1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   // TODO: Add remaining reduction operations.
480   default:
481     (void)emitOptionalError(loc, "Reduction operation type not supported");
482     break;
483   }
484   return nullptr;
485 }
486 
487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
488   return llvm::to_vector<4>(getVectorType().getShape());
489 }
490 
491 namespace {
492 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
493   using OpRewritePattern::OpRewritePattern;
494 
495   LogicalResult matchAndRewrite(ReductionOp reductionOp,
496                                 PatternRewriter &rewriter) const override {
497     if (reductionOp.getVectorType().getDimSize(0) != 1)
498       return failure();
499 
500     Location loc = reductionOp.getLoc();
501     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
502                                               reductionOp.getVector(),
503                                               rewriter.getI64ArrayAttr(0));
504 
505     if (Value acc = reductionOp.getAcc()) {
506       assert(reductionOp.getType().isa<FloatType>());
507       switch (reductionOp.getKind()) {
508       case CombiningKind::ADD:
509         result = rewriter.create<arith::AddFOp>(loc, result, acc);
510         break;
511       case CombiningKind::MUL:
512         result = rewriter.create<arith::MulFOp>(loc, result, acc);
513         break;
514       default:
515         assert(false && "invalid op!");
516       }
517     }
518 
519     rewriter.replaceOp(reductionOp, result);
520     return success();
521   }
522 };
523 } // namespace
524 
525 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
526                                               MLIRContext *context) {
527   results.add<ElideSingleElementReduction>(context);
528 }
529 
530 //===----------------------------------------------------------------------===//
531 // ContractionOp
532 //===----------------------------------------------------------------------===//
533 
534 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
535                                   Value lhs, Value rhs, Value acc,
536                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
537                                   ArrayRef<StringRef> iteratorTypes) {
538   result.addOperands({lhs, rhs, acc});
539   result.addTypes(acc.getType());
540   result.addAttribute(::mlir::getIndexingMapsAttrName(),
541                       builder.getAffineMapArrayAttr(
542                           AffineMap::inferFromExprList(indexingExprs)));
543   result.addAttribute(::mlir::getIteratorTypesAttrName(),
544                       builder.getStrArrayAttr(iteratorTypes));
545 }
546 
547 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
548                                   Value lhs, Value rhs, Value acc,
549                                   ArrayAttr indexingMaps,
550                                   ArrayAttr iteratorTypes) {
551   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
552         ContractionOp::getDefaultKind());
553 }
554 
555 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
556                                   Value lhs, Value rhs, Value acc,
557                                   ArrayAttr indexingMaps,
558                                   ArrayAttr iteratorTypes, CombiningKind kind) {
559   result.addOperands({lhs, rhs, acc});
560   result.addTypes(acc.getType());
561   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
562   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
563   result.addAttribute(ContractionOp::getKindAttrStrName(),
564                       CombiningKindAttr::get(kind, builder.getContext()));
565 }
566 
567 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
568   OpAsmParser::UnresolvedOperand lhsInfo;
569   OpAsmParser::UnresolvedOperand rhsInfo;
570   OpAsmParser::UnresolvedOperand accInfo;
571   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
572   SmallVector<Type, 2> types;
573   Type resultType;
574   auto loc = parser.getCurrentLocation();
575   DictionaryAttr dictAttr;
576   // TODO: Unify linalg op attribute parsing.
577   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
578       parser.parseOperand(lhsInfo) || parser.parseComma() ||
579       parser.parseOperand(rhsInfo) || parser.parseComma() ||
580       parser.parseOperand(accInfo) ||
581       parser.parseTrailingOperandList(masksInfo) ||
582       parser.parseOptionalAttrDict(result.attributes) ||
583       parser.parseColonTypeList(types) ||
584       parser.parseKeywordType("into", resultType) ||
585       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
586       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
587       parser.resolveOperand(accInfo, resultType, result.operands) ||
588       parser.addTypeToList(resultType, result.types))
589     return failure();
590   result.attributes.assign(dictAttr.getValue().begin(),
591                            dictAttr.getValue().end());
592   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
593     result.addAttribute(ContractionOp::getKindAttrStrName(),
594                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
595                                                result.getContext()));
596   }
597   if (masksInfo.empty())
598     return success();
599   if (masksInfo.size() != 2)
600     return parser.emitError(parser.getNameLoc(),
601                             "expected zero or exactly 2 vector mask operands");
602   auto lhsType = types[0].cast<VectorType>();
603   auto rhsType = types[1].cast<VectorType>();
604   auto maskElementType = parser.getBuilder().getI1Type();
605   std::array<Type, 2> maskTypes = {
606       VectorType::Builder(lhsType).setElementType(maskElementType),
607       VectorType::Builder(rhsType).setElementType(maskElementType)};
608   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
609     return failure();
610   return success();
611 }
612 
613 void ContractionOp::print(OpAsmPrinter &p) {
614   // TODO: Unify printing code with linalg ops.
615   auto attrNames = getTraitAttrNames();
616   llvm::StringSet<> traitAttrsSet;
617   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
618   SmallVector<NamedAttribute, 8> attrs;
619   for (auto attr : (*this)->getAttrs())
620     if (traitAttrsSet.count(attr.getName().strref()) > 0)
621       attrs.push_back(attr);
622 
623   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
624   p << " " << dictAttr << " " << getLhs() << ", ";
625   p << getRhs() << ", " << getAcc();
626   if (getMasks().size() == 2)
627     p << ", " << getMasks();
628 
629   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
630   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
631     << getResultType();
632 }
633 
634 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
635                          const std::vector<std::pair<int64_t, int64_t>> &map) {
636   for (auto &dimPair : map) {
637     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
638         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
639         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
640       return false;
641   }
642   return true;
643 }
644 
645 static LogicalResult verifyOutputShape(
646     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
647     Type resType,
648     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
649     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
650   DenseSet<int64_t> lhsContractingDimSet;
651   DenseSet<int64_t> rhsContractingDimSet;
652   for (auto &dimPair : contractingDimMap) {
653     lhsContractingDimSet.insert(dimPair.first);
654     rhsContractingDimSet.insert(dimPair.second);
655   }
656   DenseSet<int64_t> rhsBatchDimSet;
657   for (auto &dimPair : batchDimMap)
658     rhsBatchDimSet.insert(dimPair.second);
659 
660   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
661   SmallVector<int64_t, 4> expectedResultDims;
662   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
663     if (lhsContractingDimSet.count(i) > 0)
664       continue;
665     expectedResultDims.push_back(lhsType.getDimSize(i));
666   }
667 
668   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
669   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
670     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
671       continue;
672     expectedResultDims.push_back(rhsType.getDimSize(i));
673   }
674 
675   // Verify 'expectedResultDims'.
676   if (expectedResultDims.empty()) {
677     // No batch or free dimension implies a scalar result.
678     if (resType.isa<VectorType>() || accType.isa<VectorType>())
679       return op.emitOpError("invalid accumulator/result vector shape");
680   } else {
681     // At least one batch or free dimension implies a vector result.
682     auto resVectorType = resType.dyn_cast<VectorType>();
683     auto accVectorType = accType.dyn_cast<VectorType>();
684     if (!resVectorType || !accVectorType)
685       return op.emitOpError("invalid accumulator/result vector shape");
686 
687     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
688     // types fully define the result vector type. This assumes the affine maps
689     // are well-formed, which must have been verified already.
690     MLIRContext *ctx = op.getContext();
691     AffineMap lhsMap = op.getIndexingMaps()[0];
692     AffineMap rhsMap = op.getIndexingMaps()[1];
693     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
694     for (auto pair :
695          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
696       VectorType v = pair.first;
697       auto map = pair.second;
698       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
699         unsigned pos = map.getDimPosition(idx);
700         if (!extents[pos])
701           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
702       }
703     }
704     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
705            "expected extent along all dimensions.");
706 
707     AffineMap resMap = op.getIndexingMaps()[2];
708     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
709                                      /*symCount=*/0, extents, ctx);
710     // Compose the resMap with the extentsMap, which is a constant map.
711     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
712     assert(llvm::all_of(
713                expectedMap.getResults(),
714                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
715            "expected constant extent along all dimensions.");
716     // Extract the expected shape and build the type.
717     auto expectedShape = llvm::to_vector<4>(
718         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
719           return e.cast<AffineConstantExpr>().getValue();
720         }));
721     auto expected =
722         VectorType::get(expectedShape, resVectorType.getElementType());
723     if (resVectorType != expected || accVectorType != expected)
724       return op.emitOpError(
725                  "invalid accumulator/result vector shape, expected: ")
726              << expected;
727   }
728   return success();
729 }
730 
731 LogicalResult ContractionOp::verify() {
732   auto lhsType = getLhsType();
733   auto rhsType = getRhsType();
734   auto accType = getAccType();
735   auto resType = getResultType();
736 
737   // Verify that an indexing map was specified for each vector operand.
738   if (getIndexingMaps().size() != 3)
739     return emitOpError("expected an indexing map for each vector operand");
740 
741   // Verify that each index map has 'numIterators' inputs, no symbols, and
742   // that the number of map outputs equals the rank of its associated
743   // vector operand.
744   unsigned numIterators = getIteratorTypes().getValue().size();
745   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
746     auto index = it.index();
747     auto map = it.value();
748     if (map.getNumSymbols() != 0)
749       return emitOpError("expected indexing map ")
750              << index << " to have no symbols";
751     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
752     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
753     // Verify that the map has the right number of inputs, outputs, and indices.
754     // This also correctly accounts for (..) -> () for rank-0 results.
755     if (map.getNumDims() != numIterators)
756       return emitOpError("expected indexing map ")
757              << index << " to have " << numIterators << " number of inputs";
758     if (map.getNumResults() != rank)
759       return emitOpError("expected indexing map ")
760              << index << " to have " << rank << " number of outputs";
761     if (!map.isProjectedPermutation())
762       return emitOpError("expected indexing map ")
763              << index << " to be a projected permutation of its inputs";
764   }
765 
766   auto contractingDimMap = getContractingDimMap();
767   auto batchDimMap = getBatchDimMap();
768 
769   // Verify at least one contracting dimension pair was specified.
770   if (contractingDimMap.empty())
771     return emitOpError("expected at least one contracting dimension pair");
772 
773   // Verify contracting dimension map was properly constructed.
774   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
775     return emitOpError("invalid contracting dimension map");
776 
777   // Verify batch dimension map was properly constructed.
778   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
779     return emitOpError("invalid batch dimension map");
780 
781   // Verify 'accType' and 'resType' shape.
782   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
783                                contractingDimMap, batchDimMap)))
784     return failure();
785 
786   // Verify that either two vector masks are set or none are set.
787   auto lhsMaskType = getLHSVectorMaskType();
788   auto rhsMaskType = getRHSVectorMaskType();
789   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
790     return emitOpError("invalid number of vector masks specified");
791   if (lhsMaskType && rhsMaskType) {
792     // Verify mask rank == argument rank.
793     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
794         rhsMaskType.getShape().size() != rhsType.getShape().size())
795       return emitOpError("invalid vector mask rank");
796   }
797 
798   // Verify supported combining kind.
799   auto vectorType = resType.dyn_cast<VectorType>();
800   auto elementType = vectorType ? vectorType.getElementType() : resType;
801   if (!isSupportedCombiningKind(getKind(), elementType))
802     return emitOpError("unsupported contraction type");
803 
804   return success();
805 }
806 
807 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
808   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
809                                          ::mlir::getIteratorTypesAttrName(),
810                                          ContractionOp::getKindAttrStrName()};
811   return llvm::makeArrayRef(names);
812 }
813 
814 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
815   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
816     if (targetExpr == map.getResult(i))
817       return i;
818   return -1;
819 }
820 
821 static std::vector<std::pair<int64_t, int64_t>>
822 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
823           StringRef targetIteratorTypeName, MLIRContext *context) {
824   std::vector<std::pair<int64_t, int64_t>> dimMap;
825   for (const auto &it : llvm::enumerate(iteratorTypes)) {
826     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
827     if (iteratorTypeName != targetIteratorTypeName)
828       continue;
829     // Search lhs/rhs map results for 'targetExpr'.
830     auto targetExpr = getAffineDimExpr(it.index(), context);
831     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
832     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
833     if (lhsDim >= 0 && rhsDim >= 0)
834       dimMap.emplace_back(lhsDim, rhsDim);
835   }
836   return dimMap;
837 }
838 
839 void ContractionOp::getIterationBounds(
840     SmallVectorImpl<int64_t> &iterationBounds) {
841   auto lhsShape = getLhsType().getShape();
842   auto resVectorType = getResultType().dyn_cast<VectorType>();
843   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
844   SmallVector<int64_t, 2> iterationShape;
845   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
846     // Search lhs/rhs map results for 'targetExpr'.
847     auto targetExpr = getAffineDimExpr(it.index(), getContext());
848     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
849     if (iteratorTypeName == getReductionIteratorTypeName()) {
850       // Get reduction dim size from lhs shape (same size in rhsShape).
851       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
852       assert(lhsDimIndex >= 0);
853       iterationBounds.push_back(lhsShape[lhsDimIndex]);
854       continue;
855     }
856     // Get parallel dimension size from result shape.
857     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
858     assert(resDimIndex >= 0);
859     assert(resVectorType != nullptr);
860     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
861   }
862 }
863 
864 void ContractionOp::getIterationIndexMap(
865     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
866   unsigned numMaps = getIndexingMaps().size();
867   iterationIndexMap.resize(numMaps);
868   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
869     auto index = it.index();
870     auto map = it.value();
871     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
872       auto dim = map.getResult(i).cast<AffineDimExpr>();
873       iterationIndexMap[index][dim.getPosition()] = i;
874     }
875   }
876 }
877 
878 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
879   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
880   return getDimMap(indexingMaps, getIteratorTypes(),
881                    getReductionIteratorTypeName(), getContext());
882 }
883 
884 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
885   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
886   return getDimMap(indexingMaps, getIteratorTypes(),
887                    getParallelIteratorTypeName(), getContext());
888 }
889 
890 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
891   SmallVector<int64_t, 4> shape;
892   getIterationBounds(shape);
893   return shape;
894 }
895 
896 /// Return a fused vector::ContractionOp which represents a patterns such as:
897 ///
898 /// ```mlir
899 ///    %c0 = vector.constant 0: ...
900 ///    %c = vector.contract %a, %b, %c0: ...
901 ///    %e = add %c, %d: ...
902 /// ```
903 ///
904 /// by:
905 ///
906 /// ```mlir
907 ///    %e = vector.contract %a, %b, %d: ...
908 /// ```
909 ///
910 /// Return null if the canonicalization does not apply.
911 // TODO: This should be a folding of Add into Contract in core but while they
912 // live in different dialects, it is not possible without unnatural
913 // dependencies.
914 template <typename AddOpType>
915 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
916   using OpRewritePattern<AddOpType>::OpRewritePattern;
917 
918   LogicalResult matchAndRewrite(AddOpType addOp,
919                                 PatternRewriter &rewriter) const override {
920     auto canonicalize = [&](Value maybeContraction,
921                             Value otherOperand) -> vector::ContractionOp {
922       vector::ContractionOp contractionOp =
923           dyn_cast_or_null<vector::ContractionOp>(
924               maybeContraction.getDefiningOp());
925       if (!contractionOp)
926         return vector::ContractionOp();
927       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
928               contractionOp.getAcc().getDefiningOp())) {
929         if (maybeZero.getValue() ==
930             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
931           BlockAndValueMapping bvm;
932           bvm.map(contractionOp.getAcc(), otherOperand);
933           auto newContraction =
934               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
935           rewriter.replaceOp(addOp, newContraction.getResult());
936           return newContraction;
937         }
938       }
939       return vector::ContractionOp();
940     };
941 
942     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
943     vector::ContractionOp contract = canonicalize(a, b);
944     contract = contract ? contract : canonicalize(b, a);
945     return contract ? success() : failure();
946   }
947 };
948 
949 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
950                                                 MLIRContext *context) {
951   results.add<CanonicalizeContractAdd<arith::AddIOp>,
952               CanonicalizeContractAdd<arith::AddFOp>>(context);
953 }
954 
955 //===----------------------------------------------------------------------===//
956 // ExtractElementOp
957 //===----------------------------------------------------------------------===//
958 
959 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
960                                      Value source) {
961   result.addOperands({source});
962   result.addTypes(source.getType().cast<VectorType>().getElementType());
963 }
964 
965 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
966                                      Value source, Value position) {
967   result.addOperands({source, position});
968   result.addTypes(source.getType().cast<VectorType>().getElementType());
969 }
970 
971 LogicalResult vector::ExtractElementOp::verify() {
972   VectorType vectorType = getVectorType();
973   if (vectorType.getRank() == 0) {
974     if (getPosition())
975       return emitOpError("expected position to be empty with 0-D vector");
976     return success();
977   }
978   if (vectorType.getRank() != 1)
979     return emitOpError("unexpected >1 vector rank");
980   if (!getPosition())
981     return emitOpError("expected position for 1-D vector");
982   return success();
983 }
984 
985 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
986   // Skip the 0-D vector here now.
987   if (operands.size() < 2)
988     return {};
989 
990   Attribute src = operands[0];
991   Attribute pos = operands[1];
992 
993   // Fold extractelement (splat X) -> X.
994   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
995     return splat.getInput();
996 
997   if (!pos || !src)
998     return {};
999 
1000   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
1001 
1002   auto attr = pos.dyn_cast<IntegerAttr>();
1003   uint64_t posIdx = attr.getInt();
1004 
1005   return srcElements[posIdx];
1006 }
1007 
1008 //===----------------------------------------------------------------------===//
1009 // ExtractOp
1010 //===----------------------------------------------------------------------===//
1011 
1012 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1013                               Value source, ArrayRef<int64_t> position) {
1014   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1015 }
1016 
1017 // Convenience builder which assumes the values are constant indices.
1018 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1019                               Value source, ValueRange position) {
1020   SmallVector<int64_t, 4> positionConstants =
1021       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1022         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1023       }));
1024   build(builder, result, source, positionConstants);
1025 }
1026 
1027 LogicalResult
1028 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1029                             ValueRange operands, DictionaryAttr attributes,
1030                             RegionRange,
1031                             SmallVectorImpl<Type> &inferredReturnTypes) {
1032   ExtractOp::Adaptor op(operands, attributes);
1033   auto vectorType = op.getVector().getType().cast<VectorType>();
1034   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1035     inferredReturnTypes.push_back(vectorType.getElementType());
1036   } else {
1037     auto n =
1038         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1039     inferredReturnTypes.push_back(VectorType::get(
1040         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1041   }
1042   return success();
1043 }
1044 
1045 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1046   // Allow extracting 1-element vectors instead of scalars.
1047   auto isCompatible = [](TypeRange l, TypeRange r) {
1048     auto vectorType = l.front().dyn_cast<VectorType>();
1049     return vectorType && vectorType.getShape().equals({1}) &&
1050            vectorType.getElementType() == r.front();
1051   };
1052   if (l.size() == 1 && r.size() == 1 &&
1053       (isCompatible(l, r) || isCompatible(r, l)))
1054     return true;
1055   return l == r;
1056 }
1057 
1058 LogicalResult vector::ExtractOp::verify() {
1059   auto positionAttr = getPosition().getValue();
1060   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1061     return emitOpError(
1062         "expected position attribute of rank smaller than vector rank");
1063   for (const auto &en : llvm::enumerate(positionAttr)) {
1064     auto attr = en.value().dyn_cast<IntegerAttr>();
1065     if (!attr || attr.getInt() < 0 ||
1066         attr.getInt() >= getVectorType().getDimSize(en.index()))
1067       return emitOpError("expected position attribute #")
1068              << (en.index() + 1)
1069              << " to be a non-negative integer smaller than the corresponding "
1070                 "vector dimension";
1071   }
1072   return success();
1073 }
1074 
1075 template <typename IntType>
1076 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1077   return llvm::to_vector<4>(llvm::map_range(
1078       arrayAttr.getAsRange<IntegerAttr>(),
1079       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1080 }
1081 
1082 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1083 /// positions.
1084 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1085   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1086     return failure();
1087 
1088   SmallVector<int64_t, 4> globalPosition;
1089   ExtractOp currentOp = extractOp;
1090   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1091   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1092   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1093     currentOp = nextOp;
1094     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1095     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1096   }
1097   extractOp.setOperand(currentOp.getVector());
1098   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1099   OpBuilder b(extractOp.getContext());
1100   std::reverse(globalPosition.begin(), globalPosition.end());
1101   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1102                      b.getI64ArrayAttr(globalPosition));
1103   return success();
1104 }
1105 
1106 namespace {
1107 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1108 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1109 /// Compose TransposeOp permutations as we walk back.
1110 /// This helper class keeps an updated extraction position `extractPosition`
1111 /// with extra trailing sentinels.
1112 /// The sentinels encode the internal transposition status of the result vector.
1113 /// As we iterate, extractPosition is permuted and updated.
1114 class ExtractFromInsertTransposeChainState {
1115 public:
1116   ExtractFromInsertTransposeChainState(ExtractOp e);
1117 
1118   /// Iterate over producing insert and transpose ops until we find a fold.
1119   Value fold();
1120 
1121 private:
1122   /// Return true if the vector at position `a` is contained within the vector
1123   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1124   /// is a prefix of `b`.
1125   template <typename ContainerA, typename ContainerB>
1126   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1127     return a.size() <= b.size() &&
1128            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1129   }
1130 
1131   /// Return true if the vector at position `a` intersects the vector at
1132   /// position `b`. Under insert/extract semantics, this is the same as equality
1133   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1134   /// Comparison is on the common prefix (i.e. zip).
1135   template <typename ContainerA, typename ContainerB>
1136   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1137     for (auto it : llvm::zip(a, b)) {
1138       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1139         continue;
1140       if (std::get<0>(it) != std::get<1>(it))
1141         return false;
1142     }
1143     return true;
1144   }
1145 
1146   /// Folding is only possible in the absence of an internal permutation in the
1147   /// result vector.
1148   bool canFold() {
1149     return (sentinels ==
1150             makeArrayRef(extractPosition).drop_front(extractedRank));
1151   }
1152 
1153   // Helper to get the next defining op of interest.
1154   void updateStateForNextIteration(Value v) {
1155     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1156     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1157   };
1158 
1159   // Case 1. If we hit a transpose, just compose the map and iterate.
1160   // Invariant: insert + transpose do not change rank, we can always compose.
1161   LogicalResult handleTransposeOp();
1162 
1163   // Case 2: the insert position matches extractPosition exactly, early return.
1164   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1165 
1166   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1167   /// portion of the source of the insert.
1168   /// Example:
1169   /// ```
1170   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1171   /// // extractPosition == [1, 2, 3]
1172   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1173   /// // can fold to vector.extract %source[0, 3]
1174   /// %ext = vector.extract %source[3]: vector<5x6>
1175   /// ```
1176   /// To traverse through %source, we need to set the leading dims to 0 and
1177   /// drop the extra leading dims.
1178   /// This method updates the internal state.
1179   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1180 
1181   /// Try to fold in place to extract(source, extractPosition) and return the
1182   /// folded result. Return null if folding is not possible (e.g. due to an
1183   /// internal tranposition in the result).
1184   Value tryToFoldExtractOpInPlace(Value source);
1185 
1186   ExtractOp extractOp;
1187   int64_t vectorRank;
1188   int64_t extractedRank;
1189 
1190   InsertOp nextInsertOp;
1191   TransposeOp nextTransposeOp;
1192 
1193   /// Sentinel values that encode the internal permutation status of the result.
1194   /// They are set to (-1, ... , -k) at the beginning and appended to
1195   /// `extractPosition`.
1196   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1197   /// ensure that there is no internal transposition.
1198   /// Internal transposition cannot be accounted for with a folding pattern.
1199   // TODO: We could relax the internal transposition with an extra transposition
1200   // operation in a future canonicalizer.
1201   SmallVector<int64_t> sentinels;
1202   SmallVector<int64_t> extractPosition;
1203 };
1204 } // namespace
1205 
1206 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1207     ExtractOp e)
1208     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1209       extractedRank(extractOp.getPosition().size()) {
1210   assert(vectorRank >= extractedRank && "extracted pos overflow");
1211   sentinels.reserve(vectorRank - extractedRank);
1212   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1213     sentinels.push_back(-(i + 1));
1214   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1215   llvm::append_range(extractPosition, sentinels);
1216 }
1217 
1218 // Case 1. If we hit a transpose, just compose the map and iterate.
1219 // Invariant: insert + transpose do not change rank, we can always compose.
1220 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1221   if (!nextTransposeOp)
1222     return failure();
1223   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1224   AffineMap m = inversePermutation(
1225       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1226   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1227   return success();
1228 }
1229 
1230 // Case 2: the insert position matches extractPosition exactly, early return.
1231 LogicalResult
1232 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1233     Value &res) {
1234   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1235   if (makeArrayRef(insertedPos) !=
1236       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1237     return failure();
1238   // Case 2.a. early-exit fold.
1239   res = nextInsertOp.getSource();
1240   // Case 2.b. if internal transposition is present, canFold will be false.
1241   return success();
1242 }
1243 
1244 /// Case 3: if inserted position is a prefix of extractPosition,
1245 /// extract a portion of the source of the insertion.
1246 /// This method updates the internal state.
1247 LogicalResult
1248 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1249   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1250   if (!isContainedWithin(insertedPos, extractPosition))
1251     return failure();
1252   // Set leading dims to zero.
1253   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1254   // Drop extra leading dims.
1255   extractPosition.erase(extractPosition.begin(),
1256                         extractPosition.begin() + insertedPos.size());
1257   extractedRank = extractPosition.size() - sentinels.size();
1258   // Case 3.a. early-exit fold (break and delegate to post-while path).
1259   res = nextInsertOp.getSource();
1260   // Case 3.b. if internal transposition is present, canFold will be false.
1261   return success();
1262 }
1263 
1264 /// Try to fold in place to extract(source, extractPosition) and return the
1265 /// folded result. Return null if folding is not possible (e.g. due to an
1266 /// internal tranposition in the result).
1267 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1268     Value source) {
1269   // If we can't fold (either internal transposition, or nothing to fold), bail.
1270   bool nothingToFold = (source == extractOp.getVector());
1271   if (nothingToFold || !canFold())
1272     return Value();
1273   // Otherwise, fold by updating the op inplace and return its result.
1274   OpBuilder b(extractOp.getContext());
1275   extractOp->setAttr(
1276       extractOp.getPositionAttrName(),
1277       b.getI64ArrayAttr(
1278           makeArrayRef(extractPosition).take_front(extractedRank)));
1279   extractOp.getVectorMutable().assign(source);
1280   return extractOp.getResult();
1281 }
1282 
1283 /// Iterate over producing insert and transpose ops until we find a fold.
1284 Value ExtractFromInsertTransposeChainState::fold() {
1285   Value valueToExtractFrom = extractOp.getVector();
1286   updateStateForNextIteration(valueToExtractFrom);
1287   while (nextInsertOp || nextTransposeOp) {
1288     // Case 1. If we hit a transpose, just compose the map and iterate.
1289     // Invariant: insert + transpose do not change rank, we can always compose.
1290     if (succeeded(handleTransposeOp())) {
1291       valueToExtractFrom = nextTransposeOp.getVector();
1292       updateStateForNextIteration(valueToExtractFrom);
1293       continue;
1294     }
1295 
1296     Value result;
1297     // Case 2: the position match exactly.
1298     if (succeeded(handleInsertOpWithMatchingPos(result)))
1299       return result;
1300 
1301     // Case 3: if the inserted position is a prefix of extractPosition, we can
1302     // just extract a portion of the source of the insert.
1303     if (succeeded(handleInsertOpWithPrefixPos(result)))
1304       return tryToFoldExtractOpInPlace(result);
1305 
1306     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1307     // values. This is a more difficult case and we bail.
1308     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1309     if (isContainedWithin(extractPosition, insertedPos) ||
1310         intersectsWhereNonNegative(extractPosition, insertedPos))
1311       return Value();
1312 
1313     // Case 5: No intersection, we forward the extract to insertOp.dest().
1314     valueToExtractFrom = nextInsertOp.getDest();
1315     updateStateForNextIteration(valueToExtractFrom);
1316   }
1317   // If after all this we can fold, go for it.
1318   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1319 }
1320 
1321 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1322 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1323   Operation *defOp = extractOp.getVector().getDefiningOp();
1324   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1325     return Value();
1326   Value source = defOp->getOperand(0);
1327   if (extractOp.getType() == source.getType())
1328     return source;
1329   auto getRank = [](Type type) {
1330     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1331   };
1332   unsigned broadcastSrcRank = getRank(source.getType());
1333   unsigned extractResultRank = getRank(extractOp.getType());
1334   if (extractResultRank >= broadcastSrcRank)
1335     return Value();
1336   // Check that the dimension of the result haven't been broadcasted.
1337   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1338   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1339   if (extractVecType && broadcastVecType &&
1340       extractVecType.getShape() !=
1341           broadcastVecType.getShape().take_back(extractResultRank))
1342     return Value();
1343   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1344   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1345   extractPos.erase(extractPos.begin(),
1346                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1347   extractOp.setOperand(source);
1348   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1349   OpBuilder b(extractOp.getContext());
1350   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1351                      b.getI64ArrayAttr(extractPos));
1352   return extractOp.getResult();
1353 }
1354 
1355 // Fold extractOp with source coming from ShapeCast op.
1356 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1357   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1358   if (!shapeCastOp)
1359     return Value();
1360   // Get the nth dimension size starting from lowest dimension.
1361   auto getDimReverse = [](VectorType type, int64_t n) {
1362     return type.getShape().take_back(n + 1).front();
1363   };
1364   int64_t destinationRank =
1365       extractOp.getType().isa<VectorType>()
1366           ? extractOp.getType().cast<VectorType>().getRank()
1367           : 0;
1368   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1369     return Value();
1370   if (destinationRank > 0) {
1371     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1372     for (int64_t i = 0; i < destinationRank; i++) {
1373       // The lowest dimension of of the destination must match the lowest
1374       // dimension of the shapecast op source.
1375       // TODO: This case could be support in a canonicalization pattern.
1376       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1377           getDimReverse(destinationType, i))
1378         return Value();
1379     }
1380   }
1381   // Extract the strides associated with the extract op vector source. Then use
1382   // this to calculate a linearized position for the extract.
1383   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1384   std::reverse(extractedPos.begin(), extractedPos.end());
1385   SmallVector<int64_t, 4> strides;
1386   int64_t stride = 1;
1387   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1388     strides.push_back(stride);
1389     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1390   }
1391 
1392   int64_t position = linearize(extractedPos, strides);
1393   // Then extract the strides associated to the shapeCast op vector source and
1394   // delinearize the position using those strides.
1395   SmallVector<int64_t, 4> newStrides;
1396   int64_t numDimension =
1397       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1398   stride = 1;
1399   for (int64_t i = 0; i < numDimension; i++) {
1400     newStrides.push_back(stride);
1401     stride *=
1402         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1403   }
1404   std::reverse(newStrides.begin(), newStrides.end());
1405   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1406   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1407   OpBuilder b(extractOp.getContext());
1408   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1409                      b.getI64ArrayAttr(newPosition));
1410   extractOp.setOperand(shapeCastOp.getSource());
1411   return extractOp.getResult();
1412 }
1413 
1414 /// Fold an ExtractOp from ExtractStridedSliceOp.
1415 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1416   auto extractStridedSliceOp =
1417       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1418   if (!extractStridedSliceOp)
1419     return Value();
1420   // Return if 'extractStridedSliceOp' has non-unit strides.
1421   if (extractStridedSliceOp.hasNonUnitStrides())
1422     return Value();
1423 
1424   // Trim offsets for dimensions fully extracted.
1425   auto sliceOffsets =
1426       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1427   while (!sliceOffsets.empty()) {
1428     size_t lastOffset = sliceOffsets.size() - 1;
1429     if (sliceOffsets.back() != 0 ||
1430         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1431             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1432       break;
1433     sliceOffsets.pop_back();
1434   }
1435   unsigned destinationRank = 0;
1436   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1437     destinationRank = vecType.getRank();
1438   // The dimensions of the result need to be untouched by the
1439   // extractStridedSlice op.
1440   if (destinationRank >
1441       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1442     return Value();
1443   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1444   assert(extractedPos.size() >= sliceOffsets.size());
1445   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1446     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1447   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1448   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1449   OpBuilder b(extractOp.getContext());
1450   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1451                      b.getI64ArrayAttr(extractedPos));
1452   return extractOp.getResult();
1453 }
1454 
1455 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1456 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1457   int64_t destinationRank = op.getType().isa<VectorType>()
1458                                 ? op.getType().cast<VectorType>().getRank()
1459                                 : 0;
1460   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1461   while (insertOp) {
1462     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1463                              insertOp.getSourceVectorType().getRank();
1464     if (destinationRank > insertOp.getSourceVectorType().getRank())
1465       return Value();
1466     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1467     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1468 
1469     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1470           return attr.cast<IntegerAttr>().getInt() != 1;
1471         }))
1472       return Value();
1473     bool disjoint = false;
1474     SmallVector<int64_t, 4> offsetDiffs;
1475     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1476       int64_t start = insertOffsets[dim];
1477       int64_t size =
1478           (dim < insertRankDiff)
1479               ? 1
1480               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1481       int64_t end = start + size;
1482       int64_t offset = extractOffsets[dim];
1483       // Check if the start of the extract offset is in the interval inserted.
1484       if (start <= offset && offset < end) {
1485         if (dim >= insertRankDiff)
1486           offsetDiffs.push_back(offset - start);
1487         continue;
1488       }
1489       disjoint = true;
1490       break;
1491     }
1492     // The extract element chunk overlap with the vector inserted.
1493     if (!disjoint) {
1494       // If any of the inner dimensions are only partially inserted we have a
1495       // partial overlap.
1496       int64_t srcRankDiff =
1497           insertOp.getSourceVectorType().getRank() - destinationRank;
1498       for (int64_t i = 0; i < destinationRank; i++) {
1499         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1500             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1501                                                     insertRankDiff))
1502           return Value();
1503       }
1504       op.getVectorMutable().assign(insertOp.getSource());
1505       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1506       OpBuilder b(op.getContext());
1507       op->setAttr(ExtractOp::getPositionAttrStrName(),
1508                   b.getI64ArrayAttr(offsetDiffs));
1509       return op.getResult();
1510     }
1511     // If the chunk extracted is disjoint from the chunk inserted, keep
1512     // looking in the insert chain.
1513     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1514   }
1515   return Value();
1516 }
1517 
1518 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1519   if (getPosition().empty())
1520     return getVector();
1521   if (succeeded(foldExtractOpFromExtractChain(*this)))
1522     return getResult();
1523   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1524     return res;
1525   if (auto res = foldExtractFromBroadcast(*this))
1526     return res;
1527   if (auto res = foldExtractFromShapeCast(*this))
1528     return res;
1529   if (auto val = foldExtractFromExtractStrided(*this))
1530     return val;
1531   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1532     return val;
1533   return OpFoldResult();
1534 }
1535 
1536 namespace {
1537 
1538 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1539 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1540 public:
1541   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1542 
1543   LogicalResult matchAndRewrite(ExtractOp extractOp,
1544                                 PatternRewriter &rewriter) const override {
1545     Operation *defOp = extractOp.getVector().getDefiningOp();
1546     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1547       return failure();
1548 
1549     Value source = defOp->getOperand(0);
1550     if (extractOp.getType() == source.getType())
1551       return failure();
1552     auto getRank = [](Type type) {
1553       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1554     };
1555     unsigned broadcastSrcRank = getRank(source.getType());
1556     unsigned extractResultRank = getRank(extractOp.getType());
1557     // We only consider the case where the rank of the source is less than or
1558     // equal to the rank of the extract dst. The other cases are handled in the
1559     // folding patterns.
1560     if (extractResultRank < broadcastSrcRank)
1561       return failure();
1562     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1563         extractOp, extractOp.getType(), source);
1564     return success();
1565   }
1566 };
1567 
1568 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1569 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1570 public:
1571   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1572 
1573   LogicalResult matchAndRewrite(ExtractOp extractOp,
1574                                 PatternRewriter &rewriter) const override {
1575     // Return if 'extractStridedSliceOp' operand is not defined by a
1576     // ConstantOp.
1577     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1578     if (!constantOp)
1579       return failure();
1580     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1581     if (!dense)
1582       return failure();
1583     Attribute newAttr = dense.getSplatValue<Attribute>();
1584     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1585       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1586     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1587     return success();
1588   }
1589 };
1590 
1591 } // namespace
1592 
1593 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1594                                             MLIRContext *context) {
1595   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1596 }
1597 
1598 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1599                                        SmallVectorImpl<int64_t> &results) {
1600   for (auto attr : arrayAttr)
1601     results.push_back(attr.cast<IntegerAttr>().getInt());
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 // ExtractMapOp
1606 //===----------------------------------------------------------------------===//
1607 
1608 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1609                          Value vector, ValueRange ids,
1610                          ArrayRef<int64_t> multiplicity,
1611                          AffineMap permutationMap) {
1612   assert(ids.size() == multiplicity.size() &&
1613          ids.size() == permutationMap.getNumResults());
1614   assert(permutationMap.isProjectedPermutation());
1615   VectorType type = vector.getType().cast<VectorType>();
1616   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1617                                    type.getShape().end());
1618   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1619     AffineExpr expr = permutationMap.getResult(i);
1620     auto dim = expr.cast<AffineDimExpr>();
1621     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1622   }
1623   VectorType resultType = VectorType::get(newShape, type.getElementType());
1624   ExtractMapOp::build(builder, result, resultType, vector, ids);
1625 }
1626 
1627 LogicalResult ExtractMapOp::verify() {
1628   if (getSourceVectorType().getRank() != getResultType().getRank())
1629     return emitOpError("expected source and destination vectors of same rank");
1630   unsigned numId = 0;
1631   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1632     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1633         0)
1634       return emitOpError("source vector dimensions must be a multiple of "
1635                          "destination vector dimensions");
1636     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1637       numId++;
1638   }
1639   if (numId != getIds().size())
1640     return emitOpError("expected number of ids must match the number of "
1641                        "dimensions distributed");
1642   return success();
1643 }
1644 
1645 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1646   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1647   if (insert == nullptr || getType() != insert.getVector().getType() ||
1648       getIds() != insert.getIds())
1649     return {};
1650   return insert.getVector();
1651 }
1652 
1653 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1654   assert(multiplicity.empty());
1655   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1656     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1657       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1658                              getResultType().getDimSize(i));
1659   }
1660 }
1661 
1662 template <typename MapOp>
1663 AffineMap calculateImplicitMap(MapOp op) {
1664   SmallVector<AffineExpr, 4> perm;
1665   // Check which dimension have a multiplicity greater than 1 and associated
1666   // them to the IDs in order.
1667   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1668     if (op.getSourceVectorType().getDimSize(i) !=
1669         op.getResultType().getDimSize(i))
1670       perm.push_back(getAffineDimExpr(i, op.getContext()));
1671   }
1672   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1673                             op.getContext());
1674   return map;
1675 }
1676 
1677 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1678 
1679 //===----------------------------------------------------------------------===//
1680 // FmaOp
1681 //===----------------------------------------------------------------------===//
1682 
1683 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1684   return llvm::to_vector<4>(getVectorType().getShape());
1685 }
1686 
1687 //===----------------------------------------------------------------------===//
1688 // BroadcastOp
1689 //===----------------------------------------------------------------------===//
1690 
1691 BroadcastableToResult
1692 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1693                                 std::pair<int, int> *mismatchingDims) {
1694   // Broadcast scalar to vector of the same element type.
1695   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1696       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1697     return BroadcastableToResult::Success;
1698   // From now on, only vectors broadcast.
1699   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1700   if (!srcVectorType)
1701     return BroadcastableToResult::SourceTypeNotAVector;
1702 
1703   int64_t srcRank = srcVectorType.getRank();
1704   int64_t dstRank = dstVectorType.getRank();
1705   if (srcRank > dstRank)
1706     return BroadcastableToResult::SourceRankHigher;
1707   // Source has an exact match or singleton value for all trailing dimensions
1708   // (all leading dimensions are simply duplicated).
1709   int64_t lead = dstRank - srcRank;
1710   for (int64_t r = 0; r < srcRank; ++r) {
1711     int64_t srcDim = srcVectorType.getDimSize(r);
1712     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1713     if (srcDim != 1 && srcDim != dstDim) {
1714       if (mismatchingDims) {
1715         mismatchingDims->first = srcDim;
1716         mismatchingDims->second = dstDim;
1717       }
1718       return BroadcastableToResult::DimensionMismatch;
1719     }
1720   }
1721 
1722   return BroadcastableToResult::Success;
1723 }
1724 
1725 LogicalResult BroadcastOp::verify() {
1726   std::pair<int, int> mismatchingDims;
1727   BroadcastableToResult res =
1728       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1729   if (res == BroadcastableToResult::Success)
1730     return success();
1731   if (res == BroadcastableToResult::SourceRankHigher)
1732     return emitOpError("source rank higher than destination rank");
1733   if (res == BroadcastableToResult::DimensionMismatch)
1734     return emitOpError("dimension mismatch (")
1735            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1736   if (res == BroadcastableToResult::SourceTypeNotAVector)
1737     return emitOpError("source type is not a vector");
1738   llvm_unreachable("unexpected vector.broadcast op error");
1739 }
1740 
1741 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1742   if (getSourceType() == getVectorType())
1743     return getSource();
1744   if (!operands[0])
1745     return {};
1746   auto vectorType = getVectorType();
1747   if (operands[0].getType().isIntOrIndexOrFloat())
1748     return DenseElementsAttr::get(vectorType, operands[0]);
1749   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1750     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1751   return {};
1752 }
1753 
1754 namespace {
1755 
1756 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1757 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1758   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1759 
1760   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1761                                 PatternRewriter &rewriter) const override {
1762     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1763     if (!srcBroadcast)
1764       return failure();
1765     rewriter.replaceOpWithNewOp<BroadcastOp>(
1766         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1767     return success();
1768   }
1769 };
1770 } // namespace
1771 
1772 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1773                                               MLIRContext *context) {
1774   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1775   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1776   results.add<BroadcastFolder>(context);
1777 }
1778 
1779 //===----------------------------------------------------------------------===//
1780 // ShuffleOp
1781 //===----------------------------------------------------------------------===//
1782 
1783 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1784                       Value v2, ArrayRef<int64_t> mask) {
1785   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1786 }
1787 
1788 LogicalResult ShuffleOp::verify() {
1789   VectorType resultType = getVectorType();
1790   VectorType v1Type = getV1VectorType();
1791   VectorType v2Type = getV2VectorType();
1792   // Verify ranks.
1793   int64_t resRank = resultType.getRank();
1794   int64_t v1Rank = v1Type.getRank();
1795   int64_t v2Rank = v2Type.getRank();
1796   if (resRank != v1Rank || v1Rank != v2Rank)
1797     return emitOpError("rank mismatch");
1798   // Verify all but leading dimension sizes.
1799   for (int64_t r = 1; r < v1Rank; ++r) {
1800     int64_t resDim = resultType.getDimSize(r);
1801     int64_t v1Dim = v1Type.getDimSize(r);
1802     int64_t v2Dim = v2Type.getDimSize(r);
1803     if (resDim != v1Dim || v1Dim != v2Dim)
1804       return emitOpError("dimension mismatch");
1805   }
1806   // Verify mask length.
1807   auto maskAttr = getMask().getValue();
1808   int64_t maskLength = maskAttr.size();
1809   if (maskLength <= 0)
1810     return emitOpError("invalid mask length");
1811   if (maskLength != resultType.getDimSize(0))
1812     return emitOpError("mask length mismatch");
1813   // Verify all indices.
1814   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1815   for (const auto &en : llvm::enumerate(maskAttr)) {
1816     auto attr = en.value().dyn_cast<IntegerAttr>();
1817     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1818       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1819   }
1820   return success();
1821 }
1822 
1823 LogicalResult
1824 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1825                             ValueRange operands, DictionaryAttr attributes,
1826                             RegionRange,
1827                             SmallVectorImpl<Type> &inferredReturnTypes) {
1828   ShuffleOp::Adaptor op(operands, attributes);
1829   auto v1Type = op.getV1().getType().cast<VectorType>();
1830   // Construct resulting type: leading dimension matches mask length,
1831   // all trailing dimensions match the operands.
1832   SmallVector<int64_t, 4> shape;
1833   shape.reserve(v1Type.getRank());
1834   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1835   llvm::append_range(shape, v1Type.getShape().drop_front());
1836   inferredReturnTypes.push_back(
1837       VectorType::get(shape, v1Type.getElementType()));
1838   return success();
1839 }
1840 
1841 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1842   uint64_t expected = begin;
1843   return idxArr.size() == width &&
1844          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1845                       [&expected](auto attr) {
1846                         return attr.getZExtValue() == expected++;
1847                       });
1848 }
1849 
1850 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1851   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1852   if (!getV1VectorType().isScalable() &&
1853       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1854     return getV1();
1855   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1856   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1857       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1858                        getV2VectorType().getDimSize(0)))
1859     return getV2();
1860 
1861   Attribute lhs = operands.front(), rhs = operands.back();
1862   if (!lhs || !rhs)
1863     return {};
1864 
1865   auto lhsType = lhs.getType().cast<VectorType>();
1866   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1867   // manipulation.
1868   if (lhsType.getRank() != 1)
1869     return {};
1870   int64_t lhsSize = lhsType.getDimSize(0);
1871 
1872   SmallVector<Attribute> results;
1873   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1874   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1875   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1876     int64_t i = index.getZExtValue();
1877     if (i >= lhsSize) {
1878       results.push_back(rhsElements[i - lhsSize]);
1879     } else {
1880       results.push_back(lhsElements[i]);
1881     }
1882   }
1883 
1884   return DenseElementsAttr::get(getVectorType(), results);
1885 }
1886 
1887 //===----------------------------------------------------------------------===//
1888 // InsertElementOp
1889 //===----------------------------------------------------------------------===//
1890 
1891 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1892                             Value source, Value dest) {
1893   build(builder, result, source, dest, {});
1894 }
1895 
1896 LogicalResult InsertElementOp::verify() {
1897   auto dstVectorType = getDestVectorType();
1898   if (dstVectorType.getRank() == 0) {
1899     if (getPosition())
1900       return emitOpError("expected position to be empty with 0-D vector");
1901     return success();
1902   }
1903   if (dstVectorType.getRank() != 1)
1904     return emitOpError("unexpected >1 vector rank");
1905   if (!getPosition())
1906     return emitOpError("expected position for 1-D vector");
1907   return success();
1908 }
1909 
1910 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1911   // Skip the 0-D vector here.
1912   if (operands.size() < 3)
1913     return {};
1914 
1915   Attribute src = operands[0];
1916   Attribute dst = operands[1];
1917   Attribute pos = operands[2];
1918   if (!src || !dst || !pos)
1919     return {};
1920 
1921   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1922 
1923   SmallVector<Attribute> results(dstElements);
1924 
1925   auto attr = pos.dyn_cast<IntegerAttr>();
1926   uint64_t posIdx = attr.getInt();
1927 
1928   results[posIdx] = src;
1929 
1930   return DenseElementsAttr::get(getDestVectorType(), results);
1931 }
1932 
1933 //===----------------------------------------------------------------------===//
1934 // InsertOp
1935 //===----------------------------------------------------------------------===//
1936 
1937 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1938                      Value dest, ArrayRef<int64_t> position) {
1939   result.addOperands({source, dest});
1940   auto positionAttr = getVectorSubscriptAttr(builder, position);
1941   result.addTypes(dest.getType());
1942   result.addAttribute(getPositionAttrStrName(), positionAttr);
1943 }
1944 
1945 // Convenience builder which assumes the values are constant indices.
1946 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1947                      Value dest, ValueRange position) {
1948   SmallVector<int64_t, 4> positionConstants =
1949       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1950         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1951       }));
1952   build(builder, result, source, dest, positionConstants);
1953 }
1954 
1955 LogicalResult InsertOp::verify() {
1956   auto positionAttr = getPosition().getValue();
1957   auto destVectorType = getDestVectorType();
1958   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1959     return emitOpError(
1960         "expected position attribute of rank smaller than dest vector rank");
1961   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1962   if (srcVectorType &&
1963       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1964        static_cast<unsigned>(destVectorType.getRank())))
1965     return emitOpError("expected position attribute rank + source rank to "
1966                           "match dest vector rank");
1967   if (!srcVectorType &&
1968       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1969     return emitOpError(
1970         "expected position attribute rank to match the dest vector rank");
1971   for (const auto &en : llvm::enumerate(positionAttr)) {
1972     auto attr = en.value().dyn_cast<IntegerAttr>();
1973     if (!attr || attr.getInt() < 0 ||
1974         attr.getInt() >= destVectorType.getDimSize(en.index()))
1975       return emitOpError("expected position attribute #")
1976              << (en.index() + 1)
1977              << " to be a non-negative integer smaller than the corresponding "
1978                 "dest vector dimension";
1979   }
1980   return success();
1981 }
1982 
1983 namespace {
1984 
1985 // If insertOp is only inserting unit dimensions it can be transformed to a
1986 // broadcast.
1987 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1988 public:
1989   using OpRewritePattern<InsertOp>::OpRewritePattern;
1990 
1991   LogicalResult matchAndRewrite(InsertOp insertOp,
1992                                 PatternRewriter &rewriter) const override {
1993     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1994     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1995                            srcVecType.getNumElements())
1996       return failure();
1997     rewriter.replaceOpWithNewOp<BroadcastOp>(
1998         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1999     return success();
2000   }
2001 };
2002 
2003 } // namespace
2004 
2005 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2006                                            MLIRContext *context) {
2007   results.add<InsertToBroadcast, BroadcastFolder>(context);
2008 }
2009 
2010 // Eliminates insert operations that produce values identical to their source
2011 // value. This happens when the source and destination vectors have identical
2012 // sizes.
2013 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2014   if (getPosition().empty())
2015     return getSource();
2016   return {};
2017 }
2018 
2019 //===----------------------------------------------------------------------===//
2020 // InsertMapOp
2021 //===----------------------------------------------------------------------===//
2022 
2023 LogicalResult InsertMapOp::verify() {
2024   if (getSourceVectorType().getRank() != getResultType().getRank())
2025     return emitOpError("expected source and destination vectors of same rank");
2026   unsigned numId = 0;
2027   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2028     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2029         0)
2030       return emitOpError(
2031           "destination vector size must be a multiple of source vector size");
2032     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2033       numId++;
2034   }
2035   if (numId != getIds().size())
2036     return emitOpError("expected number of ids must match the number of "
2037                        "dimensions distributed");
2038   return success();
2039 }
2040 
2041 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2042 
2043 //===----------------------------------------------------------------------===//
2044 // InsertStridedSliceOp
2045 //===----------------------------------------------------------------------===//
2046 
2047 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2048                                  Value source, Value dest,
2049                                  ArrayRef<int64_t> offsets,
2050                                  ArrayRef<int64_t> strides) {
2051   result.addOperands({source, dest});
2052   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2053   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2054   result.addTypes(dest.getType());
2055   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2056   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2057 }
2058 
2059 // TODO: Should be moved to Tablegen Confined attributes.
2060 template <typename OpType>
2061 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2062                                                         ArrayAttr arrayAttr,
2063                                                         ArrayRef<int64_t> shape,
2064                                                         StringRef attrName) {
2065   if (arrayAttr.size() > shape.size())
2066     return op.emitOpError("expected ")
2067            << attrName << " attribute of rank smaller than vector rank";
2068   return success();
2069 }
2070 
2071 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2072 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2073 // Otherwise, the admissible interval is [min, max].
2074 template <typename OpType>
2075 static LogicalResult
2076 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2077                                   int64_t max, StringRef attrName,
2078                                   bool halfOpen = true) {
2079   for (auto attr : arrayAttr) {
2080     auto val = attr.cast<IntegerAttr>().getInt();
2081     auto upper = max;
2082     if (!halfOpen)
2083       upper += 1;
2084     if (val < min || val >= upper)
2085       return op.emitOpError("expected ") << attrName << " to be confined to ["
2086                                          << min << ", " << upper << ")";
2087   }
2088   return success();
2089 }
2090 
2091 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2092 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2093 // Otherwise, the admissible interval is [min, max].
2094 template <typename OpType>
2095 static LogicalResult
2096 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2097                                   ArrayRef<int64_t> shape, StringRef attrName,
2098                                   bool halfOpen = true, int64_t min = 0) {
2099   assert(arrayAttr.size() <= shape.size());
2100   unsigned index = 0;
2101   for (auto it : llvm::zip(arrayAttr, shape)) {
2102     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2103     auto max = std::get<1>(it);
2104     if (!halfOpen)
2105       max += 1;
2106     if (val < min || val >= max)
2107       return op.emitOpError("expected ")
2108              << attrName << " dimension " << index << " to be confined to ["
2109              << min << ", " << max << ")";
2110     ++index;
2111   }
2112   return success();
2113 }
2114 
2115 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2116 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2117 // Otherwise, the admissible interval is [min, max].
2118 template <typename OpType>
2119 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2120     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2121     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2122     bool halfOpen = true, int64_t min = 1) {
2123   assert(arrayAttr1.size() <= shape.size());
2124   assert(arrayAttr2.size() <= shape.size());
2125   unsigned index = 0;
2126   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2127     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2128     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2129     auto max = std::get<2>(it);
2130     if (!halfOpen)
2131       max += 1;
2132     if (val1 + val2 < 0 || val1 + val2 >= max)
2133       return op.emitOpError("expected sum(")
2134              << attrName1 << ", " << attrName2 << ") dimension " << index
2135              << " to be confined to [" << min << ", " << max << ")";
2136     ++index;
2137   }
2138   return success();
2139 }
2140 
2141 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2142                                   MLIRContext *context) {
2143   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2144     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2145   });
2146   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2147 }
2148 
2149 LogicalResult InsertStridedSliceOp::verify() {
2150   auto sourceVectorType = getSourceVectorType();
2151   auto destVectorType = getDestVectorType();
2152   auto offsets = getOffsetsAttr();
2153   auto strides = getStridesAttr();
2154   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2155     return emitOpError(
2156         "expected offsets of same size as destination vector rank");
2157   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2158     return emitOpError("expected strides of same size as source vector rank");
2159   if (sourceVectorType.getRank() > destVectorType.getRank())
2160     return emitOpError(
2161         "expected source rank to be smaller than destination rank");
2162 
2163   auto sourceShape = sourceVectorType.getShape();
2164   auto destShape = destVectorType.getShape();
2165   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2166       destShape.size() - sourceShape.size(), 0);
2167   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2168   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2169   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2170   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2171                                                offName)) ||
2172       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2173                                                stridesName,
2174                                                /*halfOpen=*/false)) ||
2175       failed(isSumOfIntegerArrayAttrConfinedToShape(
2176           *this, offsets,
2177           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2178           offName, "source vector shape",
2179           /*halfOpen=*/false, /*min=*/1)))
2180     return failure();
2181 
2182   return success();
2183 }
2184 
2185 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2186   if (getSourceVectorType() == getDestVectorType())
2187     return getSource();
2188   return {};
2189 }
2190 
2191 //===----------------------------------------------------------------------===//
2192 // OuterProductOp
2193 //===----------------------------------------------------------------------===//
2194 
2195 /// Build an op without mask, use the type of `acc` as the return type.
2196 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2197                            Value lhs, Value rhs, Value acc) {
2198   result.addOperands({lhs, rhs, acc});
2199   result.addTypes(acc.getType());
2200 }
2201 
2202 void OuterProductOp::print(OpAsmPrinter &p) {
2203   p << " " << getLhs() << ", " << getRhs();
2204   if (!getAcc().empty()) {
2205     p << ", " << getAcc();
2206     p.printOptionalAttrDict((*this)->getAttrs());
2207   }
2208   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2209 }
2210 
2211 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2212   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2213   Type tLHS, tRHS;
2214   if (parser.parseOperandList(operandsInfo) ||
2215       parser.parseOptionalAttrDict(result.attributes) ||
2216       parser.parseColonType(tLHS) || parser.parseComma() ||
2217       parser.parseType(tRHS))
2218     return failure();
2219   if (operandsInfo.size() < 2)
2220     return parser.emitError(parser.getNameLoc(),
2221                             "expected at least 2 operands");
2222   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2223   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2224   if (!vLHS)
2225     return parser.emitError(parser.getNameLoc(),
2226                             "expected vector type for operand #1");
2227   VectorType resType =
2228       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2229                              vLHS.getElementType())
2230            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2231 
2232   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2233     result.attributes.append(
2234         OuterProductOp::getKindAttrStrName(),
2235         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2236                                result.getContext()));
2237   }
2238 
2239   return failure(
2240       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2241       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2242       (operandsInfo.size() > 2 &&
2243        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2244       parser.addTypeToList(resType, result.types));
2245 }
2246 
2247 LogicalResult OuterProductOp::verify() {
2248   Type tRHS = getOperandTypeRHS();
2249   VectorType vLHS = getOperandVectorTypeLHS(),
2250              vRHS = tRHS.dyn_cast<VectorType>(),
2251              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2252 
2253   if (vLHS.getRank() != 1)
2254     return emitOpError("expected 1-d vector for operand #1");
2255 
2256   if (vRHS) {
2257     // Proper OUTER operation.
2258     if (vRHS.getRank() != 1)
2259       return emitOpError("expected 1-d vector for operand #2");
2260     if (vRES.getRank() != 2)
2261       return emitOpError("expected 2-d vector result");
2262     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2263       return emitOpError("expected #1 operand dim to match result dim #1");
2264     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2265       return emitOpError("expected #2 operand dim to match result dim #2");
2266   } else {
2267     // An AXPY operation.
2268     if (vRES.getRank() != 1)
2269       return emitOpError("expected 1-d vector result");
2270     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2271       return emitOpError("expected #1 operand dim to match result dim #1");
2272   }
2273 
2274   if (vACC && vACC != vRES)
2275     return emitOpError("expected operand #3 of same type as result type");
2276 
2277   // Verify supported combining kind.
2278   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2279     return emitOpError("unsupported outerproduct type");
2280 
2281   return success();
2282 }
2283 
2284 //===----------------------------------------------------------------------===//
2285 // ReshapeOp
2286 //===----------------------------------------------------------------------===//
2287 
2288 LogicalResult ReshapeOp::verify() {
2289   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2290   auto inputVectorType = getInputVectorType();
2291   auto outputVectorType = getOutputVectorType();
2292   int64_t inputShapeRank = getNumInputShapeSizes();
2293   int64_t outputShapeRank = getNumOutputShapeSizes();
2294   SmallVector<int64_t, 4> fixedVectorSizes;
2295   getFixedVectorSizes(fixedVectorSizes);
2296   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2297 
2298   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2299     return emitError("invalid input shape for vector type ")
2300            << inputVectorType;
2301 
2302   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2303     return emitError("invalid output shape for vector type ")
2304            << outputVectorType;
2305 
2306   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2307   // suffix.
2308   unsigned inputVectorRank = inputVectorType.getRank();
2309   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2310     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2311     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2312       return emitError("fixed vector size must match input vector for dim ")
2313              << i;
2314   }
2315 
2316   unsigned outputVectorRank = outputVectorType.getRank();
2317   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2318     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2319     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2320       return emitError("fixed vector size must match output vector for dim ")
2321              << i;
2322   }
2323 
2324   // If all shape operands are produced by constant ops, verify that product
2325   // of dimensions for input/output shape match.
2326   auto isDefByConstant = [](Value operand) {
2327     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2328   };
2329   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2330       llvm::all_of(getOutputShape(), isDefByConstant)) {
2331     int64_t numInputElements = 1;
2332     for (auto operand : getInputShape())
2333       numInputElements *=
2334           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2335     int64_t numOutputElements = 1;
2336     for (auto operand : getOutputShape())
2337       numOutputElements *=
2338           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2339     if (numInputElements != numOutputElements)
2340       return emitError("product of input and output shape sizes must match");
2341   }
2342   return success();
2343 }
2344 
2345 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2346   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2347 }
2348 
2349 //===----------------------------------------------------------------------===//
2350 // ExtractStridedSliceOp
2351 //===----------------------------------------------------------------------===//
2352 
2353 // Inference works as follows:
2354 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2355 //   2. Add sizes from 'vectorType' for remaining dims.
2356 static Type inferStridedSliceOpResultType(VectorType vectorType,
2357                                           ArrayAttr offsets, ArrayAttr sizes,
2358                                           ArrayAttr strides) {
2359   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2360   SmallVector<int64_t, 4> shape;
2361   shape.reserve(vectorType.getRank());
2362   unsigned idx = 0;
2363   for (unsigned e = offsets.size(); idx < e; ++idx)
2364     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2365   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2366     shape.push_back(vectorType.getShape()[idx]);
2367 
2368   return VectorType::get(shape, vectorType.getElementType());
2369 }
2370 
2371 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2372                                   Value source, ArrayRef<int64_t> offsets,
2373                                   ArrayRef<int64_t> sizes,
2374                                   ArrayRef<int64_t> strides) {
2375   result.addOperands(source);
2376   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2377   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2378   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2379   result.addTypes(
2380       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2381                                     offsetsAttr, sizesAttr, stridesAttr));
2382   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2383   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2384   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2385 }
2386 
2387 LogicalResult ExtractStridedSliceOp::verify() {
2388   auto type = getVectorType();
2389   auto offsets = getOffsetsAttr();
2390   auto sizes = getSizesAttr();
2391   auto strides = getStridesAttr();
2392   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2393     return emitOpError("expected offsets, sizes and strides attributes of same size");
2394 
2395   auto shape = type.getShape();
2396   auto offName = getOffsetsAttrName();
2397   auto sizesName = getSizesAttrName();
2398   auto stridesName = getStridesAttrName();
2399   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2400       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2401       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2402                                                 stridesName)) ||
2403       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2404       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2405                                                /*halfOpen=*/false,
2406                                                /*min=*/1)) ||
2407       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2408                                                /*halfOpen=*/false)) ||
2409       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2410                                                     offName, sizesName,
2411                                                     /*halfOpen=*/false)))
2412     return failure();
2413 
2414   auto resultType =
2415       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2416   if (getResult().getType() != resultType)
2417     return emitOpError("expected result type to be ") << resultType;
2418 
2419   return success();
2420 }
2421 
2422 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2423 // to use the source of the InsertStrided ops if we can detect that the
2424 // extracted vector is a subset of one of the vector inserted.
2425 static LogicalResult
2426 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2427   // Helper to extract integer out of ArrayAttr.
2428   auto getElement = [](ArrayAttr array, int idx) {
2429     return array[idx].cast<IntegerAttr>().getInt();
2430   };
2431   ArrayAttr extractOffsets = op.getOffsets();
2432   ArrayAttr extractStrides = op.getStrides();
2433   ArrayAttr extractSizes = op.getSizes();
2434   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2435   while (insertOp) {
2436     if (op.getVectorType().getRank() !=
2437         insertOp.getSourceVectorType().getRank())
2438       return failure();
2439     ArrayAttr insertOffsets = insertOp.getOffsets();
2440     ArrayAttr insertStrides = insertOp.getStrides();
2441     // If the rank of extract is greater than the rank of insert, we are likely
2442     // extracting a partial chunk of the vector inserted.
2443     if (extractOffsets.size() > insertOffsets.size())
2444       return failure();
2445     bool patialoverlap = false;
2446     bool disjoint = false;
2447     SmallVector<int64_t, 4> offsetDiffs;
2448     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2449       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2450         return failure();
2451       int64_t start = getElement(insertOffsets, dim);
2452       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2453       int64_t offset = getElement(extractOffsets, dim);
2454       int64_t size = getElement(extractSizes, dim);
2455       // Check if the start of the extract offset is in the interval inserted.
2456       if (start <= offset && offset < end) {
2457         // If the extract interval overlaps but is not fully included we may
2458         // have a partial overlap that will prevent any folding.
2459         if (offset + size > end)
2460           patialoverlap = true;
2461         offsetDiffs.push_back(offset - start);
2462         continue;
2463       }
2464       disjoint = true;
2465       break;
2466     }
2467     // The extract element chunk is a subset of the insert element.
2468     if (!disjoint && !patialoverlap) {
2469       op.setOperand(insertOp.getSource());
2470       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2471       OpBuilder b(op.getContext());
2472       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2473                   b.getI64ArrayAttr(offsetDiffs));
2474       return success();
2475     }
2476     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2477     // in the insert chain.
2478     if (disjoint)
2479       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2480     else {
2481       // The extracted vector partially overlap the inserted vector, we cannot
2482       // fold.
2483       return failure();
2484     }
2485   }
2486   return failure();
2487 }
2488 
2489 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2490   if (getVectorType() == getResult().getType())
2491     return getVector();
2492   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2493     return getResult();
2494   return {};
2495 }
2496 
2497 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2498   populateFromInt64AttrArray(getOffsets(), results);
2499 }
2500 
2501 namespace {
2502 
2503 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2504 // ConstantMaskOp.
2505 class StridedSliceConstantMaskFolder final
2506     : public OpRewritePattern<ExtractStridedSliceOp> {
2507 public:
2508   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2509 
2510   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2511                                 PatternRewriter &rewriter) const override {
2512     // Return if 'extractStridedSliceOp' operand is not defined by a
2513     // ConstantMaskOp.
2514     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2515     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2516     if (!constantMaskOp)
2517       return failure();
2518     // Return if 'extractStridedSliceOp' has non-unit strides.
2519     if (extractStridedSliceOp.hasNonUnitStrides())
2520       return failure();
2521     // Gather constant mask dimension sizes.
2522     SmallVector<int64_t, 4> maskDimSizes;
2523     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2524     // Gather strided slice offsets and sizes.
2525     SmallVector<int64_t, 4> sliceOffsets;
2526     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2527                                sliceOffsets);
2528     SmallVector<int64_t, 4> sliceSizes;
2529     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2530 
2531     // Compute slice of vector mask region.
2532     SmallVector<int64_t, 4> sliceMaskDimSizes;
2533     assert(sliceOffsets.size() == maskDimSizes.size());
2534     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2535       int64_t maskDimSize = std::get<0>(it);
2536       int64_t sliceOffset = std::get<1>(it);
2537       int64_t sliceSize = std::get<2>(it);
2538       int64_t sliceMaskDimSize = std::max(
2539           static_cast<int64_t>(0),
2540           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2541       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2542     }
2543     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2544     // region is a conjunction of mask dim intervals).
2545     if (llvm::is_contained(sliceMaskDimSizes, 0))
2546       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2547 
2548     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2549     // region.
2550     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2551         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2552         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2553     return success();
2554   }
2555 };
2556 
2557 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2558 class StridedSliceConstantFolder final
2559     : public OpRewritePattern<ExtractStridedSliceOp> {
2560 public:
2561   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2562 
2563   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2564                                 PatternRewriter &rewriter) const override {
2565     // Return if 'extractStridedSliceOp' operand is not defined by a
2566     // ConstantOp.
2567     auto constantOp =
2568         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2569     if (!constantOp)
2570       return failure();
2571     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2572     if (!dense)
2573       return failure();
2574     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2575                                           dense.getSplatValue<Attribute>());
2576     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2577                                                    newAttr);
2578     return success();
2579   }
2580 };
2581 
2582 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2583 // BroadcastOp(ExtractStrideSliceOp).
2584 class StridedSliceBroadcast final
2585     : public OpRewritePattern<ExtractStridedSliceOp> {
2586 public:
2587   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2588 
2589   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2590                                 PatternRewriter &rewriter) const override {
2591     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2592     if (!broadcast)
2593       return failure();
2594     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2595     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2596     auto dstVecType = op.getType().cast<VectorType>();
2597     unsigned dstRank = dstVecType.getRank();
2598     unsigned rankDiff = dstRank - srcRank;
2599     // Check if the most inner dimensions of the source of the broadcast are the
2600     // same as the destination of the extract. If this is the case we can just
2601     // use a broadcast as the original dimensions are untouched.
2602     bool lowerDimMatch = true;
2603     for (unsigned i = 0; i < srcRank; i++) {
2604       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2605         lowerDimMatch = false;
2606         break;
2607       }
2608     }
2609     Value source = broadcast.getSource();
2610     // If the inner dimensions don't match, it means we need to extract from the
2611     // source of the orignal broadcast and then broadcast the extracted value.
2612     // We also need to handle degenerated cases where the source is effectively
2613     // just a single scalar.
2614     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2615     if (!lowerDimMatch && !isScalarSrc) {
2616       source = rewriter.create<ExtractStridedSliceOp>(
2617           op->getLoc(), source,
2618           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2619           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2620           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2621     }
2622     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2623     return success();
2624   }
2625 };
2626 
2627 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2628 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2629 public:
2630   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2631 
2632   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2633                                 PatternRewriter &rewriter) const override {
2634     auto splat = op.getVector().getDefiningOp<SplatOp>();
2635     if (!splat)
2636       return failure();
2637     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2638     return success();
2639   }
2640 };
2641 
2642 } // namespace
2643 
2644 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2645     RewritePatternSet &results, MLIRContext *context) {
2646   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2647   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2648   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2649               StridedSliceBroadcast, StridedSliceSplat>(context);
2650 }
2651 
2652 //===----------------------------------------------------------------------===//
2653 // TransferReadOp
2654 //===----------------------------------------------------------------------===//
2655 
2656 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2657 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2658                            VectorType vectorType, Value source,
2659                            ValueRange indices, AffineMapAttr permutationMapAttr,
2660                            /*optional*/ ArrayAttr inBoundsAttr) {
2661   Type elemType = source.getType().cast<ShapedType>().getElementType();
2662   Value padding = builder.create<arith::ConstantOp>(
2663       result.location, elemType, builder.getZeroAttr(elemType));
2664   build(builder, result, vectorType, source, indices, permutationMapAttr,
2665         padding, /*mask=*/Value(), inBoundsAttr);
2666 }
2667 
2668 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2669 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2670                            VectorType vectorType, Value source,
2671                            ValueRange indices, AffineMap permutationMap,
2672                            Optional<ArrayRef<bool>> inBounds) {
2673   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2674   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2675                           ? builder.getBoolArrayAttr(inBounds.getValue())
2676                           : ArrayAttr();
2677   build(builder, result, vectorType, source, indices, permutationMapAttr,
2678         inBoundsAttr);
2679 }
2680 
2681 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2682 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2683                            VectorType vectorType, Value source,
2684                            ValueRange indices, Value padding,
2685                            Optional<ArrayRef<bool>> inBounds) {
2686   AffineMap permutationMap = getTransferMinorIdentityMap(
2687       source.getType().cast<ShapedType>(), vectorType);
2688   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2689   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2690                           ? builder.getBoolArrayAttr(inBounds.getValue())
2691                           : ArrayAttr();
2692   build(builder, result, vectorType, source, indices, permutationMapAttr,
2693         padding,
2694         /*mask=*/Value(), inBoundsAttr);
2695 }
2696 
2697 /// 4. Builder that sets padding to zero and permutation map to
2698 /// 'getMinorIdentityMap'.
2699 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2700                            VectorType vectorType, Value source,
2701                            ValueRange indices,
2702                            Optional<ArrayRef<bool>> inBounds) {
2703   Type elemType = source.getType().cast<ShapedType>().getElementType();
2704   Value padding = builder.create<arith::ConstantOp>(
2705       result.location, elemType, builder.getZeroAttr(elemType));
2706   build(builder, result, vectorType, source, indices, padding, inBounds);
2707 }
2708 
2709 template <typename EmitFun>
2710 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2711                                           EmitFun emitOpError) {
2712   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2713   for (auto expr : permutationMap.getResults()) {
2714     auto dim = expr.dyn_cast<AffineDimExpr>();
2715     auto zero = expr.dyn_cast<AffineConstantExpr>();
2716     if (zero) {
2717       if (zero.getValue() != 0) {
2718         return emitOpError(
2719             "requires a projected permutation_map (at most one dim or the zero "
2720             "constant can appear in each result)");
2721       }
2722       continue;
2723     }
2724     if (!dim) {
2725       return emitOpError("requires a projected permutation_map (at most one "
2726                          "dim or the zero constant can appear in each result)");
2727     }
2728     if (seen[dim.getPosition()]) {
2729       return emitOpError(
2730           "requires a permutation_map that is a permutation (found one dim "
2731           "used more than once)");
2732     }
2733     seen[dim.getPosition()] = true;
2734   }
2735   return success();
2736 }
2737 
2738 static LogicalResult
2739 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2740                  VectorType vectorType, VectorType maskType,
2741                  AffineMap permutationMap, ArrayAttr inBounds) {
2742   if (op->hasAttr("masked")) {
2743     return op->emitOpError("masked attribute has been removed. "
2744                            "Use in_bounds instead.");
2745   }
2746 
2747   if (!shapedType.isa<MemRefType, RankedTensorType>())
2748     return op->emitOpError(
2749         "requires source to be a memref or ranked tensor type");
2750 
2751   auto elementType = shapedType.getElementType();
2752   DataLayout dataLayout = DataLayout::closest(op);
2753   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2754     // Memref or tensor has vector element type.
2755     unsigned sourceVecSize =
2756         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2757         vectorElementType.getShape().back();
2758     unsigned resultVecSize =
2759         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2760         vectorType.getShape().back();
2761     if (resultVecSize % sourceVecSize != 0)
2762       return op->emitOpError(
2763           "requires the bitwidth of the minor 1-D vector to be an integral "
2764           "multiple of the bitwidth of the minor 1-D vector of the source");
2765 
2766     unsigned sourceVecEltRank = vectorElementType.getRank();
2767     unsigned resultVecRank = vectorType.getRank();
2768     if (sourceVecEltRank > resultVecRank)
2769       return op->emitOpError(
2770           "requires source vector element and vector result ranks to match.");
2771     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2772     // Check that permutation map results match 'rankOffset' of vector type.
2773     if (permutationMap.getNumResults() != rankOffset)
2774       return op->emitOpError("requires a permutation_map with result dims of "
2775                              "the same rank as the vector type");
2776 
2777     if (maskType)
2778       return op->emitOpError("does not support masks with vector element type");
2779   } else {
2780     // Memref or tensor has scalar element type.
2781     unsigned minorSize =
2782         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2783     unsigned resultVecSize =
2784         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2785     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2786       return op->emitOpError(
2787           "requires the bitwidth of the minor 1-D vector to be an integral "
2788           "multiple of the bitwidth of the source element type");
2789 
2790     // Check that permutation map results match rank of vector type.
2791     if (permutationMap.getNumResults() != vectorType.getRank())
2792       return op->emitOpError("requires a permutation_map with result dims of "
2793                              "the same rank as the vector type");
2794 
2795     VectorType expectedMaskType =
2796         vector::detail::transferMaskType(vectorType, permutationMap);
2797     if (maskType && expectedMaskType != maskType)
2798       return op->emitOpError("expects mask type consistent with permutation "
2799                              "map: ")
2800              << maskType;
2801   }
2802 
2803   if (permutationMap.getNumSymbols() != 0)
2804     return op->emitOpError("requires permutation_map without symbols");
2805 
2806   if (permutationMap.getNumInputs() != shapedType.getRank())
2807     return op->emitOpError("requires a permutation_map with input dims of the "
2808                            "same rank as the source type");
2809 
2810   if (inBounds) {
2811     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2812       return op->emitOpError("expects the optional in_bounds attr of same rank "
2813                              "as permutation_map results: ")
2814              << AffineMapAttr::get(permutationMap)
2815              << " vs inBounds of size: " << inBounds.size();
2816     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2817       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2818           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2819         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2820   }
2821 
2822   return success();
2823 }
2824 
2825 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2826   SmallVector<StringRef, 3> elidedAttrs;
2827   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2828   if (op.permutation_map().isMinorIdentity())
2829     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2830   bool elideInBounds = true;
2831   if (auto inBounds = op.in_bounds()) {
2832     for (auto attr : *inBounds) {
2833       if (attr.template cast<BoolAttr>().getValue()) {
2834         elideInBounds = false;
2835         break;
2836       }
2837     }
2838   }
2839   if (elideInBounds)
2840     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2841   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2842 }
2843 
2844 void TransferReadOp::print(OpAsmPrinter &p) {
2845   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2846   if (getMask())
2847     p << ", " << getMask();
2848   printTransferAttrs(p, *this);
2849   p << " : " << getShapedType() << ", " << getVectorType();
2850 }
2851 
2852 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2853   auto &builder = parser.getBuilder();
2854   SMLoc typesLoc;
2855   OpAsmParser::UnresolvedOperand sourceInfo;
2856   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2857   OpAsmParser::UnresolvedOperand paddingInfo;
2858   SmallVector<Type, 2> types;
2859   OpAsmParser::UnresolvedOperand maskInfo;
2860   // Parsing with support for paddingValue.
2861   if (parser.parseOperand(sourceInfo) ||
2862       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2863       parser.parseComma() || parser.parseOperand(paddingInfo))
2864     return failure();
2865   ParseResult hasMask = parser.parseOptionalComma();
2866   if (hasMask.succeeded()) {
2867     if (parser.parseOperand(maskInfo))
2868       return failure();
2869   }
2870   if (parser.parseOptionalAttrDict(result.attributes) ||
2871       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2872     return failure();
2873   if (types.size() != 2)
2874     return parser.emitError(typesLoc, "requires two types");
2875   auto indexType = builder.getIndexType();
2876   auto shapedType = types[0].dyn_cast<ShapedType>();
2877   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2878     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2879   VectorType vectorType = types[1].dyn_cast<VectorType>();
2880   if (!vectorType)
2881     return parser.emitError(typesLoc, "requires vector type");
2882   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2883   Attribute mapAttr = result.attributes.get(permutationAttrName);
2884   if (!mapAttr) {
2885     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2886     // Update `mapAttr` that is used later to determine mask type.
2887     mapAttr = AffineMapAttr::get(permMap);
2888     result.attributes.set(permutationAttrName, mapAttr);
2889   }
2890   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2891       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2892       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2893                             result.operands))
2894     return failure();
2895   if (hasMask.succeeded()) {
2896     if (shapedType.getElementType().dyn_cast<VectorType>())
2897       return parser.emitError(
2898           maskInfo.location, "does not support masks with vector element type");
2899     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2900     // Instead of adding the mask type as an op type, compute it based on the
2901     // vector type and the permutation map (to keep the type signature small).
2902     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2903     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2904       return failure();
2905   }
2906   result.addAttribute(
2907       TransferReadOp::getOperandSegmentSizeAttr(),
2908       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2909                                 static_cast<int32_t>(hasMask.succeeded())}));
2910   return parser.addTypeToList(vectorType, result.types);
2911 }
2912 
2913 LogicalResult TransferReadOp::verify() {
2914   // Consistency of elemental types in source and vector.
2915   ShapedType shapedType = getShapedType();
2916   VectorType vectorType = getVectorType();
2917   VectorType maskType = getMaskType();
2918   auto paddingType = getPadding().getType();
2919   auto permutationMap = getPermutationMap();
2920   auto sourceElementType = shapedType.getElementType();
2921 
2922   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2923     return emitOpError("requires ") << shapedType.getRank() << " indices";
2924 
2925   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2926                               shapedType, vectorType, maskType, permutationMap,
2927                               getInBounds() ? *getInBounds() : ArrayAttr())))
2928     return failure();
2929 
2930   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2931     // Source has vector element type.
2932     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2933     if (sourceVectorElementType != paddingType)
2934       return emitOpError(
2935           "requires source element type and padding type to match.");
2936 
2937   } else {
2938     // Check that 'paddingType' is valid to store in a vector type.
2939     if (!VectorType::isValidElementType(paddingType))
2940       return emitOpError("requires valid padding vector elemental type");
2941 
2942     // Check that padding type and vector element types match.
2943     if (paddingType != sourceElementType)
2944       return emitOpError(
2945           "requires formal padding and source of the same elemental type");
2946   }
2947 
2948   return verifyPermutationMap(permutationMap,
2949                               [&](Twine t) { return emitOpError(t); });
2950 }
2951 
2952 /// This is a common class used for patterns of the form
2953 /// ```
2954 ///    someop(memrefcast) -> someop
2955 /// ```
2956 /// It folds the source of the memref.cast into the root operation directly.
2957 static LogicalResult foldMemRefCast(Operation *op) {
2958   bool folded = false;
2959   for (OpOperand &operand : op->getOpOperands()) {
2960     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2961     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2962       operand.set(castOp.getOperand());
2963       folded = true;
2964     }
2965   }
2966   return success(folded);
2967 }
2968 
2969 static LogicalResult foldTensorCast(Operation *op) {
2970   bool folded = false;
2971   for (OpOperand &operand : op->getOpOperands()) {
2972     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2973     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2974       operand.set(castOp.getOperand());
2975       folded = true;
2976     }
2977   }
2978   return success(folded);
2979 }
2980 
2981 template <typename TransferOp>
2982 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2983   // TODO: support more aggressive createOrFold on:
2984   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2985   if (op.getShapedType().isDynamicDim(indicesIdx))
2986     return false;
2987   Value index = op.getIndices()[indicesIdx];
2988   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2989   if (!cstOp)
2990     return false;
2991 
2992   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2993   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2994 
2995   return cstOp.value() + vectorSize <= sourceSize;
2996 }
2997 
2998 template <typename TransferOp>
2999 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3000   // TODO: support 0-d corner case.
3001   // TODO: Be less conservative.
3002   if (op.getTransferRank() == 0)
3003     return failure();
3004   AffineMap permutationMap = op.getPermutationMap();
3005   bool changed = false;
3006   SmallVector<bool, 4> newInBounds;
3007   newInBounds.reserve(op.getTransferRank());
3008   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3009     // Already marked as in-bounds, nothing to see here.
3010     if (op.isDimInBounds(i)) {
3011       newInBounds.push_back(true);
3012       continue;
3013     }
3014     // Currently out-of-bounds, check whether we can statically determine it is
3015     // inBounds.
3016     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3017     assert(dimExpr && "Broadcast dims must be in-bounds");
3018     auto inBounds =
3019         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3020     newInBounds.push_back(inBounds);
3021     // We commit the pattern if it is "more inbounds".
3022     changed |= inBounds;
3023   }
3024   if (!changed)
3025     return failure();
3026   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3027   OpBuilder b(op.getContext());
3028   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3029               b.getBoolArrayAttr(newInBounds));
3030   return success();
3031 }
3032 
3033 ///  ```
3034 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3035 ///    : vector<1x4xf32>, tensor<4x4xf32>
3036 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3037 ///    : tensor<4x4xf32>, vector<1x4xf32>
3038 ///  ```
3039 ///  -> Folds into
3040 ///  ```
3041 ///  %v0
3042 ///  ```
3043 static Value foldRAW(TransferReadOp readOp) {
3044   if (!readOp.getShapedType().isa<RankedTensorType>())
3045     return {};
3046   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3047   while (defWrite) {
3048     if (checkSameValueRAW(defWrite, readOp))
3049       return defWrite.getVector();
3050     if (!isDisjointTransferIndices(
3051             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3052             cast<VectorTransferOpInterface>(readOp.getOperation())))
3053       break;
3054     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3055   }
3056   return {};
3057 }
3058 
3059 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3060   if (Value vec = foldRAW(*this))
3061     return vec;
3062   /// transfer_read(memrefcast) -> transfer_read
3063   if (succeeded(foldTransferInBoundsAttribute(*this)))
3064     return getResult();
3065   if (succeeded(foldMemRefCast(*this)))
3066     return getResult();
3067   if (succeeded(foldTensorCast(*this)))
3068     return getResult();
3069   return OpFoldResult();
3070 }
3071 
3072 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3073   return llvm::to_vector<4>(getVectorType().getShape());
3074 }
3075 
3076 void TransferReadOp::getEffects(
3077     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3078         &effects) {
3079   if (getShapedType().isa<MemRefType>())
3080     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3081                          SideEffects::DefaultResource::get());
3082 }
3083 
3084 namespace {
3085 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3086 ///
3087 /// ```
3088 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3089 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3090 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3091 ///     : tensor<?x?xf32>, vector<4x5xf32>
3092 /// ```
3093 /// is rewritten to:
3094 /// ```
3095 /// %p0 = arith.addi %a, %e : index
3096 /// %p1 = arith.addi %b, %f : index
3097 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3098 ///     : tensor<?x?xf32>, vector<4x5xf32>
3099 /// ```
3100 struct FoldExtractSliceIntoTransferRead
3101     : public OpRewritePattern<TransferReadOp> {
3102 public:
3103   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3104 
3105   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3106                                 PatternRewriter &rewriter) const override {
3107     // TODO: support 0-d corner case.
3108     if (xferOp.getTransferRank() == 0)
3109       return failure();
3110     if (xferOp.hasOutOfBoundsDim())
3111       return failure();
3112     if (!xferOp.getPermutationMap().isIdentity())
3113       return failure();
3114     if (xferOp.getMask())
3115       return failure();
3116     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3117     if (!extractOp)
3118       return failure();
3119     if (!extractOp.hasUnitStride())
3120       return failure();
3121 
3122     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3123     // dims are exactly the leading dims. I.e. the following is illegal:
3124     // ```
3125     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3126     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3127     //    %1 = vector.transfer_read %0[0,0], %cst :
3128     //      tensor<2x4xf32>, vector<2x4xf32>
3129     // ```
3130     //
3131     // Cannot fold into:
3132     // ```
3133     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3134     //      tensor<2x1x4xf32>, vector<2x4xf32>
3135     // ```
3136     // For this, check the trailing `vectorRank` dims of the extract_slice
3137     // result tensor match the trailing dims of the inferred result tensor.
3138     int64_t rankReduced =
3139         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3140     int64_t vectorRank = xferOp.getVectorType().getRank();
3141     RankedTensorType inferredDestTensorType =
3142         tensor::ExtractSliceOp::inferResultType(
3143             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3144             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3145     auto actualDestTensorShape = extractOp.getType().getShape();
3146     if (rankReduced > 0 &&
3147         actualDestTensorShape.take_back(vectorRank) !=
3148             inferredDestTensorType.getShape().take_back(vectorRank))
3149       return failure();
3150 
3151     SmallVector<Value> newIndices;
3152     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3153     // indices first.
3154     for (int64_t i = 0; i < rankReduced; ++i) {
3155       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3156       newIndices.push_back(getValueOrCreateConstantIndexOp(
3157           rewriter, extractOp.getLoc(), offset));
3158     }
3159     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3160       OpFoldResult offset =
3161           extractOp.getMixedOffsets()[it.index() + rankReduced];
3162       newIndices.push_back(rewriter.create<arith::AddIOp>(
3163           xferOp->getLoc(), it.value(),
3164           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3165                                           offset)));
3166     }
3167     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3168     rewriter.replaceOpWithNewOp<TransferReadOp>(
3169         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3170         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3171 
3172     return success();
3173   }
3174 };
3175 } // namespace
3176 
3177 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3178                                                  MLIRContext *context) {
3179   results.add<FoldExtractSliceIntoTransferRead>(context);
3180 }
3181 
3182 //===----------------------------------------------------------------------===//
3183 // TransferWriteOp
3184 //===----------------------------------------------------------------------===//
3185 
3186 /// 1. Builder with type inference.
3187 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3188                             Value vector, Value dest, ValueRange indices,
3189                             AffineMapAttr permutationMapAttr,
3190                             /*optional*/ Value mask,
3191                             /*optional*/ ArrayAttr inBoundsAttr) {
3192   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3193   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3194         mask, inBoundsAttr);
3195 }
3196 
3197 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3198 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3199                             Value vector, Value dest, ValueRange indices,
3200                             AffineMapAttr permutationMapAttr,
3201                             /*optional*/ ArrayAttr inBoundsAttr) {
3202   build(builder, result, vector, dest, indices, permutationMapAttr,
3203         /*mask=*/Value(), inBoundsAttr);
3204 }
3205 
3206 /// 3. Builder with type inference that sets an empty mask (variant without
3207 /// attrs)
3208 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3209                             Value vector, Value dest, ValueRange indices,
3210                             AffineMap permutationMap,
3211                             Optional<ArrayRef<bool>> inBounds) {
3212   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3213   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3214                           ? builder.getBoolArrayAttr(inBounds.getValue())
3215                           : ArrayAttr();
3216   build(builder, result, vector, dest, indices, permutationMapAttr,
3217         /*mask=*/Value(), inBoundsAttr);
3218 }
3219 
3220 /// 4. Builder with type inference that sets an empty mask and sets permutation
3221 ///    map to 'getMinorIdentityMap'.
3222 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3223                             Value vector, Value dest, ValueRange indices,
3224                             Optional<ArrayRef<bool>> inBounds) {
3225   auto vectorType = vector.getType().cast<VectorType>();
3226   AffineMap permutationMap = getTransferMinorIdentityMap(
3227       dest.getType().cast<ShapedType>(), vectorType);
3228   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3229 }
3230 
3231 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3232                                    OperationState &result) {
3233   auto &builder = parser.getBuilder();
3234   SMLoc typesLoc;
3235   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3236   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3237   SmallVector<Type, 2> types;
3238   OpAsmParser::UnresolvedOperand maskInfo;
3239   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3240       parser.parseOperand(sourceInfo) ||
3241       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3242     return failure();
3243   ParseResult hasMask = parser.parseOptionalComma();
3244   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3245     return failure();
3246   if (parser.parseOptionalAttrDict(result.attributes) ||
3247       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3248     return failure();
3249   if (types.size() != 2)
3250     return parser.emitError(typesLoc, "requires two types");
3251   auto indexType = builder.getIndexType();
3252   VectorType vectorType = types[0].dyn_cast<VectorType>();
3253   if (!vectorType)
3254     return parser.emitError(typesLoc, "requires vector type");
3255   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3256   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3257     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3258   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3259   auto attr = result.attributes.get(permutationAttrName);
3260   if (!attr) {
3261     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3262     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3263   }
3264   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3265       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3266       parser.resolveOperands(indexInfo, indexType, result.operands))
3267     return failure();
3268   if (hasMask.succeeded()) {
3269     if (shapedType.getElementType().dyn_cast<VectorType>())
3270       return parser.emitError(
3271           maskInfo.location, "does not support masks with vector element type");
3272     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3273     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3274       return failure();
3275   }
3276   result.addAttribute(
3277       TransferWriteOp::getOperandSegmentSizeAttr(),
3278       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3279                                 static_cast<int32_t>(hasMask.succeeded())}));
3280   return failure(shapedType.isa<RankedTensorType>() &&
3281                  parser.addTypeToList(shapedType, result.types));
3282 }
3283 
3284 void TransferWriteOp::print(OpAsmPrinter &p) {
3285   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3286   if (getMask())
3287     p << ", " << getMask();
3288   printTransferAttrs(p, *this);
3289   p << " : " << getVectorType() << ", " << getShapedType();
3290 }
3291 
3292 LogicalResult TransferWriteOp::verify() {
3293   // Consistency of elemental types in shape and vector.
3294   ShapedType shapedType = getShapedType();
3295   VectorType vectorType = getVectorType();
3296   VectorType maskType = getMaskType();
3297   auto permutationMap = getPermutationMap();
3298 
3299   if (llvm::size(getIndices()) != shapedType.getRank())
3300     return emitOpError("requires ") << shapedType.getRank() << " indices";
3301 
3302   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3303   // as the semantics is unclear. This can be revisited later if necessary.
3304   if (hasBroadcastDim())
3305     return emitOpError("should not have broadcast dimensions");
3306 
3307   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3308                               shapedType, vectorType, maskType, permutationMap,
3309                               getInBounds() ? *getInBounds() : ArrayAttr())))
3310     return failure();
3311 
3312   return verifyPermutationMap(permutationMap,
3313                               [&](Twine t) { return emitOpError(t); });
3314 }
3315 
3316 /// Fold:
3317 /// ```
3318 ///    %t1 = ...
3319 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3320 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3321 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3322 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3323 /// ```
3324 ///
3325 /// into:
3326 ///
3327 /// ```
3328 ///    %t0
3329 /// ```
3330 ///
3331 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3332 /// block argument or has side effects.
3333 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3334                                        ArrayRef<Attribute>,
3335                                        SmallVectorImpl<OpFoldResult> &results) {
3336   // TODO: support 0-d corner case.
3337   if (write.getTransferRank() == 0)
3338     return failure();
3339   auto rankedTensorType =
3340       write.getSource().getType().dyn_cast<RankedTensorType>();
3341   // If not operating on tensors, bail.
3342   if (!rankedTensorType)
3343     return failure();
3344   // If no read, bail.
3345   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3346   if (!read)
3347     return failure();
3348   // TODO: support 0-d corner case.
3349   if (read.getTransferRank() == 0)
3350     return failure();
3351   // For now, only accept minor identity. Future: composition is minor identity.
3352   if (!read.getPermutationMap().isMinorIdentity() ||
3353       !write.getPermutationMap().isMinorIdentity())
3354     return failure();
3355   // Bail on mismatching ranks.
3356   if (read.getTransferRank() != write.getTransferRank())
3357     return failure();
3358   // Bail on potential out-of-bounds accesses.
3359   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3360     return failure();
3361   // Tensor types must be the same.
3362   if (read.getSource().getType() != rankedTensorType)
3363     return failure();
3364   // Vector types must be the same.
3365   if (read.getVectorType() != write.getVectorType())
3366     return failure();
3367   // Vector and Tensor shapes must match.
3368   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3369     return failure();
3370   // If any index is nonzero.
3371   auto isNotConstantZero = [](Value v) {
3372     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3373     return !cstOp || cstOp.value() != 0;
3374   };
3375   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3376       llvm::any_of(write.getIndices(), isNotConstantZero))
3377     return failure();
3378   // Success.
3379   results.push_back(read.getSource());
3380   return success();
3381 }
3382 
3383 static bool checkSameValueWAR(vector::TransferReadOp read,
3384                               vector::TransferWriteOp write) {
3385   return read.getSource() == write.getSource() &&
3386          read.getIndices() == write.getIndices() &&
3387          read.getPermutationMap() == write.getPermutationMap() &&
3388          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3389          !write.getMask();
3390 }
3391 /// Fold transfer_write write after read:
3392 /// ```
3393 ///    %t0 = ...
3394 ///    %v = vector.transfer_read %t0[%c0...] :
3395 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3396 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3397 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3398 /// ```
3399 ///
3400 /// into:
3401 ///
3402 /// ```
3403 ///    %t0
3404 /// ```
3405 static LogicalResult foldWAR(TransferWriteOp write,
3406                              SmallVectorImpl<OpFoldResult> &results) {
3407   if (!write.getSource().getType().isa<RankedTensorType>())
3408     return failure();
3409   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3410   if (!read)
3411     return failure();
3412 
3413   if (!checkSameValueWAR(read, write))
3414     return failure();
3415   results.push_back(read.getSource());
3416   return success();
3417 }
3418 
3419 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3420                                     SmallVectorImpl<OpFoldResult> &results) {
3421   if (succeeded(foldReadInitWrite(*this, operands, results)))
3422     return success();
3423   if (succeeded(foldWAR(*this, results)))
3424     return success();
3425   if (succeeded(foldTransferInBoundsAttribute(*this)))
3426     return success();
3427   return foldMemRefCast(*this);
3428 }
3429 
3430 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3431   return llvm::to_vector<4>(getVectorType().getShape());
3432 }
3433 
3434 void TransferWriteOp::getEffects(
3435     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3436         &effects) {
3437   if (getShapedType().isa<MemRefType>())
3438     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3439                          SideEffects::DefaultResource::get());
3440 }
3441 
3442 namespace {
3443 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3444 /// DCE
3445 /// ```
3446 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3447 ///    : vector<1x4xf32>, tensor<4x4xf32>
3448 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3449 ///    : vector<1x4xf32>, tensor<4x4xf32>
3450 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3451 ///    : vector<1x4xf32>, tensor<4x4xf32>
3452 /// ```
3453 ///
3454 /// into:
3455 ///
3456 /// ```
3457 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3458 ///    : vector<1x4xf32>, tensor<4x4xf32>
3459 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3460 ///    : vector<1x4xf32>, tensor<4x4xf32>
3461 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3462 ///    : vector<1x4xf32>, tensor<4x4xf32>
3463 /// ```
3464 ///
3465 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3466 /// any other uses.
3467 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3468 public:
3469   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3470   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3471                                 PatternRewriter &rewriter) const override {
3472     if (!writeOp.getShapedType().isa<RankedTensorType>())
3473       return failure();
3474     vector::TransferWriteOp writeToModify = writeOp;
3475 
3476     auto defWrite =
3477         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3478     while (defWrite) {
3479       if (checkSameValueWAW(writeOp, defWrite)) {
3480         writeToModify.getSourceMutable().assign(defWrite.getSource());
3481         return success();
3482       }
3483       if (!isDisjointTransferIndices(
3484               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3485               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3486         break;
3487       // If the previous write op doesn't have any other use we an safely look
3488       // at the previous store to see if it can be removed.
3489       if (!defWrite->hasOneUse())
3490         break;
3491       writeToModify = defWrite;
3492       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3493     }
3494     return failure();
3495   }
3496 };
3497 
3498 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3499 /// could directly write to the insert_slice's destination. E.g.:
3500 ///
3501 /// ```
3502 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3503 ///     : vector<4x5xf32>, tensor<4x5xf32>
3504 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3505 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3506 /// ```
3507 /// is rewritten to:
3508 /// ```
3509 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3510 ///     : vector<4x5xf32>, tensor<?x?xf32>
3511 /// ```
3512 struct FoldInsertSliceIntoTransferWrite
3513     : public OpRewritePattern<tensor::InsertSliceOp> {
3514 public:
3515   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3516 
3517   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3518                                 PatternRewriter &rewriter) const override {
3519     if (!insertOp.hasUnitStride())
3520       return failure();
3521 
3522     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3523     if (!xferOp)
3524       return failure();
3525     // TODO: support 0-d corner case.
3526     if (xferOp.getTransferRank() == 0)
3527       return failure();
3528 
3529     if (xferOp.hasOutOfBoundsDim())
3530       return failure();
3531     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3532       return failure();
3533     if (xferOp.getMask())
3534       return failure();
3535     // Fold only if the TransferWriteOp completely overwrites the `source` with
3536     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3537     // content is the data of the vector.
3538     if (!llvm::equal(xferOp.getVectorType().getShape(),
3539                      xferOp.getShapedType().getShape()))
3540       return failure();
3541     if (!xferOp.getPermutationMap().isIdentity())
3542       return failure();
3543 
3544     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3545     // dims are exactly the leading dims. I.e. the following is illegal:
3546     // ```
3547     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3548     //      vector<2x4xf32>, tensor<2x4xf32>
3549     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3550     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3551     // ```
3552     //
3553     // Cannot fold into:
3554     // ```
3555     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3556     //      vector<2x4xf32>, tensor<2x1x4xf32>
3557     // ```
3558     // For this, check the trailing `vectorRank` dims of the insert_slice result
3559     // tensor match the trailing dims of the inferred result tensor.
3560     int64_t rankReduced =
3561         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3562     int64_t vectorRank = xferOp.getVectorType().getRank();
3563     RankedTensorType inferredSourceTensorType =
3564         tensor::ExtractSliceOp::inferResultType(
3565             insertOp.getType(), insertOp.getMixedOffsets(),
3566             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3567     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3568     if (rankReduced > 0 &&
3569         actualSourceTensorShape.take_back(vectorRank) !=
3570             inferredSourceTensorType.getShape().take_back(vectorRank))
3571       return failure();
3572 
3573     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3574         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3575     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3576     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3577                                                  insertOp.dest(), indices,
3578                                                  ArrayRef<bool>{inBounds});
3579     return success();
3580   }
3581 };
3582 
3583 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3584 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3585 /// overwritten and inserted into another tensor. After this rewrite, the
3586 /// operations bufferize in-place since all of them work on the same slice.
3587 ///
3588 /// For example:
3589 /// ```mlir
3590 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3591 ///        : vector<8x16xf32>, tensor<8x16xf32>
3592 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3593 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3594 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3595 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3596 /// ```
3597 /// folds to
3598 /// ```mlir
3599 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3600 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3601 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3602 ///        : vector<8x16xf32>, tensor<?x?xf32>
3603 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3604 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3605 /// ```
3606 struct SwapExtractSliceOfTransferWrite
3607     : public OpRewritePattern<tensor::InsertSliceOp> {
3608 public:
3609   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3610 
3611   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3612                                 PatternRewriter &rewriter) const override {
3613     if (!insertOp.hasUnitStride())
3614       return failure();
3615     auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3616     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3617       return failure();
3618     auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>();
3619     if (!transferOp || !transferOp->hasOneUse())
3620       return failure();
3621 
3622     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3623     // rank-reducing.
3624     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3625       return rewriter.notifyMatchFailure(insertOp,
3626                                          "use-def chain is rank-reducing");
3627     }
3628 
3629     // Fail if tensor::ExtractSliceOp has non-zero offset.
3630     if (!extractOp.hasZeroOffset()) {
3631       return rewriter.notifyMatchFailure(insertOp,
3632                                          "ExtractSliceOp has non-zero offset");
3633     }
3634 
3635     // Fail if tensor::TransferWriteOp has non-zero offset.
3636     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3637           return getConstantIntValue(value) == static_cast<int64_t>(0);
3638         })) {
3639       return rewriter.notifyMatchFailure(insertOp,
3640                                          "TranferWriteOp has non-zero offset");
3641     }
3642 
3643     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3644     for (const auto &it :
3645          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3646       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3647         return rewriter.notifyMatchFailure(
3648             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3649       }
3650     }
3651 
3652     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3653     assert(transferOp.getVectorType().hasStaticShape() &&
3654            "expected vector to have a static shape");
3655     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3656     SmallVector<int64_t> resultShape = applyPermutationMap(
3657         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3658     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3659       return rewriter.notifyMatchFailure(
3660           insertOp, "TransferWriteOp may not write the full tensor.");
3661     }
3662 
3663     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3664     SmallVector<int64_t> newResultShape = applyPermutationMap(
3665         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3666     SmallVector<bool> newInBounds;
3667     for (const auto &en : enumerate(newResultShape))
3668       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3669     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3670         extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(),
3671         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3672         insertOp.getMixedStrides());
3673     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3674         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3675         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3676         rewriter.getBoolArrayAttr(newInBounds));
3677     rewriter.updateRootInPlace(insertOp, [&]() {
3678       insertOp.sourceMutable().assign(newTransferWriteOp.getResult());
3679     });
3680     return success();
3681   }
3682 };
3683 
3684 } // namespace
3685 
3686 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3687                                                   MLIRContext *context) {
3688   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3689               SwapExtractSliceOfTransferWrite>(context);
3690 }
3691 
3692 //===----------------------------------------------------------------------===//
3693 // LoadOp
3694 //===----------------------------------------------------------------------===//
3695 
3696 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3697                                                  MemRefType memRefTy) {
3698   if (!isLastMemrefDimUnitStride(memRefTy))
3699     return op->emitOpError("most minor memref dim must have unit stride");
3700   return success();
3701 }
3702 
3703 LogicalResult vector::LoadOp::verify() {
3704   VectorType resVecTy = getVectorType();
3705   MemRefType memRefTy = getMemRefType();
3706 
3707   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3708     return failure();
3709 
3710   // Checks for vector memrefs.
3711   Type memElemTy = memRefTy.getElementType();
3712   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3713     if (memVecTy != resVecTy)
3714       return emitOpError("base memref and result vector types should match");
3715     memElemTy = memVecTy.getElementType();
3716   }
3717 
3718   if (resVecTy.getElementType() != memElemTy)
3719     return emitOpError("base and result element types should match");
3720   if (llvm::size(getIndices()) != memRefTy.getRank())
3721     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3722   return success();
3723 }
3724 
3725 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3726   if (succeeded(foldMemRefCast(*this)))
3727     return getResult();
3728   return OpFoldResult();
3729 }
3730 
3731 //===----------------------------------------------------------------------===//
3732 // StoreOp
3733 //===----------------------------------------------------------------------===//
3734 
3735 LogicalResult vector::StoreOp::verify() {
3736   VectorType valueVecTy = getVectorType();
3737   MemRefType memRefTy = getMemRefType();
3738 
3739   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3740     return failure();
3741 
3742   // Checks for vector memrefs.
3743   Type memElemTy = memRefTy.getElementType();
3744   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3745     if (memVecTy != valueVecTy)
3746       return emitOpError(
3747           "base memref and valueToStore vector types should match");
3748     memElemTy = memVecTy.getElementType();
3749   }
3750 
3751   if (valueVecTy.getElementType() != memElemTy)
3752     return emitOpError("base and valueToStore element type should match");
3753   if (llvm::size(getIndices()) != memRefTy.getRank())
3754     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3755   return success();
3756 }
3757 
3758 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3759                             SmallVectorImpl<OpFoldResult> &results) {
3760   return foldMemRefCast(*this);
3761 }
3762 
3763 //===----------------------------------------------------------------------===//
3764 // MaskedLoadOp
3765 //===----------------------------------------------------------------------===//
3766 
3767 LogicalResult MaskedLoadOp::verify() {
3768   VectorType maskVType = getMaskVectorType();
3769   VectorType passVType = getPassThruVectorType();
3770   VectorType resVType = getVectorType();
3771   MemRefType memType = getMemRefType();
3772 
3773   if (resVType.getElementType() != memType.getElementType())
3774     return emitOpError("base and result element type should match");
3775   if (llvm::size(getIndices()) != memType.getRank())
3776     return emitOpError("requires ") << memType.getRank() << " indices";
3777   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3778     return emitOpError("expected result dim to match mask dim");
3779   if (resVType != passVType)
3780     return emitOpError("expected pass_thru of same type as result type");
3781   return success();
3782 }
3783 
3784 namespace {
3785 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3786 public:
3787   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3788   LogicalResult matchAndRewrite(MaskedLoadOp load,
3789                                 PatternRewriter &rewriter) const override {
3790     switch (get1DMaskFormat(load.getMask())) {
3791     case MaskFormat::AllTrue:
3792       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3793           load, load.getType(), load.getBase(), load.getIndices());
3794       return success();
3795     case MaskFormat::AllFalse:
3796       rewriter.replaceOp(load, load.getPassThru());
3797       return success();
3798     case MaskFormat::Unknown:
3799       return failure();
3800     }
3801     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3802   }
3803 };
3804 } // namespace
3805 
3806 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3807                                                MLIRContext *context) {
3808   results.add<MaskedLoadFolder>(context);
3809 }
3810 
3811 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3812   if (succeeded(foldMemRefCast(*this)))
3813     return getResult();
3814   return OpFoldResult();
3815 }
3816 
3817 //===----------------------------------------------------------------------===//
3818 // MaskedStoreOp
3819 //===----------------------------------------------------------------------===//
3820 
3821 LogicalResult MaskedStoreOp::verify() {
3822   VectorType maskVType = getMaskVectorType();
3823   VectorType valueVType = getVectorType();
3824   MemRefType memType = getMemRefType();
3825 
3826   if (valueVType.getElementType() != memType.getElementType())
3827     return emitOpError("base and valueToStore element type should match");
3828   if (llvm::size(getIndices()) != memType.getRank())
3829     return emitOpError("requires ") << memType.getRank() << " indices";
3830   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3831     return emitOpError("expected valueToStore dim to match mask dim");
3832   return success();
3833 }
3834 
3835 namespace {
3836 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3837 public:
3838   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3839   LogicalResult matchAndRewrite(MaskedStoreOp store,
3840                                 PatternRewriter &rewriter) const override {
3841     switch (get1DMaskFormat(store.getMask())) {
3842     case MaskFormat::AllTrue:
3843       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3844           store, store.getValueToStore(), store.getBase(), store.getIndices());
3845       return success();
3846     case MaskFormat::AllFalse:
3847       rewriter.eraseOp(store);
3848       return success();
3849     case MaskFormat::Unknown:
3850       return failure();
3851     }
3852     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3853   }
3854 };
3855 } // namespace
3856 
3857 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3858                                                 MLIRContext *context) {
3859   results.add<MaskedStoreFolder>(context);
3860 }
3861 
3862 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3863                                   SmallVectorImpl<OpFoldResult> &results) {
3864   return foldMemRefCast(*this);
3865 }
3866 
3867 //===----------------------------------------------------------------------===//
3868 // GatherOp
3869 //===----------------------------------------------------------------------===//
3870 
3871 LogicalResult GatherOp::verify() {
3872   VectorType indVType = getIndexVectorType();
3873   VectorType maskVType = getMaskVectorType();
3874   VectorType resVType = getVectorType();
3875   MemRefType memType = getMemRefType();
3876 
3877   if (resVType.getElementType() != memType.getElementType())
3878     return emitOpError("base and result element type should match");
3879   if (llvm::size(getIndices()) != memType.getRank())
3880     return emitOpError("requires ") << memType.getRank() << " indices";
3881   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3882     return emitOpError("expected result dim to match indices dim");
3883   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3884     return emitOpError("expected result dim to match mask dim");
3885   if (resVType != getPassThruVectorType())
3886     return emitOpError("expected pass_thru of same type as result type");
3887   return success();
3888 }
3889 
3890 namespace {
3891 class GatherFolder final : public OpRewritePattern<GatherOp> {
3892 public:
3893   using OpRewritePattern<GatherOp>::OpRewritePattern;
3894   LogicalResult matchAndRewrite(GatherOp gather,
3895                                 PatternRewriter &rewriter) const override {
3896     switch (get1DMaskFormat(gather.getMask())) {
3897     case MaskFormat::AllTrue:
3898       return failure(); // no unmasked equivalent
3899     case MaskFormat::AllFalse:
3900       rewriter.replaceOp(gather, gather.getPassThru());
3901       return success();
3902     case MaskFormat::Unknown:
3903       return failure();
3904     }
3905     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3906   }
3907 };
3908 } // namespace
3909 
3910 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3911                                            MLIRContext *context) {
3912   results.add<GatherFolder>(context);
3913 }
3914 
3915 //===----------------------------------------------------------------------===//
3916 // ScatterOp
3917 //===----------------------------------------------------------------------===//
3918 
3919 LogicalResult ScatterOp::verify() {
3920   VectorType indVType = getIndexVectorType();
3921   VectorType maskVType = getMaskVectorType();
3922   VectorType valueVType = getVectorType();
3923   MemRefType memType = getMemRefType();
3924 
3925   if (valueVType.getElementType() != memType.getElementType())
3926     return emitOpError("base and valueToStore element type should match");
3927   if (llvm::size(getIndices()) != memType.getRank())
3928     return emitOpError("requires ") << memType.getRank() << " indices";
3929   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3930     return emitOpError("expected valueToStore dim to match indices dim");
3931   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3932     return emitOpError("expected valueToStore dim to match mask dim");
3933   return success();
3934 }
3935 
3936 namespace {
3937 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3938 public:
3939   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3940   LogicalResult matchAndRewrite(ScatterOp scatter,
3941                                 PatternRewriter &rewriter) const override {
3942     switch (get1DMaskFormat(scatter.getMask())) {
3943     case MaskFormat::AllTrue:
3944       return failure(); // no unmasked equivalent
3945     case MaskFormat::AllFalse:
3946       rewriter.eraseOp(scatter);
3947       return success();
3948     case MaskFormat::Unknown:
3949       return failure();
3950     }
3951     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3952   }
3953 };
3954 } // namespace
3955 
3956 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3957                                             MLIRContext *context) {
3958   results.add<ScatterFolder>(context);
3959 }
3960 
3961 //===----------------------------------------------------------------------===//
3962 // ExpandLoadOp
3963 //===----------------------------------------------------------------------===//
3964 
3965 LogicalResult ExpandLoadOp::verify() {
3966   VectorType maskVType = getMaskVectorType();
3967   VectorType passVType = getPassThruVectorType();
3968   VectorType resVType = getVectorType();
3969   MemRefType memType = getMemRefType();
3970 
3971   if (resVType.getElementType() != memType.getElementType())
3972     return emitOpError("base and result element type should match");
3973   if (llvm::size(getIndices()) != memType.getRank())
3974     return emitOpError("requires ") << memType.getRank() << " indices";
3975   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3976     return emitOpError("expected result dim to match mask dim");
3977   if (resVType != passVType)
3978     return emitOpError("expected pass_thru of same type as result type");
3979   return success();
3980 }
3981 
3982 namespace {
3983 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3984 public:
3985   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3986   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3987                                 PatternRewriter &rewriter) const override {
3988     switch (get1DMaskFormat(expand.getMask())) {
3989     case MaskFormat::AllTrue:
3990       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3991           expand, expand.getType(), expand.getBase(), expand.getIndices());
3992       return success();
3993     case MaskFormat::AllFalse:
3994       rewriter.replaceOp(expand, expand.getPassThru());
3995       return success();
3996     case MaskFormat::Unknown:
3997       return failure();
3998     }
3999     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4000   }
4001 };
4002 } // namespace
4003 
4004 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4005                                                MLIRContext *context) {
4006   results.add<ExpandLoadFolder>(context);
4007 }
4008 
4009 //===----------------------------------------------------------------------===//
4010 // CompressStoreOp
4011 //===----------------------------------------------------------------------===//
4012 
4013 LogicalResult CompressStoreOp::verify() {
4014   VectorType maskVType = getMaskVectorType();
4015   VectorType valueVType = getVectorType();
4016   MemRefType memType = getMemRefType();
4017 
4018   if (valueVType.getElementType() != memType.getElementType())
4019     return emitOpError("base and valueToStore element type should match");
4020   if (llvm::size(getIndices()) != memType.getRank())
4021     return emitOpError("requires ") << memType.getRank() << " indices";
4022   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4023     return emitOpError("expected valueToStore dim to match mask dim");
4024   return success();
4025 }
4026 
4027 namespace {
4028 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4029 public:
4030   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4031   LogicalResult matchAndRewrite(CompressStoreOp compress,
4032                                 PatternRewriter &rewriter) const override {
4033     switch (get1DMaskFormat(compress.getMask())) {
4034     case MaskFormat::AllTrue:
4035       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4036           compress, compress.getValueToStore(), compress.getBase(),
4037           compress.getIndices());
4038       return success();
4039     case MaskFormat::AllFalse:
4040       rewriter.eraseOp(compress);
4041       return success();
4042     case MaskFormat::Unknown:
4043       return failure();
4044     }
4045     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4046   }
4047 };
4048 } // namespace
4049 
4050 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4051                                                   MLIRContext *context) {
4052   results.add<CompressStoreFolder>(context);
4053 }
4054 
4055 //===----------------------------------------------------------------------===//
4056 // ShapeCastOp
4057 //===----------------------------------------------------------------------===//
4058 
4059 /// Returns true if each element of 'a' is equal to the product of a contiguous
4060 /// sequence of the elements of 'b'. Returns false otherwise.
4061 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4062   unsigned rankA = a.size();
4063   unsigned rankB = b.size();
4064   assert(rankA < rankB);
4065 
4066   unsigned i = 0;
4067   unsigned j = 0;
4068   while (i < rankA && j < rankB) {
4069     int64_t dimA = a[i];
4070     int64_t dimB = 1;
4071     while (dimB < dimA && j < rankB)
4072       dimB *= b[j++];
4073     if (dimA != dimB)
4074       break;
4075     ++i;
4076 
4077     // Handle the case when trailing dimensions are of size 1.
4078     // Include them into the contiguous sequence.
4079     auto isOne = [](int64_t v) { return v == 1; };
4080     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4081       i = rankA;
4082     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4083       j = rankB;
4084   }
4085 
4086   return i == rankA && j == rankB;
4087 }
4088 
4089 static LogicalResult verifyVectorShapeCast(Operation *op,
4090                                            VectorType sourceVectorType,
4091                                            VectorType resultVectorType) {
4092   // Check that element type is the same.
4093   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4094     return op->emitOpError("source/result vectors must have same element type");
4095   auto sourceShape = sourceVectorType.getShape();
4096   auto resultShape = resultVectorType.getShape();
4097 
4098   // Check that product of source dim sizes matches product of result dim sizes.
4099   int64_t sourceDimProduct = std::accumulate(
4100       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4101   int64_t resultDimProduct = std::accumulate(
4102       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4103   if (sourceDimProduct != resultDimProduct)
4104     return op->emitOpError("source/result number of elements must match");
4105 
4106   // Check that expanding/contracting rank cases.
4107   unsigned sourceRank = sourceVectorType.getRank();
4108   unsigned resultRank = resultVectorType.getRank();
4109   if (sourceRank < resultRank) {
4110     if (!isValidShapeCast(sourceShape, resultShape))
4111       return op->emitOpError("invalid shape cast");
4112   } else if (sourceRank > resultRank) {
4113     if (!isValidShapeCast(resultShape, sourceShape))
4114       return op->emitOpError("invalid shape cast");
4115   }
4116   return success();
4117 }
4118 
4119 LogicalResult ShapeCastOp::verify() {
4120   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4121   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4122 
4123   // Check if source/result are of vector type.
4124   if (sourceVectorType && resultVectorType)
4125     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4126 
4127   return success();
4128 }
4129 
4130 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4131   // No-op shape cast.
4132   if (getSource().getType() == getResult().getType())
4133     return getSource();
4134 
4135   // Canceling shape casts.
4136   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4137     if (getResult().getType() == otherOp.getSource().getType())
4138       return otherOp.getSource();
4139 
4140     // Only allows valid transitive folding.
4141     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4142     VectorType resultType = getResult().getType().cast<VectorType>();
4143     if (srcType.getRank() < resultType.getRank()) {
4144       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4145         return {};
4146     } else if (srcType.getRank() > resultType.getRank()) {
4147       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4148         return {};
4149     } else {
4150       return {};
4151     }
4152 
4153     setOperand(otherOp.getSource());
4154     return getResult();
4155   }
4156 
4157   // Cancelling broadcast and shape cast ops.
4158   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4159     if (bcastOp.getSourceType() == getType())
4160       return bcastOp.getSource();
4161   }
4162 
4163   return {};
4164 }
4165 
4166 namespace {
4167 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4168 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4169 public:
4170   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4171 
4172   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4173                                 PatternRewriter &rewriter) const override {
4174     auto constantOp =
4175         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4176     if (!constantOp)
4177       return failure();
4178     // Only handle splat for now.
4179     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4180     if (!dense)
4181       return failure();
4182     auto newAttr =
4183         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4184                                dense.getSplatValue<Attribute>());
4185     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4186     return success();
4187   }
4188 };
4189 
4190 } // namespace
4191 
4192 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4193                                               MLIRContext *context) {
4194   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4195   results.add<ShapeCastConstantFolder>(context);
4196 }
4197 
4198 //===----------------------------------------------------------------------===//
4199 // VectorBitCastOp
4200 //===----------------------------------------------------------------------===//
4201 
4202 LogicalResult BitCastOp::verify() {
4203   auto sourceVectorType = getSourceVectorType();
4204   auto resultVectorType = getResultVectorType();
4205 
4206   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4207     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4208       return emitOpError("dimension size mismatch at: ") << i;
4209   }
4210 
4211   DataLayout dataLayout = DataLayout::closest(*this);
4212   auto sourceElementBits =
4213       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4214   auto resultElementBits =
4215       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4216 
4217   if (sourceVectorType.getRank() == 0) {
4218     if (sourceElementBits != resultElementBits)
4219       return emitOpError("source/result bitwidth of the 0-D vector element "
4220                             "types must be equal");
4221   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4222              resultElementBits * resultVectorType.getShape().back()) {
4223     return emitOpError(
4224         "source/result bitwidth of the minor 1-D vectors must be equal");
4225   }
4226 
4227   return success();
4228 }
4229 
4230 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4231   // Nop cast.
4232   if (getSource().getType() == getResult().getType())
4233     return getSource();
4234 
4235   // Canceling bitcasts.
4236   if (auto otherOp = getSource().getDefiningOp<BitCastOp>())
4237     if (getResult().getType() == otherOp.getSource().getType())
4238       return otherOp.getSource();
4239 
4240   Attribute sourceConstant = operands.front();
4241   if (!sourceConstant)
4242     return {};
4243 
4244   Type srcElemType = getSourceVectorType().getElementType();
4245   Type dstElemType = getResultVectorType().getElementType();
4246 
4247   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4248     if (floatPack.isSplat()) {
4249       auto splat = floatPack.getSplatValue<FloatAttr>();
4250 
4251       // Casting fp16 into fp32.
4252       if (srcElemType.isF16() && dstElemType.isF32()) {
4253         uint32_t bits = static_cast<uint32_t>(
4254             splat.getValue().bitcastToAPInt().getZExtValue());
4255         // Duplicate the 16-bit pattern.
4256         bits = (bits << 16) | (bits & 0xffff);
4257         APInt intBits(32, bits);
4258         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4259         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4260       }
4261     }
4262   }
4263 
4264   return {};
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 // TypeCastOp
4269 //===----------------------------------------------------------------------===//
4270 
4271 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4272   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4273   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4274                               memRefType.getShape().end());
4275   if (vectorType)
4276     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4277   return res;
4278 }
4279 
4280 /// Build the canonical memRefType with a single vector.
4281 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4282 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4283                        Value source) {
4284   result.addOperands(source);
4285   MemRefType memRefType = source.getType().cast<MemRefType>();
4286   VectorType vectorType =
4287       VectorType::get(extractShape(memRefType),
4288                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4289   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4290                                   memRefType.getMemorySpace()));
4291 }
4292 
4293 LogicalResult TypeCastOp::verify() {
4294   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4295   if (!canonicalType.getLayout().isIdentity())
4296     return emitOpError("expects operand to be a memref with identity layout");
4297   if (!getResultMemRefType().getLayout().isIdentity())
4298     return emitOpError("expects result to be a memref with identity layout");
4299   if (getResultMemRefType().getMemorySpace() !=
4300       getMemRefType().getMemorySpace())
4301     return emitOpError("expects result in same memory space");
4302 
4303   auto sourceType = getMemRefType();
4304   auto resultType = getResultMemRefType();
4305   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4306       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4307     return emitOpError(
4308                "expects result and operand with same underlying scalar type: ")
4309            << resultType;
4310   if (extractShape(sourceType) != extractShape(resultType))
4311     return emitOpError(
4312                "expects concatenated result and operand shapes to be equal: ")
4313            << resultType;
4314   return success();
4315 }
4316 
4317 //===----------------------------------------------------------------------===//
4318 // TransposeOp
4319 //===----------------------------------------------------------------------===//
4320 
4321 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4322                                 Value vector, ArrayRef<int64_t> transp) {
4323   VectorType vt = vector.getType().cast<VectorType>();
4324   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4325   for (unsigned i = 0; i < transp.size(); ++i)
4326     transposedShape[i] = vt.getShape()[transp[i]];
4327 
4328   result.addOperands(vector);
4329   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4330   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4331 }
4332 
4333 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4334   // Eliminate splat constant transpose ops.
4335   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4336     if (attr.isSplat())
4337       return attr.reshape(getResultType());
4338 
4339   // Eliminate identity transpose ops. This happens when the dimensions of the
4340   // input vector remain in their original order after the transpose operation.
4341   SmallVector<int64_t, 4> transp;
4342   getTransp(transp);
4343 
4344   // Check if the permutation of the dimensions contains sequential values:
4345   // {0, 1, 2, ...}.
4346   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4347     if (transp[i] != i)
4348       return {};
4349   }
4350 
4351   return getVector();
4352 }
4353 
4354 LogicalResult vector::TransposeOp::verify() {
4355   VectorType vectorType = getVectorType();
4356   VectorType resultType = getResultType();
4357   int64_t rank = resultType.getRank();
4358   if (vectorType.getRank() != rank)
4359     return emitOpError("vector result rank mismatch: ") << rank;
4360   // Verify transposition array.
4361   auto transpAttr = getTransp().getValue();
4362   int64_t size = transpAttr.size();
4363   if (rank != size)
4364     return emitOpError("transposition length mismatch: ") << size;
4365   SmallVector<bool, 8> seen(rank, false);
4366   for (const auto &ta : llvm::enumerate(transpAttr)) {
4367     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4368     if (i < 0 || i >= rank)
4369       return emitOpError("transposition index out of range: ") << i;
4370     if (seen[i])
4371       return emitOpError("duplicate position index: ") << i;
4372     seen[i] = true;
4373     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4374       return emitOpError("dimension size mismatch at: ") << i;
4375   }
4376   return success();
4377 }
4378 
4379 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4380   return llvm::to_vector<4>(getResultType().getShape());
4381 }
4382 
4383 namespace {
4384 
4385 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4386 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4387 public:
4388   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4389 
4390   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4391                                 PatternRewriter &rewriter) const override {
4392     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4393     auto getPermutation = [](vector::TransposeOp transpose) {
4394       SmallVector<int64_t, 4> permutation;
4395       transpose.getTransp(permutation);
4396       return permutation;
4397     };
4398 
4399     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4400     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4401                                   ArrayRef<int64_t> permutation2) {
4402       SmallVector<int64_t, 4> result;
4403       for (auto index : permutation2)
4404         result.push_back(permutation1[index]);
4405       return result;
4406     };
4407 
4408     // Return if the input of 'transposeOp' is not defined by another transpose.
4409     vector::TransposeOp parentTransposeOp =
4410         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4411     if (!parentTransposeOp)
4412       return failure();
4413 
4414     SmallVector<int64_t, 4> permutation = composePermutations(
4415         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4416     // Replace 'transposeOp' with a new transpose operation.
4417     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4418         transposeOp, transposeOp.getResult().getType(),
4419         parentTransposeOp.getVector(),
4420         vector::getVectorSubscriptAttr(rewriter, permutation));
4421     return success();
4422   }
4423 };
4424 
4425 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4426 struct FoldTransposedScalarBroadcast final
4427     : public OpRewritePattern<vector::TransposeOp> {
4428   using OpRewritePattern::OpRewritePattern;
4429 
4430   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4431                                 PatternRewriter &rewriter) const override {
4432     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4433     if (!bcastOp)
4434       return failure();
4435 
4436     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4437     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4438       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4439           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4440       return success();
4441     }
4442 
4443     return failure();
4444   }
4445 };
4446 
4447 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4448 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4449 public:
4450   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4451 
4452   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4453                                 PatternRewriter &rewriter) const override {
4454     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4455     if (!splatOp)
4456       return failure();
4457 
4458     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4459         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4460     return success();
4461   }
4462 };
4463 
4464 } // namespace
4465 
4466 void vector::TransposeOp::getCanonicalizationPatterns(
4467     RewritePatternSet &results, MLIRContext *context) {
4468   results
4469       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4470           context);
4471 }
4472 
4473 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4474   populateFromInt64AttrArray(getTransp(), results);
4475 }
4476 
4477 //===----------------------------------------------------------------------===//
4478 // ConstantMaskOp
4479 //===----------------------------------------------------------------------===//
4480 
4481 LogicalResult ConstantMaskOp::verify() {
4482   auto resultType = getResult().getType().cast<VectorType>();
4483   // Check the corner case of 0-D vectors first.
4484   if (resultType.getRank() == 0) {
4485     if (getMaskDimSizes().size() != 1)
4486       return emitError("array attr must have length 1 for 0-D vectors");
4487     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4488     if (dim != 0 && dim != 1)
4489       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4490     return success();
4491   }
4492 
4493   // Verify that array attr size matches the rank of the vector result.
4494   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4495     return emitOpError(
4496         "must specify array attr of size equal vector result rank");
4497   // Verify that each array attr element is in bounds of corresponding vector
4498   // result dimension size.
4499   auto resultShape = resultType.getShape();
4500   SmallVector<int64_t, 4> maskDimSizes;
4501   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4502     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4503     if (attrValue < 0 || attrValue > resultShape[it.index()])
4504       return emitOpError(
4505           "array attr of size out of bounds of vector result dimension size");
4506     maskDimSizes.push_back(attrValue);
4507   }
4508   // Verify that if one mask dim size is zero, they all should be zero (because
4509   // the mask region is a conjunction of each mask dimension interval).
4510   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4511   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4512   if (anyZeros && !allZeros)
4513     return emitOpError("expected all mask dim sizes to be zeros, "
4514                        "as a result of conjunction with zero mask dim");
4515   // Verify that if the mask type is scalable, dimensions should be zero because
4516   // constant scalable masks can only be defined for the "none set" or "all set"
4517   // cases, and there is no VLA way to define an "all set" case for
4518   // `vector.constant_mask`. In the future, a convention could be established
4519   // to decide if a specific dimension value could be considered as "all set".
4520   if (resultType.isScalable() &&
4521       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4522     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4523   return success();
4524 }
4525 
4526 //===----------------------------------------------------------------------===//
4527 // CreateMaskOp
4528 //===----------------------------------------------------------------------===//
4529 
4530 LogicalResult CreateMaskOp::verify() {
4531   auto vectorType = getResult().getType().cast<VectorType>();
4532   // Verify that an operand was specified for each result vector each dimension.
4533   if (vectorType.getRank() == 0) {
4534     if (getNumOperands() != 1)
4535       return emitOpError(
4536           "must specify exactly one operand for 0-D create_mask");
4537   } else if (getNumOperands() !=
4538              getResult().getType().cast<VectorType>().getRank()) {
4539     return emitOpError(
4540         "must specify an operand for each result vector dimension");
4541   }
4542   return success();
4543 }
4544 
4545 namespace {
4546 
4547 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4548 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4549 public:
4550   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4551 
4552   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4553                                 PatternRewriter &rewriter) const override {
4554     // Return if any of 'createMaskOp' operands are not defined by a constant.
4555     auto isNotDefByConstant = [](Value operand) {
4556       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4557     };
4558     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4559       return failure();
4560 
4561     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4562     // are negative or zero.
4563     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4564       if (vType.isScalable())
4565         for (auto opDim : createMaskOp.getOperands()) {
4566           APInt intVal;
4567           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4568               intVal.isStrictlyPositive())
4569             return failure();
4570         }
4571     }
4572 
4573     // Gather constant mask dimension sizes.
4574     SmallVector<int64_t, 4> maskDimSizes;
4575     for (auto it : llvm::zip(createMaskOp.operands(),
4576                              createMaskOp.getType().getShape())) {
4577       auto *defOp = std::get<0>(it).getDefiningOp();
4578       int64_t maxDimSize = std::get<1>(it);
4579       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4580       dimSize = std::min(dimSize, maxDimSize);
4581       // If one of dim sizes is zero, set all dims to zero.
4582       if (dimSize <= 0) {
4583         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4584         break;
4585       }
4586       maskDimSizes.push_back(dimSize);
4587     }
4588     // Replace 'createMaskOp' with ConstantMaskOp.
4589     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4590         createMaskOp, createMaskOp.getResult().getType(),
4591         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4592     return success();
4593   }
4594 };
4595 
4596 } // namespace
4597 
4598 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4599                                                MLIRContext *context) {
4600   results.add<CreateMaskFolder>(context);
4601 }
4602 
4603 //===----------------------------------------------------------------------===//
4604 // ScanOp
4605 //===----------------------------------------------------------------------===//
4606 
4607 LogicalResult ScanOp::verify() {
4608   VectorType srcType = getSourceType();
4609   VectorType initialType = getInitialValueType();
4610   // Check reduction dimension < rank.
4611   int64_t srcRank = srcType.getRank();
4612   int64_t reductionDim = getReductionDim();
4613   if (reductionDim >= srcRank)
4614     return emitOpError("reduction dimension ")
4615            << reductionDim << " has to be less than " << srcRank;
4616 
4617   // Check that rank(initial_value) = rank(src) - 1.
4618   int64_t initialValueRank = initialType.getRank();
4619   if (initialValueRank != srcRank - 1)
4620     return emitOpError("initial value rank ")
4621            << initialValueRank << " has to be equal to " << srcRank - 1;
4622 
4623   // Check shapes of initial value and src.
4624   ArrayRef<int64_t> srcShape = srcType.getShape();
4625   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4626   SmallVector<int64_t> expectedShape;
4627   for (int i = 0; i < srcRank; i++) {
4628     if (i != reductionDim)
4629       expectedShape.push_back(srcShape[i]);
4630   }
4631   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4632                    [](std::tuple<int64_t, int64_t> s) {
4633                      return std::get<0>(s) != std::get<1>(s);
4634                    })) {
4635     return emitOpError("incompatible input/initial value shapes");
4636   }
4637 
4638   // Verify supported reduction kind.
4639   Type eltType = getDestType().getElementType();
4640   if (!isSupportedCombiningKind(getKind(), eltType))
4641     return emitOpError("unsupported reduction type ")
4642            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4643            << "'";
4644 
4645   return success();
4646 }
4647 
4648 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4649     RewritePatternSet &patterns) {
4650   patterns
4651       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4652            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4653            StridedSliceConstantMaskFolder, TransposeFolder>(
4654           patterns.getContext());
4655 }
4656 
4657 //===----------------------------------------------------------------------===//
4658 // SplatOp
4659 //===----------------------------------------------------------------------===//
4660 
4661 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4662   auto constOperand = operands.front();
4663   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4664     return {};
4665 
4666   // SplatElementsAttr::get treats single value for second arg as being a splat.
4667   return SplatElementsAttr::get(getType(), {constOperand});
4668 }
4669 
4670 //===----------------------------------------------------------------------===//
4671 // WarpExecuteOnLane0Op
4672 //===----------------------------------------------------------------------===//
4673 
4674 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4675   p << "(" << getLaneid() << ")";
4676 
4677   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4678   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4679   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4680 
4681   if (!getArgs().empty())
4682     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4683   if (!getResults().empty())
4684     p << " -> (" << getResults().getTypes() << ')';
4685   p << " ";
4686   p.printRegion(getRegion(),
4687                 /*printEntryBlockArgs=*/true,
4688                 /*printBlockTerminators=*/!getResults().empty());
4689   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4690 }
4691 
4692 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4693                                         OperationState &result) {
4694   // Create the region.
4695   result.regions.reserve(1);
4696   Region *warpRegion = result.addRegion();
4697 
4698   auto &builder = parser.getBuilder();
4699   OpAsmParser::UnresolvedOperand laneId;
4700 
4701   // Parse predicate operand.
4702   if (parser.parseLParen() ||
4703       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4704       parser.parseRParen())
4705     return failure();
4706 
4707   int64_t warpSize;
4708   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4709       parser.parseRSquare())
4710     return failure();
4711   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4712                                                         builder.getContext())),
4713                       builder.getI64IntegerAttr(warpSize));
4714 
4715   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4716     return failure();
4717 
4718   llvm::SMLoc inputsOperandsLoc;
4719   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4720   SmallVector<Type> inputTypes;
4721   if (succeeded(parser.parseOptionalKeyword("args"))) {
4722     if (parser.parseLParen())
4723       return failure();
4724 
4725     inputsOperandsLoc = parser.getCurrentLocation();
4726     if (parser.parseOperandList(inputsOperands) ||
4727         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4728       return failure();
4729   }
4730   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4731                              result.operands))
4732     return failure();
4733 
4734   // Parse optional results type list.
4735   if (parser.parseOptionalArrowTypeList(result.types))
4736     return failure();
4737   // Parse the region.
4738   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4739                          /*argTypes=*/{}))
4740     return failure();
4741   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4742 
4743   // Parse the optional attribute list.
4744   if (parser.parseOptionalAttrDict(result.attributes))
4745     return failure();
4746   return success();
4747 }
4748 
4749 void WarpExecuteOnLane0Op::getSuccessorRegions(
4750     Optional<unsigned> index, ArrayRef<Attribute> operands,
4751     SmallVectorImpl<RegionSuccessor> &regions) {
4752   if (index.hasValue()) {
4753     regions.push_back(RegionSuccessor(getResults()));
4754     return;
4755   }
4756 
4757   // The warp region is always executed
4758   regions.push_back(RegionSuccessor(&getWarpRegion()));
4759 }
4760 
4761 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4762                                  TypeRange resultTypes, Value laneId,
4763                                  int64_t warpSize) {
4764   build(builder, result, resultTypes, laneId, warpSize,
4765         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4766 }
4767 
4768 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4769                                  TypeRange resultTypes, Value laneId,
4770                                  int64_t warpSize, ValueRange args,
4771                                  TypeRange blockArgTypes) {
4772   result.addOperands(laneId);
4773   result.addAttribute(getAttributeNames()[0],
4774                       builder.getI64IntegerAttr(warpSize));
4775   result.addTypes(resultTypes);
4776   result.addOperands(args);
4777   assert(args.size() == blockArgTypes.size());
4778   OpBuilder::InsertionGuard guard(builder);
4779   Region *warpRegion = result.addRegion();
4780   Block *block = builder.createBlock(warpRegion);
4781   for (auto it : llvm::zip(blockArgTypes, args))
4782     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4783 }
4784 
4785 /// Helper check if the distributed vector type is consistent with the expanded
4786 /// type and distributed size.
4787 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4788                                            int64_t warpSize, Operation *op) {
4789   // If the types matches there is no distribution.
4790   if (expanded == distributed)
4791     return success();
4792   auto expandedVecType = expanded.dyn_cast<VectorType>();
4793   auto distributedVecType = distributed.dyn_cast<VectorType>();
4794   if (!expandedVecType || !distributedVecType)
4795     return op->emitOpError("expected vector type for distributed operands.");
4796   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4797       expandedVecType.getElementType() != distributedVecType.getElementType())
4798     return op->emitOpError(
4799         "expected distributed vectors to have same rank and element type.");
4800   bool foundDistributedDim = false;
4801   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4802     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4803       continue;
4804     if (expandedVecType.getDimSize(i) ==
4805         distributedVecType.getDimSize(i) * warpSize) {
4806       if (foundDistributedDim)
4807         return op->emitOpError()
4808                << "expected only one dimension to be distributed from "
4809                << expandedVecType << " to " << distributedVecType;
4810       foundDistributedDim = true;
4811       continue;
4812     }
4813     return op->emitOpError() << "incompatible distribution dimensions from "
4814                              << expandedVecType << " to " << distributedVecType;
4815   }
4816   return success();
4817 }
4818 
4819 LogicalResult WarpExecuteOnLane0Op::verify() {
4820   if (getArgs().size() != getWarpRegion().getNumArguments())
4821     return emitOpError(
4822         "expected same number op arguments and block arguments.");
4823   auto yield =
4824       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4825   if (yield.getNumOperands() != getNumResults())
4826     return emitOpError(
4827         "expected same number of yield operands and return values.");
4828   int64_t warpSize = getWarpSize();
4829   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4830     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4831                                      std::get<1>(it).getType(), warpSize,
4832                                      getOperation())))
4833       return failure();
4834   }
4835   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4836     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4837                                      std::get<1>(it).getType(), warpSize,
4838                                      getOperation())))
4839       return failure();
4840   }
4841   return success();
4842 }
4843 
4844 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4845   return succeeded(
4846       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4847 }
4848 
4849 //===----------------------------------------------------------------------===//
4850 // TableGen'd op method definitions
4851 //===----------------------------------------------------------------------===//
4852 
4853 #define GET_OP_CLASSES
4854 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4855