1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 Value acc, ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, acc, 344 builder.getI64ArrayAttr(reductionDims)); 345 } 346 347 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 348 // Single parallel dim, this is a noop. 349 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 350 return getSource(); 351 return {}; 352 } 353 354 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 355 return llvm::to_vector<4>(getSourceVectorType().getShape()); 356 } 357 358 LogicalResult MultiDimReductionOp::verify() { 359 SmallVector<int64_t> targetShape; 360 Type inferredReturnType; 361 for (auto it : llvm::enumerate(getSourceVectorType().getShape())) 362 if (!llvm::any_of(getReductionDims().getValue(), [&](Attribute attr) { 363 return attr.cast<IntegerAttr>().getValue() == it.index(); 364 })) 365 targetShape.push_back(it.value()); 366 // TODO: update to also allow 0-d vectors when available. 367 if (targetShape.empty()) 368 inferredReturnType = getSourceVectorType().getElementType(); 369 else 370 inferredReturnType = 371 VectorType::get(targetShape, getSourceVectorType().getElementType()); 372 if (getType() != inferredReturnType) 373 return emitOpError() << "destination type " << getType() 374 << " is incompatible with source type " 375 << getSourceVectorType(); 376 377 return success(); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // ReductionOp 382 //===----------------------------------------------------------------------===// 383 384 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 385 CombiningKind kind, Value vector) { 386 build(builder, result, kind, vector, /*acc=*/Value()); 387 } 388 389 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 390 CombiningKind kind, Value vector, Value acc) { 391 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 392 kind, vector, acc); 393 } 394 395 LogicalResult ReductionOp::verify() { 396 // Verify for 1-D vector. 397 int64_t rank = getVectorType().getRank(); 398 if (rank != 1) 399 return emitOpError("unsupported reduction rank: ") << rank; 400 401 // Verify supported reduction kind. 402 Type eltType = getDest().getType(); 403 if (!isSupportedCombiningKind(getKind(), eltType)) 404 return emitOpError("unsupported reduction type '") 405 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 406 << "'"; 407 408 return success(); 409 } 410 411 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 412 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 413 Type redType; 414 Type resType; 415 CombiningKindAttr kindAttr; 416 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 417 result.attributes) || 418 parser.parseComma() || parser.parseOperandList(operandsInfo) || 419 parser.parseColonType(redType) || 420 parser.parseKeywordType("into", resType) || 421 (!operandsInfo.empty() && 422 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 423 (operandsInfo.size() > 1 && 424 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 425 parser.addTypeToList(resType, result.types)) 426 return failure(); 427 if (operandsInfo.empty() || operandsInfo.size() > 2) 428 return parser.emitError(parser.getNameLoc(), 429 "unsupported number of operands"); 430 return success(); 431 } 432 433 void ReductionOp::print(OpAsmPrinter &p) { 434 p << " "; 435 getKindAttr().print(p); 436 p << ", " << getVector(); 437 if (getAcc()) 438 p << ", " << getAcc(); 439 p << " : " << getVector().getType() << " into " << getDest().getType(); 440 } 441 442 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 443 OpBuilder &builder, Location loc, 444 Value vector) { 445 switch (op) { 446 case arith::AtomicRMWKind::addf: 447 case arith::AtomicRMWKind::addi: 448 return builder.create<vector::ReductionOp>(vector.getLoc(), 449 CombiningKind::ADD, vector); 450 case arith::AtomicRMWKind::mulf: 451 case arith::AtomicRMWKind::muli: 452 return builder.create<vector::ReductionOp>(vector.getLoc(), 453 CombiningKind::MUL, vector); 454 case arith::AtomicRMWKind::minf: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::MINF, vector); 457 case arith::AtomicRMWKind::mins: 458 return builder.create<vector::ReductionOp>(vector.getLoc(), 459 CombiningKind::MINSI, vector); 460 case arith::AtomicRMWKind::minu: 461 return builder.create<vector::ReductionOp>(vector.getLoc(), 462 CombiningKind::MINUI, vector); 463 case arith::AtomicRMWKind::maxf: 464 return builder.create<vector::ReductionOp>(vector.getLoc(), 465 CombiningKind::MAXF, vector); 466 case arith::AtomicRMWKind::maxs: 467 return builder.create<vector::ReductionOp>(vector.getLoc(), 468 CombiningKind::MAXSI, vector); 469 case arith::AtomicRMWKind::maxu: 470 return builder.create<vector::ReductionOp>(vector.getLoc(), 471 CombiningKind::MAXUI, vector); 472 case arith::AtomicRMWKind::andi: 473 return builder.create<vector::ReductionOp>(vector.getLoc(), 474 CombiningKind::AND, vector); 475 case arith::AtomicRMWKind::ori: 476 return builder.create<vector::ReductionOp>(vector.getLoc(), 477 CombiningKind::OR, vector); 478 // TODO: Add remaining reduction operations. 479 default: 480 (void)emitOptionalError(loc, "Reduction operation type not supported"); 481 break; 482 } 483 return nullptr; 484 } 485 486 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 487 return llvm::to_vector<4>(getVectorType().getShape()); 488 } 489 490 namespace { 491 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 492 using OpRewritePattern::OpRewritePattern; 493 494 LogicalResult matchAndRewrite(ReductionOp reductionOp, 495 PatternRewriter &rewriter) const override { 496 if (reductionOp.getVectorType().getDimSize(0) != 1) 497 return failure(); 498 499 Location loc = reductionOp.getLoc(); 500 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 501 reductionOp.getVector(), 502 rewriter.getI64ArrayAttr(0)); 503 504 if (Value acc = reductionOp.getAcc()) 505 result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), 506 result, acc); 507 508 rewriter.replaceOp(reductionOp, result); 509 return success(); 510 } 511 }; 512 } // namespace 513 514 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 515 MLIRContext *context) { 516 results.add<ElideSingleElementReduction>(context); 517 } 518 519 //===----------------------------------------------------------------------===// 520 // ContractionOp 521 //===----------------------------------------------------------------------===// 522 523 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 524 Value lhs, Value rhs, Value acc, 525 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 526 ArrayRef<StringRef> iteratorTypes) { 527 result.addOperands({lhs, rhs, acc}); 528 result.addTypes(acc.getType()); 529 result.addAttribute(::mlir::getIndexingMapsAttrName(), 530 builder.getAffineMapArrayAttr( 531 AffineMap::inferFromExprList(indexingExprs))); 532 result.addAttribute(::mlir::getIteratorTypesAttrName(), 533 builder.getStrArrayAttr(iteratorTypes)); 534 } 535 536 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 537 Value lhs, Value rhs, Value acc, 538 ArrayAttr indexingMaps, 539 ArrayAttr iteratorTypes) { 540 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 541 ContractionOp::getDefaultKind()); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes, CombiningKind kind) { 548 result.addOperands({lhs, rhs, acc}); 549 result.addTypes(acc.getType()); 550 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 551 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 552 result.addAttribute(ContractionOp::getKindAttrStrName(), 553 CombiningKindAttr::get(kind, builder.getContext())); 554 } 555 556 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 557 OpAsmParser::UnresolvedOperand lhsInfo; 558 OpAsmParser::UnresolvedOperand rhsInfo; 559 OpAsmParser::UnresolvedOperand accInfo; 560 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 561 SmallVector<Type, 2> types; 562 Type resultType; 563 auto loc = parser.getCurrentLocation(); 564 DictionaryAttr dictAttr; 565 // TODO: Unify linalg op attribute parsing. 566 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 567 parser.parseOperand(lhsInfo) || parser.parseComma() || 568 parser.parseOperand(rhsInfo) || parser.parseComma() || 569 parser.parseOperand(accInfo) || 570 parser.parseTrailingOperandList(masksInfo) || 571 parser.parseOptionalAttrDict(result.attributes) || 572 parser.parseColonTypeList(types) || 573 parser.parseKeywordType("into", resultType) || 574 parser.resolveOperand(lhsInfo, types[0], result.operands) || 575 parser.resolveOperand(rhsInfo, types[1], result.operands) || 576 parser.resolveOperand(accInfo, resultType, result.operands) || 577 parser.addTypeToList(resultType, result.types)) 578 return failure(); 579 result.attributes.assign(dictAttr.getValue().begin(), 580 dictAttr.getValue().end()); 581 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 582 result.addAttribute(ContractionOp::getKindAttrStrName(), 583 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 584 result.getContext())); 585 } 586 if (masksInfo.empty()) 587 return success(); 588 if (masksInfo.size() != 2) 589 return parser.emitError(parser.getNameLoc(), 590 "expected zero or exactly 2 vector mask operands"); 591 auto lhsType = types[0].cast<VectorType>(); 592 auto rhsType = types[1].cast<VectorType>(); 593 auto maskElementType = parser.getBuilder().getI1Type(); 594 std::array<Type, 2> maskTypes = { 595 VectorType::Builder(lhsType).setElementType(maskElementType), 596 VectorType::Builder(rhsType).setElementType(maskElementType)}; 597 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 598 return failure(); 599 return success(); 600 } 601 602 void ContractionOp::print(OpAsmPrinter &p) { 603 // TODO: Unify printing code with linalg ops. 604 auto attrNames = getTraitAttrNames(); 605 llvm::StringSet<> traitAttrsSet; 606 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 607 SmallVector<NamedAttribute, 8> attrs; 608 for (auto attr : (*this)->getAttrs()) 609 if (traitAttrsSet.count(attr.getName().strref()) > 0) 610 attrs.push_back(attr); 611 612 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 613 p << " " << dictAttr << " " << getLhs() << ", "; 614 p << getRhs() << ", " << getAcc(); 615 if (getMasks().size() == 2) 616 p << ", " << getMasks(); 617 618 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 619 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 620 << getResultType(); 621 } 622 623 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 624 const std::vector<std::pair<int64_t, int64_t>> &map) { 625 for (auto &dimPair : map) { 626 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 627 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 628 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 629 return false; 630 } 631 return true; 632 } 633 634 static LogicalResult verifyOutputShape( 635 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 636 Type resType, 637 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 638 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 639 DenseSet<int64_t> lhsContractingDimSet; 640 DenseSet<int64_t> rhsContractingDimSet; 641 for (auto &dimPair : contractingDimMap) { 642 lhsContractingDimSet.insert(dimPair.first); 643 rhsContractingDimSet.insert(dimPair.second); 644 } 645 DenseSet<int64_t> rhsBatchDimSet; 646 for (auto &dimPair : batchDimMap) 647 rhsBatchDimSet.insert(dimPair.second); 648 649 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 650 SmallVector<int64_t, 4> expectedResultDims; 651 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 652 if (lhsContractingDimSet.count(i) > 0) 653 continue; 654 expectedResultDims.push_back(lhsType.getDimSize(i)); 655 } 656 657 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 658 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 659 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 660 continue; 661 expectedResultDims.push_back(rhsType.getDimSize(i)); 662 } 663 664 // Verify 'expectedResultDims'. 665 if (expectedResultDims.empty()) { 666 // No batch or free dimension implies a scalar result. 667 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 668 return op.emitOpError("invalid accumulator/result vector shape"); 669 } else { 670 // At least one batch or free dimension implies a vector result. 671 auto resVectorType = resType.dyn_cast<VectorType>(); 672 auto accVectorType = accType.dyn_cast<VectorType>(); 673 if (!resVectorType || !accVectorType) 674 return op.emitOpError("invalid accumulator/result vector shape"); 675 676 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 677 // types fully define the result vector type. This assumes the affine maps 678 // are well-formed, which must have been verified already. 679 MLIRContext *ctx = op.getContext(); 680 AffineMap lhsMap = op.getIndexingMaps()[0]; 681 AffineMap rhsMap = op.getIndexingMaps()[1]; 682 if (getUnusedDimsBitVector({lhsMap, rhsMap}).any()) 683 return op.emitOpError( 684 "expected all dimensions to be either a LHS or a RHS dimension"); 685 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 686 for (auto pair : 687 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 688 VectorType v = pair.first; 689 auto map = pair.second; 690 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 691 unsigned pos = map.getDimPosition(idx); 692 if (!extents[pos]) 693 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 694 } 695 } 696 if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) 697 return op.emitOpError("expected all dimensions to get an extent as " 698 "either a LHS or a RHS dimension"); 699 700 AffineMap resMap = op.getIndexingMaps()[2]; 701 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 702 /*symCount=*/0, extents, ctx); 703 // Compose the resMap with the extentsMap, which is a constant map. 704 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 705 assert(llvm::all_of( 706 expectedMap.getResults(), 707 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 708 "expected constant extent along all dimensions."); 709 // Extract the expected shape and build the type. 710 auto expectedShape = llvm::to_vector<4>( 711 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 712 return e.cast<AffineConstantExpr>().getValue(); 713 })); 714 auto expected = 715 VectorType::get(expectedShape, resVectorType.getElementType()); 716 if (resVectorType != expected || accVectorType != expected) 717 return op.emitOpError( 718 "invalid accumulator/result vector shape, expected: ") 719 << expected; 720 } 721 return success(); 722 } 723 724 LogicalResult ContractionOp::verify() { 725 auto lhsType = getLhsType(); 726 auto rhsType = getRhsType(); 727 auto accType = getAccType(); 728 auto resType = getResultType(); 729 730 // Verify that an indexing map was specified for each vector operand. 731 if (getIndexingMaps().size() != 3) 732 return emitOpError("expected an indexing map for each vector operand"); 733 734 // Verify that each index map has 'numIterators' inputs, no symbols, and 735 // that the number of map outputs equals the rank of its associated 736 // vector operand. 737 unsigned numIterators = getIteratorTypes().getValue().size(); 738 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 739 auto index = it.index(); 740 auto map = it.value(); 741 if (map.getNumSymbols() != 0) 742 return emitOpError("expected indexing map ") 743 << index << " to have no symbols"; 744 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 745 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 746 // Verify that the map has the right number of inputs, outputs, and indices. 747 // This also correctly accounts for (..) -> () for rank-0 results. 748 if (map.getNumDims() != numIterators) 749 return emitOpError("expected indexing map ") 750 << index << " to have " << numIterators << " number of inputs"; 751 if (map.getNumResults() != rank) 752 return emitOpError("expected indexing map ") 753 << index << " to have " << rank << " number of outputs"; 754 if (!map.isProjectedPermutation()) 755 return emitOpError("expected indexing map ") 756 << index << " to be a projected permutation of its inputs"; 757 } 758 759 auto contractingDimMap = getContractingDimMap(); 760 auto batchDimMap = getBatchDimMap(); 761 762 // Verify at least one contracting dimension pair was specified. 763 if (contractingDimMap.empty()) 764 return emitOpError("expected at least one contracting dimension pair"); 765 766 // Verify contracting dimension map was properly constructed. 767 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 768 return emitOpError("invalid contracting dimension map"); 769 770 // Verify batch dimension map was properly constructed. 771 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 772 return emitOpError("invalid batch dimension map"); 773 774 // Verify 'accType' and 'resType' shape. 775 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 776 contractingDimMap, batchDimMap))) 777 return failure(); 778 779 // Verify that either two vector masks are set or none are set. 780 auto lhsMaskType = getLHSVectorMaskType(); 781 auto rhsMaskType = getRHSVectorMaskType(); 782 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 783 return emitOpError("invalid number of vector masks specified"); 784 if (lhsMaskType && rhsMaskType) { 785 // Verify mask rank == argument rank. 786 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 787 rhsMaskType.getShape().size() != rhsType.getShape().size()) 788 return emitOpError("invalid vector mask rank"); 789 } 790 791 // Verify supported combining kind. 792 auto vectorType = resType.dyn_cast<VectorType>(); 793 auto elementType = vectorType ? vectorType.getElementType() : resType; 794 if (!isSupportedCombiningKind(getKind(), elementType)) 795 return emitOpError("unsupported contraction type"); 796 797 return success(); 798 } 799 800 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 801 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 802 ::mlir::getIteratorTypesAttrName(), 803 ContractionOp::getKindAttrStrName()}; 804 return llvm::makeArrayRef(names); 805 } 806 807 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 808 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 809 if (targetExpr == map.getResult(i)) 810 return i; 811 return -1; 812 } 813 814 static std::vector<std::pair<int64_t, int64_t>> 815 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 816 StringRef targetIteratorTypeName, MLIRContext *context) { 817 std::vector<std::pair<int64_t, int64_t>> dimMap; 818 for (const auto &it : llvm::enumerate(iteratorTypes)) { 819 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 820 if (iteratorTypeName != targetIteratorTypeName) 821 continue; 822 // Search lhs/rhs map results for 'targetExpr'. 823 auto targetExpr = getAffineDimExpr(it.index(), context); 824 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 825 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 826 if (lhsDim >= 0 && rhsDim >= 0) 827 dimMap.emplace_back(lhsDim, rhsDim); 828 } 829 return dimMap; 830 } 831 832 void ContractionOp::getIterationBounds( 833 SmallVectorImpl<int64_t> &iterationBounds) { 834 auto lhsShape = getLhsType().getShape(); 835 auto resVectorType = getResultType().dyn_cast<VectorType>(); 836 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 837 SmallVector<int64_t, 2> iterationShape; 838 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 839 // Search lhs/rhs map results for 'targetExpr'. 840 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 841 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 842 if (iteratorTypeName == getReductionIteratorTypeName()) { 843 // Get reduction dim size from lhs shape (same size in rhsShape). 844 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 845 assert(lhsDimIndex >= 0); 846 iterationBounds.push_back(lhsShape[lhsDimIndex]); 847 continue; 848 } 849 // Get parallel dimension size from result shape. 850 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 851 assert(resDimIndex >= 0); 852 assert(resVectorType != nullptr); 853 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 854 } 855 } 856 857 void ContractionOp::getIterationIndexMap( 858 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 859 unsigned numMaps = getIndexingMaps().size(); 860 iterationIndexMap.resize(numMaps); 861 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 862 auto index = it.index(); 863 auto map = it.value(); 864 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 865 auto dim = map.getResult(i).cast<AffineDimExpr>(); 866 iterationIndexMap[index][dim.getPosition()] = i; 867 } 868 } 869 } 870 871 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 872 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 873 return getDimMap(indexingMaps, getIteratorTypes(), 874 getReductionIteratorTypeName(), getContext()); 875 } 876 877 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 878 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 879 return getDimMap(indexingMaps, getIteratorTypes(), 880 getParallelIteratorTypeName(), getContext()); 881 } 882 883 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 884 SmallVector<int64_t, 4> shape; 885 getIterationBounds(shape); 886 return shape; 887 } 888 889 /// Return a fused vector::ContractionOp which represents a patterns such as: 890 /// 891 /// ```mlir 892 /// %c0 = vector.constant 0: ... 893 /// %c = vector.contract %a, %b, %c0: ... 894 /// %e = add %c, %d: ... 895 /// ``` 896 /// 897 /// by: 898 /// 899 /// ```mlir 900 /// %e = vector.contract %a, %b, %d: ... 901 /// ``` 902 /// 903 /// Return null if the canonicalization does not apply. 904 // TODO: This should be a folding of Add into Contract in core but while they 905 // live in different dialects, it is not possible without unnatural 906 // dependencies. 907 template <typename AddOpType> 908 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 909 using OpRewritePattern<AddOpType>::OpRewritePattern; 910 911 LogicalResult matchAndRewrite(AddOpType addOp, 912 PatternRewriter &rewriter) const override { 913 auto canonicalize = [&](Value maybeContraction, 914 Value otherOperand) -> vector::ContractionOp { 915 vector::ContractionOp contractionOp = 916 dyn_cast_or_null<vector::ContractionOp>( 917 maybeContraction.getDefiningOp()); 918 if (!contractionOp) 919 return vector::ContractionOp(); 920 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 921 contractionOp.getAcc().getDefiningOp())) { 922 if (maybeZero.getValue() == 923 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 924 BlockAndValueMapping bvm; 925 bvm.map(contractionOp.getAcc(), otherOperand); 926 auto newContraction = 927 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 928 rewriter.replaceOp(addOp, newContraction.getResult()); 929 return newContraction; 930 } 931 } 932 return vector::ContractionOp(); 933 }; 934 935 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 936 vector::ContractionOp contract = canonicalize(a, b); 937 contract = contract ? contract : canonicalize(b, a); 938 return contract ? success() : failure(); 939 } 940 }; 941 942 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 943 MLIRContext *context) { 944 results.add<CanonicalizeContractAdd<arith::AddIOp>, 945 CanonicalizeContractAdd<arith::AddFOp>>(context); 946 } 947 948 //===----------------------------------------------------------------------===// 949 // ExtractElementOp 950 //===----------------------------------------------------------------------===// 951 952 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 953 Value source) { 954 result.addOperands({source}); 955 result.addTypes(source.getType().cast<VectorType>().getElementType()); 956 } 957 958 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 959 Value source, Value position) { 960 result.addOperands({source, position}); 961 result.addTypes(source.getType().cast<VectorType>().getElementType()); 962 } 963 964 LogicalResult vector::ExtractElementOp::verify() { 965 VectorType vectorType = getVectorType(); 966 if (vectorType.getRank() == 0) { 967 if (getPosition()) 968 return emitOpError("expected position to be empty with 0-D vector"); 969 return success(); 970 } 971 if (vectorType.getRank() != 1) 972 return emitOpError("unexpected >1 vector rank"); 973 if (!getPosition()) 974 return emitOpError("expected position for 1-D vector"); 975 return success(); 976 } 977 978 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 979 // Skip the 0-D vector here now. 980 if (operands.size() < 2) 981 return {}; 982 983 Attribute src = operands[0]; 984 Attribute pos = operands[1]; 985 986 // Fold extractelement (splat X) -> X. 987 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 988 return splat.getInput(); 989 990 if (!pos || !src) 991 return {}; 992 993 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 994 995 auto attr = pos.dyn_cast<IntegerAttr>(); 996 uint64_t posIdx = attr.getInt(); 997 998 return srcElements[posIdx]; 999 } 1000 1001 //===----------------------------------------------------------------------===// 1002 // ExtractOp 1003 //===----------------------------------------------------------------------===// 1004 1005 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1006 Value source, ArrayRef<int64_t> position) { 1007 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1008 } 1009 1010 // Convenience builder which assumes the values are constant indices. 1011 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1012 Value source, ValueRange position) { 1013 SmallVector<int64_t, 4> positionConstants = 1014 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1015 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1016 })); 1017 build(builder, result, source, positionConstants); 1018 } 1019 1020 LogicalResult 1021 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1022 ValueRange operands, DictionaryAttr attributes, 1023 RegionRange, 1024 SmallVectorImpl<Type> &inferredReturnTypes) { 1025 ExtractOp::Adaptor op(operands, attributes); 1026 auto vectorType = op.getVector().getType().cast<VectorType>(); 1027 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1028 inferredReturnTypes.push_back(vectorType.getElementType()); 1029 } else { 1030 auto n = 1031 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1032 inferredReturnTypes.push_back(VectorType::get( 1033 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1034 } 1035 return success(); 1036 } 1037 1038 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1039 // Allow extracting 1-element vectors instead of scalars. 1040 auto isCompatible = [](TypeRange l, TypeRange r) { 1041 auto vectorType = l.front().dyn_cast<VectorType>(); 1042 return vectorType && vectorType.getShape().equals({1}) && 1043 vectorType.getElementType() == r.front(); 1044 }; 1045 if (l.size() == 1 && r.size() == 1 && 1046 (isCompatible(l, r) || isCompatible(r, l))) 1047 return true; 1048 return l == r; 1049 } 1050 1051 LogicalResult vector::ExtractOp::verify() { 1052 auto positionAttr = getPosition().getValue(); 1053 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1054 return emitOpError( 1055 "expected position attribute of rank smaller than vector rank"); 1056 for (const auto &en : llvm::enumerate(positionAttr)) { 1057 auto attr = en.value().dyn_cast<IntegerAttr>(); 1058 if (!attr || attr.getInt() < 0 || 1059 attr.getInt() >= getVectorType().getDimSize(en.index())) 1060 return emitOpError("expected position attribute #") 1061 << (en.index() + 1) 1062 << " to be a non-negative integer smaller than the corresponding " 1063 "vector dimension"; 1064 } 1065 return success(); 1066 } 1067 1068 template <typename IntType> 1069 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1070 return llvm::to_vector<4>(llvm::map_range( 1071 arrayAttr.getAsRange<IntegerAttr>(), 1072 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1073 } 1074 1075 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1076 /// positions. 1077 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1078 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1079 return failure(); 1080 1081 SmallVector<int64_t, 4> globalPosition; 1082 ExtractOp currentOp = extractOp; 1083 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1084 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1085 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1086 currentOp = nextOp; 1087 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1088 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1089 } 1090 extractOp.setOperand(currentOp.getVector()); 1091 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1092 OpBuilder b(extractOp.getContext()); 1093 std::reverse(globalPosition.begin(), globalPosition.end()); 1094 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1095 b.getI64ArrayAttr(globalPosition)); 1096 return success(); 1097 } 1098 1099 namespace { 1100 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1101 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1102 /// Compose TransposeOp permutations as we walk back. 1103 /// This helper class keeps an updated extraction position `extractPosition` 1104 /// with extra trailing sentinels. 1105 /// The sentinels encode the internal transposition status of the result vector. 1106 /// As we iterate, extractPosition is permuted and updated. 1107 class ExtractFromInsertTransposeChainState { 1108 public: 1109 ExtractFromInsertTransposeChainState(ExtractOp e); 1110 1111 /// Iterate over producing insert and transpose ops until we find a fold. 1112 Value fold(); 1113 1114 private: 1115 /// Return true if the vector at position `a` is contained within the vector 1116 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1117 /// is a prefix of `b`. 1118 template <typename ContainerA, typename ContainerB> 1119 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1120 return a.size() <= b.size() && 1121 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1122 } 1123 1124 /// Return true if the vector at position `a` intersects the vector at 1125 /// position `b`. Under insert/extract semantics, this is the same as equality 1126 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1127 /// Comparison is on the common prefix (i.e. zip). 1128 template <typename ContainerA, typename ContainerB> 1129 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1130 for (auto it : llvm::zip(a, b)) { 1131 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1132 continue; 1133 if (std::get<0>(it) != std::get<1>(it)) 1134 return false; 1135 } 1136 return true; 1137 } 1138 1139 /// Folding is only possible in the absence of an internal permutation in the 1140 /// result vector. 1141 bool canFold() { 1142 return (sentinels == 1143 makeArrayRef(extractPosition).drop_front(extractedRank)); 1144 } 1145 1146 // Helper to get the next defining op of interest. 1147 void updateStateForNextIteration(Value v) { 1148 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1149 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1150 }; 1151 1152 // Case 1. If we hit a transpose, just compose the map and iterate. 1153 // Invariant: insert + transpose do not change rank, we can always compose. 1154 LogicalResult handleTransposeOp(); 1155 1156 // Case 2: the insert position matches extractPosition exactly, early return. 1157 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1158 1159 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1160 /// portion of the source of the insert. 1161 /// Example: 1162 /// ``` 1163 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1164 /// // extractPosition == [1, 2, 3] 1165 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1166 /// // can fold to vector.extract %source[0, 3] 1167 /// %ext = vector.extract %source[3]: vector<5x6> 1168 /// ``` 1169 /// To traverse through %source, we need to set the leading dims to 0 and 1170 /// drop the extra leading dims. 1171 /// This method updates the internal state. 1172 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1173 1174 /// Try to fold in place to extract(source, extractPosition) and return the 1175 /// folded result. Return null if folding is not possible (e.g. due to an 1176 /// internal tranposition in the result). 1177 Value tryToFoldExtractOpInPlace(Value source); 1178 1179 ExtractOp extractOp; 1180 int64_t vectorRank; 1181 int64_t extractedRank; 1182 1183 InsertOp nextInsertOp; 1184 TransposeOp nextTransposeOp; 1185 1186 /// Sentinel values that encode the internal permutation status of the result. 1187 /// They are set to (-1, ... , -k) at the beginning and appended to 1188 /// `extractPosition`. 1189 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1190 /// ensure that there is no internal transposition. 1191 /// Internal transposition cannot be accounted for with a folding pattern. 1192 // TODO: We could relax the internal transposition with an extra transposition 1193 // operation in a future canonicalizer. 1194 SmallVector<int64_t> sentinels; 1195 SmallVector<int64_t> extractPosition; 1196 }; 1197 } // namespace 1198 1199 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1200 ExtractOp e) 1201 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1202 extractedRank(extractOp.getPosition().size()) { 1203 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1204 sentinels.reserve(vectorRank - extractedRank); 1205 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1206 sentinels.push_back(-(i + 1)); 1207 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1208 llvm::append_range(extractPosition, sentinels); 1209 } 1210 1211 // Case 1. If we hit a transpose, just compose the map and iterate. 1212 // Invariant: insert + transpose do not change rank, we can always compose. 1213 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1214 if (!nextTransposeOp) 1215 return failure(); 1216 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1217 AffineMap m = inversePermutation( 1218 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1219 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1220 return success(); 1221 } 1222 1223 // Case 2: the insert position matches extractPosition exactly, early return. 1224 LogicalResult 1225 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1226 Value &res) { 1227 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1228 if (makeArrayRef(insertedPos) != 1229 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1230 return failure(); 1231 // Case 2.a. early-exit fold. 1232 res = nextInsertOp.getSource(); 1233 // Case 2.b. if internal transposition is present, canFold will be false. 1234 return success(); 1235 } 1236 1237 /// Case 3: if inserted position is a prefix of extractPosition, 1238 /// extract a portion of the source of the insertion. 1239 /// This method updates the internal state. 1240 LogicalResult 1241 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1242 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1243 if (!isContainedWithin(insertedPos, extractPosition)) 1244 return failure(); 1245 // Set leading dims to zero. 1246 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1247 // Drop extra leading dims. 1248 extractPosition.erase(extractPosition.begin(), 1249 extractPosition.begin() + insertedPos.size()); 1250 extractedRank = extractPosition.size() - sentinels.size(); 1251 // Case 3.a. early-exit fold (break and delegate to post-while path). 1252 res = nextInsertOp.getSource(); 1253 // Case 3.b. if internal transposition is present, canFold will be false. 1254 return success(); 1255 } 1256 1257 /// Try to fold in place to extract(source, extractPosition) and return the 1258 /// folded result. Return null if folding is not possible (e.g. due to an 1259 /// internal tranposition in the result). 1260 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1261 Value source) { 1262 // If we can't fold (either internal transposition, or nothing to fold), bail. 1263 bool nothingToFold = (source == extractOp.getVector()); 1264 if (nothingToFold || !canFold()) 1265 return Value(); 1266 // Otherwise, fold by updating the op inplace and return its result. 1267 OpBuilder b(extractOp.getContext()); 1268 extractOp->setAttr( 1269 extractOp.getPositionAttrName(), 1270 b.getI64ArrayAttr( 1271 makeArrayRef(extractPosition).take_front(extractedRank))); 1272 extractOp.getVectorMutable().assign(source); 1273 return extractOp.getResult(); 1274 } 1275 1276 /// Iterate over producing insert and transpose ops until we find a fold. 1277 Value ExtractFromInsertTransposeChainState::fold() { 1278 Value valueToExtractFrom = extractOp.getVector(); 1279 updateStateForNextIteration(valueToExtractFrom); 1280 while (nextInsertOp || nextTransposeOp) { 1281 // Case 1. If we hit a transpose, just compose the map and iterate. 1282 // Invariant: insert + transpose do not change rank, we can always compose. 1283 if (succeeded(handleTransposeOp())) { 1284 valueToExtractFrom = nextTransposeOp.getVector(); 1285 updateStateForNextIteration(valueToExtractFrom); 1286 continue; 1287 } 1288 1289 Value result; 1290 // Case 2: the position match exactly. 1291 if (succeeded(handleInsertOpWithMatchingPos(result))) 1292 return result; 1293 1294 // Case 3: if the inserted position is a prefix of extractPosition, we can 1295 // just extract a portion of the source of the insert. 1296 if (succeeded(handleInsertOpWithPrefixPos(result))) 1297 return tryToFoldExtractOpInPlace(result); 1298 1299 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1300 // values. This is a more difficult case and we bail. 1301 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1302 if (isContainedWithin(extractPosition, insertedPos) || 1303 intersectsWhereNonNegative(extractPosition, insertedPos)) 1304 return Value(); 1305 1306 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1307 valueToExtractFrom = nextInsertOp.getDest(); 1308 updateStateForNextIteration(valueToExtractFrom); 1309 } 1310 // If after all this we can fold, go for it. 1311 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1312 } 1313 1314 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1315 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1316 Operation *defOp = extractOp.getVector().getDefiningOp(); 1317 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1318 return Value(); 1319 Value source = defOp->getOperand(0); 1320 if (extractOp.getType() == source.getType()) 1321 return source; 1322 auto getRank = [](Type type) { 1323 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1324 }; 1325 unsigned broadcastSrcRank = getRank(source.getType()); 1326 unsigned extractResultRank = getRank(extractOp.getType()); 1327 if (extractResultRank >= broadcastSrcRank) 1328 return Value(); 1329 // Check that the dimension of the result haven't been broadcasted. 1330 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1331 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1332 if (extractVecType && broadcastVecType && 1333 extractVecType.getShape() != 1334 broadcastVecType.getShape().take_back(extractResultRank)) 1335 return Value(); 1336 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1337 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1338 extractPos.erase(extractPos.begin(), 1339 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1340 extractOp.setOperand(source); 1341 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1342 OpBuilder b(extractOp.getContext()); 1343 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1344 b.getI64ArrayAttr(extractPos)); 1345 return extractOp.getResult(); 1346 } 1347 1348 // Fold extractOp with source coming from ShapeCast op. 1349 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1350 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1351 if (!shapeCastOp) 1352 return Value(); 1353 // Get the nth dimension size starting from lowest dimension. 1354 auto getDimReverse = [](VectorType type, int64_t n) { 1355 return type.getShape().take_back(n + 1).front(); 1356 }; 1357 int64_t destinationRank = 1358 extractOp.getType().isa<VectorType>() 1359 ? extractOp.getType().cast<VectorType>().getRank() 1360 : 0; 1361 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1362 return Value(); 1363 if (destinationRank > 0) { 1364 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1365 for (int64_t i = 0; i < destinationRank; i++) { 1366 // The lowest dimension of of the destination must match the lowest 1367 // dimension of the shapecast op source. 1368 // TODO: This case could be support in a canonicalization pattern. 1369 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1370 getDimReverse(destinationType, i)) 1371 return Value(); 1372 } 1373 } 1374 // Extract the strides associated with the extract op vector source. Then use 1375 // this to calculate a linearized position for the extract. 1376 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1377 std::reverse(extractedPos.begin(), extractedPos.end()); 1378 SmallVector<int64_t, 4> strides; 1379 int64_t stride = 1; 1380 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1381 strides.push_back(stride); 1382 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1383 } 1384 1385 int64_t position = linearize(extractedPos, strides); 1386 // Then extract the strides associated to the shapeCast op vector source and 1387 // delinearize the position using those strides. 1388 SmallVector<int64_t, 4> newStrides; 1389 int64_t numDimension = 1390 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1391 stride = 1; 1392 for (int64_t i = 0; i < numDimension; i++) { 1393 newStrides.push_back(stride); 1394 stride *= 1395 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1396 } 1397 std::reverse(newStrides.begin(), newStrides.end()); 1398 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1399 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1400 OpBuilder b(extractOp.getContext()); 1401 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1402 b.getI64ArrayAttr(newPosition)); 1403 extractOp.setOperand(shapeCastOp.getSource()); 1404 return extractOp.getResult(); 1405 } 1406 1407 /// Fold an ExtractOp from ExtractStridedSliceOp. 1408 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1409 auto extractStridedSliceOp = 1410 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1411 if (!extractStridedSliceOp) 1412 return Value(); 1413 // Return if 'extractStridedSliceOp' has non-unit strides. 1414 if (extractStridedSliceOp.hasNonUnitStrides()) 1415 return Value(); 1416 1417 // Trim offsets for dimensions fully extracted. 1418 auto sliceOffsets = 1419 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1420 while (!sliceOffsets.empty()) { 1421 size_t lastOffset = sliceOffsets.size() - 1; 1422 if (sliceOffsets.back() != 0 || 1423 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1424 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1425 break; 1426 sliceOffsets.pop_back(); 1427 } 1428 unsigned destinationRank = 0; 1429 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1430 destinationRank = vecType.getRank(); 1431 // The dimensions of the result need to be untouched by the 1432 // extractStridedSlice op. 1433 if (destinationRank > 1434 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1435 return Value(); 1436 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1437 assert(extractedPos.size() >= sliceOffsets.size()); 1438 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1439 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1440 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1441 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1442 OpBuilder b(extractOp.getContext()); 1443 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1444 b.getI64ArrayAttr(extractedPos)); 1445 return extractOp.getResult(); 1446 } 1447 1448 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1449 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1450 int64_t destinationRank = op.getType().isa<VectorType>() 1451 ? op.getType().cast<VectorType>().getRank() 1452 : 0; 1453 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1454 while (insertOp) { 1455 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1456 insertOp.getSourceVectorType().getRank(); 1457 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1458 return Value(); 1459 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1460 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1461 1462 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1463 return attr.cast<IntegerAttr>().getInt() != 1; 1464 })) 1465 return Value(); 1466 bool disjoint = false; 1467 SmallVector<int64_t, 4> offsetDiffs; 1468 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1469 int64_t start = insertOffsets[dim]; 1470 int64_t size = 1471 (dim < insertRankDiff) 1472 ? 1 1473 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1474 int64_t end = start + size; 1475 int64_t offset = extractOffsets[dim]; 1476 // Check if the start of the extract offset is in the interval inserted. 1477 if (start <= offset && offset < end) { 1478 if (dim >= insertRankDiff) 1479 offsetDiffs.push_back(offset - start); 1480 continue; 1481 } 1482 disjoint = true; 1483 break; 1484 } 1485 // The extract element chunk overlap with the vector inserted. 1486 if (!disjoint) { 1487 // If any of the inner dimensions are only partially inserted we have a 1488 // partial overlap. 1489 int64_t srcRankDiff = 1490 insertOp.getSourceVectorType().getRank() - destinationRank; 1491 for (int64_t i = 0; i < destinationRank; i++) { 1492 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1493 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1494 insertRankDiff)) 1495 return Value(); 1496 } 1497 op.getVectorMutable().assign(insertOp.getSource()); 1498 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1499 OpBuilder b(op.getContext()); 1500 op->setAttr(ExtractOp::getPositionAttrStrName(), 1501 b.getI64ArrayAttr(offsetDiffs)); 1502 return op.getResult(); 1503 } 1504 // If the chunk extracted is disjoint from the chunk inserted, keep 1505 // looking in the insert chain. 1506 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1507 } 1508 return Value(); 1509 } 1510 1511 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1512 if (getPosition().empty()) 1513 return getVector(); 1514 if (succeeded(foldExtractOpFromExtractChain(*this))) 1515 return getResult(); 1516 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1517 return res; 1518 if (auto res = foldExtractFromBroadcast(*this)) 1519 return res; 1520 if (auto res = foldExtractFromShapeCast(*this)) 1521 return res; 1522 if (auto val = foldExtractFromExtractStrided(*this)) 1523 return val; 1524 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1525 return val; 1526 return OpFoldResult(); 1527 } 1528 1529 namespace { 1530 1531 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1532 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1533 public: 1534 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1535 1536 LogicalResult matchAndRewrite(ExtractOp extractOp, 1537 PatternRewriter &rewriter) const override { 1538 Operation *defOp = extractOp.getVector().getDefiningOp(); 1539 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1540 return failure(); 1541 1542 Value source = defOp->getOperand(0); 1543 if (extractOp.getType() == source.getType()) 1544 return failure(); 1545 auto getRank = [](Type type) { 1546 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1547 }; 1548 unsigned broadcastSrcRank = getRank(source.getType()); 1549 unsigned extractResultRank = getRank(extractOp.getType()); 1550 // We only consider the case where the rank of the source is less than or 1551 // equal to the rank of the extract dst. The other cases are handled in the 1552 // folding patterns. 1553 if (extractResultRank < broadcastSrcRank) 1554 return failure(); 1555 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1556 extractOp, extractOp.getType(), source); 1557 return success(); 1558 } 1559 }; 1560 1561 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1562 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1563 public: 1564 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1565 1566 LogicalResult matchAndRewrite(ExtractOp extractOp, 1567 PatternRewriter &rewriter) const override { 1568 // Return if 'extractStridedSliceOp' operand is not defined by a 1569 // ConstantOp. 1570 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1571 if (!constantOp) 1572 return failure(); 1573 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1574 if (!dense) 1575 return failure(); 1576 Attribute newAttr = dense.getSplatValue<Attribute>(); 1577 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1578 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1579 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1580 return success(); 1581 } 1582 }; 1583 1584 } // namespace 1585 1586 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1587 MLIRContext *context) { 1588 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1589 } 1590 1591 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1592 SmallVectorImpl<int64_t> &results) { 1593 for (auto attr : arrayAttr) 1594 results.push_back(attr.cast<IntegerAttr>().getInt()); 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // ExtractMapOp 1599 //===----------------------------------------------------------------------===// 1600 1601 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1602 Value vector, ValueRange ids, 1603 ArrayRef<int64_t> multiplicity, 1604 AffineMap permutationMap) { 1605 assert(ids.size() == multiplicity.size() && 1606 ids.size() == permutationMap.getNumResults()); 1607 assert(permutationMap.isProjectedPermutation()); 1608 VectorType type = vector.getType().cast<VectorType>(); 1609 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1610 type.getShape().end()); 1611 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1612 AffineExpr expr = permutationMap.getResult(i); 1613 auto dim = expr.cast<AffineDimExpr>(); 1614 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1615 } 1616 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1617 ExtractMapOp::build(builder, result, resultType, vector, ids); 1618 } 1619 1620 LogicalResult ExtractMapOp::verify() { 1621 if (getSourceVectorType().getRank() != getResultType().getRank()) 1622 return emitOpError("expected source and destination vectors of same rank"); 1623 unsigned numId = 0; 1624 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1625 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1626 0) 1627 return emitOpError("source vector dimensions must be a multiple of " 1628 "destination vector dimensions"); 1629 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1630 numId++; 1631 } 1632 if (numId != getIds().size()) 1633 return emitOpError("expected number of ids must match the number of " 1634 "dimensions distributed"); 1635 return success(); 1636 } 1637 1638 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1639 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1640 if (insert == nullptr || getType() != insert.getVector().getType() || 1641 getIds() != insert.getIds()) 1642 return {}; 1643 return insert.getVector(); 1644 } 1645 1646 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1647 assert(multiplicity.empty()); 1648 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1649 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1650 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1651 getResultType().getDimSize(i)); 1652 } 1653 } 1654 1655 template <typename MapOp> 1656 AffineMap calculateImplicitMap(MapOp op) { 1657 SmallVector<AffineExpr, 4> perm; 1658 // Check which dimension have a multiplicity greater than 1 and associated 1659 // them to the IDs in order. 1660 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1661 if (op.getSourceVectorType().getDimSize(i) != 1662 op.getResultType().getDimSize(i)) 1663 perm.push_back(getAffineDimExpr(i, op.getContext())); 1664 } 1665 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1666 op.getContext()); 1667 return map; 1668 } 1669 1670 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1671 1672 //===----------------------------------------------------------------------===// 1673 // FmaOp 1674 //===----------------------------------------------------------------------===// 1675 1676 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1677 return llvm::to_vector<4>(getVectorType().getShape()); 1678 } 1679 1680 //===----------------------------------------------------------------------===// 1681 // BroadcastOp 1682 //===----------------------------------------------------------------------===// 1683 1684 BroadcastableToResult 1685 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1686 std::pair<int, int> *mismatchingDims) { 1687 // Broadcast scalar to vector of the same element type. 1688 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1689 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1690 return BroadcastableToResult::Success; 1691 // From now on, only vectors broadcast. 1692 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1693 if (!srcVectorType) 1694 return BroadcastableToResult::SourceTypeNotAVector; 1695 1696 int64_t srcRank = srcVectorType.getRank(); 1697 int64_t dstRank = dstVectorType.getRank(); 1698 if (srcRank > dstRank) 1699 return BroadcastableToResult::SourceRankHigher; 1700 // Source has an exact match or singleton value for all trailing dimensions 1701 // (all leading dimensions are simply duplicated). 1702 int64_t lead = dstRank - srcRank; 1703 for (int64_t r = 0; r < srcRank; ++r) { 1704 int64_t srcDim = srcVectorType.getDimSize(r); 1705 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1706 if (srcDim != 1 && srcDim != dstDim) { 1707 if (mismatchingDims) { 1708 mismatchingDims->first = srcDim; 1709 mismatchingDims->second = dstDim; 1710 } 1711 return BroadcastableToResult::DimensionMismatch; 1712 } 1713 } 1714 1715 return BroadcastableToResult::Success; 1716 } 1717 1718 LogicalResult BroadcastOp::verify() { 1719 std::pair<int, int> mismatchingDims; 1720 BroadcastableToResult res = 1721 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1722 if (res == BroadcastableToResult::Success) 1723 return success(); 1724 if (res == BroadcastableToResult::SourceRankHigher) 1725 return emitOpError("source rank higher than destination rank"); 1726 if (res == BroadcastableToResult::DimensionMismatch) 1727 return emitOpError("dimension mismatch (") 1728 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1729 if (res == BroadcastableToResult::SourceTypeNotAVector) 1730 return emitOpError("source type is not a vector"); 1731 llvm_unreachable("unexpected vector.broadcast op error"); 1732 } 1733 1734 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1735 if (getSourceType() == getVectorType()) 1736 return getSource(); 1737 if (!operands[0]) 1738 return {}; 1739 auto vectorType = getVectorType(); 1740 if (operands[0].getType().isIntOrIndexOrFloat()) 1741 return DenseElementsAttr::get(vectorType, operands[0]); 1742 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1743 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1744 return {}; 1745 } 1746 1747 namespace { 1748 1749 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1750 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1751 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1752 1753 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1754 PatternRewriter &rewriter) const override { 1755 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1756 if (!srcBroadcast) 1757 return failure(); 1758 rewriter.replaceOpWithNewOp<BroadcastOp>( 1759 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1760 return success(); 1761 } 1762 }; 1763 } // namespace 1764 1765 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1766 MLIRContext *context) { 1767 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1768 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1769 results.add<BroadcastFolder>(context); 1770 } 1771 1772 //===----------------------------------------------------------------------===// 1773 // ShuffleOp 1774 //===----------------------------------------------------------------------===// 1775 1776 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1777 Value v2, ArrayRef<int64_t> mask) { 1778 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1779 } 1780 1781 LogicalResult ShuffleOp::verify() { 1782 VectorType resultType = getVectorType(); 1783 VectorType v1Type = getV1VectorType(); 1784 VectorType v2Type = getV2VectorType(); 1785 // Verify ranks. 1786 int64_t resRank = resultType.getRank(); 1787 int64_t v1Rank = v1Type.getRank(); 1788 int64_t v2Rank = v2Type.getRank(); 1789 if (resRank != v1Rank || v1Rank != v2Rank) 1790 return emitOpError("rank mismatch"); 1791 // Verify all but leading dimension sizes. 1792 for (int64_t r = 1; r < v1Rank; ++r) { 1793 int64_t resDim = resultType.getDimSize(r); 1794 int64_t v1Dim = v1Type.getDimSize(r); 1795 int64_t v2Dim = v2Type.getDimSize(r); 1796 if (resDim != v1Dim || v1Dim != v2Dim) 1797 return emitOpError("dimension mismatch"); 1798 } 1799 // Verify mask length. 1800 auto maskAttr = getMask().getValue(); 1801 int64_t maskLength = maskAttr.size(); 1802 if (maskLength <= 0) 1803 return emitOpError("invalid mask length"); 1804 if (maskLength != resultType.getDimSize(0)) 1805 return emitOpError("mask length mismatch"); 1806 // Verify all indices. 1807 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1808 for (const auto &en : llvm::enumerate(maskAttr)) { 1809 auto attr = en.value().dyn_cast<IntegerAttr>(); 1810 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1811 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1812 } 1813 return success(); 1814 } 1815 1816 LogicalResult 1817 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1818 ValueRange operands, DictionaryAttr attributes, 1819 RegionRange, 1820 SmallVectorImpl<Type> &inferredReturnTypes) { 1821 ShuffleOp::Adaptor op(operands, attributes); 1822 auto v1Type = op.getV1().getType().cast<VectorType>(); 1823 // Construct resulting type: leading dimension matches mask length, 1824 // all trailing dimensions match the operands. 1825 SmallVector<int64_t, 4> shape; 1826 shape.reserve(v1Type.getRank()); 1827 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1828 llvm::append_range(shape, v1Type.getShape().drop_front()); 1829 inferredReturnTypes.push_back( 1830 VectorType::get(shape, v1Type.getElementType())); 1831 return success(); 1832 } 1833 1834 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1835 uint64_t expected = begin; 1836 return idxArr.size() == width && 1837 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1838 [&expected](auto attr) { 1839 return attr.getZExtValue() == expected++; 1840 }); 1841 } 1842 1843 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1844 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1845 if (!getV1VectorType().isScalable() && 1846 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1847 return getV1(); 1848 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1849 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1850 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1851 getV2VectorType().getDimSize(0))) 1852 return getV2(); 1853 1854 Attribute lhs = operands.front(), rhs = operands.back(); 1855 if (!lhs || !rhs) 1856 return {}; 1857 1858 auto lhsType = lhs.getType().cast<VectorType>(); 1859 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1860 // manipulation. 1861 if (lhsType.getRank() != 1) 1862 return {}; 1863 int64_t lhsSize = lhsType.getDimSize(0); 1864 1865 SmallVector<Attribute> results; 1866 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1867 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1868 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1869 int64_t i = index.getZExtValue(); 1870 if (i >= lhsSize) { 1871 results.push_back(rhsElements[i - lhsSize]); 1872 } else { 1873 results.push_back(lhsElements[i]); 1874 } 1875 } 1876 1877 return DenseElementsAttr::get(getVectorType(), results); 1878 } 1879 1880 namespace { 1881 1882 /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. 1883 class ShuffleSplat final : public OpRewritePattern<ShuffleOp> { 1884 public: 1885 using OpRewritePattern<ShuffleOp>::OpRewritePattern; 1886 1887 LogicalResult matchAndRewrite(ShuffleOp op, 1888 PatternRewriter &rewriter) const override { 1889 auto v1Splat = op.getV1().getDefiningOp<SplatOp>(); 1890 auto v2Splat = op.getV2().getDefiningOp<SplatOp>(); 1891 1892 if (!v1Splat || !v2Splat) 1893 return failure(); 1894 1895 if (v1Splat.getInput() != v2Splat.getInput()) 1896 return failure(); 1897 1898 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput()); 1899 return success(); 1900 } 1901 }; 1902 1903 } // namespace 1904 1905 void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, 1906 MLIRContext *context) { 1907 results.add<ShuffleSplat>(context); 1908 } 1909 1910 //===----------------------------------------------------------------------===// 1911 // InsertElementOp 1912 //===----------------------------------------------------------------------===// 1913 1914 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1915 Value source, Value dest) { 1916 build(builder, result, source, dest, {}); 1917 } 1918 1919 LogicalResult InsertElementOp::verify() { 1920 auto dstVectorType = getDestVectorType(); 1921 if (dstVectorType.getRank() == 0) { 1922 if (getPosition()) 1923 return emitOpError("expected position to be empty with 0-D vector"); 1924 return success(); 1925 } 1926 if (dstVectorType.getRank() != 1) 1927 return emitOpError("unexpected >1 vector rank"); 1928 if (!getPosition()) 1929 return emitOpError("expected position for 1-D vector"); 1930 return success(); 1931 } 1932 1933 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1934 // Skip the 0-D vector here. 1935 if (operands.size() < 3) 1936 return {}; 1937 1938 Attribute src = operands[0]; 1939 Attribute dst = operands[1]; 1940 Attribute pos = operands[2]; 1941 if (!src || !dst || !pos) 1942 return {}; 1943 1944 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1945 1946 SmallVector<Attribute> results(dstElements); 1947 1948 auto attr = pos.dyn_cast<IntegerAttr>(); 1949 uint64_t posIdx = attr.getInt(); 1950 1951 results[posIdx] = src; 1952 1953 return DenseElementsAttr::get(getDestVectorType(), results); 1954 } 1955 1956 //===----------------------------------------------------------------------===// 1957 // InsertOp 1958 //===----------------------------------------------------------------------===// 1959 1960 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1961 Value dest, ArrayRef<int64_t> position) { 1962 result.addOperands({source, dest}); 1963 auto positionAttr = getVectorSubscriptAttr(builder, position); 1964 result.addTypes(dest.getType()); 1965 result.addAttribute(getPositionAttrStrName(), positionAttr); 1966 } 1967 1968 // Convenience builder which assumes the values are constant indices. 1969 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1970 Value dest, ValueRange position) { 1971 SmallVector<int64_t, 4> positionConstants = 1972 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1973 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1974 })); 1975 build(builder, result, source, dest, positionConstants); 1976 } 1977 1978 LogicalResult InsertOp::verify() { 1979 auto positionAttr = getPosition().getValue(); 1980 auto destVectorType = getDestVectorType(); 1981 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1982 return emitOpError( 1983 "expected position attribute of rank smaller than dest vector rank"); 1984 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1985 if (srcVectorType && 1986 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1987 static_cast<unsigned>(destVectorType.getRank()))) 1988 return emitOpError("expected position attribute rank + source rank to " 1989 "match dest vector rank"); 1990 if (!srcVectorType && 1991 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1992 return emitOpError( 1993 "expected position attribute rank to match the dest vector rank"); 1994 for (const auto &en : llvm::enumerate(positionAttr)) { 1995 auto attr = en.value().dyn_cast<IntegerAttr>(); 1996 if (!attr || attr.getInt() < 0 || 1997 attr.getInt() >= destVectorType.getDimSize(en.index())) 1998 return emitOpError("expected position attribute #") 1999 << (en.index() + 1) 2000 << " to be a non-negative integer smaller than the corresponding " 2001 "dest vector dimension"; 2002 } 2003 return success(); 2004 } 2005 2006 namespace { 2007 2008 // If insertOp is only inserting unit dimensions it can be transformed to a 2009 // broadcast. 2010 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 2011 public: 2012 using OpRewritePattern<InsertOp>::OpRewritePattern; 2013 2014 LogicalResult matchAndRewrite(InsertOp insertOp, 2015 PatternRewriter &rewriter) const override { 2016 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 2017 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 2018 srcVecType.getNumElements()) 2019 return failure(); 2020 rewriter.replaceOpWithNewOp<BroadcastOp>( 2021 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 2022 return success(); 2023 } 2024 }; 2025 2026 /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. 2027 class InsertSplatToSplat final : public OpRewritePattern<InsertOp> { 2028 public: 2029 using OpRewritePattern<InsertOp>::OpRewritePattern; 2030 2031 LogicalResult matchAndRewrite(InsertOp op, 2032 PatternRewriter &rewriter) const override { 2033 auto srcSplat = op.getSource().getDefiningOp<SplatOp>(); 2034 auto dstSplat = op.getDest().getDefiningOp<SplatOp>(); 2035 2036 if (!srcSplat || !dstSplat) 2037 return failure(); 2038 2039 if (srcSplat.getInput() != dstSplat.getInput()) 2040 return failure(); 2041 2042 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput()); 2043 return success(); 2044 } 2045 }; 2046 2047 } // namespace 2048 2049 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2050 MLIRContext *context) { 2051 results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context); 2052 } 2053 2054 // Eliminates insert operations that produce values identical to their source 2055 // value. This happens when the source and destination vectors have identical 2056 // sizes. 2057 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2058 if (getPosition().empty()) 2059 return getSource(); 2060 return {}; 2061 } 2062 2063 //===----------------------------------------------------------------------===// 2064 // InsertMapOp 2065 //===----------------------------------------------------------------------===// 2066 2067 LogicalResult InsertMapOp::verify() { 2068 if (getSourceVectorType().getRank() != getResultType().getRank()) 2069 return emitOpError("expected source and destination vectors of same rank"); 2070 unsigned numId = 0; 2071 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2072 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2073 0) 2074 return emitOpError( 2075 "destination vector size must be a multiple of source vector size"); 2076 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2077 numId++; 2078 } 2079 if (numId != getIds().size()) 2080 return emitOpError("expected number of ids must match the number of " 2081 "dimensions distributed"); 2082 return success(); 2083 } 2084 2085 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2086 2087 //===----------------------------------------------------------------------===// 2088 // InsertStridedSliceOp 2089 //===----------------------------------------------------------------------===// 2090 2091 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2092 Value source, Value dest, 2093 ArrayRef<int64_t> offsets, 2094 ArrayRef<int64_t> strides) { 2095 result.addOperands({source, dest}); 2096 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2097 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2098 result.addTypes(dest.getType()); 2099 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2100 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2101 } 2102 2103 // TODO: Should be moved to Tablegen Confined attributes. 2104 template <typename OpType> 2105 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2106 ArrayAttr arrayAttr, 2107 ArrayRef<int64_t> shape, 2108 StringRef attrName) { 2109 if (arrayAttr.size() > shape.size()) 2110 return op.emitOpError("expected ") 2111 << attrName << " attribute of rank smaller than vector rank"; 2112 return success(); 2113 } 2114 2115 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2116 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2117 // Otherwise, the admissible interval is [min, max]. 2118 template <typename OpType> 2119 static LogicalResult 2120 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2121 int64_t max, StringRef attrName, 2122 bool halfOpen = true) { 2123 for (auto attr : arrayAttr) { 2124 auto val = attr.cast<IntegerAttr>().getInt(); 2125 auto upper = max; 2126 if (!halfOpen) 2127 upper += 1; 2128 if (val < min || val >= upper) 2129 return op.emitOpError("expected ") << attrName << " to be confined to [" 2130 << min << ", " << upper << ")"; 2131 } 2132 return success(); 2133 } 2134 2135 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2136 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2137 // Otherwise, the admissible interval is [min, max]. 2138 template <typename OpType> 2139 static LogicalResult 2140 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2141 ArrayRef<int64_t> shape, StringRef attrName, 2142 bool halfOpen = true, int64_t min = 0) { 2143 assert(arrayAttr.size() <= shape.size()); 2144 unsigned index = 0; 2145 for (auto it : llvm::zip(arrayAttr, shape)) { 2146 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2147 auto max = std::get<1>(it); 2148 if (!halfOpen) 2149 max += 1; 2150 if (val < min || val >= max) 2151 return op.emitOpError("expected ") 2152 << attrName << " dimension " << index << " to be confined to [" 2153 << min << ", " << max << ")"; 2154 ++index; 2155 } 2156 return success(); 2157 } 2158 2159 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2160 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2161 // Otherwise, the admissible interval is [min, max]. 2162 template <typename OpType> 2163 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2164 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2165 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2166 bool halfOpen = true, int64_t min = 1) { 2167 assert(arrayAttr1.size() <= shape.size()); 2168 assert(arrayAttr2.size() <= shape.size()); 2169 unsigned index = 0; 2170 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2171 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2172 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2173 auto max = std::get<2>(it); 2174 if (!halfOpen) 2175 max += 1; 2176 if (val1 + val2 < 0 || val1 + val2 >= max) 2177 return op.emitOpError("expected sum(") 2178 << attrName1 << ", " << attrName2 << ") dimension " << index 2179 << " to be confined to [" << min << ", " << max << ")"; 2180 ++index; 2181 } 2182 return success(); 2183 } 2184 2185 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2186 MLIRContext *context) { 2187 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2188 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2189 }); 2190 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2191 } 2192 2193 LogicalResult InsertStridedSliceOp::verify() { 2194 auto sourceVectorType = getSourceVectorType(); 2195 auto destVectorType = getDestVectorType(); 2196 auto offsets = getOffsetsAttr(); 2197 auto strides = getStridesAttr(); 2198 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2199 return emitOpError( 2200 "expected offsets of same size as destination vector rank"); 2201 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2202 return emitOpError("expected strides of same size as source vector rank"); 2203 if (sourceVectorType.getRank() > destVectorType.getRank()) 2204 return emitOpError( 2205 "expected source rank to be smaller than destination rank"); 2206 2207 auto sourceShape = sourceVectorType.getShape(); 2208 auto destShape = destVectorType.getShape(); 2209 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2210 destShape.size() - sourceShape.size(), 0); 2211 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2212 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2213 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2214 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2215 offName)) || 2216 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2217 stridesName, 2218 /*halfOpen=*/false)) || 2219 failed(isSumOfIntegerArrayAttrConfinedToShape( 2220 *this, offsets, 2221 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2222 offName, "source vector shape", 2223 /*halfOpen=*/false, /*min=*/1))) 2224 return failure(); 2225 2226 return success(); 2227 } 2228 2229 namespace { 2230 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, 2231 /// SplatOp(X):dst_type) to SplatOp(X):dst_type. 2232 class FoldInsertStridedSliceSplat final 2233 : public OpRewritePattern<InsertStridedSliceOp> { 2234 public: 2235 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2236 2237 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2238 PatternRewriter &rewriter) const override { 2239 auto srcSplatOp = 2240 insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>(); 2241 auto destSplatOp = 2242 insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); 2243 2244 if (!srcSplatOp || !destSplatOp) 2245 return failure(); 2246 2247 if (srcSplatOp.getInput() != destSplatOp.getInput()) 2248 return failure(); 2249 2250 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2251 return success(); 2252 } 2253 }; 2254 2255 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) 2256 /// to dst. 2257 class FoldInsertStridedSliceOfExtract final 2258 : public OpRewritePattern<InsertStridedSliceOp> { 2259 public: 2260 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2261 2262 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2263 PatternRewriter &rewriter) const override { 2264 auto extractStridedSliceOp = 2265 insertStridedSliceOp.getSource() 2266 .getDefiningOp<vector::ExtractStridedSliceOp>(); 2267 2268 if (!extractStridedSliceOp) 2269 return failure(); 2270 2271 if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) 2272 return failure(); 2273 2274 // Check if have the same strides and offsets. 2275 if (extractStridedSliceOp.getStrides() != 2276 insertStridedSliceOp.getStrides() || 2277 extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) 2278 return failure(); 2279 2280 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2281 return success(); 2282 } 2283 }; 2284 2285 } // namespace 2286 2287 void vector::InsertStridedSliceOp::getCanonicalizationPatterns( 2288 RewritePatternSet &results, MLIRContext *context) { 2289 results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>( 2290 context); 2291 } 2292 2293 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2294 if (getSourceVectorType() == getDestVectorType()) 2295 return getSource(); 2296 return {}; 2297 } 2298 2299 //===----------------------------------------------------------------------===// 2300 // OuterProductOp 2301 //===----------------------------------------------------------------------===// 2302 2303 /// Build an op without mask, use the type of `acc` as the return type. 2304 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2305 Value lhs, Value rhs, Value acc) { 2306 result.addOperands({lhs, rhs, acc}); 2307 result.addTypes(acc.getType()); 2308 } 2309 2310 void OuterProductOp::print(OpAsmPrinter &p) { 2311 p << " " << getLhs() << ", " << getRhs(); 2312 if (!getAcc().empty()) { 2313 p << ", " << getAcc(); 2314 p.printOptionalAttrDict((*this)->getAttrs()); 2315 } 2316 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2317 } 2318 2319 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2320 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2321 Type tLHS, tRHS; 2322 if (parser.parseOperandList(operandsInfo) || 2323 parser.parseOptionalAttrDict(result.attributes) || 2324 parser.parseColonType(tLHS) || parser.parseComma() || 2325 parser.parseType(tRHS)) 2326 return failure(); 2327 if (operandsInfo.size() < 2) 2328 return parser.emitError(parser.getNameLoc(), 2329 "expected at least 2 operands"); 2330 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2331 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2332 if (!vLHS) 2333 return parser.emitError(parser.getNameLoc(), 2334 "expected vector type for operand #1"); 2335 VectorType resType = 2336 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2337 vLHS.getElementType()) 2338 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2339 2340 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2341 result.attributes.append( 2342 OuterProductOp::getKindAttrStrName(), 2343 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2344 result.getContext())); 2345 } 2346 2347 return failure( 2348 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2349 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2350 (operandsInfo.size() > 2 && 2351 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2352 parser.addTypeToList(resType, result.types)); 2353 } 2354 2355 LogicalResult OuterProductOp::verify() { 2356 Type tRHS = getOperandTypeRHS(); 2357 VectorType vLHS = getOperandVectorTypeLHS(), 2358 vRHS = tRHS.dyn_cast<VectorType>(), 2359 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2360 2361 if (vLHS.getRank() != 1) 2362 return emitOpError("expected 1-d vector for operand #1"); 2363 2364 if (vRHS) { 2365 // Proper OUTER operation. 2366 if (vRHS.getRank() != 1) 2367 return emitOpError("expected 1-d vector for operand #2"); 2368 if (vRES.getRank() != 2) 2369 return emitOpError("expected 2-d vector result"); 2370 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2371 return emitOpError("expected #1 operand dim to match result dim #1"); 2372 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2373 return emitOpError("expected #2 operand dim to match result dim #2"); 2374 } else { 2375 // An AXPY operation. 2376 if (vRES.getRank() != 1) 2377 return emitOpError("expected 1-d vector result"); 2378 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2379 return emitOpError("expected #1 operand dim to match result dim #1"); 2380 } 2381 2382 if (vACC && vACC != vRES) 2383 return emitOpError("expected operand #3 of same type as result type"); 2384 2385 // Verify supported combining kind. 2386 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2387 return emitOpError("unsupported outerproduct type"); 2388 2389 return success(); 2390 } 2391 2392 //===----------------------------------------------------------------------===// 2393 // ReshapeOp 2394 //===----------------------------------------------------------------------===// 2395 2396 LogicalResult ReshapeOp::verify() { 2397 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2398 auto inputVectorType = getInputVectorType(); 2399 auto outputVectorType = getOutputVectorType(); 2400 int64_t inputShapeRank = getNumInputShapeSizes(); 2401 int64_t outputShapeRank = getNumOutputShapeSizes(); 2402 SmallVector<int64_t, 4> fixedVectorSizes; 2403 getFixedVectorSizes(fixedVectorSizes); 2404 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2405 2406 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2407 return emitError("invalid input shape for vector type ") << inputVectorType; 2408 2409 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2410 return emitError("invalid output shape for vector type ") 2411 << outputVectorType; 2412 2413 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2414 // suffix. 2415 unsigned inputVectorRank = inputVectorType.getRank(); 2416 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2417 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2418 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2419 return emitError("fixed vector size must match input vector for dim ") 2420 << i; 2421 } 2422 2423 unsigned outputVectorRank = outputVectorType.getRank(); 2424 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2425 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2426 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2427 return emitError("fixed vector size must match output vector for dim ") 2428 << i; 2429 } 2430 2431 // If all shape operands are produced by constant ops, verify that product 2432 // of dimensions for input/output shape match. 2433 auto isDefByConstant = [](Value operand) { 2434 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2435 }; 2436 if (llvm::all_of(getInputShape(), isDefByConstant) && 2437 llvm::all_of(getOutputShape(), isDefByConstant)) { 2438 int64_t numInputElements = 1; 2439 for (auto operand : getInputShape()) 2440 numInputElements *= 2441 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2442 int64_t numOutputElements = 1; 2443 for (auto operand : getOutputShape()) 2444 numOutputElements *= 2445 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2446 if (numInputElements != numOutputElements) 2447 return emitError("product of input and output shape sizes must match"); 2448 } 2449 return success(); 2450 } 2451 2452 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2453 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2454 } 2455 2456 //===----------------------------------------------------------------------===// 2457 // ExtractStridedSliceOp 2458 //===----------------------------------------------------------------------===// 2459 2460 // Inference works as follows: 2461 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2462 // 2. Add sizes from 'vectorType' for remaining dims. 2463 static Type inferStridedSliceOpResultType(VectorType vectorType, 2464 ArrayAttr offsets, ArrayAttr sizes, 2465 ArrayAttr strides) { 2466 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2467 SmallVector<int64_t, 4> shape; 2468 shape.reserve(vectorType.getRank()); 2469 unsigned idx = 0; 2470 for (unsigned e = offsets.size(); idx < e; ++idx) 2471 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2472 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2473 shape.push_back(vectorType.getShape()[idx]); 2474 2475 return VectorType::get(shape, vectorType.getElementType()); 2476 } 2477 2478 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2479 Value source, ArrayRef<int64_t> offsets, 2480 ArrayRef<int64_t> sizes, 2481 ArrayRef<int64_t> strides) { 2482 result.addOperands(source); 2483 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2484 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2485 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2486 result.addTypes( 2487 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2488 offsetsAttr, sizesAttr, stridesAttr)); 2489 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2490 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2491 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2492 } 2493 2494 LogicalResult ExtractStridedSliceOp::verify() { 2495 auto type = getVectorType(); 2496 auto offsets = getOffsetsAttr(); 2497 auto sizes = getSizesAttr(); 2498 auto strides = getStridesAttr(); 2499 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2500 return emitOpError( 2501 "expected offsets, sizes and strides attributes of same size"); 2502 2503 auto shape = type.getShape(); 2504 auto offName = getOffsetsAttrName(); 2505 auto sizesName = getSizesAttrName(); 2506 auto stridesName = getStridesAttrName(); 2507 if (failed( 2508 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2509 failed( 2510 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2511 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2512 stridesName)) || 2513 failed( 2514 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2515 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2516 /*halfOpen=*/false, 2517 /*min=*/1)) || 2518 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2519 stridesName, 2520 /*halfOpen=*/false)) || 2521 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2522 shape, offName, sizesName, 2523 /*halfOpen=*/false))) 2524 return failure(); 2525 2526 auto resultType = 2527 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2528 if (getResult().getType() != resultType) 2529 return emitOpError("expected result type to be ") << resultType; 2530 2531 return success(); 2532 } 2533 2534 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2535 // to use the source of the InsertStrided ops if we can detect that the 2536 // extracted vector is a subset of one of the vector inserted. 2537 static LogicalResult 2538 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2539 // Helper to extract integer out of ArrayAttr. 2540 auto getElement = [](ArrayAttr array, int idx) { 2541 return array[idx].cast<IntegerAttr>().getInt(); 2542 }; 2543 ArrayAttr extractOffsets = op.getOffsets(); 2544 ArrayAttr extractStrides = op.getStrides(); 2545 ArrayAttr extractSizes = op.getSizes(); 2546 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2547 while (insertOp) { 2548 if (op.getVectorType().getRank() != 2549 insertOp.getSourceVectorType().getRank()) 2550 return failure(); 2551 ArrayAttr insertOffsets = insertOp.getOffsets(); 2552 ArrayAttr insertStrides = insertOp.getStrides(); 2553 // If the rank of extract is greater than the rank of insert, we are likely 2554 // extracting a partial chunk of the vector inserted. 2555 if (extractOffsets.size() > insertOffsets.size()) 2556 return failure(); 2557 bool patialoverlap = false; 2558 bool disjoint = false; 2559 SmallVector<int64_t, 4> offsetDiffs; 2560 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2561 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2562 return failure(); 2563 int64_t start = getElement(insertOffsets, dim); 2564 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2565 int64_t offset = getElement(extractOffsets, dim); 2566 int64_t size = getElement(extractSizes, dim); 2567 // Check if the start of the extract offset is in the interval inserted. 2568 if (start <= offset && offset < end) { 2569 // If the extract interval overlaps but is not fully included we may 2570 // have a partial overlap that will prevent any folding. 2571 if (offset + size > end) 2572 patialoverlap = true; 2573 offsetDiffs.push_back(offset - start); 2574 continue; 2575 } 2576 disjoint = true; 2577 break; 2578 } 2579 // The extract element chunk is a subset of the insert element. 2580 if (!disjoint && !patialoverlap) { 2581 op.setOperand(insertOp.getSource()); 2582 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2583 OpBuilder b(op.getContext()); 2584 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2585 b.getI64ArrayAttr(offsetDiffs)); 2586 return success(); 2587 } 2588 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2589 // in the insert chain. 2590 if (disjoint) 2591 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2592 else { 2593 // The extracted vector partially overlap the inserted vector, we cannot 2594 // fold. 2595 return failure(); 2596 } 2597 } 2598 return failure(); 2599 } 2600 2601 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2602 if (getVectorType() == getResult().getType()) 2603 return getVector(); 2604 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2605 return getResult(); 2606 return {}; 2607 } 2608 2609 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2610 populateFromInt64AttrArray(getOffsets(), results); 2611 } 2612 2613 namespace { 2614 2615 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2616 // ConstantMaskOp. 2617 class StridedSliceConstantMaskFolder final 2618 : public OpRewritePattern<ExtractStridedSliceOp> { 2619 public: 2620 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2621 2622 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2623 PatternRewriter &rewriter) const override { 2624 // Return if 'extractStridedSliceOp' operand is not defined by a 2625 // ConstantMaskOp. 2626 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2627 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2628 if (!constantMaskOp) 2629 return failure(); 2630 // Return if 'extractStridedSliceOp' has non-unit strides. 2631 if (extractStridedSliceOp.hasNonUnitStrides()) 2632 return failure(); 2633 // Gather constant mask dimension sizes. 2634 SmallVector<int64_t, 4> maskDimSizes; 2635 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2636 // Gather strided slice offsets and sizes. 2637 SmallVector<int64_t, 4> sliceOffsets; 2638 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2639 sliceOffsets); 2640 SmallVector<int64_t, 4> sliceSizes; 2641 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2642 2643 // Compute slice of vector mask region. 2644 SmallVector<int64_t, 4> sliceMaskDimSizes; 2645 assert(sliceOffsets.size() == maskDimSizes.size()); 2646 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2647 int64_t maskDimSize = std::get<0>(it); 2648 int64_t sliceOffset = std::get<1>(it); 2649 int64_t sliceSize = std::get<2>(it); 2650 int64_t sliceMaskDimSize = std::max( 2651 static_cast<int64_t>(0), 2652 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2653 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2654 } 2655 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2656 // region is a conjunction of mask dim intervals). 2657 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2658 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2659 2660 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2661 // region. 2662 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2663 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2664 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2665 return success(); 2666 } 2667 }; 2668 2669 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2670 class StridedSliceConstantFolder final 2671 : public OpRewritePattern<ExtractStridedSliceOp> { 2672 public: 2673 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2674 2675 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2676 PatternRewriter &rewriter) const override { 2677 // Return if 'extractStridedSliceOp' operand is not defined by a 2678 // ConstantOp. 2679 auto constantOp = 2680 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2681 if (!constantOp) 2682 return failure(); 2683 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2684 if (!dense) 2685 return failure(); 2686 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2687 dense.getSplatValue<Attribute>()); 2688 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2689 newAttr); 2690 return success(); 2691 } 2692 }; 2693 2694 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2695 // BroadcastOp(ExtractStrideSliceOp). 2696 class StridedSliceBroadcast final 2697 : public OpRewritePattern<ExtractStridedSliceOp> { 2698 public: 2699 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2700 2701 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2702 PatternRewriter &rewriter) const override { 2703 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2704 if (!broadcast) 2705 return failure(); 2706 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2707 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2708 auto dstVecType = op.getType().cast<VectorType>(); 2709 unsigned dstRank = dstVecType.getRank(); 2710 unsigned rankDiff = dstRank - srcRank; 2711 // Check if the most inner dimensions of the source of the broadcast are the 2712 // same as the destination of the extract. If this is the case we can just 2713 // use a broadcast as the original dimensions are untouched. 2714 bool lowerDimMatch = true; 2715 for (unsigned i = 0; i < srcRank; i++) { 2716 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2717 lowerDimMatch = false; 2718 break; 2719 } 2720 } 2721 Value source = broadcast.getSource(); 2722 // If the inner dimensions don't match, it means we need to extract from the 2723 // source of the orignal broadcast and then broadcast the extracted value. 2724 // We also need to handle degenerated cases where the source is effectively 2725 // just a single scalar. 2726 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2727 if (!lowerDimMatch && !isScalarSrc) { 2728 source = rewriter.create<ExtractStridedSliceOp>( 2729 op->getLoc(), source, 2730 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2731 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2732 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2733 } 2734 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2735 return success(); 2736 } 2737 }; 2738 2739 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2740 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2741 public: 2742 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2743 2744 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2745 PatternRewriter &rewriter) const override { 2746 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2747 if (!splat) 2748 return failure(); 2749 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2750 return success(); 2751 } 2752 }; 2753 2754 } // namespace 2755 2756 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2757 RewritePatternSet &results, MLIRContext *context) { 2758 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2759 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2760 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2761 StridedSliceBroadcast, StridedSliceSplat>(context); 2762 } 2763 2764 //===----------------------------------------------------------------------===// 2765 // TransferReadOp 2766 //===----------------------------------------------------------------------===// 2767 2768 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2769 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2770 VectorType vectorType, Value source, 2771 ValueRange indices, AffineMapAttr permutationMapAttr, 2772 /*optional*/ ArrayAttr inBoundsAttr) { 2773 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2774 Value padding = builder.create<arith::ConstantOp>( 2775 result.location, elemType, builder.getZeroAttr(elemType)); 2776 build(builder, result, vectorType, source, indices, permutationMapAttr, 2777 padding, /*mask=*/Value(), inBoundsAttr); 2778 } 2779 2780 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2781 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2782 VectorType vectorType, Value source, 2783 ValueRange indices, AffineMap permutationMap, 2784 Optional<ArrayRef<bool>> inBounds) { 2785 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2786 auto inBoundsAttr = (inBounds && !inBounds.value().empty()) 2787 ? builder.getBoolArrayAttr(inBounds.value()) 2788 : ArrayAttr(); 2789 build(builder, result, vectorType, source, indices, permutationMapAttr, 2790 inBoundsAttr); 2791 } 2792 2793 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2794 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2795 VectorType vectorType, Value source, 2796 ValueRange indices, Value padding, 2797 Optional<ArrayRef<bool>> inBounds) { 2798 AffineMap permutationMap = getTransferMinorIdentityMap( 2799 source.getType().cast<ShapedType>(), vectorType); 2800 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2801 auto inBoundsAttr = (inBounds && !inBounds.value().empty()) 2802 ? builder.getBoolArrayAttr(inBounds.value()) 2803 : ArrayAttr(); 2804 build(builder, result, vectorType, source, indices, permutationMapAttr, 2805 padding, 2806 /*mask=*/Value(), inBoundsAttr); 2807 } 2808 2809 /// 4. Builder that sets padding to zero and permutation map to 2810 /// 'getMinorIdentityMap'. 2811 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2812 VectorType vectorType, Value source, 2813 ValueRange indices, 2814 Optional<ArrayRef<bool>> inBounds) { 2815 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2816 Value padding = builder.create<arith::ConstantOp>( 2817 result.location, elemType, builder.getZeroAttr(elemType)); 2818 build(builder, result, vectorType, source, indices, padding, inBounds); 2819 } 2820 2821 template <typename EmitFun> 2822 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2823 EmitFun emitOpError) { 2824 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2825 for (auto expr : permutationMap.getResults()) { 2826 auto dim = expr.dyn_cast<AffineDimExpr>(); 2827 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2828 if (zero) { 2829 if (zero.getValue() != 0) { 2830 return emitOpError( 2831 "requires a projected permutation_map (at most one dim or the zero " 2832 "constant can appear in each result)"); 2833 } 2834 continue; 2835 } 2836 if (!dim) { 2837 return emitOpError("requires a projected permutation_map (at most one " 2838 "dim or the zero constant can appear in each result)"); 2839 } 2840 if (seen[dim.getPosition()]) { 2841 return emitOpError( 2842 "requires a permutation_map that is a permutation (found one dim " 2843 "used more than once)"); 2844 } 2845 seen[dim.getPosition()] = true; 2846 } 2847 return success(); 2848 } 2849 2850 static LogicalResult 2851 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2852 VectorType vectorType, VectorType maskType, 2853 AffineMap permutationMap, ArrayAttr inBounds) { 2854 if (op->hasAttr("masked")) { 2855 return op->emitOpError("masked attribute has been removed. " 2856 "Use in_bounds instead."); 2857 } 2858 2859 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2860 return op->emitOpError( 2861 "requires source to be a memref or ranked tensor type"); 2862 2863 auto elementType = shapedType.getElementType(); 2864 DataLayout dataLayout = DataLayout::closest(op); 2865 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2866 // Memref or tensor has vector element type. 2867 unsigned sourceVecSize = 2868 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2869 vectorElementType.getShape().back(); 2870 unsigned resultVecSize = 2871 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2872 vectorType.getShape().back(); 2873 if (resultVecSize % sourceVecSize != 0) 2874 return op->emitOpError( 2875 "requires the bitwidth of the minor 1-D vector to be an integral " 2876 "multiple of the bitwidth of the minor 1-D vector of the source"); 2877 2878 unsigned sourceVecEltRank = vectorElementType.getRank(); 2879 unsigned resultVecRank = vectorType.getRank(); 2880 if (sourceVecEltRank > resultVecRank) 2881 return op->emitOpError( 2882 "requires source vector element and vector result ranks to match."); 2883 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2884 // Check that permutation map results match 'rankOffset' of vector type. 2885 if (permutationMap.getNumResults() != rankOffset) 2886 return op->emitOpError("requires a permutation_map with result dims of " 2887 "the same rank as the vector type"); 2888 2889 if (maskType) 2890 return op->emitOpError("does not support masks with vector element type"); 2891 } else { 2892 // Memref or tensor has scalar element type. 2893 unsigned minorSize = 2894 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2895 unsigned resultVecSize = 2896 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2897 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2898 return op->emitOpError( 2899 "requires the bitwidth of the minor 1-D vector to be an integral " 2900 "multiple of the bitwidth of the source element type"); 2901 2902 // Check that permutation map results match rank of vector type. 2903 if (permutationMap.getNumResults() != vectorType.getRank()) 2904 return op->emitOpError("requires a permutation_map with result dims of " 2905 "the same rank as the vector type"); 2906 2907 VectorType expectedMaskType = 2908 vector::detail::transferMaskType(vectorType, permutationMap); 2909 if (maskType && expectedMaskType != maskType) 2910 return op->emitOpError("expects mask type consistent with permutation " 2911 "map: ") 2912 << maskType; 2913 } 2914 2915 if (permutationMap.getNumSymbols() != 0) 2916 return op->emitOpError("requires permutation_map without symbols"); 2917 2918 if (permutationMap.getNumInputs() != shapedType.getRank()) 2919 return op->emitOpError("requires a permutation_map with input dims of the " 2920 "same rank as the source type"); 2921 2922 if (inBounds) { 2923 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2924 return op->emitOpError("expects the optional in_bounds attr of same rank " 2925 "as permutation_map results: ") 2926 << AffineMapAttr::get(permutationMap) 2927 << " vs inBounds of size: " << inBounds.size(); 2928 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2929 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2930 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2931 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2932 } 2933 2934 return success(); 2935 } 2936 2937 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2938 SmallVector<StringRef, 3> elidedAttrs; 2939 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2940 if (op.permutation_map().isMinorIdentity()) 2941 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2942 bool elideInBounds = true; 2943 if (auto inBounds = op.in_bounds()) { 2944 for (auto attr : *inBounds) { 2945 if (attr.template cast<BoolAttr>().getValue()) { 2946 elideInBounds = false; 2947 break; 2948 } 2949 } 2950 } 2951 if (elideInBounds) 2952 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2953 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2954 } 2955 2956 void TransferReadOp::print(OpAsmPrinter &p) { 2957 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2958 if (getMask()) 2959 p << ", " << getMask(); 2960 printTransferAttrs(p, *this); 2961 p << " : " << getShapedType() << ", " << getVectorType(); 2962 } 2963 2964 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2965 auto &builder = parser.getBuilder(); 2966 SMLoc typesLoc; 2967 OpAsmParser::UnresolvedOperand sourceInfo; 2968 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2969 OpAsmParser::UnresolvedOperand paddingInfo; 2970 SmallVector<Type, 2> types; 2971 OpAsmParser::UnresolvedOperand maskInfo; 2972 // Parsing with support for paddingValue. 2973 if (parser.parseOperand(sourceInfo) || 2974 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2975 parser.parseComma() || parser.parseOperand(paddingInfo)) 2976 return failure(); 2977 ParseResult hasMask = parser.parseOptionalComma(); 2978 if (hasMask.succeeded()) { 2979 if (parser.parseOperand(maskInfo)) 2980 return failure(); 2981 } 2982 if (parser.parseOptionalAttrDict(result.attributes) || 2983 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2984 return failure(); 2985 if (types.size() != 2) 2986 return parser.emitError(typesLoc, "requires two types"); 2987 auto indexType = builder.getIndexType(); 2988 auto shapedType = types[0].dyn_cast<ShapedType>(); 2989 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2990 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2991 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2992 if (!vectorType) 2993 return parser.emitError(typesLoc, "requires vector type"); 2994 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2995 Attribute mapAttr = result.attributes.get(permutationAttrName); 2996 if (!mapAttr) { 2997 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2998 // Update `mapAttr` that is used later to determine mask type. 2999 mapAttr = AffineMapAttr::get(permMap); 3000 result.attributes.set(permutationAttrName, mapAttr); 3001 } 3002 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3003 parser.resolveOperands(indexInfo, indexType, result.operands) || 3004 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 3005 result.operands)) 3006 return failure(); 3007 if (hasMask.succeeded()) { 3008 if (shapedType.getElementType().dyn_cast<VectorType>()) 3009 return parser.emitError( 3010 maskInfo.location, "does not support masks with vector element type"); 3011 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 3012 // Instead of adding the mask type as an op type, compute it based on the 3013 // vector type and the permutation map (to keep the type signature small). 3014 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 3015 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3016 return failure(); 3017 } 3018 result.addAttribute( 3019 TransferReadOp::getOperandSegmentSizeAttr(), 3020 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 3021 static_cast<int32_t>(hasMask.succeeded())})); 3022 return parser.addTypeToList(vectorType, result.types); 3023 } 3024 3025 LogicalResult TransferReadOp::verify() { 3026 // Consistency of elemental types in source and vector. 3027 ShapedType shapedType = getShapedType(); 3028 VectorType vectorType = getVectorType(); 3029 VectorType maskType = getMaskType(); 3030 auto paddingType = getPadding().getType(); 3031 auto permutationMap = getPermutationMap(); 3032 auto sourceElementType = shapedType.getElementType(); 3033 3034 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 3035 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3036 3037 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3038 shapedType, vectorType, maskType, permutationMap, 3039 getInBounds() ? *getInBounds() : ArrayAttr()))) 3040 return failure(); 3041 3042 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 3043 // Source has vector element type. 3044 // Check that 'sourceVectorElementType' and 'paddingType' types match. 3045 if (sourceVectorElementType != paddingType) 3046 return emitOpError( 3047 "requires source element type and padding type to match."); 3048 3049 } else { 3050 // Check that 'paddingType' is valid to store in a vector type. 3051 if (!VectorType::isValidElementType(paddingType)) 3052 return emitOpError("requires valid padding vector elemental type"); 3053 3054 // Check that padding type and vector element types match. 3055 if (paddingType != sourceElementType) 3056 return emitOpError( 3057 "requires formal padding and source of the same elemental type"); 3058 } 3059 3060 return verifyPermutationMap(permutationMap, 3061 [&](Twine t) { return emitOpError(t); }); 3062 } 3063 3064 /// This is a common class used for patterns of the form 3065 /// ``` 3066 /// someop(memrefcast) -> someop 3067 /// ``` 3068 /// It folds the source of the memref.cast into the root operation directly. 3069 static LogicalResult foldMemRefCast(Operation *op) { 3070 bool folded = false; 3071 for (OpOperand &operand : op->getOpOperands()) { 3072 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 3073 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 3074 operand.set(castOp.getOperand()); 3075 folded = true; 3076 } 3077 } 3078 return success(folded); 3079 } 3080 3081 static LogicalResult foldTensorCast(Operation *op) { 3082 bool folded = false; 3083 for (OpOperand &operand : op->getOpOperands()) { 3084 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 3085 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 3086 operand.set(castOp.getOperand()); 3087 folded = true; 3088 } 3089 } 3090 return success(folded); 3091 } 3092 3093 template <typename TransferOp> 3094 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 3095 // TODO: support more aggressive createOrFold on: 3096 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 3097 if (op.getShapedType().isDynamicDim(indicesIdx)) 3098 return false; 3099 Value index = op.getIndices()[indicesIdx]; 3100 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 3101 if (!cstOp) 3102 return false; 3103 3104 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 3105 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 3106 3107 return cstOp.value() + vectorSize <= sourceSize; 3108 } 3109 3110 template <typename TransferOp> 3111 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3112 // TODO: support 0-d corner case. 3113 // TODO: Be less conservative. 3114 if (op.getTransferRank() == 0) 3115 return failure(); 3116 AffineMap permutationMap = op.getPermutationMap(); 3117 bool changed = false; 3118 SmallVector<bool, 4> newInBounds; 3119 newInBounds.reserve(op.getTransferRank()); 3120 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3121 // Already marked as in-bounds, nothing to see here. 3122 if (op.isDimInBounds(i)) { 3123 newInBounds.push_back(true); 3124 continue; 3125 } 3126 // Currently out-of-bounds, check whether we can statically determine it is 3127 // inBounds. 3128 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3129 assert(dimExpr && "Broadcast dims must be in-bounds"); 3130 auto inBounds = 3131 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3132 newInBounds.push_back(inBounds); 3133 // We commit the pattern if it is "more inbounds". 3134 changed |= inBounds; 3135 } 3136 if (!changed) 3137 return failure(); 3138 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3139 OpBuilder b(op.getContext()); 3140 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3141 b.getBoolArrayAttr(newInBounds)); 3142 return success(); 3143 } 3144 3145 /// ``` 3146 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3147 /// : vector<1x4xf32>, tensor<4x4xf32> 3148 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3149 /// : tensor<4x4xf32>, vector<1x4xf32> 3150 /// ``` 3151 /// -> Folds into 3152 /// ``` 3153 /// %v0 3154 /// ``` 3155 static Value foldRAW(TransferReadOp readOp) { 3156 if (!readOp.getShapedType().isa<RankedTensorType>()) 3157 return {}; 3158 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3159 while (defWrite) { 3160 if (checkSameValueRAW(defWrite, readOp)) 3161 return defWrite.getVector(); 3162 if (!isDisjointTransferIndices( 3163 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3164 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3165 break; 3166 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3167 } 3168 return {}; 3169 } 3170 3171 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3172 if (Value vec = foldRAW(*this)) 3173 return vec; 3174 /// transfer_read(memrefcast) -> transfer_read 3175 if (succeeded(foldTransferInBoundsAttribute(*this))) 3176 return getResult(); 3177 if (succeeded(foldMemRefCast(*this))) 3178 return getResult(); 3179 if (succeeded(foldTensorCast(*this))) 3180 return getResult(); 3181 return OpFoldResult(); 3182 } 3183 3184 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3185 return llvm::to_vector<4>(getVectorType().getShape()); 3186 } 3187 3188 void TransferReadOp::getEffects( 3189 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3190 &effects) { 3191 if (getShapedType().isa<MemRefType>()) 3192 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3193 SideEffects::DefaultResource::get()); 3194 } 3195 3196 namespace { 3197 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3198 /// 3199 /// ``` 3200 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3201 /// : tensor<?x?xf32> to tensor<?x?xf32> 3202 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3203 /// : tensor<?x?xf32>, vector<4x5xf32> 3204 /// ``` 3205 /// is rewritten to: 3206 /// ``` 3207 /// %p0 = arith.addi %a, %e : index 3208 /// %p1 = arith.addi %b, %f : index 3209 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3210 /// : tensor<?x?xf32>, vector<4x5xf32> 3211 /// ``` 3212 struct FoldExtractSliceIntoTransferRead 3213 : public OpRewritePattern<TransferReadOp> { 3214 public: 3215 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3216 3217 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3218 PatternRewriter &rewriter) const override { 3219 // TODO: support 0-d corner case. 3220 if (xferOp.getTransferRank() == 0) 3221 return failure(); 3222 if (xferOp.hasOutOfBoundsDim()) 3223 return failure(); 3224 if (!xferOp.getPermutationMap().isIdentity()) 3225 return failure(); 3226 if (xferOp.getMask()) 3227 return failure(); 3228 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3229 if (!extractOp) 3230 return failure(); 3231 if (!extractOp.hasUnitStride()) 3232 return failure(); 3233 3234 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3235 // dims are exactly the leading dims. I.e. the following is illegal: 3236 // ``` 3237 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3238 // tensor<2x1x4xf32> to tensor<2x4xf32> 3239 // %1 = vector.transfer_read %0[0,0], %cst : 3240 // tensor<2x4xf32>, vector<2x4xf32> 3241 // ``` 3242 // 3243 // Cannot fold into: 3244 // ``` 3245 // %0 = vector.transfer_read %t[0,0,0], %cst : 3246 // tensor<2x1x4xf32>, vector<2x4xf32> 3247 // ``` 3248 // For this, check the trailing `vectorRank` dims of the extract_slice 3249 // result tensor match the trailing dims of the inferred result tensor. 3250 int64_t rankReduced = 3251 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3252 int64_t vectorRank = xferOp.getVectorType().getRank(); 3253 RankedTensorType inferredDestTensorType = 3254 tensor::ExtractSliceOp::inferResultType( 3255 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3256 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3257 auto actualDestTensorShape = extractOp.getType().getShape(); 3258 if (rankReduced > 0 && 3259 actualDestTensorShape.take_back(vectorRank) != 3260 inferredDestTensorType.getShape().take_back(vectorRank)) 3261 return failure(); 3262 3263 SmallVector<Value> newIndices; 3264 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3265 // indices first. 3266 for (int64_t i = 0; i < rankReduced; ++i) { 3267 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3268 newIndices.push_back(getValueOrCreateConstantIndexOp( 3269 rewriter, extractOp.getLoc(), offset)); 3270 } 3271 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3272 OpFoldResult offset = 3273 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3274 newIndices.push_back(rewriter.create<arith::AddIOp>( 3275 xferOp->getLoc(), it.value(), 3276 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3277 offset))); 3278 } 3279 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3280 rewriter.replaceOpWithNewOp<TransferReadOp>( 3281 xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices, 3282 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3283 3284 return success(); 3285 } 3286 }; 3287 } // namespace 3288 3289 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3290 MLIRContext *context) { 3291 results.add<FoldExtractSliceIntoTransferRead>(context); 3292 } 3293 3294 //===----------------------------------------------------------------------===// 3295 // TransferWriteOp 3296 //===----------------------------------------------------------------------===// 3297 3298 /// 1. Builder with type inference. 3299 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3300 Value vector, Value dest, ValueRange indices, 3301 AffineMapAttr permutationMapAttr, 3302 /*optional*/ Value mask, 3303 /*optional*/ ArrayAttr inBoundsAttr) { 3304 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3305 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3306 mask, inBoundsAttr); 3307 } 3308 3309 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3310 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3311 Value vector, Value dest, ValueRange indices, 3312 AffineMapAttr permutationMapAttr, 3313 /*optional*/ ArrayAttr inBoundsAttr) { 3314 build(builder, result, vector, dest, indices, permutationMapAttr, 3315 /*mask=*/Value(), inBoundsAttr); 3316 } 3317 3318 /// 3. Builder with type inference that sets an empty mask (variant without 3319 /// attrs) 3320 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3321 Value vector, Value dest, ValueRange indices, 3322 AffineMap permutationMap, 3323 Optional<ArrayRef<bool>> inBounds) { 3324 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3325 auto inBoundsAttr = (inBounds && !inBounds.value().empty()) 3326 ? builder.getBoolArrayAttr(inBounds.value()) 3327 : ArrayAttr(); 3328 build(builder, result, vector, dest, indices, permutationMapAttr, 3329 /*mask=*/Value(), inBoundsAttr); 3330 } 3331 3332 /// 4. Builder with type inference that sets an empty mask and sets permutation 3333 /// map to 'getMinorIdentityMap'. 3334 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3335 Value vector, Value dest, ValueRange indices, 3336 Optional<ArrayRef<bool>> inBounds) { 3337 auto vectorType = vector.getType().cast<VectorType>(); 3338 AffineMap permutationMap = getTransferMinorIdentityMap( 3339 dest.getType().cast<ShapedType>(), vectorType); 3340 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3341 } 3342 3343 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3344 OperationState &result) { 3345 auto &builder = parser.getBuilder(); 3346 SMLoc typesLoc; 3347 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3348 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3349 SmallVector<Type, 2> types; 3350 OpAsmParser::UnresolvedOperand maskInfo; 3351 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3352 parser.parseOperand(sourceInfo) || 3353 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3354 return failure(); 3355 ParseResult hasMask = parser.parseOptionalComma(); 3356 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3357 return failure(); 3358 if (parser.parseOptionalAttrDict(result.attributes) || 3359 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3360 return failure(); 3361 if (types.size() != 2) 3362 return parser.emitError(typesLoc, "requires two types"); 3363 auto indexType = builder.getIndexType(); 3364 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3365 if (!vectorType) 3366 return parser.emitError(typesLoc, "requires vector type"); 3367 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3368 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3369 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3370 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3371 auto attr = result.attributes.get(permutationAttrName); 3372 if (!attr) { 3373 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3374 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3375 } 3376 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3377 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3378 parser.resolveOperands(indexInfo, indexType, result.operands)) 3379 return failure(); 3380 if (hasMask.succeeded()) { 3381 if (shapedType.getElementType().dyn_cast<VectorType>()) 3382 return parser.emitError( 3383 maskInfo.location, "does not support masks with vector element type"); 3384 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3385 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3386 return failure(); 3387 } 3388 result.addAttribute( 3389 TransferWriteOp::getOperandSegmentSizeAttr(), 3390 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3391 static_cast<int32_t>(hasMask.succeeded())})); 3392 return failure(shapedType.isa<RankedTensorType>() && 3393 parser.addTypeToList(shapedType, result.types)); 3394 } 3395 3396 void TransferWriteOp::print(OpAsmPrinter &p) { 3397 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3398 if (getMask()) 3399 p << ", " << getMask(); 3400 printTransferAttrs(p, *this); 3401 p << " : " << getVectorType() << ", " << getShapedType(); 3402 } 3403 3404 LogicalResult TransferWriteOp::verify() { 3405 // Consistency of elemental types in shape and vector. 3406 ShapedType shapedType = getShapedType(); 3407 VectorType vectorType = getVectorType(); 3408 VectorType maskType = getMaskType(); 3409 auto permutationMap = getPermutationMap(); 3410 3411 if (llvm::size(getIndices()) != shapedType.getRank()) 3412 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3413 3414 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3415 // as the semantics is unclear. This can be revisited later if necessary. 3416 if (hasBroadcastDim()) 3417 return emitOpError("should not have broadcast dimensions"); 3418 3419 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3420 shapedType, vectorType, maskType, permutationMap, 3421 getInBounds() ? *getInBounds() : ArrayAttr()))) 3422 return failure(); 3423 3424 return verifyPermutationMap(permutationMap, 3425 [&](Twine t) { return emitOpError(t); }); 3426 } 3427 3428 /// Fold: 3429 /// ``` 3430 /// %t1 = ... 3431 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3432 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3433 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3434 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3435 /// ``` 3436 /// 3437 /// into: 3438 /// 3439 /// ``` 3440 /// %t0 3441 /// ``` 3442 /// 3443 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3444 /// block argument or has side effects. 3445 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3446 ArrayRef<Attribute>, 3447 SmallVectorImpl<OpFoldResult> &results) { 3448 // TODO: support 0-d corner case. 3449 if (write.getTransferRank() == 0) 3450 return failure(); 3451 auto rankedTensorType = 3452 write.getSource().getType().dyn_cast<RankedTensorType>(); 3453 // If not operating on tensors, bail. 3454 if (!rankedTensorType) 3455 return failure(); 3456 // If no read, bail. 3457 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3458 if (!read) 3459 return failure(); 3460 // TODO: support 0-d corner case. 3461 if (read.getTransferRank() == 0) 3462 return failure(); 3463 // For now, only accept minor identity. Future: composition is minor identity. 3464 if (!read.getPermutationMap().isMinorIdentity() || 3465 !write.getPermutationMap().isMinorIdentity()) 3466 return failure(); 3467 // Bail on mismatching ranks. 3468 if (read.getTransferRank() != write.getTransferRank()) 3469 return failure(); 3470 // Bail on potential out-of-bounds accesses. 3471 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3472 return failure(); 3473 // Tensor types must be the same. 3474 if (read.getSource().getType() != rankedTensorType) 3475 return failure(); 3476 // Vector types must be the same. 3477 if (read.getVectorType() != write.getVectorType()) 3478 return failure(); 3479 // Vector and Tensor shapes must match. 3480 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3481 return failure(); 3482 // If any index is nonzero. 3483 auto isNotConstantZero = [](Value v) { 3484 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3485 return !cstOp || cstOp.value() != 0; 3486 }; 3487 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3488 llvm::any_of(write.getIndices(), isNotConstantZero)) 3489 return failure(); 3490 // Success. 3491 results.push_back(read.getSource()); 3492 return success(); 3493 } 3494 3495 static bool checkSameValueWAR(vector::TransferReadOp read, 3496 vector::TransferWriteOp write) { 3497 return read.getSource() == write.getSource() && 3498 read.getIndices() == write.getIndices() && 3499 read.getPermutationMap() == write.getPermutationMap() && 3500 read.getVectorType() == write.getVectorType() && !read.getMask() && 3501 !write.getMask(); 3502 } 3503 /// Fold transfer_write write after read: 3504 /// ``` 3505 /// %t0 = ... 3506 /// %v = vector.transfer_read %t0[%c0...] : 3507 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3508 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3509 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3510 /// ``` 3511 /// 3512 /// into: 3513 /// 3514 /// ``` 3515 /// %t0 3516 /// ``` 3517 static LogicalResult foldWAR(TransferWriteOp write, 3518 SmallVectorImpl<OpFoldResult> &results) { 3519 if (!write.getSource().getType().isa<RankedTensorType>()) 3520 return failure(); 3521 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3522 if (!read) 3523 return failure(); 3524 3525 if (!checkSameValueWAR(read, write)) 3526 return failure(); 3527 results.push_back(read.getSource()); 3528 return success(); 3529 } 3530 3531 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3532 SmallVectorImpl<OpFoldResult> &results) { 3533 if (succeeded(foldReadInitWrite(*this, operands, results))) 3534 return success(); 3535 if (succeeded(foldWAR(*this, results))) 3536 return success(); 3537 if (succeeded(foldTransferInBoundsAttribute(*this))) 3538 return success(); 3539 return foldMemRefCast(*this); 3540 } 3541 3542 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3543 return llvm::to_vector<4>(getVectorType().getShape()); 3544 } 3545 3546 void TransferWriteOp::getEffects( 3547 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3548 &effects) { 3549 if (getShapedType().isa<MemRefType>()) 3550 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3551 SideEffects::DefaultResource::get()); 3552 } 3553 3554 namespace { 3555 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3556 /// DCE 3557 /// ``` 3558 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3559 /// : vector<1x4xf32>, tensor<4x4xf32> 3560 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3561 /// : vector<1x4xf32>, tensor<4x4xf32> 3562 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3563 /// : vector<1x4xf32>, tensor<4x4xf32> 3564 /// ``` 3565 /// 3566 /// into: 3567 /// 3568 /// ``` 3569 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3570 /// : vector<1x4xf32>, tensor<4x4xf32> 3571 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3572 /// : vector<1x4xf32>, tensor<4x4xf32> 3573 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3574 /// : vector<1x4xf32>, tensor<4x4xf32> 3575 /// ``` 3576 /// 3577 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3578 /// any other uses. 3579 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3580 public: 3581 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3582 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3583 PatternRewriter &rewriter) const override { 3584 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3585 return failure(); 3586 vector::TransferWriteOp writeToModify = writeOp; 3587 3588 auto defWrite = 3589 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3590 while (defWrite) { 3591 if (checkSameValueWAW(writeOp, defWrite)) { 3592 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3593 return success(); 3594 } 3595 if (!isDisjointTransferIndices( 3596 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3597 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3598 break; 3599 // If the previous write op doesn't have any other use we an safely look 3600 // at the previous store to see if it can be removed. 3601 if (!defWrite->hasOneUse()) 3602 break; 3603 writeToModify = defWrite; 3604 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3605 } 3606 return failure(); 3607 } 3608 }; 3609 3610 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3611 /// could directly write to the insert_slice's destination. E.g.: 3612 /// 3613 /// ``` 3614 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3615 /// : vector<4x5xf32>, tensor<4x5xf32> 3616 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3617 /// : tensor<4x5xf32> into tensor<?x?xf32> 3618 /// ``` 3619 /// is rewritten to: 3620 /// ``` 3621 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3622 /// : vector<4x5xf32>, tensor<?x?xf32> 3623 /// ``` 3624 struct FoldInsertSliceIntoTransferWrite 3625 : public OpRewritePattern<tensor::InsertSliceOp> { 3626 public: 3627 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3628 3629 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3630 PatternRewriter &rewriter) const override { 3631 if (!insertOp.hasUnitStride()) 3632 return failure(); 3633 3634 auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>(); 3635 if (!xferOp) 3636 return failure(); 3637 // TODO: support 0-d corner case. 3638 if (xferOp.getTransferRank() == 0) 3639 return failure(); 3640 3641 if (xferOp.hasOutOfBoundsDim()) 3642 return failure(); 3643 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3644 return failure(); 3645 if (xferOp.getMask()) 3646 return failure(); 3647 // Fold only if the TransferWriteOp completely overwrites the `source` with 3648 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3649 // content is the data of the vector. 3650 if (!llvm::equal(xferOp.getVectorType().getShape(), 3651 xferOp.getShapedType().getShape())) 3652 return failure(); 3653 if (!xferOp.getPermutationMap().isIdentity()) 3654 return failure(); 3655 3656 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3657 // dims are exactly the leading dims. I.e. the following is illegal: 3658 // ``` 3659 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3660 // vector<2x4xf32>, tensor<2x4xf32> 3661 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3662 // tensor<2x4xf32> into tensor<2x1x4xf32> 3663 // ``` 3664 // 3665 // Cannot fold into: 3666 // ``` 3667 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3668 // vector<2x4xf32>, tensor<2x1x4xf32> 3669 // ``` 3670 // For this, check the trailing `vectorRank` dims of the insert_slice result 3671 // tensor match the trailing dims of the inferred result tensor. 3672 int64_t rankReduced = 3673 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3674 int64_t vectorRank = xferOp.getVectorType().getRank(); 3675 RankedTensorType inferredSourceTensorType = 3676 tensor::ExtractSliceOp::inferResultType( 3677 insertOp.getType(), insertOp.getMixedOffsets(), 3678 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3679 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3680 if (rankReduced > 0 && 3681 actualSourceTensorShape.take_back(vectorRank) != 3682 inferredSourceTensorType.getShape().take_back(vectorRank)) 3683 return failure(); 3684 3685 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3686 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3687 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3688 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3689 insertOp.getDest(), indices, 3690 ArrayRef<bool>{inBounds}); 3691 return success(); 3692 } 3693 }; 3694 3695 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3696 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3697 /// overwritten and inserted into another tensor. After this rewrite, the 3698 /// operations bufferize in-place since all of them work on the same slice. 3699 /// 3700 /// For example: 3701 /// ```mlir 3702 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3703 /// : vector<8x16xf32>, tensor<8x16xf32> 3704 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3705 /// : tensor<8x16xf32> to tensor<?x?xf32> 3706 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3707 /// : tensor<?x?xf32> into tensor<27x37xf32> 3708 /// ``` 3709 /// folds to 3710 /// ```mlir 3711 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3712 /// : tensor<27x37xf32> to tensor<?x?xf32> 3713 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3714 /// : vector<8x16xf32>, tensor<?x?xf32> 3715 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3716 /// : tensor<?x?xf32> into tensor<27x37xf32> 3717 /// ``` 3718 struct SwapExtractSliceOfTransferWrite 3719 : public OpRewritePattern<tensor::InsertSliceOp> { 3720 public: 3721 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3722 3723 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3724 PatternRewriter &rewriter) const override { 3725 if (!insertOp.hasUnitStride()) 3726 return failure(); 3727 auto extractOp = 3728 insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3729 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3730 return failure(); 3731 auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); 3732 if (!transferOp || !transferOp->hasOneUse()) 3733 return failure(); 3734 3735 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3736 // rank-reducing. 3737 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3738 return rewriter.notifyMatchFailure(insertOp, 3739 "use-def chain is rank-reducing"); 3740 } 3741 3742 // Fail if tensor::ExtractSliceOp has non-zero offset. 3743 if (!extractOp.hasZeroOffset()) { 3744 return rewriter.notifyMatchFailure(insertOp, 3745 "ExtractSliceOp has non-zero offset"); 3746 } 3747 3748 // Fail if tensor::TransferWriteOp has non-zero offset. 3749 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3750 return getConstantIntValue(value) == static_cast<int64_t>(0); 3751 })) { 3752 return rewriter.notifyMatchFailure(insertOp, 3753 "TranferWriteOp has non-zero offset"); 3754 } 3755 3756 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3757 for (const auto &it : 3758 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3759 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3760 return rewriter.notifyMatchFailure( 3761 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3762 } 3763 } 3764 3765 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3766 assert(transferOp.getVectorType().hasStaticShape() && 3767 "expected vector to have a static shape"); 3768 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3769 SmallVector<int64_t> resultShape = applyPermutationMap( 3770 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3771 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3772 return rewriter.notifyMatchFailure( 3773 insertOp, "TransferWriteOp may not write the full tensor."); 3774 } 3775 3776 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3777 SmallVector<int64_t> newResultShape = applyPermutationMap( 3778 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3779 SmallVector<bool> newInBounds; 3780 for (const auto &en : enumerate(newResultShape)) 3781 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3782 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3783 extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), 3784 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3785 insertOp.getMixedStrides()); 3786 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3787 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3788 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3789 rewriter.getBoolArrayAttr(newInBounds)); 3790 rewriter.updateRootInPlace(insertOp, [&]() { 3791 insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); 3792 }); 3793 return success(); 3794 } 3795 }; 3796 3797 } // namespace 3798 3799 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3800 MLIRContext *context) { 3801 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3802 SwapExtractSliceOfTransferWrite>(context); 3803 } 3804 3805 //===----------------------------------------------------------------------===// 3806 // LoadOp 3807 //===----------------------------------------------------------------------===// 3808 3809 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3810 MemRefType memRefTy) { 3811 if (!isLastMemrefDimUnitStride(memRefTy)) 3812 return op->emitOpError("most minor memref dim must have unit stride"); 3813 return success(); 3814 } 3815 3816 LogicalResult vector::LoadOp::verify() { 3817 VectorType resVecTy = getVectorType(); 3818 MemRefType memRefTy = getMemRefType(); 3819 3820 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3821 return failure(); 3822 3823 // Checks for vector memrefs. 3824 Type memElemTy = memRefTy.getElementType(); 3825 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3826 if (memVecTy != resVecTy) 3827 return emitOpError("base memref and result vector types should match"); 3828 memElemTy = memVecTy.getElementType(); 3829 } 3830 3831 if (resVecTy.getElementType() != memElemTy) 3832 return emitOpError("base and result element types should match"); 3833 if (llvm::size(getIndices()) != memRefTy.getRank()) 3834 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3835 return success(); 3836 } 3837 3838 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3839 if (succeeded(foldMemRefCast(*this))) 3840 return getResult(); 3841 return OpFoldResult(); 3842 } 3843 3844 //===----------------------------------------------------------------------===// 3845 // StoreOp 3846 //===----------------------------------------------------------------------===// 3847 3848 LogicalResult vector::StoreOp::verify() { 3849 VectorType valueVecTy = getVectorType(); 3850 MemRefType memRefTy = getMemRefType(); 3851 3852 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3853 return failure(); 3854 3855 // Checks for vector memrefs. 3856 Type memElemTy = memRefTy.getElementType(); 3857 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3858 if (memVecTy != valueVecTy) 3859 return emitOpError( 3860 "base memref and valueToStore vector types should match"); 3861 memElemTy = memVecTy.getElementType(); 3862 } 3863 3864 if (valueVecTy.getElementType() != memElemTy) 3865 return emitOpError("base and valueToStore element type should match"); 3866 if (llvm::size(getIndices()) != memRefTy.getRank()) 3867 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3868 return success(); 3869 } 3870 3871 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3872 SmallVectorImpl<OpFoldResult> &results) { 3873 return foldMemRefCast(*this); 3874 } 3875 3876 //===----------------------------------------------------------------------===// 3877 // MaskedLoadOp 3878 //===----------------------------------------------------------------------===// 3879 3880 LogicalResult MaskedLoadOp::verify() { 3881 VectorType maskVType = getMaskVectorType(); 3882 VectorType passVType = getPassThruVectorType(); 3883 VectorType resVType = getVectorType(); 3884 MemRefType memType = getMemRefType(); 3885 3886 if (resVType.getElementType() != memType.getElementType()) 3887 return emitOpError("base and result element type should match"); 3888 if (llvm::size(getIndices()) != memType.getRank()) 3889 return emitOpError("requires ") << memType.getRank() << " indices"; 3890 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3891 return emitOpError("expected result dim to match mask dim"); 3892 if (resVType != passVType) 3893 return emitOpError("expected pass_thru of same type as result type"); 3894 return success(); 3895 } 3896 3897 namespace { 3898 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3899 public: 3900 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3901 LogicalResult matchAndRewrite(MaskedLoadOp load, 3902 PatternRewriter &rewriter) const override { 3903 switch (get1DMaskFormat(load.getMask())) { 3904 case MaskFormat::AllTrue: 3905 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3906 load, load.getType(), load.getBase(), load.getIndices()); 3907 return success(); 3908 case MaskFormat::AllFalse: 3909 rewriter.replaceOp(load, load.getPassThru()); 3910 return success(); 3911 case MaskFormat::Unknown: 3912 return failure(); 3913 } 3914 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3915 } 3916 }; 3917 } // namespace 3918 3919 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3920 MLIRContext *context) { 3921 results.add<MaskedLoadFolder>(context); 3922 } 3923 3924 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3925 if (succeeded(foldMemRefCast(*this))) 3926 return getResult(); 3927 return OpFoldResult(); 3928 } 3929 3930 //===----------------------------------------------------------------------===// 3931 // MaskedStoreOp 3932 //===----------------------------------------------------------------------===// 3933 3934 LogicalResult MaskedStoreOp::verify() { 3935 VectorType maskVType = getMaskVectorType(); 3936 VectorType valueVType = getVectorType(); 3937 MemRefType memType = getMemRefType(); 3938 3939 if (valueVType.getElementType() != memType.getElementType()) 3940 return emitOpError("base and valueToStore element type should match"); 3941 if (llvm::size(getIndices()) != memType.getRank()) 3942 return emitOpError("requires ") << memType.getRank() << " indices"; 3943 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3944 return emitOpError("expected valueToStore dim to match mask dim"); 3945 return success(); 3946 } 3947 3948 namespace { 3949 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3950 public: 3951 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3952 LogicalResult matchAndRewrite(MaskedStoreOp store, 3953 PatternRewriter &rewriter) const override { 3954 switch (get1DMaskFormat(store.getMask())) { 3955 case MaskFormat::AllTrue: 3956 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3957 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3958 return success(); 3959 case MaskFormat::AllFalse: 3960 rewriter.eraseOp(store); 3961 return success(); 3962 case MaskFormat::Unknown: 3963 return failure(); 3964 } 3965 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3966 } 3967 }; 3968 } // namespace 3969 3970 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3971 MLIRContext *context) { 3972 results.add<MaskedStoreFolder>(context); 3973 } 3974 3975 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3976 SmallVectorImpl<OpFoldResult> &results) { 3977 return foldMemRefCast(*this); 3978 } 3979 3980 //===----------------------------------------------------------------------===// 3981 // GatherOp 3982 //===----------------------------------------------------------------------===// 3983 3984 LogicalResult GatherOp::verify() { 3985 VectorType indVType = getIndexVectorType(); 3986 VectorType maskVType = getMaskVectorType(); 3987 VectorType resVType = getVectorType(); 3988 MemRefType memType = getMemRefType(); 3989 3990 if (resVType.getElementType() != memType.getElementType()) 3991 return emitOpError("base and result element type should match"); 3992 if (llvm::size(getIndices()) != memType.getRank()) 3993 return emitOpError("requires ") << memType.getRank() << " indices"; 3994 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3995 return emitOpError("expected result dim to match indices dim"); 3996 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3997 return emitOpError("expected result dim to match mask dim"); 3998 if (resVType != getPassThruVectorType()) 3999 return emitOpError("expected pass_thru of same type as result type"); 4000 return success(); 4001 } 4002 4003 namespace { 4004 class GatherFolder final : public OpRewritePattern<GatherOp> { 4005 public: 4006 using OpRewritePattern<GatherOp>::OpRewritePattern; 4007 LogicalResult matchAndRewrite(GatherOp gather, 4008 PatternRewriter &rewriter) const override { 4009 switch (get1DMaskFormat(gather.getMask())) { 4010 case MaskFormat::AllTrue: 4011 return failure(); // no unmasked equivalent 4012 case MaskFormat::AllFalse: 4013 rewriter.replaceOp(gather, gather.getPassThru()); 4014 return success(); 4015 case MaskFormat::Unknown: 4016 return failure(); 4017 } 4018 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 4019 } 4020 }; 4021 } // namespace 4022 4023 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 4024 MLIRContext *context) { 4025 results.add<GatherFolder>(context); 4026 } 4027 4028 //===----------------------------------------------------------------------===// 4029 // ScatterOp 4030 //===----------------------------------------------------------------------===// 4031 4032 LogicalResult ScatterOp::verify() { 4033 VectorType indVType = getIndexVectorType(); 4034 VectorType maskVType = getMaskVectorType(); 4035 VectorType valueVType = getVectorType(); 4036 MemRefType memType = getMemRefType(); 4037 4038 if (valueVType.getElementType() != memType.getElementType()) 4039 return emitOpError("base and valueToStore element type should match"); 4040 if (llvm::size(getIndices()) != memType.getRank()) 4041 return emitOpError("requires ") << memType.getRank() << " indices"; 4042 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 4043 return emitOpError("expected valueToStore dim to match indices dim"); 4044 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4045 return emitOpError("expected valueToStore dim to match mask dim"); 4046 return success(); 4047 } 4048 4049 namespace { 4050 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 4051 public: 4052 using OpRewritePattern<ScatterOp>::OpRewritePattern; 4053 LogicalResult matchAndRewrite(ScatterOp scatter, 4054 PatternRewriter &rewriter) const override { 4055 switch (get1DMaskFormat(scatter.getMask())) { 4056 case MaskFormat::AllTrue: 4057 return failure(); // no unmasked equivalent 4058 case MaskFormat::AllFalse: 4059 rewriter.eraseOp(scatter); 4060 return success(); 4061 case MaskFormat::Unknown: 4062 return failure(); 4063 } 4064 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 4065 } 4066 }; 4067 } // namespace 4068 4069 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 4070 MLIRContext *context) { 4071 results.add<ScatterFolder>(context); 4072 } 4073 4074 //===----------------------------------------------------------------------===// 4075 // ExpandLoadOp 4076 //===----------------------------------------------------------------------===// 4077 4078 LogicalResult ExpandLoadOp::verify() { 4079 VectorType maskVType = getMaskVectorType(); 4080 VectorType passVType = getPassThruVectorType(); 4081 VectorType resVType = getVectorType(); 4082 MemRefType memType = getMemRefType(); 4083 4084 if (resVType.getElementType() != memType.getElementType()) 4085 return emitOpError("base and result element type should match"); 4086 if (llvm::size(getIndices()) != memType.getRank()) 4087 return emitOpError("requires ") << memType.getRank() << " indices"; 4088 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 4089 return emitOpError("expected result dim to match mask dim"); 4090 if (resVType != passVType) 4091 return emitOpError("expected pass_thru of same type as result type"); 4092 return success(); 4093 } 4094 4095 namespace { 4096 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 4097 public: 4098 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 4099 LogicalResult matchAndRewrite(ExpandLoadOp expand, 4100 PatternRewriter &rewriter) const override { 4101 switch (get1DMaskFormat(expand.getMask())) { 4102 case MaskFormat::AllTrue: 4103 rewriter.replaceOpWithNewOp<vector::LoadOp>( 4104 expand, expand.getType(), expand.getBase(), expand.getIndices()); 4105 return success(); 4106 case MaskFormat::AllFalse: 4107 rewriter.replaceOp(expand, expand.getPassThru()); 4108 return success(); 4109 case MaskFormat::Unknown: 4110 return failure(); 4111 } 4112 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4113 } 4114 }; 4115 } // namespace 4116 4117 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4118 MLIRContext *context) { 4119 results.add<ExpandLoadFolder>(context); 4120 } 4121 4122 //===----------------------------------------------------------------------===// 4123 // CompressStoreOp 4124 //===----------------------------------------------------------------------===// 4125 4126 LogicalResult CompressStoreOp::verify() { 4127 VectorType maskVType = getMaskVectorType(); 4128 VectorType valueVType = getVectorType(); 4129 MemRefType memType = getMemRefType(); 4130 4131 if (valueVType.getElementType() != memType.getElementType()) 4132 return emitOpError("base and valueToStore element type should match"); 4133 if (llvm::size(getIndices()) != memType.getRank()) 4134 return emitOpError("requires ") << memType.getRank() << " indices"; 4135 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4136 return emitOpError("expected valueToStore dim to match mask dim"); 4137 return success(); 4138 } 4139 4140 namespace { 4141 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4142 public: 4143 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4144 LogicalResult matchAndRewrite(CompressStoreOp compress, 4145 PatternRewriter &rewriter) const override { 4146 switch (get1DMaskFormat(compress.getMask())) { 4147 case MaskFormat::AllTrue: 4148 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4149 compress, compress.getValueToStore(), compress.getBase(), 4150 compress.getIndices()); 4151 return success(); 4152 case MaskFormat::AllFalse: 4153 rewriter.eraseOp(compress); 4154 return success(); 4155 case MaskFormat::Unknown: 4156 return failure(); 4157 } 4158 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4159 } 4160 }; 4161 } // namespace 4162 4163 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4164 MLIRContext *context) { 4165 results.add<CompressStoreFolder>(context); 4166 } 4167 4168 //===----------------------------------------------------------------------===// 4169 // ShapeCastOp 4170 //===----------------------------------------------------------------------===// 4171 4172 /// Returns true if each element of 'a' is equal to the product of a contiguous 4173 /// sequence of the elements of 'b'. Returns false otherwise. 4174 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4175 unsigned rankA = a.size(); 4176 unsigned rankB = b.size(); 4177 assert(rankA < rankB); 4178 4179 unsigned i = 0; 4180 unsigned j = 0; 4181 while (i < rankA && j < rankB) { 4182 int64_t dimA = a[i]; 4183 int64_t dimB = 1; 4184 while (dimB < dimA && j < rankB) 4185 dimB *= b[j++]; 4186 if (dimA != dimB) 4187 break; 4188 ++i; 4189 4190 // Handle the case when trailing dimensions are of size 1. 4191 // Include them into the contiguous sequence. 4192 auto isOne = [](int64_t v) { return v == 1; }; 4193 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4194 i = rankA; 4195 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4196 j = rankB; 4197 } 4198 4199 return i == rankA && j == rankB; 4200 } 4201 4202 static LogicalResult verifyVectorShapeCast(Operation *op, 4203 VectorType sourceVectorType, 4204 VectorType resultVectorType) { 4205 // Check that element type is the same. 4206 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4207 return op->emitOpError("source/result vectors must have same element type"); 4208 auto sourceShape = sourceVectorType.getShape(); 4209 auto resultShape = resultVectorType.getShape(); 4210 4211 // Check that product of source dim sizes matches product of result dim sizes. 4212 int64_t sourceDimProduct = std::accumulate( 4213 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4214 int64_t resultDimProduct = std::accumulate( 4215 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4216 if (sourceDimProduct != resultDimProduct) 4217 return op->emitOpError("source/result number of elements must match"); 4218 4219 // Check that expanding/contracting rank cases. 4220 unsigned sourceRank = sourceVectorType.getRank(); 4221 unsigned resultRank = resultVectorType.getRank(); 4222 if (sourceRank < resultRank) { 4223 if (!isValidShapeCast(sourceShape, resultShape)) 4224 return op->emitOpError("invalid shape cast"); 4225 } else if (sourceRank > resultRank) { 4226 if (!isValidShapeCast(resultShape, sourceShape)) 4227 return op->emitOpError("invalid shape cast"); 4228 } 4229 return success(); 4230 } 4231 4232 LogicalResult ShapeCastOp::verify() { 4233 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4234 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4235 4236 // Check if source/result are of vector type. 4237 if (sourceVectorType && resultVectorType) 4238 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4239 4240 return success(); 4241 } 4242 4243 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4244 // No-op shape cast. 4245 if (getSource().getType() == getResult().getType()) 4246 return getSource(); 4247 4248 // Canceling shape casts. 4249 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4250 if (getResult().getType() == otherOp.getSource().getType()) 4251 return otherOp.getSource(); 4252 4253 // Only allows valid transitive folding. 4254 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4255 VectorType resultType = getResult().getType().cast<VectorType>(); 4256 if (srcType.getRank() < resultType.getRank()) { 4257 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4258 return {}; 4259 } else if (srcType.getRank() > resultType.getRank()) { 4260 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4261 return {}; 4262 } else { 4263 return {}; 4264 } 4265 4266 setOperand(otherOp.getSource()); 4267 return getResult(); 4268 } 4269 4270 // Cancelling broadcast and shape cast ops. 4271 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4272 if (bcastOp.getSourceType() == getType()) 4273 return bcastOp.getSource(); 4274 } 4275 4276 return {}; 4277 } 4278 4279 namespace { 4280 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4281 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4282 public: 4283 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4284 4285 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4286 PatternRewriter &rewriter) const override { 4287 auto constantOp = 4288 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4289 if (!constantOp) 4290 return failure(); 4291 // Only handle splat for now. 4292 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4293 if (!dense) 4294 return failure(); 4295 auto newAttr = 4296 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4297 dense.getSplatValue<Attribute>()); 4298 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4299 return success(); 4300 } 4301 }; 4302 4303 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. 4304 /// This only applies when the shape of the broadcast source is a suffix of the 4305 /// shape of the result (i.e. when broadcast without reshape is expressive 4306 /// enough to capture the result in a single op). 4307 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { 4308 public: 4309 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4310 4311 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4312 PatternRewriter &rewriter) const override { 4313 auto broadcastOp = 4314 shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); 4315 if (!broadcastOp) 4316 return failure(); 4317 4318 auto broadcastSourceVectorType = 4319 broadcastOp.getSourceType().dyn_cast<VectorType>(); 4320 auto broadcastSourceShape = broadcastSourceVectorType 4321 ? broadcastSourceVectorType.getShape() 4322 : ArrayRef<int64_t>{}; 4323 auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); 4324 4325 // Bail if `broadcastSourceShape` is not a suffix of the result. 4326 bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back( 4327 broadcastSourceShape.size())); 4328 if (!isSuffix) 4329 return failure(); 4330 4331 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4332 shapeCastOp, shapeCastOp.getResultVectorType(), 4333 broadcastOp.getSource()); 4334 return success(); 4335 } 4336 }; 4337 4338 } // namespace 4339 4340 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4341 MLIRContext *context) { 4342 results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context); 4343 } 4344 4345 //===----------------------------------------------------------------------===// 4346 // VectorBitCastOp 4347 //===----------------------------------------------------------------------===// 4348 4349 LogicalResult BitCastOp::verify() { 4350 auto sourceVectorType = getSourceVectorType(); 4351 auto resultVectorType = getResultVectorType(); 4352 4353 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4354 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4355 return emitOpError("dimension size mismatch at: ") << i; 4356 } 4357 4358 DataLayout dataLayout = DataLayout::closest(*this); 4359 auto sourceElementBits = 4360 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4361 auto resultElementBits = 4362 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4363 4364 if (sourceVectorType.getRank() == 0) { 4365 if (sourceElementBits != resultElementBits) 4366 return emitOpError("source/result bitwidth of the 0-D vector element " 4367 "types must be equal"); 4368 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4369 resultElementBits * resultVectorType.getShape().back()) { 4370 return emitOpError( 4371 "source/result bitwidth of the minor 1-D vectors must be equal"); 4372 } 4373 4374 return success(); 4375 } 4376 4377 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4378 // Nop cast. 4379 if (getSource().getType() == getResult().getType()) 4380 return getSource(); 4381 4382 // Canceling bitcasts. 4383 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4384 if (getResult().getType() == otherOp.getSource().getType()) 4385 return otherOp.getSource(); 4386 4387 setOperand(otherOp.getSource()); 4388 return getResult(); 4389 } 4390 4391 Attribute sourceConstant = operands.front(); 4392 if (!sourceConstant) 4393 return {}; 4394 4395 Type srcElemType = getSourceVectorType().getElementType(); 4396 Type dstElemType = getResultVectorType().getElementType(); 4397 4398 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4399 if (floatPack.isSplat()) { 4400 auto splat = floatPack.getSplatValue<FloatAttr>(); 4401 4402 // Casting fp16 into fp32. 4403 if (srcElemType.isF16() && dstElemType.isF32()) { 4404 uint32_t bits = static_cast<uint32_t>( 4405 splat.getValue().bitcastToAPInt().getZExtValue()); 4406 // Duplicate the 16-bit pattern. 4407 bits = (bits << 16) | (bits & 0xffff); 4408 APInt intBits(32, bits); 4409 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4410 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4411 } 4412 } 4413 } 4414 4415 return {}; 4416 } 4417 4418 //===----------------------------------------------------------------------===// 4419 // TypeCastOp 4420 //===----------------------------------------------------------------------===// 4421 4422 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4423 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4424 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4425 memRefType.getShape().end()); 4426 if (vectorType) 4427 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4428 return res; 4429 } 4430 4431 /// Build the canonical memRefType with a single vector. 4432 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4433 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4434 Value source) { 4435 result.addOperands(source); 4436 MemRefType memRefType = source.getType().cast<MemRefType>(); 4437 VectorType vectorType = 4438 VectorType::get(extractShape(memRefType), 4439 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4440 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4441 memRefType.getMemorySpace())); 4442 } 4443 4444 LogicalResult TypeCastOp::verify() { 4445 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4446 if (!canonicalType.getLayout().isIdentity()) 4447 return emitOpError("expects operand to be a memref with identity layout"); 4448 if (!getResultMemRefType().getLayout().isIdentity()) 4449 return emitOpError("expects result to be a memref with identity layout"); 4450 if (getResultMemRefType().getMemorySpace() != 4451 getMemRefType().getMemorySpace()) 4452 return emitOpError("expects result in same memory space"); 4453 4454 auto sourceType = getMemRefType(); 4455 auto resultType = getResultMemRefType(); 4456 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4457 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4458 return emitOpError( 4459 "expects result and operand with same underlying scalar type: ") 4460 << resultType; 4461 if (extractShape(sourceType) != extractShape(resultType)) 4462 return emitOpError( 4463 "expects concatenated result and operand shapes to be equal: ") 4464 << resultType; 4465 return success(); 4466 } 4467 4468 //===----------------------------------------------------------------------===// 4469 // TransposeOp 4470 //===----------------------------------------------------------------------===// 4471 4472 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4473 Value vector, ArrayRef<int64_t> transp) { 4474 VectorType vt = vector.getType().cast<VectorType>(); 4475 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4476 for (unsigned i = 0; i < transp.size(); ++i) 4477 transposedShape[i] = vt.getShape()[transp[i]]; 4478 4479 result.addOperands(vector); 4480 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4481 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4482 } 4483 4484 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4485 // Eliminate splat constant transpose ops. 4486 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4487 if (attr.isSplat()) 4488 return attr.reshape(getResultType()); 4489 4490 // Eliminate identity transpose ops. This happens when the dimensions of the 4491 // input vector remain in their original order after the transpose operation. 4492 SmallVector<int64_t, 4> transp; 4493 getTransp(transp); 4494 4495 // Check if the permutation of the dimensions contains sequential values: 4496 // {0, 1, 2, ...}. 4497 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4498 if (transp[i] != i) 4499 return {}; 4500 } 4501 4502 return getVector(); 4503 } 4504 4505 LogicalResult vector::TransposeOp::verify() { 4506 VectorType vectorType = getVectorType(); 4507 VectorType resultType = getResultType(); 4508 int64_t rank = resultType.getRank(); 4509 if (vectorType.getRank() != rank) 4510 return emitOpError("vector result rank mismatch: ") << rank; 4511 // Verify transposition array. 4512 auto transpAttr = getTransp().getValue(); 4513 int64_t size = transpAttr.size(); 4514 if (rank != size) 4515 return emitOpError("transposition length mismatch: ") << size; 4516 SmallVector<bool, 8> seen(rank, false); 4517 for (const auto &ta : llvm::enumerate(transpAttr)) { 4518 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4519 if (i < 0 || i >= rank) 4520 return emitOpError("transposition index out of range: ") << i; 4521 if (seen[i]) 4522 return emitOpError("duplicate position index: ") << i; 4523 seen[i] = true; 4524 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4525 return emitOpError("dimension size mismatch at: ") << i; 4526 } 4527 return success(); 4528 } 4529 4530 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4531 return llvm::to_vector<4>(getResultType().getShape()); 4532 } 4533 4534 namespace { 4535 4536 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4537 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4538 public: 4539 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4540 4541 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4542 PatternRewriter &rewriter) const override { 4543 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4544 auto getPermutation = [](vector::TransposeOp transpose) { 4545 SmallVector<int64_t, 4> permutation; 4546 transpose.getTransp(permutation); 4547 return permutation; 4548 }; 4549 4550 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4551 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4552 ArrayRef<int64_t> permutation2) { 4553 SmallVector<int64_t, 4> result; 4554 for (auto index : permutation2) 4555 result.push_back(permutation1[index]); 4556 return result; 4557 }; 4558 4559 // Return if the input of 'transposeOp' is not defined by another transpose. 4560 vector::TransposeOp parentTransposeOp = 4561 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4562 if (!parentTransposeOp) 4563 return failure(); 4564 4565 SmallVector<int64_t, 4> permutation = composePermutations( 4566 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4567 // Replace 'transposeOp' with a new transpose operation. 4568 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4569 transposeOp, transposeOp.getResult().getType(), 4570 parentTransposeOp.getVector(), 4571 vector::getVectorSubscriptAttr(rewriter, permutation)); 4572 return success(); 4573 } 4574 }; 4575 4576 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4577 struct FoldTransposedScalarBroadcast final 4578 : public OpRewritePattern<vector::TransposeOp> { 4579 using OpRewritePattern::OpRewritePattern; 4580 4581 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4582 PatternRewriter &rewriter) const override { 4583 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4584 if (!bcastOp) 4585 return failure(); 4586 4587 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4588 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4589 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4590 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4591 return success(); 4592 } 4593 4594 return failure(); 4595 } 4596 }; 4597 4598 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4599 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4600 public: 4601 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4602 4603 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4604 PatternRewriter &rewriter) const override { 4605 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4606 if (!splatOp) 4607 return failure(); 4608 4609 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4610 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4611 return success(); 4612 } 4613 }; 4614 4615 } // namespace 4616 4617 void vector::TransposeOp::getCanonicalizationPatterns( 4618 RewritePatternSet &results, MLIRContext *context) { 4619 results 4620 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4621 context); 4622 } 4623 4624 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4625 populateFromInt64AttrArray(getTransp(), results); 4626 } 4627 4628 //===----------------------------------------------------------------------===// 4629 // ConstantMaskOp 4630 //===----------------------------------------------------------------------===// 4631 4632 LogicalResult ConstantMaskOp::verify() { 4633 auto resultType = getResult().getType().cast<VectorType>(); 4634 // Check the corner case of 0-D vectors first. 4635 if (resultType.getRank() == 0) { 4636 if (getMaskDimSizes().size() != 1) 4637 return emitError("array attr must have length 1 for 0-D vectors"); 4638 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4639 if (dim != 0 && dim != 1) 4640 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4641 return success(); 4642 } 4643 4644 // Verify that array attr size matches the rank of the vector result. 4645 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4646 return emitOpError( 4647 "must specify array attr of size equal vector result rank"); 4648 // Verify that each array attr element is in bounds of corresponding vector 4649 // result dimension size. 4650 auto resultShape = resultType.getShape(); 4651 SmallVector<int64_t, 4> maskDimSizes; 4652 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4653 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4654 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4655 return emitOpError( 4656 "array attr of size out of bounds of vector result dimension size"); 4657 maskDimSizes.push_back(attrValue); 4658 } 4659 // Verify that if one mask dim size is zero, they all should be zero (because 4660 // the mask region is a conjunction of each mask dimension interval). 4661 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4662 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4663 if (anyZeros && !allZeros) 4664 return emitOpError("expected all mask dim sizes to be zeros, " 4665 "as a result of conjunction with zero mask dim"); 4666 // Verify that if the mask type is scalable, dimensions should be zero because 4667 // constant scalable masks can only be defined for the "none set" or "all set" 4668 // cases, and there is no VLA way to define an "all set" case for 4669 // `vector.constant_mask`. In the future, a convention could be established 4670 // to decide if a specific dimension value could be considered as "all set". 4671 if (resultType.isScalable() && 4672 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4673 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4674 return success(); 4675 } 4676 4677 //===----------------------------------------------------------------------===// 4678 // CreateMaskOp 4679 //===----------------------------------------------------------------------===// 4680 4681 LogicalResult CreateMaskOp::verify() { 4682 auto vectorType = getResult().getType().cast<VectorType>(); 4683 // Verify that an operand was specified for each result vector each dimension. 4684 if (vectorType.getRank() == 0) { 4685 if (getNumOperands() != 1) 4686 return emitOpError( 4687 "must specify exactly one operand for 0-D create_mask"); 4688 } else if (getNumOperands() != 4689 getResult().getType().cast<VectorType>().getRank()) { 4690 return emitOpError( 4691 "must specify an operand for each result vector dimension"); 4692 } 4693 return success(); 4694 } 4695 4696 namespace { 4697 4698 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4699 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4700 public: 4701 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4702 4703 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4704 PatternRewriter &rewriter) const override { 4705 // Return if any of 'createMaskOp' operands are not defined by a constant. 4706 auto isNotDefByConstant = [](Value operand) { 4707 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4708 }; 4709 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4710 return failure(); 4711 4712 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4713 // are negative or zero. 4714 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4715 if (vType.isScalable()) 4716 for (auto opDim : createMaskOp.getOperands()) { 4717 APInt intVal; 4718 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4719 intVal.isStrictlyPositive()) 4720 return failure(); 4721 } 4722 } 4723 4724 // Gather constant mask dimension sizes. 4725 SmallVector<int64_t, 4> maskDimSizes; 4726 for (auto it : llvm::zip(createMaskOp.operands(), 4727 createMaskOp.getType().getShape())) { 4728 auto *defOp = std::get<0>(it).getDefiningOp(); 4729 int64_t maxDimSize = std::get<1>(it); 4730 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4731 dimSize = std::min(dimSize, maxDimSize); 4732 // If one of dim sizes is zero, set all dims to zero. 4733 if (dimSize <= 0) { 4734 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4735 break; 4736 } 4737 maskDimSizes.push_back(dimSize); 4738 } 4739 // Replace 'createMaskOp' with ConstantMaskOp. 4740 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4741 createMaskOp, createMaskOp.getResult().getType(), 4742 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4743 return success(); 4744 } 4745 }; 4746 4747 } // namespace 4748 4749 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4750 MLIRContext *context) { 4751 results.add<CreateMaskFolder>(context); 4752 } 4753 4754 //===----------------------------------------------------------------------===// 4755 // ScanOp 4756 //===----------------------------------------------------------------------===// 4757 4758 LogicalResult ScanOp::verify() { 4759 VectorType srcType = getSourceType(); 4760 VectorType initialType = getInitialValueType(); 4761 // Check reduction dimension < rank. 4762 int64_t srcRank = srcType.getRank(); 4763 int64_t reductionDim = getReductionDim(); 4764 if (reductionDim >= srcRank) 4765 return emitOpError("reduction dimension ") 4766 << reductionDim << " has to be less than " << srcRank; 4767 4768 // Check that rank(initial_value) = rank(src) - 1. 4769 int64_t initialValueRank = initialType.getRank(); 4770 if (initialValueRank != srcRank - 1) 4771 return emitOpError("initial value rank ") 4772 << initialValueRank << " has to be equal to " << srcRank - 1; 4773 4774 // Check shapes of initial value and src. 4775 ArrayRef<int64_t> srcShape = srcType.getShape(); 4776 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4777 SmallVector<int64_t> expectedShape; 4778 for (int i = 0; i < srcRank; i++) { 4779 if (i != reductionDim) 4780 expectedShape.push_back(srcShape[i]); 4781 } 4782 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4783 [](std::tuple<int64_t, int64_t> s) { 4784 return std::get<0>(s) != std::get<1>(s); 4785 })) { 4786 return emitOpError("incompatible input/initial value shapes"); 4787 } 4788 4789 // Verify supported reduction kind. 4790 Type eltType = getDestType().getElementType(); 4791 if (!isSupportedCombiningKind(getKind(), eltType)) 4792 return emitOpError("unsupported reduction type ") 4793 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4794 << "'"; 4795 4796 return success(); 4797 } 4798 4799 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4800 RewritePatternSet &patterns) { 4801 patterns 4802 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4803 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4804 StridedSliceConstantMaskFolder, TransposeFolder>( 4805 patterns.getContext()); 4806 } 4807 4808 //===----------------------------------------------------------------------===// 4809 // SplatOp 4810 //===----------------------------------------------------------------------===// 4811 4812 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4813 auto constOperand = operands.front(); 4814 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4815 return {}; 4816 4817 // SplatElementsAttr::get treats single value for second arg as being a splat. 4818 return SplatElementsAttr::get(getType(), {constOperand}); 4819 } 4820 4821 //===----------------------------------------------------------------------===// 4822 // WarpExecuteOnLane0Op 4823 //===----------------------------------------------------------------------===// 4824 4825 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4826 p << "(" << getLaneid() << ")"; 4827 4828 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4829 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4830 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4831 4832 if (!getArgs().empty()) 4833 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4834 if (!getResults().empty()) 4835 p << " -> (" << getResults().getTypes() << ')'; 4836 p << " "; 4837 p.printRegion(getRegion(), 4838 /*printEntryBlockArgs=*/true, 4839 /*printBlockTerminators=*/!getResults().empty()); 4840 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4841 } 4842 4843 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4844 OperationState &result) { 4845 // Create the region. 4846 result.regions.reserve(1); 4847 Region *warpRegion = result.addRegion(); 4848 4849 auto &builder = parser.getBuilder(); 4850 OpAsmParser::UnresolvedOperand laneId; 4851 4852 // Parse predicate operand. 4853 if (parser.parseLParen() || 4854 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4855 parser.parseRParen()) 4856 return failure(); 4857 4858 int64_t warpSize; 4859 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4860 parser.parseRSquare()) 4861 return failure(); 4862 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4863 builder.getContext())), 4864 builder.getI64IntegerAttr(warpSize)); 4865 4866 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4867 return failure(); 4868 4869 llvm::SMLoc inputsOperandsLoc; 4870 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4871 SmallVector<Type> inputTypes; 4872 if (succeeded(parser.parseOptionalKeyword("args"))) { 4873 if (parser.parseLParen()) 4874 return failure(); 4875 4876 inputsOperandsLoc = parser.getCurrentLocation(); 4877 if (parser.parseOperandList(inputsOperands) || 4878 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4879 return failure(); 4880 } 4881 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4882 result.operands)) 4883 return failure(); 4884 4885 // Parse optional results type list. 4886 if (parser.parseOptionalArrowTypeList(result.types)) 4887 return failure(); 4888 // Parse the region. 4889 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4890 /*argTypes=*/{})) 4891 return failure(); 4892 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4893 4894 // Parse the optional attribute list. 4895 if (parser.parseOptionalAttrDict(result.attributes)) 4896 return failure(); 4897 return success(); 4898 } 4899 4900 void WarpExecuteOnLane0Op::getSuccessorRegions( 4901 Optional<unsigned> index, ArrayRef<Attribute> operands, 4902 SmallVectorImpl<RegionSuccessor> ®ions) { 4903 if (index) { 4904 regions.push_back(RegionSuccessor(getResults())); 4905 return; 4906 } 4907 4908 // The warp region is always executed 4909 regions.push_back(RegionSuccessor(&getWarpRegion())); 4910 } 4911 4912 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4913 TypeRange resultTypes, Value laneId, 4914 int64_t warpSize) { 4915 build(builder, result, resultTypes, laneId, warpSize, 4916 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4917 } 4918 4919 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4920 TypeRange resultTypes, Value laneId, 4921 int64_t warpSize, ValueRange args, 4922 TypeRange blockArgTypes) { 4923 result.addOperands(laneId); 4924 result.addAttribute(getAttributeNames()[0], 4925 builder.getI64IntegerAttr(warpSize)); 4926 result.addTypes(resultTypes); 4927 result.addOperands(args); 4928 assert(args.size() == blockArgTypes.size()); 4929 OpBuilder::InsertionGuard guard(builder); 4930 Region *warpRegion = result.addRegion(); 4931 Block *block = builder.createBlock(warpRegion); 4932 for (auto it : llvm::zip(blockArgTypes, args)) 4933 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4934 } 4935 4936 /// Helper check if the distributed vector type is consistent with the expanded 4937 /// type and distributed size. 4938 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4939 int64_t warpSize, Operation *op) { 4940 // If the types matches there is no distribution. 4941 if (expanded == distributed) 4942 return success(); 4943 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4944 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4945 if (!expandedVecType || !distributedVecType) 4946 return op->emitOpError("expected vector type for distributed operands."); 4947 if (expandedVecType.getRank() != distributedVecType.getRank() || 4948 expandedVecType.getElementType() != distributedVecType.getElementType()) 4949 return op->emitOpError( 4950 "expected distributed vectors to have same rank and element type."); 4951 bool foundDistributedDim = false; 4952 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4953 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4954 continue; 4955 if (expandedVecType.getDimSize(i) == 4956 distributedVecType.getDimSize(i) * warpSize) { 4957 if (foundDistributedDim) 4958 return op->emitOpError() 4959 << "expected only one dimension to be distributed from " 4960 << expandedVecType << " to " << distributedVecType; 4961 foundDistributedDim = true; 4962 continue; 4963 } 4964 return op->emitOpError() << "incompatible distribution dimensions from " 4965 << expandedVecType << " to " << distributedVecType; 4966 } 4967 return success(); 4968 } 4969 4970 LogicalResult WarpExecuteOnLane0Op::verify() { 4971 if (getArgs().size() != getWarpRegion().getNumArguments()) 4972 return emitOpError( 4973 "expected same number op arguments and block arguments."); 4974 auto yield = 4975 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4976 if (yield.getNumOperands() != getNumResults()) 4977 return emitOpError( 4978 "expected same number of yield operands and return values."); 4979 int64_t warpSize = getWarpSize(); 4980 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4981 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4982 std::get<1>(it).getType(), warpSize, 4983 getOperation()))) 4984 return failure(); 4985 } 4986 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4987 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4988 std::get<1>(it).getType(), warpSize, 4989 getOperation()))) 4990 return failure(); 4991 } 4992 return success(); 4993 } 4994 4995 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4996 return succeeded( 4997 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4998 } 4999 5000 Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc, 5001 CombiningKind kind, Value v1, Value v2) { 5002 Type t1 = getElementTypeOrSelf(v1.getType()); 5003 Type t2 = getElementTypeOrSelf(v2.getType()); 5004 switch (kind) { 5005 case CombiningKind::ADD: 5006 if (t1.isIntOrIndex() && t2.isIntOrIndex()) 5007 return b.createOrFold<arith::AddIOp>(loc, v1, v2); 5008 else if (t1.isa<FloatType>() && t2.isa<FloatType>()) 5009 return b.createOrFold<arith::AddFOp>(loc, v1, v2); 5010 llvm_unreachable("invalid value types for ADD reduction"); 5011 case CombiningKind::AND: 5012 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5013 return b.createOrFold<arith::AndIOp>(loc, v1, v2); 5014 case CombiningKind::MAXF: 5015 assert(t1.isa<FloatType>() && t2.isa<FloatType>() && 5016 "expected float values"); 5017 return b.createOrFold<arith::MaxFOp>(loc, v1, v2); 5018 case CombiningKind::MINF: 5019 assert(t1.isa<FloatType>() && t2.isa<FloatType>() && 5020 "expected float values"); 5021 return b.createOrFold<arith::MinFOp>(loc, v1, v2); 5022 case CombiningKind::MAXSI: 5023 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5024 return b.createOrFold<arith::MaxSIOp>(loc, v1, v2); 5025 case CombiningKind::MINSI: 5026 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5027 return b.createOrFold<arith::MinSIOp>(loc, v1, v2); 5028 case CombiningKind::MAXUI: 5029 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5030 return b.createOrFold<arith::MaxUIOp>(loc, v1, v2); 5031 case CombiningKind::MINUI: 5032 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5033 return b.createOrFold<arith::MinUIOp>(loc, v1, v2); 5034 case CombiningKind::MUL: 5035 if (t1.isIntOrIndex() && t2.isIntOrIndex()) 5036 return b.createOrFold<arith::MulIOp>(loc, v1, v2); 5037 else if (t1.isa<FloatType>() && t2.isa<FloatType>()) 5038 return b.createOrFold<arith::MulFOp>(loc, v1, v2); 5039 llvm_unreachable("invalid value types for MUL reduction"); 5040 case CombiningKind::OR: 5041 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5042 return b.createOrFold<arith::OrIOp>(loc, v1, v2); 5043 case CombiningKind::XOR: 5044 assert(t1.isIntOrIndex() && t2.isIntOrIndex() && "expected int values"); 5045 return b.createOrFold<arith::XOrIOp>(loc, v1, v2); 5046 }; 5047 llvm_unreachable("unknown CombiningKind"); 5048 } 5049 5050 //===----------------------------------------------------------------------===// 5051 // TableGen'd op method definitions 5052 //===----------------------------------------------------------------------===// 5053 5054 #define GET_OP_CLASSES 5055 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 5056