1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   return success();
407 }
408 
409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
410   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
411   Type redType;
412   Type resType;
413   CombiningKindAttr kindAttr;
414   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
415                                               result.attributes) ||
416       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
417       parser.parseColonType(redType) ||
418       parser.parseKeywordType("into", resType) ||
419       (!operandsInfo.empty() &&
420        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
421       (operandsInfo.size() > 1 &&
422        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
423       parser.addTypeToList(resType, result.types))
424     return failure();
425   if (operandsInfo.empty() || operandsInfo.size() > 2)
426     return parser.emitError(parser.getNameLoc(),
427                             "unsupported number of operands");
428   return success();
429 }
430 
431 void ReductionOp::print(OpAsmPrinter &p) {
432   p << " ";
433   getKindAttr().print(p);
434   p << ", " << getVector();
435   if (getAcc())
436     p << ", " << getAcc();
437   p << " : " << getVector().getType() << " into " << getDest().getType();
438 }
439 
440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
441                                          OpBuilder &builder, Location loc,
442                                          Value vector) {
443   switch (op) {
444   case arith::AtomicRMWKind::addf:
445   case arith::AtomicRMWKind::addi:
446     return builder.create<vector::ReductionOp>(vector.getLoc(),
447                                                CombiningKind::ADD, vector);
448   case arith::AtomicRMWKind::mulf:
449   case arith::AtomicRMWKind::muli:
450     return builder.create<vector::ReductionOp>(vector.getLoc(),
451                                                CombiningKind::MUL, vector);
452   case arith::AtomicRMWKind::minf:
453     return builder.create<vector::ReductionOp>(vector.getLoc(),
454                                                CombiningKind::MINF, vector);
455   case arith::AtomicRMWKind::mins:
456     return builder.create<vector::ReductionOp>(vector.getLoc(),
457                                                CombiningKind::MINSI, vector);
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MINUI, vector);
461   case arith::AtomicRMWKind::maxf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MAXF, vector);
464   case arith::AtomicRMWKind::maxs:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MAXSI, vector);
467   case arith::AtomicRMWKind::maxu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MAXUI, vector);
470   case arith::AtomicRMWKind::andi:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::AND, vector);
473   case arith::AtomicRMWKind::ori:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::OR, vector);
476   // TODO: Add remaining reduction operations.
477   default:
478     (void)emitOptionalError(loc, "Reduction operation type not supported");
479     break;
480   }
481   return nullptr;
482 }
483 
484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
485   return llvm::to_vector<4>(getVectorType().getShape());
486 }
487 
488 namespace {
489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
490   using OpRewritePattern::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(ReductionOp reductionOp,
493                                 PatternRewriter &rewriter) const override {
494     if (reductionOp.getVectorType().getDimSize(0) != 1)
495       return failure();
496 
497     Location loc = reductionOp.getLoc();
498     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
499                                               reductionOp.getVector(),
500                                               rewriter.getI64ArrayAttr(0));
501 
502     if (Value acc = reductionOp.getAcc()) {
503       assert(reductionOp.getType().isa<FloatType>());
504       switch (reductionOp.getKind()) {
505       case CombiningKind::ADD:
506         result = rewriter.create<arith::AddFOp>(loc, result, acc);
507         break;
508       case CombiningKind::MUL:
509         result = rewriter.create<arith::MulFOp>(loc, result, acc);
510         break;
511       default:
512         assert(false && "invalid op!");
513       }
514     }
515 
516     rewriter.replaceOp(reductionOp, result);
517     return success();
518   }
519 };
520 } // namespace
521 
522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
523                                               MLIRContext *context) {
524   results.add<ElideSingleElementReduction>(context);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // ContractionOp
529 //===----------------------------------------------------------------------===//
530 
531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
532                                   Value lhs, Value rhs, Value acc,
533                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
534                                   ArrayRef<StringRef> iteratorTypes) {
535   result.addOperands({lhs, rhs, acc});
536   result.addTypes(acc.getType());
537   result.addAttribute(::mlir::getIndexingMapsAttrName(),
538                       builder.getAffineMapArrayAttr(
539                           AffineMap::inferFromExprList(indexingExprs)));
540   result.addAttribute(::mlir::getIteratorTypesAttrName(),
541                       builder.getStrArrayAttr(iteratorTypes));
542 }
543 
544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
545                                   Value lhs, Value rhs, Value acc,
546                                   ArrayAttr indexingMaps,
547                                   ArrayAttr iteratorTypes) {
548   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
549         ContractionOp::getDefaultKind());
550 }
551 
552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
553                                   Value lhs, Value rhs, Value acc,
554                                   ArrayAttr indexingMaps,
555                                   ArrayAttr iteratorTypes, CombiningKind kind) {
556   result.addOperands({lhs, rhs, acc});
557   result.addTypes(acc.getType());
558   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
559   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
560   result.addAttribute(ContractionOp::getKindAttrStrName(),
561                       CombiningKindAttr::get(kind, builder.getContext()));
562 }
563 
564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
565   OpAsmParser::UnresolvedOperand lhsInfo;
566   OpAsmParser::UnresolvedOperand rhsInfo;
567   OpAsmParser::UnresolvedOperand accInfo;
568   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
569   SmallVector<Type, 2> types;
570   Type resultType;
571   auto loc = parser.getCurrentLocation();
572   DictionaryAttr dictAttr;
573   // TODO: Unify linalg op attribute parsing.
574   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
575       parser.parseOperand(lhsInfo) || parser.parseComma() ||
576       parser.parseOperand(rhsInfo) || parser.parseComma() ||
577       parser.parseOperand(accInfo) ||
578       parser.parseTrailingOperandList(masksInfo) ||
579       parser.parseOptionalAttrDict(result.attributes) ||
580       parser.parseColonTypeList(types) ||
581       parser.parseKeywordType("into", resultType) ||
582       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
583       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
584       parser.resolveOperand(accInfo, resultType, result.operands) ||
585       parser.addTypeToList(resultType, result.types))
586     return failure();
587   result.attributes.assign(dictAttr.getValue().begin(),
588                            dictAttr.getValue().end());
589   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
590     result.addAttribute(ContractionOp::getKindAttrStrName(),
591                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
592                                                result.getContext()));
593   }
594   if (masksInfo.empty())
595     return success();
596   if (masksInfo.size() != 2)
597     return parser.emitError(parser.getNameLoc(),
598                             "expected zero or exactly 2 vector mask operands");
599   auto lhsType = types[0].cast<VectorType>();
600   auto rhsType = types[1].cast<VectorType>();
601   auto maskElementType = parser.getBuilder().getI1Type();
602   std::array<Type, 2> maskTypes = {
603       VectorType::Builder(lhsType).setElementType(maskElementType),
604       VectorType::Builder(rhsType).setElementType(maskElementType)};
605   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
606     return failure();
607   return success();
608 }
609 
610 void ContractionOp::print(OpAsmPrinter &p) {
611   // TODO: Unify printing code with linalg ops.
612   auto attrNames = getTraitAttrNames();
613   llvm::StringSet<> traitAttrsSet;
614   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
615   SmallVector<NamedAttribute, 8> attrs;
616   for (auto attr : (*this)->getAttrs())
617     if (traitAttrsSet.count(attr.getName().strref()) > 0)
618       attrs.push_back(attr);
619 
620   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
621   p << " " << dictAttr << " " << getLhs() << ", ";
622   p << getRhs() << ", " << getAcc();
623   if (getMasks().size() == 2)
624     p << ", " << getMasks();
625 
626   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
627   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
628     << getResultType();
629 }
630 
631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
632                          const std::vector<std::pair<int64_t, int64_t>> &map) {
633   for (auto &dimPair : map) {
634     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
635         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
636         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
637       return false;
638   }
639   return true;
640 }
641 
642 static LogicalResult verifyOutputShape(
643     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
644     Type resType,
645     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
646     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
647   DenseSet<int64_t> lhsContractingDimSet;
648   DenseSet<int64_t> rhsContractingDimSet;
649   for (auto &dimPair : contractingDimMap) {
650     lhsContractingDimSet.insert(dimPair.first);
651     rhsContractingDimSet.insert(dimPair.second);
652   }
653   DenseSet<int64_t> rhsBatchDimSet;
654   for (auto &dimPair : batchDimMap)
655     rhsBatchDimSet.insert(dimPair.second);
656 
657   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
658   SmallVector<int64_t, 4> expectedResultDims;
659   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
660     if (lhsContractingDimSet.count(i) > 0)
661       continue;
662     expectedResultDims.push_back(lhsType.getDimSize(i));
663   }
664 
665   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
666   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
667     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
668       continue;
669     expectedResultDims.push_back(rhsType.getDimSize(i));
670   }
671 
672   // Verify 'expectedResultDims'.
673   if (expectedResultDims.empty()) {
674     // No batch or free dimension implies a scalar result.
675     if (resType.isa<VectorType>() || accType.isa<VectorType>())
676       return op.emitOpError("invalid accumulator/result vector shape");
677   } else {
678     // At least one batch or free dimension implies a vector result.
679     auto resVectorType = resType.dyn_cast<VectorType>();
680     auto accVectorType = accType.dyn_cast<VectorType>();
681     if (!resVectorType || !accVectorType)
682       return op.emitOpError("invalid accumulator/result vector shape");
683 
684     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
685     // types fully define the result vector type. This assumes the affine maps
686     // are well-formed, which must have been verified already.
687     MLIRContext *ctx = op.getContext();
688     AffineMap lhsMap = op.getIndexingMaps()[0];
689     AffineMap rhsMap = op.getIndexingMaps()[1];
690     if (getUnusedDimsBitVector({lhsMap, rhsMap}).any())
691       return op.emitOpError(
692           "expected all dimensions to be either a LHS or a RHS dimension");
693     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
694     for (auto pair :
695          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
696       VectorType v = pair.first;
697       auto map = pair.second;
698       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
699         unsigned pos = map.getDimPosition(idx);
700         if (!extents[pos])
701           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
702       }
703     }
704     if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
705       return op.emitOpError("expected all dimensions to get an extent as "
706                             "either a LHS or a RHS dimension");
707 
708     AffineMap resMap = op.getIndexingMaps()[2];
709     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
710                                      /*symCount=*/0, extents, ctx);
711     // Compose the resMap with the extentsMap, which is a constant map.
712     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
713     assert(llvm::all_of(
714                expectedMap.getResults(),
715                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
716            "expected constant extent along all dimensions.");
717     // Extract the expected shape and build the type.
718     auto expectedShape = llvm::to_vector<4>(
719         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
720           return e.cast<AffineConstantExpr>().getValue();
721         }));
722     auto expected =
723         VectorType::get(expectedShape, resVectorType.getElementType());
724     if (resVectorType != expected || accVectorType != expected)
725       return op.emitOpError(
726                  "invalid accumulator/result vector shape, expected: ")
727              << expected;
728   }
729   return success();
730 }
731 
732 LogicalResult ContractionOp::verify() {
733   auto lhsType = getLhsType();
734   auto rhsType = getRhsType();
735   auto accType = getAccType();
736   auto resType = getResultType();
737 
738   // Verify that an indexing map was specified for each vector operand.
739   if (getIndexingMaps().size() != 3)
740     return emitOpError("expected an indexing map for each vector operand");
741 
742   // Verify that each index map has 'numIterators' inputs, no symbols, and
743   // that the number of map outputs equals the rank of its associated
744   // vector operand.
745   unsigned numIterators = getIteratorTypes().getValue().size();
746   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
747     auto index = it.index();
748     auto map = it.value();
749     if (map.getNumSymbols() != 0)
750       return emitOpError("expected indexing map ")
751              << index << " to have no symbols";
752     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
753     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
754     // Verify that the map has the right number of inputs, outputs, and indices.
755     // This also correctly accounts for (..) -> () for rank-0 results.
756     if (map.getNumDims() != numIterators)
757       return emitOpError("expected indexing map ")
758              << index << " to have " << numIterators << " number of inputs";
759     if (map.getNumResults() != rank)
760       return emitOpError("expected indexing map ")
761              << index << " to have " << rank << " number of outputs";
762     if (!map.isProjectedPermutation())
763       return emitOpError("expected indexing map ")
764              << index << " to be a projected permutation of its inputs";
765   }
766 
767   auto contractingDimMap = getContractingDimMap();
768   auto batchDimMap = getBatchDimMap();
769 
770   // Verify at least one contracting dimension pair was specified.
771   if (contractingDimMap.empty())
772     return emitOpError("expected at least one contracting dimension pair");
773 
774   // Verify contracting dimension map was properly constructed.
775   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
776     return emitOpError("invalid contracting dimension map");
777 
778   // Verify batch dimension map was properly constructed.
779   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
780     return emitOpError("invalid batch dimension map");
781 
782   // Verify 'accType' and 'resType' shape.
783   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
784                                contractingDimMap, batchDimMap)))
785     return failure();
786 
787   // Verify that either two vector masks are set or none are set.
788   auto lhsMaskType = getLHSVectorMaskType();
789   auto rhsMaskType = getRHSVectorMaskType();
790   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
791     return emitOpError("invalid number of vector masks specified");
792   if (lhsMaskType && rhsMaskType) {
793     // Verify mask rank == argument rank.
794     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
795         rhsMaskType.getShape().size() != rhsType.getShape().size())
796       return emitOpError("invalid vector mask rank");
797   }
798 
799   // Verify supported combining kind.
800   auto vectorType = resType.dyn_cast<VectorType>();
801   auto elementType = vectorType ? vectorType.getElementType() : resType;
802   if (!isSupportedCombiningKind(getKind(), elementType))
803     return emitOpError("unsupported contraction type");
804 
805   return success();
806 }
807 
808 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
809   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
810                                          ::mlir::getIteratorTypesAttrName(),
811                                          ContractionOp::getKindAttrStrName()};
812   return llvm::makeArrayRef(names);
813 }
814 
815 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
816   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
817     if (targetExpr == map.getResult(i))
818       return i;
819   return -1;
820 }
821 
822 static std::vector<std::pair<int64_t, int64_t>>
823 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
824           StringRef targetIteratorTypeName, MLIRContext *context) {
825   std::vector<std::pair<int64_t, int64_t>> dimMap;
826   for (const auto &it : llvm::enumerate(iteratorTypes)) {
827     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
828     if (iteratorTypeName != targetIteratorTypeName)
829       continue;
830     // Search lhs/rhs map results for 'targetExpr'.
831     auto targetExpr = getAffineDimExpr(it.index(), context);
832     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
833     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
834     if (lhsDim >= 0 && rhsDim >= 0)
835       dimMap.emplace_back(lhsDim, rhsDim);
836   }
837   return dimMap;
838 }
839 
840 void ContractionOp::getIterationBounds(
841     SmallVectorImpl<int64_t> &iterationBounds) {
842   auto lhsShape = getLhsType().getShape();
843   auto resVectorType = getResultType().dyn_cast<VectorType>();
844   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
845   SmallVector<int64_t, 2> iterationShape;
846   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
847     // Search lhs/rhs map results for 'targetExpr'.
848     auto targetExpr = getAffineDimExpr(it.index(), getContext());
849     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
850     if (iteratorTypeName == getReductionIteratorTypeName()) {
851       // Get reduction dim size from lhs shape (same size in rhsShape).
852       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
853       assert(lhsDimIndex >= 0);
854       iterationBounds.push_back(lhsShape[lhsDimIndex]);
855       continue;
856     }
857     // Get parallel dimension size from result shape.
858     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
859     assert(resDimIndex >= 0);
860     assert(resVectorType != nullptr);
861     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
862   }
863 }
864 
865 void ContractionOp::getIterationIndexMap(
866     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
867   unsigned numMaps = getIndexingMaps().size();
868   iterationIndexMap.resize(numMaps);
869   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
870     auto index = it.index();
871     auto map = it.value();
872     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
873       auto dim = map.getResult(i).cast<AffineDimExpr>();
874       iterationIndexMap[index][dim.getPosition()] = i;
875     }
876   }
877 }
878 
879 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
880   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
881   return getDimMap(indexingMaps, getIteratorTypes(),
882                    getReductionIteratorTypeName(), getContext());
883 }
884 
885 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
886   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
887   return getDimMap(indexingMaps, getIteratorTypes(),
888                    getParallelIteratorTypeName(), getContext());
889 }
890 
891 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
892   SmallVector<int64_t, 4> shape;
893   getIterationBounds(shape);
894   return shape;
895 }
896 
897 /// Return a fused vector::ContractionOp which represents a patterns such as:
898 ///
899 /// ```mlir
900 ///    %c0 = vector.constant 0: ...
901 ///    %c = vector.contract %a, %b, %c0: ...
902 ///    %e = add %c, %d: ...
903 /// ```
904 ///
905 /// by:
906 ///
907 /// ```mlir
908 ///    %e = vector.contract %a, %b, %d: ...
909 /// ```
910 ///
911 /// Return null if the canonicalization does not apply.
912 // TODO: This should be a folding of Add into Contract in core but while they
913 // live in different dialects, it is not possible without unnatural
914 // dependencies.
915 template <typename AddOpType>
916 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
917   using OpRewritePattern<AddOpType>::OpRewritePattern;
918 
919   LogicalResult matchAndRewrite(AddOpType addOp,
920                                 PatternRewriter &rewriter) const override {
921     auto canonicalize = [&](Value maybeContraction,
922                             Value otherOperand) -> vector::ContractionOp {
923       vector::ContractionOp contractionOp =
924           dyn_cast_or_null<vector::ContractionOp>(
925               maybeContraction.getDefiningOp());
926       if (!contractionOp)
927         return vector::ContractionOp();
928       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
929               contractionOp.getAcc().getDefiningOp())) {
930         if (maybeZero.getValue() ==
931             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
932           BlockAndValueMapping bvm;
933           bvm.map(contractionOp.getAcc(), otherOperand);
934           auto newContraction =
935               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
936           rewriter.replaceOp(addOp, newContraction.getResult());
937           return newContraction;
938         }
939       }
940       return vector::ContractionOp();
941     };
942 
943     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
944     vector::ContractionOp contract = canonicalize(a, b);
945     contract = contract ? contract : canonicalize(b, a);
946     return contract ? success() : failure();
947   }
948 };
949 
950 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
951                                                 MLIRContext *context) {
952   results.add<CanonicalizeContractAdd<arith::AddIOp>,
953               CanonicalizeContractAdd<arith::AddFOp>>(context);
954 }
955 
956 //===----------------------------------------------------------------------===//
957 // ExtractElementOp
958 //===----------------------------------------------------------------------===//
959 
960 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
961                                      Value source) {
962   result.addOperands({source});
963   result.addTypes(source.getType().cast<VectorType>().getElementType());
964 }
965 
966 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
967                                      Value source, Value position) {
968   result.addOperands({source, position});
969   result.addTypes(source.getType().cast<VectorType>().getElementType());
970 }
971 
972 LogicalResult vector::ExtractElementOp::verify() {
973   VectorType vectorType = getVectorType();
974   if (vectorType.getRank() == 0) {
975     if (getPosition())
976       return emitOpError("expected position to be empty with 0-D vector");
977     return success();
978   }
979   if (vectorType.getRank() != 1)
980     return emitOpError("unexpected >1 vector rank");
981   if (!getPosition())
982     return emitOpError("expected position for 1-D vector");
983   return success();
984 }
985 
986 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
987   // Skip the 0-D vector here now.
988   if (operands.size() < 2)
989     return {};
990 
991   Attribute src = operands[0];
992   Attribute pos = operands[1];
993 
994   // Fold extractelement (splat X) -> X.
995   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
996     return splat.getInput();
997 
998   if (!pos || !src)
999     return {};
1000 
1001   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
1002 
1003   auto attr = pos.dyn_cast<IntegerAttr>();
1004   uint64_t posIdx = attr.getInt();
1005 
1006   return srcElements[posIdx];
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // ExtractOp
1011 //===----------------------------------------------------------------------===//
1012 
1013 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1014                               Value source, ArrayRef<int64_t> position) {
1015   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1016 }
1017 
1018 // Convenience builder which assumes the values are constant indices.
1019 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1020                               Value source, ValueRange position) {
1021   SmallVector<int64_t, 4> positionConstants =
1022       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1023         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1024       }));
1025   build(builder, result, source, positionConstants);
1026 }
1027 
1028 LogicalResult
1029 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1030                             ValueRange operands, DictionaryAttr attributes,
1031                             RegionRange,
1032                             SmallVectorImpl<Type> &inferredReturnTypes) {
1033   ExtractOp::Adaptor op(operands, attributes);
1034   auto vectorType = op.getVector().getType().cast<VectorType>();
1035   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1036     inferredReturnTypes.push_back(vectorType.getElementType());
1037   } else {
1038     auto n =
1039         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1040     inferredReturnTypes.push_back(VectorType::get(
1041         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1042   }
1043   return success();
1044 }
1045 
1046 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1047   // Allow extracting 1-element vectors instead of scalars.
1048   auto isCompatible = [](TypeRange l, TypeRange r) {
1049     auto vectorType = l.front().dyn_cast<VectorType>();
1050     return vectorType && vectorType.getShape().equals({1}) &&
1051            vectorType.getElementType() == r.front();
1052   };
1053   if (l.size() == 1 && r.size() == 1 &&
1054       (isCompatible(l, r) || isCompatible(r, l)))
1055     return true;
1056   return l == r;
1057 }
1058 
1059 LogicalResult vector::ExtractOp::verify() {
1060   auto positionAttr = getPosition().getValue();
1061   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1062     return emitOpError(
1063         "expected position attribute of rank smaller than vector rank");
1064   for (const auto &en : llvm::enumerate(positionAttr)) {
1065     auto attr = en.value().dyn_cast<IntegerAttr>();
1066     if (!attr || attr.getInt() < 0 ||
1067         attr.getInt() >= getVectorType().getDimSize(en.index()))
1068       return emitOpError("expected position attribute #")
1069              << (en.index() + 1)
1070              << " to be a non-negative integer smaller than the corresponding "
1071                 "vector dimension";
1072   }
1073   return success();
1074 }
1075 
1076 template <typename IntType>
1077 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1078   return llvm::to_vector<4>(llvm::map_range(
1079       arrayAttr.getAsRange<IntegerAttr>(),
1080       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1081 }
1082 
1083 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1084 /// positions.
1085 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1086   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1087     return failure();
1088 
1089   SmallVector<int64_t, 4> globalPosition;
1090   ExtractOp currentOp = extractOp;
1091   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1092   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1093   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1094     currentOp = nextOp;
1095     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1096     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1097   }
1098   extractOp.setOperand(currentOp.getVector());
1099   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1100   OpBuilder b(extractOp.getContext());
1101   std::reverse(globalPosition.begin(), globalPosition.end());
1102   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1103                      b.getI64ArrayAttr(globalPosition));
1104   return success();
1105 }
1106 
1107 namespace {
1108 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1109 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1110 /// Compose TransposeOp permutations as we walk back.
1111 /// This helper class keeps an updated extraction position `extractPosition`
1112 /// with extra trailing sentinels.
1113 /// The sentinels encode the internal transposition status of the result vector.
1114 /// As we iterate, extractPosition is permuted and updated.
1115 class ExtractFromInsertTransposeChainState {
1116 public:
1117   ExtractFromInsertTransposeChainState(ExtractOp e);
1118 
1119   /// Iterate over producing insert and transpose ops until we find a fold.
1120   Value fold();
1121 
1122 private:
1123   /// Return true if the vector at position `a` is contained within the vector
1124   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1125   /// is a prefix of `b`.
1126   template <typename ContainerA, typename ContainerB>
1127   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1128     return a.size() <= b.size() &&
1129            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1130   }
1131 
1132   /// Return true if the vector at position `a` intersects the vector at
1133   /// position `b`. Under insert/extract semantics, this is the same as equality
1134   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1135   /// Comparison is on the common prefix (i.e. zip).
1136   template <typename ContainerA, typename ContainerB>
1137   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1138     for (auto it : llvm::zip(a, b)) {
1139       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1140         continue;
1141       if (std::get<0>(it) != std::get<1>(it))
1142         return false;
1143     }
1144     return true;
1145   }
1146 
1147   /// Folding is only possible in the absence of an internal permutation in the
1148   /// result vector.
1149   bool canFold() {
1150     return (sentinels ==
1151             makeArrayRef(extractPosition).drop_front(extractedRank));
1152   }
1153 
1154   // Helper to get the next defining op of interest.
1155   void updateStateForNextIteration(Value v) {
1156     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1157     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1158   };
1159 
1160   // Case 1. If we hit a transpose, just compose the map and iterate.
1161   // Invariant: insert + transpose do not change rank, we can always compose.
1162   LogicalResult handleTransposeOp();
1163 
1164   // Case 2: the insert position matches extractPosition exactly, early return.
1165   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1166 
1167   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1168   /// portion of the source of the insert.
1169   /// Example:
1170   /// ```
1171   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1172   /// // extractPosition == [1, 2, 3]
1173   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1174   /// // can fold to vector.extract %source[0, 3]
1175   /// %ext = vector.extract %source[3]: vector<5x6>
1176   /// ```
1177   /// To traverse through %source, we need to set the leading dims to 0 and
1178   /// drop the extra leading dims.
1179   /// This method updates the internal state.
1180   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1181 
1182   /// Try to fold in place to extract(source, extractPosition) and return the
1183   /// folded result. Return null if folding is not possible (e.g. due to an
1184   /// internal tranposition in the result).
1185   Value tryToFoldExtractOpInPlace(Value source);
1186 
1187   ExtractOp extractOp;
1188   int64_t vectorRank;
1189   int64_t extractedRank;
1190 
1191   InsertOp nextInsertOp;
1192   TransposeOp nextTransposeOp;
1193 
1194   /// Sentinel values that encode the internal permutation status of the result.
1195   /// They are set to (-1, ... , -k) at the beginning and appended to
1196   /// `extractPosition`.
1197   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1198   /// ensure that there is no internal transposition.
1199   /// Internal transposition cannot be accounted for with a folding pattern.
1200   // TODO: We could relax the internal transposition with an extra transposition
1201   // operation in a future canonicalizer.
1202   SmallVector<int64_t> sentinels;
1203   SmallVector<int64_t> extractPosition;
1204 };
1205 } // namespace
1206 
1207 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1208     ExtractOp e)
1209     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1210       extractedRank(extractOp.getPosition().size()) {
1211   assert(vectorRank >= extractedRank && "extracted pos overflow");
1212   sentinels.reserve(vectorRank - extractedRank);
1213   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1214     sentinels.push_back(-(i + 1));
1215   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1216   llvm::append_range(extractPosition, sentinels);
1217 }
1218 
1219 // Case 1. If we hit a transpose, just compose the map and iterate.
1220 // Invariant: insert + transpose do not change rank, we can always compose.
1221 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1222   if (!nextTransposeOp)
1223     return failure();
1224   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1225   AffineMap m = inversePermutation(
1226       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1227   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1228   return success();
1229 }
1230 
1231 // Case 2: the insert position matches extractPosition exactly, early return.
1232 LogicalResult
1233 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1234     Value &res) {
1235   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1236   if (makeArrayRef(insertedPos) !=
1237       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1238     return failure();
1239   // Case 2.a. early-exit fold.
1240   res = nextInsertOp.getSource();
1241   // Case 2.b. if internal transposition is present, canFold will be false.
1242   return success();
1243 }
1244 
1245 /// Case 3: if inserted position is a prefix of extractPosition,
1246 /// extract a portion of the source of the insertion.
1247 /// This method updates the internal state.
1248 LogicalResult
1249 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1250   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1251   if (!isContainedWithin(insertedPos, extractPosition))
1252     return failure();
1253   // Set leading dims to zero.
1254   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1255   // Drop extra leading dims.
1256   extractPosition.erase(extractPosition.begin(),
1257                         extractPosition.begin() + insertedPos.size());
1258   extractedRank = extractPosition.size() - sentinels.size();
1259   // Case 3.a. early-exit fold (break and delegate to post-while path).
1260   res = nextInsertOp.getSource();
1261   // Case 3.b. if internal transposition is present, canFold will be false.
1262   return success();
1263 }
1264 
1265 /// Try to fold in place to extract(source, extractPosition) and return the
1266 /// folded result. Return null if folding is not possible (e.g. due to an
1267 /// internal tranposition in the result).
1268 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1269     Value source) {
1270   // If we can't fold (either internal transposition, or nothing to fold), bail.
1271   bool nothingToFold = (source == extractOp.getVector());
1272   if (nothingToFold || !canFold())
1273     return Value();
1274   // Otherwise, fold by updating the op inplace and return its result.
1275   OpBuilder b(extractOp.getContext());
1276   extractOp->setAttr(
1277       extractOp.getPositionAttrName(),
1278       b.getI64ArrayAttr(
1279           makeArrayRef(extractPosition).take_front(extractedRank)));
1280   extractOp.getVectorMutable().assign(source);
1281   return extractOp.getResult();
1282 }
1283 
1284 /// Iterate over producing insert and transpose ops until we find a fold.
1285 Value ExtractFromInsertTransposeChainState::fold() {
1286   Value valueToExtractFrom = extractOp.getVector();
1287   updateStateForNextIteration(valueToExtractFrom);
1288   while (nextInsertOp || nextTransposeOp) {
1289     // Case 1. If we hit a transpose, just compose the map and iterate.
1290     // Invariant: insert + transpose do not change rank, we can always compose.
1291     if (succeeded(handleTransposeOp())) {
1292       valueToExtractFrom = nextTransposeOp.getVector();
1293       updateStateForNextIteration(valueToExtractFrom);
1294       continue;
1295     }
1296 
1297     Value result;
1298     // Case 2: the position match exactly.
1299     if (succeeded(handleInsertOpWithMatchingPos(result)))
1300       return result;
1301 
1302     // Case 3: if the inserted position is a prefix of extractPosition, we can
1303     // just extract a portion of the source of the insert.
1304     if (succeeded(handleInsertOpWithPrefixPos(result)))
1305       return tryToFoldExtractOpInPlace(result);
1306 
1307     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1308     // values. This is a more difficult case and we bail.
1309     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1310     if (isContainedWithin(extractPosition, insertedPos) ||
1311         intersectsWhereNonNegative(extractPosition, insertedPos))
1312       return Value();
1313 
1314     // Case 5: No intersection, we forward the extract to insertOp.dest().
1315     valueToExtractFrom = nextInsertOp.getDest();
1316     updateStateForNextIteration(valueToExtractFrom);
1317   }
1318   // If after all this we can fold, go for it.
1319   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1320 }
1321 
1322 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1323 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1324   Operation *defOp = extractOp.getVector().getDefiningOp();
1325   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1326     return Value();
1327   Value source = defOp->getOperand(0);
1328   if (extractOp.getType() == source.getType())
1329     return source;
1330   auto getRank = [](Type type) {
1331     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1332   };
1333   unsigned broadcastSrcRank = getRank(source.getType());
1334   unsigned extractResultRank = getRank(extractOp.getType());
1335   if (extractResultRank >= broadcastSrcRank)
1336     return Value();
1337   // Check that the dimension of the result haven't been broadcasted.
1338   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1339   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1340   if (extractVecType && broadcastVecType &&
1341       extractVecType.getShape() !=
1342           broadcastVecType.getShape().take_back(extractResultRank))
1343     return Value();
1344   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1345   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1346   extractPos.erase(extractPos.begin(),
1347                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1348   extractOp.setOperand(source);
1349   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1350   OpBuilder b(extractOp.getContext());
1351   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1352                      b.getI64ArrayAttr(extractPos));
1353   return extractOp.getResult();
1354 }
1355 
1356 // Fold extractOp with source coming from ShapeCast op.
1357 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1358   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1359   if (!shapeCastOp)
1360     return Value();
1361   // Get the nth dimension size starting from lowest dimension.
1362   auto getDimReverse = [](VectorType type, int64_t n) {
1363     return type.getShape().take_back(n + 1).front();
1364   };
1365   int64_t destinationRank =
1366       extractOp.getType().isa<VectorType>()
1367           ? extractOp.getType().cast<VectorType>().getRank()
1368           : 0;
1369   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1370     return Value();
1371   if (destinationRank > 0) {
1372     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1373     for (int64_t i = 0; i < destinationRank; i++) {
1374       // The lowest dimension of of the destination must match the lowest
1375       // dimension of the shapecast op source.
1376       // TODO: This case could be support in a canonicalization pattern.
1377       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1378           getDimReverse(destinationType, i))
1379         return Value();
1380     }
1381   }
1382   // Extract the strides associated with the extract op vector source. Then use
1383   // this to calculate a linearized position for the extract.
1384   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1385   std::reverse(extractedPos.begin(), extractedPos.end());
1386   SmallVector<int64_t, 4> strides;
1387   int64_t stride = 1;
1388   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1389     strides.push_back(stride);
1390     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1391   }
1392 
1393   int64_t position = linearize(extractedPos, strides);
1394   // Then extract the strides associated to the shapeCast op vector source and
1395   // delinearize the position using those strides.
1396   SmallVector<int64_t, 4> newStrides;
1397   int64_t numDimension =
1398       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1399   stride = 1;
1400   for (int64_t i = 0; i < numDimension; i++) {
1401     newStrides.push_back(stride);
1402     stride *=
1403         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1404   }
1405   std::reverse(newStrides.begin(), newStrides.end());
1406   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1407   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1408   OpBuilder b(extractOp.getContext());
1409   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1410                      b.getI64ArrayAttr(newPosition));
1411   extractOp.setOperand(shapeCastOp.getSource());
1412   return extractOp.getResult();
1413 }
1414 
1415 /// Fold an ExtractOp from ExtractStridedSliceOp.
1416 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1417   auto extractStridedSliceOp =
1418       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1419   if (!extractStridedSliceOp)
1420     return Value();
1421   // Return if 'extractStridedSliceOp' has non-unit strides.
1422   if (extractStridedSliceOp.hasNonUnitStrides())
1423     return Value();
1424 
1425   // Trim offsets for dimensions fully extracted.
1426   auto sliceOffsets =
1427       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1428   while (!sliceOffsets.empty()) {
1429     size_t lastOffset = sliceOffsets.size() - 1;
1430     if (sliceOffsets.back() != 0 ||
1431         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1432             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1433       break;
1434     sliceOffsets.pop_back();
1435   }
1436   unsigned destinationRank = 0;
1437   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1438     destinationRank = vecType.getRank();
1439   // The dimensions of the result need to be untouched by the
1440   // extractStridedSlice op.
1441   if (destinationRank >
1442       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1443     return Value();
1444   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1445   assert(extractedPos.size() >= sliceOffsets.size());
1446   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1447     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1448   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1449   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1450   OpBuilder b(extractOp.getContext());
1451   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1452                      b.getI64ArrayAttr(extractedPos));
1453   return extractOp.getResult();
1454 }
1455 
1456 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1457 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1458   int64_t destinationRank = op.getType().isa<VectorType>()
1459                                 ? op.getType().cast<VectorType>().getRank()
1460                                 : 0;
1461   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1462   while (insertOp) {
1463     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1464                              insertOp.getSourceVectorType().getRank();
1465     if (destinationRank > insertOp.getSourceVectorType().getRank())
1466       return Value();
1467     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1468     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1469 
1470     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1471           return attr.cast<IntegerAttr>().getInt() != 1;
1472         }))
1473       return Value();
1474     bool disjoint = false;
1475     SmallVector<int64_t, 4> offsetDiffs;
1476     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1477       int64_t start = insertOffsets[dim];
1478       int64_t size =
1479           (dim < insertRankDiff)
1480               ? 1
1481               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1482       int64_t end = start + size;
1483       int64_t offset = extractOffsets[dim];
1484       // Check if the start of the extract offset is in the interval inserted.
1485       if (start <= offset && offset < end) {
1486         if (dim >= insertRankDiff)
1487           offsetDiffs.push_back(offset - start);
1488         continue;
1489       }
1490       disjoint = true;
1491       break;
1492     }
1493     // The extract element chunk overlap with the vector inserted.
1494     if (!disjoint) {
1495       // If any of the inner dimensions are only partially inserted we have a
1496       // partial overlap.
1497       int64_t srcRankDiff =
1498           insertOp.getSourceVectorType().getRank() - destinationRank;
1499       for (int64_t i = 0; i < destinationRank; i++) {
1500         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1501             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1502                                                     insertRankDiff))
1503           return Value();
1504       }
1505       op.getVectorMutable().assign(insertOp.getSource());
1506       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1507       OpBuilder b(op.getContext());
1508       op->setAttr(ExtractOp::getPositionAttrStrName(),
1509                   b.getI64ArrayAttr(offsetDiffs));
1510       return op.getResult();
1511     }
1512     // If the chunk extracted is disjoint from the chunk inserted, keep
1513     // looking in the insert chain.
1514     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1515   }
1516   return Value();
1517 }
1518 
1519 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1520   if (getPosition().empty())
1521     return getVector();
1522   if (succeeded(foldExtractOpFromExtractChain(*this)))
1523     return getResult();
1524   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1525     return res;
1526   if (auto res = foldExtractFromBroadcast(*this))
1527     return res;
1528   if (auto res = foldExtractFromShapeCast(*this))
1529     return res;
1530   if (auto val = foldExtractFromExtractStrided(*this))
1531     return val;
1532   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1533     return val;
1534   return OpFoldResult();
1535 }
1536 
1537 namespace {
1538 
1539 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1540 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1541 public:
1542   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1543 
1544   LogicalResult matchAndRewrite(ExtractOp extractOp,
1545                                 PatternRewriter &rewriter) const override {
1546     Operation *defOp = extractOp.getVector().getDefiningOp();
1547     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1548       return failure();
1549 
1550     Value source = defOp->getOperand(0);
1551     if (extractOp.getType() == source.getType())
1552       return failure();
1553     auto getRank = [](Type type) {
1554       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1555     };
1556     unsigned broadcastSrcRank = getRank(source.getType());
1557     unsigned extractResultRank = getRank(extractOp.getType());
1558     // We only consider the case where the rank of the source is less than or
1559     // equal to the rank of the extract dst. The other cases are handled in the
1560     // folding patterns.
1561     if (extractResultRank < broadcastSrcRank)
1562       return failure();
1563     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1564         extractOp, extractOp.getType(), source);
1565     return success();
1566   }
1567 };
1568 
1569 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1570 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1571 public:
1572   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1573 
1574   LogicalResult matchAndRewrite(ExtractOp extractOp,
1575                                 PatternRewriter &rewriter) const override {
1576     // Return if 'extractStridedSliceOp' operand is not defined by a
1577     // ConstantOp.
1578     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1579     if (!constantOp)
1580       return failure();
1581     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1582     if (!dense)
1583       return failure();
1584     Attribute newAttr = dense.getSplatValue<Attribute>();
1585     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1586       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1587     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1588     return success();
1589   }
1590 };
1591 
1592 } // namespace
1593 
1594 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1595                                             MLIRContext *context) {
1596   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1597 }
1598 
1599 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1600                                        SmallVectorImpl<int64_t> &results) {
1601   for (auto attr : arrayAttr)
1602     results.push_back(attr.cast<IntegerAttr>().getInt());
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 // ExtractMapOp
1607 //===----------------------------------------------------------------------===//
1608 
1609 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1610                          Value vector, ValueRange ids,
1611                          ArrayRef<int64_t> multiplicity,
1612                          AffineMap permutationMap) {
1613   assert(ids.size() == multiplicity.size() &&
1614          ids.size() == permutationMap.getNumResults());
1615   assert(permutationMap.isProjectedPermutation());
1616   VectorType type = vector.getType().cast<VectorType>();
1617   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1618                                    type.getShape().end());
1619   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1620     AffineExpr expr = permutationMap.getResult(i);
1621     auto dim = expr.cast<AffineDimExpr>();
1622     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1623   }
1624   VectorType resultType = VectorType::get(newShape, type.getElementType());
1625   ExtractMapOp::build(builder, result, resultType, vector, ids);
1626 }
1627 
1628 LogicalResult ExtractMapOp::verify() {
1629   if (getSourceVectorType().getRank() != getResultType().getRank())
1630     return emitOpError("expected source and destination vectors of same rank");
1631   unsigned numId = 0;
1632   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1633     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1634         0)
1635       return emitOpError("source vector dimensions must be a multiple of "
1636                          "destination vector dimensions");
1637     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1638       numId++;
1639   }
1640   if (numId != getIds().size())
1641     return emitOpError("expected number of ids must match the number of "
1642                        "dimensions distributed");
1643   return success();
1644 }
1645 
1646 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1647   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1648   if (insert == nullptr || getType() != insert.getVector().getType() ||
1649       getIds() != insert.getIds())
1650     return {};
1651   return insert.getVector();
1652 }
1653 
1654 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1655   assert(multiplicity.empty());
1656   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1657     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1658       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1659                              getResultType().getDimSize(i));
1660   }
1661 }
1662 
1663 template <typename MapOp>
1664 AffineMap calculateImplicitMap(MapOp op) {
1665   SmallVector<AffineExpr, 4> perm;
1666   // Check which dimension have a multiplicity greater than 1 and associated
1667   // them to the IDs in order.
1668   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1669     if (op.getSourceVectorType().getDimSize(i) !=
1670         op.getResultType().getDimSize(i))
1671       perm.push_back(getAffineDimExpr(i, op.getContext()));
1672   }
1673   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1674                             op.getContext());
1675   return map;
1676 }
1677 
1678 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1679 
1680 //===----------------------------------------------------------------------===//
1681 // FmaOp
1682 //===----------------------------------------------------------------------===//
1683 
1684 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1685   return llvm::to_vector<4>(getVectorType().getShape());
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 // BroadcastOp
1690 //===----------------------------------------------------------------------===//
1691 
1692 BroadcastableToResult
1693 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1694                                 std::pair<int, int> *mismatchingDims) {
1695   // Broadcast scalar to vector of the same element type.
1696   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1697       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1698     return BroadcastableToResult::Success;
1699   // From now on, only vectors broadcast.
1700   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1701   if (!srcVectorType)
1702     return BroadcastableToResult::SourceTypeNotAVector;
1703 
1704   int64_t srcRank = srcVectorType.getRank();
1705   int64_t dstRank = dstVectorType.getRank();
1706   if (srcRank > dstRank)
1707     return BroadcastableToResult::SourceRankHigher;
1708   // Source has an exact match or singleton value for all trailing dimensions
1709   // (all leading dimensions are simply duplicated).
1710   int64_t lead = dstRank - srcRank;
1711   for (int64_t r = 0; r < srcRank; ++r) {
1712     int64_t srcDim = srcVectorType.getDimSize(r);
1713     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1714     if (srcDim != 1 && srcDim != dstDim) {
1715       if (mismatchingDims) {
1716         mismatchingDims->first = srcDim;
1717         mismatchingDims->second = dstDim;
1718       }
1719       return BroadcastableToResult::DimensionMismatch;
1720     }
1721   }
1722 
1723   return BroadcastableToResult::Success;
1724 }
1725 
1726 LogicalResult BroadcastOp::verify() {
1727   std::pair<int, int> mismatchingDims;
1728   BroadcastableToResult res =
1729       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1730   if (res == BroadcastableToResult::Success)
1731     return success();
1732   if (res == BroadcastableToResult::SourceRankHigher)
1733     return emitOpError("source rank higher than destination rank");
1734   if (res == BroadcastableToResult::DimensionMismatch)
1735     return emitOpError("dimension mismatch (")
1736            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1737   if (res == BroadcastableToResult::SourceTypeNotAVector)
1738     return emitOpError("source type is not a vector");
1739   llvm_unreachable("unexpected vector.broadcast op error");
1740 }
1741 
1742 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1743   if (getSourceType() == getVectorType())
1744     return getSource();
1745   if (!operands[0])
1746     return {};
1747   auto vectorType = getVectorType();
1748   if (operands[0].getType().isIntOrIndexOrFloat())
1749     return DenseElementsAttr::get(vectorType, operands[0]);
1750   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1751     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1752   return {};
1753 }
1754 
1755 namespace {
1756 
1757 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1758 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1759   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1760 
1761   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1762                                 PatternRewriter &rewriter) const override {
1763     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1764     if (!srcBroadcast)
1765       return failure();
1766     rewriter.replaceOpWithNewOp<BroadcastOp>(
1767         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1768     return success();
1769   }
1770 };
1771 } // namespace
1772 
1773 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1774                                               MLIRContext *context) {
1775   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1776   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1777   results.add<BroadcastFolder>(context);
1778 }
1779 
1780 //===----------------------------------------------------------------------===//
1781 // ShuffleOp
1782 //===----------------------------------------------------------------------===//
1783 
1784 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1785                       Value v2, ArrayRef<int64_t> mask) {
1786   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1787 }
1788 
1789 LogicalResult ShuffleOp::verify() {
1790   VectorType resultType = getVectorType();
1791   VectorType v1Type = getV1VectorType();
1792   VectorType v2Type = getV2VectorType();
1793   // Verify ranks.
1794   int64_t resRank = resultType.getRank();
1795   int64_t v1Rank = v1Type.getRank();
1796   int64_t v2Rank = v2Type.getRank();
1797   if (resRank != v1Rank || v1Rank != v2Rank)
1798     return emitOpError("rank mismatch");
1799   // Verify all but leading dimension sizes.
1800   for (int64_t r = 1; r < v1Rank; ++r) {
1801     int64_t resDim = resultType.getDimSize(r);
1802     int64_t v1Dim = v1Type.getDimSize(r);
1803     int64_t v2Dim = v2Type.getDimSize(r);
1804     if (resDim != v1Dim || v1Dim != v2Dim)
1805       return emitOpError("dimension mismatch");
1806   }
1807   // Verify mask length.
1808   auto maskAttr = getMask().getValue();
1809   int64_t maskLength = maskAttr.size();
1810   if (maskLength <= 0)
1811     return emitOpError("invalid mask length");
1812   if (maskLength != resultType.getDimSize(0))
1813     return emitOpError("mask length mismatch");
1814   // Verify all indices.
1815   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1816   for (const auto &en : llvm::enumerate(maskAttr)) {
1817     auto attr = en.value().dyn_cast<IntegerAttr>();
1818     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1819       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1820   }
1821   return success();
1822 }
1823 
1824 LogicalResult
1825 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1826                             ValueRange operands, DictionaryAttr attributes,
1827                             RegionRange,
1828                             SmallVectorImpl<Type> &inferredReturnTypes) {
1829   ShuffleOp::Adaptor op(operands, attributes);
1830   auto v1Type = op.getV1().getType().cast<VectorType>();
1831   // Construct resulting type: leading dimension matches mask length,
1832   // all trailing dimensions match the operands.
1833   SmallVector<int64_t, 4> shape;
1834   shape.reserve(v1Type.getRank());
1835   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1836   llvm::append_range(shape, v1Type.getShape().drop_front());
1837   inferredReturnTypes.push_back(
1838       VectorType::get(shape, v1Type.getElementType()));
1839   return success();
1840 }
1841 
1842 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1843   uint64_t expected = begin;
1844   return idxArr.size() == width &&
1845          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1846                       [&expected](auto attr) {
1847                         return attr.getZExtValue() == expected++;
1848                       });
1849 }
1850 
1851 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1852   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1853   if (!getV1VectorType().isScalable() &&
1854       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1855     return getV1();
1856   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1857   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1858       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1859                        getV2VectorType().getDimSize(0)))
1860     return getV2();
1861 
1862   Attribute lhs = operands.front(), rhs = operands.back();
1863   if (!lhs || !rhs)
1864     return {};
1865 
1866   auto lhsType = lhs.getType().cast<VectorType>();
1867   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1868   // manipulation.
1869   if (lhsType.getRank() != 1)
1870     return {};
1871   int64_t lhsSize = lhsType.getDimSize(0);
1872 
1873   SmallVector<Attribute> results;
1874   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1875   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1876   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1877     int64_t i = index.getZExtValue();
1878     if (i >= lhsSize) {
1879       results.push_back(rhsElements[i - lhsSize]);
1880     } else {
1881       results.push_back(lhsElements[i]);
1882     }
1883   }
1884 
1885   return DenseElementsAttr::get(getVectorType(), results);
1886 }
1887 
1888 namespace {
1889 
1890 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp.
1891 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
1892 public:
1893   using OpRewritePattern<ShuffleOp>::OpRewritePattern;
1894 
1895   LogicalResult matchAndRewrite(ShuffleOp op,
1896                                 PatternRewriter &rewriter) const override {
1897     auto v1Splat = op.getV1().getDefiningOp<SplatOp>();
1898     auto v2Splat = op.getV2().getDefiningOp<SplatOp>();
1899 
1900     if (!v1Splat || !v2Splat)
1901       return failure();
1902 
1903     if (v1Splat.getInput() != v2Splat.getInput())
1904       return failure();
1905 
1906     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput());
1907     return success();
1908   }
1909 };
1910 
1911 } // namespace
1912 
1913 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
1914                                             MLIRContext *context) {
1915   results.add<ShuffleSplat>(context);
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // InsertElementOp
1920 //===----------------------------------------------------------------------===//
1921 
1922 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1923                             Value source, Value dest) {
1924   build(builder, result, source, dest, {});
1925 }
1926 
1927 LogicalResult InsertElementOp::verify() {
1928   auto dstVectorType = getDestVectorType();
1929   if (dstVectorType.getRank() == 0) {
1930     if (getPosition())
1931       return emitOpError("expected position to be empty with 0-D vector");
1932     return success();
1933   }
1934   if (dstVectorType.getRank() != 1)
1935     return emitOpError("unexpected >1 vector rank");
1936   if (!getPosition())
1937     return emitOpError("expected position for 1-D vector");
1938   return success();
1939 }
1940 
1941 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1942   // Skip the 0-D vector here.
1943   if (operands.size() < 3)
1944     return {};
1945 
1946   Attribute src = operands[0];
1947   Attribute dst = operands[1];
1948   Attribute pos = operands[2];
1949   if (!src || !dst || !pos)
1950     return {};
1951 
1952   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1953 
1954   SmallVector<Attribute> results(dstElements);
1955 
1956   auto attr = pos.dyn_cast<IntegerAttr>();
1957   uint64_t posIdx = attr.getInt();
1958 
1959   results[posIdx] = src;
1960 
1961   return DenseElementsAttr::get(getDestVectorType(), results);
1962 }
1963 
1964 //===----------------------------------------------------------------------===//
1965 // InsertOp
1966 //===----------------------------------------------------------------------===//
1967 
1968 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1969                      Value dest, ArrayRef<int64_t> position) {
1970   result.addOperands({source, dest});
1971   auto positionAttr = getVectorSubscriptAttr(builder, position);
1972   result.addTypes(dest.getType());
1973   result.addAttribute(getPositionAttrStrName(), positionAttr);
1974 }
1975 
1976 // Convenience builder which assumes the values are constant indices.
1977 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1978                      Value dest, ValueRange position) {
1979   SmallVector<int64_t, 4> positionConstants =
1980       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1981         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1982       }));
1983   build(builder, result, source, dest, positionConstants);
1984 }
1985 
1986 LogicalResult InsertOp::verify() {
1987   auto positionAttr = getPosition().getValue();
1988   auto destVectorType = getDestVectorType();
1989   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1990     return emitOpError(
1991         "expected position attribute of rank smaller than dest vector rank");
1992   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1993   if (srcVectorType &&
1994       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1995        static_cast<unsigned>(destVectorType.getRank())))
1996     return emitOpError("expected position attribute rank + source rank to "
1997                        "match dest vector rank");
1998   if (!srcVectorType &&
1999       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
2000     return emitOpError(
2001         "expected position attribute rank to match the dest vector rank");
2002   for (const auto &en : llvm::enumerate(positionAttr)) {
2003     auto attr = en.value().dyn_cast<IntegerAttr>();
2004     if (!attr || attr.getInt() < 0 ||
2005         attr.getInt() >= destVectorType.getDimSize(en.index()))
2006       return emitOpError("expected position attribute #")
2007              << (en.index() + 1)
2008              << " to be a non-negative integer smaller than the corresponding "
2009                 "dest vector dimension";
2010   }
2011   return success();
2012 }
2013 
2014 namespace {
2015 
2016 // If insertOp is only inserting unit dimensions it can be transformed to a
2017 // broadcast.
2018 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
2019 public:
2020   using OpRewritePattern<InsertOp>::OpRewritePattern;
2021 
2022   LogicalResult matchAndRewrite(InsertOp insertOp,
2023                                 PatternRewriter &rewriter) const override {
2024     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
2025     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
2026                            srcVecType.getNumElements())
2027       return failure();
2028     rewriter.replaceOpWithNewOp<BroadcastOp>(
2029         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
2030     return success();
2031   }
2032 };
2033 
2034 /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp.
2035 class InsertSplatToSplat final : public OpRewritePattern<InsertOp> {
2036 public:
2037   using OpRewritePattern<InsertOp>::OpRewritePattern;
2038 
2039   LogicalResult matchAndRewrite(InsertOp op,
2040                                 PatternRewriter &rewriter) const override {
2041     auto srcSplat = op.getSource().getDefiningOp<SplatOp>();
2042     auto dstSplat = op.getDest().getDefiningOp<SplatOp>();
2043 
2044     if (!srcSplat || !dstSplat)
2045       return failure();
2046 
2047     if (srcSplat.getInput() != dstSplat.getInput())
2048       return failure();
2049 
2050     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput());
2051     return success();
2052   }
2053 };
2054 
2055 } // namespace
2056 
2057 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2058                                            MLIRContext *context) {
2059   results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context);
2060 }
2061 
2062 // Eliminates insert operations that produce values identical to their source
2063 // value. This happens when the source and destination vectors have identical
2064 // sizes.
2065 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2066   if (getPosition().empty())
2067     return getSource();
2068   return {};
2069 }
2070 
2071 //===----------------------------------------------------------------------===//
2072 // InsertMapOp
2073 //===----------------------------------------------------------------------===//
2074 
2075 LogicalResult InsertMapOp::verify() {
2076   if (getSourceVectorType().getRank() != getResultType().getRank())
2077     return emitOpError("expected source and destination vectors of same rank");
2078   unsigned numId = 0;
2079   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2080     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2081         0)
2082       return emitOpError(
2083           "destination vector size must be a multiple of source vector size");
2084     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2085       numId++;
2086   }
2087   if (numId != getIds().size())
2088     return emitOpError("expected number of ids must match the number of "
2089                        "dimensions distributed");
2090   return success();
2091 }
2092 
2093 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2094 
2095 //===----------------------------------------------------------------------===//
2096 // InsertStridedSliceOp
2097 //===----------------------------------------------------------------------===//
2098 
2099 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2100                                  Value source, Value dest,
2101                                  ArrayRef<int64_t> offsets,
2102                                  ArrayRef<int64_t> strides) {
2103   result.addOperands({source, dest});
2104   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2105   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2106   result.addTypes(dest.getType());
2107   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2108   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2109 }
2110 
2111 // TODO: Should be moved to Tablegen Confined attributes.
2112 template <typename OpType>
2113 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2114                                                         ArrayAttr arrayAttr,
2115                                                         ArrayRef<int64_t> shape,
2116                                                         StringRef attrName) {
2117   if (arrayAttr.size() > shape.size())
2118     return op.emitOpError("expected ")
2119            << attrName << " attribute of rank smaller than vector rank";
2120   return success();
2121 }
2122 
2123 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2124 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2125 // Otherwise, the admissible interval is [min, max].
2126 template <typename OpType>
2127 static LogicalResult
2128 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2129                                   int64_t max, StringRef attrName,
2130                                   bool halfOpen = true) {
2131   for (auto attr : arrayAttr) {
2132     auto val = attr.cast<IntegerAttr>().getInt();
2133     auto upper = max;
2134     if (!halfOpen)
2135       upper += 1;
2136     if (val < min || val >= upper)
2137       return op.emitOpError("expected ") << attrName << " to be confined to ["
2138                                          << min << ", " << upper << ")";
2139   }
2140   return success();
2141 }
2142 
2143 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2144 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2145 // Otherwise, the admissible interval is [min, max].
2146 template <typename OpType>
2147 static LogicalResult
2148 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2149                                   ArrayRef<int64_t> shape, StringRef attrName,
2150                                   bool halfOpen = true, int64_t min = 0) {
2151   assert(arrayAttr.size() <= shape.size());
2152   unsigned index = 0;
2153   for (auto it : llvm::zip(arrayAttr, shape)) {
2154     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2155     auto max = std::get<1>(it);
2156     if (!halfOpen)
2157       max += 1;
2158     if (val < min || val >= max)
2159       return op.emitOpError("expected ")
2160              << attrName << " dimension " << index << " to be confined to ["
2161              << min << ", " << max << ")";
2162     ++index;
2163   }
2164   return success();
2165 }
2166 
2167 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2168 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2169 // Otherwise, the admissible interval is [min, max].
2170 template <typename OpType>
2171 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2172     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2173     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2174     bool halfOpen = true, int64_t min = 1) {
2175   assert(arrayAttr1.size() <= shape.size());
2176   assert(arrayAttr2.size() <= shape.size());
2177   unsigned index = 0;
2178   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2179     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2180     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2181     auto max = std::get<2>(it);
2182     if (!halfOpen)
2183       max += 1;
2184     if (val1 + val2 < 0 || val1 + val2 >= max)
2185       return op.emitOpError("expected sum(")
2186              << attrName1 << ", " << attrName2 << ") dimension " << index
2187              << " to be confined to [" << min << ", " << max << ")";
2188     ++index;
2189   }
2190   return success();
2191 }
2192 
2193 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2194                                   MLIRContext *context) {
2195   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2196     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2197   });
2198   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2199 }
2200 
2201 LogicalResult InsertStridedSliceOp::verify() {
2202   auto sourceVectorType = getSourceVectorType();
2203   auto destVectorType = getDestVectorType();
2204   auto offsets = getOffsetsAttr();
2205   auto strides = getStridesAttr();
2206   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2207     return emitOpError(
2208         "expected offsets of same size as destination vector rank");
2209   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2210     return emitOpError("expected strides of same size as source vector rank");
2211   if (sourceVectorType.getRank() > destVectorType.getRank())
2212     return emitOpError(
2213         "expected source rank to be smaller than destination rank");
2214 
2215   auto sourceShape = sourceVectorType.getShape();
2216   auto destShape = destVectorType.getShape();
2217   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2218       destShape.size() - sourceShape.size(), 0);
2219   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2220   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2221   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2222   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2223                                                offName)) ||
2224       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2225                                                stridesName,
2226                                                /*halfOpen=*/false)) ||
2227       failed(isSumOfIntegerArrayAttrConfinedToShape(
2228           *this, offsets,
2229           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2230           offName, "source vector shape",
2231           /*halfOpen=*/false, /*min=*/1)))
2232     return failure();
2233 
2234   return success();
2235 }
2236 
2237 namespace {
2238 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
2239 /// SplatOp(X):dst_type) to SplatOp(X):dst_type.
2240 class FoldInsertStridedSliceSplat final
2241     : public OpRewritePattern<InsertStridedSliceOp> {
2242 public:
2243   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2244 
2245   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2246                                 PatternRewriter &rewriter) const override {
2247     auto srcSplatOp =
2248         insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>();
2249     auto destSplatOp =
2250         insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
2251 
2252     if (!srcSplatOp || !destSplatOp)
2253       return failure();
2254 
2255     if (srcSplatOp.getInput() != destSplatOp.getInput())
2256       return failure();
2257 
2258     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2259     return success();
2260   }
2261 };
2262 
2263 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst)
2264 /// to dst.
2265 class FoldInsertStridedSliceOfExtract final
2266     : public OpRewritePattern<InsertStridedSliceOp> {
2267 public:
2268   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2269 
2270   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2271                                 PatternRewriter &rewriter) const override {
2272     auto extractStridedSliceOp =
2273         insertStridedSliceOp.getSource()
2274             .getDefiningOp<vector::ExtractStridedSliceOp>();
2275 
2276     if (!extractStridedSliceOp)
2277       return failure();
2278 
2279     if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest())
2280       return failure();
2281 
2282     // Check if have the same strides and offsets.
2283     if (extractStridedSliceOp.getStrides() !=
2284             insertStridedSliceOp.getStrides() ||
2285         extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets())
2286       return failure();
2287 
2288     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2289     return success();
2290   }
2291 };
2292 
2293 } // namespace
2294 
2295 void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
2296     RewritePatternSet &results, MLIRContext *context) {
2297   results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>(
2298       context);
2299 }
2300 
2301 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2302   if (getSourceVectorType() == getDestVectorType())
2303     return getSource();
2304   return {};
2305 }
2306 
2307 //===----------------------------------------------------------------------===//
2308 // OuterProductOp
2309 //===----------------------------------------------------------------------===//
2310 
2311 /// Build an op without mask, use the type of `acc` as the return type.
2312 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2313                            Value lhs, Value rhs, Value acc) {
2314   result.addOperands({lhs, rhs, acc});
2315   result.addTypes(acc.getType());
2316 }
2317 
2318 void OuterProductOp::print(OpAsmPrinter &p) {
2319   p << " " << getLhs() << ", " << getRhs();
2320   if (!getAcc().empty()) {
2321     p << ", " << getAcc();
2322     p.printOptionalAttrDict((*this)->getAttrs());
2323   }
2324   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2325 }
2326 
2327 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2328   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2329   Type tLHS, tRHS;
2330   if (parser.parseOperandList(operandsInfo) ||
2331       parser.parseOptionalAttrDict(result.attributes) ||
2332       parser.parseColonType(tLHS) || parser.parseComma() ||
2333       parser.parseType(tRHS))
2334     return failure();
2335   if (operandsInfo.size() < 2)
2336     return parser.emitError(parser.getNameLoc(),
2337                             "expected at least 2 operands");
2338   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2339   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2340   if (!vLHS)
2341     return parser.emitError(parser.getNameLoc(),
2342                             "expected vector type for operand #1");
2343   VectorType resType =
2344       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2345                              vLHS.getElementType())
2346            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2347 
2348   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2349     result.attributes.append(
2350         OuterProductOp::getKindAttrStrName(),
2351         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2352                                result.getContext()));
2353   }
2354 
2355   return failure(
2356       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2357       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2358       (operandsInfo.size() > 2 &&
2359        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2360       parser.addTypeToList(resType, result.types));
2361 }
2362 
2363 LogicalResult OuterProductOp::verify() {
2364   Type tRHS = getOperandTypeRHS();
2365   VectorType vLHS = getOperandVectorTypeLHS(),
2366              vRHS = tRHS.dyn_cast<VectorType>(),
2367              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2368 
2369   if (vLHS.getRank() != 1)
2370     return emitOpError("expected 1-d vector for operand #1");
2371 
2372   if (vRHS) {
2373     // Proper OUTER operation.
2374     if (vRHS.getRank() != 1)
2375       return emitOpError("expected 1-d vector for operand #2");
2376     if (vRES.getRank() != 2)
2377       return emitOpError("expected 2-d vector result");
2378     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2379       return emitOpError("expected #1 operand dim to match result dim #1");
2380     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2381       return emitOpError("expected #2 operand dim to match result dim #2");
2382   } else {
2383     // An AXPY operation.
2384     if (vRES.getRank() != 1)
2385       return emitOpError("expected 1-d vector result");
2386     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2387       return emitOpError("expected #1 operand dim to match result dim #1");
2388   }
2389 
2390   if (vACC && vACC != vRES)
2391     return emitOpError("expected operand #3 of same type as result type");
2392 
2393   // Verify supported combining kind.
2394   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2395     return emitOpError("unsupported outerproduct type");
2396 
2397   return success();
2398 }
2399 
2400 //===----------------------------------------------------------------------===//
2401 // ReshapeOp
2402 //===----------------------------------------------------------------------===//
2403 
2404 LogicalResult ReshapeOp::verify() {
2405   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2406   auto inputVectorType = getInputVectorType();
2407   auto outputVectorType = getOutputVectorType();
2408   int64_t inputShapeRank = getNumInputShapeSizes();
2409   int64_t outputShapeRank = getNumOutputShapeSizes();
2410   SmallVector<int64_t, 4> fixedVectorSizes;
2411   getFixedVectorSizes(fixedVectorSizes);
2412   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2413 
2414   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2415     return emitError("invalid input shape for vector type ") << inputVectorType;
2416 
2417   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2418     return emitError("invalid output shape for vector type ")
2419            << outputVectorType;
2420 
2421   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2422   // suffix.
2423   unsigned inputVectorRank = inputVectorType.getRank();
2424   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2425     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2426     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2427       return emitError("fixed vector size must match input vector for dim ")
2428              << i;
2429   }
2430 
2431   unsigned outputVectorRank = outputVectorType.getRank();
2432   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2433     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2434     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2435       return emitError("fixed vector size must match output vector for dim ")
2436              << i;
2437   }
2438 
2439   // If all shape operands are produced by constant ops, verify that product
2440   // of dimensions for input/output shape match.
2441   auto isDefByConstant = [](Value operand) {
2442     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2443   };
2444   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2445       llvm::all_of(getOutputShape(), isDefByConstant)) {
2446     int64_t numInputElements = 1;
2447     for (auto operand : getInputShape())
2448       numInputElements *=
2449           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2450     int64_t numOutputElements = 1;
2451     for (auto operand : getOutputShape())
2452       numOutputElements *=
2453           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2454     if (numInputElements != numOutputElements)
2455       return emitError("product of input and output shape sizes must match");
2456   }
2457   return success();
2458 }
2459 
2460 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2461   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2462 }
2463 
2464 //===----------------------------------------------------------------------===//
2465 // ExtractStridedSliceOp
2466 //===----------------------------------------------------------------------===//
2467 
2468 // Inference works as follows:
2469 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2470 //   2. Add sizes from 'vectorType' for remaining dims.
2471 static Type inferStridedSliceOpResultType(VectorType vectorType,
2472                                           ArrayAttr offsets, ArrayAttr sizes,
2473                                           ArrayAttr strides) {
2474   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2475   SmallVector<int64_t, 4> shape;
2476   shape.reserve(vectorType.getRank());
2477   unsigned idx = 0;
2478   for (unsigned e = offsets.size(); idx < e; ++idx)
2479     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2480   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2481     shape.push_back(vectorType.getShape()[idx]);
2482 
2483   return VectorType::get(shape, vectorType.getElementType());
2484 }
2485 
2486 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2487                                   Value source, ArrayRef<int64_t> offsets,
2488                                   ArrayRef<int64_t> sizes,
2489                                   ArrayRef<int64_t> strides) {
2490   result.addOperands(source);
2491   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2492   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2493   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2494   result.addTypes(
2495       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2496                                     offsetsAttr, sizesAttr, stridesAttr));
2497   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2498   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2499   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2500 }
2501 
2502 LogicalResult ExtractStridedSliceOp::verify() {
2503   auto type = getVectorType();
2504   auto offsets = getOffsetsAttr();
2505   auto sizes = getSizesAttr();
2506   auto strides = getStridesAttr();
2507   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2508     return emitOpError(
2509         "expected offsets, sizes and strides attributes of same size");
2510 
2511   auto shape = type.getShape();
2512   auto offName = getOffsetsAttrName();
2513   auto sizesName = getSizesAttrName();
2514   auto stridesName = getStridesAttrName();
2515   if (failed(
2516           isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2517       failed(
2518           isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2519       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2520                                                 stridesName)) ||
2521       failed(
2522           isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2523       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2524                                                /*halfOpen=*/false,
2525                                                /*min=*/1)) ||
2526       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2527                                                stridesName,
2528                                                /*halfOpen=*/false)) ||
2529       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
2530                                                     shape, offName, sizesName,
2531                                                     /*halfOpen=*/false)))
2532     return failure();
2533 
2534   auto resultType =
2535       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2536   if (getResult().getType() != resultType)
2537     return emitOpError("expected result type to be ") << resultType;
2538 
2539   return success();
2540 }
2541 
2542 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2543 // to use the source of the InsertStrided ops if we can detect that the
2544 // extracted vector is a subset of one of the vector inserted.
2545 static LogicalResult
2546 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2547   // Helper to extract integer out of ArrayAttr.
2548   auto getElement = [](ArrayAttr array, int idx) {
2549     return array[idx].cast<IntegerAttr>().getInt();
2550   };
2551   ArrayAttr extractOffsets = op.getOffsets();
2552   ArrayAttr extractStrides = op.getStrides();
2553   ArrayAttr extractSizes = op.getSizes();
2554   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2555   while (insertOp) {
2556     if (op.getVectorType().getRank() !=
2557         insertOp.getSourceVectorType().getRank())
2558       return failure();
2559     ArrayAttr insertOffsets = insertOp.getOffsets();
2560     ArrayAttr insertStrides = insertOp.getStrides();
2561     // If the rank of extract is greater than the rank of insert, we are likely
2562     // extracting a partial chunk of the vector inserted.
2563     if (extractOffsets.size() > insertOffsets.size())
2564       return failure();
2565     bool patialoverlap = false;
2566     bool disjoint = false;
2567     SmallVector<int64_t, 4> offsetDiffs;
2568     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2569       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2570         return failure();
2571       int64_t start = getElement(insertOffsets, dim);
2572       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2573       int64_t offset = getElement(extractOffsets, dim);
2574       int64_t size = getElement(extractSizes, dim);
2575       // Check if the start of the extract offset is in the interval inserted.
2576       if (start <= offset && offset < end) {
2577         // If the extract interval overlaps but is not fully included we may
2578         // have a partial overlap that will prevent any folding.
2579         if (offset + size > end)
2580           patialoverlap = true;
2581         offsetDiffs.push_back(offset - start);
2582         continue;
2583       }
2584       disjoint = true;
2585       break;
2586     }
2587     // The extract element chunk is a subset of the insert element.
2588     if (!disjoint && !patialoverlap) {
2589       op.setOperand(insertOp.getSource());
2590       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2591       OpBuilder b(op.getContext());
2592       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2593                   b.getI64ArrayAttr(offsetDiffs));
2594       return success();
2595     }
2596     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2597     // in the insert chain.
2598     if (disjoint)
2599       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2600     else {
2601       // The extracted vector partially overlap the inserted vector, we cannot
2602       // fold.
2603       return failure();
2604     }
2605   }
2606   return failure();
2607 }
2608 
2609 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2610   if (getVectorType() == getResult().getType())
2611     return getVector();
2612   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2613     return getResult();
2614   return {};
2615 }
2616 
2617 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2618   populateFromInt64AttrArray(getOffsets(), results);
2619 }
2620 
2621 namespace {
2622 
2623 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2624 // ConstantMaskOp.
2625 class StridedSliceConstantMaskFolder final
2626     : public OpRewritePattern<ExtractStridedSliceOp> {
2627 public:
2628   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2629 
2630   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2631                                 PatternRewriter &rewriter) const override {
2632     // Return if 'extractStridedSliceOp' operand is not defined by a
2633     // ConstantMaskOp.
2634     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2635     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2636     if (!constantMaskOp)
2637       return failure();
2638     // Return if 'extractStridedSliceOp' has non-unit strides.
2639     if (extractStridedSliceOp.hasNonUnitStrides())
2640       return failure();
2641     // Gather constant mask dimension sizes.
2642     SmallVector<int64_t, 4> maskDimSizes;
2643     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2644     // Gather strided slice offsets and sizes.
2645     SmallVector<int64_t, 4> sliceOffsets;
2646     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2647                                sliceOffsets);
2648     SmallVector<int64_t, 4> sliceSizes;
2649     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2650 
2651     // Compute slice of vector mask region.
2652     SmallVector<int64_t, 4> sliceMaskDimSizes;
2653     assert(sliceOffsets.size() == maskDimSizes.size());
2654     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2655       int64_t maskDimSize = std::get<0>(it);
2656       int64_t sliceOffset = std::get<1>(it);
2657       int64_t sliceSize = std::get<2>(it);
2658       int64_t sliceMaskDimSize = std::max(
2659           static_cast<int64_t>(0),
2660           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2661       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2662     }
2663     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2664     // region is a conjunction of mask dim intervals).
2665     if (llvm::is_contained(sliceMaskDimSizes, 0))
2666       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2667 
2668     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2669     // region.
2670     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2671         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2672         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2673     return success();
2674   }
2675 };
2676 
2677 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2678 class StridedSliceConstantFolder final
2679     : public OpRewritePattern<ExtractStridedSliceOp> {
2680 public:
2681   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2682 
2683   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2684                                 PatternRewriter &rewriter) const override {
2685     // Return if 'extractStridedSliceOp' operand is not defined by a
2686     // ConstantOp.
2687     auto constantOp =
2688         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2689     if (!constantOp)
2690       return failure();
2691     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2692     if (!dense)
2693       return failure();
2694     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2695                                           dense.getSplatValue<Attribute>());
2696     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2697                                                    newAttr);
2698     return success();
2699   }
2700 };
2701 
2702 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2703 // BroadcastOp(ExtractStrideSliceOp).
2704 class StridedSliceBroadcast final
2705     : public OpRewritePattern<ExtractStridedSliceOp> {
2706 public:
2707   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2708 
2709   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2710                                 PatternRewriter &rewriter) const override {
2711     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2712     if (!broadcast)
2713       return failure();
2714     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2715     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2716     auto dstVecType = op.getType().cast<VectorType>();
2717     unsigned dstRank = dstVecType.getRank();
2718     unsigned rankDiff = dstRank - srcRank;
2719     // Check if the most inner dimensions of the source of the broadcast are the
2720     // same as the destination of the extract. If this is the case we can just
2721     // use a broadcast as the original dimensions are untouched.
2722     bool lowerDimMatch = true;
2723     for (unsigned i = 0; i < srcRank; i++) {
2724       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2725         lowerDimMatch = false;
2726         break;
2727       }
2728     }
2729     Value source = broadcast.getSource();
2730     // If the inner dimensions don't match, it means we need to extract from the
2731     // source of the orignal broadcast and then broadcast the extracted value.
2732     // We also need to handle degenerated cases where the source is effectively
2733     // just a single scalar.
2734     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2735     if (!lowerDimMatch && !isScalarSrc) {
2736       source = rewriter.create<ExtractStridedSliceOp>(
2737           op->getLoc(), source,
2738           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2739           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2740           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2741     }
2742     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2743     return success();
2744   }
2745 };
2746 
2747 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2748 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2749 public:
2750   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2751 
2752   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2753                                 PatternRewriter &rewriter) const override {
2754     auto splat = op.getVector().getDefiningOp<SplatOp>();
2755     if (!splat)
2756       return failure();
2757     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2758     return success();
2759   }
2760 };
2761 
2762 } // namespace
2763 
2764 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2765     RewritePatternSet &results, MLIRContext *context) {
2766   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2767   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2768   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2769               StridedSliceBroadcast, StridedSliceSplat>(context);
2770 }
2771 
2772 //===----------------------------------------------------------------------===//
2773 // TransferReadOp
2774 //===----------------------------------------------------------------------===//
2775 
2776 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2777 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2778                            VectorType vectorType, Value source,
2779                            ValueRange indices, AffineMapAttr permutationMapAttr,
2780                            /*optional*/ ArrayAttr inBoundsAttr) {
2781   Type elemType = source.getType().cast<ShapedType>().getElementType();
2782   Value padding = builder.create<arith::ConstantOp>(
2783       result.location, elemType, builder.getZeroAttr(elemType));
2784   build(builder, result, vectorType, source, indices, permutationMapAttr,
2785         padding, /*mask=*/Value(), inBoundsAttr);
2786 }
2787 
2788 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2789 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2790                            VectorType vectorType, Value source,
2791                            ValueRange indices, AffineMap permutationMap,
2792                            Optional<ArrayRef<bool>> inBounds) {
2793   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2794   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2795                           ? builder.getBoolArrayAttr(inBounds.getValue())
2796                           : ArrayAttr();
2797   build(builder, result, vectorType, source, indices, permutationMapAttr,
2798         inBoundsAttr);
2799 }
2800 
2801 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2802 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2803                            VectorType vectorType, Value source,
2804                            ValueRange indices, Value padding,
2805                            Optional<ArrayRef<bool>> inBounds) {
2806   AffineMap permutationMap = getTransferMinorIdentityMap(
2807       source.getType().cast<ShapedType>(), vectorType);
2808   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2809   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2810                           ? builder.getBoolArrayAttr(inBounds.getValue())
2811                           : ArrayAttr();
2812   build(builder, result, vectorType, source, indices, permutationMapAttr,
2813         padding,
2814         /*mask=*/Value(), inBoundsAttr);
2815 }
2816 
2817 /// 4. Builder that sets padding to zero and permutation map to
2818 /// 'getMinorIdentityMap'.
2819 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2820                            VectorType vectorType, Value source,
2821                            ValueRange indices,
2822                            Optional<ArrayRef<bool>> inBounds) {
2823   Type elemType = source.getType().cast<ShapedType>().getElementType();
2824   Value padding = builder.create<arith::ConstantOp>(
2825       result.location, elemType, builder.getZeroAttr(elemType));
2826   build(builder, result, vectorType, source, indices, padding, inBounds);
2827 }
2828 
2829 template <typename EmitFun>
2830 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2831                                           EmitFun emitOpError) {
2832   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2833   for (auto expr : permutationMap.getResults()) {
2834     auto dim = expr.dyn_cast<AffineDimExpr>();
2835     auto zero = expr.dyn_cast<AffineConstantExpr>();
2836     if (zero) {
2837       if (zero.getValue() != 0) {
2838         return emitOpError(
2839             "requires a projected permutation_map (at most one dim or the zero "
2840             "constant can appear in each result)");
2841       }
2842       continue;
2843     }
2844     if (!dim) {
2845       return emitOpError("requires a projected permutation_map (at most one "
2846                          "dim or the zero constant can appear in each result)");
2847     }
2848     if (seen[dim.getPosition()]) {
2849       return emitOpError(
2850           "requires a permutation_map that is a permutation (found one dim "
2851           "used more than once)");
2852     }
2853     seen[dim.getPosition()] = true;
2854   }
2855   return success();
2856 }
2857 
2858 static LogicalResult
2859 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2860                  VectorType vectorType, VectorType maskType,
2861                  AffineMap permutationMap, ArrayAttr inBounds) {
2862   if (op->hasAttr("masked")) {
2863     return op->emitOpError("masked attribute has been removed. "
2864                            "Use in_bounds instead.");
2865   }
2866 
2867   if (!shapedType.isa<MemRefType, RankedTensorType>())
2868     return op->emitOpError(
2869         "requires source to be a memref or ranked tensor type");
2870 
2871   auto elementType = shapedType.getElementType();
2872   DataLayout dataLayout = DataLayout::closest(op);
2873   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2874     // Memref or tensor has vector element type.
2875     unsigned sourceVecSize =
2876         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2877         vectorElementType.getShape().back();
2878     unsigned resultVecSize =
2879         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2880         vectorType.getShape().back();
2881     if (resultVecSize % sourceVecSize != 0)
2882       return op->emitOpError(
2883           "requires the bitwidth of the minor 1-D vector to be an integral "
2884           "multiple of the bitwidth of the minor 1-D vector of the source");
2885 
2886     unsigned sourceVecEltRank = vectorElementType.getRank();
2887     unsigned resultVecRank = vectorType.getRank();
2888     if (sourceVecEltRank > resultVecRank)
2889       return op->emitOpError(
2890           "requires source vector element and vector result ranks to match.");
2891     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2892     // Check that permutation map results match 'rankOffset' of vector type.
2893     if (permutationMap.getNumResults() != rankOffset)
2894       return op->emitOpError("requires a permutation_map with result dims of "
2895                              "the same rank as the vector type");
2896 
2897     if (maskType)
2898       return op->emitOpError("does not support masks with vector element type");
2899   } else {
2900     // Memref or tensor has scalar element type.
2901     unsigned minorSize =
2902         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2903     unsigned resultVecSize =
2904         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2905     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2906       return op->emitOpError(
2907           "requires the bitwidth of the minor 1-D vector to be an integral "
2908           "multiple of the bitwidth of the source element type");
2909 
2910     // Check that permutation map results match rank of vector type.
2911     if (permutationMap.getNumResults() != vectorType.getRank())
2912       return op->emitOpError("requires a permutation_map with result dims of "
2913                              "the same rank as the vector type");
2914 
2915     VectorType expectedMaskType =
2916         vector::detail::transferMaskType(vectorType, permutationMap);
2917     if (maskType && expectedMaskType != maskType)
2918       return op->emitOpError("expects mask type consistent with permutation "
2919                              "map: ")
2920              << maskType;
2921   }
2922 
2923   if (permutationMap.getNumSymbols() != 0)
2924     return op->emitOpError("requires permutation_map without symbols");
2925 
2926   if (permutationMap.getNumInputs() != shapedType.getRank())
2927     return op->emitOpError("requires a permutation_map with input dims of the "
2928                            "same rank as the source type");
2929 
2930   if (inBounds) {
2931     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2932       return op->emitOpError("expects the optional in_bounds attr of same rank "
2933                              "as permutation_map results: ")
2934              << AffineMapAttr::get(permutationMap)
2935              << " vs inBounds of size: " << inBounds.size();
2936     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2937       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2938           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2939         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2940   }
2941 
2942   return success();
2943 }
2944 
2945 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2946   SmallVector<StringRef, 3> elidedAttrs;
2947   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2948   if (op.permutation_map().isMinorIdentity())
2949     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2950   bool elideInBounds = true;
2951   if (auto inBounds = op.in_bounds()) {
2952     for (auto attr : *inBounds) {
2953       if (attr.template cast<BoolAttr>().getValue()) {
2954         elideInBounds = false;
2955         break;
2956       }
2957     }
2958   }
2959   if (elideInBounds)
2960     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2961   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2962 }
2963 
2964 void TransferReadOp::print(OpAsmPrinter &p) {
2965   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2966   if (getMask())
2967     p << ", " << getMask();
2968   printTransferAttrs(p, *this);
2969   p << " : " << getShapedType() << ", " << getVectorType();
2970 }
2971 
2972 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2973   auto &builder = parser.getBuilder();
2974   SMLoc typesLoc;
2975   OpAsmParser::UnresolvedOperand sourceInfo;
2976   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2977   OpAsmParser::UnresolvedOperand paddingInfo;
2978   SmallVector<Type, 2> types;
2979   OpAsmParser::UnresolvedOperand maskInfo;
2980   // Parsing with support for paddingValue.
2981   if (parser.parseOperand(sourceInfo) ||
2982       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2983       parser.parseComma() || parser.parseOperand(paddingInfo))
2984     return failure();
2985   ParseResult hasMask = parser.parseOptionalComma();
2986   if (hasMask.succeeded()) {
2987     if (parser.parseOperand(maskInfo))
2988       return failure();
2989   }
2990   if (parser.parseOptionalAttrDict(result.attributes) ||
2991       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2992     return failure();
2993   if (types.size() != 2)
2994     return parser.emitError(typesLoc, "requires two types");
2995   auto indexType = builder.getIndexType();
2996   auto shapedType = types[0].dyn_cast<ShapedType>();
2997   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2998     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2999   VectorType vectorType = types[1].dyn_cast<VectorType>();
3000   if (!vectorType)
3001     return parser.emitError(typesLoc, "requires vector type");
3002   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
3003   Attribute mapAttr = result.attributes.get(permutationAttrName);
3004   if (!mapAttr) {
3005     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3006     // Update `mapAttr` that is used later to determine mask type.
3007     mapAttr = AffineMapAttr::get(permMap);
3008     result.attributes.set(permutationAttrName, mapAttr);
3009   }
3010   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3011       parser.resolveOperands(indexInfo, indexType, result.operands) ||
3012       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
3013                             result.operands))
3014     return failure();
3015   if (hasMask.succeeded()) {
3016     if (shapedType.getElementType().dyn_cast<VectorType>())
3017       return parser.emitError(
3018           maskInfo.location, "does not support masks with vector element type");
3019     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
3020     // Instead of adding the mask type as an op type, compute it based on the
3021     // vector type and the permutation map (to keep the type signature small).
3022     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
3023     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3024       return failure();
3025   }
3026   result.addAttribute(
3027       TransferReadOp::getOperandSegmentSizeAttr(),
3028       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
3029                                 static_cast<int32_t>(hasMask.succeeded())}));
3030   return parser.addTypeToList(vectorType, result.types);
3031 }
3032 
3033 LogicalResult TransferReadOp::verify() {
3034   // Consistency of elemental types in source and vector.
3035   ShapedType shapedType = getShapedType();
3036   VectorType vectorType = getVectorType();
3037   VectorType maskType = getMaskType();
3038   auto paddingType = getPadding().getType();
3039   auto permutationMap = getPermutationMap();
3040   auto sourceElementType = shapedType.getElementType();
3041 
3042   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
3043     return emitOpError("requires ") << shapedType.getRank() << " indices";
3044 
3045   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3046                               shapedType, vectorType, maskType, permutationMap,
3047                               getInBounds() ? *getInBounds() : ArrayAttr())))
3048     return failure();
3049 
3050   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
3051     // Source has vector element type.
3052     // Check that 'sourceVectorElementType' and 'paddingType' types match.
3053     if (sourceVectorElementType != paddingType)
3054       return emitOpError(
3055           "requires source element type and padding type to match.");
3056 
3057   } else {
3058     // Check that 'paddingType' is valid to store in a vector type.
3059     if (!VectorType::isValidElementType(paddingType))
3060       return emitOpError("requires valid padding vector elemental type");
3061 
3062     // Check that padding type and vector element types match.
3063     if (paddingType != sourceElementType)
3064       return emitOpError(
3065           "requires formal padding and source of the same elemental type");
3066   }
3067 
3068   return verifyPermutationMap(permutationMap,
3069                               [&](Twine t) { return emitOpError(t); });
3070 }
3071 
3072 /// This is a common class used for patterns of the form
3073 /// ```
3074 ///    someop(memrefcast) -> someop
3075 /// ```
3076 /// It folds the source of the memref.cast into the root operation directly.
3077 static LogicalResult foldMemRefCast(Operation *op) {
3078   bool folded = false;
3079   for (OpOperand &operand : op->getOpOperands()) {
3080     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
3081     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
3082       operand.set(castOp.getOperand());
3083       folded = true;
3084     }
3085   }
3086   return success(folded);
3087 }
3088 
3089 static LogicalResult foldTensorCast(Operation *op) {
3090   bool folded = false;
3091   for (OpOperand &operand : op->getOpOperands()) {
3092     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
3093     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
3094       operand.set(castOp.getOperand());
3095       folded = true;
3096     }
3097   }
3098   return success(folded);
3099 }
3100 
3101 template <typename TransferOp>
3102 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
3103   // TODO: support more aggressive createOrFold on:
3104   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
3105   if (op.getShapedType().isDynamicDim(indicesIdx))
3106     return false;
3107   Value index = op.getIndices()[indicesIdx];
3108   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
3109   if (!cstOp)
3110     return false;
3111 
3112   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
3113   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
3114 
3115   return cstOp.value() + vectorSize <= sourceSize;
3116 }
3117 
3118 template <typename TransferOp>
3119 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3120   // TODO: support 0-d corner case.
3121   // TODO: Be less conservative.
3122   if (op.getTransferRank() == 0)
3123     return failure();
3124   AffineMap permutationMap = op.getPermutationMap();
3125   bool changed = false;
3126   SmallVector<bool, 4> newInBounds;
3127   newInBounds.reserve(op.getTransferRank());
3128   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3129     // Already marked as in-bounds, nothing to see here.
3130     if (op.isDimInBounds(i)) {
3131       newInBounds.push_back(true);
3132       continue;
3133     }
3134     // Currently out-of-bounds, check whether we can statically determine it is
3135     // inBounds.
3136     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3137     assert(dimExpr && "Broadcast dims must be in-bounds");
3138     auto inBounds =
3139         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3140     newInBounds.push_back(inBounds);
3141     // We commit the pattern if it is "more inbounds".
3142     changed |= inBounds;
3143   }
3144   if (!changed)
3145     return failure();
3146   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3147   OpBuilder b(op.getContext());
3148   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3149               b.getBoolArrayAttr(newInBounds));
3150   return success();
3151 }
3152 
3153 ///  ```
3154 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3155 ///    : vector<1x4xf32>, tensor<4x4xf32>
3156 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3157 ///    : tensor<4x4xf32>, vector<1x4xf32>
3158 ///  ```
3159 ///  -> Folds into
3160 ///  ```
3161 ///  %v0
3162 ///  ```
3163 static Value foldRAW(TransferReadOp readOp) {
3164   if (!readOp.getShapedType().isa<RankedTensorType>())
3165     return {};
3166   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3167   while (defWrite) {
3168     if (checkSameValueRAW(defWrite, readOp))
3169       return defWrite.getVector();
3170     if (!isDisjointTransferIndices(
3171             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3172             cast<VectorTransferOpInterface>(readOp.getOperation())))
3173       break;
3174     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3175   }
3176   return {};
3177 }
3178 
3179 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3180   if (Value vec = foldRAW(*this))
3181     return vec;
3182   /// transfer_read(memrefcast) -> transfer_read
3183   if (succeeded(foldTransferInBoundsAttribute(*this)))
3184     return getResult();
3185   if (succeeded(foldMemRefCast(*this)))
3186     return getResult();
3187   if (succeeded(foldTensorCast(*this)))
3188     return getResult();
3189   return OpFoldResult();
3190 }
3191 
3192 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3193   return llvm::to_vector<4>(getVectorType().getShape());
3194 }
3195 
3196 void TransferReadOp::getEffects(
3197     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3198         &effects) {
3199   if (getShapedType().isa<MemRefType>())
3200     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3201                          SideEffects::DefaultResource::get());
3202 }
3203 
3204 namespace {
3205 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3206 ///
3207 /// ```
3208 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3209 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3210 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3211 ///     : tensor<?x?xf32>, vector<4x5xf32>
3212 /// ```
3213 /// is rewritten to:
3214 /// ```
3215 /// %p0 = arith.addi %a, %e : index
3216 /// %p1 = arith.addi %b, %f : index
3217 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3218 ///     : tensor<?x?xf32>, vector<4x5xf32>
3219 /// ```
3220 struct FoldExtractSliceIntoTransferRead
3221     : public OpRewritePattern<TransferReadOp> {
3222 public:
3223   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3224 
3225   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3226                                 PatternRewriter &rewriter) const override {
3227     // TODO: support 0-d corner case.
3228     if (xferOp.getTransferRank() == 0)
3229       return failure();
3230     if (xferOp.hasOutOfBoundsDim())
3231       return failure();
3232     if (!xferOp.getPermutationMap().isIdentity())
3233       return failure();
3234     if (xferOp.getMask())
3235       return failure();
3236     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3237     if (!extractOp)
3238       return failure();
3239     if (!extractOp.hasUnitStride())
3240       return failure();
3241 
3242     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3243     // dims are exactly the leading dims. I.e. the following is illegal:
3244     // ```
3245     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3246     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3247     //    %1 = vector.transfer_read %0[0,0], %cst :
3248     //      tensor<2x4xf32>, vector<2x4xf32>
3249     // ```
3250     //
3251     // Cannot fold into:
3252     // ```
3253     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3254     //      tensor<2x1x4xf32>, vector<2x4xf32>
3255     // ```
3256     // For this, check the trailing `vectorRank` dims of the extract_slice
3257     // result tensor match the trailing dims of the inferred result tensor.
3258     int64_t rankReduced =
3259         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3260     int64_t vectorRank = xferOp.getVectorType().getRank();
3261     RankedTensorType inferredDestTensorType =
3262         tensor::ExtractSliceOp::inferResultType(
3263             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3264             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3265     auto actualDestTensorShape = extractOp.getType().getShape();
3266     if (rankReduced > 0 &&
3267         actualDestTensorShape.take_back(vectorRank) !=
3268             inferredDestTensorType.getShape().take_back(vectorRank))
3269       return failure();
3270 
3271     SmallVector<Value> newIndices;
3272     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3273     // indices first.
3274     for (int64_t i = 0; i < rankReduced; ++i) {
3275       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3276       newIndices.push_back(getValueOrCreateConstantIndexOp(
3277           rewriter, extractOp.getLoc(), offset));
3278     }
3279     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3280       OpFoldResult offset =
3281           extractOp.getMixedOffsets()[it.index() + rankReduced];
3282       newIndices.push_back(rewriter.create<arith::AddIOp>(
3283           xferOp->getLoc(), it.value(),
3284           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3285                                           offset)));
3286     }
3287     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3288     rewriter.replaceOpWithNewOp<TransferReadOp>(
3289         xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices,
3290         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3291 
3292     return success();
3293   }
3294 };
3295 } // namespace
3296 
3297 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3298                                                  MLIRContext *context) {
3299   results.add<FoldExtractSliceIntoTransferRead>(context);
3300 }
3301 
3302 //===----------------------------------------------------------------------===//
3303 // TransferWriteOp
3304 //===----------------------------------------------------------------------===//
3305 
3306 /// 1. Builder with type inference.
3307 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3308                             Value vector, Value dest, ValueRange indices,
3309                             AffineMapAttr permutationMapAttr,
3310                             /*optional*/ Value mask,
3311                             /*optional*/ ArrayAttr inBoundsAttr) {
3312   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3313   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3314         mask, inBoundsAttr);
3315 }
3316 
3317 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3318 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3319                             Value vector, Value dest, ValueRange indices,
3320                             AffineMapAttr permutationMapAttr,
3321                             /*optional*/ ArrayAttr inBoundsAttr) {
3322   build(builder, result, vector, dest, indices, permutationMapAttr,
3323         /*mask=*/Value(), inBoundsAttr);
3324 }
3325 
3326 /// 3. Builder with type inference that sets an empty mask (variant without
3327 /// attrs)
3328 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3329                             Value vector, Value dest, ValueRange indices,
3330                             AffineMap permutationMap,
3331                             Optional<ArrayRef<bool>> inBounds) {
3332   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3333   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3334                           ? builder.getBoolArrayAttr(inBounds.getValue())
3335                           : ArrayAttr();
3336   build(builder, result, vector, dest, indices, permutationMapAttr,
3337         /*mask=*/Value(), inBoundsAttr);
3338 }
3339 
3340 /// 4. Builder with type inference that sets an empty mask and sets permutation
3341 ///    map to 'getMinorIdentityMap'.
3342 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3343                             Value vector, Value dest, ValueRange indices,
3344                             Optional<ArrayRef<bool>> inBounds) {
3345   auto vectorType = vector.getType().cast<VectorType>();
3346   AffineMap permutationMap = getTransferMinorIdentityMap(
3347       dest.getType().cast<ShapedType>(), vectorType);
3348   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3349 }
3350 
3351 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3352                                    OperationState &result) {
3353   auto &builder = parser.getBuilder();
3354   SMLoc typesLoc;
3355   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3356   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3357   SmallVector<Type, 2> types;
3358   OpAsmParser::UnresolvedOperand maskInfo;
3359   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3360       parser.parseOperand(sourceInfo) ||
3361       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3362     return failure();
3363   ParseResult hasMask = parser.parseOptionalComma();
3364   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3365     return failure();
3366   if (parser.parseOptionalAttrDict(result.attributes) ||
3367       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3368     return failure();
3369   if (types.size() != 2)
3370     return parser.emitError(typesLoc, "requires two types");
3371   auto indexType = builder.getIndexType();
3372   VectorType vectorType = types[0].dyn_cast<VectorType>();
3373   if (!vectorType)
3374     return parser.emitError(typesLoc, "requires vector type");
3375   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3376   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3377     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3378   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3379   auto attr = result.attributes.get(permutationAttrName);
3380   if (!attr) {
3381     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3382     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3383   }
3384   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3385       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3386       parser.resolveOperands(indexInfo, indexType, result.operands))
3387     return failure();
3388   if (hasMask.succeeded()) {
3389     if (shapedType.getElementType().dyn_cast<VectorType>())
3390       return parser.emitError(
3391           maskInfo.location, "does not support masks with vector element type");
3392     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3393     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3394       return failure();
3395   }
3396   result.addAttribute(
3397       TransferWriteOp::getOperandSegmentSizeAttr(),
3398       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3399                                 static_cast<int32_t>(hasMask.succeeded())}));
3400   return failure(shapedType.isa<RankedTensorType>() &&
3401                  parser.addTypeToList(shapedType, result.types));
3402 }
3403 
3404 void TransferWriteOp::print(OpAsmPrinter &p) {
3405   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3406   if (getMask())
3407     p << ", " << getMask();
3408   printTransferAttrs(p, *this);
3409   p << " : " << getVectorType() << ", " << getShapedType();
3410 }
3411 
3412 LogicalResult TransferWriteOp::verify() {
3413   // Consistency of elemental types in shape and vector.
3414   ShapedType shapedType = getShapedType();
3415   VectorType vectorType = getVectorType();
3416   VectorType maskType = getMaskType();
3417   auto permutationMap = getPermutationMap();
3418 
3419   if (llvm::size(getIndices()) != shapedType.getRank())
3420     return emitOpError("requires ") << shapedType.getRank() << " indices";
3421 
3422   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3423   // as the semantics is unclear. This can be revisited later if necessary.
3424   if (hasBroadcastDim())
3425     return emitOpError("should not have broadcast dimensions");
3426 
3427   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3428                               shapedType, vectorType, maskType, permutationMap,
3429                               getInBounds() ? *getInBounds() : ArrayAttr())))
3430     return failure();
3431 
3432   return verifyPermutationMap(permutationMap,
3433                               [&](Twine t) { return emitOpError(t); });
3434 }
3435 
3436 /// Fold:
3437 /// ```
3438 ///    %t1 = ...
3439 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3440 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3441 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3442 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3443 /// ```
3444 ///
3445 /// into:
3446 ///
3447 /// ```
3448 ///    %t0
3449 /// ```
3450 ///
3451 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3452 /// block argument or has side effects.
3453 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3454                                        ArrayRef<Attribute>,
3455                                        SmallVectorImpl<OpFoldResult> &results) {
3456   // TODO: support 0-d corner case.
3457   if (write.getTransferRank() == 0)
3458     return failure();
3459   auto rankedTensorType =
3460       write.getSource().getType().dyn_cast<RankedTensorType>();
3461   // If not operating on tensors, bail.
3462   if (!rankedTensorType)
3463     return failure();
3464   // If no read, bail.
3465   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3466   if (!read)
3467     return failure();
3468   // TODO: support 0-d corner case.
3469   if (read.getTransferRank() == 0)
3470     return failure();
3471   // For now, only accept minor identity. Future: composition is minor identity.
3472   if (!read.getPermutationMap().isMinorIdentity() ||
3473       !write.getPermutationMap().isMinorIdentity())
3474     return failure();
3475   // Bail on mismatching ranks.
3476   if (read.getTransferRank() != write.getTransferRank())
3477     return failure();
3478   // Bail on potential out-of-bounds accesses.
3479   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3480     return failure();
3481   // Tensor types must be the same.
3482   if (read.getSource().getType() != rankedTensorType)
3483     return failure();
3484   // Vector types must be the same.
3485   if (read.getVectorType() != write.getVectorType())
3486     return failure();
3487   // Vector and Tensor shapes must match.
3488   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3489     return failure();
3490   // If any index is nonzero.
3491   auto isNotConstantZero = [](Value v) {
3492     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3493     return !cstOp || cstOp.value() != 0;
3494   };
3495   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3496       llvm::any_of(write.getIndices(), isNotConstantZero))
3497     return failure();
3498   // Success.
3499   results.push_back(read.getSource());
3500   return success();
3501 }
3502 
3503 static bool checkSameValueWAR(vector::TransferReadOp read,
3504                               vector::TransferWriteOp write) {
3505   return read.getSource() == write.getSource() &&
3506          read.getIndices() == write.getIndices() &&
3507          read.getPermutationMap() == write.getPermutationMap() &&
3508          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3509          !write.getMask();
3510 }
3511 /// Fold transfer_write write after read:
3512 /// ```
3513 ///    %t0 = ...
3514 ///    %v = vector.transfer_read %t0[%c0...] :
3515 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3516 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3517 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3518 /// ```
3519 ///
3520 /// into:
3521 ///
3522 /// ```
3523 ///    %t0
3524 /// ```
3525 static LogicalResult foldWAR(TransferWriteOp write,
3526                              SmallVectorImpl<OpFoldResult> &results) {
3527   if (!write.getSource().getType().isa<RankedTensorType>())
3528     return failure();
3529   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3530   if (!read)
3531     return failure();
3532 
3533   if (!checkSameValueWAR(read, write))
3534     return failure();
3535   results.push_back(read.getSource());
3536   return success();
3537 }
3538 
3539 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3540                                     SmallVectorImpl<OpFoldResult> &results) {
3541   if (succeeded(foldReadInitWrite(*this, operands, results)))
3542     return success();
3543   if (succeeded(foldWAR(*this, results)))
3544     return success();
3545   if (succeeded(foldTransferInBoundsAttribute(*this)))
3546     return success();
3547   return foldMemRefCast(*this);
3548 }
3549 
3550 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3551   return llvm::to_vector<4>(getVectorType().getShape());
3552 }
3553 
3554 void TransferWriteOp::getEffects(
3555     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3556         &effects) {
3557   if (getShapedType().isa<MemRefType>())
3558     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3559                          SideEffects::DefaultResource::get());
3560 }
3561 
3562 namespace {
3563 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3564 /// DCE
3565 /// ```
3566 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3567 ///    : vector<1x4xf32>, tensor<4x4xf32>
3568 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3569 ///    : vector<1x4xf32>, tensor<4x4xf32>
3570 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3571 ///    : vector<1x4xf32>, tensor<4x4xf32>
3572 /// ```
3573 ///
3574 /// into:
3575 ///
3576 /// ```
3577 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3578 ///    : vector<1x4xf32>, tensor<4x4xf32>
3579 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3580 ///    : vector<1x4xf32>, tensor<4x4xf32>
3581 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3582 ///    : vector<1x4xf32>, tensor<4x4xf32>
3583 /// ```
3584 ///
3585 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3586 /// any other uses.
3587 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3588 public:
3589   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3590   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3591                                 PatternRewriter &rewriter) const override {
3592     if (!writeOp.getShapedType().isa<RankedTensorType>())
3593       return failure();
3594     vector::TransferWriteOp writeToModify = writeOp;
3595 
3596     auto defWrite =
3597         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3598     while (defWrite) {
3599       if (checkSameValueWAW(writeOp, defWrite)) {
3600         writeToModify.getSourceMutable().assign(defWrite.getSource());
3601         return success();
3602       }
3603       if (!isDisjointTransferIndices(
3604               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3605               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3606         break;
3607       // If the previous write op doesn't have any other use we an safely look
3608       // at the previous store to see if it can be removed.
3609       if (!defWrite->hasOneUse())
3610         break;
3611       writeToModify = defWrite;
3612       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3613     }
3614     return failure();
3615   }
3616 };
3617 
3618 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3619 /// could directly write to the insert_slice's destination. E.g.:
3620 ///
3621 /// ```
3622 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3623 ///     : vector<4x5xf32>, tensor<4x5xf32>
3624 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3625 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3626 /// ```
3627 /// is rewritten to:
3628 /// ```
3629 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3630 ///     : vector<4x5xf32>, tensor<?x?xf32>
3631 /// ```
3632 struct FoldInsertSliceIntoTransferWrite
3633     : public OpRewritePattern<tensor::InsertSliceOp> {
3634 public:
3635   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3636 
3637   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3638                                 PatternRewriter &rewriter) const override {
3639     if (!insertOp.hasUnitStride())
3640       return failure();
3641 
3642     auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>();
3643     if (!xferOp)
3644       return failure();
3645     // TODO: support 0-d corner case.
3646     if (xferOp.getTransferRank() == 0)
3647       return failure();
3648 
3649     if (xferOp.hasOutOfBoundsDim())
3650       return failure();
3651     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3652       return failure();
3653     if (xferOp.getMask())
3654       return failure();
3655     // Fold only if the TransferWriteOp completely overwrites the `source` with
3656     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3657     // content is the data of the vector.
3658     if (!llvm::equal(xferOp.getVectorType().getShape(),
3659                      xferOp.getShapedType().getShape()))
3660       return failure();
3661     if (!xferOp.getPermutationMap().isIdentity())
3662       return failure();
3663 
3664     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3665     // dims are exactly the leading dims. I.e. the following is illegal:
3666     // ```
3667     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3668     //      vector<2x4xf32>, tensor<2x4xf32>
3669     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3670     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3671     // ```
3672     //
3673     // Cannot fold into:
3674     // ```
3675     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3676     //      vector<2x4xf32>, tensor<2x1x4xf32>
3677     // ```
3678     // For this, check the trailing `vectorRank` dims of the insert_slice result
3679     // tensor match the trailing dims of the inferred result tensor.
3680     int64_t rankReduced =
3681         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3682     int64_t vectorRank = xferOp.getVectorType().getRank();
3683     RankedTensorType inferredSourceTensorType =
3684         tensor::ExtractSliceOp::inferResultType(
3685             insertOp.getType(), insertOp.getMixedOffsets(),
3686             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3687     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3688     if (rankReduced > 0 &&
3689         actualSourceTensorShape.take_back(vectorRank) !=
3690             inferredSourceTensorType.getShape().take_back(vectorRank))
3691       return failure();
3692 
3693     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3694         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3695     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3696     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3697                                                  insertOp.getDest(), indices,
3698                                                  ArrayRef<bool>{inBounds});
3699     return success();
3700   }
3701 };
3702 
3703 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3704 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3705 /// overwritten and inserted into another tensor. After this rewrite, the
3706 /// operations bufferize in-place since all of them work on the same slice.
3707 ///
3708 /// For example:
3709 /// ```mlir
3710 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3711 ///        : vector<8x16xf32>, tensor<8x16xf32>
3712 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3713 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3714 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3715 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3716 /// ```
3717 /// folds to
3718 /// ```mlir
3719 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3720 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3721 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3722 ///        : vector<8x16xf32>, tensor<?x?xf32>
3723 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3724 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3725 /// ```
3726 struct SwapExtractSliceOfTransferWrite
3727     : public OpRewritePattern<tensor::InsertSliceOp> {
3728 public:
3729   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3730 
3731   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3732                                 PatternRewriter &rewriter) const override {
3733     if (!insertOp.hasUnitStride())
3734       return failure();
3735     auto extractOp =
3736         insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3737     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3738       return failure();
3739     auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
3740     if (!transferOp || !transferOp->hasOneUse())
3741       return failure();
3742 
3743     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3744     // rank-reducing.
3745     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3746       return rewriter.notifyMatchFailure(insertOp,
3747                                          "use-def chain is rank-reducing");
3748     }
3749 
3750     // Fail if tensor::ExtractSliceOp has non-zero offset.
3751     if (!extractOp.hasZeroOffset()) {
3752       return rewriter.notifyMatchFailure(insertOp,
3753                                          "ExtractSliceOp has non-zero offset");
3754     }
3755 
3756     // Fail if tensor::TransferWriteOp has non-zero offset.
3757     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3758           return getConstantIntValue(value) == static_cast<int64_t>(0);
3759         })) {
3760       return rewriter.notifyMatchFailure(insertOp,
3761                                          "TranferWriteOp has non-zero offset");
3762     }
3763 
3764     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3765     for (const auto &it :
3766          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3767       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3768         return rewriter.notifyMatchFailure(
3769             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3770       }
3771     }
3772 
3773     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3774     assert(transferOp.getVectorType().hasStaticShape() &&
3775            "expected vector to have a static shape");
3776     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3777     SmallVector<int64_t> resultShape = applyPermutationMap(
3778         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3779     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3780       return rewriter.notifyMatchFailure(
3781           insertOp, "TransferWriteOp may not write the full tensor.");
3782     }
3783 
3784     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3785     SmallVector<int64_t> newResultShape = applyPermutationMap(
3786         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3787     SmallVector<bool> newInBounds;
3788     for (const auto &en : enumerate(newResultShape))
3789       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3790     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3791         extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
3792         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3793         insertOp.getMixedStrides());
3794     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3795         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3796         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3797         rewriter.getBoolArrayAttr(newInBounds));
3798     rewriter.updateRootInPlace(insertOp, [&]() {
3799       insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
3800     });
3801     return success();
3802   }
3803 };
3804 
3805 } // namespace
3806 
3807 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3808                                                   MLIRContext *context) {
3809   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3810               SwapExtractSliceOfTransferWrite>(context);
3811 }
3812 
3813 //===----------------------------------------------------------------------===//
3814 // LoadOp
3815 //===----------------------------------------------------------------------===//
3816 
3817 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3818                                                  MemRefType memRefTy) {
3819   if (!isLastMemrefDimUnitStride(memRefTy))
3820     return op->emitOpError("most minor memref dim must have unit stride");
3821   return success();
3822 }
3823 
3824 LogicalResult vector::LoadOp::verify() {
3825   VectorType resVecTy = getVectorType();
3826   MemRefType memRefTy = getMemRefType();
3827 
3828   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3829     return failure();
3830 
3831   // Checks for vector memrefs.
3832   Type memElemTy = memRefTy.getElementType();
3833   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3834     if (memVecTy != resVecTy)
3835       return emitOpError("base memref and result vector types should match");
3836     memElemTy = memVecTy.getElementType();
3837   }
3838 
3839   if (resVecTy.getElementType() != memElemTy)
3840     return emitOpError("base and result element types should match");
3841   if (llvm::size(getIndices()) != memRefTy.getRank())
3842     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3843   return success();
3844 }
3845 
3846 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3847   if (succeeded(foldMemRefCast(*this)))
3848     return getResult();
3849   return OpFoldResult();
3850 }
3851 
3852 //===----------------------------------------------------------------------===//
3853 // StoreOp
3854 //===----------------------------------------------------------------------===//
3855 
3856 LogicalResult vector::StoreOp::verify() {
3857   VectorType valueVecTy = getVectorType();
3858   MemRefType memRefTy = getMemRefType();
3859 
3860   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3861     return failure();
3862 
3863   // Checks for vector memrefs.
3864   Type memElemTy = memRefTy.getElementType();
3865   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3866     if (memVecTy != valueVecTy)
3867       return emitOpError(
3868           "base memref and valueToStore vector types should match");
3869     memElemTy = memVecTy.getElementType();
3870   }
3871 
3872   if (valueVecTy.getElementType() != memElemTy)
3873     return emitOpError("base and valueToStore element type should match");
3874   if (llvm::size(getIndices()) != memRefTy.getRank())
3875     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3876   return success();
3877 }
3878 
3879 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3880                             SmallVectorImpl<OpFoldResult> &results) {
3881   return foldMemRefCast(*this);
3882 }
3883 
3884 //===----------------------------------------------------------------------===//
3885 // MaskedLoadOp
3886 //===----------------------------------------------------------------------===//
3887 
3888 LogicalResult MaskedLoadOp::verify() {
3889   VectorType maskVType = getMaskVectorType();
3890   VectorType passVType = getPassThruVectorType();
3891   VectorType resVType = getVectorType();
3892   MemRefType memType = getMemRefType();
3893 
3894   if (resVType.getElementType() != memType.getElementType())
3895     return emitOpError("base and result element type should match");
3896   if (llvm::size(getIndices()) != memType.getRank())
3897     return emitOpError("requires ") << memType.getRank() << " indices";
3898   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3899     return emitOpError("expected result dim to match mask dim");
3900   if (resVType != passVType)
3901     return emitOpError("expected pass_thru of same type as result type");
3902   return success();
3903 }
3904 
3905 namespace {
3906 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3907 public:
3908   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3909   LogicalResult matchAndRewrite(MaskedLoadOp load,
3910                                 PatternRewriter &rewriter) const override {
3911     switch (get1DMaskFormat(load.getMask())) {
3912     case MaskFormat::AllTrue:
3913       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3914           load, load.getType(), load.getBase(), load.getIndices());
3915       return success();
3916     case MaskFormat::AllFalse:
3917       rewriter.replaceOp(load, load.getPassThru());
3918       return success();
3919     case MaskFormat::Unknown:
3920       return failure();
3921     }
3922     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3923   }
3924 };
3925 } // namespace
3926 
3927 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3928                                                MLIRContext *context) {
3929   results.add<MaskedLoadFolder>(context);
3930 }
3931 
3932 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3933   if (succeeded(foldMemRefCast(*this)))
3934     return getResult();
3935   return OpFoldResult();
3936 }
3937 
3938 //===----------------------------------------------------------------------===//
3939 // MaskedStoreOp
3940 //===----------------------------------------------------------------------===//
3941 
3942 LogicalResult MaskedStoreOp::verify() {
3943   VectorType maskVType = getMaskVectorType();
3944   VectorType valueVType = getVectorType();
3945   MemRefType memType = getMemRefType();
3946 
3947   if (valueVType.getElementType() != memType.getElementType())
3948     return emitOpError("base and valueToStore element type should match");
3949   if (llvm::size(getIndices()) != memType.getRank())
3950     return emitOpError("requires ") << memType.getRank() << " indices";
3951   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3952     return emitOpError("expected valueToStore dim to match mask dim");
3953   return success();
3954 }
3955 
3956 namespace {
3957 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3958 public:
3959   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3960   LogicalResult matchAndRewrite(MaskedStoreOp store,
3961                                 PatternRewriter &rewriter) const override {
3962     switch (get1DMaskFormat(store.getMask())) {
3963     case MaskFormat::AllTrue:
3964       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3965           store, store.getValueToStore(), store.getBase(), store.getIndices());
3966       return success();
3967     case MaskFormat::AllFalse:
3968       rewriter.eraseOp(store);
3969       return success();
3970     case MaskFormat::Unknown:
3971       return failure();
3972     }
3973     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3974   }
3975 };
3976 } // namespace
3977 
3978 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3979                                                 MLIRContext *context) {
3980   results.add<MaskedStoreFolder>(context);
3981 }
3982 
3983 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3984                                   SmallVectorImpl<OpFoldResult> &results) {
3985   return foldMemRefCast(*this);
3986 }
3987 
3988 //===----------------------------------------------------------------------===//
3989 // GatherOp
3990 //===----------------------------------------------------------------------===//
3991 
3992 LogicalResult GatherOp::verify() {
3993   VectorType indVType = getIndexVectorType();
3994   VectorType maskVType = getMaskVectorType();
3995   VectorType resVType = getVectorType();
3996   MemRefType memType = getMemRefType();
3997 
3998   if (resVType.getElementType() != memType.getElementType())
3999     return emitOpError("base and result element type should match");
4000   if (llvm::size(getIndices()) != memType.getRank())
4001     return emitOpError("requires ") << memType.getRank() << " indices";
4002   if (resVType.getDimSize(0) != indVType.getDimSize(0))
4003     return emitOpError("expected result dim to match indices dim");
4004   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
4005     return emitOpError("expected result dim to match mask dim");
4006   if (resVType != getPassThruVectorType())
4007     return emitOpError("expected pass_thru of same type as result type");
4008   return success();
4009 }
4010 
4011 namespace {
4012 class GatherFolder final : public OpRewritePattern<GatherOp> {
4013 public:
4014   using OpRewritePattern<GatherOp>::OpRewritePattern;
4015   LogicalResult matchAndRewrite(GatherOp gather,
4016                                 PatternRewriter &rewriter) const override {
4017     switch (get1DMaskFormat(gather.getMask())) {
4018     case MaskFormat::AllTrue:
4019       return failure(); // no unmasked equivalent
4020     case MaskFormat::AllFalse:
4021       rewriter.replaceOp(gather, gather.getPassThru());
4022       return success();
4023     case MaskFormat::Unknown:
4024       return failure();
4025     }
4026     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
4027   }
4028 };
4029 } // namespace
4030 
4031 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
4032                                            MLIRContext *context) {
4033   results.add<GatherFolder>(context);
4034 }
4035 
4036 //===----------------------------------------------------------------------===//
4037 // ScatterOp
4038 //===----------------------------------------------------------------------===//
4039 
4040 LogicalResult ScatterOp::verify() {
4041   VectorType indVType = getIndexVectorType();
4042   VectorType maskVType = getMaskVectorType();
4043   VectorType valueVType = getVectorType();
4044   MemRefType memType = getMemRefType();
4045 
4046   if (valueVType.getElementType() != memType.getElementType())
4047     return emitOpError("base and valueToStore element type should match");
4048   if (llvm::size(getIndices()) != memType.getRank())
4049     return emitOpError("requires ") << memType.getRank() << " indices";
4050   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
4051     return emitOpError("expected valueToStore dim to match indices dim");
4052   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4053     return emitOpError("expected valueToStore dim to match mask dim");
4054   return success();
4055 }
4056 
4057 namespace {
4058 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
4059 public:
4060   using OpRewritePattern<ScatterOp>::OpRewritePattern;
4061   LogicalResult matchAndRewrite(ScatterOp scatter,
4062                                 PatternRewriter &rewriter) const override {
4063     switch (get1DMaskFormat(scatter.getMask())) {
4064     case MaskFormat::AllTrue:
4065       return failure(); // no unmasked equivalent
4066     case MaskFormat::AllFalse:
4067       rewriter.eraseOp(scatter);
4068       return success();
4069     case MaskFormat::Unknown:
4070       return failure();
4071     }
4072     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
4073   }
4074 };
4075 } // namespace
4076 
4077 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
4078                                             MLIRContext *context) {
4079   results.add<ScatterFolder>(context);
4080 }
4081 
4082 //===----------------------------------------------------------------------===//
4083 // ExpandLoadOp
4084 //===----------------------------------------------------------------------===//
4085 
4086 LogicalResult ExpandLoadOp::verify() {
4087   VectorType maskVType = getMaskVectorType();
4088   VectorType passVType = getPassThruVectorType();
4089   VectorType resVType = getVectorType();
4090   MemRefType memType = getMemRefType();
4091 
4092   if (resVType.getElementType() != memType.getElementType())
4093     return emitOpError("base and result element type should match");
4094   if (llvm::size(getIndices()) != memType.getRank())
4095     return emitOpError("requires ") << memType.getRank() << " indices";
4096   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
4097     return emitOpError("expected result dim to match mask dim");
4098   if (resVType != passVType)
4099     return emitOpError("expected pass_thru of same type as result type");
4100   return success();
4101 }
4102 
4103 namespace {
4104 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
4105 public:
4106   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
4107   LogicalResult matchAndRewrite(ExpandLoadOp expand,
4108                                 PatternRewriter &rewriter) const override {
4109     switch (get1DMaskFormat(expand.getMask())) {
4110     case MaskFormat::AllTrue:
4111       rewriter.replaceOpWithNewOp<vector::LoadOp>(
4112           expand, expand.getType(), expand.getBase(), expand.getIndices());
4113       return success();
4114     case MaskFormat::AllFalse:
4115       rewriter.replaceOp(expand, expand.getPassThru());
4116       return success();
4117     case MaskFormat::Unknown:
4118       return failure();
4119     }
4120     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4121   }
4122 };
4123 } // namespace
4124 
4125 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4126                                                MLIRContext *context) {
4127   results.add<ExpandLoadFolder>(context);
4128 }
4129 
4130 //===----------------------------------------------------------------------===//
4131 // CompressStoreOp
4132 //===----------------------------------------------------------------------===//
4133 
4134 LogicalResult CompressStoreOp::verify() {
4135   VectorType maskVType = getMaskVectorType();
4136   VectorType valueVType = getVectorType();
4137   MemRefType memType = getMemRefType();
4138 
4139   if (valueVType.getElementType() != memType.getElementType())
4140     return emitOpError("base and valueToStore element type should match");
4141   if (llvm::size(getIndices()) != memType.getRank())
4142     return emitOpError("requires ") << memType.getRank() << " indices";
4143   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4144     return emitOpError("expected valueToStore dim to match mask dim");
4145   return success();
4146 }
4147 
4148 namespace {
4149 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4150 public:
4151   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4152   LogicalResult matchAndRewrite(CompressStoreOp compress,
4153                                 PatternRewriter &rewriter) const override {
4154     switch (get1DMaskFormat(compress.getMask())) {
4155     case MaskFormat::AllTrue:
4156       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4157           compress, compress.getValueToStore(), compress.getBase(),
4158           compress.getIndices());
4159       return success();
4160     case MaskFormat::AllFalse:
4161       rewriter.eraseOp(compress);
4162       return success();
4163     case MaskFormat::Unknown:
4164       return failure();
4165     }
4166     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4167   }
4168 };
4169 } // namespace
4170 
4171 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4172                                                   MLIRContext *context) {
4173   results.add<CompressStoreFolder>(context);
4174 }
4175 
4176 //===----------------------------------------------------------------------===//
4177 // ShapeCastOp
4178 //===----------------------------------------------------------------------===//
4179 
4180 /// Returns true if each element of 'a' is equal to the product of a contiguous
4181 /// sequence of the elements of 'b'. Returns false otherwise.
4182 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4183   unsigned rankA = a.size();
4184   unsigned rankB = b.size();
4185   assert(rankA < rankB);
4186 
4187   unsigned i = 0;
4188   unsigned j = 0;
4189   while (i < rankA && j < rankB) {
4190     int64_t dimA = a[i];
4191     int64_t dimB = 1;
4192     while (dimB < dimA && j < rankB)
4193       dimB *= b[j++];
4194     if (dimA != dimB)
4195       break;
4196     ++i;
4197 
4198     // Handle the case when trailing dimensions are of size 1.
4199     // Include them into the contiguous sequence.
4200     auto isOne = [](int64_t v) { return v == 1; };
4201     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4202       i = rankA;
4203     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4204       j = rankB;
4205   }
4206 
4207   return i == rankA && j == rankB;
4208 }
4209 
4210 static LogicalResult verifyVectorShapeCast(Operation *op,
4211                                            VectorType sourceVectorType,
4212                                            VectorType resultVectorType) {
4213   // Check that element type is the same.
4214   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4215     return op->emitOpError("source/result vectors must have same element type");
4216   auto sourceShape = sourceVectorType.getShape();
4217   auto resultShape = resultVectorType.getShape();
4218 
4219   // Check that product of source dim sizes matches product of result dim sizes.
4220   int64_t sourceDimProduct = std::accumulate(
4221       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4222   int64_t resultDimProduct = std::accumulate(
4223       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4224   if (sourceDimProduct != resultDimProduct)
4225     return op->emitOpError("source/result number of elements must match");
4226 
4227   // Check that expanding/contracting rank cases.
4228   unsigned sourceRank = sourceVectorType.getRank();
4229   unsigned resultRank = resultVectorType.getRank();
4230   if (sourceRank < resultRank) {
4231     if (!isValidShapeCast(sourceShape, resultShape))
4232       return op->emitOpError("invalid shape cast");
4233   } else if (sourceRank > resultRank) {
4234     if (!isValidShapeCast(resultShape, sourceShape))
4235       return op->emitOpError("invalid shape cast");
4236   }
4237   return success();
4238 }
4239 
4240 LogicalResult ShapeCastOp::verify() {
4241   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4242   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4243 
4244   // Check if source/result are of vector type.
4245   if (sourceVectorType && resultVectorType)
4246     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4247 
4248   return success();
4249 }
4250 
4251 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4252   // No-op shape cast.
4253   if (getSource().getType() == getResult().getType())
4254     return getSource();
4255 
4256   // Canceling shape casts.
4257   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4258     if (getResult().getType() == otherOp.getSource().getType())
4259       return otherOp.getSource();
4260 
4261     // Only allows valid transitive folding.
4262     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4263     VectorType resultType = getResult().getType().cast<VectorType>();
4264     if (srcType.getRank() < resultType.getRank()) {
4265       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4266         return {};
4267     } else if (srcType.getRank() > resultType.getRank()) {
4268       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4269         return {};
4270     } else {
4271       return {};
4272     }
4273 
4274     setOperand(otherOp.getSource());
4275     return getResult();
4276   }
4277 
4278   // Cancelling broadcast and shape cast ops.
4279   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4280     if (bcastOp.getSourceType() == getType())
4281       return bcastOp.getSource();
4282   }
4283 
4284   return {};
4285 }
4286 
4287 namespace {
4288 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4289 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4290 public:
4291   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4292 
4293   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4294                                 PatternRewriter &rewriter) const override {
4295     auto constantOp =
4296         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4297     if (!constantOp)
4298       return failure();
4299     // Only handle splat for now.
4300     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4301     if (!dense)
4302       return failure();
4303     auto newAttr =
4304         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4305                                dense.getSplatValue<Attribute>());
4306     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4307     return success();
4308   }
4309 };
4310 
4311 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast.
4312 /// This only applies when the shape of the broadcast source is a suffix of the
4313 /// shape of the result (i.e. when broadcast without reshape is expressive
4314 /// enough to capture the result in a single op).
4315 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
4316 public:
4317   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4318 
4319   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4320                                 PatternRewriter &rewriter) const override {
4321     auto broadcastOp =
4322         shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
4323     if (!broadcastOp)
4324       return failure();
4325 
4326     auto broadcastSourceVectorType =
4327         broadcastOp.getSourceType().dyn_cast<VectorType>();
4328     auto broadcastSourceShape = broadcastSourceVectorType
4329                                     ? broadcastSourceVectorType.getShape()
4330                                     : ArrayRef<int64_t>{};
4331     auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape();
4332 
4333     // Bail if `broadcastSourceShape` is not a suffix of the result.
4334     bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back(
4335                                                  broadcastSourceShape.size()));
4336     if (!isSuffix)
4337       return failure();
4338 
4339     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4340         shapeCastOp, shapeCastOp.getResultVectorType(),
4341         broadcastOp.getSource());
4342     return success();
4343   }
4344 };
4345 
4346 } // namespace
4347 
4348 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4349                                               MLIRContext *context) {
4350   results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context);
4351 }
4352 
4353 //===----------------------------------------------------------------------===//
4354 // VectorBitCastOp
4355 //===----------------------------------------------------------------------===//
4356 
4357 LogicalResult BitCastOp::verify() {
4358   auto sourceVectorType = getSourceVectorType();
4359   auto resultVectorType = getResultVectorType();
4360 
4361   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4362     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4363       return emitOpError("dimension size mismatch at: ") << i;
4364   }
4365 
4366   DataLayout dataLayout = DataLayout::closest(*this);
4367   auto sourceElementBits =
4368       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4369   auto resultElementBits =
4370       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4371 
4372   if (sourceVectorType.getRank() == 0) {
4373     if (sourceElementBits != resultElementBits)
4374       return emitOpError("source/result bitwidth of the 0-D vector element "
4375                          "types must be equal");
4376   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4377              resultElementBits * resultVectorType.getShape().back()) {
4378     return emitOpError(
4379         "source/result bitwidth of the minor 1-D vectors must be equal");
4380   }
4381 
4382   return success();
4383 }
4384 
4385 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4386   // Nop cast.
4387   if (getSource().getType() == getResult().getType())
4388     return getSource();
4389 
4390   // Canceling bitcasts.
4391   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4392     if (getResult().getType() == otherOp.getSource().getType())
4393       return otherOp.getSource();
4394 
4395     setOperand(otherOp.getSource());
4396     return getResult();
4397   }
4398 
4399   Attribute sourceConstant = operands.front();
4400   if (!sourceConstant)
4401     return {};
4402 
4403   Type srcElemType = getSourceVectorType().getElementType();
4404   Type dstElemType = getResultVectorType().getElementType();
4405 
4406   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4407     if (floatPack.isSplat()) {
4408       auto splat = floatPack.getSplatValue<FloatAttr>();
4409 
4410       // Casting fp16 into fp32.
4411       if (srcElemType.isF16() && dstElemType.isF32()) {
4412         uint32_t bits = static_cast<uint32_t>(
4413             splat.getValue().bitcastToAPInt().getZExtValue());
4414         // Duplicate the 16-bit pattern.
4415         bits = (bits << 16) | (bits & 0xffff);
4416         APInt intBits(32, bits);
4417         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4418         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4419       }
4420     }
4421   }
4422 
4423   return {};
4424 }
4425 
4426 //===----------------------------------------------------------------------===//
4427 // TypeCastOp
4428 //===----------------------------------------------------------------------===//
4429 
4430 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4431   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4432   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4433                               memRefType.getShape().end());
4434   if (vectorType)
4435     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4436   return res;
4437 }
4438 
4439 /// Build the canonical memRefType with a single vector.
4440 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4441 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4442                        Value source) {
4443   result.addOperands(source);
4444   MemRefType memRefType = source.getType().cast<MemRefType>();
4445   VectorType vectorType =
4446       VectorType::get(extractShape(memRefType),
4447                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4448   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4449                                   memRefType.getMemorySpace()));
4450 }
4451 
4452 LogicalResult TypeCastOp::verify() {
4453   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4454   if (!canonicalType.getLayout().isIdentity())
4455     return emitOpError("expects operand to be a memref with identity layout");
4456   if (!getResultMemRefType().getLayout().isIdentity())
4457     return emitOpError("expects result to be a memref with identity layout");
4458   if (getResultMemRefType().getMemorySpace() !=
4459       getMemRefType().getMemorySpace())
4460     return emitOpError("expects result in same memory space");
4461 
4462   auto sourceType = getMemRefType();
4463   auto resultType = getResultMemRefType();
4464   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4465       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4466     return emitOpError(
4467                "expects result and operand with same underlying scalar type: ")
4468            << resultType;
4469   if (extractShape(sourceType) != extractShape(resultType))
4470     return emitOpError(
4471                "expects concatenated result and operand shapes to be equal: ")
4472            << resultType;
4473   return success();
4474 }
4475 
4476 //===----------------------------------------------------------------------===//
4477 // TransposeOp
4478 //===----------------------------------------------------------------------===//
4479 
4480 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4481                                 Value vector, ArrayRef<int64_t> transp) {
4482   VectorType vt = vector.getType().cast<VectorType>();
4483   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4484   for (unsigned i = 0; i < transp.size(); ++i)
4485     transposedShape[i] = vt.getShape()[transp[i]];
4486 
4487   result.addOperands(vector);
4488   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4489   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4490 }
4491 
4492 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4493   // Eliminate splat constant transpose ops.
4494   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4495     if (attr.isSplat())
4496       return attr.reshape(getResultType());
4497 
4498   // Eliminate identity transpose ops. This happens when the dimensions of the
4499   // input vector remain in their original order after the transpose operation.
4500   SmallVector<int64_t, 4> transp;
4501   getTransp(transp);
4502 
4503   // Check if the permutation of the dimensions contains sequential values:
4504   // {0, 1, 2, ...}.
4505   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4506     if (transp[i] != i)
4507       return {};
4508   }
4509 
4510   return getVector();
4511 }
4512 
4513 LogicalResult vector::TransposeOp::verify() {
4514   VectorType vectorType = getVectorType();
4515   VectorType resultType = getResultType();
4516   int64_t rank = resultType.getRank();
4517   if (vectorType.getRank() != rank)
4518     return emitOpError("vector result rank mismatch: ") << rank;
4519   // Verify transposition array.
4520   auto transpAttr = getTransp().getValue();
4521   int64_t size = transpAttr.size();
4522   if (rank != size)
4523     return emitOpError("transposition length mismatch: ") << size;
4524   SmallVector<bool, 8> seen(rank, false);
4525   for (const auto &ta : llvm::enumerate(transpAttr)) {
4526     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4527     if (i < 0 || i >= rank)
4528       return emitOpError("transposition index out of range: ") << i;
4529     if (seen[i])
4530       return emitOpError("duplicate position index: ") << i;
4531     seen[i] = true;
4532     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4533       return emitOpError("dimension size mismatch at: ") << i;
4534   }
4535   return success();
4536 }
4537 
4538 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4539   return llvm::to_vector<4>(getResultType().getShape());
4540 }
4541 
4542 namespace {
4543 
4544 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4545 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4546 public:
4547   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4548 
4549   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4550                                 PatternRewriter &rewriter) const override {
4551     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4552     auto getPermutation = [](vector::TransposeOp transpose) {
4553       SmallVector<int64_t, 4> permutation;
4554       transpose.getTransp(permutation);
4555       return permutation;
4556     };
4557 
4558     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4559     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4560                                   ArrayRef<int64_t> permutation2) {
4561       SmallVector<int64_t, 4> result;
4562       for (auto index : permutation2)
4563         result.push_back(permutation1[index]);
4564       return result;
4565     };
4566 
4567     // Return if the input of 'transposeOp' is not defined by another transpose.
4568     vector::TransposeOp parentTransposeOp =
4569         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4570     if (!parentTransposeOp)
4571       return failure();
4572 
4573     SmallVector<int64_t, 4> permutation = composePermutations(
4574         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4575     // Replace 'transposeOp' with a new transpose operation.
4576     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4577         transposeOp, transposeOp.getResult().getType(),
4578         parentTransposeOp.getVector(),
4579         vector::getVectorSubscriptAttr(rewriter, permutation));
4580     return success();
4581   }
4582 };
4583 
4584 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4585 struct FoldTransposedScalarBroadcast final
4586     : public OpRewritePattern<vector::TransposeOp> {
4587   using OpRewritePattern::OpRewritePattern;
4588 
4589   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4590                                 PatternRewriter &rewriter) const override {
4591     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4592     if (!bcastOp)
4593       return failure();
4594 
4595     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4596     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4597       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4598           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4599       return success();
4600     }
4601 
4602     return failure();
4603   }
4604 };
4605 
4606 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4607 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4608 public:
4609   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4610 
4611   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4612                                 PatternRewriter &rewriter) const override {
4613     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4614     if (!splatOp)
4615       return failure();
4616 
4617     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4618         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4619     return success();
4620   }
4621 };
4622 
4623 } // namespace
4624 
4625 void vector::TransposeOp::getCanonicalizationPatterns(
4626     RewritePatternSet &results, MLIRContext *context) {
4627   results
4628       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4629           context);
4630 }
4631 
4632 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4633   populateFromInt64AttrArray(getTransp(), results);
4634 }
4635 
4636 //===----------------------------------------------------------------------===//
4637 // ConstantMaskOp
4638 //===----------------------------------------------------------------------===//
4639 
4640 LogicalResult ConstantMaskOp::verify() {
4641   auto resultType = getResult().getType().cast<VectorType>();
4642   // Check the corner case of 0-D vectors first.
4643   if (resultType.getRank() == 0) {
4644     if (getMaskDimSizes().size() != 1)
4645       return emitError("array attr must have length 1 for 0-D vectors");
4646     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4647     if (dim != 0 && dim != 1)
4648       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4649     return success();
4650   }
4651 
4652   // Verify that array attr size matches the rank of the vector result.
4653   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4654     return emitOpError(
4655         "must specify array attr of size equal vector result rank");
4656   // Verify that each array attr element is in bounds of corresponding vector
4657   // result dimension size.
4658   auto resultShape = resultType.getShape();
4659   SmallVector<int64_t, 4> maskDimSizes;
4660   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4661     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4662     if (attrValue < 0 || attrValue > resultShape[it.index()])
4663       return emitOpError(
4664           "array attr of size out of bounds of vector result dimension size");
4665     maskDimSizes.push_back(attrValue);
4666   }
4667   // Verify that if one mask dim size is zero, they all should be zero (because
4668   // the mask region is a conjunction of each mask dimension interval).
4669   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4670   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4671   if (anyZeros && !allZeros)
4672     return emitOpError("expected all mask dim sizes to be zeros, "
4673                        "as a result of conjunction with zero mask dim");
4674   // Verify that if the mask type is scalable, dimensions should be zero because
4675   // constant scalable masks can only be defined for the "none set" or "all set"
4676   // cases, and there is no VLA way to define an "all set" case for
4677   // `vector.constant_mask`. In the future, a convention could be established
4678   // to decide if a specific dimension value could be considered as "all set".
4679   if (resultType.isScalable() &&
4680       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4681     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4682   return success();
4683 }
4684 
4685 //===----------------------------------------------------------------------===//
4686 // CreateMaskOp
4687 //===----------------------------------------------------------------------===//
4688 
4689 LogicalResult CreateMaskOp::verify() {
4690   auto vectorType = getResult().getType().cast<VectorType>();
4691   // Verify that an operand was specified for each result vector each dimension.
4692   if (vectorType.getRank() == 0) {
4693     if (getNumOperands() != 1)
4694       return emitOpError(
4695           "must specify exactly one operand for 0-D create_mask");
4696   } else if (getNumOperands() !=
4697              getResult().getType().cast<VectorType>().getRank()) {
4698     return emitOpError(
4699         "must specify an operand for each result vector dimension");
4700   }
4701   return success();
4702 }
4703 
4704 namespace {
4705 
4706 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4707 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4708 public:
4709   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4710 
4711   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4712                                 PatternRewriter &rewriter) const override {
4713     // Return if any of 'createMaskOp' operands are not defined by a constant.
4714     auto isNotDefByConstant = [](Value operand) {
4715       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4716     };
4717     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4718       return failure();
4719 
4720     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4721     // are negative or zero.
4722     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4723       if (vType.isScalable())
4724         for (auto opDim : createMaskOp.getOperands()) {
4725           APInt intVal;
4726           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4727               intVal.isStrictlyPositive())
4728             return failure();
4729         }
4730     }
4731 
4732     // Gather constant mask dimension sizes.
4733     SmallVector<int64_t, 4> maskDimSizes;
4734     for (auto it : llvm::zip(createMaskOp.operands(),
4735                              createMaskOp.getType().getShape())) {
4736       auto *defOp = std::get<0>(it).getDefiningOp();
4737       int64_t maxDimSize = std::get<1>(it);
4738       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4739       dimSize = std::min(dimSize, maxDimSize);
4740       // If one of dim sizes is zero, set all dims to zero.
4741       if (dimSize <= 0) {
4742         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4743         break;
4744       }
4745       maskDimSizes.push_back(dimSize);
4746     }
4747     // Replace 'createMaskOp' with ConstantMaskOp.
4748     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4749         createMaskOp, createMaskOp.getResult().getType(),
4750         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4751     return success();
4752   }
4753 };
4754 
4755 } // namespace
4756 
4757 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4758                                                MLIRContext *context) {
4759   results.add<CreateMaskFolder>(context);
4760 }
4761 
4762 //===----------------------------------------------------------------------===//
4763 // ScanOp
4764 //===----------------------------------------------------------------------===//
4765 
4766 LogicalResult ScanOp::verify() {
4767   VectorType srcType = getSourceType();
4768   VectorType initialType = getInitialValueType();
4769   // Check reduction dimension < rank.
4770   int64_t srcRank = srcType.getRank();
4771   int64_t reductionDim = getReductionDim();
4772   if (reductionDim >= srcRank)
4773     return emitOpError("reduction dimension ")
4774            << reductionDim << " has to be less than " << srcRank;
4775 
4776   // Check that rank(initial_value) = rank(src) - 1.
4777   int64_t initialValueRank = initialType.getRank();
4778   if (initialValueRank != srcRank - 1)
4779     return emitOpError("initial value rank ")
4780            << initialValueRank << " has to be equal to " << srcRank - 1;
4781 
4782   // Check shapes of initial value and src.
4783   ArrayRef<int64_t> srcShape = srcType.getShape();
4784   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4785   SmallVector<int64_t> expectedShape;
4786   for (int i = 0; i < srcRank; i++) {
4787     if (i != reductionDim)
4788       expectedShape.push_back(srcShape[i]);
4789   }
4790   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4791                    [](std::tuple<int64_t, int64_t> s) {
4792                      return std::get<0>(s) != std::get<1>(s);
4793                    })) {
4794     return emitOpError("incompatible input/initial value shapes");
4795   }
4796 
4797   // Verify supported reduction kind.
4798   Type eltType = getDestType().getElementType();
4799   if (!isSupportedCombiningKind(getKind(), eltType))
4800     return emitOpError("unsupported reduction type ")
4801            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4802            << "'";
4803 
4804   return success();
4805 }
4806 
4807 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4808     RewritePatternSet &patterns) {
4809   patterns
4810       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4811            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4812            StridedSliceConstantMaskFolder, TransposeFolder>(
4813           patterns.getContext());
4814 }
4815 
4816 //===----------------------------------------------------------------------===//
4817 // SplatOp
4818 //===----------------------------------------------------------------------===//
4819 
4820 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4821   auto constOperand = operands.front();
4822   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4823     return {};
4824 
4825   // SplatElementsAttr::get treats single value for second arg as being a splat.
4826   return SplatElementsAttr::get(getType(), {constOperand});
4827 }
4828 
4829 //===----------------------------------------------------------------------===//
4830 // WarpExecuteOnLane0Op
4831 //===----------------------------------------------------------------------===//
4832 
4833 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4834   p << "(" << getLaneid() << ")";
4835 
4836   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4837   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4838   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4839 
4840   if (!getArgs().empty())
4841     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4842   if (!getResults().empty())
4843     p << " -> (" << getResults().getTypes() << ')';
4844   p << " ";
4845   p.printRegion(getRegion(),
4846                 /*printEntryBlockArgs=*/true,
4847                 /*printBlockTerminators=*/!getResults().empty());
4848   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4849 }
4850 
4851 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4852                                         OperationState &result) {
4853   // Create the region.
4854   result.regions.reserve(1);
4855   Region *warpRegion = result.addRegion();
4856 
4857   auto &builder = parser.getBuilder();
4858   OpAsmParser::UnresolvedOperand laneId;
4859 
4860   // Parse predicate operand.
4861   if (parser.parseLParen() ||
4862       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4863       parser.parseRParen())
4864     return failure();
4865 
4866   int64_t warpSize;
4867   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4868       parser.parseRSquare())
4869     return failure();
4870   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4871                                                         builder.getContext())),
4872                       builder.getI64IntegerAttr(warpSize));
4873 
4874   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4875     return failure();
4876 
4877   llvm::SMLoc inputsOperandsLoc;
4878   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4879   SmallVector<Type> inputTypes;
4880   if (succeeded(parser.parseOptionalKeyword("args"))) {
4881     if (parser.parseLParen())
4882       return failure();
4883 
4884     inputsOperandsLoc = parser.getCurrentLocation();
4885     if (parser.parseOperandList(inputsOperands) ||
4886         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4887       return failure();
4888   }
4889   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4890                              result.operands))
4891     return failure();
4892 
4893   // Parse optional results type list.
4894   if (parser.parseOptionalArrowTypeList(result.types))
4895     return failure();
4896   // Parse the region.
4897   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4898                          /*argTypes=*/{}))
4899     return failure();
4900   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4901 
4902   // Parse the optional attribute list.
4903   if (parser.parseOptionalAttrDict(result.attributes))
4904     return failure();
4905   return success();
4906 }
4907 
4908 void WarpExecuteOnLane0Op::getSuccessorRegions(
4909     Optional<unsigned> index, ArrayRef<Attribute> operands,
4910     SmallVectorImpl<RegionSuccessor> &regions) {
4911   if (index) {
4912     regions.push_back(RegionSuccessor(getResults()));
4913     return;
4914   }
4915 
4916   // The warp region is always executed
4917   regions.push_back(RegionSuccessor(&getWarpRegion()));
4918 }
4919 
4920 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4921                                  TypeRange resultTypes, Value laneId,
4922                                  int64_t warpSize) {
4923   build(builder, result, resultTypes, laneId, warpSize,
4924         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4925 }
4926 
4927 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4928                                  TypeRange resultTypes, Value laneId,
4929                                  int64_t warpSize, ValueRange args,
4930                                  TypeRange blockArgTypes) {
4931   result.addOperands(laneId);
4932   result.addAttribute(getAttributeNames()[0],
4933                       builder.getI64IntegerAttr(warpSize));
4934   result.addTypes(resultTypes);
4935   result.addOperands(args);
4936   assert(args.size() == blockArgTypes.size());
4937   OpBuilder::InsertionGuard guard(builder);
4938   Region *warpRegion = result.addRegion();
4939   Block *block = builder.createBlock(warpRegion);
4940   for (auto it : llvm::zip(blockArgTypes, args))
4941     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4942 }
4943 
4944 /// Helper check if the distributed vector type is consistent with the expanded
4945 /// type and distributed size.
4946 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4947                                            int64_t warpSize, Operation *op) {
4948   // If the types matches there is no distribution.
4949   if (expanded == distributed)
4950     return success();
4951   auto expandedVecType = expanded.dyn_cast<VectorType>();
4952   auto distributedVecType = distributed.dyn_cast<VectorType>();
4953   if (!expandedVecType || !distributedVecType)
4954     return op->emitOpError("expected vector type for distributed operands.");
4955   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4956       expandedVecType.getElementType() != distributedVecType.getElementType())
4957     return op->emitOpError(
4958         "expected distributed vectors to have same rank and element type.");
4959   bool foundDistributedDim = false;
4960   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4961     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4962       continue;
4963     if (expandedVecType.getDimSize(i) ==
4964         distributedVecType.getDimSize(i) * warpSize) {
4965       if (foundDistributedDim)
4966         return op->emitOpError()
4967                << "expected only one dimension to be distributed from "
4968                << expandedVecType << " to " << distributedVecType;
4969       foundDistributedDim = true;
4970       continue;
4971     }
4972     return op->emitOpError() << "incompatible distribution dimensions from "
4973                              << expandedVecType << " to " << distributedVecType;
4974   }
4975   return success();
4976 }
4977 
4978 LogicalResult WarpExecuteOnLane0Op::verify() {
4979   if (getArgs().size() != getWarpRegion().getNumArguments())
4980     return emitOpError(
4981         "expected same number op arguments and block arguments.");
4982   auto yield =
4983       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4984   if (yield.getNumOperands() != getNumResults())
4985     return emitOpError(
4986         "expected same number of yield operands and return values.");
4987   int64_t warpSize = getWarpSize();
4988   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4989     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4990                                      std::get<1>(it).getType(), warpSize,
4991                                      getOperation())))
4992       return failure();
4993   }
4994   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4995     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4996                                      std::get<1>(it).getType(), warpSize,
4997                                      getOperation())))
4998       return failure();
4999   }
5000   return success();
5001 }
5002 
5003 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
5004   return succeeded(
5005       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
5006 }
5007 
5008 //===----------------------------------------------------------------------===//
5009 // TableGen'd op method definitions
5010 //===----------------------------------------------------------------------===//
5011 
5012 #define GET_OP_CLASSES
5013 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
5014