emitOpError("expected result dim to match mask dim"); 4098 if (resVType != passVType) 4099 return emitOpError("expected pass_thru of same type as result type"); 4100 return success(); 4101 } 4102 4103 namespace { 4104 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 4105 public: 4106 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 4107 LogicalResult matchAndRewrite(ExpandLoadOp expand, 4108 PatternRewriter &rewriter) const override { 4109 switch (get1DMaskFormat(expand.getMask())) { 4110 case MaskFormat::AllTrue: 4111 rewriter.replaceOpWithNewOp<vector::LoadOp>( 4112 expand, expand.getType(), expand.getBase(), expand.getIndices()); 4113 return success(); 4114 case MaskFormat::AllFalse: 4115 rewriter.replaceOp(expand, expand.getPassThru()); 4116 return success(); 4117 case MaskFormat::Unknown: 4118 return failure(); 4119 } 4120 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4121 } 4122 }; 4123 } // namespace 4124 4125 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4126 MLIRContext *context) { 4127 results.add<ExpandLoadFolder>(context); 4128 } 4129 4130 //===----------------------------------------------------------------------===// 4131 // CompressStoreOp 4132 //===----------------------------------------------------------------------===// 4133 4134 LogicalResult CompressStoreOp::verify() { 4135 VectorType maskVType = getMaskVectorType(); 4136 VectorType valueVType = getVectorType(); 4137 MemRefType memType = getMemRefType(); 4138 4139 if (valueVType.getElementType() != memType.getElementType()) 4140 return emitOpError("base and valueToStore element type should match"); 4141 if (llvm::size(getIndices()) != memType.getRank()) 4142 return emitOpError("requires ") << memType.getRank() << " indices"; 4143 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4144 return emitOpError("expected valueToStore dim to match mask dim"); 4145 return success(); 4146 } 4147 4148 namespace { 4149 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4150 public: 4151 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4152 LogicalResult matchAndRewrite(CompressStoreOp compress, 4153 PatternRewriter &rewriter) const override { 4154 switch (get1DMaskFormat(compress.getMask())) { 4155 case MaskFormat::AllTrue: 4156 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4157 compress, compress.getValueToStore(), compress.getBase(), 4158 compress.getIndices()); 4159 return success(); 4160 case MaskFormat::AllFalse: 4161 rewriter.eraseOp(compress); 4162 return success(); 4163 case MaskFormat::Unknown: 4164 return failure(); 4165 } 4166 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4167 } 4168 }; 4169 } // namespace 4170 4171 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4172 MLIRContext *context) { 4173 results.add<CompressStoreFolder>(context); 4174 } 4175 4176 //===----------------------------------------------------------------------===// 4177 // ShapeCastOp 4178 //===----------------------------------------------------------------------===// 4179 4180 /// Returns true if each element of 'a' is equal to the product of a contiguous 4181 /// sequence of the elements of 'b'. Returns false otherwise. 4182 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4183 unsigned rankA = a.size(); 4184 unsigned rankB = b.size(); 4185 assert(rankA < rankB); 4186 4187 unsigned i = 0; 4188 unsigned j = 0; 4189 while (i < rankA && j < rankB) { 4190 int64_t dimA = a[i]; 4191 int64_t dimB = 1; 4192 while (dimB < dimA && j < rankB) 4193 dimB *= b[j++]; 4194 if (dimA != dimB) 4195 break; 4196 ++i; 4197 4198 // Handle the case when trailing dimensions are of size 1. 4199 // Include them into the contiguous sequence. 4200 auto isOne = [](int64_t v) { return v == 1; }; 4201 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4202 i = rankA; 4203 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4204 j = rankB; 4205 } 4206 4207 return i == rankA && j == rankB; 4208 } 4209 4210 static LogicalResult verifyVectorShapeCast(Operation *op, 4211 VectorType sourceVectorType, 4212 VectorType resultVectorType) { 4213 // Check that element type is the same. 4214 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4215 return op->emitOpError("source/result vectors must have same element type"); 4216 auto sourceShape = sourceVectorType.getShape(); 4217 auto resultShape = resultVectorType.getShape(); 4218 4219 // Check that product of source dim sizes matches product of result dim sizes. 4220 int64_t sourceDimProduct = std::accumulate( 4221 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4222 int64_t resultDimProduct = std::accumulate( 4223 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4224 if (sourceDimProduct != resultDimProduct) 4225 return op->emitOpError("source/result number of elements must match"); 4226 4227 // Check that expanding/contracting rank cases. 4228 unsigned sourceRank = sourceVectorType.getRank(); 4229 unsigned resultRank = resultVectorType.getRank(); 4230 if (sourceRank < resultRank) { 4231 if (!isValidShapeCast(sourceShape, resultShape)) 4232 return op->emitOpError("invalid shape cast"); 4233 } else if (sourceRank > resultRank) { 4234 if (!isValidShapeCast(resultShape, sourceShape)) 4235 return op->emitOpError("invalid shape cast"); 4236 } 4237 return success(); 4238 } 4239 4240 LogicalResult ShapeCastOp::verify() { 4241 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4242 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4243 4244 // Check if source/result are of vector type. 4245 if (sourceVectorType && resultVectorType) 4246 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4247 4248 return success(); 4249 } 4250 4251 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4252 // No-op shape cast. 4253 if (getSource().getType() == getResult().getType()) 4254 return getSource(); 4255 4256 // Canceling shape casts. 4257 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4258 if (getResult().getType() == otherOp.getSource().getType()) 4259 return otherOp.getSource(); 4260 4261 // Only allows valid transitive folding. 4262 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4263 VectorType resultType = getResult().getType().cast<VectorType>(); 4264 if (srcType.getRank() < resultType.getRank()) { 4265 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4266 return {}; 4267 } else if (srcType.getRank() > resultType.getRank()) { 4268 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4269 return {}; 4270 } else { 4271 return {}; 4272 } 4273 4274 setOperand(otherOp.getSource()); 4275 return getResult(); 4276 } 4277 4278 // Cancelling broadcast and shape cast ops. 4279 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4280 if (bcastOp.getSourceType() == getType()) 4281 return bcastOp.getSource(); 4282 } 4283 4284 return {}; 4285 } 4286 4287 namespace { 4288 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4289 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4290 public: 4291 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4292 4293 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4294 PatternRewriter &rewriter) const override { 4295 auto constantOp = 4296 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4297 if (!constantOp) 4298 return failure(); 4299 // Only handle splat for now. 4300 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4301 if (!dense) 4302 return failure(); 4303 auto newAttr = 4304 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4305 dense.getSplatValue<Attribute>()); 4306 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4307 return success(); 4308 } 4309 }; 4310 4311 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. 4312 /// This only applies when the shape of the broadcast source is a suffix of the 4313 /// shape of the result (i.e. when broadcast without reshape is expressive 4314 /// enough to capture the result in a single op). 4315 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { 4316 public: 4317 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4318 4319 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4320 PatternRewriter &rewriter) const override { 4321 auto broadcastOp = 4322 shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); 4323 if (!broadcastOp) 4324 return failure(); 4325 4326 auto broadcastSourceVectorType = 4327 broadcastOp.getSourceType().dyn_cast<VectorType>(); 4328 auto broadcastSourceShape = broadcastSourceVectorType 4329 ? broadcastSourceVectorType.getShape() 4330 : ArrayRef<int64_t>{}; 4331 auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); 4332 4333 // Bail if `broadcastSourceShape` is not a suffix of the result. 4334 bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back( 4335 broadcastSourceShape.size())); 4336 if (!isSuffix) 4337 return failure(); 4338 4339 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4340 shapeCastOp, shapeCastOp.getResultVectorType(), 4341 broadcastOp.getSource()); 4342 return success(); 4343 } 4344 }; 4345 4346 } // namespace 4347 4348 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4349 MLIRContext *context) { 4350 results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context); 4351 } 4352 4353 //===----------------------------------------------------------------------===// 4354 // VectorBitCastOp 4355 //===----------------------------------------------------------------------===// 4356 4357 LogicalResult BitCastOp::verify() { 4358 auto sourceVectorType = getSourceVectorType(); 4359 auto resultVectorType = getResultVectorType(); 4360 4361 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4362 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4363 return emitOpError("dimension size mismatch at: ") << i; 4364 } 4365 4366 DataLayout dataLayout = DataLayout::closest(*this); 4367 auto sourceElementBits = 4368 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4369 auto resultElementBits = 4370 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4371 4372 if (sourceVectorType.getRank() == 0) { 4373 if (sourceElementBits != resultElementBits) 4374 return emitOpError("source/result bitwidth of the 0-D vector element " 4375 "types must be equal"); 4376 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4377 resultElementBits * resultVectorType.getShape().back()) { 4378 return emitOpError( 4379 "source/result bitwidth of the minor 1-D vectors must be equal"); 4380 } 4381 4382 return success(); 4383 } 4384 4385 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4386 // Nop cast. 4387 if (getSource().getType() == getResult().getType()) 4388 return getSource(); 4389 4390 // Canceling bitcasts. 4391 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4392 if (getResult().getType() == otherOp.getSource().getType()) 4393 return otherOp.getSource(); 4394 4395 setOperand(otherOp.getSource()); 4396 return getResult(); 4397 } 4398 4399 Attribute sourceConstant = operands.front(); 4400 if (!sourceConstant) 4401 return {}; 4402 4403 Type srcElemType = getSourceVectorType().getElementType(); 4404 Type dstElemType = getResultVectorType().getElementType(); 4405 4406 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4407 if (floatPack.isSplat()) { 4408 auto splat = floatPack.getSplatValue<FloatAttr>(); 4409 4410 // Casting fp16 into fp32. 4411 if (srcElemType.isF16() && dstElemType.isF32()) { 4412 uint32_t bits = static_cast<uint32_t>( 4413 splat.getValue().bitcastToAPInt().getZExtValue()); 4414 // Duplicate the 16-bit pattern. 4415 bits = (bits << 16) | (bits & 0xffff); 4416 APInt intBits(32, bits); 4417 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4418 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4419 } 4420 } 4421 } 4422 4423 return {}; 4424 } 4425 4426 //===----------------------------------------------------------------------===// 4427 // TypeCastOp 4428 //===----------------------------------------------------------------------===// 4429 4430 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4431 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4432 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4433 memRefType.getShape().end()); 4434 if (vectorType) 4435 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4436 return res; 4437 } 4438 4439 /// Build the canonical memRefType with a single vector. 4440 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4441 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4442 Value source) { 4443 result.addOperands(source); 4444 MemRefType memRefType = source.getType().cast<MemRefType>(); 4445 VectorType vectorType = 4446 VectorType::get(extractShape(memRefType), 4447 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4448 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4449 memRefType.getMemorySpace())); 4450 } 4451 4452 LogicalResult TypeCastOp::verify() { 4453 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4454 if (!canonicalType.getLayout().isIdentity()) 4455 return emitOpError("expects operand to be a memref with identity layout"); 4456 if (!getResultMemRefType().getLayout().isIdentity()) 4457 return emitOpError("expects result to be a memref with identity layout"); 4458 if (getResultMemRefType().getMemorySpace() != 4459 getMemRefType().getMemorySpace()) 4460 return emitOpError("expects result in same memory space"); 4461 4462 auto sourceType = getMemRefType(); 4463 auto resultType = getResultMemRefType(); 4464 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4465 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4466 return emitOpError( 4467 "expects result and operand with same underlying scalar type: ") 4468 << resultType; 4469 if (extractShape(sourceType) != extractShape(resultType)) 4470 return emitOpError( 4471 "expects concatenated result and operand shapes to be equal: ") 4472 << resultType; 4473 return success(); 4474 } 4475 4476 //===----------------------------------------------------------------------===// 4477 // TransposeOp 4478 //===----------------------------------------------------------------------===// 4479 4480 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4481 Value vector, ArrayRef<int64_t> transp) { 4482 VectorType vt = vector.getType().cast<VectorType>(); 4483 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4484 for (unsigned i = 0; i < transp.size(); ++i) 4485 transposedShape[i] = vt.getShape()[transp[i]]; 4486 4487 result.addOperands(vector); 4488 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4489 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4490 } 4491 4492 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4493 // Eliminate splat constant transpose ops. 4494 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4495 if (attr.isSplat()) 4496 return attr.reshape(getResultType()); 4497 4498 // Eliminate identity transpose ops. This happens when the dimensions of the 4499 // input vector remain in their original order after the transpose operation. 4500 SmallVector<int64_t, 4> transp; 4501 getTransp(transp); 4502 4503 // Check if the permutation of the dimensions contains sequential values: 4504 // {0, 1, 2, ...}. 4505 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4506 if (transp[i] != i) 4507 return {}; 4508 } 4509 4510 return getVector(); 4511 } 4512 4513 LogicalResult vector::TransposeOp::verify() { 4514 VectorType vectorType = getVectorType(); 4515 VectorType resultType = getResultType(); 4516 int64_t rank = resultType.getRank(); 4517 if (vectorType.getRank() != rank) 4518 return emitOpError("vector result rank mismatch: ") << rank; 4519 // Verify transposition array. 4520 auto transpAttr = getTransp().getValue(); 4521 int64_t size = transpAttr.size(); 4522 if (rank != size) 4523 return emitOpError("transposition length mismatch: ") << size; 4524 SmallVector<bool, 8> seen(rank, false); 4525 for (const auto &ta : llvm::enumerate(transpAttr)) { 4526 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4527 if (i < 0 || i >= rank) 4528 return emitOpError("transposition index out of range: ") << i; 4529 if (seen[i]) 4530 return emitOpError("duplicate position index: ") << i; 4531 seen[i] = true; 4532 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4533 return emitOpError("dimension size mismatch at: ") << i; 4534 } 4535 return success(); 4536 } 4537 4538 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4539 return llvm::to_vector<4>(getResultType().getShape()); 4540 } 4541 4542 namespace { 4543 4544 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4545 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4546 public: 4547 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4548 4549 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4550 PatternRewriter &rewriter) const override { 4551 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4552 auto getPermutation = [](vector::TransposeOp transpose) { 4553 SmallVector<int64_t, 4> permutation; 4554 transpose.getTransp(permutation); 4555 return permutation; 4556 }; 4557 4558 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4559 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4560 ArrayRef<int64_t> permutation2) { 4561 SmallVector<int64_t, 4> result; 4562 for (auto index : permutation2) 4563 result.push_back(permutation1[index]); 4564 return result; 4565 }; 4566 4567 // Return if the input of 'transposeOp' is not defined by another transpose. 4568 vector::TransposeOp parentTransposeOp = 4569 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4570 if (!parentTransposeOp) 4571 return failure(); 4572 4573 SmallVector<int64_t, 4> permutation = composePermutations( 4574 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4575 // Replace 'transposeOp' with a new transpose operation. 4576 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4577 transposeOp, transposeOp.getResult().getType(), 4578 parentTransposeOp.getVector(), 4579 vector::getVectorSubscriptAttr(rewriter, permutation)); 4580 return success(); 4581 } 4582 }; 4583 4584 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4585 struct FoldTransposedScalarBroadcast final 4586 : public OpRewritePattern<vector::TransposeOp> { 4587 using OpRewritePattern::OpRewritePattern; 4588 4589 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4590 PatternRewriter &rewriter) const override { 4591 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4592 if (!bcastOp) 4593 return failure(); 4594 4595 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4596 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4597 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4598 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4599 return success(); 4600 } 4601 4602 return failure(); 4603 } 4604 }; 4605 4606 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4607 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4608 public: 4609 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4610 4611 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4612 PatternRewriter &rewriter) const override { 4613 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4614 if (!splatOp) 4615 return failure(); 4616 4617 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4618 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4619 return success(); 4620 } 4621 }; 4622 4623 } // namespace 4624 4625 void vector::TransposeOp::getCanonicalizationPatterns( 4626 RewritePatternSet &results, MLIRContext *context) { 4627 results 4628 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4629 context); 4630 } 4631 4632 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4633 populateFromInt64AttrArray(getTransp(), results); 4634 } 4635 4636 //===----------------------------------------------------------------------===// 4637 // ConstantMaskOp 4638 //===----------------------------------------------------------------------===// 4639 4640 LogicalResult ConstantMaskOp::verify() { 4641 auto resultType = getResult().getType().cast<VectorType>(); 4642 // Check the corner case of 0-D vectors first. 4643 if (resultType.getRank() == 0) { 4644 if (getMaskDimSizes().size() != 1) 4645 return emitError("array attr must have length 1 for 0-D vectors"); 4646 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4647 if (dim != 0 && dim != 1) 4648 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4649 return success(); 4650 } 4651 4652 // Verify that array attr size matches the rank of the vector result. 4653 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4654 return emitOpError( 4655 "must specify array attr of size equal vector result rank"); 4656 // Verify that each array attr element is in bounds of corresponding vector 4657 // result dimension size. 4658 auto resultShape = resultType.getShape(); 4659 SmallVector<int64_t, 4> maskDimSizes; 4660 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4661 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4662 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4663 return emitOpError( 4664 "array attr of size out of bounds of vector result dimension size"); 4665 maskDimSizes.push_back(attrValue); 4666 } 4667 // Verify that if one mask dim size is zero, they all should be zero (because 4668 // the mask region is a conjunction of each mask dimension interval). 4669 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4670 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4671 if (anyZeros && !allZeros) 4672 return emitOpError("expected all mask dim sizes to be zeros, " 4673 "as a result of conjunction with zero mask dim"); 4674 // Verify that if the mask type is scalable, dimensions should be zero because 4675 // constant scalable masks can only be defined for the "none set" or "all set" 4676 // cases, and there is no VLA way to define an "all set" case for 4677 // `vector.constant_mask`. In the future, a convention could be established 4678 // to decide if a specific dimension value could be considered as "all set". 4679 if (resultType.isScalable() && 4680 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4681 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4682 return success(); 4683 } 4684 4685 //===----------------------------------------------------------------------===// 4686 // CreateMaskOp 4687 //===----------------------------------------------------------------------===// 4688 4689 LogicalResult CreateMaskOp::verify() { 4690 auto vectorType = getResult().getType().cast<VectorType>(); 4691 // Verify that an operand was specified for each result vector each dimension. 4692 if (vectorType.getRank() == 0) { 4693 if (getNumOperands() != 1) 4694 return emitOpError( 4695 "must specify exactly one operand for 0-D create_mask"); 4696 } else if (getNumOperands() != 4697 getResult().getType().cast<VectorType>().getRank()) { 4698 return emitOpError( 4699 "must specify an operand for each result vector dimension"); 4700 } 4701 return success(); 4702 } 4703 4704 namespace { 4705 4706 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4707 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4708 public: 4709 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4710 4711 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4712 PatternRewriter &rewriter) const override { 4713 // Return if any of 'createMaskOp' operands are not defined by a constant. 4714 auto isNotDefByConstant = [](Value operand) { 4715 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4716 }; 4717 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4718 return failure(); 4719 4720 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4721 // are negative or zero. 4722 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4723 if (vType.isScalable()) 4724 for (auto opDim : createMaskOp.getOperands()) { 4725 APInt intVal; 4726 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4727 intVal.isStrictlyPositive()) 4728 return failure(); 4729 } 4730 } 4731 4732 // Gather constant mask dimension sizes. 4733 SmallVector<int64_t, 4> maskDimSizes; 4734 for (auto it : llvm::zip(createMaskOp.operands(), 4735 createMaskOp.getType().getShape())) { 4736 auto *defOp = std::get<0>(it).getDefiningOp(); 4737 int64_t maxDimSize = std::get<1>(it); 4738 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4739 dimSize = std::min(dimSize, maxDimSize); 4740 // If one of dim sizes is zero, set all dims to zero. 4741 if (dimSize <= 0) { 4742 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4743 break; 4744 } 4745 maskDimSizes.push_back(dimSize); 4746 } 4747 // Replace 'createMaskOp' with ConstantMaskOp. 4748 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4749 createMaskOp, createMaskOp.getResult().getType(), 4750 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4751 return success(); 4752 } 4753 }; 4754 4755 } // namespace 4756 4757 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4758 MLIRContext *context) { 4759 results.add<CreateMaskFolder>(context); 4760 } 4761 4762 //===----------------------------------------------------------------------===// 4763 // ScanOp 4764 //===----------------------------------------------------------------------===// 4765 4766 LogicalResult ScanOp::verify() { 4767 VectorType srcType = getSourceType(); 4768 VectorType initialType = getInitialValueType(); 4769 // Check reduction dimension < rank. 4770 int64_t srcRank = srcType.getRank(); 4771 int64_t reductionDim = getReductionDim(); 4772 if (reductionDim >= srcRank) 4773 return emitOpError("reduction dimension ") 4774 << reductionDim << " has to be less than " << srcRank; 4775 4776 // Check that rank(initial_value) = rank(src) - 1. 4777 int64_t initialValueRank = initialType.getRank(); 4778 if (initialValueRank != srcRank - 1) 4779 return emitOpError("initial value rank ") 4780 << initialValueRank << " has to be equal to " << srcRank - 1; 4781 4782 // Check shapes of initial value and src. 4783 ArrayRef<int64_t> srcShape = srcType.getShape(); 4784 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4785 SmallVector<int64_t> expectedShape; 4786 for (int i = 0; i < srcRank; i++) { 4787 if (i != reductionDim) 4788 expectedShape.push_back(srcShape[i]); 4789 } 4790 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4791 [](std::tuple<int64_t, int64_t> s) { 4792 return std::get<0>(s) != std::get<1>(s); 4793 })) { 4794 return emitOpError("incompatible input/initial value shapes"); 4795 } 4796 4797 // Verify supported reduction kind. 4798 Type eltType = getDestType().getElementType(); 4799 if (!isSupportedCombiningKind(getKind(), eltType)) 4800 return emitOpError("unsupported reduction type ") 4801 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4802 << "'"; 4803 4804 return success(); 4805 } 4806 4807 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4808 RewritePatternSet &patterns) { 4809 patterns 4810 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4811 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4812 StridedSliceConstantMaskFolder, TransposeFolder>( 4813 patterns.getContext()); 4814 } 4815 4816 //===----------------------------------------------------------------------===// 4817 // SplatOp 4818 //===----------------------------------------------------------------------===// 4819 4820 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4821 auto constOperand = operands.front(); 4822 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4823 return {}; 4824 4825 // SplatElementsAttr::get treats single value for second arg as being a splat. 4826 return SplatElementsAttr::get(getType(), {constOperand}); 4827 } 4828 4829 //===----------------------------------------------------------------------===// 4830 // WarpExecuteOnLane0Op 4831 //===----------------------------------------------------------------------===// 4832 4833 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4834 p << "(" << getLaneid() << ")"; 4835 4836 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4837 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4838 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4839 4840 if (!getArgs().empty()) 4841 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4842 if (!getResults().empty()) 4843 p << " -> (" << getResults().getTypes() << ')'; 4844 p << " "; 4845 p.printRegion(getRegion(), 4846 /*printEntryBlockArgs=*/true, 4847 /*printBlockTerminators=*/!getResults().empty()); 4848 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4849 } 4850 4851 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4852 OperationState &result) { 4853 // Create the region. 4854 result.regions.reserve(1); 4855 Region *warpRegion = result.addRegion(); 4856 4857 auto &builder = parser.getBuilder(); 4858 OpAsmParser::UnresolvedOperand laneId; 4859 4860 // Parse predicate operand. 4861 if (parser.parseLParen() || 4862 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4863 parser.parseRParen()) 4864 return failure(); 4865 4866 int64_t warpSize; 4867 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4868 parser.parseRSquare()) 4869 return failure(); 4870 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4871 builder.getContext())), 4872 builder.getI64IntegerAttr(warpSize)); 4873 4874 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4875 return failure(); 4876 4877 llvm::SMLoc inputsOperandsLoc; 4878 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4879 SmallVector<Type> inputTypes; 4880 if (succeeded(parser.parseOptionalKeyword("args"))) { 4881 if (parser.parseLParen()) 4882 return failure(); 4883 4884 inputsOperandsLoc = parser.getCurrentLocation(); 4885 if (parser.parseOperandList(inputsOperands) || 4886 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4887 return failure(); 4888 } 4889 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4890 result.operands)) 4891 return failure(); 4892 4893 // Parse optional results type list. 4894 if (parser.parseOptionalArrowTypeList(result.types)) 4895 return failure(); 4896 // Parse the region. 4897 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4898 /*argTypes=*/{})) 4899 return failure(); 4900 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4901 4902 // Parse the optional attribute list. 4903 if (parser.parseOptionalAttrDict(result.attributes)) 4904 return failure(); 4905 return success(); 4906 } 4907 4908 void WarpExecuteOnLane0Op::getSuccessorRegions( 4909 Optional<unsigned> index, ArrayRef<Attribute> operands, 4910 SmallVectorImpl<RegionSuccessor> ®ions) { 4911 if (index) { 4912 regions.push_back(RegionSuccessor(getResults())); 4913 return; 4914 } 4915 4916 // The warp region is always executed 4917 regions.push_back(RegionSuccessor(&getWarpRegion())); 4918 } 4919 4920 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4921 TypeRange resultTypes, Value laneId, 4922 int64_t warpSize) { 4923 build(builder, result, resultTypes, laneId, warpSize, 4924 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4925 } 4926 4927 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4928 TypeRange resultTypes, Value laneId, 4929 int64_t warpSize, ValueRange args, 4930 TypeRange blockArgTypes) { 4931 result.addOperands(laneId); 4932 result.addAttribute(getAttributeNames()[0], 4933 builder.getI64IntegerAttr(warpSize)); 4934 result.addTypes(resultTypes); 4935 result.addOperands(args); 4936 assert(args.size() == blockArgTypes.size()); 4937 OpBuilder::InsertionGuard guard(builder); 4938 Region *warpRegion = result.addRegion(); 4939 Block *block = builder.createBlock(warpRegion); 4940 for (auto it : llvm::zip(blockArgTypes, args)) 4941 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4942 } 4943 4944 /// Helper check if the distributed vector type is consistent with the expanded 4945 /// type and distributed size. 4946 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4947 int64_t warpSize, Operation *op) { 4948 // If the types matches there is no distribution. 4949 if (expanded == distributed) 4950 return success(); 4951 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4952 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4953 if (!expandedVecType || !distributedVecType) 4954 return op->emitOpError("expected vector type for distributed operands."); 4955 if (expandedVecType.getRank() != distributedVecType.getRank() || 4956 expandedVecType.getElementType() != distributedVecType.getElementType()) 4957 return op->emitOpError( 4958 "expected distributed vectors to have same rank and element type."); 4959 bool foundDistributedDim = false; 4960 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4961 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4962 continue; 4963 if (expandedVecType.getDimSize(i) == 4964 distributedVecType.getDimSize(i) * warpSize) { 4965 if (foundDistributedDim) 4966 return op->emitOpError() 4967 << "expected only one dimension to be distributed from " 4968 << expandedVecType << " to " << distributedVecType; 4969 foundDistributedDim = true; 4970 continue; 4971 } 4972 return op->emitOpError() << "incompatible distribution dimensions from " 4973 << expandedVecType << " to " << distributedVecType; 4974 } 4975 return success(); 4976 } 4977 4978 LogicalResult WarpExecuteOnLane0Op::verify() { 4979 if (getArgs().size() != getWarpRegion().getNumArguments()) 4980 return emitOpError( 4981 "expected same number op arguments and block arguments."); 4982 auto yield = 4983 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4984 if (yield.getNumOperands() != getNumResults()) 4985 return emitOpError( 4986 "expected same number of yield operands and return values."); 4987 int64_t warpSize = getWarpSize(); 4988 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4989 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4990 std::get<1>(it).getType(), warpSize, 4991 getOperation()))) 4992 return failure(); 4993 } 4994 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4995 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4996 std::get<1>(it).getType(), warpSize, 4997 getOperation()))) 4998 return failure(); 4999 } 5000 return success(); 5001 } 5002 5003 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 5004 return succeeded( 5005 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 5006 } 5007 5008 //===----------------------------------------------------------------------===// 5009 // TableGen'd op method definitions 5010 //===----------------------------------------------------------------------===// 5011 5012 #define GET_OP_CLASSES 5013 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 5014