1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::UnresolvedOperand lhsInfo; 530 OpAsmParser::UnresolvedOperand rhsInfo; 531 OpAsmParser::UnresolvedOperand accInfo; 532 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << getLhs() << ", "; 586 p << getRhs() << ", " << getAcc(); 587 if (getMasks().size() == 2) 588 p << ", " << getMasks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (getIndexingMaps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = getIteratorTypes().getValue().size(); 706 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(getKind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = getIndexingMaps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, getIteratorTypes(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, getIteratorTypes(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.getAcc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.getAcc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (getPosition()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!getPosition()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 947 // Skip the 0-D vector here now. 948 if (operands.size() < 2) 949 return {}; 950 951 Attribute src = operands[0]; 952 Attribute pos = operands[1]; 953 if (!src || !pos) 954 return {}; 955 956 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 957 958 auto attr = pos.dyn_cast<IntegerAttr>(); 959 uint64_t posIdx = attr.getInt(); 960 961 return srcElements[posIdx]; 962 } 963 964 //===----------------------------------------------------------------------===// 965 // ExtractOp 966 //===----------------------------------------------------------------------===// 967 968 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 969 Value source, ArrayRef<int64_t> position) { 970 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 971 } 972 973 // Convenience builder which assumes the values are constant indices. 974 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 975 Value source, ValueRange position) { 976 SmallVector<int64_t, 4> positionConstants = 977 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 978 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 979 })); 980 build(builder, result, source, positionConstants); 981 } 982 983 LogicalResult 984 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 985 ValueRange operands, DictionaryAttr attributes, 986 RegionRange, 987 SmallVectorImpl<Type> &inferredReturnTypes) { 988 ExtractOp::Adaptor op(operands, attributes); 989 auto vectorType = op.getVector().getType().cast<VectorType>(); 990 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 991 inferredReturnTypes.push_back(vectorType.getElementType()); 992 } else { 993 auto n = 994 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 995 inferredReturnTypes.push_back(VectorType::get( 996 vectorType.getShape().drop_front(n), vectorType.getElementType())); 997 } 998 return success(); 999 } 1000 1001 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1002 // Allow extracting 1-element vectors instead of scalars. 1003 auto isCompatible = [](TypeRange l, TypeRange r) { 1004 auto vectorType = l.front().dyn_cast<VectorType>(); 1005 return vectorType && vectorType.getShape().equals({1}) && 1006 vectorType.getElementType() == r.front(); 1007 }; 1008 if (l.size() == 1 && r.size() == 1 && 1009 (isCompatible(l, r) || isCompatible(r, l))) 1010 return true; 1011 return l == r; 1012 } 1013 1014 LogicalResult vector::ExtractOp::verify() { 1015 auto positionAttr = getPosition().getValue(); 1016 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1017 return emitOpError( 1018 "expected position attribute of rank smaller than vector rank"); 1019 for (const auto &en : llvm::enumerate(positionAttr)) { 1020 auto attr = en.value().dyn_cast<IntegerAttr>(); 1021 if (!attr || attr.getInt() < 0 || 1022 attr.getInt() >= getVectorType().getDimSize(en.index())) 1023 return emitOpError("expected position attribute #") 1024 << (en.index() + 1) 1025 << " to be a non-negative integer smaller than the corresponding " 1026 "vector dimension"; 1027 } 1028 return success(); 1029 } 1030 1031 template <typename IntType> 1032 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1033 return llvm::to_vector<4>(llvm::map_range( 1034 arrayAttr.getAsRange<IntegerAttr>(), 1035 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1036 } 1037 1038 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1039 /// positions. 1040 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1041 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1042 return failure(); 1043 1044 SmallVector<int64_t, 4> globalPosition; 1045 ExtractOp currentOp = extractOp; 1046 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1047 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1048 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1049 currentOp = nextOp; 1050 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1051 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1052 } 1053 extractOp.setOperand(currentOp.getVector()); 1054 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1055 OpBuilder b(extractOp.getContext()); 1056 std::reverse(globalPosition.begin(), globalPosition.end()); 1057 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1058 b.getI64ArrayAttr(globalPosition)); 1059 return success(); 1060 } 1061 1062 namespace { 1063 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1064 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1065 /// Compose TransposeOp permutations as we walk back. 1066 /// This helper class keeps an updated extraction position `extractPosition` 1067 /// with extra trailing sentinels. 1068 /// The sentinels encode the internal transposition status of the result vector. 1069 /// As we iterate, extractPosition is permuted and updated. 1070 class ExtractFromInsertTransposeChainState { 1071 public: 1072 ExtractFromInsertTransposeChainState(ExtractOp e); 1073 1074 /// Iterate over producing insert and transpose ops until we find a fold. 1075 Value fold(); 1076 1077 private: 1078 /// Return true if the vector at position `a` is contained within the vector 1079 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1080 /// is a prefix of `b`. 1081 template <typename ContainerA, typename ContainerB> 1082 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1083 return a.size() <= b.size() && 1084 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1085 } 1086 1087 /// Return true if the vector at position `a` intersects the vector at 1088 /// position `b`. Under insert/extract semantics, this is the same as equality 1089 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1090 /// Comparison is on the common prefix (i.e. zip). 1091 template <typename ContainerA, typename ContainerB> 1092 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1093 for (auto it : llvm::zip(a, b)) { 1094 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1095 continue; 1096 if (std::get<0>(it) != std::get<1>(it)) 1097 return false; 1098 } 1099 return true; 1100 } 1101 1102 /// Folding is only possible in the absence of an internal permutation in the 1103 /// result vector. 1104 bool canFold() { 1105 return (sentinels == 1106 makeArrayRef(extractPosition).drop_front(extractedRank)); 1107 } 1108 1109 // Helper to get the next defining op of interest. 1110 void updateStateForNextIteration(Value v) { 1111 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1112 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1113 }; 1114 1115 // Case 1. If we hit a transpose, just compose the map and iterate. 1116 // Invariant: insert + transpose do not change rank, we can always compose. 1117 LogicalResult handleTransposeOp(); 1118 1119 // Case 2: the insert position matches extractPosition exactly, early return. 1120 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1121 1122 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1123 /// portion of the source of the insert. 1124 /// Example: 1125 /// ``` 1126 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1127 /// // extractPosition == [1, 2, 3] 1128 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1129 /// // can fold to vector.extract %source[0, 3] 1130 /// %ext = vector.extract %source[3]: vector<5x6> 1131 /// ``` 1132 /// To traverse through %source, we need to set the leading dims to 0 and 1133 /// drop the extra leading dims. 1134 /// This method updates the internal state. 1135 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1136 1137 /// Try to fold in place to extract(source, extractPosition) and return the 1138 /// folded result. Return null if folding is not possible (e.g. due to an 1139 /// internal tranposition in the result). 1140 Value tryToFoldExtractOpInPlace(Value source); 1141 1142 ExtractOp extractOp; 1143 int64_t vectorRank; 1144 int64_t extractedRank; 1145 1146 InsertOp nextInsertOp; 1147 TransposeOp nextTransposeOp; 1148 1149 /// Sentinel values that encode the internal permutation status of the result. 1150 /// They are set to (-1, ... , -k) at the beginning and appended to 1151 /// `extractPosition`. 1152 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1153 /// ensure that there is no internal transposition. 1154 /// Internal transposition cannot be accounted for with a folding pattern. 1155 // TODO: We could relax the internal transposition with an extra transposition 1156 // operation in a future canonicalizer. 1157 SmallVector<int64_t> sentinels; 1158 SmallVector<int64_t> extractPosition; 1159 }; 1160 } // namespace 1161 1162 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1163 ExtractOp e) 1164 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1165 extractedRank(extractOp.getPosition().size()) { 1166 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1167 sentinels.reserve(vectorRank - extractedRank); 1168 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1169 sentinels.push_back(-(i + 1)); 1170 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1171 llvm::append_range(extractPosition, sentinels); 1172 } 1173 1174 // Case 1. If we hit a transpose, just compose the map and iterate. 1175 // Invariant: insert + transpose do not change rank, we can always compose. 1176 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1177 if (!nextTransposeOp) 1178 return failure(); 1179 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1180 AffineMap m = inversePermutation( 1181 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1182 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1183 return success(); 1184 } 1185 1186 // Case 2: the insert position matches extractPosition exactly, early return. 1187 LogicalResult 1188 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1189 Value &res) { 1190 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1191 if (makeArrayRef(insertedPos) != 1192 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1193 return failure(); 1194 // Case 2.a. early-exit fold. 1195 res = nextInsertOp.getSource(); 1196 // Case 2.b. if internal transposition is present, canFold will be false. 1197 return success(); 1198 } 1199 1200 /// Case 3: if inserted position is a prefix of extractPosition, 1201 /// extract a portion of the source of the insertion. 1202 /// This method updates the internal state. 1203 LogicalResult 1204 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1205 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1206 if (!isContainedWithin(insertedPos, extractPosition)) 1207 return failure(); 1208 // Set leading dims to zero. 1209 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1210 // Drop extra leading dims. 1211 extractPosition.erase(extractPosition.begin(), 1212 extractPosition.begin() + insertedPos.size()); 1213 extractedRank = extractPosition.size() - sentinels.size(); 1214 // Case 3.a. early-exit fold (break and delegate to post-while path). 1215 res = nextInsertOp.getSource(); 1216 // Case 3.b. if internal transposition is present, canFold will be false. 1217 return success(); 1218 } 1219 1220 /// Try to fold in place to extract(source, extractPosition) and return the 1221 /// folded result. Return null if folding is not possible (e.g. due to an 1222 /// internal tranposition in the result). 1223 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1224 Value source) { 1225 // If we can't fold (either internal transposition, or nothing to fold), bail. 1226 bool nothingToFold = (source == extractOp.getVector()); 1227 if (nothingToFold || !canFold()) 1228 return Value(); 1229 // Otherwise, fold by updating the op inplace and return its result. 1230 OpBuilder b(extractOp.getContext()); 1231 extractOp->setAttr( 1232 extractOp.getPositionAttrName(), 1233 b.getI64ArrayAttr( 1234 makeArrayRef(extractPosition).take_front(extractedRank))); 1235 extractOp.getVectorMutable().assign(source); 1236 return extractOp.getResult(); 1237 } 1238 1239 /// Iterate over producing insert and transpose ops until we find a fold. 1240 Value ExtractFromInsertTransposeChainState::fold() { 1241 Value valueToExtractFrom = extractOp.getVector(); 1242 updateStateForNextIteration(valueToExtractFrom); 1243 while (nextInsertOp || nextTransposeOp) { 1244 // Case 1. If we hit a transpose, just compose the map and iterate. 1245 // Invariant: insert + transpose do not change rank, we can always compose. 1246 if (succeeded(handleTransposeOp())) { 1247 valueToExtractFrom = nextTransposeOp.getVector(); 1248 updateStateForNextIteration(valueToExtractFrom); 1249 continue; 1250 } 1251 1252 Value result; 1253 // Case 2: the position match exactly. 1254 if (succeeded(handleInsertOpWithMatchingPos(result))) 1255 return result; 1256 1257 // Case 3: if the inserted position is a prefix of extractPosition, we can 1258 // just extract a portion of the source of the insert. 1259 if (succeeded(handleInsertOpWithPrefixPos(result))) 1260 return tryToFoldExtractOpInPlace(result); 1261 1262 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1263 // values. This is a more difficult case and we bail. 1264 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1265 if (isContainedWithin(extractPosition, insertedPos) || 1266 intersectsWhereNonNegative(extractPosition, insertedPos)) 1267 return Value(); 1268 1269 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1270 valueToExtractFrom = nextInsertOp.getDest(); 1271 updateStateForNextIteration(valueToExtractFrom); 1272 } 1273 // If after all this we can fold, go for it. 1274 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1275 } 1276 1277 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1278 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1279 Operation *defOp = extractOp.getVector().getDefiningOp(); 1280 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1281 return Value(); 1282 Value source = defOp->getOperand(0); 1283 if (extractOp.getType() == source.getType()) 1284 return source; 1285 auto getRank = [](Type type) { 1286 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1287 }; 1288 unsigned broadcastSrcRank = getRank(source.getType()); 1289 unsigned extractResultRank = getRank(extractOp.getType()); 1290 if (extractResultRank < broadcastSrcRank) { 1291 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1292 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1293 extractPos.erase( 1294 extractPos.begin(), 1295 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1296 extractOp.setOperand(source); 1297 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1298 OpBuilder b(extractOp.getContext()); 1299 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1300 b.getI64ArrayAttr(extractPos)); 1301 return extractOp.getResult(); 1302 } 1303 return Value(); 1304 } 1305 1306 // Fold extractOp with source coming from ShapeCast op. 1307 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1308 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1309 if (!shapeCastOp) 1310 return Value(); 1311 // Get the nth dimension size starting from lowest dimension. 1312 auto getDimReverse = [](VectorType type, int64_t n) { 1313 return type.getShape().take_back(n + 1).front(); 1314 }; 1315 int64_t destinationRank = 1316 extractOp.getType().isa<VectorType>() 1317 ? extractOp.getType().cast<VectorType>().getRank() 1318 : 0; 1319 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1320 return Value(); 1321 if (destinationRank > 0) { 1322 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1323 for (int64_t i = 0; i < destinationRank; i++) { 1324 // The lowest dimension of of the destination must match the lowest 1325 // dimension of the shapecast op source. 1326 // TODO: This case could be support in a canonicalization pattern. 1327 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1328 getDimReverse(destinationType, i)) 1329 return Value(); 1330 } 1331 } 1332 // Extract the strides associated with the extract op vector source. Then use 1333 // this to calculate a linearized position for the extract. 1334 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1335 std::reverse(extractedPos.begin(), extractedPos.end()); 1336 SmallVector<int64_t, 4> strides; 1337 int64_t stride = 1; 1338 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1339 strides.push_back(stride); 1340 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1341 } 1342 1343 int64_t position = linearize(extractedPos, strides); 1344 // Then extract the strides associated to the shapeCast op vector source and 1345 // delinearize the position using those strides. 1346 SmallVector<int64_t, 4> newStrides; 1347 int64_t numDimension = 1348 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1349 stride = 1; 1350 for (int64_t i = 0; i < numDimension; i++) { 1351 newStrides.push_back(stride); 1352 stride *= 1353 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1354 } 1355 std::reverse(newStrides.begin(), newStrides.end()); 1356 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1357 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1358 OpBuilder b(extractOp.getContext()); 1359 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1360 b.getI64ArrayAttr(newPosition)); 1361 extractOp.setOperand(shapeCastOp.getSource()); 1362 return extractOp.getResult(); 1363 } 1364 1365 /// Fold an ExtractOp from ExtractStridedSliceOp. 1366 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1367 auto extractStridedSliceOp = 1368 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1369 if (!extractStridedSliceOp) 1370 return Value(); 1371 // Return if 'extractStridedSliceOp' has non-unit strides. 1372 if (extractStridedSliceOp.hasNonUnitStrides()) 1373 return Value(); 1374 1375 // Trim offsets for dimensions fully extracted. 1376 auto sliceOffsets = 1377 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1378 while (!sliceOffsets.empty()) { 1379 size_t lastOffset = sliceOffsets.size() - 1; 1380 if (sliceOffsets.back() != 0 || 1381 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1382 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1383 break; 1384 sliceOffsets.pop_back(); 1385 } 1386 unsigned destinationRank = 0; 1387 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1388 destinationRank = vecType.getRank(); 1389 // The dimensions of the result need to be untouched by the 1390 // extractStridedSlice op. 1391 if (destinationRank > 1392 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1393 return Value(); 1394 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1395 assert(extractedPos.size() >= sliceOffsets.size()); 1396 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1397 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1398 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1399 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1400 OpBuilder b(extractOp.getContext()); 1401 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1402 b.getI64ArrayAttr(extractedPos)); 1403 return extractOp.getResult(); 1404 } 1405 1406 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1407 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1408 int64_t destinationRank = op.getType().isa<VectorType>() 1409 ? op.getType().cast<VectorType>().getRank() 1410 : 0; 1411 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1412 while (insertOp) { 1413 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1414 insertOp.getSourceVectorType().getRank(); 1415 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1416 return Value(); 1417 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1418 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1419 1420 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1421 return attr.cast<IntegerAttr>().getInt() != 1; 1422 })) 1423 return Value(); 1424 bool disjoint = false; 1425 SmallVector<int64_t, 4> offsetDiffs; 1426 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1427 int64_t start = insertOffsets[dim]; 1428 int64_t size = 1429 (dim < insertRankDiff) 1430 ? 1 1431 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1432 int64_t end = start + size; 1433 int64_t offset = extractOffsets[dim]; 1434 // Check if the start of the extract offset is in the interval inserted. 1435 if (start <= offset && offset < end) { 1436 if (dim >= insertRankDiff) 1437 offsetDiffs.push_back(offset - start); 1438 continue; 1439 } 1440 disjoint = true; 1441 break; 1442 } 1443 // The extract element chunk overlap with the vector inserted. 1444 if (!disjoint) { 1445 // If any of the inner dimensions are only partially inserted we have a 1446 // partial overlap. 1447 int64_t srcRankDiff = 1448 insertOp.getSourceVectorType().getRank() - destinationRank; 1449 for (int64_t i = 0; i < destinationRank; i++) { 1450 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1451 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1452 insertRankDiff)) 1453 return Value(); 1454 } 1455 op.getVectorMutable().assign(insertOp.getSource()); 1456 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1457 OpBuilder b(op.getContext()); 1458 op->setAttr(ExtractOp::getPositionAttrStrName(), 1459 b.getI64ArrayAttr(offsetDiffs)); 1460 return op.getResult(); 1461 } 1462 // If the chunk extracted is disjoint from the chunk inserted, keep 1463 // looking in the insert chain. 1464 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1465 } 1466 return Value(); 1467 } 1468 1469 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1470 if (getPosition().empty()) 1471 return getVector(); 1472 if (succeeded(foldExtractOpFromExtractChain(*this))) 1473 return getResult(); 1474 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1475 return res; 1476 if (auto res = foldExtractFromBroadcast(*this)) 1477 return res; 1478 if (auto res = foldExtractFromShapeCast(*this)) 1479 return res; 1480 if (auto val = foldExtractFromExtractStrided(*this)) 1481 return val; 1482 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1483 return val; 1484 return OpFoldResult(); 1485 } 1486 1487 namespace { 1488 1489 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1490 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1491 public: 1492 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1493 1494 LogicalResult matchAndRewrite(ExtractOp extractOp, 1495 PatternRewriter &rewriter) const override { 1496 Operation *defOp = extractOp.getVector().getDefiningOp(); 1497 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1498 return failure(); 1499 Value source = defOp->getOperand(0); 1500 if (extractOp.getType() == source.getType()) 1501 return failure(); 1502 auto getRank = [](Type type) { 1503 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1504 }; 1505 unsigned broadcastSrcRank = getRank(source.getType()); 1506 unsigned extractResultRank = getRank(extractOp.getType()); 1507 // We only consider the case where the rank of the source is smaller than 1508 // the rank of the extract dst. The other cases are handled in the folding 1509 // patterns. 1510 if (extractResultRank <= broadcastSrcRank) 1511 return failure(); 1512 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1513 extractOp, extractOp.getType(), source); 1514 return success(); 1515 } 1516 }; 1517 1518 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1519 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1520 public: 1521 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1522 1523 LogicalResult matchAndRewrite(ExtractOp extractOp, 1524 PatternRewriter &rewriter) const override { 1525 // Return if 'extractStridedSliceOp' operand is not defined by a 1526 // ConstantOp. 1527 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1528 if (!constantOp) 1529 return failure(); 1530 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1531 if (!dense) 1532 return failure(); 1533 Attribute newAttr = dense.getSplatValue<Attribute>(); 1534 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1535 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1536 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1537 return success(); 1538 } 1539 }; 1540 1541 } // namespace 1542 1543 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1544 MLIRContext *context) { 1545 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1546 } 1547 1548 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1549 SmallVectorImpl<int64_t> &results) { 1550 for (auto attr : arrayAttr) 1551 results.push_back(attr.cast<IntegerAttr>().getInt()); 1552 } 1553 1554 //===----------------------------------------------------------------------===// 1555 // ExtractMapOp 1556 //===----------------------------------------------------------------------===// 1557 1558 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1559 Value vector, ValueRange ids, 1560 ArrayRef<int64_t> multiplicity, 1561 AffineMap permutationMap) { 1562 assert(ids.size() == multiplicity.size() && 1563 ids.size() == permutationMap.getNumResults()); 1564 assert(permutationMap.isProjectedPermutation()); 1565 VectorType type = vector.getType().cast<VectorType>(); 1566 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1567 type.getShape().end()); 1568 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1569 AffineExpr expr = permutationMap.getResult(i); 1570 auto dim = expr.cast<AffineDimExpr>(); 1571 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1572 } 1573 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1574 ExtractMapOp::build(builder, result, resultType, vector, ids); 1575 } 1576 1577 LogicalResult ExtractMapOp::verify() { 1578 if (getSourceVectorType().getRank() != getResultType().getRank()) 1579 return emitOpError("expected source and destination vectors of same rank"); 1580 unsigned numId = 0; 1581 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1582 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1583 0) 1584 return emitOpError("source vector dimensions must be a multiple of " 1585 "destination vector dimensions"); 1586 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1587 numId++; 1588 } 1589 if (numId != getIds().size()) 1590 return emitOpError("expected number of ids must match the number of " 1591 "dimensions distributed"); 1592 return success(); 1593 } 1594 1595 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1596 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1597 if (insert == nullptr || getType() != insert.getVector().getType() || 1598 getIds() != insert.getIds()) 1599 return {}; 1600 return insert.getVector(); 1601 } 1602 1603 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1604 assert(multiplicity.empty()); 1605 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1606 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1607 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1608 getResultType().getDimSize(i)); 1609 } 1610 } 1611 1612 template <typename MapOp> 1613 AffineMap calculateImplicitMap(MapOp op) { 1614 SmallVector<AffineExpr, 4> perm; 1615 // Check which dimension have a multiplicity greater than 1 and associated 1616 // them to the IDs in order. 1617 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1618 if (op.getSourceVectorType().getDimSize(i) != 1619 op.getResultType().getDimSize(i)) 1620 perm.push_back(getAffineDimExpr(i, op.getContext())); 1621 } 1622 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1623 op.getContext()); 1624 return map; 1625 } 1626 1627 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1628 1629 //===----------------------------------------------------------------------===// 1630 // FmaOp 1631 //===----------------------------------------------------------------------===// 1632 1633 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1634 return llvm::to_vector<4>(getVectorType().getShape()); 1635 } 1636 1637 //===----------------------------------------------------------------------===// 1638 // BroadcastOp 1639 //===----------------------------------------------------------------------===// 1640 1641 BroadcastableToResult 1642 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1643 std::pair<int, int> *mismatchingDims) { 1644 // Broadcast scalar to vector of the same element type. 1645 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1646 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1647 return BroadcastableToResult::Success; 1648 // From now on, only vectors broadcast. 1649 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1650 if (!srcVectorType) 1651 return BroadcastableToResult::SourceTypeNotAVector; 1652 1653 int64_t srcRank = srcVectorType.getRank(); 1654 int64_t dstRank = dstVectorType.getRank(); 1655 if (srcRank > dstRank) 1656 return BroadcastableToResult::SourceRankHigher; 1657 // Source has an exact match or singleton value for all trailing dimensions 1658 // (all leading dimensions are simply duplicated). 1659 int64_t lead = dstRank - srcRank; 1660 for (int64_t r = 0; r < srcRank; ++r) { 1661 int64_t srcDim = srcVectorType.getDimSize(r); 1662 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1663 if (srcDim != 1 && srcDim != dstDim) { 1664 if (mismatchingDims) { 1665 mismatchingDims->first = srcDim; 1666 mismatchingDims->second = dstDim; 1667 } 1668 return BroadcastableToResult::DimensionMismatch; 1669 } 1670 } 1671 1672 return BroadcastableToResult::Success; 1673 } 1674 1675 LogicalResult BroadcastOp::verify() { 1676 std::pair<int, int> mismatchingDims; 1677 BroadcastableToResult res = 1678 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1679 if (res == BroadcastableToResult::Success) 1680 return success(); 1681 if (res == BroadcastableToResult::SourceRankHigher) 1682 return emitOpError("source rank higher than destination rank"); 1683 if (res == BroadcastableToResult::DimensionMismatch) 1684 return emitOpError("dimension mismatch (") 1685 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1686 if (res == BroadcastableToResult::SourceTypeNotAVector) 1687 return emitOpError("source type is not a vector"); 1688 llvm_unreachable("unexpected vector.broadcast op error"); 1689 } 1690 1691 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1692 if (getSourceType() == getVectorType()) 1693 return getSource(); 1694 if (!operands[0]) 1695 return {}; 1696 auto vectorType = getVectorType(); 1697 if (operands[0].getType().isIntOrIndexOrFloat()) 1698 return DenseElementsAttr::get(vectorType, operands[0]); 1699 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1700 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1701 return {}; 1702 } 1703 1704 namespace { 1705 1706 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1707 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1708 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1709 1710 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1711 PatternRewriter &rewriter) const override { 1712 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1713 if (!srcBroadcast) 1714 return failure(); 1715 rewriter.replaceOpWithNewOp<BroadcastOp>( 1716 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1717 return success(); 1718 } 1719 }; 1720 } // namespace 1721 1722 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1723 MLIRContext *context) { 1724 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1725 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1726 results.add<BroadcastFolder>(context); 1727 } 1728 1729 //===----------------------------------------------------------------------===// 1730 // ShuffleOp 1731 //===----------------------------------------------------------------------===// 1732 1733 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1734 Value v2, ArrayRef<int64_t> mask) { 1735 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1736 } 1737 1738 LogicalResult ShuffleOp::verify() { 1739 VectorType resultType = getVectorType(); 1740 VectorType v1Type = getV1VectorType(); 1741 VectorType v2Type = getV2VectorType(); 1742 // Verify ranks. 1743 int64_t resRank = resultType.getRank(); 1744 int64_t v1Rank = v1Type.getRank(); 1745 int64_t v2Rank = v2Type.getRank(); 1746 if (resRank != v1Rank || v1Rank != v2Rank) 1747 return emitOpError("rank mismatch"); 1748 // Verify all but leading dimension sizes. 1749 for (int64_t r = 1; r < v1Rank; ++r) { 1750 int64_t resDim = resultType.getDimSize(r); 1751 int64_t v1Dim = v1Type.getDimSize(r); 1752 int64_t v2Dim = v2Type.getDimSize(r); 1753 if (resDim != v1Dim || v1Dim != v2Dim) 1754 return emitOpError("dimension mismatch"); 1755 } 1756 // Verify mask length. 1757 auto maskAttr = getMask().getValue(); 1758 int64_t maskLength = maskAttr.size(); 1759 if (maskLength <= 0) 1760 return emitOpError("invalid mask length"); 1761 if (maskLength != resultType.getDimSize(0)) 1762 return emitOpError("mask length mismatch"); 1763 // Verify all indices. 1764 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1765 for (const auto &en : llvm::enumerate(maskAttr)) { 1766 auto attr = en.value().dyn_cast<IntegerAttr>(); 1767 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1768 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1769 } 1770 return success(); 1771 } 1772 1773 LogicalResult 1774 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1775 ValueRange operands, DictionaryAttr attributes, 1776 RegionRange, 1777 SmallVectorImpl<Type> &inferredReturnTypes) { 1778 ShuffleOp::Adaptor op(operands, attributes); 1779 auto v1Type = op.getV1().getType().cast<VectorType>(); 1780 // Construct resulting type: leading dimension matches mask length, 1781 // all trailing dimensions match the operands. 1782 SmallVector<int64_t, 4> shape; 1783 shape.reserve(v1Type.getRank()); 1784 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1785 llvm::append_range(shape, v1Type.getShape().drop_front()); 1786 inferredReturnTypes.push_back( 1787 VectorType::get(shape, v1Type.getElementType())); 1788 return success(); 1789 } 1790 1791 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1792 uint64_t expected = begin; 1793 return idxArr.size() == width && 1794 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1795 [&expected](auto attr) { 1796 return attr.getZExtValue() == expected++; 1797 }); 1798 } 1799 1800 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1801 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1802 if (!getV1VectorType().isScalable() && 1803 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1804 return getV1(); 1805 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1806 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1807 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1808 getV2VectorType().getDimSize(0))) 1809 return getV2(); 1810 1811 Attribute lhs = operands.front(), rhs = operands.back(); 1812 if (!lhs || !rhs) 1813 return {}; 1814 1815 auto lhsType = lhs.getType().cast<VectorType>(); 1816 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1817 // manipulation. 1818 if (lhsType.getRank() != 1) 1819 return {}; 1820 int64_t lhsSize = lhsType.getDimSize(0); 1821 1822 SmallVector<Attribute> results; 1823 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1824 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1825 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1826 int64_t i = index.getZExtValue(); 1827 if (i >= lhsSize) { 1828 results.push_back(rhsElements[i - lhsSize]); 1829 } else { 1830 results.push_back(lhsElements[i]); 1831 } 1832 } 1833 1834 return DenseElementsAttr::get(getVectorType(), results); 1835 } 1836 1837 //===----------------------------------------------------------------------===// 1838 // InsertElementOp 1839 //===----------------------------------------------------------------------===// 1840 1841 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1842 Value source, Value dest) { 1843 build(builder, result, source, dest, {}); 1844 } 1845 1846 LogicalResult InsertElementOp::verify() { 1847 auto dstVectorType = getDestVectorType(); 1848 if (dstVectorType.getRank() == 0) { 1849 if (getPosition()) 1850 return emitOpError("expected position to be empty with 0-D vector"); 1851 return success(); 1852 } 1853 if (dstVectorType.getRank() != 1) 1854 return emitOpError("unexpected >1 vector rank"); 1855 if (!getPosition()) 1856 return emitOpError("expected position for 1-D vector"); 1857 return success(); 1858 } 1859 1860 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1861 // Skip the 0-D vector here. 1862 if (operands.size() < 3) 1863 return {}; 1864 1865 Attribute src = operands[0]; 1866 Attribute dst = operands[1]; 1867 Attribute pos = operands[2]; 1868 if (!src || !dst || !pos) 1869 return {}; 1870 1871 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1872 1873 SmallVector<Attribute> results(dstElements); 1874 1875 auto attr = pos.dyn_cast<IntegerAttr>(); 1876 uint64_t posIdx = attr.getInt(); 1877 1878 results[posIdx] = src; 1879 1880 return DenseElementsAttr::get(getDestVectorType(), results); 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // InsertOp 1885 //===----------------------------------------------------------------------===// 1886 1887 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1888 Value dest, ArrayRef<int64_t> position) { 1889 result.addOperands({source, dest}); 1890 auto positionAttr = getVectorSubscriptAttr(builder, position); 1891 result.addTypes(dest.getType()); 1892 result.addAttribute(getPositionAttrStrName(), positionAttr); 1893 } 1894 1895 // Convenience builder which assumes the values are constant indices. 1896 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1897 Value dest, ValueRange position) { 1898 SmallVector<int64_t, 4> positionConstants = 1899 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1900 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1901 })); 1902 build(builder, result, source, dest, positionConstants); 1903 } 1904 1905 LogicalResult InsertOp::verify() { 1906 auto positionAttr = getPosition().getValue(); 1907 auto destVectorType = getDestVectorType(); 1908 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1909 return emitOpError( 1910 "expected position attribute of rank smaller than dest vector rank"); 1911 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1912 if (srcVectorType && 1913 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1914 static_cast<unsigned>(destVectorType.getRank()))) 1915 return emitOpError("expected position attribute rank + source rank to " 1916 "match dest vector rank"); 1917 if (!srcVectorType && 1918 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1919 return emitOpError( 1920 "expected position attribute rank to match the dest vector rank"); 1921 for (const auto &en : llvm::enumerate(positionAttr)) { 1922 auto attr = en.value().dyn_cast<IntegerAttr>(); 1923 if (!attr || attr.getInt() < 0 || 1924 attr.getInt() >= destVectorType.getDimSize(en.index())) 1925 return emitOpError("expected position attribute #") 1926 << (en.index() + 1) 1927 << " to be a non-negative integer smaller than the corresponding " 1928 "dest vector dimension"; 1929 } 1930 return success(); 1931 } 1932 1933 namespace { 1934 1935 // If insertOp is only inserting unit dimensions it can be transformed to a 1936 // broadcast. 1937 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1938 public: 1939 using OpRewritePattern<InsertOp>::OpRewritePattern; 1940 1941 LogicalResult matchAndRewrite(InsertOp insertOp, 1942 PatternRewriter &rewriter) const override { 1943 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1944 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1945 srcVecType.getNumElements()) 1946 return failure(); 1947 rewriter.replaceOpWithNewOp<BroadcastOp>( 1948 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1949 return success(); 1950 } 1951 }; 1952 1953 } // namespace 1954 1955 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1956 MLIRContext *context) { 1957 results.add<InsertToBroadcast, BroadcastFolder>(context); 1958 } 1959 1960 // Eliminates insert operations that produce values identical to their source 1961 // value. This happens when the source and destination vectors have identical 1962 // sizes. 1963 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1964 if (getPosition().empty()) 1965 return getSource(); 1966 return {}; 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // InsertMapOp 1971 //===----------------------------------------------------------------------===// 1972 1973 LogicalResult InsertMapOp::verify() { 1974 if (getSourceVectorType().getRank() != getResultType().getRank()) 1975 return emitOpError("expected source and destination vectors of same rank"); 1976 unsigned numId = 0; 1977 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1978 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1979 0) 1980 return emitOpError( 1981 "destination vector size must be a multiple of source vector size"); 1982 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1983 numId++; 1984 } 1985 if (numId != getIds().size()) 1986 return emitOpError("expected number of ids must match the number of " 1987 "dimensions distributed"); 1988 return success(); 1989 } 1990 1991 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1992 1993 //===----------------------------------------------------------------------===// 1994 // InsertStridedSliceOp 1995 //===----------------------------------------------------------------------===// 1996 1997 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1998 Value source, Value dest, 1999 ArrayRef<int64_t> offsets, 2000 ArrayRef<int64_t> strides) { 2001 result.addOperands({source, dest}); 2002 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2003 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2004 result.addTypes(dest.getType()); 2005 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2006 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2007 } 2008 2009 // TODO: Should be moved to Tablegen Confined attributes. 2010 template <typename OpType> 2011 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2012 ArrayAttr arrayAttr, 2013 ArrayRef<int64_t> shape, 2014 StringRef attrName) { 2015 if (arrayAttr.size() > shape.size()) 2016 return op.emitOpError("expected ") 2017 << attrName << " attribute of rank smaller than vector rank"; 2018 return success(); 2019 } 2020 2021 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2022 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2023 // Otherwise, the admissible interval is [min, max]. 2024 template <typename OpType> 2025 static LogicalResult 2026 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2027 int64_t max, StringRef attrName, 2028 bool halfOpen = true) { 2029 for (auto attr : arrayAttr) { 2030 auto val = attr.cast<IntegerAttr>().getInt(); 2031 auto upper = max; 2032 if (!halfOpen) 2033 upper += 1; 2034 if (val < min || val >= upper) 2035 return op.emitOpError("expected ") << attrName << " to be confined to [" 2036 << min << ", " << upper << ")"; 2037 } 2038 return success(); 2039 } 2040 2041 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2042 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2043 // Otherwise, the admissible interval is [min, max]. 2044 template <typename OpType> 2045 static LogicalResult 2046 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2047 ArrayRef<int64_t> shape, StringRef attrName, 2048 bool halfOpen = true, int64_t min = 0) { 2049 assert(arrayAttr.size() <= shape.size()); 2050 unsigned index = 0; 2051 for (auto it : llvm::zip(arrayAttr, shape)) { 2052 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2053 auto max = std::get<1>(it); 2054 if (!halfOpen) 2055 max += 1; 2056 if (val < min || val >= max) 2057 return op.emitOpError("expected ") 2058 << attrName << " dimension " << index << " to be confined to [" 2059 << min << ", " << max << ")"; 2060 ++index; 2061 } 2062 return success(); 2063 } 2064 2065 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2066 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2067 // Otherwise, the admissible interval is [min, max]. 2068 template <typename OpType> 2069 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2070 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2071 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2072 bool halfOpen = true, int64_t min = 1) { 2073 assert(arrayAttr1.size() <= shape.size()); 2074 assert(arrayAttr2.size() <= shape.size()); 2075 unsigned index = 0; 2076 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2077 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2078 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2079 auto max = std::get<2>(it); 2080 if (!halfOpen) 2081 max += 1; 2082 if (val1 + val2 < 0 || val1 + val2 >= max) 2083 return op.emitOpError("expected sum(") 2084 << attrName1 << ", " << attrName2 << ") dimension " << index 2085 << " to be confined to [" << min << ", " << max << ")"; 2086 ++index; 2087 } 2088 return success(); 2089 } 2090 2091 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2092 MLIRContext *context) { 2093 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2094 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2095 }); 2096 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2097 } 2098 2099 LogicalResult InsertStridedSliceOp::verify() { 2100 auto sourceVectorType = getSourceVectorType(); 2101 auto destVectorType = getDestVectorType(); 2102 auto offsets = getOffsetsAttr(); 2103 auto strides = getStridesAttr(); 2104 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2105 return emitOpError( 2106 "expected offsets of same size as destination vector rank"); 2107 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2108 return emitOpError("expected strides of same size as source vector rank"); 2109 if (sourceVectorType.getRank() > destVectorType.getRank()) 2110 return emitOpError( 2111 "expected source rank to be smaller than destination rank"); 2112 2113 auto sourceShape = sourceVectorType.getShape(); 2114 auto destShape = destVectorType.getShape(); 2115 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2116 destShape.size() - sourceShape.size(), 0); 2117 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2118 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2119 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2120 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2121 offName)) || 2122 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2123 stridesName, 2124 /*halfOpen=*/false)) || 2125 failed(isSumOfIntegerArrayAttrConfinedToShape( 2126 *this, offsets, 2127 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2128 offName, "source vector shape", 2129 /*halfOpen=*/false, /*min=*/1))) 2130 return failure(); 2131 2132 return success(); 2133 } 2134 2135 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2136 if (getSourceVectorType() == getDestVectorType()) 2137 return getSource(); 2138 return {}; 2139 } 2140 2141 //===----------------------------------------------------------------------===// 2142 // OuterProductOp 2143 //===----------------------------------------------------------------------===// 2144 2145 /// Build an op without mask, use the type of `acc` as the return type. 2146 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2147 Value lhs, Value rhs, Value acc) { 2148 result.addOperands({lhs, rhs, acc}); 2149 result.addTypes(acc.getType()); 2150 } 2151 2152 void OuterProductOp::print(OpAsmPrinter &p) { 2153 p << " " << getLhs() << ", " << getRhs(); 2154 if (!getAcc().empty()) { 2155 p << ", " << getAcc(); 2156 p.printOptionalAttrDict((*this)->getAttrs()); 2157 } 2158 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2159 } 2160 2161 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2162 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2163 Type tLHS, tRHS; 2164 if (parser.parseOperandList(operandsInfo) || 2165 parser.parseOptionalAttrDict(result.attributes) || 2166 parser.parseColonType(tLHS) || parser.parseComma() || 2167 parser.parseType(tRHS)) 2168 return failure(); 2169 if (operandsInfo.size() < 2) 2170 return parser.emitError(parser.getNameLoc(), 2171 "expected at least 2 operands"); 2172 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2173 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2174 if (!vLHS) 2175 return parser.emitError(parser.getNameLoc(), 2176 "expected vector type for operand #1"); 2177 VectorType resType = 2178 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2179 vLHS.getElementType()) 2180 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2181 2182 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2183 result.attributes.append( 2184 OuterProductOp::getKindAttrStrName(), 2185 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2186 result.getContext())); 2187 } 2188 2189 return failure( 2190 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2191 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2192 (operandsInfo.size() > 2 && 2193 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2194 parser.addTypeToList(resType, result.types)); 2195 } 2196 2197 LogicalResult OuterProductOp::verify() { 2198 Type tRHS = getOperandTypeRHS(); 2199 VectorType vLHS = getOperandVectorTypeLHS(), 2200 vRHS = tRHS.dyn_cast<VectorType>(), 2201 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2202 2203 if (vLHS.getRank() != 1) 2204 return emitOpError("expected 1-d vector for operand #1"); 2205 2206 if (vRHS) { 2207 // Proper OUTER operation. 2208 if (vRHS.getRank() != 1) 2209 return emitOpError("expected 1-d vector for operand #2"); 2210 if (vRES.getRank() != 2) 2211 return emitOpError("expected 2-d vector result"); 2212 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2213 return emitOpError("expected #1 operand dim to match result dim #1"); 2214 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2215 return emitOpError("expected #2 operand dim to match result dim #2"); 2216 } else { 2217 // An AXPY operation. 2218 if (vRES.getRank() != 1) 2219 return emitOpError("expected 1-d vector result"); 2220 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2221 return emitOpError("expected #1 operand dim to match result dim #1"); 2222 } 2223 2224 if (vACC && vACC != vRES) 2225 return emitOpError("expected operand #3 of same type as result type"); 2226 2227 // Verify supported combining kind. 2228 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2229 return emitOpError("unsupported outerproduct type"); 2230 2231 return success(); 2232 } 2233 2234 //===----------------------------------------------------------------------===// 2235 // ReshapeOp 2236 //===----------------------------------------------------------------------===// 2237 2238 LogicalResult ReshapeOp::verify() { 2239 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2240 auto inputVectorType = getInputVectorType(); 2241 auto outputVectorType = getOutputVectorType(); 2242 int64_t inputShapeRank = getNumInputShapeSizes(); 2243 int64_t outputShapeRank = getNumOutputShapeSizes(); 2244 SmallVector<int64_t, 4> fixedVectorSizes; 2245 getFixedVectorSizes(fixedVectorSizes); 2246 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2247 2248 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2249 return emitError("invalid input shape for vector type ") 2250 << inputVectorType; 2251 2252 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2253 return emitError("invalid output shape for vector type ") 2254 << outputVectorType; 2255 2256 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2257 // suffix. 2258 unsigned inputVectorRank = inputVectorType.getRank(); 2259 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2260 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2261 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2262 return emitError("fixed vector size must match input vector for dim ") 2263 << i; 2264 } 2265 2266 unsigned outputVectorRank = outputVectorType.getRank(); 2267 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2268 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2269 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2270 return emitError("fixed vector size must match output vector for dim ") 2271 << i; 2272 } 2273 2274 // If all shape operands are produced by constant ops, verify that product 2275 // of dimensions for input/output shape match. 2276 auto isDefByConstant = [](Value operand) { 2277 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2278 }; 2279 if (llvm::all_of(getInputShape(), isDefByConstant) && 2280 llvm::all_of(getOutputShape(), isDefByConstant)) { 2281 int64_t numInputElements = 1; 2282 for (auto operand : getInputShape()) 2283 numInputElements *= 2284 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2285 int64_t numOutputElements = 1; 2286 for (auto operand : getOutputShape()) 2287 numOutputElements *= 2288 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2289 if (numInputElements != numOutputElements) 2290 return emitError("product of input and output shape sizes must match"); 2291 } 2292 return success(); 2293 } 2294 2295 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2296 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2297 } 2298 2299 //===----------------------------------------------------------------------===// 2300 // ExtractStridedSliceOp 2301 //===----------------------------------------------------------------------===// 2302 2303 // Inference works as follows: 2304 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2305 // 2. Add sizes from 'vectorType' for remaining dims. 2306 static Type inferStridedSliceOpResultType(VectorType vectorType, 2307 ArrayAttr offsets, ArrayAttr sizes, 2308 ArrayAttr strides) { 2309 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2310 SmallVector<int64_t, 4> shape; 2311 shape.reserve(vectorType.getRank()); 2312 unsigned idx = 0; 2313 for (unsigned e = offsets.size(); idx < e; ++idx) 2314 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2315 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2316 shape.push_back(vectorType.getShape()[idx]); 2317 2318 return VectorType::get(shape, vectorType.getElementType()); 2319 } 2320 2321 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2322 Value source, ArrayRef<int64_t> offsets, 2323 ArrayRef<int64_t> sizes, 2324 ArrayRef<int64_t> strides) { 2325 result.addOperands(source); 2326 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2327 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2328 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2329 result.addTypes( 2330 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2331 offsetsAttr, sizesAttr, stridesAttr)); 2332 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2333 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2334 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2335 } 2336 2337 LogicalResult ExtractStridedSliceOp::verify() { 2338 auto type = getVectorType(); 2339 auto offsets = getOffsetsAttr(); 2340 auto sizes = getSizesAttr(); 2341 auto strides = getStridesAttr(); 2342 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2343 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2344 2345 auto shape = type.getShape(); 2346 auto offName = getOffsetsAttrName(); 2347 auto sizesName = getSizesAttrName(); 2348 auto stridesName = getStridesAttrName(); 2349 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2350 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2351 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2352 stridesName)) || 2353 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2354 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2355 /*halfOpen=*/false, 2356 /*min=*/1)) || 2357 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2358 /*halfOpen=*/false)) || 2359 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2360 offName, sizesName, 2361 /*halfOpen=*/false))) 2362 return failure(); 2363 2364 auto resultType = 2365 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2366 if (getResult().getType() != resultType) 2367 return emitOpError("expected result type to be ") << resultType; 2368 2369 return success(); 2370 } 2371 2372 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2373 // to use the source of the InsertStrided ops if we can detect that the 2374 // extracted vector is a subset of one of the vector inserted. 2375 static LogicalResult 2376 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2377 // Helper to extract integer out of ArrayAttr. 2378 auto getElement = [](ArrayAttr array, int idx) { 2379 return array[idx].cast<IntegerAttr>().getInt(); 2380 }; 2381 ArrayAttr extractOffsets = op.getOffsets(); 2382 ArrayAttr extractStrides = op.getStrides(); 2383 ArrayAttr extractSizes = op.getSizes(); 2384 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2385 while (insertOp) { 2386 if (op.getVectorType().getRank() != 2387 insertOp.getSourceVectorType().getRank()) 2388 return failure(); 2389 ArrayAttr insertOffsets = insertOp.getOffsets(); 2390 ArrayAttr insertStrides = insertOp.getStrides(); 2391 // If the rank of extract is greater than the rank of insert, we are likely 2392 // extracting a partial chunk of the vector inserted. 2393 if (extractOffsets.size() > insertOffsets.size()) 2394 return failure(); 2395 bool patialoverlap = false; 2396 bool disjoint = false; 2397 SmallVector<int64_t, 4> offsetDiffs; 2398 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2399 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2400 return failure(); 2401 int64_t start = getElement(insertOffsets, dim); 2402 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2403 int64_t offset = getElement(extractOffsets, dim); 2404 int64_t size = getElement(extractSizes, dim); 2405 // Check if the start of the extract offset is in the interval inserted. 2406 if (start <= offset && offset < end) { 2407 // If the extract interval overlaps but is not fully included we may 2408 // have a partial overlap that will prevent any folding. 2409 if (offset + size > end) 2410 patialoverlap = true; 2411 offsetDiffs.push_back(offset - start); 2412 continue; 2413 } 2414 disjoint = true; 2415 break; 2416 } 2417 // The extract element chunk is a subset of the insert element. 2418 if (!disjoint && !patialoverlap) { 2419 op.setOperand(insertOp.getSource()); 2420 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2421 OpBuilder b(op.getContext()); 2422 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2423 b.getI64ArrayAttr(offsetDiffs)); 2424 return success(); 2425 } 2426 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2427 // in the insert chain. 2428 if (disjoint) 2429 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2430 else { 2431 // The extracted vector partially overlap the inserted vector, we cannot 2432 // fold. 2433 return failure(); 2434 } 2435 } 2436 return failure(); 2437 } 2438 2439 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2440 if (getVectorType() == getResult().getType()) 2441 return getVector(); 2442 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2443 return getResult(); 2444 return {}; 2445 } 2446 2447 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2448 populateFromInt64AttrArray(getOffsets(), results); 2449 } 2450 2451 namespace { 2452 2453 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2454 // ConstantMaskOp. 2455 class StridedSliceConstantMaskFolder final 2456 : public OpRewritePattern<ExtractStridedSliceOp> { 2457 public: 2458 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2459 2460 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2461 PatternRewriter &rewriter) const override { 2462 // Return if 'extractStridedSliceOp' operand is not defined by a 2463 // ConstantMaskOp. 2464 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2465 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2466 if (!constantMaskOp) 2467 return failure(); 2468 // Return if 'extractStridedSliceOp' has non-unit strides. 2469 if (extractStridedSliceOp.hasNonUnitStrides()) 2470 return failure(); 2471 // Gather constant mask dimension sizes. 2472 SmallVector<int64_t, 4> maskDimSizes; 2473 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2474 // Gather strided slice offsets and sizes. 2475 SmallVector<int64_t, 4> sliceOffsets; 2476 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2477 sliceOffsets); 2478 SmallVector<int64_t, 4> sliceSizes; 2479 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2480 2481 // Compute slice of vector mask region. 2482 SmallVector<int64_t, 4> sliceMaskDimSizes; 2483 assert(sliceOffsets.size() == maskDimSizes.size()); 2484 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2485 int64_t maskDimSize = std::get<0>(it); 2486 int64_t sliceOffset = std::get<1>(it); 2487 int64_t sliceSize = std::get<2>(it); 2488 int64_t sliceMaskDimSize = std::max( 2489 static_cast<int64_t>(0), 2490 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2491 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2492 } 2493 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2494 // region is a conjunction of mask dim intervals). 2495 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2496 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2497 2498 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2499 // region. 2500 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2501 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2502 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2503 return success(); 2504 } 2505 }; 2506 2507 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2508 class StridedSliceConstantFolder final 2509 : public OpRewritePattern<ExtractStridedSliceOp> { 2510 public: 2511 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2512 2513 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2514 PatternRewriter &rewriter) const override { 2515 // Return if 'extractStridedSliceOp' operand is not defined by a 2516 // ConstantOp. 2517 auto constantOp = 2518 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2519 if (!constantOp) 2520 return failure(); 2521 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2522 if (!dense) 2523 return failure(); 2524 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2525 dense.getSplatValue<Attribute>()); 2526 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2527 newAttr); 2528 return success(); 2529 } 2530 }; 2531 2532 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2533 // BroadcastOp(ExtractStrideSliceOp). 2534 class StridedSliceBroadcast final 2535 : public OpRewritePattern<ExtractStridedSliceOp> { 2536 public: 2537 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2538 2539 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2540 PatternRewriter &rewriter) const override { 2541 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2542 if (!broadcast) 2543 return failure(); 2544 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2545 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2546 auto dstVecType = op.getType().cast<VectorType>(); 2547 unsigned dstRank = dstVecType.getRank(); 2548 unsigned rankDiff = dstRank - srcRank; 2549 // Check if the most inner dimensions of the source of the broadcast are the 2550 // same as the destination of the extract. If this is the case we can just 2551 // use a broadcast as the original dimensions are untouched. 2552 bool lowerDimMatch = true; 2553 for (unsigned i = 0; i < srcRank; i++) { 2554 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2555 lowerDimMatch = false; 2556 break; 2557 } 2558 } 2559 Value source = broadcast.getSource(); 2560 // If the inner dimensions don't match, it means we need to extract from the 2561 // source of the orignal broadcast and then broadcast the extracted value. 2562 // We also need to handle degenerated cases where the source is effectively 2563 // just a single scalar. 2564 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2565 if (!lowerDimMatch && !isScalarSrc) { 2566 source = rewriter.create<ExtractStridedSliceOp>( 2567 op->getLoc(), source, 2568 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2569 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2570 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2571 } 2572 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2573 return success(); 2574 } 2575 }; 2576 2577 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2578 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2579 public: 2580 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2581 2582 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2583 PatternRewriter &rewriter) const override { 2584 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2585 if (!splat) 2586 return failure(); 2587 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2588 return success(); 2589 } 2590 }; 2591 2592 } // namespace 2593 2594 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2595 RewritePatternSet &results, MLIRContext *context) { 2596 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2597 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2598 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2599 StridedSliceBroadcast, StridedSliceSplat>(context); 2600 } 2601 2602 //===----------------------------------------------------------------------===// 2603 // TransferReadOp 2604 //===----------------------------------------------------------------------===// 2605 2606 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2607 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2608 VectorType vectorType, Value source, 2609 ValueRange indices, AffineMapAttr permutationMapAttr, 2610 /*optional*/ ArrayAttr inBoundsAttr) { 2611 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2612 Value padding = builder.create<arith::ConstantOp>( 2613 result.location, elemType, builder.getZeroAttr(elemType)); 2614 build(builder, result, vectorType, source, indices, permutationMapAttr, 2615 padding, /*mask=*/Value(), inBoundsAttr); 2616 } 2617 2618 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2619 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2620 VectorType vectorType, Value source, 2621 ValueRange indices, AffineMap permutationMap, 2622 Optional<ArrayRef<bool>> inBounds) { 2623 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2624 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2625 ? builder.getBoolArrayAttr(inBounds.getValue()) 2626 : ArrayAttr(); 2627 build(builder, result, vectorType, source, indices, permutationMapAttr, 2628 inBoundsAttr); 2629 } 2630 2631 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2632 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2633 VectorType vectorType, Value source, 2634 ValueRange indices, Value padding, 2635 Optional<ArrayRef<bool>> inBounds) { 2636 AffineMap permutationMap = getTransferMinorIdentityMap( 2637 source.getType().cast<ShapedType>(), vectorType); 2638 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2639 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2640 ? builder.getBoolArrayAttr(inBounds.getValue()) 2641 : ArrayAttr(); 2642 build(builder, result, vectorType, source, indices, permutationMapAttr, 2643 padding, 2644 /*mask=*/Value(), inBoundsAttr); 2645 } 2646 2647 /// 4. Builder that sets padding to zero and permutation map to 2648 /// 'getMinorIdentityMap'. 2649 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2650 VectorType vectorType, Value source, 2651 ValueRange indices, 2652 Optional<ArrayRef<bool>> inBounds) { 2653 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2654 Value padding = builder.create<arith::ConstantOp>( 2655 result.location, elemType, builder.getZeroAttr(elemType)); 2656 build(builder, result, vectorType, source, indices, padding, inBounds); 2657 } 2658 2659 template <typename EmitFun> 2660 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2661 EmitFun emitOpError) { 2662 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2663 for (auto expr : permutationMap.getResults()) { 2664 auto dim = expr.dyn_cast<AffineDimExpr>(); 2665 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2666 if (zero) { 2667 if (zero.getValue() != 0) { 2668 return emitOpError( 2669 "requires a projected permutation_map (at most one dim or the zero " 2670 "constant can appear in each result)"); 2671 } 2672 continue; 2673 } 2674 if (!dim) { 2675 return emitOpError("requires a projected permutation_map (at most one " 2676 "dim or the zero constant can appear in each result)"); 2677 } 2678 if (seen[dim.getPosition()]) { 2679 return emitOpError( 2680 "requires a permutation_map that is a permutation (found one dim " 2681 "used more than once)"); 2682 } 2683 seen[dim.getPosition()] = true; 2684 } 2685 return success(); 2686 } 2687 2688 static LogicalResult 2689 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2690 VectorType vectorType, VectorType maskType, 2691 AffineMap permutationMap, ArrayAttr inBounds) { 2692 if (op->hasAttr("masked")) { 2693 return op->emitOpError("masked attribute has been removed. " 2694 "Use in_bounds instead."); 2695 } 2696 2697 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2698 return op->emitOpError( 2699 "requires source to be a memref or ranked tensor type"); 2700 2701 auto elementType = shapedType.getElementType(); 2702 DataLayout dataLayout = DataLayout::closest(op); 2703 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2704 // Memref or tensor has vector element type. 2705 unsigned sourceVecSize = 2706 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2707 vectorElementType.getShape().back(); 2708 unsigned resultVecSize = 2709 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2710 vectorType.getShape().back(); 2711 if (resultVecSize % sourceVecSize != 0) 2712 return op->emitOpError( 2713 "requires the bitwidth of the minor 1-D vector to be an integral " 2714 "multiple of the bitwidth of the minor 1-D vector of the source"); 2715 2716 unsigned sourceVecEltRank = vectorElementType.getRank(); 2717 unsigned resultVecRank = vectorType.getRank(); 2718 if (sourceVecEltRank > resultVecRank) 2719 return op->emitOpError( 2720 "requires source vector element and vector result ranks to match."); 2721 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2722 // Check that permutation map results match 'rankOffset' of vector type. 2723 if (permutationMap.getNumResults() != rankOffset) 2724 return op->emitOpError("requires a permutation_map with result dims of " 2725 "the same rank as the vector type"); 2726 2727 if (maskType) 2728 return op->emitOpError("does not support masks with vector element type"); 2729 } else { 2730 // Memref or tensor has scalar element type. 2731 unsigned minorSize = 2732 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2733 unsigned resultVecSize = 2734 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2735 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2736 return op->emitOpError( 2737 "requires the bitwidth of the minor 1-D vector to be an integral " 2738 "multiple of the bitwidth of the source element type"); 2739 2740 // Check that permutation map results match rank of vector type. 2741 if (permutationMap.getNumResults() != vectorType.getRank()) 2742 return op->emitOpError("requires a permutation_map with result dims of " 2743 "the same rank as the vector type"); 2744 2745 VectorType expectedMaskType = 2746 vector::detail::transferMaskType(vectorType, permutationMap); 2747 if (maskType && expectedMaskType != maskType) 2748 return op->emitOpError("expects mask type consistent with permutation " 2749 "map: ") 2750 << maskType; 2751 } 2752 2753 if (permutationMap.getNumSymbols() != 0) 2754 return op->emitOpError("requires permutation_map without symbols"); 2755 2756 if (permutationMap.getNumInputs() != shapedType.getRank()) 2757 return op->emitOpError("requires a permutation_map with input dims of the " 2758 "same rank as the source type"); 2759 2760 if (inBounds) { 2761 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2762 return op->emitOpError("expects the optional in_bounds attr of same rank " 2763 "as permutation_map results: ") 2764 << AffineMapAttr::get(permutationMap) 2765 << " vs inBounds of size: " << inBounds.size(); 2766 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2767 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2768 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2769 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2770 } 2771 2772 return success(); 2773 } 2774 2775 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2776 SmallVector<StringRef, 3> elidedAttrs; 2777 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2778 if (op.permutation_map().isMinorIdentity()) 2779 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2780 bool elideInBounds = true; 2781 if (auto inBounds = op.in_bounds()) { 2782 for (auto attr : *inBounds) { 2783 if (attr.template cast<BoolAttr>().getValue()) { 2784 elideInBounds = false; 2785 break; 2786 } 2787 } 2788 } 2789 if (elideInBounds) 2790 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2791 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2792 } 2793 2794 void TransferReadOp::print(OpAsmPrinter &p) { 2795 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2796 if (getMask()) 2797 p << ", " << getMask(); 2798 printTransferAttrs(p, *this); 2799 p << " : " << getShapedType() << ", " << getVectorType(); 2800 } 2801 2802 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2803 auto &builder = parser.getBuilder(); 2804 SMLoc typesLoc; 2805 OpAsmParser::UnresolvedOperand sourceInfo; 2806 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2807 OpAsmParser::UnresolvedOperand paddingInfo; 2808 SmallVector<Type, 2> types; 2809 OpAsmParser::UnresolvedOperand maskInfo; 2810 // Parsing with support for paddingValue. 2811 if (parser.parseOperand(sourceInfo) || 2812 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2813 parser.parseComma() || parser.parseOperand(paddingInfo)) 2814 return failure(); 2815 ParseResult hasMask = parser.parseOptionalComma(); 2816 if (hasMask.succeeded()) { 2817 parser.parseOperand(maskInfo); 2818 } 2819 if (parser.parseOptionalAttrDict(result.attributes) || 2820 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2821 return failure(); 2822 if (types.size() != 2) 2823 return parser.emitError(typesLoc, "requires two types"); 2824 auto indexType = builder.getIndexType(); 2825 auto shapedType = types[0].dyn_cast<ShapedType>(); 2826 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2827 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2828 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2829 if (!vectorType) 2830 return parser.emitError(typesLoc, "requires vector type"); 2831 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2832 Attribute mapAttr = result.attributes.get(permutationAttrName); 2833 if (!mapAttr) { 2834 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2835 // Update `mapAttr` that is used later to determine mask type. 2836 mapAttr = AffineMapAttr::get(permMap); 2837 result.attributes.set(permutationAttrName, mapAttr); 2838 } 2839 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2840 parser.resolveOperands(indexInfo, indexType, result.operands) || 2841 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2842 result.operands)) 2843 return failure(); 2844 if (hasMask.succeeded()) { 2845 if (shapedType.getElementType().dyn_cast<VectorType>()) 2846 return parser.emitError( 2847 maskInfo.location, "does not support masks with vector element type"); 2848 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2849 // Instead of adding the mask type as an op type, compute it based on the 2850 // vector type and the permutation map (to keep the type signature small). 2851 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2852 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2853 return failure(); 2854 } 2855 result.addAttribute( 2856 TransferReadOp::getOperandSegmentSizeAttr(), 2857 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2858 static_cast<int32_t>(hasMask.succeeded())})); 2859 return parser.addTypeToList(vectorType, result.types); 2860 } 2861 2862 LogicalResult TransferReadOp::verify() { 2863 // Consistency of elemental types in source and vector. 2864 ShapedType shapedType = getShapedType(); 2865 VectorType vectorType = getVectorType(); 2866 VectorType maskType = getMaskType(); 2867 auto paddingType = getPadding().getType(); 2868 auto permutationMap = getPermutationMap(); 2869 auto sourceElementType = shapedType.getElementType(); 2870 2871 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2872 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2873 2874 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2875 shapedType, vectorType, maskType, permutationMap, 2876 getInBounds() ? *getInBounds() : ArrayAttr()))) 2877 return failure(); 2878 2879 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2880 // Source has vector element type. 2881 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2882 if (sourceVectorElementType != paddingType) 2883 return emitOpError( 2884 "requires source element type and padding type to match."); 2885 2886 } else { 2887 // Check that 'paddingType' is valid to store in a vector type. 2888 if (!VectorType::isValidElementType(paddingType)) 2889 return emitOpError("requires valid padding vector elemental type"); 2890 2891 // Check that padding type and vector element types match. 2892 if (paddingType != sourceElementType) 2893 return emitOpError( 2894 "requires formal padding and source of the same elemental type"); 2895 } 2896 2897 return verifyPermutationMap(permutationMap, 2898 [&](Twine t) { return emitOpError(t); }); 2899 } 2900 2901 /// This is a common class used for patterns of the form 2902 /// ``` 2903 /// someop(memrefcast) -> someop 2904 /// ``` 2905 /// It folds the source of the memref.cast into the root operation directly. 2906 static LogicalResult foldMemRefCast(Operation *op) { 2907 bool folded = false; 2908 for (OpOperand &operand : op->getOpOperands()) { 2909 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2910 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2911 operand.set(castOp.getOperand()); 2912 folded = true; 2913 } 2914 } 2915 return success(folded); 2916 } 2917 2918 static LogicalResult foldTensorCast(Operation *op) { 2919 bool folded = false; 2920 for (OpOperand &operand : op->getOpOperands()) { 2921 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2922 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2923 operand.set(castOp.getOperand()); 2924 folded = true; 2925 } 2926 } 2927 return success(folded); 2928 } 2929 2930 template <typename TransferOp> 2931 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2932 // TODO: support more aggressive createOrFold on: 2933 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2934 if (op.getShapedType().isDynamicDim(indicesIdx)) 2935 return false; 2936 Value index = op.getIndices()[indicesIdx]; 2937 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2938 if (!cstOp) 2939 return false; 2940 2941 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2942 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2943 2944 return cstOp.value() + vectorSize <= sourceSize; 2945 } 2946 2947 template <typename TransferOp> 2948 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2949 // TODO: support 0-d corner case. 2950 // TODO: Be less conservative. 2951 if (op.getTransferRank() == 0) 2952 return failure(); 2953 AffineMap permutationMap = op.getPermutationMap(); 2954 bool changed = false; 2955 SmallVector<bool, 4> newInBounds; 2956 newInBounds.reserve(op.getTransferRank()); 2957 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2958 // Already marked as in-bounds, nothing to see here. 2959 if (op.isDimInBounds(i)) { 2960 newInBounds.push_back(true); 2961 continue; 2962 } 2963 // Currently out-of-bounds, check whether we can statically determine it is 2964 // inBounds. 2965 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2966 assert(dimExpr && "Broadcast dims must be in-bounds"); 2967 auto inBounds = 2968 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2969 newInBounds.push_back(inBounds); 2970 // We commit the pattern if it is "more inbounds". 2971 changed |= inBounds; 2972 } 2973 if (!changed) 2974 return failure(); 2975 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2976 OpBuilder b(op.getContext()); 2977 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2978 b.getBoolArrayAttr(newInBounds)); 2979 return success(); 2980 } 2981 2982 /// ``` 2983 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2984 /// : vector<1x4xf32>, tensor<4x4xf32> 2985 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2986 /// : tensor<4x4xf32>, vector<1x4xf32> 2987 /// ``` 2988 /// -> Folds into 2989 /// ``` 2990 /// %v0 2991 /// ``` 2992 static Value foldRAW(TransferReadOp readOp) { 2993 if (!readOp.getShapedType().isa<RankedTensorType>()) 2994 return {}; 2995 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 2996 while (defWrite) { 2997 if (checkSameValueRAW(defWrite, readOp)) 2998 return defWrite.getVector(); 2999 if (!isDisjointTransferIndices( 3000 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3001 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3002 break; 3003 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3004 } 3005 return {}; 3006 } 3007 3008 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3009 if (Value vec = foldRAW(*this)) 3010 return vec; 3011 /// transfer_read(memrefcast) -> transfer_read 3012 if (succeeded(foldTransferInBoundsAttribute(*this))) 3013 return getResult(); 3014 if (succeeded(foldMemRefCast(*this))) 3015 return getResult(); 3016 if (succeeded(foldTensorCast(*this))) 3017 return getResult(); 3018 return OpFoldResult(); 3019 } 3020 3021 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3022 return llvm::to_vector<4>(getVectorType().getShape()); 3023 } 3024 3025 void TransferReadOp::getEffects( 3026 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3027 &effects) { 3028 if (getShapedType().isa<MemRefType>()) 3029 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3030 SideEffects::DefaultResource::get()); 3031 } 3032 3033 namespace { 3034 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3035 /// 3036 /// ``` 3037 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3038 /// : tensor<?x?xf32> to tensor<?x?xf32> 3039 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3040 /// : tensor<?x?xf32>, vector<4x5xf32> 3041 /// ``` 3042 /// is rewritten to: 3043 /// ``` 3044 /// %p0 = arith.addi %a, %e : index 3045 /// %p1 = arith.addi %b, %f : index 3046 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3047 /// : tensor<?x?xf32>, vector<4x5xf32> 3048 /// ``` 3049 struct FoldExtractSliceIntoTransferRead 3050 : public OpRewritePattern<TransferReadOp> { 3051 public: 3052 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3053 3054 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3055 PatternRewriter &rewriter) const override { 3056 // TODO: support 0-d corner case. 3057 if (xferOp.getTransferRank() == 0) 3058 return failure(); 3059 if (xferOp.hasOutOfBoundsDim()) 3060 return failure(); 3061 if (!xferOp.getPermutationMap().isIdentity()) 3062 return failure(); 3063 if (xferOp.getMask()) 3064 return failure(); 3065 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3066 if (!extractOp) 3067 return failure(); 3068 if (!extractOp.hasUnitStride()) 3069 return failure(); 3070 3071 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3072 // dims are exactly the leading dims. I.e. the following is illegal: 3073 // ``` 3074 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3075 // tensor<2x1x4xf32> to tensor<2x4xf32> 3076 // %1 = vector.transfer_read %0[0,0], %cst : 3077 // tensor<2x4xf32>, vector<2x4xf32> 3078 // ``` 3079 // 3080 // Cannot fold into: 3081 // ``` 3082 // %0 = vector.transfer_read %t[0,0,0], %cst : 3083 // tensor<2x1x4xf32>, vector<2x4xf32> 3084 // ``` 3085 // For this, check the trailing `vectorRank` dims of the extract_slice 3086 // result tensor match the trailing dims of the inferred result tensor. 3087 int64_t rankReduced = 3088 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3089 int64_t vectorRank = xferOp.getVectorType().getRank(); 3090 RankedTensorType inferredDestTensorType = 3091 tensor::ExtractSliceOp::inferResultType( 3092 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3093 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3094 auto actualDestTensorShape = extractOp.getType().getShape(); 3095 if (rankReduced > 0 && 3096 actualDestTensorShape.take_back(vectorRank) != 3097 inferredDestTensorType.getShape().take_back(vectorRank)) 3098 return failure(); 3099 3100 SmallVector<Value> newIndices; 3101 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3102 // indices first. 3103 for (int64_t i = 0; i < rankReduced; ++i) { 3104 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3105 newIndices.push_back(getValueOrCreateConstantIndexOp( 3106 rewriter, extractOp.getLoc(), offset)); 3107 } 3108 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3109 OpFoldResult offset = 3110 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3111 newIndices.push_back(rewriter.create<arith::AddIOp>( 3112 xferOp->getLoc(), it.value(), 3113 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3114 offset))); 3115 } 3116 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3117 rewriter.replaceOpWithNewOp<TransferReadOp>( 3118 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3119 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3120 3121 return success(); 3122 } 3123 }; 3124 } // namespace 3125 3126 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3127 MLIRContext *context) { 3128 results.add<FoldExtractSliceIntoTransferRead>(context); 3129 } 3130 3131 //===----------------------------------------------------------------------===// 3132 // TransferWriteOp 3133 //===----------------------------------------------------------------------===// 3134 3135 /// 1. Builder with type inference. 3136 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3137 Value vector, Value dest, ValueRange indices, 3138 AffineMapAttr permutationMapAttr, 3139 /*optional*/ Value mask, 3140 /*optional*/ ArrayAttr inBoundsAttr) { 3141 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3142 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3143 mask, inBoundsAttr); 3144 } 3145 3146 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3147 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3148 Value vector, Value dest, ValueRange indices, 3149 AffineMapAttr permutationMapAttr, 3150 /*optional*/ ArrayAttr inBoundsAttr) { 3151 build(builder, result, vector, dest, indices, permutationMapAttr, 3152 /*mask=*/Value(), inBoundsAttr); 3153 } 3154 3155 /// 3. Builder with type inference that sets an empty mask (variant without 3156 /// attrs) 3157 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3158 Value vector, Value dest, ValueRange indices, 3159 AffineMap permutationMap, 3160 Optional<ArrayRef<bool>> inBounds) { 3161 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3162 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3163 ? builder.getBoolArrayAttr(inBounds.getValue()) 3164 : ArrayAttr(); 3165 build(builder, result, vector, dest, indices, permutationMapAttr, 3166 /*mask=*/Value(), inBoundsAttr); 3167 } 3168 3169 /// 4. Builder with type inference that sets an empty mask and sets permutation 3170 /// map to 'getMinorIdentityMap'. 3171 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3172 Value vector, Value dest, ValueRange indices, 3173 Optional<ArrayRef<bool>> inBounds) { 3174 auto vectorType = vector.getType().cast<VectorType>(); 3175 AffineMap permutationMap = getTransferMinorIdentityMap( 3176 dest.getType().cast<ShapedType>(), vectorType); 3177 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3178 } 3179 3180 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3181 OperationState &result) { 3182 auto &builder = parser.getBuilder(); 3183 SMLoc typesLoc; 3184 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3185 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3186 SmallVector<Type, 2> types; 3187 OpAsmParser::UnresolvedOperand maskInfo; 3188 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3189 parser.parseOperand(sourceInfo) || 3190 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3191 return failure(); 3192 ParseResult hasMask = parser.parseOptionalComma(); 3193 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3194 return failure(); 3195 if (parser.parseOptionalAttrDict(result.attributes) || 3196 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3197 return failure(); 3198 if (types.size() != 2) 3199 return parser.emitError(typesLoc, "requires two types"); 3200 auto indexType = builder.getIndexType(); 3201 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3202 if (!vectorType) 3203 return parser.emitError(typesLoc, "requires vector type"); 3204 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3205 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3206 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3207 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3208 auto attr = result.attributes.get(permutationAttrName); 3209 if (!attr) { 3210 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3211 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3212 } 3213 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3214 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3215 parser.resolveOperands(indexInfo, indexType, result.operands)) 3216 return failure(); 3217 if (hasMask.succeeded()) { 3218 if (shapedType.getElementType().dyn_cast<VectorType>()) 3219 return parser.emitError( 3220 maskInfo.location, "does not support masks with vector element type"); 3221 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3222 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3223 return failure(); 3224 } 3225 result.addAttribute( 3226 TransferWriteOp::getOperandSegmentSizeAttr(), 3227 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3228 static_cast<int32_t>(hasMask.succeeded())})); 3229 return failure(shapedType.isa<RankedTensorType>() && 3230 parser.addTypeToList(shapedType, result.types)); 3231 } 3232 3233 void TransferWriteOp::print(OpAsmPrinter &p) { 3234 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3235 if (getMask()) 3236 p << ", " << getMask(); 3237 printTransferAttrs(p, *this); 3238 p << " : " << getVectorType() << ", " << getShapedType(); 3239 } 3240 3241 LogicalResult TransferWriteOp::verify() { 3242 // Consistency of elemental types in shape and vector. 3243 ShapedType shapedType = getShapedType(); 3244 VectorType vectorType = getVectorType(); 3245 VectorType maskType = getMaskType(); 3246 auto permutationMap = getPermutationMap(); 3247 3248 if (llvm::size(getIndices()) != shapedType.getRank()) 3249 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3250 3251 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3252 // as the semantics is unclear. This can be revisited later if necessary. 3253 if (hasBroadcastDim()) 3254 return emitOpError("should not have broadcast dimensions"); 3255 3256 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3257 shapedType, vectorType, maskType, permutationMap, 3258 getInBounds() ? *getInBounds() : ArrayAttr()))) 3259 return failure(); 3260 3261 return verifyPermutationMap(permutationMap, 3262 [&](Twine t) { return emitOpError(t); }); 3263 } 3264 3265 /// Fold: 3266 /// ``` 3267 /// %t1 = ... 3268 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3269 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3270 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3271 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3272 /// ``` 3273 /// 3274 /// into: 3275 /// 3276 /// ``` 3277 /// %t0 3278 /// ``` 3279 /// 3280 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3281 /// block argument or has side effects. 3282 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3283 ArrayRef<Attribute>, 3284 SmallVectorImpl<OpFoldResult> &results) { 3285 // TODO: support 0-d corner case. 3286 if (write.getTransferRank() == 0) 3287 return failure(); 3288 auto rankedTensorType = 3289 write.getSource().getType().dyn_cast<RankedTensorType>(); 3290 // If not operating on tensors, bail. 3291 if (!rankedTensorType) 3292 return failure(); 3293 // If no read, bail. 3294 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3295 if (!read) 3296 return failure(); 3297 // TODO: support 0-d corner case. 3298 if (read.getTransferRank() == 0) 3299 return failure(); 3300 // For now, only accept minor identity. Future: composition is minor identity. 3301 if (!read.getPermutationMap().isMinorIdentity() || 3302 !write.getPermutationMap().isMinorIdentity()) 3303 return failure(); 3304 // Bail on mismatching ranks. 3305 if (read.getTransferRank() != write.getTransferRank()) 3306 return failure(); 3307 // Bail on potential out-of-bounds accesses. 3308 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3309 return failure(); 3310 // Tensor types must be the same. 3311 if (read.getSource().getType() != rankedTensorType) 3312 return failure(); 3313 // Vector types must be the same. 3314 if (read.getVectorType() != write.getVectorType()) 3315 return failure(); 3316 // Vector and Tensor shapes must match. 3317 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3318 return failure(); 3319 // If any index is nonzero. 3320 auto isNotConstantZero = [](Value v) { 3321 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3322 return !cstOp || cstOp.value() != 0; 3323 }; 3324 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3325 llvm::any_of(write.getIndices(), isNotConstantZero)) 3326 return failure(); 3327 // Success. 3328 results.push_back(read.getSource()); 3329 return success(); 3330 } 3331 3332 static bool checkSameValueWAR(vector::TransferReadOp read, 3333 vector::TransferWriteOp write) { 3334 return read.getSource() == write.getSource() && 3335 read.getIndices() == write.getIndices() && 3336 read.getPermutationMap() == write.getPermutationMap() && 3337 read.getVectorType() == write.getVectorType() && !read.getMask() && 3338 !write.getMask(); 3339 } 3340 /// Fold transfer_write write after read: 3341 /// ``` 3342 /// %t0 = ... 3343 /// %v = vector.transfer_read %t0[%c0...] : 3344 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3345 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3346 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3347 /// ``` 3348 /// 3349 /// into: 3350 /// 3351 /// ``` 3352 /// %t0 3353 /// ``` 3354 static LogicalResult foldWAR(TransferWriteOp write, 3355 SmallVectorImpl<OpFoldResult> &results) { 3356 if (!write.getSource().getType().isa<RankedTensorType>()) 3357 return failure(); 3358 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3359 if (!read) 3360 return failure(); 3361 3362 if (!checkSameValueWAR(read, write)) 3363 return failure(); 3364 results.push_back(read.getSource()); 3365 return success(); 3366 } 3367 3368 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3369 SmallVectorImpl<OpFoldResult> &results) { 3370 if (succeeded(foldReadInitWrite(*this, operands, results))) 3371 return success(); 3372 if (succeeded(foldWAR(*this, results))) 3373 return success(); 3374 if (succeeded(foldTransferInBoundsAttribute(*this))) 3375 return success(); 3376 return foldMemRefCast(*this); 3377 } 3378 3379 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3380 return llvm::to_vector<4>(getVectorType().getShape()); 3381 } 3382 3383 void TransferWriteOp::getEffects( 3384 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3385 &effects) { 3386 if (getShapedType().isa<MemRefType>()) 3387 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3388 SideEffects::DefaultResource::get()); 3389 } 3390 3391 namespace { 3392 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3393 /// DCE 3394 /// ``` 3395 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3396 /// : vector<1x4xf32>, tensor<4x4xf32> 3397 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3398 /// : vector<1x4xf32>, tensor<4x4xf32> 3399 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3400 /// : vector<1x4xf32>, tensor<4x4xf32> 3401 /// ``` 3402 /// 3403 /// into: 3404 /// 3405 /// ``` 3406 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3407 /// : vector<1x4xf32>, tensor<4x4xf32> 3408 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3409 /// : vector<1x4xf32>, tensor<4x4xf32> 3410 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3411 /// : vector<1x4xf32>, tensor<4x4xf32> 3412 /// ``` 3413 /// 3414 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3415 /// any other uses. 3416 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3417 public: 3418 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3419 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3420 PatternRewriter &rewriter) const override { 3421 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3422 return failure(); 3423 vector::TransferWriteOp writeToModify = writeOp; 3424 3425 auto defWrite = 3426 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3427 while (defWrite) { 3428 if (checkSameValueWAW(writeOp, defWrite)) { 3429 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3430 return success(); 3431 } 3432 if (!isDisjointTransferIndices( 3433 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3434 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3435 break; 3436 // If the previous write op doesn't have any other use we an safely look 3437 // at the previous store to see if it can be removed. 3438 if (!defWrite->hasOneUse()) 3439 break; 3440 writeToModify = defWrite; 3441 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3442 } 3443 return failure(); 3444 } 3445 }; 3446 3447 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3448 /// could directly write to the insert_slice's destination. E.g.: 3449 /// 3450 /// ``` 3451 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3452 /// : vector<4x5xf32>, tensor<4x5xf32> 3453 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3454 /// : tensor<4x5xf32> into tensor<?x?xf32> 3455 /// ``` 3456 /// is rewritten to: 3457 /// ``` 3458 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3459 /// : vector<4x5xf32>, tensor<?x?xf32> 3460 /// ``` 3461 struct FoldInsertSliceIntoTransferWrite 3462 : public OpRewritePattern<tensor::InsertSliceOp> { 3463 public: 3464 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3465 3466 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3467 PatternRewriter &rewriter) const override { 3468 if (!insertOp.hasUnitStride()) 3469 return failure(); 3470 3471 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3472 if (!xferOp) 3473 return failure(); 3474 // TODO: support 0-d corner case. 3475 if (xferOp.getTransferRank() == 0) 3476 return failure(); 3477 3478 if (xferOp.hasOutOfBoundsDim()) 3479 return failure(); 3480 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3481 return failure(); 3482 if (xferOp.getMask()) 3483 return failure(); 3484 // Fold only if the TransferWriteOp completely overwrites the `source` with 3485 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3486 // content is the data of the vector. 3487 if (!llvm::equal(xferOp.getVectorType().getShape(), 3488 xferOp.getShapedType().getShape())) 3489 return failure(); 3490 if (!xferOp.getPermutationMap().isIdentity()) 3491 return failure(); 3492 3493 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3494 // dims are exactly the leading dims. I.e. the following is illegal: 3495 // ``` 3496 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3497 // vector<2x4xf32>, tensor<2x4xf32> 3498 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3499 // tensor<2x4xf32> into tensor<2x1x4xf32> 3500 // ``` 3501 // 3502 // Cannot fold into: 3503 // ``` 3504 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3505 // vector<2x4xf32>, tensor<2x1x4xf32> 3506 // ``` 3507 // For this, check the trailing `vectorRank` dims of the insert_slice result 3508 // tensor match the trailing dims of the inferred result tensor. 3509 int64_t rankReduced = 3510 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3511 int64_t vectorRank = xferOp.getVectorType().getRank(); 3512 RankedTensorType inferredSourceTensorType = 3513 tensor::ExtractSliceOp::inferResultType( 3514 insertOp.getType(), insertOp.getMixedOffsets(), 3515 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3516 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3517 if (rankReduced > 0 && 3518 actualSourceTensorShape.take_back(vectorRank) != 3519 inferredSourceTensorType.getShape().take_back(vectorRank)) 3520 return failure(); 3521 3522 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3523 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3524 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3525 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3526 insertOp.dest(), indices, 3527 ArrayRef<bool>{inBounds}); 3528 return success(); 3529 } 3530 }; 3531 } // namespace 3532 3533 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3534 MLIRContext *context) { 3535 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3536 } 3537 3538 //===----------------------------------------------------------------------===// 3539 // LoadOp 3540 //===----------------------------------------------------------------------===// 3541 3542 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3543 MemRefType memRefTy) { 3544 if (!isLastMemrefDimUnitStride(memRefTy)) 3545 return op->emitOpError("most minor memref dim must have unit stride"); 3546 return success(); 3547 } 3548 3549 LogicalResult vector::LoadOp::verify() { 3550 VectorType resVecTy = getVectorType(); 3551 MemRefType memRefTy = getMemRefType(); 3552 3553 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3554 return failure(); 3555 3556 // Checks for vector memrefs. 3557 Type memElemTy = memRefTy.getElementType(); 3558 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3559 if (memVecTy != resVecTy) 3560 return emitOpError("base memref and result vector types should match"); 3561 memElemTy = memVecTy.getElementType(); 3562 } 3563 3564 if (resVecTy.getElementType() != memElemTy) 3565 return emitOpError("base and result element types should match"); 3566 if (llvm::size(getIndices()) != memRefTy.getRank()) 3567 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3568 return success(); 3569 } 3570 3571 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3572 if (succeeded(foldMemRefCast(*this))) 3573 return getResult(); 3574 return OpFoldResult(); 3575 } 3576 3577 //===----------------------------------------------------------------------===// 3578 // StoreOp 3579 //===----------------------------------------------------------------------===// 3580 3581 LogicalResult vector::StoreOp::verify() { 3582 VectorType valueVecTy = getVectorType(); 3583 MemRefType memRefTy = getMemRefType(); 3584 3585 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3586 return failure(); 3587 3588 // Checks for vector memrefs. 3589 Type memElemTy = memRefTy.getElementType(); 3590 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3591 if (memVecTy != valueVecTy) 3592 return emitOpError( 3593 "base memref and valueToStore vector types should match"); 3594 memElemTy = memVecTy.getElementType(); 3595 } 3596 3597 if (valueVecTy.getElementType() != memElemTy) 3598 return emitOpError("base and valueToStore element type should match"); 3599 if (llvm::size(getIndices()) != memRefTy.getRank()) 3600 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3601 return success(); 3602 } 3603 3604 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3605 SmallVectorImpl<OpFoldResult> &results) { 3606 return foldMemRefCast(*this); 3607 } 3608 3609 //===----------------------------------------------------------------------===// 3610 // MaskedLoadOp 3611 //===----------------------------------------------------------------------===// 3612 3613 LogicalResult MaskedLoadOp::verify() { 3614 VectorType maskVType = getMaskVectorType(); 3615 VectorType passVType = getPassThruVectorType(); 3616 VectorType resVType = getVectorType(); 3617 MemRefType memType = getMemRefType(); 3618 3619 if (resVType.getElementType() != memType.getElementType()) 3620 return emitOpError("base and result element type should match"); 3621 if (llvm::size(getIndices()) != memType.getRank()) 3622 return emitOpError("requires ") << memType.getRank() << " indices"; 3623 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3624 return emitOpError("expected result dim to match mask dim"); 3625 if (resVType != passVType) 3626 return emitOpError("expected pass_thru of same type as result type"); 3627 return success(); 3628 } 3629 3630 namespace { 3631 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3632 public: 3633 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3634 LogicalResult matchAndRewrite(MaskedLoadOp load, 3635 PatternRewriter &rewriter) const override { 3636 switch (get1DMaskFormat(load.getMask())) { 3637 case MaskFormat::AllTrue: 3638 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3639 load, load.getType(), load.getBase(), load.getIndices()); 3640 return success(); 3641 case MaskFormat::AllFalse: 3642 rewriter.replaceOp(load, load.getPassThru()); 3643 return success(); 3644 case MaskFormat::Unknown: 3645 return failure(); 3646 } 3647 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3648 } 3649 }; 3650 } // namespace 3651 3652 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3653 MLIRContext *context) { 3654 results.add<MaskedLoadFolder>(context); 3655 } 3656 3657 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3658 if (succeeded(foldMemRefCast(*this))) 3659 return getResult(); 3660 return OpFoldResult(); 3661 } 3662 3663 //===----------------------------------------------------------------------===// 3664 // MaskedStoreOp 3665 //===----------------------------------------------------------------------===// 3666 3667 LogicalResult MaskedStoreOp::verify() { 3668 VectorType maskVType = getMaskVectorType(); 3669 VectorType valueVType = getVectorType(); 3670 MemRefType memType = getMemRefType(); 3671 3672 if (valueVType.getElementType() != memType.getElementType()) 3673 return emitOpError("base and valueToStore element type should match"); 3674 if (llvm::size(getIndices()) != memType.getRank()) 3675 return emitOpError("requires ") << memType.getRank() << " indices"; 3676 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3677 return emitOpError("expected valueToStore dim to match mask dim"); 3678 return success(); 3679 } 3680 3681 namespace { 3682 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3683 public: 3684 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3685 LogicalResult matchAndRewrite(MaskedStoreOp store, 3686 PatternRewriter &rewriter) const override { 3687 switch (get1DMaskFormat(store.getMask())) { 3688 case MaskFormat::AllTrue: 3689 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3690 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3691 return success(); 3692 case MaskFormat::AllFalse: 3693 rewriter.eraseOp(store); 3694 return success(); 3695 case MaskFormat::Unknown: 3696 return failure(); 3697 } 3698 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3699 } 3700 }; 3701 } // namespace 3702 3703 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3704 MLIRContext *context) { 3705 results.add<MaskedStoreFolder>(context); 3706 } 3707 3708 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3709 SmallVectorImpl<OpFoldResult> &results) { 3710 return foldMemRefCast(*this); 3711 } 3712 3713 //===----------------------------------------------------------------------===// 3714 // GatherOp 3715 //===----------------------------------------------------------------------===// 3716 3717 LogicalResult GatherOp::verify() { 3718 VectorType indVType = getIndexVectorType(); 3719 VectorType maskVType = getMaskVectorType(); 3720 VectorType resVType = getVectorType(); 3721 MemRefType memType = getMemRefType(); 3722 3723 if (resVType.getElementType() != memType.getElementType()) 3724 return emitOpError("base and result element type should match"); 3725 if (llvm::size(getIndices()) != memType.getRank()) 3726 return emitOpError("requires ") << memType.getRank() << " indices"; 3727 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3728 return emitOpError("expected result dim to match indices dim"); 3729 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3730 return emitOpError("expected result dim to match mask dim"); 3731 if (resVType != getPassThruVectorType()) 3732 return emitOpError("expected pass_thru of same type as result type"); 3733 return success(); 3734 } 3735 3736 namespace { 3737 class GatherFolder final : public OpRewritePattern<GatherOp> { 3738 public: 3739 using OpRewritePattern<GatherOp>::OpRewritePattern; 3740 LogicalResult matchAndRewrite(GatherOp gather, 3741 PatternRewriter &rewriter) const override { 3742 switch (get1DMaskFormat(gather.getMask())) { 3743 case MaskFormat::AllTrue: 3744 return failure(); // no unmasked equivalent 3745 case MaskFormat::AllFalse: 3746 rewriter.replaceOp(gather, gather.getPassThru()); 3747 return success(); 3748 case MaskFormat::Unknown: 3749 return failure(); 3750 } 3751 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3752 } 3753 }; 3754 } // namespace 3755 3756 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3757 MLIRContext *context) { 3758 results.add<GatherFolder>(context); 3759 } 3760 3761 //===----------------------------------------------------------------------===// 3762 // ScatterOp 3763 //===----------------------------------------------------------------------===// 3764 3765 LogicalResult ScatterOp::verify() { 3766 VectorType indVType = getIndexVectorType(); 3767 VectorType maskVType = getMaskVectorType(); 3768 VectorType valueVType = getVectorType(); 3769 MemRefType memType = getMemRefType(); 3770 3771 if (valueVType.getElementType() != memType.getElementType()) 3772 return emitOpError("base and valueToStore element type should match"); 3773 if (llvm::size(getIndices()) != memType.getRank()) 3774 return emitOpError("requires ") << memType.getRank() << " indices"; 3775 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3776 return emitOpError("expected valueToStore dim to match indices dim"); 3777 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3778 return emitOpError("expected valueToStore dim to match mask dim"); 3779 return success(); 3780 } 3781 3782 namespace { 3783 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3784 public: 3785 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3786 LogicalResult matchAndRewrite(ScatterOp scatter, 3787 PatternRewriter &rewriter) const override { 3788 switch (get1DMaskFormat(scatter.getMask())) { 3789 case MaskFormat::AllTrue: 3790 return failure(); // no unmasked equivalent 3791 case MaskFormat::AllFalse: 3792 rewriter.eraseOp(scatter); 3793 return success(); 3794 case MaskFormat::Unknown: 3795 return failure(); 3796 } 3797 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3798 } 3799 }; 3800 } // namespace 3801 3802 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3803 MLIRContext *context) { 3804 results.add<ScatterFolder>(context); 3805 } 3806 3807 //===----------------------------------------------------------------------===// 3808 // ExpandLoadOp 3809 //===----------------------------------------------------------------------===// 3810 3811 LogicalResult ExpandLoadOp::verify() { 3812 VectorType maskVType = getMaskVectorType(); 3813 VectorType passVType = getPassThruVectorType(); 3814 VectorType resVType = getVectorType(); 3815 MemRefType memType = getMemRefType(); 3816 3817 if (resVType.getElementType() != memType.getElementType()) 3818 return emitOpError("base and result element type should match"); 3819 if (llvm::size(getIndices()) != memType.getRank()) 3820 return emitOpError("requires ") << memType.getRank() << " indices"; 3821 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3822 return emitOpError("expected result dim to match mask dim"); 3823 if (resVType != passVType) 3824 return emitOpError("expected pass_thru of same type as result type"); 3825 return success(); 3826 } 3827 3828 namespace { 3829 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3830 public: 3831 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3832 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3833 PatternRewriter &rewriter) const override { 3834 switch (get1DMaskFormat(expand.getMask())) { 3835 case MaskFormat::AllTrue: 3836 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3837 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3838 return success(); 3839 case MaskFormat::AllFalse: 3840 rewriter.replaceOp(expand, expand.getPassThru()); 3841 return success(); 3842 case MaskFormat::Unknown: 3843 return failure(); 3844 } 3845 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3846 } 3847 }; 3848 } // namespace 3849 3850 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3851 MLIRContext *context) { 3852 results.add<ExpandLoadFolder>(context); 3853 } 3854 3855 //===----------------------------------------------------------------------===// 3856 // CompressStoreOp 3857 //===----------------------------------------------------------------------===// 3858 3859 LogicalResult CompressStoreOp::verify() { 3860 VectorType maskVType = getMaskVectorType(); 3861 VectorType valueVType = getVectorType(); 3862 MemRefType memType = getMemRefType(); 3863 3864 if (valueVType.getElementType() != memType.getElementType()) 3865 return emitOpError("base and valueToStore element type should match"); 3866 if (llvm::size(getIndices()) != memType.getRank()) 3867 return emitOpError("requires ") << memType.getRank() << " indices"; 3868 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3869 return emitOpError("expected valueToStore dim to match mask dim"); 3870 return success(); 3871 } 3872 3873 namespace { 3874 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3875 public: 3876 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3877 LogicalResult matchAndRewrite(CompressStoreOp compress, 3878 PatternRewriter &rewriter) const override { 3879 switch (get1DMaskFormat(compress.getMask())) { 3880 case MaskFormat::AllTrue: 3881 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3882 compress, compress.getValueToStore(), compress.getBase(), 3883 compress.getIndices()); 3884 return success(); 3885 case MaskFormat::AllFalse: 3886 rewriter.eraseOp(compress); 3887 return success(); 3888 case MaskFormat::Unknown: 3889 return failure(); 3890 } 3891 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3892 } 3893 }; 3894 } // namespace 3895 3896 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3897 MLIRContext *context) { 3898 results.add<CompressStoreFolder>(context); 3899 } 3900 3901 //===----------------------------------------------------------------------===// 3902 // ShapeCastOp 3903 //===----------------------------------------------------------------------===// 3904 3905 /// Returns true if each element of 'a' is equal to the product of a contiguous 3906 /// sequence of the elements of 'b'. Returns false otherwise. 3907 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3908 unsigned rankA = a.size(); 3909 unsigned rankB = b.size(); 3910 assert(rankA < rankB); 3911 3912 unsigned i = 0; 3913 unsigned j = 0; 3914 while (i < rankA && j < rankB) { 3915 int64_t dimA = a[i]; 3916 int64_t dimB = 1; 3917 while (dimB < dimA && j < rankB) 3918 dimB *= b[j++]; 3919 if (dimA != dimB) 3920 break; 3921 ++i; 3922 3923 // Handle the case when trailing dimensions are of size 1. 3924 // Include them into the contiguous sequence. 3925 auto isOne = [](int64_t v) { return v == 1; }; 3926 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3927 i = rankA; 3928 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3929 j = rankB; 3930 } 3931 3932 return i == rankA && j == rankB; 3933 } 3934 3935 static LogicalResult verifyVectorShapeCast(Operation *op, 3936 VectorType sourceVectorType, 3937 VectorType resultVectorType) { 3938 // Check that element type is the same. 3939 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3940 return op->emitOpError("source/result vectors must have same element type"); 3941 auto sourceShape = sourceVectorType.getShape(); 3942 auto resultShape = resultVectorType.getShape(); 3943 3944 // Check that product of source dim sizes matches product of result dim sizes. 3945 int64_t sourceDimProduct = std::accumulate( 3946 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3947 int64_t resultDimProduct = std::accumulate( 3948 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3949 if (sourceDimProduct != resultDimProduct) 3950 return op->emitOpError("source/result number of elements must match"); 3951 3952 // Check that expanding/contracting rank cases. 3953 unsigned sourceRank = sourceVectorType.getRank(); 3954 unsigned resultRank = resultVectorType.getRank(); 3955 if (sourceRank < resultRank) { 3956 if (!isValidShapeCast(sourceShape, resultShape)) 3957 return op->emitOpError("invalid shape cast"); 3958 } else if (sourceRank > resultRank) { 3959 if (!isValidShapeCast(resultShape, sourceShape)) 3960 return op->emitOpError("invalid shape cast"); 3961 } 3962 return success(); 3963 } 3964 3965 LogicalResult ShapeCastOp::verify() { 3966 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 3967 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 3968 3969 // Check if source/result are of vector type. 3970 if (sourceVectorType && resultVectorType) 3971 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3972 3973 return success(); 3974 } 3975 3976 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3977 // Nop shape cast. 3978 if (getSource().getType() == getResult().getType()) 3979 return getSource(); 3980 3981 // Canceling shape casts. 3982 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 3983 if (getResult().getType() == otherOp.getSource().getType()) 3984 return otherOp.getSource(); 3985 3986 // Only allows valid transitive folding. 3987 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 3988 VectorType resultType = getResult().getType().cast<VectorType>(); 3989 if (srcType.getRank() < resultType.getRank()) { 3990 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3991 return {}; 3992 } else if (srcType.getRank() > resultType.getRank()) { 3993 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3994 return {}; 3995 } else { 3996 return {}; 3997 } 3998 3999 setOperand(otherOp.getSource()); 4000 return getResult(); 4001 } 4002 return {}; 4003 } 4004 4005 namespace { 4006 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4007 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4008 public: 4009 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4010 4011 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4012 PatternRewriter &rewriter) const override { 4013 auto constantOp = 4014 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4015 if (!constantOp) 4016 return failure(); 4017 // Only handle splat for now. 4018 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4019 if (!dense) 4020 return failure(); 4021 auto newAttr = 4022 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4023 dense.getSplatValue<Attribute>()); 4024 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4025 return success(); 4026 } 4027 }; 4028 4029 } // namespace 4030 4031 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4032 MLIRContext *context) { 4033 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4034 results.add<ShapeCastConstantFolder>(context); 4035 } 4036 4037 //===----------------------------------------------------------------------===// 4038 // VectorBitCastOp 4039 //===----------------------------------------------------------------------===// 4040 4041 LogicalResult BitCastOp::verify() { 4042 auto sourceVectorType = getSourceVectorType(); 4043 auto resultVectorType = getResultVectorType(); 4044 4045 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4046 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4047 return emitOpError("dimension size mismatch at: ") << i; 4048 } 4049 4050 DataLayout dataLayout = DataLayout::closest(*this); 4051 auto sourceElementBits = 4052 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4053 auto resultElementBits = 4054 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4055 4056 if (sourceVectorType.getRank() == 0) { 4057 if (sourceElementBits != resultElementBits) 4058 return emitOpError("source/result bitwidth of the 0-D vector element " 4059 "types must be equal"); 4060 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4061 resultElementBits * resultVectorType.getShape().back()) { 4062 return emitOpError( 4063 "source/result bitwidth of the minor 1-D vectors must be equal"); 4064 } 4065 4066 return success(); 4067 } 4068 4069 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4070 // Nop cast. 4071 if (getSource().getType() == getResult().getType()) 4072 return getSource(); 4073 4074 // Canceling bitcasts. 4075 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4076 if (getResult().getType() == otherOp.getSource().getType()) 4077 return otherOp.getSource(); 4078 4079 Attribute sourceConstant = operands.front(); 4080 if (!sourceConstant) 4081 return {}; 4082 4083 Type srcElemType = getSourceVectorType().getElementType(); 4084 Type dstElemType = getResultVectorType().getElementType(); 4085 4086 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4087 if (floatPack.isSplat()) { 4088 auto splat = floatPack.getSplatValue<FloatAttr>(); 4089 4090 // Casting fp16 into fp32. 4091 if (srcElemType.isF16() && dstElemType.isF32()) { 4092 uint32_t bits = static_cast<uint32_t>( 4093 splat.getValue().bitcastToAPInt().getZExtValue()); 4094 // Duplicate the 16-bit pattern. 4095 bits = (bits << 16) | (bits & 0xffff); 4096 APInt intBits(32, bits); 4097 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4098 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4099 } 4100 } 4101 } 4102 4103 return {}; 4104 } 4105 4106 //===----------------------------------------------------------------------===// 4107 // TypeCastOp 4108 //===----------------------------------------------------------------------===// 4109 4110 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4111 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4112 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4113 memRefType.getShape().end()); 4114 if (vectorType) 4115 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4116 return res; 4117 } 4118 4119 /// Build the canonical memRefType with a single vector. 4120 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4121 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4122 Value source) { 4123 result.addOperands(source); 4124 MemRefType memRefType = source.getType().cast<MemRefType>(); 4125 VectorType vectorType = 4126 VectorType::get(extractShape(memRefType), 4127 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4128 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4129 memRefType.getMemorySpace())); 4130 } 4131 4132 LogicalResult TypeCastOp::verify() { 4133 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4134 if (!canonicalType.getLayout().isIdentity()) 4135 return emitOpError("expects operand to be a memref with identity layout"); 4136 if (!getResultMemRefType().getLayout().isIdentity()) 4137 return emitOpError("expects result to be a memref with identity layout"); 4138 if (getResultMemRefType().getMemorySpace() != 4139 getMemRefType().getMemorySpace()) 4140 return emitOpError("expects result in same memory space"); 4141 4142 auto sourceType = getMemRefType(); 4143 auto resultType = getResultMemRefType(); 4144 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4145 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4146 return emitOpError( 4147 "expects result and operand with same underlying scalar type: ") 4148 << resultType; 4149 if (extractShape(sourceType) != extractShape(resultType)) 4150 return emitOpError( 4151 "expects concatenated result and operand shapes to be equal: ") 4152 << resultType; 4153 return success(); 4154 } 4155 4156 //===----------------------------------------------------------------------===// 4157 // TransposeOp 4158 //===----------------------------------------------------------------------===// 4159 4160 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4161 Value vector, ArrayRef<int64_t> transp) { 4162 VectorType vt = vector.getType().cast<VectorType>(); 4163 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4164 for (unsigned i = 0; i < transp.size(); ++i) 4165 transposedShape[i] = vt.getShape()[transp[i]]; 4166 4167 result.addOperands(vector); 4168 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4169 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4170 } 4171 4172 // Eliminates transpose operations, which produce values identical to their 4173 // input values. This happens when the dimensions of the input vector remain in 4174 // their original order after the transpose operation. 4175 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4176 SmallVector<int64_t, 4> transp; 4177 getTransp(transp); 4178 4179 // Check if the permutation of the dimensions contains sequential values: 4180 // {0, 1, 2, ...}. 4181 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4182 if (transp[i] != i) 4183 return {}; 4184 } 4185 4186 return getVector(); 4187 } 4188 4189 LogicalResult vector::TransposeOp::verify() { 4190 VectorType vectorType = getVectorType(); 4191 VectorType resultType = getResultType(); 4192 int64_t rank = resultType.getRank(); 4193 if (vectorType.getRank() != rank) 4194 return emitOpError("vector result rank mismatch: ") << rank; 4195 // Verify transposition array. 4196 auto transpAttr = getTransp().getValue(); 4197 int64_t size = transpAttr.size(); 4198 if (rank != size) 4199 return emitOpError("transposition length mismatch: ") << size; 4200 SmallVector<bool, 8> seen(rank, false); 4201 for (const auto &ta : llvm::enumerate(transpAttr)) { 4202 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4203 if (i < 0 || i >= rank) 4204 return emitOpError("transposition index out of range: ") << i; 4205 if (seen[i]) 4206 return emitOpError("duplicate position index: ") << i; 4207 seen[i] = true; 4208 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4209 return emitOpError("dimension size mismatch at: ") << i; 4210 } 4211 return success(); 4212 } 4213 4214 namespace { 4215 4216 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4217 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4218 public: 4219 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4220 4221 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4222 PatternRewriter &rewriter) const override { 4223 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4224 auto getPermutation = [](vector::TransposeOp transpose) { 4225 SmallVector<int64_t, 4> permutation; 4226 transpose.getTransp(permutation); 4227 return permutation; 4228 }; 4229 4230 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4231 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4232 ArrayRef<int64_t> permutation2) { 4233 SmallVector<int64_t, 4> result; 4234 for (auto index : permutation2) 4235 result.push_back(permutation1[index]); 4236 return result; 4237 }; 4238 4239 // Return if the input of 'transposeOp' is not defined by another transpose. 4240 vector::TransposeOp parentTransposeOp = 4241 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4242 if (!parentTransposeOp) 4243 return failure(); 4244 4245 SmallVector<int64_t, 4> permutation = composePermutations( 4246 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4247 // Replace 'transposeOp' with a new transpose operation. 4248 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4249 transposeOp, transposeOp.getResult().getType(), 4250 parentTransposeOp.getVector(), 4251 vector::getVectorSubscriptAttr(rewriter, permutation)); 4252 return success(); 4253 } 4254 }; 4255 4256 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4257 struct FoldTransposedScalarBroadcast final 4258 : public OpRewritePattern<vector::TransposeOp> { 4259 using OpRewritePattern::OpRewritePattern; 4260 4261 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4262 PatternRewriter &rewriter) const override { 4263 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4264 if (!bcastOp) 4265 return failure(); 4266 4267 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4268 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4269 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4270 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4271 return success(); 4272 } 4273 4274 return failure(); 4275 } 4276 }; 4277 4278 } // namespace 4279 4280 void vector::TransposeOp::getCanonicalizationPatterns( 4281 RewritePatternSet &results, MLIRContext *context) { 4282 results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context); 4283 } 4284 4285 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4286 populateFromInt64AttrArray(getTransp(), results); 4287 } 4288 4289 //===----------------------------------------------------------------------===// 4290 // ConstantMaskOp 4291 //===----------------------------------------------------------------------===// 4292 4293 LogicalResult ConstantMaskOp::verify() { 4294 auto resultType = getResult().getType().cast<VectorType>(); 4295 // Check the corner case of 0-D vectors first. 4296 if (resultType.getRank() == 0) { 4297 if (getMaskDimSizes().size() != 1) 4298 return emitError("array attr must have length 1 for 0-D vectors"); 4299 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4300 if (dim != 0 && dim != 1) 4301 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4302 return success(); 4303 } 4304 4305 // Verify that array attr size matches the rank of the vector result. 4306 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4307 return emitOpError( 4308 "must specify array attr of size equal vector result rank"); 4309 // Verify that each array attr element is in bounds of corresponding vector 4310 // result dimension size. 4311 auto resultShape = resultType.getShape(); 4312 SmallVector<int64_t, 4> maskDimSizes; 4313 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4314 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4315 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4316 return emitOpError( 4317 "array attr of size out of bounds of vector result dimension size"); 4318 maskDimSizes.push_back(attrValue); 4319 } 4320 // Verify that if one mask dim size is zero, they all should be zero (because 4321 // the mask region is a conjunction of each mask dimension interval). 4322 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4323 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4324 if (anyZeros && !allZeros) 4325 return emitOpError("expected all mask dim sizes to be zeros, " 4326 "as a result of conjunction with zero mask dim"); 4327 // Verify that if the mask type is scalable, dimensions should be zero because 4328 // constant scalable masks can only be defined for the "none set" or "all set" 4329 // cases, and there is no VLA way to define an "all set" case for 4330 // `vector.constant_mask`. In the future, a convention could be established 4331 // to decide if a specific dimension value could be considered as "all set". 4332 if (resultType.isScalable() && 4333 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4334 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4335 return success(); 4336 } 4337 4338 //===----------------------------------------------------------------------===// 4339 // CreateMaskOp 4340 //===----------------------------------------------------------------------===// 4341 4342 LogicalResult CreateMaskOp::verify() { 4343 auto vectorType = getResult().getType().cast<VectorType>(); 4344 // Verify that an operand was specified for each result vector each dimension. 4345 if (vectorType.getRank() == 0) { 4346 if (getNumOperands() != 1) 4347 return emitOpError( 4348 "must specify exactly one operand for 0-D create_mask"); 4349 } else if (getNumOperands() != 4350 getResult().getType().cast<VectorType>().getRank()) { 4351 return emitOpError( 4352 "must specify an operand for each result vector dimension"); 4353 } 4354 return success(); 4355 } 4356 4357 namespace { 4358 4359 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4360 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4361 public: 4362 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4363 4364 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4365 PatternRewriter &rewriter) const override { 4366 // Return if any of 'createMaskOp' operands are not defined by a constant. 4367 auto isNotDefByConstant = [](Value operand) { 4368 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4369 }; 4370 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4371 return failure(); 4372 4373 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4374 // are negative or zero. 4375 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4376 if (vType.isScalable()) 4377 for (auto opDim : createMaskOp.getOperands()) { 4378 APInt intVal; 4379 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4380 intVal.isStrictlyPositive()) 4381 return failure(); 4382 } 4383 } 4384 4385 // Gather constant mask dimension sizes. 4386 SmallVector<int64_t, 4> maskDimSizes; 4387 for (auto it : llvm::zip(createMaskOp.operands(), 4388 createMaskOp.getType().getShape())) { 4389 auto *defOp = std::get<0>(it).getDefiningOp(); 4390 int64_t maxDimSize = std::get<1>(it); 4391 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4392 dimSize = std::min(dimSize, maxDimSize); 4393 // If one of dim sizes is zero, set all dims to zero. 4394 if (dimSize <= 0) { 4395 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4396 break; 4397 } 4398 maskDimSizes.push_back(dimSize); 4399 } 4400 // Replace 'createMaskOp' with ConstantMaskOp. 4401 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4402 createMaskOp, createMaskOp.getResult().getType(), 4403 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4404 return success(); 4405 } 4406 }; 4407 4408 } // namespace 4409 4410 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4411 MLIRContext *context) { 4412 results.add<CreateMaskFolder>(context); 4413 } 4414 4415 //===----------------------------------------------------------------------===// 4416 // ScanOp 4417 //===----------------------------------------------------------------------===// 4418 4419 LogicalResult ScanOp::verify() { 4420 VectorType srcType = getSourceType(); 4421 VectorType initialType = getInitialValueType(); 4422 // Check reduction dimension < rank. 4423 int64_t srcRank = srcType.getRank(); 4424 int64_t reductionDim = getReductionDim(); 4425 if (reductionDim >= srcRank) 4426 return emitOpError("reduction dimension ") 4427 << reductionDim << " has to be less than " << srcRank; 4428 4429 // Check that rank(initial_value) = rank(src) - 1. 4430 int64_t initialValueRank = initialType.getRank(); 4431 if (initialValueRank != srcRank - 1) 4432 return emitOpError("initial value rank ") 4433 << initialValueRank << " has to be equal to " << srcRank - 1; 4434 4435 // Check shapes of initial value and src. 4436 ArrayRef<int64_t> srcShape = srcType.getShape(); 4437 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4438 SmallVector<int64_t> expectedShape; 4439 for (int i = 0; i < srcRank; i++) { 4440 if (i != reductionDim) 4441 expectedShape.push_back(srcShape[i]); 4442 } 4443 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4444 [](std::tuple<int64_t, int64_t> s) { 4445 return std::get<0>(s) != std::get<1>(s); 4446 })) { 4447 return emitOpError("incompatible input/initial value shapes"); 4448 } 4449 4450 return success(); 4451 } 4452 4453 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4454 RewritePatternSet &patterns) { 4455 patterns 4456 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4457 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4458 StridedSliceConstantMaskFolder, TransposeFolder>( 4459 patterns.getContext()); 4460 } 4461 4462 //===----------------------------------------------------------------------===// 4463 // SplatOp 4464 //===----------------------------------------------------------------------===// 4465 4466 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4467 auto constOperand = operands.front(); 4468 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4469 return {}; 4470 4471 // SplatElementsAttr::get treats single value for second arg as being a splat. 4472 return SplatElementsAttr::get(getType(), {constOperand}); 4473 } 4474 4475 //===----------------------------------------------------------------------===// 4476 // TableGen'd op method definitions 4477 //===----------------------------------------------------------------------===// 4478 4479 #define GET_OP_CLASSES 4480 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4481