1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::UnresolvedOperand lhsInfo; 530 OpAsmParser::UnresolvedOperand rhsInfo; 531 OpAsmParser::UnresolvedOperand accInfo; 532 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << getLhs() << ", "; 586 p << getRhs() << ", " << getAcc(); 587 if (getMasks().size() == 2) 588 p << ", " << getMasks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (getIndexingMaps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = getIteratorTypes().getValue().size(); 706 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(getKind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = getIndexingMaps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, getIteratorTypes(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, getIteratorTypes(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.getAcc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.getAcc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (getPosition()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!getPosition()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 //===----------------------------------------------------------------------===// 947 // ExtractOp 948 //===----------------------------------------------------------------------===// 949 950 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 951 Value source, ArrayRef<int64_t> position) { 952 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 953 } 954 955 // Convenience builder which assumes the values are constant indices. 956 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 957 Value source, ValueRange position) { 958 SmallVector<int64_t, 4> positionConstants = 959 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 960 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 961 })); 962 build(builder, result, source, positionConstants); 963 } 964 965 LogicalResult 966 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 967 ValueRange operands, DictionaryAttr attributes, 968 RegionRange, 969 SmallVectorImpl<Type> &inferredReturnTypes) { 970 ExtractOp::Adaptor op(operands, attributes); 971 auto vectorType = op.getVector().getType().cast<VectorType>(); 972 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 973 inferredReturnTypes.push_back(vectorType.getElementType()); 974 } else { 975 auto n = 976 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 977 inferredReturnTypes.push_back(VectorType::get( 978 vectorType.getShape().drop_front(n), vectorType.getElementType())); 979 } 980 return success(); 981 } 982 983 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 984 // Allow extracting 1-element vectors instead of scalars. 985 auto isCompatible = [](TypeRange l, TypeRange r) { 986 auto vectorType = l.front().dyn_cast<VectorType>(); 987 return vectorType && vectorType.getShape().equals({1}) && 988 vectorType.getElementType() == r.front(); 989 }; 990 if (l.size() == 1 && r.size() == 1 && 991 (isCompatible(l, r) || isCompatible(r, l))) 992 return true; 993 return l == r; 994 } 995 996 LogicalResult vector::ExtractOp::verify() { 997 auto positionAttr = getPosition().getValue(); 998 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 999 return emitOpError( 1000 "expected position attribute of rank smaller than vector rank"); 1001 for (const auto &en : llvm::enumerate(positionAttr)) { 1002 auto attr = en.value().dyn_cast<IntegerAttr>(); 1003 if (!attr || attr.getInt() < 0 || 1004 attr.getInt() >= getVectorType().getDimSize(en.index())) 1005 return emitOpError("expected position attribute #") 1006 << (en.index() + 1) 1007 << " to be a non-negative integer smaller than the corresponding " 1008 "vector dimension"; 1009 } 1010 return success(); 1011 } 1012 1013 template <typename IntType> 1014 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1015 return llvm::to_vector<4>(llvm::map_range( 1016 arrayAttr.getAsRange<IntegerAttr>(), 1017 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1018 } 1019 1020 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1021 /// positions. 1022 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1023 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1024 return failure(); 1025 1026 SmallVector<int64_t, 4> globalPosition; 1027 ExtractOp currentOp = extractOp; 1028 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1029 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1030 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1031 currentOp = nextOp; 1032 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1033 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1034 } 1035 extractOp.setOperand(currentOp.getVector()); 1036 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1037 OpBuilder b(extractOp.getContext()); 1038 std::reverse(globalPosition.begin(), globalPosition.end()); 1039 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1040 b.getI64ArrayAttr(globalPosition)); 1041 return success(); 1042 } 1043 1044 namespace { 1045 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1046 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1047 /// Compose TransposeOp permutations as we walk back. 1048 /// This helper class keeps an updated extraction position `extractPosition` 1049 /// with extra trailing sentinels. 1050 /// The sentinels encode the internal transposition status of the result vector. 1051 /// As we iterate, extractPosition is permuted and updated. 1052 class ExtractFromInsertTransposeChainState { 1053 public: 1054 ExtractFromInsertTransposeChainState(ExtractOp e); 1055 1056 /// Iterate over producing insert and transpose ops until we find a fold. 1057 Value fold(); 1058 1059 private: 1060 /// Return true if the vector at position `a` is contained within the vector 1061 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1062 /// is a prefix of `b`. 1063 template <typename ContainerA, typename ContainerB> 1064 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1065 return a.size() <= b.size() && 1066 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1067 } 1068 1069 /// Return true if the vector at position `a` intersects the vector at 1070 /// position `b`. Under insert/extract semantics, this is the same as equality 1071 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1072 /// Comparison is on the common prefix (i.e. zip). 1073 template <typename ContainerA, typename ContainerB> 1074 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1075 for (auto it : llvm::zip(a, b)) { 1076 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1077 continue; 1078 if (std::get<0>(it) != std::get<1>(it)) 1079 return false; 1080 } 1081 return true; 1082 } 1083 1084 /// Folding is only possible in the absence of an internal permutation in the 1085 /// result vector. 1086 bool canFold() { 1087 return (sentinels == 1088 makeArrayRef(extractPosition).drop_front(extractedRank)); 1089 } 1090 1091 // Helper to get the next defining op of interest. 1092 void updateStateForNextIteration(Value v) { 1093 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1094 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1095 }; 1096 1097 // Case 1. If we hit a transpose, just compose the map and iterate. 1098 // Invariant: insert + transpose do not change rank, we can always compose. 1099 LogicalResult handleTransposeOp(); 1100 1101 // Case 2: the insert position matches extractPosition exactly, early return. 1102 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1103 1104 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1105 /// portion of the source of the insert. 1106 /// Example: 1107 /// ``` 1108 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1109 /// // extractPosition == [1, 2, 3] 1110 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1111 /// // can fold to vector.extract %source[0, 3] 1112 /// %ext = vector.extract %source[3]: vector<5x6> 1113 /// ``` 1114 /// To traverse through %source, we need to set the leading dims to 0 and 1115 /// drop the extra leading dims. 1116 /// This method updates the internal state. 1117 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1118 1119 /// Try to fold in place to extract(source, extractPosition) and return the 1120 /// folded result. Return null if folding is not possible (e.g. due to an 1121 /// internal tranposition in the result). 1122 Value tryToFoldExtractOpInPlace(Value source); 1123 1124 ExtractOp extractOp; 1125 int64_t vectorRank; 1126 int64_t extractedRank; 1127 1128 InsertOp nextInsertOp; 1129 TransposeOp nextTransposeOp; 1130 1131 /// Sentinel values that encode the internal permutation status of the result. 1132 /// They are set to (-1, ... , -k) at the beginning and appended to 1133 /// `extractPosition`. 1134 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1135 /// ensure that there is no internal transposition. 1136 /// Internal transposition cannot be accounted for with a folding pattern. 1137 // TODO: We could relax the internal transposition with an extra transposition 1138 // operation in a future canonicalizer. 1139 SmallVector<int64_t> sentinels; 1140 SmallVector<int64_t> extractPosition; 1141 }; 1142 } // namespace 1143 1144 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1145 ExtractOp e) 1146 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1147 extractedRank(extractOp.getPosition().size()) { 1148 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1149 sentinels.reserve(vectorRank - extractedRank); 1150 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1151 sentinels.push_back(-(i + 1)); 1152 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1153 llvm::append_range(extractPosition, sentinels); 1154 } 1155 1156 // Case 1. If we hit a transpose, just compose the map and iterate. 1157 // Invariant: insert + transpose do not change rank, we can always compose. 1158 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1159 if (!nextTransposeOp) 1160 return failure(); 1161 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1162 AffineMap m = inversePermutation( 1163 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1164 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1165 return success(); 1166 } 1167 1168 // Case 2: the insert position matches extractPosition exactly, early return. 1169 LogicalResult 1170 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1171 Value &res) { 1172 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1173 if (makeArrayRef(insertedPos) != 1174 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1175 return failure(); 1176 // Case 2.a. early-exit fold. 1177 res = nextInsertOp.getSource(); 1178 // Case 2.b. if internal transposition is present, canFold will be false. 1179 return success(); 1180 } 1181 1182 /// Case 3: if inserted position is a prefix of extractPosition, 1183 /// extract a portion of the source of the insertion. 1184 /// This method updates the internal state. 1185 LogicalResult 1186 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1187 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1188 if (!isContainedWithin(insertedPos, extractPosition)) 1189 return failure(); 1190 // Set leading dims to zero. 1191 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1192 // Drop extra leading dims. 1193 extractPosition.erase(extractPosition.begin(), 1194 extractPosition.begin() + insertedPos.size()); 1195 extractedRank = extractPosition.size() - sentinels.size(); 1196 // Case 3.a. early-exit fold (break and delegate to post-while path). 1197 res = nextInsertOp.getSource(); 1198 // Case 3.b. if internal transposition is present, canFold will be false. 1199 return success(); 1200 } 1201 1202 /// Try to fold in place to extract(source, extractPosition) and return the 1203 /// folded result. Return null if folding is not possible (e.g. due to an 1204 /// internal tranposition in the result). 1205 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1206 Value source) { 1207 // If we can't fold (either internal transposition, or nothing to fold), bail. 1208 bool nothingToFold = (source == extractOp.getVector()); 1209 if (nothingToFold || !canFold()) 1210 return Value(); 1211 // Otherwise, fold by updating the op inplace and return its result. 1212 OpBuilder b(extractOp.getContext()); 1213 extractOp->setAttr( 1214 extractOp.getPositionAttrName(), 1215 b.getI64ArrayAttr( 1216 makeArrayRef(extractPosition).take_front(extractedRank))); 1217 extractOp.getVectorMutable().assign(source); 1218 return extractOp.getResult(); 1219 } 1220 1221 /// Iterate over producing insert and transpose ops until we find a fold. 1222 Value ExtractFromInsertTransposeChainState::fold() { 1223 Value valueToExtractFrom = extractOp.getVector(); 1224 updateStateForNextIteration(valueToExtractFrom); 1225 while (nextInsertOp || nextTransposeOp) { 1226 // Case 1. If we hit a transpose, just compose the map and iterate. 1227 // Invariant: insert + transpose do not change rank, we can always compose. 1228 if (succeeded(handleTransposeOp())) { 1229 valueToExtractFrom = nextTransposeOp.getVector(); 1230 updateStateForNextIteration(valueToExtractFrom); 1231 continue; 1232 } 1233 1234 Value result; 1235 // Case 2: the position match exactly. 1236 if (succeeded(handleInsertOpWithMatchingPos(result))) 1237 return result; 1238 1239 // Case 3: if the inserted position is a prefix of extractPosition, we can 1240 // just extract a portion of the source of the insert. 1241 if (succeeded(handleInsertOpWithPrefixPos(result))) 1242 return tryToFoldExtractOpInPlace(result); 1243 1244 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1245 // values. This is a more difficult case and we bail. 1246 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1247 if (isContainedWithin(extractPosition, insertedPos) || 1248 intersectsWhereNonNegative(extractPosition, insertedPos)) 1249 return Value(); 1250 1251 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1252 valueToExtractFrom = nextInsertOp.getDest(); 1253 updateStateForNextIteration(valueToExtractFrom); 1254 } 1255 // If after all this we can fold, go for it. 1256 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1257 } 1258 1259 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1260 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1261 Operation *defOp = extractOp.getVector().getDefiningOp(); 1262 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1263 return Value(); 1264 Value source = defOp->getOperand(0); 1265 if (extractOp.getType() == source.getType()) 1266 return source; 1267 auto getRank = [](Type type) { 1268 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1269 }; 1270 unsigned broadcastSrcRank = getRank(source.getType()); 1271 unsigned extractResultRank = getRank(extractOp.getType()); 1272 if (extractResultRank < broadcastSrcRank) { 1273 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1274 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1275 extractPos.erase( 1276 extractPos.begin(), 1277 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1278 extractOp.setOperand(source); 1279 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1280 OpBuilder b(extractOp.getContext()); 1281 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1282 b.getI64ArrayAttr(extractPos)); 1283 return extractOp.getResult(); 1284 } 1285 return Value(); 1286 } 1287 1288 // Fold extractOp with source coming from ShapeCast op. 1289 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1290 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1291 if (!shapeCastOp) 1292 return Value(); 1293 // Get the nth dimension size starting from lowest dimension. 1294 auto getDimReverse = [](VectorType type, int64_t n) { 1295 return type.getShape().take_back(n + 1).front(); 1296 }; 1297 int64_t destinationRank = 1298 extractOp.getType().isa<VectorType>() 1299 ? extractOp.getType().cast<VectorType>().getRank() 1300 : 0; 1301 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1302 return Value(); 1303 if (destinationRank > 0) { 1304 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1305 for (int64_t i = 0; i < destinationRank; i++) { 1306 // The lowest dimension of of the destination must match the lowest 1307 // dimension of the shapecast op source. 1308 // TODO: This case could be support in a canonicalization pattern. 1309 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1310 getDimReverse(destinationType, i)) 1311 return Value(); 1312 } 1313 } 1314 // Extract the strides associated with the extract op vector source. Then use 1315 // this to calculate a linearized position for the extract. 1316 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1317 std::reverse(extractedPos.begin(), extractedPos.end()); 1318 SmallVector<int64_t, 4> strides; 1319 int64_t stride = 1; 1320 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1321 strides.push_back(stride); 1322 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1323 } 1324 1325 int64_t position = linearize(extractedPos, strides); 1326 // Then extract the strides associated to the shapeCast op vector source and 1327 // delinearize the position using those strides. 1328 SmallVector<int64_t, 4> newStrides; 1329 int64_t numDimension = 1330 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1331 stride = 1; 1332 for (int64_t i = 0; i < numDimension; i++) { 1333 newStrides.push_back(stride); 1334 stride *= 1335 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1336 } 1337 std::reverse(newStrides.begin(), newStrides.end()); 1338 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1339 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1340 OpBuilder b(extractOp.getContext()); 1341 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1342 b.getI64ArrayAttr(newPosition)); 1343 extractOp.setOperand(shapeCastOp.getSource()); 1344 return extractOp.getResult(); 1345 } 1346 1347 /// Fold an ExtractOp from ExtractStridedSliceOp. 1348 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1349 auto extractStridedSliceOp = 1350 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1351 if (!extractStridedSliceOp) 1352 return Value(); 1353 // Return if 'extractStridedSliceOp' has non-unit strides. 1354 if (extractStridedSliceOp.hasNonUnitStrides()) 1355 return Value(); 1356 1357 // Trim offsets for dimensions fully extracted. 1358 auto sliceOffsets = 1359 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1360 while (!sliceOffsets.empty()) { 1361 size_t lastOffset = sliceOffsets.size() - 1; 1362 if (sliceOffsets.back() != 0 || 1363 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1364 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1365 break; 1366 sliceOffsets.pop_back(); 1367 } 1368 unsigned destinationRank = 0; 1369 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1370 destinationRank = vecType.getRank(); 1371 // The dimensions of the result need to be untouched by the 1372 // extractStridedSlice op. 1373 if (destinationRank > 1374 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1375 return Value(); 1376 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1377 assert(extractedPos.size() >= sliceOffsets.size()); 1378 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1379 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1380 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1381 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1382 OpBuilder b(extractOp.getContext()); 1383 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1384 b.getI64ArrayAttr(extractedPos)); 1385 return extractOp.getResult(); 1386 } 1387 1388 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1389 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1390 int64_t destinationRank = op.getType().isa<VectorType>() 1391 ? op.getType().cast<VectorType>().getRank() 1392 : 0; 1393 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1394 while (insertOp) { 1395 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1396 insertOp.getSourceVectorType().getRank(); 1397 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1398 return Value(); 1399 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1400 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1401 1402 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1403 return attr.cast<IntegerAttr>().getInt() != 1; 1404 })) 1405 return Value(); 1406 bool disjoint = false; 1407 SmallVector<int64_t, 4> offsetDiffs; 1408 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1409 int64_t start = insertOffsets[dim]; 1410 int64_t size = 1411 (dim < insertRankDiff) 1412 ? 1 1413 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1414 int64_t end = start + size; 1415 int64_t offset = extractOffsets[dim]; 1416 // Check if the start of the extract offset is in the interval inserted. 1417 if (start <= offset && offset < end) { 1418 if (dim >= insertRankDiff) 1419 offsetDiffs.push_back(offset - start); 1420 continue; 1421 } 1422 disjoint = true; 1423 break; 1424 } 1425 // The extract element chunk overlap with the vector inserted. 1426 if (!disjoint) { 1427 // If any of the inner dimensions are only partially inserted we have a 1428 // partial overlap. 1429 int64_t srcRankDiff = 1430 insertOp.getSourceVectorType().getRank() - destinationRank; 1431 for (int64_t i = 0; i < destinationRank; i++) { 1432 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1433 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1434 insertRankDiff)) 1435 return Value(); 1436 } 1437 op.getVectorMutable().assign(insertOp.getSource()); 1438 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1439 OpBuilder b(op.getContext()); 1440 op->setAttr(ExtractOp::getPositionAttrStrName(), 1441 b.getI64ArrayAttr(offsetDiffs)); 1442 return op.getResult(); 1443 } 1444 // If the chunk extracted is disjoint from the chunk inserted, keep 1445 // looking in the insert chain. 1446 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1447 } 1448 return Value(); 1449 } 1450 1451 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1452 if (getPosition().empty()) 1453 return getVector(); 1454 if (succeeded(foldExtractOpFromExtractChain(*this))) 1455 return getResult(); 1456 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1457 return res; 1458 if (auto res = foldExtractFromBroadcast(*this)) 1459 return res; 1460 if (auto res = foldExtractFromShapeCast(*this)) 1461 return res; 1462 if (auto val = foldExtractFromExtractStrided(*this)) 1463 return val; 1464 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1465 return val; 1466 return OpFoldResult(); 1467 } 1468 1469 namespace { 1470 1471 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1472 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1473 public: 1474 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1475 1476 LogicalResult matchAndRewrite(ExtractOp extractOp, 1477 PatternRewriter &rewriter) const override { 1478 Operation *defOp = extractOp.getVector().getDefiningOp(); 1479 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1480 return failure(); 1481 Value source = defOp->getOperand(0); 1482 if (extractOp.getType() == source.getType()) 1483 return failure(); 1484 auto getRank = [](Type type) { 1485 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1486 }; 1487 unsigned broadcastSrcRank = getRank(source.getType()); 1488 unsigned extractResultRank = getRank(extractOp.getType()); 1489 // We only consider the case where the rank of the source is smaller than 1490 // the rank of the extract dst. The other cases are handled in the folding 1491 // patterns. 1492 if (extractResultRank <= broadcastSrcRank) 1493 return failure(); 1494 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1495 extractOp, extractOp.getType(), source); 1496 return success(); 1497 } 1498 }; 1499 1500 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1501 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1502 public: 1503 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1504 1505 LogicalResult matchAndRewrite(ExtractOp extractOp, 1506 PatternRewriter &rewriter) const override { 1507 // Return if 'extractStridedSliceOp' operand is not defined by a 1508 // ConstantOp. 1509 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1510 if (!constantOp) 1511 return failure(); 1512 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1513 if (!dense) 1514 return failure(); 1515 Attribute newAttr = dense.getSplatValue<Attribute>(); 1516 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1517 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1518 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1519 return success(); 1520 } 1521 }; 1522 1523 } // namespace 1524 1525 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1526 MLIRContext *context) { 1527 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1528 } 1529 1530 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1531 SmallVectorImpl<int64_t> &results) { 1532 for (auto attr : arrayAttr) 1533 results.push_back(attr.cast<IntegerAttr>().getInt()); 1534 } 1535 1536 //===----------------------------------------------------------------------===// 1537 // ExtractMapOp 1538 //===----------------------------------------------------------------------===// 1539 1540 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1541 Value vector, ValueRange ids, 1542 ArrayRef<int64_t> multiplicity, 1543 AffineMap permutationMap) { 1544 assert(ids.size() == multiplicity.size() && 1545 ids.size() == permutationMap.getNumResults()); 1546 assert(permutationMap.isProjectedPermutation()); 1547 VectorType type = vector.getType().cast<VectorType>(); 1548 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1549 type.getShape().end()); 1550 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1551 AffineExpr expr = permutationMap.getResult(i); 1552 auto dim = expr.cast<AffineDimExpr>(); 1553 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1554 } 1555 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1556 ExtractMapOp::build(builder, result, resultType, vector, ids); 1557 } 1558 1559 LogicalResult ExtractMapOp::verify() { 1560 if (getSourceVectorType().getRank() != getResultType().getRank()) 1561 return emitOpError("expected source and destination vectors of same rank"); 1562 unsigned numId = 0; 1563 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1564 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1565 0) 1566 return emitOpError("source vector dimensions must be a multiple of " 1567 "destination vector dimensions"); 1568 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1569 numId++; 1570 } 1571 if (numId != getIds().size()) 1572 return emitOpError("expected number of ids must match the number of " 1573 "dimensions distributed"); 1574 return success(); 1575 } 1576 1577 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1578 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1579 if (insert == nullptr || getType() != insert.getVector().getType() || 1580 getIds() != insert.getIds()) 1581 return {}; 1582 return insert.getVector(); 1583 } 1584 1585 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1586 assert(multiplicity.empty()); 1587 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1588 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1589 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1590 getResultType().getDimSize(i)); 1591 } 1592 } 1593 1594 template <typename MapOp> 1595 AffineMap calculateImplicitMap(MapOp op) { 1596 SmallVector<AffineExpr, 4> perm; 1597 // Check which dimension have a multiplicity greater than 1 and associated 1598 // them to the IDs in order. 1599 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1600 if (op.getSourceVectorType().getDimSize(i) != 1601 op.getResultType().getDimSize(i)) 1602 perm.push_back(getAffineDimExpr(i, op.getContext())); 1603 } 1604 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1605 op.getContext()); 1606 return map; 1607 } 1608 1609 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1610 1611 //===----------------------------------------------------------------------===// 1612 // FmaOp 1613 //===----------------------------------------------------------------------===// 1614 1615 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1616 return llvm::to_vector<4>(getVectorType().getShape()); 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // BroadcastOp 1621 //===----------------------------------------------------------------------===// 1622 1623 BroadcastableToResult 1624 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1625 std::pair<int, int> *mismatchingDims) { 1626 // Broadcast scalar to vector of the same element type. 1627 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1628 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1629 return BroadcastableToResult::Success; 1630 // From now on, only vectors broadcast. 1631 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1632 if (!srcVectorType) 1633 return BroadcastableToResult::SourceTypeNotAVector; 1634 1635 int64_t srcRank = srcVectorType.getRank(); 1636 int64_t dstRank = dstVectorType.getRank(); 1637 if (srcRank > dstRank) 1638 return BroadcastableToResult::SourceRankHigher; 1639 // Source has an exact match or singleton value for all trailing dimensions 1640 // (all leading dimensions are simply duplicated). 1641 int64_t lead = dstRank - srcRank; 1642 for (int64_t r = 0; r < srcRank; ++r) { 1643 int64_t srcDim = srcVectorType.getDimSize(r); 1644 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1645 if (srcDim != 1 && srcDim != dstDim) { 1646 if (mismatchingDims) { 1647 mismatchingDims->first = srcDim; 1648 mismatchingDims->second = dstDim; 1649 } 1650 return BroadcastableToResult::DimensionMismatch; 1651 } 1652 } 1653 1654 return BroadcastableToResult::Success; 1655 } 1656 1657 LogicalResult BroadcastOp::verify() { 1658 std::pair<int, int> mismatchingDims; 1659 BroadcastableToResult res = 1660 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1661 if (res == BroadcastableToResult::Success) 1662 return success(); 1663 if (res == BroadcastableToResult::SourceRankHigher) 1664 return emitOpError("source rank higher than destination rank"); 1665 if (res == BroadcastableToResult::DimensionMismatch) 1666 return emitOpError("dimension mismatch (") 1667 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1668 if (res == BroadcastableToResult::SourceTypeNotAVector) 1669 return emitOpError("source type is not a vector"); 1670 llvm_unreachable("unexpected vector.broadcast op error"); 1671 } 1672 1673 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1674 if (getSourceType() == getVectorType()) 1675 return getSource(); 1676 if (!operands[0]) 1677 return {}; 1678 auto vectorType = getVectorType(); 1679 if (operands[0].getType().isIntOrIndexOrFloat()) 1680 return DenseElementsAttr::get(vectorType, operands[0]); 1681 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1682 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1683 return {}; 1684 } 1685 1686 namespace { 1687 1688 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1689 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1690 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1691 1692 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1693 PatternRewriter &rewriter) const override { 1694 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1695 if (!srcBroadcast) 1696 return failure(); 1697 rewriter.replaceOpWithNewOp<BroadcastOp>( 1698 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1699 return success(); 1700 } 1701 }; 1702 } // namespace 1703 1704 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1705 MLIRContext *context) { 1706 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1707 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1708 results.add<BroadcastFolder>(context); 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 // ShuffleOp 1713 //===----------------------------------------------------------------------===// 1714 1715 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1716 Value v2, ArrayRef<int64_t> mask) { 1717 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1718 } 1719 1720 LogicalResult ShuffleOp::verify() { 1721 VectorType resultType = getVectorType(); 1722 VectorType v1Type = getV1VectorType(); 1723 VectorType v2Type = getV2VectorType(); 1724 // Verify ranks. 1725 int64_t resRank = resultType.getRank(); 1726 int64_t v1Rank = v1Type.getRank(); 1727 int64_t v2Rank = v2Type.getRank(); 1728 if (resRank != v1Rank || v1Rank != v2Rank) 1729 return emitOpError("rank mismatch"); 1730 // Verify all but leading dimension sizes. 1731 for (int64_t r = 1; r < v1Rank; ++r) { 1732 int64_t resDim = resultType.getDimSize(r); 1733 int64_t v1Dim = v1Type.getDimSize(r); 1734 int64_t v2Dim = v2Type.getDimSize(r); 1735 if (resDim != v1Dim || v1Dim != v2Dim) 1736 return emitOpError("dimension mismatch"); 1737 } 1738 // Verify mask length. 1739 auto maskAttr = getMask().getValue(); 1740 int64_t maskLength = maskAttr.size(); 1741 if (maskLength <= 0) 1742 return emitOpError("invalid mask length"); 1743 if (maskLength != resultType.getDimSize(0)) 1744 return emitOpError("mask length mismatch"); 1745 // Verify all indices. 1746 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1747 for (const auto &en : llvm::enumerate(maskAttr)) { 1748 auto attr = en.value().dyn_cast<IntegerAttr>(); 1749 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1750 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1751 } 1752 return success(); 1753 } 1754 1755 LogicalResult 1756 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1757 ValueRange operands, DictionaryAttr attributes, 1758 RegionRange, 1759 SmallVectorImpl<Type> &inferredReturnTypes) { 1760 ShuffleOp::Adaptor op(operands, attributes); 1761 auto v1Type = op.getV1().getType().cast<VectorType>(); 1762 // Construct resulting type: leading dimension matches mask length, 1763 // all trailing dimensions match the operands. 1764 SmallVector<int64_t, 4> shape; 1765 shape.reserve(v1Type.getRank()); 1766 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1767 llvm::append_range(shape, v1Type.getShape().drop_front()); 1768 inferredReturnTypes.push_back( 1769 VectorType::get(shape, v1Type.getElementType())); 1770 return success(); 1771 } 1772 1773 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1774 Attribute lhs = operands.front(), rhs = operands.back(); 1775 if (!lhs || !rhs) 1776 return {}; 1777 1778 auto lhsType = lhs.getType().cast<VectorType>(); 1779 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1780 // manipulation. 1781 if (lhsType.getRank() != 1) 1782 return {}; 1783 int64_t lhsSize = lhsType.getDimSize(0); 1784 1785 SmallVector<Attribute> results; 1786 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1787 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1788 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1789 int64_t i = index.getZExtValue(); 1790 if (i >= lhsSize) { 1791 results.push_back(rhsElements[i - lhsSize]); 1792 } else { 1793 results.push_back(lhsElements[i]); 1794 } 1795 } 1796 1797 return DenseElementsAttr::get(getVectorType(), results); 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 // InsertElementOp 1802 //===----------------------------------------------------------------------===// 1803 1804 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1805 Value source, Value dest) { 1806 build(builder, result, source, dest, {}); 1807 } 1808 1809 LogicalResult InsertElementOp::verify() { 1810 auto dstVectorType = getDestVectorType(); 1811 if (dstVectorType.getRank() == 0) { 1812 if (getPosition()) 1813 return emitOpError("expected position to be empty with 0-D vector"); 1814 return success(); 1815 } 1816 if (dstVectorType.getRank() != 1) 1817 return emitOpError("unexpected >1 vector rank"); 1818 if (!getPosition()) 1819 return emitOpError("expected position for 1-D vector"); 1820 return success(); 1821 } 1822 1823 //===----------------------------------------------------------------------===// 1824 // InsertOp 1825 //===----------------------------------------------------------------------===// 1826 1827 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1828 Value dest, ArrayRef<int64_t> position) { 1829 result.addOperands({source, dest}); 1830 auto positionAttr = getVectorSubscriptAttr(builder, position); 1831 result.addTypes(dest.getType()); 1832 result.addAttribute(getPositionAttrStrName(), positionAttr); 1833 } 1834 1835 // Convenience builder which assumes the values are constant indices. 1836 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1837 Value dest, ValueRange position) { 1838 SmallVector<int64_t, 4> positionConstants = 1839 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1840 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1841 })); 1842 build(builder, result, source, dest, positionConstants); 1843 } 1844 1845 LogicalResult InsertOp::verify() { 1846 auto positionAttr = getPosition().getValue(); 1847 auto destVectorType = getDestVectorType(); 1848 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1849 return emitOpError( 1850 "expected position attribute of rank smaller than dest vector rank"); 1851 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1852 if (srcVectorType && 1853 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1854 static_cast<unsigned>(destVectorType.getRank()))) 1855 return emitOpError("expected position attribute rank + source rank to " 1856 "match dest vector rank"); 1857 if (!srcVectorType && 1858 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1859 return emitOpError( 1860 "expected position attribute rank to match the dest vector rank"); 1861 for (const auto &en : llvm::enumerate(positionAttr)) { 1862 auto attr = en.value().dyn_cast<IntegerAttr>(); 1863 if (!attr || attr.getInt() < 0 || 1864 attr.getInt() >= destVectorType.getDimSize(en.index())) 1865 return emitOpError("expected position attribute #") 1866 << (en.index() + 1) 1867 << " to be a non-negative integer smaller than the corresponding " 1868 "dest vector dimension"; 1869 } 1870 return success(); 1871 } 1872 1873 namespace { 1874 1875 // If insertOp is only inserting unit dimensions it can be transformed to a 1876 // broadcast. 1877 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1878 public: 1879 using OpRewritePattern<InsertOp>::OpRewritePattern; 1880 1881 LogicalResult matchAndRewrite(InsertOp insertOp, 1882 PatternRewriter &rewriter) const override { 1883 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1884 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1885 srcVecType.getNumElements()) 1886 return failure(); 1887 rewriter.replaceOpWithNewOp<BroadcastOp>( 1888 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1889 return success(); 1890 } 1891 }; 1892 1893 } // namespace 1894 1895 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1896 MLIRContext *context) { 1897 results.add<InsertToBroadcast, BroadcastFolder>(context); 1898 } 1899 1900 // Eliminates insert operations that produce values identical to their source 1901 // value. This happens when the source and destination vectors have identical 1902 // sizes. 1903 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1904 if (getPosition().empty()) 1905 return getSource(); 1906 return {}; 1907 } 1908 1909 //===----------------------------------------------------------------------===// 1910 // InsertMapOp 1911 //===----------------------------------------------------------------------===// 1912 1913 LogicalResult InsertMapOp::verify() { 1914 if (getSourceVectorType().getRank() != getResultType().getRank()) 1915 return emitOpError("expected source and destination vectors of same rank"); 1916 unsigned numId = 0; 1917 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1918 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1919 0) 1920 return emitOpError( 1921 "destination vector size must be a multiple of source vector size"); 1922 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1923 numId++; 1924 } 1925 if (numId != getIds().size()) 1926 return emitOpError("expected number of ids must match the number of " 1927 "dimensions distributed"); 1928 return success(); 1929 } 1930 1931 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1932 1933 //===----------------------------------------------------------------------===// 1934 // InsertStridedSliceOp 1935 //===----------------------------------------------------------------------===// 1936 1937 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1938 Value source, Value dest, 1939 ArrayRef<int64_t> offsets, 1940 ArrayRef<int64_t> strides) { 1941 result.addOperands({source, dest}); 1942 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 1943 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 1944 result.addTypes(dest.getType()); 1945 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 1946 result.addAttribute(getStridesAttrStrName(), stridesAttr); 1947 } 1948 1949 // TODO: Should be moved to Tablegen Confined attributes. 1950 template <typename OpType> 1951 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 1952 ArrayAttr arrayAttr, 1953 ArrayRef<int64_t> shape, 1954 StringRef attrName) { 1955 if (arrayAttr.size() > shape.size()) 1956 return op.emitOpError("expected ") 1957 << attrName << " attribute of rank smaller than vector rank"; 1958 return success(); 1959 } 1960 1961 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1962 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1963 // Otherwise, the admissible interval is [min, max]. 1964 template <typename OpType> 1965 static LogicalResult 1966 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 1967 int64_t max, StringRef attrName, 1968 bool halfOpen = true) { 1969 for (auto attr : arrayAttr) { 1970 auto val = attr.cast<IntegerAttr>().getInt(); 1971 auto upper = max; 1972 if (!halfOpen) 1973 upper += 1; 1974 if (val < min || val >= upper) 1975 return op.emitOpError("expected ") << attrName << " to be confined to [" 1976 << min << ", " << upper << ")"; 1977 } 1978 return success(); 1979 } 1980 1981 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1982 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1983 // Otherwise, the admissible interval is [min, max]. 1984 template <typename OpType> 1985 static LogicalResult 1986 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 1987 ArrayRef<int64_t> shape, StringRef attrName, 1988 bool halfOpen = true, int64_t min = 0) { 1989 assert(arrayAttr.size() <= shape.size()); 1990 unsigned index = 0; 1991 for (auto it : llvm::zip(arrayAttr, shape)) { 1992 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 1993 auto max = std::get<1>(it); 1994 if (!halfOpen) 1995 max += 1; 1996 if (val < min || val >= max) 1997 return op.emitOpError("expected ") 1998 << attrName << " dimension " << index << " to be confined to [" 1999 << min << ", " << max << ")"; 2000 ++index; 2001 } 2002 return success(); 2003 } 2004 2005 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2006 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2007 // Otherwise, the admissible interval is [min, max]. 2008 template <typename OpType> 2009 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2010 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2011 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2012 bool halfOpen = true, int64_t min = 1) { 2013 assert(arrayAttr1.size() <= shape.size()); 2014 assert(arrayAttr2.size() <= shape.size()); 2015 unsigned index = 0; 2016 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2017 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2018 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2019 auto max = std::get<2>(it); 2020 if (!halfOpen) 2021 max += 1; 2022 if (val1 + val2 < 0 || val1 + val2 >= max) 2023 return op.emitOpError("expected sum(") 2024 << attrName1 << ", " << attrName2 << ") dimension " << index 2025 << " to be confined to [" << min << ", " << max << ")"; 2026 ++index; 2027 } 2028 return success(); 2029 } 2030 2031 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2032 MLIRContext *context) { 2033 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2034 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2035 }); 2036 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2037 } 2038 2039 LogicalResult InsertStridedSliceOp::verify() { 2040 auto sourceVectorType = getSourceVectorType(); 2041 auto destVectorType = getDestVectorType(); 2042 auto offsets = getOffsetsAttr(); 2043 auto strides = getStridesAttr(); 2044 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2045 return emitOpError( 2046 "expected offsets of same size as destination vector rank"); 2047 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2048 return emitOpError("expected strides of same size as source vector rank"); 2049 if (sourceVectorType.getRank() > destVectorType.getRank()) 2050 return emitOpError( 2051 "expected source rank to be smaller than destination rank"); 2052 2053 auto sourceShape = sourceVectorType.getShape(); 2054 auto destShape = destVectorType.getShape(); 2055 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2056 destShape.size() - sourceShape.size(), 0); 2057 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2058 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2059 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2060 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2061 offName)) || 2062 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2063 stridesName, 2064 /*halfOpen=*/false)) || 2065 failed(isSumOfIntegerArrayAttrConfinedToShape( 2066 *this, offsets, 2067 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2068 offName, "source vector shape", 2069 /*halfOpen=*/false, /*min=*/1))) 2070 return failure(); 2071 2072 return success(); 2073 } 2074 2075 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2076 if (getSourceVectorType() == getDestVectorType()) 2077 return getSource(); 2078 return {}; 2079 } 2080 2081 //===----------------------------------------------------------------------===// 2082 // OuterProductOp 2083 //===----------------------------------------------------------------------===// 2084 2085 /// Build an op without mask, use the type of `acc` as the return type. 2086 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2087 Value lhs, Value rhs, Value acc) { 2088 result.addOperands({lhs, rhs, acc}); 2089 result.addTypes(acc.getType()); 2090 } 2091 2092 void OuterProductOp::print(OpAsmPrinter &p) { 2093 p << " " << getLhs() << ", " << getRhs(); 2094 if (!getAcc().empty()) { 2095 p << ", " << getAcc(); 2096 p.printOptionalAttrDict((*this)->getAttrs()); 2097 } 2098 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2099 } 2100 2101 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2102 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2103 Type tLHS, tRHS; 2104 if (parser.parseOperandList(operandsInfo) || 2105 parser.parseOptionalAttrDict(result.attributes) || 2106 parser.parseColonType(tLHS) || parser.parseComma() || 2107 parser.parseType(tRHS)) 2108 return failure(); 2109 if (operandsInfo.size() < 2) 2110 return parser.emitError(parser.getNameLoc(), 2111 "expected at least 2 operands"); 2112 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2113 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2114 if (!vLHS) 2115 return parser.emitError(parser.getNameLoc(), 2116 "expected vector type for operand #1"); 2117 VectorType resType = 2118 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2119 vLHS.getElementType()) 2120 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2121 2122 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2123 result.attributes.append( 2124 OuterProductOp::getKindAttrStrName(), 2125 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2126 result.getContext())); 2127 } 2128 2129 return failure( 2130 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2131 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2132 (operandsInfo.size() > 2 && 2133 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2134 parser.addTypeToList(resType, result.types)); 2135 } 2136 2137 LogicalResult OuterProductOp::verify() { 2138 Type tRHS = getOperandTypeRHS(); 2139 VectorType vLHS = getOperandVectorTypeLHS(), 2140 vRHS = tRHS.dyn_cast<VectorType>(), 2141 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2142 2143 if (vLHS.getRank() != 1) 2144 return emitOpError("expected 1-d vector for operand #1"); 2145 2146 if (vRHS) { 2147 // Proper OUTER operation. 2148 if (vRHS.getRank() != 1) 2149 return emitOpError("expected 1-d vector for operand #2"); 2150 if (vRES.getRank() != 2) 2151 return emitOpError("expected 2-d vector result"); 2152 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2153 return emitOpError("expected #1 operand dim to match result dim #1"); 2154 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2155 return emitOpError("expected #2 operand dim to match result dim #2"); 2156 } else { 2157 // An AXPY operation. 2158 if (vRES.getRank() != 1) 2159 return emitOpError("expected 1-d vector result"); 2160 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2161 return emitOpError("expected #1 operand dim to match result dim #1"); 2162 } 2163 2164 if (vACC && vACC != vRES) 2165 return emitOpError("expected operand #3 of same type as result type"); 2166 2167 // Verify supported combining kind. 2168 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2169 return emitOpError("unsupported outerproduct type"); 2170 2171 return success(); 2172 } 2173 2174 //===----------------------------------------------------------------------===// 2175 // ReshapeOp 2176 //===----------------------------------------------------------------------===// 2177 2178 LogicalResult ReshapeOp::verify() { 2179 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2180 auto inputVectorType = getInputVectorType(); 2181 auto outputVectorType = getOutputVectorType(); 2182 int64_t inputShapeRank = getNumInputShapeSizes(); 2183 int64_t outputShapeRank = getNumOutputShapeSizes(); 2184 SmallVector<int64_t, 4> fixedVectorSizes; 2185 getFixedVectorSizes(fixedVectorSizes); 2186 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2187 2188 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2189 return emitError("invalid input shape for vector type ") 2190 << inputVectorType; 2191 2192 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2193 return emitError("invalid output shape for vector type ") 2194 << outputVectorType; 2195 2196 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2197 // suffix. 2198 unsigned inputVectorRank = inputVectorType.getRank(); 2199 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2200 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2201 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2202 return emitError("fixed vector size must match input vector for dim ") 2203 << i; 2204 } 2205 2206 unsigned outputVectorRank = outputVectorType.getRank(); 2207 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2208 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2209 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2210 return emitError("fixed vector size must match output vector for dim ") 2211 << i; 2212 } 2213 2214 // If all shape operands are produced by constant ops, verify that product 2215 // of dimensions for input/output shape match. 2216 auto isDefByConstant = [](Value operand) { 2217 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2218 }; 2219 if (llvm::all_of(getInputShape(), isDefByConstant) && 2220 llvm::all_of(getOutputShape(), isDefByConstant)) { 2221 int64_t numInputElements = 1; 2222 for (auto operand : getInputShape()) 2223 numInputElements *= 2224 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2225 int64_t numOutputElements = 1; 2226 for (auto operand : getOutputShape()) 2227 numOutputElements *= 2228 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2229 if (numInputElements != numOutputElements) 2230 return emitError("product of input and output shape sizes must match"); 2231 } 2232 return success(); 2233 } 2234 2235 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2236 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2237 } 2238 2239 //===----------------------------------------------------------------------===// 2240 // ExtractStridedSliceOp 2241 //===----------------------------------------------------------------------===// 2242 2243 // Inference works as follows: 2244 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2245 // 2. Add sizes from 'vectorType' for remaining dims. 2246 static Type inferStridedSliceOpResultType(VectorType vectorType, 2247 ArrayAttr offsets, ArrayAttr sizes, 2248 ArrayAttr strides) { 2249 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2250 SmallVector<int64_t, 4> shape; 2251 shape.reserve(vectorType.getRank()); 2252 unsigned idx = 0; 2253 for (unsigned e = offsets.size(); idx < e; ++idx) 2254 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2255 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2256 shape.push_back(vectorType.getShape()[idx]); 2257 2258 return VectorType::get(shape, vectorType.getElementType()); 2259 } 2260 2261 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2262 Value source, ArrayRef<int64_t> offsets, 2263 ArrayRef<int64_t> sizes, 2264 ArrayRef<int64_t> strides) { 2265 result.addOperands(source); 2266 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2267 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2268 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2269 result.addTypes( 2270 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2271 offsetsAttr, sizesAttr, stridesAttr)); 2272 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2273 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2274 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2275 } 2276 2277 LogicalResult ExtractStridedSliceOp::verify() { 2278 auto type = getVectorType(); 2279 auto offsets = getOffsetsAttr(); 2280 auto sizes = getSizesAttr(); 2281 auto strides = getStridesAttr(); 2282 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2283 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2284 2285 auto shape = type.getShape(); 2286 auto offName = getOffsetsAttrName(); 2287 auto sizesName = getSizesAttrName(); 2288 auto stridesName = getStridesAttrName(); 2289 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2290 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2291 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2292 stridesName)) || 2293 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2294 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2295 /*halfOpen=*/false, 2296 /*min=*/1)) || 2297 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2298 /*halfOpen=*/false)) || 2299 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2300 offName, sizesName, 2301 /*halfOpen=*/false))) 2302 return failure(); 2303 2304 auto resultType = 2305 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2306 if (getResult().getType() != resultType) 2307 return emitOpError("expected result type to be ") << resultType; 2308 2309 return success(); 2310 } 2311 2312 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2313 // to use the source of the InsertStrided ops if we can detect that the 2314 // extracted vector is a subset of one of the vector inserted. 2315 static LogicalResult 2316 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2317 // Helper to extract integer out of ArrayAttr. 2318 auto getElement = [](ArrayAttr array, int idx) { 2319 return array[idx].cast<IntegerAttr>().getInt(); 2320 }; 2321 ArrayAttr extractOffsets = op.getOffsets(); 2322 ArrayAttr extractStrides = op.getStrides(); 2323 ArrayAttr extractSizes = op.getSizes(); 2324 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2325 while (insertOp) { 2326 if (op.getVectorType().getRank() != 2327 insertOp.getSourceVectorType().getRank()) 2328 return failure(); 2329 ArrayAttr insertOffsets = insertOp.getOffsets(); 2330 ArrayAttr insertStrides = insertOp.getStrides(); 2331 // If the rank of extract is greater than the rank of insert, we are likely 2332 // extracting a partial chunk of the vector inserted. 2333 if (extractOffsets.size() > insertOffsets.size()) 2334 return failure(); 2335 bool patialoverlap = false; 2336 bool disjoint = false; 2337 SmallVector<int64_t, 4> offsetDiffs; 2338 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2339 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2340 return failure(); 2341 int64_t start = getElement(insertOffsets, dim); 2342 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2343 int64_t offset = getElement(extractOffsets, dim); 2344 int64_t size = getElement(extractSizes, dim); 2345 // Check if the start of the extract offset is in the interval inserted. 2346 if (start <= offset && offset < end) { 2347 // If the extract interval overlaps but is not fully included we may 2348 // have a partial overlap that will prevent any folding. 2349 if (offset + size > end) 2350 patialoverlap = true; 2351 offsetDiffs.push_back(offset - start); 2352 continue; 2353 } 2354 disjoint = true; 2355 break; 2356 } 2357 // The extract element chunk is a subset of the insert element. 2358 if (!disjoint && !patialoverlap) { 2359 op.setOperand(insertOp.getSource()); 2360 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2361 OpBuilder b(op.getContext()); 2362 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2363 b.getI64ArrayAttr(offsetDiffs)); 2364 return success(); 2365 } 2366 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2367 // in the insert chain. 2368 if (disjoint) 2369 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2370 else { 2371 // The extracted vector partially overlap the inserted vector, we cannot 2372 // fold. 2373 return failure(); 2374 } 2375 } 2376 return failure(); 2377 } 2378 2379 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2380 if (getVectorType() == getResult().getType()) 2381 return getVector(); 2382 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2383 return getResult(); 2384 return {}; 2385 } 2386 2387 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2388 populateFromInt64AttrArray(getOffsets(), results); 2389 } 2390 2391 namespace { 2392 2393 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2394 // ConstantMaskOp. 2395 class StridedSliceConstantMaskFolder final 2396 : public OpRewritePattern<ExtractStridedSliceOp> { 2397 public: 2398 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2399 2400 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2401 PatternRewriter &rewriter) const override { 2402 // Return if 'extractStridedSliceOp' operand is not defined by a 2403 // ConstantMaskOp. 2404 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2405 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2406 if (!constantMaskOp) 2407 return failure(); 2408 // Return if 'extractStridedSliceOp' has non-unit strides. 2409 if (extractStridedSliceOp.hasNonUnitStrides()) 2410 return failure(); 2411 // Gather constant mask dimension sizes. 2412 SmallVector<int64_t, 4> maskDimSizes; 2413 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2414 // Gather strided slice offsets and sizes. 2415 SmallVector<int64_t, 4> sliceOffsets; 2416 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2417 sliceOffsets); 2418 SmallVector<int64_t, 4> sliceSizes; 2419 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2420 2421 // Compute slice of vector mask region. 2422 SmallVector<int64_t, 4> sliceMaskDimSizes; 2423 assert(sliceOffsets.size() == maskDimSizes.size()); 2424 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2425 int64_t maskDimSize = std::get<0>(it); 2426 int64_t sliceOffset = std::get<1>(it); 2427 int64_t sliceSize = std::get<2>(it); 2428 int64_t sliceMaskDimSize = std::max( 2429 static_cast<int64_t>(0), 2430 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2431 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2432 } 2433 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2434 // region is a conjunction of mask dim intervals). 2435 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2436 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2437 2438 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2439 // region. 2440 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2441 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2442 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2443 return success(); 2444 } 2445 }; 2446 2447 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2448 class StridedSliceConstantFolder final 2449 : public OpRewritePattern<ExtractStridedSliceOp> { 2450 public: 2451 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2452 2453 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2454 PatternRewriter &rewriter) const override { 2455 // Return if 'extractStridedSliceOp' operand is not defined by a 2456 // ConstantOp. 2457 auto constantOp = 2458 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2459 if (!constantOp) 2460 return failure(); 2461 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2462 if (!dense) 2463 return failure(); 2464 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2465 dense.getSplatValue<Attribute>()); 2466 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2467 newAttr); 2468 return success(); 2469 } 2470 }; 2471 2472 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2473 // BroadcastOp(ExtractStrideSliceOp). 2474 class StridedSliceBroadcast final 2475 : public OpRewritePattern<ExtractStridedSliceOp> { 2476 public: 2477 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2478 2479 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2480 PatternRewriter &rewriter) const override { 2481 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2482 if (!broadcast) 2483 return failure(); 2484 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2485 unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0; 2486 auto dstVecType = op.getType().cast<VectorType>(); 2487 unsigned dstRank = dstVecType.getRank(); 2488 unsigned rankDiff = dstRank - srcRrank; 2489 // Check if the most inner dimensions of the source of the broadcast are the 2490 // same as the destination of the extract. If this is the case we can just 2491 // use a broadcast as the original dimensions are untouched. 2492 bool lowerDimMatch = true; 2493 for (unsigned i = 0; i < srcRrank; i++) { 2494 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2495 lowerDimMatch = false; 2496 break; 2497 } 2498 } 2499 Value source = broadcast.getSource(); 2500 if (!lowerDimMatch) { 2501 // The inner dimensions don't match, it means we need to extract from the 2502 // source of the orignal broadcast and then broadcast the extracted value. 2503 source = rewriter.create<ExtractStridedSliceOp>( 2504 op->getLoc(), source, 2505 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2506 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2507 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2508 } 2509 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2510 return success(); 2511 } 2512 }; 2513 2514 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2515 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2516 public: 2517 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2518 2519 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2520 PatternRewriter &rewriter) const override { 2521 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2522 if (!splat) 2523 return failure(); 2524 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2525 return success(); 2526 } 2527 }; 2528 2529 } // namespace 2530 2531 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2532 RewritePatternSet &results, MLIRContext *context) { 2533 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2534 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2535 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2536 StridedSliceBroadcast, StridedSliceSplat>(context); 2537 } 2538 2539 //===----------------------------------------------------------------------===// 2540 // TransferReadOp 2541 //===----------------------------------------------------------------------===// 2542 2543 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2544 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2545 VectorType vectorType, Value source, 2546 ValueRange indices, AffineMapAttr permutationMapAttr, 2547 /*optional*/ ArrayAttr inBoundsAttr) { 2548 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2549 Value padding = builder.create<arith::ConstantOp>( 2550 result.location, elemType, builder.getZeroAttr(elemType)); 2551 build(builder, result, vectorType, source, indices, permutationMapAttr, 2552 padding, /*mask=*/Value(), inBoundsAttr); 2553 } 2554 2555 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2556 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2557 VectorType vectorType, Value source, 2558 ValueRange indices, AffineMap permutationMap, 2559 Optional<ArrayRef<bool>> inBounds) { 2560 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2561 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2562 ? builder.getBoolArrayAttr(inBounds.getValue()) 2563 : ArrayAttr(); 2564 build(builder, result, vectorType, source, indices, permutationMapAttr, 2565 inBoundsAttr); 2566 } 2567 2568 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2569 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2570 VectorType vectorType, Value source, 2571 ValueRange indices, Value padding, 2572 Optional<ArrayRef<bool>> inBounds) { 2573 AffineMap permutationMap = getTransferMinorIdentityMap( 2574 source.getType().cast<ShapedType>(), vectorType); 2575 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2576 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2577 ? builder.getBoolArrayAttr(inBounds.getValue()) 2578 : ArrayAttr(); 2579 build(builder, result, vectorType, source, indices, permutationMapAttr, 2580 padding, 2581 /*mask=*/Value(), inBoundsAttr); 2582 } 2583 2584 /// 4. Builder that sets padding to zero and permutation map to 2585 /// 'getMinorIdentityMap'. 2586 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2587 VectorType vectorType, Value source, 2588 ValueRange indices, 2589 Optional<ArrayRef<bool>> inBounds) { 2590 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2591 Value padding = builder.create<arith::ConstantOp>( 2592 result.location, elemType, builder.getZeroAttr(elemType)); 2593 build(builder, result, vectorType, source, indices, padding, inBounds); 2594 } 2595 2596 template <typename EmitFun> 2597 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2598 EmitFun emitOpError) { 2599 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2600 for (auto expr : permutationMap.getResults()) { 2601 auto dim = expr.dyn_cast<AffineDimExpr>(); 2602 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2603 if (zero) { 2604 if (zero.getValue() != 0) { 2605 return emitOpError( 2606 "requires a projected permutation_map (at most one dim or the zero " 2607 "constant can appear in each result)"); 2608 } 2609 continue; 2610 } 2611 if (!dim) { 2612 return emitOpError("requires a projected permutation_map (at most one " 2613 "dim or the zero constant can appear in each result)"); 2614 } 2615 if (seen[dim.getPosition()]) { 2616 return emitOpError( 2617 "requires a permutation_map that is a permutation (found one dim " 2618 "used more than once)"); 2619 } 2620 seen[dim.getPosition()] = true; 2621 } 2622 return success(); 2623 } 2624 2625 static LogicalResult 2626 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2627 VectorType vectorType, VectorType maskType, 2628 AffineMap permutationMap, ArrayAttr inBounds) { 2629 if (op->hasAttr("masked")) { 2630 return op->emitOpError("masked attribute has been removed. " 2631 "Use in_bounds instead."); 2632 } 2633 2634 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2635 return op->emitOpError( 2636 "requires source to be a memref or ranked tensor type"); 2637 2638 auto elementType = shapedType.getElementType(); 2639 DataLayout dataLayout = DataLayout::closest(op); 2640 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2641 // Memref or tensor has vector element type. 2642 unsigned sourceVecSize = 2643 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2644 vectorElementType.getShape().back(); 2645 unsigned resultVecSize = 2646 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2647 vectorType.getShape().back(); 2648 if (resultVecSize % sourceVecSize != 0) 2649 return op->emitOpError( 2650 "requires the bitwidth of the minor 1-D vector to be an integral " 2651 "multiple of the bitwidth of the minor 1-D vector of the source"); 2652 2653 unsigned sourceVecEltRank = vectorElementType.getRank(); 2654 unsigned resultVecRank = vectorType.getRank(); 2655 if (sourceVecEltRank > resultVecRank) 2656 return op->emitOpError( 2657 "requires source vector element and vector result ranks to match."); 2658 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2659 // Check that permutation map results match 'rankOffset' of vector type. 2660 if (permutationMap.getNumResults() != rankOffset) 2661 return op->emitOpError("requires a permutation_map with result dims of " 2662 "the same rank as the vector type"); 2663 2664 if (maskType) 2665 return op->emitOpError("does not support masks with vector element type"); 2666 } else { 2667 // Memref or tensor has scalar element type. 2668 unsigned minorSize = 2669 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2670 unsigned resultVecSize = 2671 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2672 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2673 return op->emitOpError( 2674 "requires the bitwidth of the minor 1-D vector to be an integral " 2675 "multiple of the bitwidth of the source element type"); 2676 2677 // Check that permutation map results match rank of vector type. 2678 if (permutationMap.getNumResults() != vectorType.getRank()) 2679 return op->emitOpError("requires a permutation_map with result dims of " 2680 "the same rank as the vector type"); 2681 2682 VectorType expectedMaskType = 2683 vector::detail::transferMaskType(vectorType, permutationMap); 2684 if (maskType && expectedMaskType != maskType) 2685 return op->emitOpError("expects mask type consistent with permutation " 2686 "map: ") 2687 << maskType; 2688 } 2689 2690 if (permutationMap.getNumSymbols() != 0) 2691 return op->emitOpError("requires permutation_map without symbols"); 2692 2693 if (permutationMap.getNumInputs() != shapedType.getRank()) 2694 return op->emitOpError("requires a permutation_map with input dims of the " 2695 "same rank as the source type"); 2696 2697 if (inBounds) { 2698 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2699 return op->emitOpError("expects the optional in_bounds attr of same rank " 2700 "as permutation_map results: ") 2701 << AffineMapAttr::get(permutationMap) 2702 << " vs inBounds of size: " << inBounds.size(); 2703 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2704 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2705 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2706 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2707 } 2708 2709 return success(); 2710 } 2711 2712 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2713 SmallVector<StringRef, 3> elidedAttrs; 2714 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2715 if (op.permutation_map().isMinorIdentity()) 2716 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2717 bool elideInBounds = true; 2718 if (auto inBounds = op.in_bounds()) { 2719 for (auto attr : *inBounds) { 2720 if (attr.template cast<BoolAttr>().getValue()) { 2721 elideInBounds = false; 2722 break; 2723 } 2724 } 2725 } 2726 if (elideInBounds) 2727 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2728 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2729 } 2730 2731 void TransferReadOp::print(OpAsmPrinter &p) { 2732 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2733 if (getMask()) 2734 p << ", " << getMask(); 2735 printTransferAttrs(p, *this); 2736 p << " : " << getShapedType() << ", " << getVectorType(); 2737 } 2738 2739 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2740 auto &builder = parser.getBuilder(); 2741 SMLoc typesLoc; 2742 OpAsmParser::UnresolvedOperand sourceInfo; 2743 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2744 OpAsmParser::UnresolvedOperand paddingInfo; 2745 SmallVector<Type, 2> types; 2746 OpAsmParser::UnresolvedOperand maskInfo; 2747 // Parsing with support for paddingValue. 2748 if (parser.parseOperand(sourceInfo) || 2749 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2750 parser.parseComma() || parser.parseOperand(paddingInfo)) 2751 return failure(); 2752 ParseResult hasMask = parser.parseOptionalComma(); 2753 if (hasMask.succeeded()) { 2754 parser.parseOperand(maskInfo); 2755 } 2756 if (parser.parseOptionalAttrDict(result.attributes) || 2757 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2758 return failure(); 2759 if (types.size() != 2) 2760 return parser.emitError(typesLoc, "requires two types"); 2761 auto indexType = builder.getIndexType(); 2762 auto shapedType = types[0].dyn_cast<ShapedType>(); 2763 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2764 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2765 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2766 if (!vectorType) 2767 return parser.emitError(typesLoc, "requires vector type"); 2768 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2769 Attribute mapAttr = result.attributes.get(permutationAttrName); 2770 if (!mapAttr) { 2771 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2772 // Update `mapAttr` that is used later to determine mask type. 2773 mapAttr = AffineMapAttr::get(permMap); 2774 result.attributes.set(permutationAttrName, mapAttr); 2775 } 2776 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2777 parser.resolveOperands(indexInfo, indexType, result.operands) || 2778 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2779 result.operands)) 2780 return failure(); 2781 if (hasMask.succeeded()) { 2782 if (shapedType.getElementType().dyn_cast<VectorType>()) 2783 return parser.emitError( 2784 maskInfo.location, "does not support masks with vector element type"); 2785 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2786 // Instead of adding the mask type as an op type, compute it based on the 2787 // vector type and the permutation map (to keep the type signature small). 2788 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2789 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2790 return failure(); 2791 } 2792 result.addAttribute( 2793 TransferReadOp::getOperandSegmentSizeAttr(), 2794 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2795 static_cast<int32_t>(hasMask.succeeded())})); 2796 return parser.addTypeToList(vectorType, result.types); 2797 } 2798 2799 LogicalResult TransferReadOp::verify() { 2800 // Consistency of elemental types in source and vector. 2801 ShapedType shapedType = getShapedType(); 2802 VectorType vectorType = getVectorType(); 2803 VectorType maskType = getMaskType(); 2804 auto paddingType = getPadding().getType(); 2805 auto permutationMap = getPermutationMap(); 2806 auto sourceElementType = shapedType.getElementType(); 2807 2808 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2809 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2810 2811 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2812 shapedType, vectorType, maskType, permutationMap, 2813 getInBounds() ? *getInBounds() : ArrayAttr()))) 2814 return failure(); 2815 2816 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2817 // Source has vector element type. 2818 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2819 if (sourceVectorElementType != paddingType) 2820 return emitOpError( 2821 "requires source element type and padding type to match."); 2822 2823 } else { 2824 // Check that 'paddingType' is valid to store in a vector type. 2825 if (!VectorType::isValidElementType(paddingType)) 2826 return emitOpError("requires valid padding vector elemental type"); 2827 2828 // Check that padding type and vector element types match. 2829 if (paddingType != sourceElementType) 2830 return emitOpError( 2831 "requires formal padding and source of the same elemental type"); 2832 } 2833 2834 return verifyPermutationMap(permutationMap, 2835 [&](Twine t) { return emitOpError(t); }); 2836 } 2837 2838 /// This is a common class used for patterns of the form 2839 /// ``` 2840 /// someop(memrefcast) -> someop 2841 /// ``` 2842 /// It folds the source of the memref.cast into the root operation directly. 2843 static LogicalResult foldMemRefCast(Operation *op) { 2844 bool folded = false; 2845 for (OpOperand &operand : op->getOpOperands()) { 2846 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2847 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2848 operand.set(castOp.getOperand()); 2849 folded = true; 2850 } 2851 } 2852 return success(folded); 2853 } 2854 2855 static LogicalResult foldTensorCast(Operation *op) { 2856 bool folded = false; 2857 for (OpOperand &operand : op->getOpOperands()) { 2858 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2859 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2860 operand.set(castOp.getOperand()); 2861 folded = true; 2862 } 2863 } 2864 return success(folded); 2865 } 2866 2867 template <typename TransferOp> 2868 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2869 // TODO: support more aggressive createOrFold on: 2870 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2871 if (op.getShapedType().isDynamicDim(indicesIdx)) 2872 return false; 2873 Value index = op.getIndices()[indicesIdx]; 2874 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2875 if (!cstOp) 2876 return false; 2877 2878 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2879 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2880 2881 return cstOp.value() + vectorSize <= sourceSize; 2882 } 2883 2884 template <typename TransferOp> 2885 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2886 // TODO: support 0-d corner case. 2887 // TODO: Be less conservative. 2888 if (op.getTransferRank() == 0) 2889 return failure(); 2890 AffineMap permutationMap = op.getPermutationMap(); 2891 bool changed = false; 2892 SmallVector<bool, 4> newInBounds; 2893 newInBounds.reserve(op.getTransferRank()); 2894 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2895 // Already marked as in-bounds, nothing to see here. 2896 if (op.isDimInBounds(i)) { 2897 newInBounds.push_back(true); 2898 continue; 2899 } 2900 // Currently out-of-bounds, check whether we can statically determine it is 2901 // inBounds. 2902 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2903 assert(dimExpr && "Broadcast dims must be in-bounds"); 2904 auto inBounds = 2905 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2906 newInBounds.push_back(inBounds); 2907 // We commit the pattern if it is "more inbounds". 2908 changed |= inBounds; 2909 } 2910 if (!changed) 2911 return failure(); 2912 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2913 OpBuilder b(op.getContext()); 2914 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2915 b.getBoolArrayAttr(newInBounds)); 2916 return success(); 2917 } 2918 2919 /// ``` 2920 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2921 /// : vector<1x4xf32>, tensor<4x4xf32> 2922 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2923 /// : tensor<4x4xf32>, vector<1x4xf32> 2924 /// ``` 2925 /// -> Folds into 2926 /// ``` 2927 /// %v0 2928 /// ``` 2929 static Value foldRAW(TransferReadOp readOp) { 2930 if (!readOp.getShapedType().isa<RankedTensorType>()) 2931 return {}; 2932 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 2933 while (defWrite) { 2934 if (checkSameValueRAW(defWrite, readOp)) 2935 return defWrite.getVector(); 2936 if (!isDisjointTransferIndices( 2937 cast<VectorTransferOpInterface>(defWrite.getOperation()), 2938 cast<VectorTransferOpInterface>(readOp.getOperation()))) 2939 break; 2940 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 2941 } 2942 return {}; 2943 } 2944 2945 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 2946 if (Value vec = foldRAW(*this)) 2947 return vec; 2948 /// transfer_read(memrefcast) -> transfer_read 2949 if (succeeded(foldTransferInBoundsAttribute(*this))) 2950 return getResult(); 2951 if (succeeded(foldMemRefCast(*this))) 2952 return getResult(); 2953 if (succeeded(foldTensorCast(*this))) 2954 return getResult(); 2955 return OpFoldResult(); 2956 } 2957 2958 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 2959 return llvm::to_vector<4>(getVectorType().getShape()); 2960 } 2961 2962 void TransferReadOp::getEffects( 2963 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 2964 &effects) { 2965 if (getShapedType().isa<MemRefType>()) 2966 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 2967 SideEffects::DefaultResource::get()); 2968 } 2969 2970 namespace { 2971 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 2972 /// 2973 /// ``` 2974 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 2975 /// : tensor<?x?xf32> to tensor<?x?xf32> 2976 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 2977 /// : tensor<?x?xf32>, vector<4x5xf32> 2978 /// ``` 2979 /// is rewritten to: 2980 /// ``` 2981 /// %p0 = arith.addi %a, %e : index 2982 /// %p1 = arith.addi %b, %f : index 2983 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 2984 /// : tensor<?x?xf32>, vector<4x5xf32> 2985 /// ``` 2986 struct FoldExtractSliceIntoTransferRead 2987 : public OpRewritePattern<TransferReadOp> { 2988 public: 2989 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 2990 2991 LogicalResult matchAndRewrite(TransferReadOp xferOp, 2992 PatternRewriter &rewriter) const override { 2993 // TODO: support 0-d corner case. 2994 if (xferOp.getTransferRank() == 0) 2995 return failure(); 2996 if (xferOp.hasOutOfBoundsDim()) 2997 return failure(); 2998 if (!xferOp.getPermutationMap().isIdentity()) 2999 return failure(); 3000 if (xferOp.getMask()) 3001 return failure(); 3002 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3003 if (!extractOp) 3004 return failure(); 3005 if (!extractOp.hasUnitStride()) 3006 return failure(); 3007 3008 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3009 // dims are exactly the leading dims. I.e. the following is illegal: 3010 // ``` 3011 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3012 // tensor<2x1x4xf32> to tensor<2x4xf32> 3013 // %1 = vector.transfer_read %0[0,0], %cst : 3014 // tensor<2x4xf32>, vector<2x4xf32> 3015 // ``` 3016 // 3017 // Cannot fold into: 3018 // ``` 3019 // %0 = vector.transfer_read %t[0,0,0], %cst : 3020 // tensor<2x1x4xf32>, vector<2x4xf32> 3021 // ``` 3022 // For this, check the trailing `vectorRank` dims of the extract_slice 3023 // result tensor match the trailing dims of the inferred result tensor. 3024 int64_t rankReduced = 3025 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3026 int64_t vectorRank = xferOp.getVectorType().getRank(); 3027 RankedTensorType inferredDestTensorType = 3028 tensor::ExtractSliceOp::inferResultType( 3029 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3030 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3031 auto actualDestTensorShape = extractOp.getType().getShape(); 3032 if (rankReduced > 0 && 3033 actualDestTensorShape.take_back(vectorRank) != 3034 inferredDestTensorType.getShape().take_back(vectorRank)) 3035 return failure(); 3036 3037 SmallVector<Value> newIndices; 3038 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3039 // indices first. 3040 for (int64_t i = 0; i < rankReduced; ++i) { 3041 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3042 newIndices.push_back(getValueOrCreateConstantIndexOp( 3043 rewriter, extractOp.getLoc(), offset)); 3044 } 3045 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3046 OpFoldResult offset = 3047 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3048 newIndices.push_back(rewriter.create<arith::AddIOp>( 3049 xferOp->getLoc(), it.value(), 3050 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3051 offset))); 3052 } 3053 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3054 rewriter.replaceOpWithNewOp<TransferReadOp>( 3055 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3056 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3057 3058 return success(); 3059 } 3060 }; 3061 } // namespace 3062 3063 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3064 MLIRContext *context) { 3065 results.add<FoldExtractSliceIntoTransferRead>(context); 3066 } 3067 3068 //===----------------------------------------------------------------------===// 3069 // TransferWriteOp 3070 //===----------------------------------------------------------------------===// 3071 3072 /// 1. Builder with type inference. 3073 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3074 Value vector, Value dest, ValueRange indices, 3075 AffineMapAttr permutationMapAttr, 3076 /*optional*/ Value mask, 3077 /*optional*/ ArrayAttr inBoundsAttr) { 3078 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3079 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3080 mask, inBoundsAttr); 3081 } 3082 3083 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3084 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3085 Value vector, Value dest, ValueRange indices, 3086 AffineMapAttr permutationMapAttr, 3087 /*optional*/ ArrayAttr inBoundsAttr) { 3088 build(builder, result, vector, dest, indices, permutationMapAttr, 3089 /*mask=*/Value(), inBoundsAttr); 3090 } 3091 3092 /// 3. Builder with type inference that sets an empty mask (variant without 3093 /// attrs) 3094 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3095 Value vector, Value dest, ValueRange indices, 3096 AffineMap permutationMap, 3097 Optional<ArrayRef<bool>> inBounds) { 3098 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3099 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3100 ? builder.getBoolArrayAttr(inBounds.getValue()) 3101 : ArrayAttr(); 3102 build(builder, result, vector, dest, indices, permutationMapAttr, 3103 /*mask=*/Value(), inBoundsAttr); 3104 } 3105 3106 /// 4. Builder with type inference that sets an empty mask and sets permutation 3107 /// map to 'getMinorIdentityMap'. 3108 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3109 Value vector, Value dest, ValueRange indices, 3110 Optional<ArrayRef<bool>> inBounds) { 3111 auto vectorType = vector.getType().cast<VectorType>(); 3112 AffineMap permutationMap = getTransferMinorIdentityMap( 3113 dest.getType().cast<ShapedType>(), vectorType); 3114 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3115 } 3116 3117 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3118 OperationState &result) { 3119 auto &builder = parser.getBuilder(); 3120 SMLoc typesLoc; 3121 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3122 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3123 SmallVector<Type, 2> types; 3124 OpAsmParser::UnresolvedOperand maskInfo; 3125 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3126 parser.parseOperand(sourceInfo) || 3127 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3128 return failure(); 3129 ParseResult hasMask = parser.parseOptionalComma(); 3130 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3131 return failure(); 3132 if (parser.parseOptionalAttrDict(result.attributes) || 3133 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3134 return failure(); 3135 if (types.size() != 2) 3136 return parser.emitError(typesLoc, "requires two types"); 3137 auto indexType = builder.getIndexType(); 3138 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3139 if (!vectorType) 3140 return parser.emitError(typesLoc, "requires vector type"); 3141 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3142 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3143 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3144 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3145 auto attr = result.attributes.get(permutationAttrName); 3146 if (!attr) { 3147 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3148 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3149 } 3150 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3151 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3152 parser.resolveOperands(indexInfo, indexType, result.operands)) 3153 return failure(); 3154 if (hasMask.succeeded()) { 3155 if (shapedType.getElementType().dyn_cast<VectorType>()) 3156 return parser.emitError( 3157 maskInfo.location, "does not support masks with vector element type"); 3158 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3159 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3160 return failure(); 3161 } 3162 result.addAttribute( 3163 TransferWriteOp::getOperandSegmentSizeAttr(), 3164 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3165 static_cast<int32_t>(hasMask.succeeded())})); 3166 return failure(shapedType.isa<RankedTensorType>() && 3167 parser.addTypeToList(shapedType, result.types)); 3168 } 3169 3170 void TransferWriteOp::print(OpAsmPrinter &p) { 3171 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3172 if (getMask()) 3173 p << ", " << getMask(); 3174 printTransferAttrs(p, *this); 3175 p << " : " << getVectorType() << ", " << getShapedType(); 3176 } 3177 3178 LogicalResult TransferWriteOp::verify() { 3179 // Consistency of elemental types in shape and vector. 3180 ShapedType shapedType = getShapedType(); 3181 VectorType vectorType = getVectorType(); 3182 VectorType maskType = getMaskType(); 3183 auto permutationMap = getPermutationMap(); 3184 3185 if (llvm::size(getIndices()) != shapedType.getRank()) 3186 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3187 3188 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3189 // as the semantics is unclear. This can be revisited later if necessary. 3190 if (hasBroadcastDim()) 3191 return emitOpError("should not have broadcast dimensions"); 3192 3193 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3194 shapedType, vectorType, maskType, permutationMap, 3195 getInBounds() ? *getInBounds() : ArrayAttr()))) 3196 return failure(); 3197 3198 return verifyPermutationMap(permutationMap, 3199 [&](Twine t) { return emitOpError(t); }); 3200 } 3201 3202 /// Fold: 3203 /// ``` 3204 /// %t1 = ... 3205 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3206 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3207 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3208 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3209 /// ``` 3210 /// 3211 /// into: 3212 /// 3213 /// ``` 3214 /// %t0 3215 /// ``` 3216 /// 3217 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3218 /// block argument or has side effects. 3219 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3220 ArrayRef<Attribute>, 3221 SmallVectorImpl<OpFoldResult> &results) { 3222 // TODO: support 0-d corner case. 3223 if (write.getTransferRank() == 0) 3224 return failure(); 3225 auto rankedTensorType = 3226 write.getSource().getType().dyn_cast<RankedTensorType>(); 3227 // If not operating on tensors, bail. 3228 if (!rankedTensorType) 3229 return failure(); 3230 // If no read, bail. 3231 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3232 if (!read) 3233 return failure(); 3234 // TODO: support 0-d corner case. 3235 if (read.getTransferRank() == 0) 3236 return failure(); 3237 // For now, only accept minor identity. Future: composition is minor identity. 3238 if (!read.getPermutationMap().isMinorIdentity() || 3239 !write.getPermutationMap().isMinorIdentity()) 3240 return failure(); 3241 // Bail on mismatching ranks. 3242 if (read.getTransferRank() != write.getTransferRank()) 3243 return failure(); 3244 // Bail on potential out-of-bounds accesses. 3245 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3246 return failure(); 3247 // Tensor types must be the same. 3248 if (read.getSource().getType() != rankedTensorType) 3249 return failure(); 3250 // Vector types must be the same. 3251 if (read.getVectorType() != write.getVectorType()) 3252 return failure(); 3253 // Vector and Tensor shapes must match. 3254 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3255 return failure(); 3256 // If any index is nonzero. 3257 auto isNotConstantZero = [](Value v) { 3258 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3259 return !cstOp || cstOp.value() != 0; 3260 }; 3261 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3262 llvm::any_of(write.getIndices(), isNotConstantZero)) 3263 return failure(); 3264 // Success. 3265 results.push_back(read.getSource()); 3266 return success(); 3267 } 3268 3269 static bool checkSameValueWAR(vector::TransferReadOp read, 3270 vector::TransferWriteOp write) { 3271 return read.getSource() == write.getSource() && 3272 read.getIndices() == write.getIndices() && 3273 read.getPermutationMap() == write.getPermutationMap() && 3274 read.getVectorType() == write.getVectorType() && !read.getMask() && 3275 !write.getMask(); 3276 } 3277 /// Fold transfer_write write after read: 3278 /// ``` 3279 /// %t0 = ... 3280 /// %v = vector.transfer_read %t0[%c0...] : 3281 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3282 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3283 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3284 /// ``` 3285 /// 3286 /// into: 3287 /// 3288 /// ``` 3289 /// %t0 3290 /// ``` 3291 static LogicalResult foldWAR(TransferWriteOp write, 3292 SmallVectorImpl<OpFoldResult> &results) { 3293 if (!write.getSource().getType().isa<RankedTensorType>()) 3294 return failure(); 3295 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3296 if (!read) 3297 return failure(); 3298 3299 if (!checkSameValueWAR(read, write)) 3300 return failure(); 3301 results.push_back(read.getSource()); 3302 return success(); 3303 } 3304 3305 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3306 SmallVectorImpl<OpFoldResult> &results) { 3307 if (succeeded(foldReadInitWrite(*this, operands, results))) 3308 return success(); 3309 if (succeeded(foldWAR(*this, results))) 3310 return success(); 3311 if (succeeded(foldTransferInBoundsAttribute(*this))) 3312 return success(); 3313 return foldMemRefCast(*this); 3314 } 3315 3316 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3317 return llvm::to_vector<4>(getVectorType().getShape()); 3318 } 3319 3320 void TransferWriteOp::getEffects( 3321 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3322 &effects) { 3323 if (getShapedType().isa<MemRefType>()) 3324 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3325 SideEffects::DefaultResource::get()); 3326 } 3327 3328 namespace { 3329 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3330 /// DCE 3331 /// ``` 3332 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3333 /// : vector<1x4xf32>, tensor<4x4xf32> 3334 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3335 /// : vector<1x4xf32>, tensor<4x4xf32> 3336 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3337 /// : vector<1x4xf32>, tensor<4x4xf32> 3338 /// ``` 3339 /// 3340 /// into: 3341 /// 3342 /// ``` 3343 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3344 /// : vector<1x4xf32>, tensor<4x4xf32> 3345 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3346 /// : vector<1x4xf32>, tensor<4x4xf32> 3347 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3348 /// : vector<1x4xf32>, tensor<4x4xf32> 3349 /// ``` 3350 /// 3351 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3352 /// any other uses. 3353 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3354 public: 3355 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3356 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3357 PatternRewriter &rewriter) const override { 3358 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3359 return failure(); 3360 vector::TransferWriteOp writeToModify = writeOp; 3361 3362 auto defWrite = 3363 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3364 while (defWrite) { 3365 if (checkSameValueWAW(writeOp, defWrite)) { 3366 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3367 return success(); 3368 } 3369 if (!isDisjointTransferIndices( 3370 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3371 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3372 break; 3373 // If the previous write op doesn't have any other use we an safely look 3374 // at the previous store to see if it can be removed. 3375 if (!defWrite->hasOneUse()) 3376 break; 3377 writeToModify = defWrite; 3378 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3379 } 3380 return failure(); 3381 } 3382 }; 3383 3384 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3385 /// could directly write to the insert_slice's destination. E.g.: 3386 /// 3387 /// ``` 3388 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3389 /// : vector<4x5xf32>, tensor<4x5xf32> 3390 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3391 /// : tensor<4x5xf32> into tensor<?x?xf32> 3392 /// ``` 3393 /// is rewritten to: 3394 /// ``` 3395 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3396 /// : vector<4x5xf32>, tensor<?x?xf32> 3397 /// ``` 3398 struct FoldInsertSliceIntoTransferWrite 3399 : public OpRewritePattern<tensor::InsertSliceOp> { 3400 public: 3401 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3402 3403 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3404 PatternRewriter &rewriter) const override { 3405 if (!insertOp.hasUnitStride()) 3406 return failure(); 3407 3408 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3409 if (!xferOp) 3410 return failure(); 3411 // TODO: support 0-d corner case. 3412 if (xferOp.getTransferRank() == 0) 3413 return failure(); 3414 3415 if (xferOp.hasOutOfBoundsDim()) 3416 return failure(); 3417 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3418 return failure(); 3419 if (xferOp.getMask()) 3420 return failure(); 3421 // Fold only if the TransferWriteOp completely overwrites the `source` with 3422 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3423 // content is the data of the vector. 3424 if (!llvm::equal(xferOp.getVectorType().getShape(), 3425 xferOp.getShapedType().getShape())) 3426 return failure(); 3427 if (!xferOp.getPermutationMap().isIdentity()) 3428 return failure(); 3429 3430 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3431 // dims are exactly the leading dims. I.e. the following is illegal: 3432 // ``` 3433 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3434 // vector<2x4xf32>, tensor<2x4xf32> 3435 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3436 // tensor<2x4xf32> into tensor<2x1x4xf32> 3437 // ``` 3438 // 3439 // Cannot fold into: 3440 // ``` 3441 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3442 // vector<2x4xf32>, tensor<2x1x4xf32> 3443 // ``` 3444 // For this, check the trailing `vectorRank` dims of the insert_slice result 3445 // tensor match the trailing dims of the inferred result tensor. 3446 int64_t rankReduced = 3447 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3448 int64_t vectorRank = xferOp.getVectorType().getRank(); 3449 RankedTensorType inferredSourceTensorType = 3450 tensor::ExtractSliceOp::inferResultType( 3451 insertOp.getType(), insertOp.getMixedOffsets(), 3452 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3453 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3454 if (rankReduced > 0 && 3455 actualSourceTensorShape.take_back(vectorRank) != 3456 inferredSourceTensorType.getShape().take_back(vectorRank)) 3457 return failure(); 3458 3459 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3460 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3461 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3462 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3463 insertOp.dest(), indices, 3464 ArrayRef<bool>{inBounds}); 3465 return success(); 3466 } 3467 }; 3468 } // namespace 3469 3470 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3471 MLIRContext *context) { 3472 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3473 } 3474 3475 //===----------------------------------------------------------------------===// 3476 // LoadOp 3477 //===----------------------------------------------------------------------===// 3478 3479 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3480 MemRefType memRefTy) { 3481 if (!isLastMemrefDimUnitStride(memRefTy)) 3482 return op->emitOpError("most minor memref dim must have unit stride"); 3483 return success(); 3484 } 3485 3486 LogicalResult vector::LoadOp::verify() { 3487 VectorType resVecTy = getVectorType(); 3488 MemRefType memRefTy = getMemRefType(); 3489 3490 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3491 return failure(); 3492 3493 // Checks for vector memrefs. 3494 Type memElemTy = memRefTy.getElementType(); 3495 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3496 if (memVecTy != resVecTy) 3497 return emitOpError("base memref and result vector types should match"); 3498 memElemTy = memVecTy.getElementType(); 3499 } 3500 3501 if (resVecTy.getElementType() != memElemTy) 3502 return emitOpError("base and result element types should match"); 3503 if (llvm::size(getIndices()) != memRefTy.getRank()) 3504 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3505 return success(); 3506 } 3507 3508 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3509 if (succeeded(foldMemRefCast(*this))) 3510 return getResult(); 3511 return OpFoldResult(); 3512 } 3513 3514 //===----------------------------------------------------------------------===// 3515 // StoreOp 3516 //===----------------------------------------------------------------------===// 3517 3518 LogicalResult vector::StoreOp::verify() { 3519 VectorType valueVecTy = getVectorType(); 3520 MemRefType memRefTy = getMemRefType(); 3521 3522 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3523 return failure(); 3524 3525 // Checks for vector memrefs. 3526 Type memElemTy = memRefTy.getElementType(); 3527 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3528 if (memVecTy != valueVecTy) 3529 return emitOpError( 3530 "base memref and valueToStore vector types should match"); 3531 memElemTy = memVecTy.getElementType(); 3532 } 3533 3534 if (valueVecTy.getElementType() != memElemTy) 3535 return emitOpError("base and valueToStore element type should match"); 3536 if (llvm::size(getIndices()) != memRefTy.getRank()) 3537 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3538 return success(); 3539 } 3540 3541 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3542 SmallVectorImpl<OpFoldResult> &results) { 3543 return foldMemRefCast(*this); 3544 } 3545 3546 //===----------------------------------------------------------------------===// 3547 // MaskedLoadOp 3548 //===----------------------------------------------------------------------===// 3549 3550 LogicalResult MaskedLoadOp::verify() { 3551 VectorType maskVType = getMaskVectorType(); 3552 VectorType passVType = getPassThruVectorType(); 3553 VectorType resVType = getVectorType(); 3554 MemRefType memType = getMemRefType(); 3555 3556 if (resVType.getElementType() != memType.getElementType()) 3557 return emitOpError("base and result element type should match"); 3558 if (llvm::size(getIndices()) != memType.getRank()) 3559 return emitOpError("requires ") << memType.getRank() << " indices"; 3560 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3561 return emitOpError("expected result dim to match mask dim"); 3562 if (resVType != passVType) 3563 return emitOpError("expected pass_thru of same type as result type"); 3564 return success(); 3565 } 3566 3567 namespace { 3568 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3569 public: 3570 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3571 LogicalResult matchAndRewrite(MaskedLoadOp load, 3572 PatternRewriter &rewriter) const override { 3573 switch (get1DMaskFormat(load.getMask())) { 3574 case MaskFormat::AllTrue: 3575 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3576 load, load.getType(), load.getBase(), load.getIndices()); 3577 return success(); 3578 case MaskFormat::AllFalse: 3579 rewriter.replaceOp(load, load.getPassThru()); 3580 return success(); 3581 case MaskFormat::Unknown: 3582 return failure(); 3583 } 3584 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3585 } 3586 }; 3587 } // namespace 3588 3589 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3590 MLIRContext *context) { 3591 results.add<MaskedLoadFolder>(context); 3592 } 3593 3594 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3595 if (succeeded(foldMemRefCast(*this))) 3596 return getResult(); 3597 return OpFoldResult(); 3598 } 3599 3600 //===----------------------------------------------------------------------===// 3601 // MaskedStoreOp 3602 //===----------------------------------------------------------------------===// 3603 3604 LogicalResult MaskedStoreOp::verify() { 3605 VectorType maskVType = getMaskVectorType(); 3606 VectorType valueVType = getVectorType(); 3607 MemRefType memType = getMemRefType(); 3608 3609 if (valueVType.getElementType() != memType.getElementType()) 3610 return emitOpError("base and valueToStore element type should match"); 3611 if (llvm::size(getIndices()) != memType.getRank()) 3612 return emitOpError("requires ") << memType.getRank() << " indices"; 3613 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3614 return emitOpError("expected valueToStore dim to match mask dim"); 3615 return success(); 3616 } 3617 3618 namespace { 3619 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3620 public: 3621 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3622 LogicalResult matchAndRewrite(MaskedStoreOp store, 3623 PatternRewriter &rewriter) const override { 3624 switch (get1DMaskFormat(store.getMask())) { 3625 case MaskFormat::AllTrue: 3626 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3627 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3628 return success(); 3629 case MaskFormat::AllFalse: 3630 rewriter.eraseOp(store); 3631 return success(); 3632 case MaskFormat::Unknown: 3633 return failure(); 3634 } 3635 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3636 } 3637 }; 3638 } // namespace 3639 3640 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3641 MLIRContext *context) { 3642 results.add<MaskedStoreFolder>(context); 3643 } 3644 3645 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3646 SmallVectorImpl<OpFoldResult> &results) { 3647 return foldMemRefCast(*this); 3648 } 3649 3650 //===----------------------------------------------------------------------===// 3651 // GatherOp 3652 //===----------------------------------------------------------------------===// 3653 3654 LogicalResult GatherOp::verify() { 3655 VectorType indVType = getIndexVectorType(); 3656 VectorType maskVType = getMaskVectorType(); 3657 VectorType resVType = getVectorType(); 3658 MemRefType memType = getMemRefType(); 3659 3660 if (resVType.getElementType() != memType.getElementType()) 3661 return emitOpError("base and result element type should match"); 3662 if (llvm::size(getIndices()) != memType.getRank()) 3663 return emitOpError("requires ") << memType.getRank() << " indices"; 3664 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3665 return emitOpError("expected result dim to match indices dim"); 3666 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3667 return emitOpError("expected result dim to match mask dim"); 3668 if (resVType != getPassThruVectorType()) 3669 return emitOpError("expected pass_thru of same type as result type"); 3670 return success(); 3671 } 3672 3673 namespace { 3674 class GatherFolder final : public OpRewritePattern<GatherOp> { 3675 public: 3676 using OpRewritePattern<GatherOp>::OpRewritePattern; 3677 LogicalResult matchAndRewrite(GatherOp gather, 3678 PatternRewriter &rewriter) const override { 3679 switch (get1DMaskFormat(gather.getMask())) { 3680 case MaskFormat::AllTrue: 3681 return failure(); // no unmasked equivalent 3682 case MaskFormat::AllFalse: 3683 rewriter.replaceOp(gather, gather.getPassThru()); 3684 return success(); 3685 case MaskFormat::Unknown: 3686 return failure(); 3687 } 3688 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3689 } 3690 }; 3691 } // namespace 3692 3693 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3694 MLIRContext *context) { 3695 results.add<GatherFolder>(context); 3696 } 3697 3698 //===----------------------------------------------------------------------===// 3699 // ScatterOp 3700 //===----------------------------------------------------------------------===// 3701 3702 LogicalResult ScatterOp::verify() { 3703 VectorType indVType = getIndexVectorType(); 3704 VectorType maskVType = getMaskVectorType(); 3705 VectorType valueVType = getVectorType(); 3706 MemRefType memType = getMemRefType(); 3707 3708 if (valueVType.getElementType() != memType.getElementType()) 3709 return emitOpError("base and valueToStore element type should match"); 3710 if (llvm::size(getIndices()) != memType.getRank()) 3711 return emitOpError("requires ") << memType.getRank() << " indices"; 3712 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3713 return emitOpError("expected valueToStore dim to match indices dim"); 3714 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3715 return emitOpError("expected valueToStore dim to match mask dim"); 3716 return success(); 3717 } 3718 3719 namespace { 3720 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3721 public: 3722 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3723 LogicalResult matchAndRewrite(ScatterOp scatter, 3724 PatternRewriter &rewriter) const override { 3725 switch (get1DMaskFormat(scatter.getMask())) { 3726 case MaskFormat::AllTrue: 3727 return failure(); // no unmasked equivalent 3728 case MaskFormat::AllFalse: 3729 rewriter.eraseOp(scatter); 3730 return success(); 3731 case MaskFormat::Unknown: 3732 return failure(); 3733 } 3734 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3735 } 3736 }; 3737 } // namespace 3738 3739 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3740 MLIRContext *context) { 3741 results.add<ScatterFolder>(context); 3742 } 3743 3744 //===----------------------------------------------------------------------===// 3745 // ExpandLoadOp 3746 //===----------------------------------------------------------------------===// 3747 3748 LogicalResult ExpandLoadOp::verify() { 3749 VectorType maskVType = getMaskVectorType(); 3750 VectorType passVType = getPassThruVectorType(); 3751 VectorType resVType = getVectorType(); 3752 MemRefType memType = getMemRefType(); 3753 3754 if (resVType.getElementType() != memType.getElementType()) 3755 return emitOpError("base and result element type should match"); 3756 if (llvm::size(getIndices()) != memType.getRank()) 3757 return emitOpError("requires ") << memType.getRank() << " indices"; 3758 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3759 return emitOpError("expected result dim to match mask dim"); 3760 if (resVType != passVType) 3761 return emitOpError("expected pass_thru of same type as result type"); 3762 return success(); 3763 } 3764 3765 namespace { 3766 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3767 public: 3768 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3769 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3770 PatternRewriter &rewriter) const override { 3771 switch (get1DMaskFormat(expand.getMask())) { 3772 case MaskFormat::AllTrue: 3773 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3774 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3775 return success(); 3776 case MaskFormat::AllFalse: 3777 rewriter.replaceOp(expand, expand.getPassThru()); 3778 return success(); 3779 case MaskFormat::Unknown: 3780 return failure(); 3781 } 3782 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3783 } 3784 }; 3785 } // namespace 3786 3787 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3788 MLIRContext *context) { 3789 results.add<ExpandLoadFolder>(context); 3790 } 3791 3792 //===----------------------------------------------------------------------===// 3793 // CompressStoreOp 3794 //===----------------------------------------------------------------------===// 3795 3796 LogicalResult CompressStoreOp::verify() { 3797 VectorType maskVType = getMaskVectorType(); 3798 VectorType valueVType = getVectorType(); 3799 MemRefType memType = getMemRefType(); 3800 3801 if (valueVType.getElementType() != memType.getElementType()) 3802 return emitOpError("base and valueToStore element type should match"); 3803 if (llvm::size(getIndices()) != memType.getRank()) 3804 return emitOpError("requires ") << memType.getRank() << " indices"; 3805 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3806 return emitOpError("expected valueToStore dim to match mask dim"); 3807 return success(); 3808 } 3809 3810 namespace { 3811 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3812 public: 3813 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3814 LogicalResult matchAndRewrite(CompressStoreOp compress, 3815 PatternRewriter &rewriter) const override { 3816 switch (get1DMaskFormat(compress.getMask())) { 3817 case MaskFormat::AllTrue: 3818 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3819 compress, compress.getValueToStore(), compress.getBase(), 3820 compress.getIndices()); 3821 return success(); 3822 case MaskFormat::AllFalse: 3823 rewriter.eraseOp(compress); 3824 return success(); 3825 case MaskFormat::Unknown: 3826 return failure(); 3827 } 3828 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3829 } 3830 }; 3831 } // namespace 3832 3833 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3834 MLIRContext *context) { 3835 results.add<CompressStoreFolder>(context); 3836 } 3837 3838 //===----------------------------------------------------------------------===// 3839 // ShapeCastOp 3840 //===----------------------------------------------------------------------===// 3841 3842 /// Returns true if each element of 'a' is equal to the product of a contiguous 3843 /// sequence of the elements of 'b'. Returns false otherwise. 3844 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3845 unsigned rankA = a.size(); 3846 unsigned rankB = b.size(); 3847 assert(rankA < rankB); 3848 3849 unsigned i = 0; 3850 unsigned j = 0; 3851 while (i < rankA && j < rankB) { 3852 int64_t dimA = a[i]; 3853 int64_t dimB = 1; 3854 while (dimB < dimA && j < rankB) 3855 dimB *= b[j++]; 3856 if (dimA != dimB) 3857 break; 3858 ++i; 3859 3860 // Handle the case when trailing dimensions are of size 1. 3861 // Include them into the contiguous sequence. 3862 auto isOne = [](int64_t v) { return v == 1; }; 3863 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3864 i = rankA; 3865 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3866 j = rankB; 3867 } 3868 3869 return i == rankA && j == rankB; 3870 } 3871 3872 static LogicalResult verifyVectorShapeCast(Operation *op, 3873 VectorType sourceVectorType, 3874 VectorType resultVectorType) { 3875 // Check that element type is the same. 3876 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3877 return op->emitOpError("source/result vectors must have same element type"); 3878 auto sourceShape = sourceVectorType.getShape(); 3879 auto resultShape = resultVectorType.getShape(); 3880 3881 // Check that product of source dim sizes matches product of result dim sizes. 3882 int64_t sourceDimProduct = std::accumulate( 3883 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3884 int64_t resultDimProduct = std::accumulate( 3885 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3886 if (sourceDimProduct != resultDimProduct) 3887 return op->emitOpError("source/result number of elements must match"); 3888 3889 // Check that expanding/contracting rank cases. 3890 unsigned sourceRank = sourceVectorType.getRank(); 3891 unsigned resultRank = resultVectorType.getRank(); 3892 if (sourceRank < resultRank) { 3893 if (!isValidShapeCast(sourceShape, resultShape)) 3894 return op->emitOpError("invalid shape cast"); 3895 } else if (sourceRank > resultRank) { 3896 if (!isValidShapeCast(resultShape, sourceShape)) 3897 return op->emitOpError("invalid shape cast"); 3898 } 3899 return success(); 3900 } 3901 3902 LogicalResult ShapeCastOp::verify() { 3903 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 3904 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 3905 3906 // Check if source/result are of vector type. 3907 if (sourceVectorType && resultVectorType) 3908 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3909 3910 return success(); 3911 } 3912 3913 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3914 // Nop shape cast. 3915 if (getSource().getType() == getResult().getType()) 3916 return getSource(); 3917 3918 // Canceling shape casts. 3919 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 3920 if (getResult().getType() == otherOp.getSource().getType()) 3921 return otherOp.getSource(); 3922 3923 // Only allows valid transitive folding. 3924 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 3925 VectorType resultType = getResult().getType().cast<VectorType>(); 3926 if (srcType.getRank() < resultType.getRank()) { 3927 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3928 return {}; 3929 } else if (srcType.getRank() > resultType.getRank()) { 3930 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3931 return {}; 3932 } else { 3933 return {}; 3934 } 3935 3936 setOperand(otherOp.getSource()); 3937 return getResult(); 3938 } 3939 return {}; 3940 } 3941 3942 namespace { 3943 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 3944 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 3945 public: 3946 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 3947 3948 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 3949 PatternRewriter &rewriter) const override { 3950 auto constantOp = 3951 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 3952 if (!constantOp) 3953 return failure(); 3954 // Only handle splat for now. 3955 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 3956 if (!dense) 3957 return failure(); 3958 auto newAttr = 3959 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 3960 dense.getSplatValue<Attribute>()); 3961 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 3962 return success(); 3963 } 3964 }; 3965 3966 } // namespace 3967 3968 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 3969 MLIRContext *context) { 3970 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 3971 results.add<ShapeCastConstantFolder>(context); 3972 } 3973 3974 //===----------------------------------------------------------------------===// 3975 // VectorBitCastOp 3976 //===----------------------------------------------------------------------===// 3977 3978 LogicalResult BitCastOp::verify() { 3979 auto sourceVectorType = getSourceVectorType(); 3980 auto resultVectorType = getResultVectorType(); 3981 3982 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 3983 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 3984 return emitOpError("dimension size mismatch at: ") << i; 3985 } 3986 3987 DataLayout dataLayout = DataLayout::closest(*this); 3988 auto sourceElementBits = 3989 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 3990 auto resultElementBits = 3991 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 3992 3993 if (sourceVectorType.getRank() == 0) { 3994 if (sourceElementBits != resultElementBits) 3995 return emitOpError("source/result bitwidth of the 0-D vector element " 3996 "types must be equal"); 3997 } else if (sourceElementBits * sourceVectorType.getShape().back() != 3998 resultElementBits * resultVectorType.getShape().back()) { 3999 return emitOpError( 4000 "source/result bitwidth of the minor 1-D vectors must be equal"); 4001 } 4002 4003 return success(); 4004 } 4005 4006 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4007 // Nop cast. 4008 if (getSource().getType() == getResult().getType()) 4009 return getSource(); 4010 4011 // Canceling bitcasts. 4012 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4013 if (getResult().getType() == otherOp.getSource().getType()) 4014 return otherOp.getSource(); 4015 4016 Attribute sourceConstant = operands.front(); 4017 if (!sourceConstant) 4018 return {}; 4019 4020 Type srcElemType = getSourceVectorType().getElementType(); 4021 Type dstElemType = getResultVectorType().getElementType(); 4022 4023 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4024 if (floatPack.isSplat()) { 4025 auto splat = floatPack.getSplatValue<FloatAttr>(); 4026 4027 // Casting fp16 into fp32. 4028 if (srcElemType.isF16() && dstElemType.isF32()) { 4029 uint32_t bits = static_cast<uint32_t>( 4030 splat.getValue().bitcastToAPInt().getZExtValue()); 4031 // Duplicate the 16-bit pattern. 4032 bits = (bits << 16) | (bits & 0xffff); 4033 APInt intBits(32, bits); 4034 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4035 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4036 } 4037 } 4038 } 4039 4040 return {}; 4041 } 4042 4043 //===----------------------------------------------------------------------===// 4044 // TypeCastOp 4045 //===----------------------------------------------------------------------===// 4046 4047 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4048 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4049 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4050 memRefType.getShape().end()); 4051 if (vectorType) 4052 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4053 return res; 4054 } 4055 4056 /// Build the canonical memRefType with a single vector. 4057 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4058 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4059 Value source) { 4060 result.addOperands(source); 4061 MemRefType memRefType = source.getType().cast<MemRefType>(); 4062 VectorType vectorType = 4063 VectorType::get(extractShape(memRefType), 4064 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4065 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4066 memRefType.getMemorySpace())); 4067 } 4068 4069 LogicalResult TypeCastOp::verify() { 4070 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4071 if (!canonicalType.getLayout().isIdentity()) 4072 return emitOpError("expects operand to be a memref with identity layout"); 4073 if (!getResultMemRefType().getLayout().isIdentity()) 4074 return emitOpError("expects result to be a memref with identity layout"); 4075 if (getResultMemRefType().getMemorySpace() != 4076 getMemRefType().getMemorySpace()) 4077 return emitOpError("expects result in same memory space"); 4078 4079 auto sourceType = getMemRefType(); 4080 auto resultType = getResultMemRefType(); 4081 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4082 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4083 return emitOpError( 4084 "expects result and operand with same underlying scalar type: ") 4085 << resultType; 4086 if (extractShape(sourceType) != extractShape(resultType)) 4087 return emitOpError( 4088 "expects concatenated result and operand shapes to be equal: ") 4089 << resultType; 4090 return success(); 4091 } 4092 4093 //===----------------------------------------------------------------------===// 4094 // TransposeOp 4095 //===----------------------------------------------------------------------===// 4096 4097 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4098 Value vector, ArrayRef<int64_t> transp) { 4099 VectorType vt = vector.getType().cast<VectorType>(); 4100 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4101 for (unsigned i = 0; i < transp.size(); ++i) 4102 transposedShape[i] = vt.getShape()[transp[i]]; 4103 4104 result.addOperands(vector); 4105 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4106 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4107 } 4108 4109 // Eliminates transpose operations, which produce values identical to their 4110 // input values. This happens when the dimensions of the input vector remain in 4111 // their original order after the transpose operation. 4112 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4113 SmallVector<int64_t, 4> transp; 4114 getTransp(transp); 4115 4116 // Check if the permutation of the dimensions contains sequential values: 4117 // {0, 1, 2, ...}. 4118 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4119 if (transp[i] != i) 4120 return {}; 4121 } 4122 4123 return getVector(); 4124 } 4125 4126 LogicalResult vector::TransposeOp::verify() { 4127 VectorType vectorType = getVectorType(); 4128 VectorType resultType = getResultType(); 4129 int64_t rank = resultType.getRank(); 4130 if (vectorType.getRank() != rank) 4131 return emitOpError("vector result rank mismatch: ") << rank; 4132 // Verify transposition array. 4133 auto transpAttr = getTransp().getValue(); 4134 int64_t size = transpAttr.size(); 4135 if (rank != size) 4136 return emitOpError("transposition length mismatch: ") << size; 4137 SmallVector<bool, 8> seen(rank, false); 4138 for (const auto &ta : llvm::enumerate(transpAttr)) { 4139 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4140 if (i < 0 || i >= rank) 4141 return emitOpError("transposition index out of range: ") << i; 4142 if (seen[i]) 4143 return emitOpError("duplicate position index: ") << i; 4144 seen[i] = true; 4145 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4146 return emitOpError("dimension size mismatch at: ") << i; 4147 } 4148 return success(); 4149 } 4150 4151 namespace { 4152 4153 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4154 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4155 public: 4156 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4157 4158 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4159 PatternRewriter &rewriter) const override { 4160 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4161 auto getPermutation = [](vector::TransposeOp transpose) { 4162 SmallVector<int64_t, 4> permutation; 4163 transpose.getTransp(permutation); 4164 return permutation; 4165 }; 4166 4167 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4168 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4169 ArrayRef<int64_t> permutation2) { 4170 SmallVector<int64_t, 4> result; 4171 for (auto index : permutation2) 4172 result.push_back(permutation1[index]); 4173 return result; 4174 }; 4175 4176 // Return if the input of 'transposeOp' is not defined by another transpose. 4177 vector::TransposeOp parentTransposeOp = 4178 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4179 if (!parentTransposeOp) 4180 return failure(); 4181 4182 SmallVector<int64_t, 4> permutation = composePermutations( 4183 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4184 // Replace 'transposeOp' with a new transpose operation. 4185 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4186 transposeOp, transposeOp.getResult().getType(), 4187 parentTransposeOp.getVector(), 4188 vector::getVectorSubscriptAttr(rewriter, permutation)); 4189 return success(); 4190 } 4191 }; 4192 4193 } // namespace 4194 4195 void vector::TransposeOp::getCanonicalizationPatterns( 4196 RewritePatternSet &results, MLIRContext *context) { 4197 results.add<TransposeFolder>(context); 4198 } 4199 4200 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4201 populateFromInt64AttrArray(getTransp(), results); 4202 } 4203 4204 //===----------------------------------------------------------------------===// 4205 // ConstantMaskOp 4206 //===----------------------------------------------------------------------===// 4207 4208 LogicalResult ConstantMaskOp::verify() { 4209 auto resultType = getResult().getType().cast<VectorType>(); 4210 // Check the corner case of 0-D vectors first. 4211 if (resultType.getRank() == 0) { 4212 if (getMaskDimSizes().size() != 1) 4213 return emitError("array attr must have length 1 for 0-D vectors"); 4214 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4215 if (dim != 0 && dim != 1) 4216 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4217 return success(); 4218 } 4219 4220 // Verify that array attr size matches the rank of the vector result. 4221 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4222 return emitOpError( 4223 "must specify array attr of size equal vector result rank"); 4224 // Verify that each array attr element is in bounds of corresponding vector 4225 // result dimension size. 4226 auto resultShape = resultType.getShape(); 4227 SmallVector<int64_t, 4> maskDimSizes; 4228 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4229 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4230 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4231 return emitOpError( 4232 "array attr of size out of bounds of vector result dimension size"); 4233 maskDimSizes.push_back(attrValue); 4234 } 4235 // Verify that if one mask dim size is zero, they all should be zero (because 4236 // the mask region is a conjunction of each mask dimension interval). 4237 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4238 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4239 if (anyZeros && !allZeros) 4240 return emitOpError("expected all mask dim sizes to be zeros, " 4241 "as a result of conjunction with zero mask dim"); 4242 // Verify that if the mask type is scalable, dimensions should be zero because 4243 // constant scalable masks can only be defined for the "none set" or "all set" 4244 // cases, and there is no VLA way to define an "all set" case for 4245 // `vector.constant_mask`. In the future, a convention could be established 4246 // to decide if a specific dimension value could be considered as "all set". 4247 if (resultType.isScalable() && 4248 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4249 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4250 return success(); 4251 } 4252 4253 //===----------------------------------------------------------------------===// 4254 // CreateMaskOp 4255 //===----------------------------------------------------------------------===// 4256 4257 LogicalResult CreateMaskOp::verify() { 4258 auto vectorType = getResult().getType().cast<VectorType>(); 4259 // Verify that an operand was specified for each result vector each dimension. 4260 if (vectorType.getRank() == 0) { 4261 if (getNumOperands() != 1) 4262 return emitOpError( 4263 "must specify exactly one operand for 0-D create_mask"); 4264 } else if (getNumOperands() != 4265 getResult().getType().cast<VectorType>().getRank()) { 4266 return emitOpError( 4267 "must specify an operand for each result vector dimension"); 4268 } 4269 return success(); 4270 } 4271 4272 namespace { 4273 4274 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4275 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4276 public: 4277 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4278 4279 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4280 PatternRewriter &rewriter) const override { 4281 // Return if any of 'createMaskOp' operands are not defined by a constant. 4282 auto isNotDefByConstant = [](Value operand) { 4283 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4284 }; 4285 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4286 return failure(); 4287 4288 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4289 // are negative or zero. 4290 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4291 if (vType.isScalable()) 4292 for (auto opDim : createMaskOp.getOperands()) { 4293 APInt intVal; 4294 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4295 intVal.isStrictlyPositive()) 4296 return failure(); 4297 } 4298 } 4299 4300 // Gather constant mask dimension sizes. 4301 SmallVector<int64_t, 4> maskDimSizes; 4302 for (auto it : llvm::zip(createMaskOp.operands(), 4303 createMaskOp.getType().getShape())) { 4304 auto *defOp = std::get<0>(it).getDefiningOp(); 4305 int64_t maxDimSize = std::get<1>(it); 4306 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4307 dimSize = std::min(dimSize, maxDimSize); 4308 // If one of dim sizes is zero, set all dims to zero. 4309 if (dimSize <= 0) { 4310 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4311 break; 4312 } 4313 maskDimSizes.push_back(dimSize); 4314 } 4315 // Replace 'createMaskOp' with ConstantMaskOp. 4316 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4317 createMaskOp, createMaskOp.getResult().getType(), 4318 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4319 return success(); 4320 } 4321 }; 4322 4323 } // namespace 4324 4325 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4326 MLIRContext *context) { 4327 results.add<CreateMaskFolder>(context); 4328 } 4329 4330 //===----------------------------------------------------------------------===// 4331 // ScanOp 4332 //===----------------------------------------------------------------------===// 4333 4334 LogicalResult ScanOp::verify() { 4335 VectorType srcType = getSourceType(); 4336 VectorType initialType = getInitialValueType(); 4337 // Check reduction dimension < rank. 4338 int64_t srcRank = srcType.getRank(); 4339 int64_t reductionDim = getReductionDim(); 4340 if (reductionDim >= srcRank) 4341 return emitOpError("reduction dimension ") 4342 << reductionDim << " has to be less than " << srcRank; 4343 4344 // Check that rank(initial_value) = rank(src) - 1. 4345 int64_t initialValueRank = initialType.getRank(); 4346 if (initialValueRank != srcRank - 1) 4347 return emitOpError("initial value rank ") 4348 << initialValueRank << " has to be equal to " << srcRank - 1; 4349 4350 // Check shapes of initial value and src. 4351 ArrayRef<int64_t> srcShape = srcType.getShape(); 4352 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4353 SmallVector<int64_t> expectedShape; 4354 for (int i = 0; i < srcRank; i++) { 4355 if (i != reductionDim) 4356 expectedShape.push_back(srcShape[i]); 4357 } 4358 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4359 [](std::tuple<int64_t, int64_t> s) { 4360 return std::get<0>(s) != std::get<1>(s); 4361 })) { 4362 return emitOpError("incompatible input/initial value shapes"); 4363 } 4364 4365 return success(); 4366 } 4367 4368 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4369 RewritePatternSet &patterns) { 4370 patterns 4371 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4372 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4373 StridedSliceConstantMaskFolder, TransposeFolder>( 4374 patterns.getContext()); 4375 } 4376 4377 //===----------------------------------------------------------------------===// 4378 // SplatOp 4379 //===----------------------------------------------------------------------===// 4380 4381 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4382 auto constOperand = operands.front(); 4383 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4384 return {}; 4385 4386 // SplatElementsAttr::get treats single value for second arg as being a splat. 4387 return SplatElementsAttr::get(getType(), {constOperand}); 4388 } 4389 4390 //===----------------------------------------------------------------------===// 4391 // TableGen'd op method definitions 4392 //===----------------------------------------------------------------------===// 4393 4394 #define GET_OP_CLASSES 4395 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4396