1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   case arith::AtomicRMWKind::andi:
480     return builder.create<vector::ReductionOp>(vector.getLoc(),
481                                                CombiningKind::AND, vector);
482   case arith::AtomicRMWKind::ori:
483     return builder.create<vector::ReductionOp>(vector.getLoc(),
484                                                CombiningKind::OR, vector);
485   // TODO: Add remaining reduction operations.
486   default:
487     (void)emitOptionalError(loc, "Reduction operation type not supported");
488     break;
489   }
490   return nullptr;
491 }
492 
493 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
494   return llvm::to_vector<4>(getVectorType().getShape());
495 }
496 
497 namespace {
498 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
499   using OpRewritePattern::OpRewritePattern;
500 
501   LogicalResult matchAndRewrite(ReductionOp reductionOp,
502                                 PatternRewriter &rewriter) const override {
503     if (reductionOp.getVectorType().getDimSize(0) != 1)
504       return failure();
505 
506     Location loc = reductionOp.getLoc();
507     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
508                                               reductionOp.getVector(),
509                                               rewriter.getI64ArrayAttr(0));
510 
511     if (Value acc = reductionOp.getAcc()) {
512       assert(reductionOp.getType().isa<FloatType>());
513       switch (reductionOp.getKind()) {
514       case CombiningKind::ADD:
515         result = rewriter.create<arith::AddFOp>(loc, result, acc);
516         break;
517       case CombiningKind::MUL:
518         result = rewriter.create<arith::MulFOp>(loc, result, acc);
519         break;
520       default:
521         assert(false && "invalid op!");
522       }
523     }
524 
525     rewriter.replaceOp(reductionOp, result);
526     return success();
527   }
528 };
529 } // namespace
530 
531 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
532                                               MLIRContext *context) {
533   results.add<ElideSingleElementReduction>(context);
534 }
535 
536 //===----------------------------------------------------------------------===//
537 // ContractionOp
538 //===----------------------------------------------------------------------===//
539 
540 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
541                                   Value lhs, Value rhs, Value acc,
542                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
543                                   ArrayRef<StringRef> iteratorTypes) {
544   result.addOperands({lhs, rhs, acc});
545   result.addTypes(acc.getType());
546   result.addAttribute(::mlir::getIndexingMapsAttrName(),
547                       builder.getAffineMapArrayAttr(
548                           AffineMap::inferFromExprList(indexingExprs)));
549   result.addAttribute(::mlir::getIteratorTypesAttrName(),
550                       builder.getStrArrayAttr(iteratorTypes));
551 }
552 
553 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
554                                   Value lhs, Value rhs, Value acc,
555                                   ArrayAttr indexingMaps,
556                                   ArrayAttr iteratorTypes) {
557   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
558         ContractionOp::getDefaultKind());
559 }
560 
561 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
562                                   Value lhs, Value rhs, Value acc,
563                                   ArrayAttr indexingMaps,
564                                   ArrayAttr iteratorTypes, CombiningKind kind) {
565   result.addOperands({lhs, rhs, acc});
566   result.addTypes(acc.getType());
567   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
568   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
569   result.addAttribute(ContractionOp::getKindAttrStrName(),
570                       CombiningKindAttr::get(kind, builder.getContext()));
571 }
572 
573 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
574   OpAsmParser::UnresolvedOperand lhsInfo;
575   OpAsmParser::UnresolvedOperand rhsInfo;
576   OpAsmParser::UnresolvedOperand accInfo;
577   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
578   SmallVector<Type, 2> types;
579   Type resultType;
580   auto loc = parser.getCurrentLocation();
581   DictionaryAttr dictAttr;
582   // TODO: Unify linalg op attribute parsing.
583   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
584       parser.parseOperand(lhsInfo) || parser.parseComma() ||
585       parser.parseOperand(rhsInfo) || parser.parseComma() ||
586       parser.parseOperand(accInfo) ||
587       parser.parseTrailingOperandList(masksInfo) ||
588       parser.parseOptionalAttrDict(result.attributes) ||
589       parser.parseColonTypeList(types) ||
590       parser.parseKeywordType("into", resultType) ||
591       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
592       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
593       parser.resolveOperand(accInfo, resultType, result.operands) ||
594       parser.addTypeToList(resultType, result.types))
595     return failure();
596   result.attributes.assign(dictAttr.getValue().begin(),
597                            dictAttr.getValue().end());
598   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
599     result.addAttribute(ContractionOp::getKindAttrStrName(),
600                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
601                                                result.getContext()));
602   }
603   if (masksInfo.empty())
604     return success();
605   if (masksInfo.size() != 2)
606     return parser.emitError(parser.getNameLoc(),
607                             "expected zero or exactly 2 vector mask operands");
608   auto lhsType = types[0].cast<VectorType>();
609   auto rhsType = types[1].cast<VectorType>();
610   auto maskElementType = parser.getBuilder().getI1Type();
611   std::array<Type, 2> maskTypes = {
612       VectorType::Builder(lhsType).setElementType(maskElementType),
613       VectorType::Builder(rhsType).setElementType(maskElementType)};
614   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
615     return failure();
616   return success();
617 }
618 
619 void ContractionOp::print(OpAsmPrinter &p) {
620   // TODO: Unify printing code with linalg ops.
621   auto attrNames = getTraitAttrNames();
622   llvm::StringSet<> traitAttrsSet;
623   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
624   SmallVector<NamedAttribute, 8> attrs;
625   for (auto attr : (*this)->getAttrs())
626     if (traitAttrsSet.count(attr.getName().strref()) > 0)
627       attrs.push_back(attr);
628 
629   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
630   p << " " << dictAttr << " " << getLhs() << ", ";
631   p << getRhs() << ", " << getAcc();
632   if (getMasks().size() == 2)
633     p << ", " << getMasks();
634 
635   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
636   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
637     << getResultType();
638 }
639 
640 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
641                          const std::vector<std::pair<int64_t, int64_t>> &map) {
642   for (auto &dimPair : map) {
643     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
644         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
645         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
646       return false;
647   }
648   return true;
649 }
650 
651 static LogicalResult verifyOutputShape(
652     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
653     Type resType,
654     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
655     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
656   DenseSet<int64_t> lhsContractingDimSet;
657   DenseSet<int64_t> rhsContractingDimSet;
658   for (auto &dimPair : contractingDimMap) {
659     lhsContractingDimSet.insert(dimPair.first);
660     rhsContractingDimSet.insert(dimPair.second);
661   }
662   DenseSet<int64_t> rhsBatchDimSet;
663   for (auto &dimPair : batchDimMap)
664     rhsBatchDimSet.insert(dimPair.second);
665 
666   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
667   SmallVector<int64_t, 4> expectedResultDims;
668   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
669     if (lhsContractingDimSet.count(i) > 0)
670       continue;
671     expectedResultDims.push_back(lhsType.getDimSize(i));
672   }
673 
674   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
675   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
676     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
677       continue;
678     expectedResultDims.push_back(rhsType.getDimSize(i));
679   }
680 
681   // Verify 'expectedResultDims'.
682   if (expectedResultDims.empty()) {
683     // No batch or free dimension implies a scalar result.
684     if (resType.isa<VectorType>() || accType.isa<VectorType>())
685       return op.emitOpError("invalid accumulator/result vector shape");
686   } else {
687     // At least one batch or free dimension implies a vector result.
688     auto resVectorType = resType.dyn_cast<VectorType>();
689     auto accVectorType = accType.dyn_cast<VectorType>();
690     if (!resVectorType || !accVectorType)
691       return op.emitOpError("invalid accumulator/result vector shape");
692 
693     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
694     // types fully define the result vector type. This assumes the affine maps
695     // are well-formed, which must have been verified already.
696     MLIRContext *ctx = op.getContext();
697     AffineMap lhsMap = op.getIndexingMaps()[0];
698     AffineMap rhsMap = op.getIndexingMaps()[1];
699     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
700     for (auto pair :
701          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
702       VectorType v = pair.first;
703       auto map = pair.second;
704       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
705         unsigned pos = map.getDimPosition(idx);
706         if (!extents[pos])
707           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
708       }
709     }
710     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
711            "expected extent along all dimensions.");
712 
713     AffineMap resMap = op.getIndexingMaps()[2];
714     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
715                                      /*symCount=*/0, extents, ctx);
716     // Compose the resMap with the extentsMap, which is a constant map.
717     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
718     assert(llvm::all_of(
719                expectedMap.getResults(),
720                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
721            "expected constant extent along all dimensions.");
722     // Extract the expected shape and build the type.
723     auto expectedShape = llvm::to_vector<4>(
724         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
725           return e.cast<AffineConstantExpr>().getValue();
726         }));
727     auto expected =
728         VectorType::get(expectedShape, resVectorType.getElementType());
729     if (resVectorType != expected || accVectorType != expected)
730       return op.emitOpError(
731                  "invalid accumulator/result vector shape, expected: ")
732              << expected;
733   }
734   return success();
735 }
736 
737 LogicalResult ContractionOp::verify() {
738   auto lhsType = getLhsType();
739   auto rhsType = getRhsType();
740   auto accType = getAccType();
741   auto resType = getResultType();
742 
743   // Verify that an indexing map was specified for each vector operand.
744   if (getIndexingMaps().size() != 3)
745     return emitOpError("expected an indexing map for each vector operand");
746 
747   // Verify that each index map has 'numIterators' inputs, no symbols, and
748   // that the number of map outputs equals the rank of its associated
749   // vector operand.
750   unsigned numIterators = getIteratorTypes().getValue().size();
751   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
752     auto index = it.index();
753     auto map = it.value();
754     if (map.getNumSymbols() != 0)
755       return emitOpError("expected indexing map ")
756              << index << " to have no symbols";
757     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
758     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
759     // Verify that the map has the right number of inputs, outputs, and indices.
760     // This also correctly accounts for (..) -> () for rank-0 results.
761     if (map.getNumDims() != numIterators)
762       return emitOpError("expected indexing map ")
763              << index << " to have " << numIterators << " number of inputs";
764     if (map.getNumResults() != rank)
765       return emitOpError("expected indexing map ")
766              << index << " to have " << rank << " number of outputs";
767     if (!map.isProjectedPermutation())
768       return emitOpError("expected indexing map ")
769              << index << " to be a projected permutation of its inputs";
770   }
771 
772   auto contractingDimMap = getContractingDimMap();
773   auto batchDimMap = getBatchDimMap();
774 
775   // Verify at least one contracting dimension pair was specified.
776   if (contractingDimMap.empty())
777     return emitOpError("expected at least one contracting dimension pair");
778 
779   // Verify contracting dimension map was properly constructed.
780   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
781     return emitOpError("invalid contracting dimension map");
782 
783   // Verify batch dimension map was properly constructed.
784   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
785     return emitOpError("invalid batch dimension map");
786 
787   // Verify 'accType' and 'resType' shape.
788   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
789                                contractingDimMap, batchDimMap)))
790     return failure();
791 
792   // Verify that either two vector masks are set or none are set.
793   auto lhsMaskType = getLHSVectorMaskType();
794   auto rhsMaskType = getRHSVectorMaskType();
795   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
796     return emitOpError("invalid number of vector masks specified");
797   if (lhsMaskType && rhsMaskType) {
798     // Verify mask rank == argument rank.
799     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
800         rhsMaskType.getShape().size() != rhsType.getShape().size())
801       return emitOpError("invalid vector mask rank");
802   }
803 
804   // Verify supported combining kind.
805   auto vectorType = resType.dyn_cast<VectorType>();
806   auto elementType = vectorType ? vectorType.getElementType() : resType;
807   if (!isSupportedCombiningKind(getKind(), elementType))
808     return emitOpError("unsupported contraction type");
809 
810   return success();
811 }
812 
813 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
814   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
815                                          ::mlir::getIteratorTypesAttrName(),
816                                          ContractionOp::getKindAttrStrName()};
817   return llvm::makeArrayRef(names);
818 }
819 
820 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
821   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
822     if (targetExpr == map.getResult(i))
823       return i;
824   return -1;
825 }
826 
827 static std::vector<std::pair<int64_t, int64_t>>
828 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
829           StringRef targetIteratorTypeName, MLIRContext *context) {
830   std::vector<std::pair<int64_t, int64_t>> dimMap;
831   for (const auto &it : llvm::enumerate(iteratorTypes)) {
832     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
833     if (iteratorTypeName != targetIteratorTypeName)
834       continue;
835     // Search lhs/rhs map results for 'targetExpr'.
836     auto targetExpr = getAffineDimExpr(it.index(), context);
837     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
838     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
839     if (lhsDim >= 0 && rhsDim >= 0)
840       dimMap.emplace_back(lhsDim, rhsDim);
841   }
842   return dimMap;
843 }
844 
845 void ContractionOp::getIterationBounds(
846     SmallVectorImpl<int64_t> &iterationBounds) {
847   auto lhsShape = getLhsType().getShape();
848   auto resVectorType = getResultType().dyn_cast<VectorType>();
849   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
850   SmallVector<int64_t, 2> iterationShape;
851   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
852     // Search lhs/rhs map results for 'targetExpr'.
853     auto targetExpr = getAffineDimExpr(it.index(), getContext());
854     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
855     if (iteratorTypeName == getReductionIteratorTypeName()) {
856       // Get reduction dim size from lhs shape (same size in rhsShape).
857       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
858       assert(lhsDimIndex >= 0);
859       iterationBounds.push_back(lhsShape[lhsDimIndex]);
860       continue;
861     }
862     // Get parallel dimension size from result shape.
863     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
864     assert(resDimIndex >= 0);
865     assert(resVectorType != nullptr);
866     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
867   }
868 }
869 
870 void ContractionOp::getIterationIndexMap(
871     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
872   unsigned numMaps = getIndexingMaps().size();
873   iterationIndexMap.resize(numMaps);
874   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
875     auto index = it.index();
876     auto map = it.value();
877     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
878       auto dim = map.getResult(i).cast<AffineDimExpr>();
879       iterationIndexMap[index][dim.getPosition()] = i;
880     }
881   }
882 }
883 
884 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
885   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
886   return getDimMap(indexingMaps, getIteratorTypes(),
887                    getReductionIteratorTypeName(), getContext());
888 }
889 
890 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
891   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
892   return getDimMap(indexingMaps, getIteratorTypes(),
893                    getParallelIteratorTypeName(), getContext());
894 }
895 
896 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
897   SmallVector<int64_t, 4> shape;
898   getIterationBounds(shape);
899   return shape;
900 }
901 
902 /// Return a fused vector::ContractionOp which represents a patterns such as:
903 ///
904 /// ```mlir
905 ///    %c0 = vector.constant 0: ...
906 ///    %c = vector.contract %a, %b, %c0: ...
907 ///    %e = add %c, %d: ...
908 /// ```
909 ///
910 /// by:
911 ///
912 /// ```mlir
913 ///    %e = vector.contract %a, %b, %d: ...
914 /// ```
915 ///
916 /// Return null if the canonicalization does not apply.
917 // TODO: This should be a folding of Add into Contract in core but while they
918 // live in different dialects, it is not possible without unnatural
919 // dependencies.
920 template <typename AddOpType>
921 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
922   using OpRewritePattern<AddOpType>::OpRewritePattern;
923 
924   LogicalResult matchAndRewrite(AddOpType addOp,
925                                 PatternRewriter &rewriter) const override {
926     auto canonicalize = [&](Value maybeContraction,
927                             Value otherOperand) -> vector::ContractionOp {
928       vector::ContractionOp contractionOp =
929           dyn_cast_or_null<vector::ContractionOp>(
930               maybeContraction.getDefiningOp());
931       if (!contractionOp)
932         return vector::ContractionOp();
933       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
934               contractionOp.getAcc().getDefiningOp())) {
935         if (maybeZero.getValue() ==
936             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
937           BlockAndValueMapping bvm;
938           bvm.map(contractionOp.getAcc(), otherOperand);
939           auto newContraction =
940               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
941           rewriter.replaceOp(addOp, newContraction.getResult());
942           return newContraction;
943         }
944       }
945       return vector::ContractionOp();
946     };
947 
948     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
949     vector::ContractionOp contract = canonicalize(a, b);
950     contract = contract ? contract : canonicalize(b, a);
951     return contract ? success() : failure();
952   }
953 };
954 
955 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
956                                                 MLIRContext *context) {
957   results.add<CanonicalizeContractAdd<arith::AddIOp>,
958               CanonicalizeContractAdd<arith::AddFOp>>(context);
959 }
960 
961 //===----------------------------------------------------------------------===//
962 // ExtractElementOp
963 //===----------------------------------------------------------------------===//
964 
965 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
966                                      Value source) {
967   result.addOperands({source});
968   result.addTypes(source.getType().cast<VectorType>().getElementType());
969 }
970 
971 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
972                                      Value source, Value position) {
973   result.addOperands({source, position});
974   result.addTypes(source.getType().cast<VectorType>().getElementType());
975 }
976 
977 LogicalResult vector::ExtractElementOp::verify() {
978   VectorType vectorType = getVectorType();
979   if (vectorType.getRank() == 0) {
980     if (getPosition())
981       return emitOpError("expected position to be empty with 0-D vector");
982     return success();
983   }
984   if (vectorType.getRank() != 1)
985     return emitOpError("unexpected >1 vector rank");
986   if (!getPosition())
987     return emitOpError("expected position for 1-D vector");
988   return success();
989 }
990 
991 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
992   // Skip the 0-D vector here now.
993   if (operands.size() < 2)
994     return {};
995 
996   Attribute src = operands[0];
997   Attribute pos = operands[1];
998 
999   // Fold extractelement (splat X) -> X.
1000   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
1001     return splat.getInput();
1002 
1003   if (!pos || !src)
1004     return {};
1005 
1006   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
1007 
1008   auto attr = pos.dyn_cast<IntegerAttr>();
1009   uint64_t posIdx = attr.getInt();
1010 
1011   return srcElements[posIdx];
1012 }
1013 
1014 //===----------------------------------------------------------------------===//
1015 // ExtractOp
1016 //===----------------------------------------------------------------------===//
1017 
1018 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1019                               Value source, ArrayRef<int64_t> position) {
1020   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1021 }
1022 
1023 // Convenience builder which assumes the values are constant indices.
1024 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1025                               Value source, ValueRange position) {
1026   SmallVector<int64_t, 4> positionConstants =
1027       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1028         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1029       }));
1030   build(builder, result, source, positionConstants);
1031 }
1032 
1033 LogicalResult
1034 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1035                             ValueRange operands, DictionaryAttr attributes,
1036                             RegionRange,
1037                             SmallVectorImpl<Type> &inferredReturnTypes) {
1038   ExtractOp::Adaptor op(operands, attributes);
1039   auto vectorType = op.getVector().getType().cast<VectorType>();
1040   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1041     inferredReturnTypes.push_back(vectorType.getElementType());
1042   } else {
1043     auto n =
1044         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1045     inferredReturnTypes.push_back(VectorType::get(
1046         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1047   }
1048   return success();
1049 }
1050 
1051 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1052   // Allow extracting 1-element vectors instead of scalars.
1053   auto isCompatible = [](TypeRange l, TypeRange r) {
1054     auto vectorType = l.front().dyn_cast<VectorType>();
1055     return vectorType && vectorType.getShape().equals({1}) &&
1056            vectorType.getElementType() == r.front();
1057   };
1058   if (l.size() == 1 && r.size() == 1 &&
1059       (isCompatible(l, r) || isCompatible(r, l)))
1060     return true;
1061   return l == r;
1062 }
1063 
1064 LogicalResult vector::ExtractOp::verify() {
1065   auto positionAttr = getPosition().getValue();
1066   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1067     return emitOpError(
1068         "expected position attribute of rank smaller than vector rank");
1069   for (const auto &en : llvm::enumerate(positionAttr)) {
1070     auto attr = en.value().dyn_cast<IntegerAttr>();
1071     if (!attr || attr.getInt() < 0 ||
1072         attr.getInt() >= getVectorType().getDimSize(en.index()))
1073       return emitOpError("expected position attribute #")
1074              << (en.index() + 1)
1075              << " to be a non-negative integer smaller than the corresponding "
1076                 "vector dimension";
1077   }
1078   return success();
1079 }
1080 
1081 template <typename IntType>
1082 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1083   return llvm::to_vector<4>(llvm::map_range(
1084       arrayAttr.getAsRange<IntegerAttr>(),
1085       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1086 }
1087 
1088 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1089 /// positions.
1090 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1091   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1092     return failure();
1093 
1094   SmallVector<int64_t, 4> globalPosition;
1095   ExtractOp currentOp = extractOp;
1096   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1097   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1098   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1099     currentOp = nextOp;
1100     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1101     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1102   }
1103   extractOp.setOperand(currentOp.getVector());
1104   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1105   OpBuilder b(extractOp.getContext());
1106   std::reverse(globalPosition.begin(), globalPosition.end());
1107   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1108                      b.getI64ArrayAttr(globalPosition));
1109   return success();
1110 }
1111 
1112 namespace {
1113 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1114 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1115 /// Compose TransposeOp permutations as we walk back.
1116 /// This helper class keeps an updated extraction position `extractPosition`
1117 /// with extra trailing sentinels.
1118 /// The sentinels encode the internal transposition status of the result vector.
1119 /// As we iterate, extractPosition is permuted and updated.
1120 class ExtractFromInsertTransposeChainState {
1121 public:
1122   ExtractFromInsertTransposeChainState(ExtractOp e);
1123 
1124   /// Iterate over producing insert and transpose ops until we find a fold.
1125   Value fold();
1126 
1127 private:
1128   /// Return true if the vector at position `a` is contained within the vector
1129   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1130   /// is a prefix of `b`.
1131   template <typename ContainerA, typename ContainerB>
1132   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1133     return a.size() <= b.size() &&
1134            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1135   }
1136 
1137   /// Return true if the vector at position `a` intersects the vector at
1138   /// position `b`. Under insert/extract semantics, this is the same as equality
1139   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1140   /// Comparison is on the common prefix (i.e. zip).
1141   template <typename ContainerA, typename ContainerB>
1142   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1143     for (auto it : llvm::zip(a, b)) {
1144       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1145         continue;
1146       if (std::get<0>(it) != std::get<1>(it))
1147         return false;
1148     }
1149     return true;
1150   }
1151 
1152   /// Folding is only possible in the absence of an internal permutation in the
1153   /// result vector.
1154   bool canFold() {
1155     return (sentinels ==
1156             makeArrayRef(extractPosition).drop_front(extractedRank));
1157   }
1158 
1159   // Helper to get the next defining op of interest.
1160   void updateStateForNextIteration(Value v) {
1161     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1162     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1163   };
1164 
1165   // Case 1. If we hit a transpose, just compose the map and iterate.
1166   // Invariant: insert + transpose do not change rank, we can always compose.
1167   LogicalResult handleTransposeOp();
1168 
1169   // Case 2: the insert position matches extractPosition exactly, early return.
1170   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1171 
1172   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1173   /// portion of the source of the insert.
1174   /// Example:
1175   /// ```
1176   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1177   /// // extractPosition == [1, 2, 3]
1178   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1179   /// // can fold to vector.extract %source[0, 3]
1180   /// %ext = vector.extract %source[3]: vector<5x6>
1181   /// ```
1182   /// To traverse through %source, we need to set the leading dims to 0 and
1183   /// drop the extra leading dims.
1184   /// This method updates the internal state.
1185   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1186 
1187   /// Try to fold in place to extract(source, extractPosition) and return the
1188   /// folded result. Return null if folding is not possible (e.g. due to an
1189   /// internal tranposition in the result).
1190   Value tryToFoldExtractOpInPlace(Value source);
1191 
1192   ExtractOp extractOp;
1193   int64_t vectorRank;
1194   int64_t extractedRank;
1195 
1196   InsertOp nextInsertOp;
1197   TransposeOp nextTransposeOp;
1198 
1199   /// Sentinel values that encode the internal permutation status of the result.
1200   /// They are set to (-1, ... , -k) at the beginning and appended to
1201   /// `extractPosition`.
1202   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1203   /// ensure that there is no internal transposition.
1204   /// Internal transposition cannot be accounted for with a folding pattern.
1205   // TODO: We could relax the internal transposition with an extra transposition
1206   // operation in a future canonicalizer.
1207   SmallVector<int64_t> sentinels;
1208   SmallVector<int64_t> extractPosition;
1209 };
1210 } // namespace
1211 
1212 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1213     ExtractOp e)
1214     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1215       extractedRank(extractOp.getPosition().size()) {
1216   assert(vectorRank >= extractedRank && "extracted pos overflow");
1217   sentinels.reserve(vectorRank - extractedRank);
1218   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1219     sentinels.push_back(-(i + 1));
1220   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1221   llvm::append_range(extractPosition, sentinels);
1222 }
1223 
1224 // Case 1. If we hit a transpose, just compose the map and iterate.
1225 // Invariant: insert + transpose do not change rank, we can always compose.
1226 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1227   if (!nextTransposeOp)
1228     return failure();
1229   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1230   AffineMap m = inversePermutation(
1231       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1232   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1233   return success();
1234 }
1235 
1236 // Case 2: the insert position matches extractPosition exactly, early return.
1237 LogicalResult
1238 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1239     Value &res) {
1240   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1241   if (makeArrayRef(insertedPos) !=
1242       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1243     return failure();
1244   // Case 2.a. early-exit fold.
1245   res = nextInsertOp.getSource();
1246   // Case 2.b. if internal transposition is present, canFold will be false.
1247   return success();
1248 }
1249 
1250 /// Case 3: if inserted position is a prefix of extractPosition,
1251 /// extract a portion of the source of the insertion.
1252 /// This method updates the internal state.
1253 LogicalResult
1254 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1255   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1256   if (!isContainedWithin(insertedPos, extractPosition))
1257     return failure();
1258   // Set leading dims to zero.
1259   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1260   // Drop extra leading dims.
1261   extractPosition.erase(extractPosition.begin(),
1262                         extractPosition.begin() + insertedPos.size());
1263   extractedRank = extractPosition.size() - sentinels.size();
1264   // Case 3.a. early-exit fold (break and delegate to post-while path).
1265   res = nextInsertOp.getSource();
1266   // Case 3.b. if internal transposition is present, canFold will be false.
1267   return success();
1268 }
1269 
1270 /// Try to fold in place to extract(source, extractPosition) and return the
1271 /// folded result. Return null if folding is not possible (e.g. due to an
1272 /// internal tranposition in the result).
1273 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1274     Value source) {
1275   // If we can't fold (either internal transposition, or nothing to fold), bail.
1276   bool nothingToFold = (source == extractOp.getVector());
1277   if (nothingToFold || !canFold())
1278     return Value();
1279   // Otherwise, fold by updating the op inplace and return its result.
1280   OpBuilder b(extractOp.getContext());
1281   extractOp->setAttr(
1282       extractOp.getPositionAttrName(),
1283       b.getI64ArrayAttr(
1284           makeArrayRef(extractPosition).take_front(extractedRank)));
1285   extractOp.getVectorMutable().assign(source);
1286   return extractOp.getResult();
1287 }
1288 
1289 /// Iterate over producing insert and transpose ops until we find a fold.
1290 Value ExtractFromInsertTransposeChainState::fold() {
1291   Value valueToExtractFrom = extractOp.getVector();
1292   updateStateForNextIteration(valueToExtractFrom);
1293   while (nextInsertOp || nextTransposeOp) {
1294     // Case 1. If we hit a transpose, just compose the map and iterate.
1295     // Invariant: insert + transpose do not change rank, we can always compose.
1296     if (succeeded(handleTransposeOp())) {
1297       valueToExtractFrom = nextTransposeOp.getVector();
1298       updateStateForNextIteration(valueToExtractFrom);
1299       continue;
1300     }
1301 
1302     Value result;
1303     // Case 2: the position match exactly.
1304     if (succeeded(handleInsertOpWithMatchingPos(result)))
1305       return result;
1306 
1307     // Case 3: if the inserted position is a prefix of extractPosition, we can
1308     // just extract a portion of the source of the insert.
1309     if (succeeded(handleInsertOpWithPrefixPos(result)))
1310       return tryToFoldExtractOpInPlace(result);
1311 
1312     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1313     // values. This is a more difficult case and we bail.
1314     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1315     if (isContainedWithin(extractPosition, insertedPos) ||
1316         intersectsWhereNonNegative(extractPosition, insertedPos))
1317       return Value();
1318 
1319     // Case 5: No intersection, we forward the extract to insertOp.dest().
1320     valueToExtractFrom = nextInsertOp.getDest();
1321     updateStateForNextIteration(valueToExtractFrom);
1322   }
1323   // If after all this we can fold, go for it.
1324   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1325 }
1326 
1327 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1328 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1329   Operation *defOp = extractOp.getVector().getDefiningOp();
1330   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1331     return Value();
1332   Value source = defOp->getOperand(0);
1333   if (extractOp.getType() == source.getType())
1334     return source;
1335   auto getRank = [](Type type) {
1336     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1337   };
1338   unsigned broadcastSrcRank = getRank(source.getType());
1339   unsigned extractResultRank = getRank(extractOp.getType());
1340   if (extractResultRank >= broadcastSrcRank)
1341     return Value();
1342   // Check that the dimension of the result haven't been broadcasted.
1343   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1344   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1345   if (extractVecType && broadcastVecType &&
1346       extractVecType.getShape() !=
1347           broadcastVecType.getShape().take_back(extractResultRank))
1348     return Value();
1349   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1350   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1351   extractPos.erase(extractPos.begin(),
1352                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1353   extractOp.setOperand(source);
1354   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1355   OpBuilder b(extractOp.getContext());
1356   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1357                      b.getI64ArrayAttr(extractPos));
1358   return extractOp.getResult();
1359 }
1360 
1361 // Fold extractOp with source coming from ShapeCast op.
1362 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1363   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1364   if (!shapeCastOp)
1365     return Value();
1366   // Get the nth dimension size starting from lowest dimension.
1367   auto getDimReverse = [](VectorType type, int64_t n) {
1368     return type.getShape().take_back(n + 1).front();
1369   };
1370   int64_t destinationRank =
1371       extractOp.getType().isa<VectorType>()
1372           ? extractOp.getType().cast<VectorType>().getRank()
1373           : 0;
1374   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1375     return Value();
1376   if (destinationRank > 0) {
1377     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1378     for (int64_t i = 0; i < destinationRank; i++) {
1379       // The lowest dimension of of the destination must match the lowest
1380       // dimension of the shapecast op source.
1381       // TODO: This case could be support in a canonicalization pattern.
1382       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1383           getDimReverse(destinationType, i))
1384         return Value();
1385     }
1386   }
1387   // Extract the strides associated with the extract op vector source. Then use
1388   // this to calculate a linearized position for the extract.
1389   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1390   std::reverse(extractedPos.begin(), extractedPos.end());
1391   SmallVector<int64_t, 4> strides;
1392   int64_t stride = 1;
1393   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1394     strides.push_back(stride);
1395     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1396   }
1397 
1398   int64_t position = linearize(extractedPos, strides);
1399   // Then extract the strides associated to the shapeCast op vector source and
1400   // delinearize the position using those strides.
1401   SmallVector<int64_t, 4> newStrides;
1402   int64_t numDimension =
1403       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1404   stride = 1;
1405   for (int64_t i = 0; i < numDimension; i++) {
1406     newStrides.push_back(stride);
1407     stride *=
1408         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1409   }
1410   std::reverse(newStrides.begin(), newStrides.end());
1411   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1412   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1413   OpBuilder b(extractOp.getContext());
1414   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1415                      b.getI64ArrayAttr(newPosition));
1416   extractOp.setOperand(shapeCastOp.getSource());
1417   return extractOp.getResult();
1418 }
1419 
1420 /// Fold an ExtractOp from ExtractStridedSliceOp.
1421 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1422   auto extractStridedSliceOp =
1423       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1424   if (!extractStridedSliceOp)
1425     return Value();
1426   // Return if 'extractStridedSliceOp' has non-unit strides.
1427   if (extractStridedSliceOp.hasNonUnitStrides())
1428     return Value();
1429 
1430   // Trim offsets for dimensions fully extracted.
1431   auto sliceOffsets =
1432       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1433   while (!sliceOffsets.empty()) {
1434     size_t lastOffset = sliceOffsets.size() - 1;
1435     if (sliceOffsets.back() != 0 ||
1436         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1437             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1438       break;
1439     sliceOffsets.pop_back();
1440   }
1441   unsigned destinationRank = 0;
1442   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1443     destinationRank = vecType.getRank();
1444   // The dimensions of the result need to be untouched by the
1445   // extractStridedSlice op.
1446   if (destinationRank >
1447       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1448     return Value();
1449   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1450   assert(extractedPos.size() >= sliceOffsets.size());
1451   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1452     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1453   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1454   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1455   OpBuilder b(extractOp.getContext());
1456   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1457                      b.getI64ArrayAttr(extractedPos));
1458   return extractOp.getResult();
1459 }
1460 
1461 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1462 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1463   int64_t destinationRank = op.getType().isa<VectorType>()
1464                                 ? op.getType().cast<VectorType>().getRank()
1465                                 : 0;
1466   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1467   while (insertOp) {
1468     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1469                              insertOp.getSourceVectorType().getRank();
1470     if (destinationRank > insertOp.getSourceVectorType().getRank())
1471       return Value();
1472     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1473     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1474 
1475     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1476           return attr.cast<IntegerAttr>().getInt() != 1;
1477         }))
1478       return Value();
1479     bool disjoint = false;
1480     SmallVector<int64_t, 4> offsetDiffs;
1481     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1482       int64_t start = insertOffsets[dim];
1483       int64_t size =
1484           (dim < insertRankDiff)
1485               ? 1
1486               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1487       int64_t end = start + size;
1488       int64_t offset = extractOffsets[dim];
1489       // Check if the start of the extract offset is in the interval inserted.
1490       if (start <= offset && offset < end) {
1491         if (dim >= insertRankDiff)
1492           offsetDiffs.push_back(offset - start);
1493         continue;
1494       }
1495       disjoint = true;
1496       break;
1497     }
1498     // The extract element chunk overlap with the vector inserted.
1499     if (!disjoint) {
1500       // If any of the inner dimensions are only partially inserted we have a
1501       // partial overlap.
1502       int64_t srcRankDiff =
1503           insertOp.getSourceVectorType().getRank() - destinationRank;
1504       for (int64_t i = 0; i < destinationRank; i++) {
1505         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1506             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1507                                                     insertRankDiff))
1508           return Value();
1509       }
1510       op.getVectorMutable().assign(insertOp.getSource());
1511       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1512       OpBuilder b(op.getContext());
1513       op->setAttr(ExtractOp::getPositionAttrStrName(),
1514                   b.getI64ArrayAttr(offsetDiffs));
1515       return op.getResult();
1516     }
1517     // If the chunk extracted is disjoint from the chunk inserted, keep
1518     // looking in the insert chain.
1519     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1520   }
1521   return Value();
1522 }
1523 
1524 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1525   if (getPosition().empty())
1526     return getVector();
1527   if (succeeded(foldExtractOpFromExtractChain(*this)))
1528     return getResult();
1529   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1530     return res;
1531   if (auto res = foldExtractFromBroadcast(*this))
1532     return res;
1533   if (auto res = foldExtractFromShapeCast(*this))
1534     return res;
1535   if (auto val = foldExtractFromExtractStrided(*this))
1536     return val;
1537   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1538     return val;
1539   return OpFoldResult();
1540 }
1541 
1542 namespace {
1543 
1544 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1545 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1546 public:
1547   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1548 
1549   LogicalResult matchAndRewrite(ExtractOp extractOp,
1550                                 PatternRewriter &rewriter) const override {
1551     Operation *defOp = extractOp.getVector().getDefiningOp();
1552     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1553       return failure();
1554 
1555     Value source = defOp->getOperand(0);
1556     if (extractOp.getType() == source.getType())
1557       return failure();
1558     auto getRank = [](Type type) {
1559       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1560     };
1561     unsigned broadcastSrcRank = getRank(source.getType());
1562     unsigned extractResultRank = getRank(extractOp.getType());
1563     // We only consider the case where the rank of the source is less than or
1564     // equal to the rank of the extract dst. The other cases are handled in the
1565     // folding patterns.
1566     if (extractResultRank < broadcastSrcRank)
1567       return failure();
1568     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1569         extractOp, extractOp.getType(), source);
1570     return success();
1571   }
1572 };
1573 
1574 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1575 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1576 public:
1577   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1578 
1579   LogicalResult matchAndRewrite(ExtractOp extractOp,
1580                                 PatternRewriter &rewriter) const override {
1581     // Return if 'extractStridedSliceOp' operand is not defined by a
1582     // ConstantOp.
1583     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1584     if (!constantOp)
1585       return failure();
1586     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1587     if (!dense)
1588       return failure();
1589     Attribute newAttr = dense.getSplatValue<Attribute>();
1590     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1591       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1592     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1593     return success();
1594   }
1595 };
1596 
1597 } // namespace
1598 
1599 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1600                                             MLIRContext *context) {
1601   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1602 }
1603 
1604 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1605                                        SmallVectorImpl<int64_t> &results) {
1606   for (auto attr : arrayAttr)
1607     results.push_back(attr.cast<IntegerAttr>().getInt());
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 // ExtractMapOp
1612 //===----------------------------------------------------------------------===//
1613 
1614 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1615                          Value vector, ValueRange ids,
1616                          ArrayRef<int64_t> multiplicity,
1617                          AffineMap permutationMap) {
1618   assert(ids.size() == multiplicity.size() &&
1619          ids.size() == permutationMap.getNumResults());
1620   assert(permutationMap.isProjectedPermutation());
1621   VectorType type = vector.getType().cast<VectorType>();
1622   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1623                                    type.getShape().end());
1624   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1625     AffineExpr expr = permutationMap.getResult(i);
1626     auto dim = expr.cast<AffineDimExpr>();
1627     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1628   }
1629   VectorType resultType = VectorType::get(newShape, type.getElementType());
1630   ExtractMapOp::build(builder, result, resultType, vector, ids);
1631 }
1632 
1633 LogicalResult ExtractMapOp::verify() {
1634   if (getSourceVectorType().getRank() != getResultType().getRank())
1635     return emitOpError("expected source and destination vectors of same rank");
1636   unsigned numId = 0;
1637   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1638     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1639         0)
1640       return emitOpError("source vector dimensions must be a multiple of "
1641                          "destination vector dimensions");
1642     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1643       numId++;
1644   }
1645   if (numId != getIds().size())
1646     return emitOpError("expected number of ids must match the number of "
1647                        "dimensions distributed");
1648   return success();
1649 }
1650 
1651 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1652   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1653   if (insert == nullptr || getType() != insert.getVector().getType() ||
1654       getIds() != insert.getIds())
1655     return {};
1656   return insert.getVector();
1657 }
1658 
1659 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1660   assert(multiplicity.empty());
1661   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1662     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1663       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1664                              getResultType().getDimSize(i));
1665   }
1666 }
1667 
1668 template <typename MapOp>
1669 AffineMap calculateImplicitMap(MapOp op) {
1670   SmallVector<AffineExpr, 4> perm;
1671   // Check which dimension have a multiplicity greater than 1 and associated
1672   // them to the IDs in order.
1673   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1674     if (op.getSourceVectorType().getDimSize(i) !=
1675         op.getResultType().getDimSize(i))
1676       perm.push_back(getAffineDimExpr(i, op.getContext()));
1677   }
1678   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1679                             op.getContext());
1680   return map;
1681 }
1682 
1683 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // FmaOp
1687 //===----------------------------------------------------------------------===//
1688 
1689 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1690   return llvm::to_vector<4>(getVectorType().getShape());
1691 }
1692 
1693 //===----------------------------------------------------------------------===//
1694 // BroadcastOp
1695 //===----------------------------------------------------------------------===//
1696 
1697 BroadcastableToResult
1698 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1699                                 std::pair<int, int> *mismatchingDims) {
1700   // Broadcast scalar to vector of the same element type.
1701   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1702       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1703     return BroadcastableToResult::Success;
1704   // From now on, only vectors broadcast.
1705   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1706   if (!srcVectorType)
1707     return BroadcastableToResult::SourceTypeNotAVector;
1708 
1709   int64_t srcRank = srcVectorType.getRank();
1710   int64_t dstRank = dstVectorType.getRank();
1711   if (srcRank > dstRank)
1712     return BroadcastableToResult::SourceRankHigher;
1713   // Source has an exact match or singleton value for all trailing dimensions
1714   // (all leading dimensions are simply duplicated).
1715   int64_t lead = dstRank - srcRank;
1716   for (int64_t r = 0; r < srcRank; ++r) {
1717     int64_t srcDim = srcVectorType.getDimSize(r);
1718     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1719     if (srcDim != 1 && srcDim != dstDim) {
1720       if (mismatchingDims) {
1721         mismatchingDims->first = srcDim;
1722         mismatchingDims->second = dstDim;
1723       }
1724       return BroadcastableToResult::DimensionMismatch;
1725     }
1726   }
1727 
1728   return BroadcastableToResult::Success;
1729 }
1730 
1731 LogicalResult BroadcastOp::verify() {
1732   std::pair<int, int> mismatchingDims;
1733   BroadcastableToResult res =
1734       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1735   if (res == BroadcastableToResult::Success)
1736     return success();
1737   if (res == BroadcastableToResult::SourceRankHigher)
1738     return emitOpError("source rank higher than destination rank");
1739   if (res == BroadcastableToResult::DimensionMismatch)
1740     return emitOpError("dimension mismatch (")
1741            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1742   if (res == BroadcastableToResult::SourceTypeNotAVector)
1743     return emitOpError("source type is not a vector");
1744   llvm_unreachable("unexpected vector.broadcast op error");
1745 }
1746 
1747 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1748   if (getSourceType() == getVectorType())
1749     return getSource();
1750   if (!operands[0])
1751     return {};
1752   auto vectorType = getVectorType();
1753   if (operands[0].getType().isIntOrIndexOrFloat())
1754     return DenseElementsAttr::get(vectorType, operands[0]);
1755   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1756     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1757   return {};
1758 }
1759 
1760 namespace {
1761 
1762 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1763 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1764   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1765 
1766   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1767                                 PatternRewriter &rewriter) const override {
1768     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1769     if (!srcBroadcast)
1770       return failure();
1771     rewriter.replaceOpWithNewOp<BroadcastOp>(
1772         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1773     return success();
1774   }
1775 };
1776 } // namespace
1777 
1778 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1779                                               MLIRContext *context) {
1780   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1781   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1782   results.add<BroadcastFolder>(context);
1783 }
1784 
1785 //===----------------------------------------------------------------------===//
1786 // ShuffleOp
1787 //===----------------------------------------------------------------------===//
1788 
1789 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1790                       Value v2, ArrayRef<int64_t> mask) {
1791   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1792 }
1793 
1794 LogicalResult ShuffleOp::verify() {
1795   VectorType resultType = getVectorType();
1796   VectorType v1Type = getV1VectorType();
1797   VectorType v2Type = getV2VectorType();
1798   // Verify ranks.
1799   int64_t resRank = resultType.getRank();
1800   int64_t v1Rank = v1Type.getRank();
1801   int64_t v2Rank = v2Type.getRank();
1802   if (resRank != v1Rank || v1Rank != v2Rank)
1803     return emitOpError("rank mismatch");
1804   // Verify all but leading dimension sizes.
1805   for (int64_t r = 1; r < v1Rank; ++r) {
1806     int64_t resDim = resultType.getDimSize(r);
1807     int64_t v1Dim = v1Type.getDimSize(r);
1808     int64_t v2Dim = v2Type.getDimSize(r);
1809     if (resDim != v1Dim || v1Dim != v2Dim)
1810       return emitOpError("dimension mismatch");
1811   }
1812   // Verify mask length.
1813   auto maskAttr = getMask().getValue();
1814   int64_t maskLength = maskAttr.size();
1815   if (maskLength <= 0)
1816     return emitOpError("invalid mask length");
1817   if (maskLength != resultType.getDimSize(0))
1818     return emitOpError("mask length mismatch");
1819   // Verify all indices.
1820   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1821   for (const auto &en : llvm::enumerate(maskAttr)) {
1822     auto attr = en.value().dyn_cast<IntegerAttr>();
1823     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1824       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1825   }
1826   return success();
1827 }
1828 
1829 LogicalResult
1830 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1831                             ValueRange operands, DictionaryAttr attributes,
1832                             RegionRange,
1833                             SmallVectorImpl<Type> &inferredReturnTypes) {
1834   ShuffleOp::Adaptor op(operands, attributes);
1835   auto v1Type = op.getV1().getType().cast<VectorType>();
1836   // Construct resulting type: leading dimension matches mask length,
1837   // all trailing dimensions match the operands.
1838   SmallVector<int64_t, 4> shape;
1839   shape.reserve(v1Type.getRank());
1840   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1841   llvm::append_range(shape, v1Type.getShape().drop_front());
1842   inferredReturnTypes.push_back(
1843       VectorType::get(shape, v1Type.getElementType()));
1844   return success();
1845 }
1846 
1847 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1848   uint64_t expected = begin;
1849   return idxArr.size() == width &&
1850          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1851                       [&expected](auto attr) {
1852                         return attr.getZExtValue() == expected++;
1853                       });
1854 }
1855 
1856 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1857   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1858   if (!getV1VectorType().isScalable() &&
1859       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1860     return getV1();
1861   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1862   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1863       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1864                        getV2VectorType().getDimSize(0)))
1865     return getV2();
1866 
1867   Attribute lhs = operands.front(), rhs = operands.back();
1868   if (!lhs || !rhs)
1869     return {};
1870 
1871   auto lhsType = lhs.getType().cast<VectorType>();
1872   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1873   // manipulation.
1874   if (lhsType.getRank() != 1)
1875     return {};
1876   int64_t lhsSize = lhsType.getDimSize(0);
1877 
1878   SmallVector<Attribute> results;
1879   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1880   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1881   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1882     int64_t i = index.getZExtValue();
1883     if (i >= lhsSize) {
1884       results.push_back(rhsElements[i - lhsSize]);
1885     } else {
1886       results.push_back(lhsElements[i]);
1887     }
1888   }
1889 
1890   return DenseElementsAttr::get(getVectorType(), results);
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 // InsertElementOp
1895 //===----------------------------------------------------------------------===//
1896 
1897 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1898                             Value source, Value dest) {
1899   build(builder, result, source, dest, {});
1900 }
1901 
1902 LogicalResult InsertElementOp::verify() {
1903   auto dstVectorType = getDestVectorType();
1904   if (dstVectorType.getRank() == 0) {
1905     if (getPosition())
1906       return emitOpError("expected position to be empty with 0-D vector");
1907     return success();
1908   }
1909   if (dstVectorType.getRank() != 1)
1910     return emitOpError("unexpected >1 vector rank");
1911   if (!getPosition())
1912     return emitOpError("expected position for 1-D vector");
1913   return success();
1914 }
1915 
1916 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1917   // Skip the 0-D vector here.
1918   if (operands.size() < 3)
1919     return {};
1920 
1921   Attribute src = operands[0];
1922   Attribute dst = operands[1];
1923   Attribute pos = operands[2];
1924   if (!src || !dst || !pos)
1925     return {};
1926 
1927   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1928 
1929   SmallVector<Attribute> results(dstElements);
1930 
1931   auto attr = pos.dyn_cast<IntegerAttr>();
1932   uint64_t posIdx = attr.getInt();
1933 
1934   results[posIdx] = src;
1935 
1936   return DenseElementsAttr::get(getDestVectorType(), results);
1937 }
1938 
1939 //===----------------------------------------------------------------------===//
1940 // InsertOp
1941 //===----------------------------------------------------------------------===//
1942 
1943 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1944                      Value dest, ArrayRef<int64_t> position) {
1945   result.addOperands({source, dest});
1946   auto positionAttr = getVectorSubscriptAttr(builder, position);
1947   result.addTypes(dest.getType());
1948   result.addAttribute(getPositionAttrStrName(), positionAttr);
1949 }
1950 
1951 // Convenience builder which assumes the values are constant indices.
1952 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1953                      Value dest, ValueRange position) {
1954   SmallVector<int64_t, 4> positionConstants =
1955       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1956         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1957       }));
1958   build(builder, result, source, dest, positionConstants);
1959 }
1960 
1961 LogicalResult InsertOp::verify() {
1962   auto positionAttr = getPosition().getValue();
1963   auto destVectorType = getDestVectorType();
1964   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1965     return emitOpError(
1966         "expected position attribute of rank smaller than dest vector rank");
1967   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1968   if (srcVectorType &&
1969       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1970        static_cast<unsigned>(destVectorType.getRank())))
1971     return emitOpError("expected position attribute rank + source rank to "
1972                           "match dest vector rank");
1973   if (!srcVectorType &&
1974       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1975     return emitOpError(
1976         "expected position attribute rank to match the dest vector rank");
1977   for (const auto &en : llvm::enumerate(positionAttr)) {
1978     auto attr = en.value().dyn_cast<IntegerAttr>();
1979     if (!attr || attr.getInt() < 0 ||
1980         attr.getInt() >= destVectorType.getDimSize(en.index()))
1981       return emitOpError("expected position attribute #")
1982              << (en.index() + 1)
1983              << " to be a non-negative integer smaller than the corresponding "
1984                 "dest vector dimension";
1985   }
1986   return success();
1987 }
1988 
1989 namespace {
1990 
1991 // If insertOp is only inserting unit dimensions it can be transformed to a
1992 // broadcast.
1993 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1994 public:
1995   using OpRewritePattern<InsertOp>::OpRewritePattern;
1996 
1997   LogicalResult matchAndRewrite(InsertOp insertOp,
1998                                 PatternRewriter &rewriter) const override {
1999     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
2000     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
2001                            srcVecType.getNumElements())
2002       return failure();
2003     rewriter.replaceOpWithNewOp<BroadcastOp>(
2004         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
2005     return success();
2006   }
2007 };
2008 
2009 } // namespace
2010 
2011 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2012                                            MLIRContext *context) {
2013   results.add<InsertToBroadcast, BroadcastFolder>(context);
2014 }
2015 
2016 // Eliminates insert operations that produce values identical to their source
2017 // value. This happens when the source and destination vectors have identical
2018 // sizes.
2019 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2020   if (getPosition().empty())
2021     return getSource();
2022   return {};
2023 }
2024 
2025 //===----------------------------------------------------------------------===//
2026 // InsertMapOp
2027 //===----------------------------------------------------------------------===//
2028 
2029 LogicalResult InsertMapOp::verify() {
2030   if (getSourceVectorType().getRank() != getResultType().getRank())
2031     return emitOpError("expected source and destination vectors of same rank");
2032   unsigned numId = 0;
2033   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2034     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2035         0)
2036       return emitOpError(
2037           "destination vector size must be a multiple of source vector size");
2038     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2039       numId++;
2040   }
2041   if (numId != getIds().size())
2042     return emitOpError("expected number of ids must match the number of "
2043                        "dimensions distributed");
2044   return success();
2045 }
2046 
2047 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2048 
2049 //===----------------------------------------------------------------------===//
2050 // InsertStridedSliceOp
2051 //===----------------------------------------------------------------------===//
2052 
2053 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2054                                  Value source, Value dest,
2055                                  ArrayRef<int64_t> offsets,
2056                                  ArrayRef<int64_t> strides) {
2057   result.addOperands({source, dest});
2058   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2059   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2060   result.addTypes(dest.getType());
2061   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2062   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2063 }
2064 
2065 // TODO: Should be moved to Tablegen Confined attributes.
2066 template <typename OpType>
2067 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2068                                                         ArrayAttr arrayAttr,
2069                                                         ArrayRef<int64_t> shape,
2070                                                         StringRef attrName) {
2071   if (arrayAttr.size() > shape.size())
2072     return op.emitOpError("expected ")
2073            << attrName << " attribute of rank smaller than vector rank";
2074   return success();
2075 }
2076 
2077 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2078 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2079 // Otherwise, the admissible interval is [min, max].
2080 template <typename OpType>
2081 static LogicalResult
2082 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2083                                   int64_t max, StringRef attrName,
2084                                   bool halfOpen = true) {
2085   for (auto attr : arrayAttr) {
2086     auto val = attr.cast<IntegerAttr>().getInt();
2087     auto upper = max;
2088     if (!halfOpen)
2089       upper += 1;
2090     if (val < min || val >= upper)
2091       return op.emitOpError("expected ") << attrName << " to be confined to ["
2092                                          << min << ", " << upper << ")";
2093   }
2094   return success();
2095 }
2096 
2097 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2098 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2099 // Otherwise, the admissible interval is [min, max].
2100 template <typename OpType>
2101 static LogicalResult
2102 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2103                                   ArrayRef<int64_t> shape, StringRef attrName,
2104                                   bool halfOpen = true, int64_t min = 0) {
2105   assert(arrayAttr.size() <= shape.size());
2106   unsigned index = 0;
2107   for (auto it : llvm::zip(arrayAttr, shape)) {
2108     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2109     auto max = std::get<1>(it);
2110     if (!halfOpen)
2111       max += 1;
2112     if (val < min || val >= max)
2113       return op.emitOpError("expected ")
2114              << attrName << " dimension " << index << " to be confined to ["
2115              << min << ", " << max << ")";
2116     ++index;
2117   }
2118   return success();
2119 }
2120 
2121 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2122 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2123 // Otherwise, the admissible interval is [min, max].
2124 template <typename OpType>
2125 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2126     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2127     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2128     bool halfOpen = true, int64_t min = 1) {
2129   assert(arrayAttr1.size() <= shape.size());
2130   assert(arrayAttr2.size() <= shape.size());
2131   unsigned index = 0;
2132   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2133     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2134     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2135     auto max = std::get<2>(it);
2136     if (!halfOpen)
2137       max += 1;
2138     if (val1 + val2 < 0 || val1 + val2 >= max)
2139       return op.emitOpError("expected sum(")
2140              << attrName1 << ", " << attrName2 << ") dimension " << index
2141              << " to be confined to [" << min << ", " << max << ")";
2142     ++index;
2143   }
2144   return success();
2145 }
2146 
2147 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2148                                   MLIRContext *context) {
2149   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2150     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2151   });
2152   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2153 }
2154 
2155 LogicalResult InsertStridedSliceOp::verify() {
2156   auto sourceVectorType = getSourceVectorType();
2157   auto destVectorType = getDestVectorType();
2158   auto offsets = getOffsetsAttr();
2159   auto strides = getStridesAttr();
2160   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2161     return emitOpError(
2162         "expected offsets of same size as destination vector rank");
2163   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2164     return emitOpError("expected strides of same size as source vector rank");
2165   if (sourceVectorType.getRank() > destVectorType.getRank())
2166     return emitOpError(
2167         "expected source rank to be smaller than destination rank");
2168 
2169   auto sourceShape = sourceVectorType.getShape();
2170   auto destShape = destVectorType.getShape();
2171   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2172       destShape.size() - sourceShape.size(), 0);
2173   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2174   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2175   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2176   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2177                                                offName)) ||
2178       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2179                                                stridesName,
2180                                                /*halfOpen=*/false)) ||
2181       failed(isSumOfIntegerArrayAttrConfinedToShape(
2182           *this, offsets,
2183           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2184           offName, "source vector shape",
2185           /*halfOpen=*/false, /*min=*/1)))
2186     return failure();
2187 
2188   return success();
2189 }
2190 
2191 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2192   if (getSourceVectorType() == getDestVectorType())
2193     return getSource();
2194   return {};
2195 }
2196 
2197 //===----------------------------------------------------------------------===//
2198 // OuterProductOp
2199 //===----------------------------------------------------------------------===//
2200 
2201 /// Build an op without mask, use the type of `acc` as the return type.
2202 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2203                            Value lhs, Value rhs, Value acc) {
2204   result.addOperands({lhs, rhs, acc});
2205   result.addTypes(acc.getType());
2206 }
2207 
2208 void OuterProductOp::print(OpAsmPrinter &p) {
2209   p << " " << getLhs() << ", " << getRhs();
2210   if (!getAcc().empty()) {
2211     p << ", " << getAcc();
2212     p.printOptionalAttrDict((*this)->getAttrs());
2213   }
2214   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2215 }
2216 
2217 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2218   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2219   Type tLHS, tRHS;
2220   if (parser.parseOperandList(operandsInfo) ||
2221       parser.parseOptionalAttrDict(result.attributes) ||
2222       parser.parseColonType(tLHS) || parser.parseComma() ||
2223       parser.parseType(tRHS))
2224     return failure();
2225   if (operandsInfo.size() < 2)
2226     return parser.emitError(parser.getNameLoc(),
2227                             "expected at least 2 operands");
2228   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2229   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2230   if (!vLHS)
2231     return parser.emitError(parser.getNameLoc(),
2232                             "expected vector type for operand #1");
2233   VectorType resType =
2234       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2235                              vLHS.getElementType())
2236            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2237 
2238   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2239     result.attributes.append(
2240         OuterProductOp::getKindAttrStrName(),
2241         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2242                                result.getContext()));
2243   }
2244 
2245   return failure(
2246       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2247       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2248       (operandsInfo.size() > 2 &&
2249        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2250       parser.addTypeToList(resType, result.types));
2251 }
2252 
2253 LogicalResult OuterProductOp::verify() {
2254   Type tRHS = getOperandTypeRHS();
2255   VectorType vLHS = getOperandVectorTypeLHS(),
2256              vRHS = tRHS.dyn_cast<VectorType>(),
2257              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2258 
2259   if (vLHS.getRank() != 1)
2260     return emitOpError("expected 1-d vector for operand #1");
2261 
2262   if (vRHS) {
2263     // Proper OUTER operation.
2264     if (vRHS.getRank() != 1)
2265       return emitOpError("expected 1-d vector for operand #2");
2266     if (vRES.getRank() != 2)
2267       return emitOpError("expected 2-d vector result");
2268     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2269       return emitOpError("expected #1 operand dim to match result dim #1");
2270     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2271       return emitOpError("expected #2 operand dim to match result dim #2");
2272   } else {
2273     // An AXPY operation.
2274     if (vRES.getRank() != 1)
2275       return emitOpError("expected 1-d vector result");
2276     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2277       return emitOpError("expected #1 operand dim to match result dim #1");
2278   }
2279 
2280   if (vACC && vACC != vRES)
2281     return emitOpError("expected operand #3 of same type as result type");
2282 
2283   // Verify supported combining kind.
2284   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2285     return emitOpError("unsupported outerproduct type");
2286 
2287   return success();
2288 }
2289 
2290 //===----------------------------------------------------------------------===//
2291 // ReshapeOp
2292 //===----------------------------------------------------------------------===//
2293 
2294 LogicalResult ReshapeOp::verify() {
2295   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2296   auto inputVectorType = getInputVectorType();
2297   auto outputVectorType = getOutputVectorType();
2298   int64_t inputShapeRank = getNumInputShapeSizes();
2299   int64_t outputShapeRank = getNumOutputShapeSizes();
2300   SmallVector<int64_t, 4> fixedVectorSizes;
2301   getFixedVectorSizes(fixedVectorSizes);
2302   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2303 
2304   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2305     return emitError("invalid input shape for vector type ")
2306            << inputVectorType;
2307 
2308   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2309     return emitError("invalid output shape for vector type ")
2310            << outputVectorType;
2311 
2312   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2313   // suffix.
2314   unsigned inputVectorRank = inputVectorType.getRank();
2315   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2316     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2317     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2318       return emitError("fixed vector size must match input vector for dim ")
2319              << i;
2320   }
2321 
2322   unsigned outputVectorRank = outputVectorType.getRank();
2323   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2324     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2325     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2326       return emitError("fixed vector size must match output vector for dim ")
2327              << i;
2328   }
2329 
2330   // If all shape operands are produced by constant ops, verify that product
2331   // of dimensions for input/output shape match.
2332   auto isDefByConstant = [](Value operand) {
2333     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2334   };
2335   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2336       llvm::all_of(getOutputShape(), isDefByConstant)) {
2337     int64_t numInputElements = 1;
2338     for (auto operand : getInputShape())
2339       numInputElements *=
2340           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2341     int64_t numOutputElements = 1;
2342     for (auto operand : getOutputShape())
2343       numOutputElements *=
2344           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2345     if (numInputElements != numOutputElements)
2346       return emitError("product of input and output shape sizes must match");
2347   }
2348   return success();
2349 }
2350 
2351 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2352   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2353 }
2354 
2355 //===----------------------------------------------------------------------===//
2356 // ExtractStridedSliceOp
2357 //===----------------------------------------------------------------------===//
2358 
2359 // Inference works as follows:
2360 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2361 //   2. Add sizes from 'vectorType' for remaining dims.
2362 static Type inferStridedSliceOpResultType(VectorType vectorType,
2363                                           ArrayAttr offsets, ArrayAttr sizes,
2364                                           ArrayAttr strides) {
2365   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2366   SmallVector<int64_t, 4> shape;
2367   shape.reserve(vectorType.getRank());
2368   unsigned idx = 0;
2369   for (unsigned e = offsets.size(); idx < e; ++idx)
2370     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2371   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2372     shape.push_back(vectorType.getShape()[idx]);
2373 
2374   return VectorType::get(shape, vectorType.getElementType());
2375 }
2376 
2377 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2378                                   Value source, ArrayRef<int64_t> offsets,
2379                                   ArrayRef<int64_t> sizes,
2380                                   ArrayRef<int64_t> strides) {
2381   result.addOperands(source);
2382   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2383   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2384   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2385   result.addTypes(
2386       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2387                                     offsetsAttr, sizesAttr, stridesAttr));
2388   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2389   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2390   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2391 }
2392 
2393 LogicalResult ExtractStridedSliceOp::verify() {
2394   auto type = getVectorType();
2395   auto offsets = getOffsetsAttr();
2396   auto sizes = getSizesAttr();
2397   auto strides = getStridesAttr();
2398   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2399     return emitOpError("expected offsets, sizes and strides attributes of same size");
2400 
2401   auto shape = type.getShape();
2402   auto offName = getOffsetsAttrName();
2403   auto sizesName = getSizesAttrName();
2404   auto stridesName = getStridesAttrName();
2405   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2406       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2407       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2408                                                 stridesName)) ||
2409       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2410       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2411                                                /*halfOpen=*/false,
2412                                                /*min=*/1)) ||
2413       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2414                                                /*halfOpen=*/false)) ||
2415       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2416                                                     offName, sizesName,
2417                                                     /*halfOpen=*/false)))
2418     return failure();
2419 
2420   auto resultType =
2421       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2422   if (getResult().getType() != resultType)
2423     return emitOpError("expected result type to be ") << resultType;
2424 
2425   return success();
2426 }
2427 
2428 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2429 // to use the source of the InsertStrided ops if we can detect that the
2430 // extracted vector is a subset of one of the vector inserted.
2431 static LogicalResult
2432 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2433   // Helper to extract integer out of ArrayAttr.
2434   auto getElement = [](ArrayAttr array, int idx) {
2435     return array[idx].cast<IntegerAttr>().getInt();
2436   };
2437   ArrayAttr extractOffsets = op.getOffsets();
2438   ArrayAttr extractStrides = op.getStrides();
2439   ArrayAttr extractSizes = op.getSizes();
2440   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2441   while (insertOp) {
2442     if (op.getVectorType().getRank() !=
2443         insertOp.getSourceVectorType().getRank())
2444       return failure();
2445     ArrayAttr insertOffsets = insertOp.getOffsets();
2446     ArrayAttr insertStrides = insertOp.getStrides();
2447     // If the rank of extract is greater than the rank of insert, we are likely
2448     // extracting a partial chunk of the vector inserted.
2449     if (extractOffsets.size() > insertOffsets.size())
2450       return failure();
2451     bool patialoverlap = false;
2452     bool disjoint = false;
2453     SmallVector<int64_t, 4> offsetDiffs;
2454     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2455       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2456         return failure();
2457       int64_t start = getElement(insertOffsets, dim);
2458       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2459       int64_t offset = getElement(extractOffsets, dim);
2460       int64_t size = getElement(extractSizes, dim);
2461       // Check if the start of the extract offset is in the interval inserted.
2462       if (start <= offset && offset < end) {
2463         // If the extract interval overlaps but is not fully included we may
2464         // have a partial overlap that will prevent any folding.
2465         if (offset + size > end)
2466           patialoverlap = true;
2467         offsetDiffs.push_back(offset - start);
2468         continue;
2469       }
2470       disjoint = true;
2471       break;
2472     }
2473     // The extract element chunk is a subset of the insert element.
2474     if (!disjoint && !patialoverlap) {
2475       op.setOperand(insertOp.getSource());
2476       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2477       OpBuilder b(op.getContext());
2478       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2479                   b.getI64ArrayAttr(offsetDiffs));
2480       return success();
2481     }
2482     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2483     // in the insert chain.
2484     if (disjoint)
2485       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2486     else {
2487       // The extracted vector partially overlap the inserted vector, we cannot
2488       // fold.
2489       return failure();
2490     }
2491   }
2492   return failure();
2493 }
2494 
2495 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2496   if (getVectorType() == getResult().getType())
2497     return getVector();
2498   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2499     return getResult();
2500   return {};
2501 }
2502 
2503 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2504   populateFromInt64AttrArray(getOffsets(), results);
2505 }
2506 
2507 namespace {
2508 
2509 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2510 // ConstantMaskOp.
2511 class StridedSliceConstantMaskFolder final
2512     : public OpRewritePattern<ExtractStridedSliceOp> {
2513 public:
2514   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2515 
2516   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2517                                 PatternRewriter &rewriter) const override {
2518     // Return if 'extractStridedSliceOp' operand is not defined by a
2519     // ConstantMaskOp.
2520     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2521     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2522     if (!constantMaskOp)
2523       return failure();
2524     // Return if 'extractStridedSliceOp' has non-unit strides.
2525     if (extractStridedSliceOp.hasNonUnitStrides())
2526       return failure();
2527     // Gather constant mask dimension sizes.
2528     SmallVector<int64_t, 4> maskDimSizes;
2529     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2530     // Gather strided slice offsets and sizes.
2531     SmallVector<int64_t, 4> sliceOffsets;
2532     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2533                                sliceOffsets);
2534     SmallVector<int64_t, 4> sliceSizes;
2535     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2536 
2537     // Compute slice of vector mask region.
2538     SmallVector<int64_t, 4> sliceMaskDimSizes;
2539     assert(sliceOffsets.size() == maskDimSizes.size());
2540     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2541       int64_t maskDimSize = std::get<0>(it);
2542       int64_t sliceOffset = std::get<1>(it);
2543       int64_t sliceSize = std::get<2>(it);
2544       int64_t sliceMaskDimSize = std::max(
2545           static_cast<int64_t>(0),
2546           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2547       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2548     }
2549     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2550     // region is a conjunction of mask dim intervals).
2551     if (llvm::is_contained(sliceMaskDimSizes, 0))
2552       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2553 
2554     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2555     // region.
2556     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2557         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2558         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2559     return success();
2560   }
2561 };
2562 
2563 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2564 class StridedSliceConstantFolder final
2565     : public OpRewritePattern<ExtractStridedSliceOp> {
2566 public:
2567   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2568 
2569   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2570                                 PatternRewriter &rewriter) const override {
2571     // Return if 'extractStridedSliceOp' operand is not defined by a
2572     // ConstantOp.
2573     auto constantOp =
2574         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2575     if (!constantOp)
2576       return failure();
2577     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2578     if (!dense)
2579       return failure();
2580     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2581                                           dense.getSplatValue<Attribute>());
2582     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2583                                                    newAttr);
2584     return success();
2585   }
2586 };
2587 
2588 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2589 // BroadcastOp(ExtractStrideSliceOp).
2590 class StridedSliceBroadcast final
2591     : public OpRewritePattern<ExtractStridedSliceOp> {
2592 public:
2593   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2594 
2595   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2596                                 PatternRewriter &rewriter) const override {
2597     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2598     if (!broadcast)
2599       return failure();
2600     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2601     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2602     auto dstVecType = op.getType().cast<VectorType>();
2603     unsigned dstRank = dstVecType.getRank();
2604     unsigned rankDiff = dstRank - srcRank;
2605     // Check if the most inner dimensions of the source of the broadcast are the
2606     // same as the destination of the extract. If this is the case we can just
2607     // use a broadcast as the original dimensions are untouched.
2608     bool lowerDimMatch = true;
2609     for (unsigned i = 0; i < srcRank; i++) {
2610       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2611         lowerDimMatch = false;
2612         break;
2613       }
2614     }
2615     Value source = broadcast.getSource();
2616     // If the inner dimensions don't match, it means we need to extract from the
2617     // source of the orignal broadcast and then broadcast the extracted value.
2618     // We also need to handle degenerated cases where the source is effectively
2619     // just a single scalar.
2620     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2621     if (!lowerDimMatch && !isScalarSrc) {
2622       source = rewriter.create<ExtractStridedSliceOp>(
2623           op->getLoc(), source,
2624           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2625           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2626           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2627     }
2628     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2629     return success();
2630   }
2631 };
2632 
2633 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2634 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2635 public:
2636   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2637 
2638   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2639                                 PatternRewriter &rewriter) const override {
2640     auto splat = op.getVector().getDefiningOp<SplatOp>();
2641     if (!splat)
2642       return failure();
2643     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2644     return success();
2645   }
2646 };
2647 
2648 } // namespace
2649 
2650 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2651     RewritePatternSet &results, MLIRContext *context) {
2652   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2653   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2654   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2655               StridedSliceBroadcast, StridedSliceSplat>(context);
2656 }
2657 
2658 //===----------------------------------------------------------------------===//
2659 // TransferReadOp
2660 //===----------------------------------------------------------------------===//
2661 
2662 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2663 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2664                            VectorType vectorType, Value source,
2665                            ValueRange indices, AffineMapAttr permutationMapAttr,
2666                            /*optional*/ ArrayAttr inBoundsAttr) {
2667   Type elemType = source.getType().cast<ShapedType>().getElementType();
2668   Value padding = builder.create<arith::ConstantOp>(
2669       result.location, elemType, builder.getZeroAttr(elemType));
2670   build(builder, result, vectorType, source, indices, permutationMapAttr,
2671         padding, /*mask=*/Value(), inBoundsAttr);
2672 }
2673 
2674 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2675 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2676                            VectorType vectorType, Value source,
2677                            ValueRange indices, AffineMap permutationMap,
2678                            Optional<ArrayRef<bool>> inBounds) {
2679   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2680   auto inBoundsAttr = (inBounds && !inBounds->empty())
2681                           ? builder.getBoolArrayAttr(inBounds.value())
2682                           : ArrayAttr();
2683   build(builder, result, vectorType, source, indices, permutationMapAttr,
2684         inBoundsAttr);
2685 }
2686 
2687 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2688 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2689                            VectorType vectorType, Value source,
2690                            ValueRange indices, Value padding,
2691                            Optional<ArrayRef<bool>> inBounds) {
2692   AffineMap permutationMap = getTransferMinorIdentityMap(
2693       source.getType().cast<ShapedType>(), vectorType);
2694   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2695   auto inBoundsAttr = (inBounds && !inBounds->empty())
2696                           ? builder.getBoolArrayAttr(inBounds.value())
2697                           : ArrayAttr();
2698   build(builder, result, vectorType, source, indices, permutationMapAttr,
2699         padding,
2700         /*mask=*/Value(), inBoundsAttr);
2701 }
2702 
2703 /// 4. Builder that sets padding to zero and permutation map to
2704 /// 'getMinorIdentityMap'.
2705 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2706                            VectorType vectorType, Value source,
2707                            ValueRange indices,
2708                            Optional<ArrayRef<bool>> inBounds) {
2709   Type elemType = source.getType().cast<ShapedType>().getElementType();
2710   Value padding = builder.create<arith::ConstantOp>(
2711       result.location, elemType, builder.getZeroAttr(elemType));
2712   build(builder, result, vectorType, source, indices, padding, inBounds);
2713 }
2714 
2715 template <typename EmitFun>
2716 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2717                                           EmitFun emitOpError) {
2718   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2719   for (auto expr : permutationMap.getResults()) {
2720     auto dim = expr.dyn_cast<AffineDimExpr>();
2721     auto zero = expr.dyn_cast<AffineConstantExpr>();
2722     if (zero) {
2723       if (zero.getValue() != 0) {
2724         return emitOpError(
2725             "requires a projected permutation_map (at most one dim or the zero "
2726             "constant can appear in each result)");
2727       }
2728       continue;
2729     }
2730     if (!dim) {
2731       return emitOpError("requires a projected permutation_map (at most one "
2732                          "dim or the zero constant can appear in each result)");
2733     }
2734     if (seen[dim.getPosition()]) {
2735       return emitOpError(
2736           "requires a permutation_map that is a permutation (found one dim "
2737           "used more than once)");
2738     }
2739     seen[dim.getPosition()] = true;
2740   }
2741   return success();
2742 }
2743 
2744 static LogicalResult
2745 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2746                  VectorType vectorType, VectorType maskType,
2747                  AffineMap permutationMap, ArrayAttr inBounds) {
2748   if (op->hasAttr("masked")) {
2749     return op->emitOpError("masked attribute has been removed. "
2750                            "Use in_bounds instead.");
2751   }
2752 
2753   if (!shapedType.isa<MemRefType, RankedTensorType>())
2754     return op->emitOpError(
2755         "requires source to be a memref or ranked tensor type");
2756 
2757   auto elementType = shapedType.getElementType();
2758   DataLayout dataLayout = DataLayout::closest(op);
2759   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2760     // Memref or tensor has vector element type.
2761     unsigned sourceVecSize =
2762         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2763         vectorElementType.getShape().back();
2764     unsigned resultVecSize =
2765         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2766         vectorType.getShape().back();
2767     if (resultVecSize % sourceVecSize != 0)
2768       return op->emitOpError(
2769           "requires the bitwidth of the minor 1-D vector to be an integral "
2770           "multiple of the bitwidth of the minor 1-D vector of the source");
2771 
2772     unsigned sourceVecEltRank = vectorElementType.getRank();
2773     unsigned resultVecRank = vectorType.getRank();
2774     if (sourceVecEltRank > resultVecRank)
2775       return op->emitOpError(
2776           "requires source vector element and vector result ranks to match.");
2777     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2778     // Check that permutation map results match 'rankOffset' of vector type.
2779     if (permutationMap.getNumResults() != rankOffset)
2780       return op->emitOpError("requires a permutation_map with result dims of "
2781                              "the same rank as the vector type");
2782 
2783     if (maskType)
2784       return op->emitOpError("does not support masks with vector element type");
2785   } else {
2786     // Memref or tensor has scalar element type.
2787     unsigned minorSize =
2788         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2789     unsigned resultVecSize =
2790         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2791     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2792       return op->emitOpError(
2793           "requires the bitwidth of the minor 1-D vector to be an integral "
2794           "multiple of the bitwidth of the source element type");
2795 
2796     // Check that permutation map results match rank of vector type.
2797     if (permutationMap.getNumResults() != vectorType.getRank())
2798       return op->emitOpError("requires a permutation_map with result dims of "
2799                              "the same rank as the vector type");
2800 
2801     VectorType expectedMaskType =
2802         vector::detail::transferMaskType(vectorType, permutationMap);
2803     if (maskType && expectedMaskType != maskType)
2804       return op->emitOpError("expects mask type consistent with permutation "
2805                              "map: ")
2806              << maskType;
2807   }
2808 
2809   if (permutationMap.getNumSymbols() != 0)
2810     return op->emitOpError("requires permutation_map without symbols");
2811 
2812   if (permutationMap.getNumInputs() != shapedType.getRank())
2813     return op->emitOpError("requires a permutation_map with input dims of the "
2814                            "same rank as the source type");
2815 
2816   if (inBounds) {
2817     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2818       return op->emitOpError("expects the optional in_bounds attr of same rank "
2819                              "as permutation_map results: ")
2820              << AffineMapAttr::get(permutationMap)
2821              << " vs inBounds of size: " << inBounds.size();
2822     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2823       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2824           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2825         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2826   }
2827 
2828   return success();
2829 }
2830 
2831 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2832   SmallVector<StringRef, 3> elidedAttrs;
2833   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2834   if (op.permutation_map().isMinorIdentity())
2835     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2836   bool elideInBounds = true;
2837   if (auto inBounds = op.in_bounds()) {
2838     for (auto attr : *inBounds) {
2839       if (attr.template cast<BoolAttr>().getValue()) {
2840         elideInBounds = false;
2841         break;
2842       }
2843     }
2844   }
2845   if (elideInBounds)
2846     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2847   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2848 }
2849 
2850 void TransferReadOp::print(OpAsmPrinter &p) {
2851   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2852   if (getMask())
2853     p << ", " << getMask();
2854   printTransferAttrs(p, *this);
2855   p << " : " << getShapedType() << ", " << getVectorType();
2856 }
2857 
2858 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2859   auto &builder = parser.getBuilder();
2860   SMLoc typesLoc;
2861   OpAsmParser::UnresolvedOperand sourceInfo;
2862   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2863   OpAsmParser::UnresolvedOperand paddingInfo;
2864   SmallVector<Type, 2> types;
2865   OpAsmParser::UnresolvedOperand maskInfo;
2866   // Parsing with support for paddingValue.
2867   if (parser.parseOperand(sourceInfo) ||
2868       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2869       parser.parseComma() || parser.parseOperand(paddingInfo))
2870     return failure();
2871   ParseResult hasMask = parser.parseOptionalComma();
2872   if (hasMask.succeeded()) {
2873     if (parser.parseOperand(maskInfo))
2874       return failure();
2875   }
2876   if (parser.parseOptionalAttrDict(result.attributes) ||
2877       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2878     return failure();
2879   if (types.size() != 2)
2880     return parser.emitError(typesLoc, "requires two types");
2881   auto indexType = builder.getIndexType();
2882   auto shapedType = types[0].dyn_cast<ShapedType>();
2883   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2884     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2885   VectorType vectorType = types[1].dyn_cast<VectorType>();
2886   if (!vectorType)
2887     return parser.emitError(typesLoc, "requires vector type");
2888   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2889   Attribute mapAttr = result.attributes.get(permutationAttrName);
2890   if (!mapAttr) {
2891     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2892     // Update `mapAttr` that is used later to determine mask type.
2893     mapAttr = AffineMapAttr::get(permMap);
2894     result.attributes.set(permutationAttrName, mapAttr);
2895   }
2896   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2897       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2898       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2899                             result.operands))
2900     return failure();
2901   if (hasMask.succeeded()) {
2902     if (shapedType.getElementType().dyn_cast<VectorType>())
2903       return parser.emitError(
2904           maskInfo.location, "does not support masks with vector element type");
2905     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2906     // Instead of adding the mask type as an op type, compute it based on the
2907     // vector type and the permutation map (to keep the type signature small).
2908     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2909     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2910       return failure();
2911   }
2912   result.addAttribute(
2913       TransferReadOp::getOperandSegmentSizeAttr(),
2914       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2915                                 static_cast<int32_t>(hasMask.succeeded())}));
2916   return parser.addTypeToList(vectorType, result.types);
2917 }
2918 
2919 LogicalResult TransferReadOp::verify() {
2920   // Consistency of elemental types in source and vector.
2921   ShapedType shapedType = getShapedType();
2922   VectorType vectorType = getVectorType();
2923   VectorType maskType = getMaskType();
2924   auto paddingType = getPadding().getType();
2925   auto permutationMap = getPermutationMap();
2926   auto sourceElementType = shapedType.getElementType();
2927 
2928   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2929     return emitOpError("requires ") << shapedType.getRank() << " indices";
2930 
2931   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2932                               shapedType, vectorType, maskType, permutationMap,
2933                               getInBounds() ? *getInBounds() : ArrayAttr())))
2934     return failure();
2935 
2936   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2937     // Source has vector element type.
2938     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2939     if (sourceVectorElementType != paddingType)
2940       return emitOpError(
2941           "requires source element type and padding type to match.");
2942 
2943   } else {
2944     // Check that 'paddingType' is valid to store in a vector type.
2945     if (!VectorType::isValidElementType(paddingType))
2946       return emitOpError("requires valid padding vector elemental type");
2947 
2948     // Check that padding type and vector element types match.
2949     if (paddingType != sourceElementType)
2950       return emitOpError(
2951           "requires formal padding and source of the same elemental type");
2952   }
2953 
2954   return verifyPermutationMap(permutationMap,
2955                               [&](Twine t) { return emitOpError(t); });
2956 }
2957 
2958 /// This is a common class used for patterns of the form
2959 /// ```
2960 ///    someop(memrefcast) -> someop
2961 /// ```
2962 /// It folds the source of the memref.cast into the root operation directly.
2963 static LogicalResult foldMemRefCast(Operation *op) {
2964   bool folded = false;
2965   for (OpOperand &operand : op->getOpOperands()) {
2966     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2967     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2968       operand.set(castOp.getOperand());
2969       folded = true;
2970     }
2971   }
2972   return success(folded);
2973 }
2974 
2975 static LogicalResult foldTensorCast(Operation *op) {
2976   bool folded = false;
2977   for (OpOperand &operand : op->getOpOperands()) {
2978     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2979     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2980       operand.set(castOp.getOperand());
2981       folded = true;
2982     }
2983   }
2984   return success(folded);
2985 }
2986 
2987 template <typename TransferOp>
2988 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2989   // TODO: support more aggressive createOrFold on:
2990   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2991   if (op.getShapedType().isDynamicDim(indicesIdx))
2992     return false;
2993   Value index = op.getIndices()[indicesIdx];
2994   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2995   if (!cstOp)
2996     return false;
2997 
2998   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2999   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
3000 
3001   return cstOp.value() + vectorSize <= sourceSize;
3002 }
3003 
3004 template <typename TransferOp>
3005 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3006   // TODO: support 0-d corner case.
3007   // TODO: Be less conservative.
3008   if (op.getTransferRank() == 0)
3009     return failure();
3010   AffineMap permutationMap = op.getPermutationMap();
3011   bool changed = false;
3012   SmallVector<bool, 4> newInBounds;
3013   newInBounds.reserve(op.getTransferRank());
3014   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3015     // Already marked as in-bounds, nothing to see here.
3016     if (op.isDimInBounds(i)) {
3017       newInBounds.push_back(true);
3018       continue;
3019     }
3020     // Currently out-of-bounds, check whether we can statically determine it is
3021     // inBounds.
3022     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3023     assert(dimExpr && "Broadcast dims must be in-bounds");
3024     auto inBounds =
3025         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3026     newInBounds.push_back(inBounds);
3027     // We commit the pattern if it is "more inbounds".
3028     changed |= inBounds;
3029   }
3030   if (!changed)
3031     return failure();
3032   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3033   OpBuilder b(op.getContext());
3034   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3035               b.getBoolArrayAttr(newInBounds));
3036   return success();
3037 }
3038 
3039 ///  ```
3040 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3041 ///    : vector<1x4xf32>, tensor<4x4xf32>
3042 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3043 ///    : tensor<4x4xf32>, vector<1x4xf32>
3044 ///  ```
3045 ///  -> Folds into
3046 ///  ```
3047 ///  %v0
3048 ///  ```
3049 static Value foldRAW(TransferReadOp readOp) {
3050   if (!readOp.getShapedType().isa<RankedTensorType>())
3051     return {};
3052   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3053   while (defWrite) {
3054     if (checkSameValueRAW(defWrite, readOp))
3055       return defWrite.getVector();
3056     if (!isDisjointTransferIndices(
3057             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3058             cast<VectorTransferOpInterface>(readOp.getOperation())))
3059       break;
3060     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3061   }
3062   return {};
3063 }
3064 
3065 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3066   if (Value vec = foldRAW(*this))
3067     return vec;
3068   /// transfer_read(memrefcast) -> transfer_read
3069   if (succeeded(foldTransferInBoundsAttribute(*this)))
3070     return getResult();
3071   if (succeeded(foldMemRefCast(*this)))
3072     return getResult();
3073   if (succeeded(foldTensorCast(*this)))
3074     return getResult();
3075   return OpFoldResult();
3076 }
3077 
3078 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3079   return llvm::to_vector<4>(getVectorType().getShape());
3080 }
3081 
3082 void TransferReadOp::getEffects(
3083     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3084         &effects) {
3085   if (getShapedType().isa<MemRefType>())
3086     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3087                          SideEffects::DefaultResource::get());
3088 }
3089 
3090 namespace {
3091 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3092 ///
3093 /// ```
3094 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3095 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3096 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3097 ///     : tensor<?x?xf32>, vector<4x5xf32>
3098 /// ```
3099 /// is rewritten to:
3100 /// ```
3101 /// %p0 = arith.addi %a, %e : index
3102 /// %p1 = arith.addi %b, %f : index
3103 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3104 ///     : tensor<?x?xf32>, vector<4x5xf32>
3105 /// ```
3106 struct FoldExtractSliceIntoTransferRead
3107     : public OpRewritePattern<TransferReadOp> {
3108 public:
3109   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3110 
3111   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3112                                 PatternRewriter &rewriter) const override {
3113     // TODO: support 0-d corner case.
3114     if (xferOp.getTransferRank() == 0)
3115       return failure();
3116     if (xferOp.hasOutOfBoundsDim())
3117       return failure();
3118     if (!xferOp.getPermutationMap().isIdentity())
3119       return failure();
3120     if (xferOp.getMask())
3121       return failure();
3122     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3123     if (!extractOp)
3124       return failure();
3125     if (!extractOp.hasUnitStride())
3126       return failure();
3127 
3128     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3129     // dims are exactly the leading dims. I.e. the following is illegal:
3130     // ```
3131     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3132     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3133     //    %1 = vector.transfer_read %0[0,0], %cst :
3134     //      tensor<2x4xf32>, vector<2x4xf32>
3135     // ```
3136     //
3137     // Cannot fold into:
3138     // ```
3139     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3140     //      tensor<2x1x4xf32>, vector<2x4xf32>
3141     // ```
3142     // For this, check the trailing `vectorRank` dims of the extract_slice
3143     // result tensor match the trailing dims of the inferred result tensor.
3144     int64_t rankReduced =
3145         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3146     int64_t vectorRank = xferOp.getVectorType().getRank();
3147     RankedTensorType inferredDestTensorType =
3148         tensor::ExtractSliceOp::inferResultType(
3149             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3150             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3151     auto actualDestTensorShape = extractOp.getType().getShape();
3152     if (rankReduced > 0 &&
3153         actualDestTensorShape.take_back(vectorRank) !=
3154             inferredDestTensorType.getShape().take_back(vectorRank))
3155       return failure();
3156 
3157     SmallVector<Value> newIndices;
3158     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3159     // indices first.
3160     for (int64_t i = 0; i < rankReduced; ++i) {
3161       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3162       newIndices.push_back(getValueOrCreateConstantIndexOp(
3163           rewriter, extractOp.getLoc(), offset));
3164     }
3165     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3166       OpFoldResult offset =
3167           extractOp.getMixedOffsets()[it.index() + rankReduced];
3168       newIndices.push_back(rewriter.create<arith::AddIOp>(
3169           xferOp->getLoc(), it.value(),
3170           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3171                                           offset)));
3172     }
3173     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3174     rewriter.replaceOpWithNewOp<TransferReadOp>(
3175         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3176         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3177 
3178     return success();
3179   }
3180 };
3181 } // namespace
3182 
3183 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3184                                                  MLIRContext *context) {
3185   results.add<FoldExtractSliceIntoTransferRead>(context);
3186 }
3187 
3188 //===----------------------------------------------------------------------===//
3189 // TransferWriteOp
3190 //===----------------------------------------------------------------------===//
3191 
3192 /// 1. Builder with type inference.
3193 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3194                             Value vector, Value dest, ValueRange indices,
3195                             AffineMapAttr permutationMapAttr,
3196                             /*optional*/ Value mask,
3197                             /*optional*/ ArrayAttr inBoundsAttr) {
3198   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3199   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3200         mask, inBoundsAttr);
3201 }
3202 
3203 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3204 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3205                             Value vector, Value dest, ValueRange indices,
3206                             AffineMapAttr permutationMapAttr,
3207                             /*optional*/ ArrayAttr inBoundsAttr) {
3208   build(builder, result, vector, dest, indices, permutationMapAttr,
3209         /*mask=*/Value(), inBoundsAttr);
3210 }
3211 
3212 /// 3. Builder with type inference that sets an empty mask (variant without
3213 /// attrs)
3214 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3215                             Value vector, Value dest, ValueRange indices,
3216                             AffineMap permutationMap,
3217                             Optional<ArrayRef<bool>> inBounds) {
3218   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3219   auto inBoundsAttr = (inBounds && !inBounds->empty())
3220                           ? builder.getBoolArrayAttr(inBounds.value())
3221                           : ArrayAttr();
3222   build(builder, result, vector, dest, indices, permutationMapAttr,
3223         /*mask=*/Value(), inBoundsAttr);
3224 }
3225 
3226 /// 4. Builder with type inference that sets an empty mask and sets permutation
3227 ///    map to 'getMinorIdentityMap'.
3228 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3229                             Value vector, Value dest, ValueRange indices,
3230                             Optional<ArrayRef<bool>> inBounds) {
3231   auto vectorType = vector.getType().cast<VectorType>();
3232   AffineMap permutationMap = getTransferMinorIdentityMap(
3233       dest.getType().cast<ShapedType>(), vectorType);
3234   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3235 }
3236 
3237 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3238                                    OperationState &result) {
3239   auto &builder = parser.getBuilder();
3240   SMLoc typesLoc;
3241   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3242   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3243   SmallVector<Type, 2> types;
3244   OpAsmParser::UnresolvedOperand maskInfo;
3245   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3246       parser.parseOperand(sourceInfo) ||
3247       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3248     return failure();
3249   ParseResult hasMask = parser.parseOptionalComma();
3250   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3251     return failure();
3252   if (parser.parseOptionalAttrDict(result.attributes) ||
3253       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3254     return failure();
3255   if (types.size() != 2)
3256     return parser.emitError(typesLoc, "requires two types");
3257   auto indexType = builder.getIndexType();
3258   VectorType vectorType = types[0].dyn_cast<VectorType>();
3259   if (!vectorType)
3260     return parser.emitError(typesLoc, "requires vector type");
3261   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3262   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3263     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3264   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3265   auto attr = result.attributes.get(permutationAttrName);
3266   if (!attr) {
3267     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3268     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3269   }
3270   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3271       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3272       parser.resolveOperands(indexInfo, indexType, result.operands))
3273     return failure();
3274   if (hasMask.succeeded()) {
3275     if (shapedType.getElementType().dyn_cast<VectorType>())
3276       return parser.emitError(
3277           maskInfo.location, "does not support masks with vector element type");
3278     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3279     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3280       return failure();
3281   }
3282   result.addAttribute(
3283       TransferWriteOp::getOperandSegmentSizeAttr(),
3284       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3285                                 static_cast<int32_t>(hasMask.succeeded())}));
3286   return failure(shapedType.isa<RankedTensorType>() &&
3287                  parser.addTypeToList(shapedType, result.types));
3288 }
3289 
3290 void TransferWriteOp::print(OpAsmPrinter &p) {
3291   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3292   if (getMask())
3293     p << ", " << getMask();
3294   printTransferAttrs(p, *this);
3295   p << " : " << getVectorType() << ", " << getShapedType();
3296 }
3297 
3298 LogicalResult TransferWriteOp::verify() {
3299   // Consistency of elemental types in shape and vector.
3300   ShapedType shapedType = getShapedType();
3301   VectorType vectorType = getVectorType();
3302   VectorType maskType = getMaskType();
3303   auto permutationMap = getPermutationMap();
3304 
3305   if (llvm::size(getIndices()) != shapedType.getRank())
3306     return emitOpError("requires ") << shapedType.getRank() << " indices";
3307 
3308   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3309   // as the semantics is unclear. This can be revisited later if necessary.
3310   if (hasBroadcastDim())
3311     return emitOpError("should not have broadcast dimensions");
3312 
3313   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3314                               shapedType, vectorType, maskType, permutationMap,
3315                               getInBounds() ? *getInBounds() : ArrayAttr())))
3316     return failure();
3317 
3318   return verifyPermutationMap(permutationMap,
3319                               [&](Twine t) { return emitOpError(t); });
3320 }
3321 
3322 /// Fold:
3323 /// ```
3324 ///    %t1 = ...
3325 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3326 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3327 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3328 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3329 /// ```
3330 ///
3331 /// into:
3332 ///
3333 /// ```
3334 ///    %t0
3335 /// ```
3336 ///
3337 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3338 /// block argument or has side effects.
3339 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3340                                        ArrayRef<Attribute>,
3341                                        SmallVectorImpl<OpFoldResult> &results) {
3342   // TODO: support 0-d corner case.
3343   if (write.getTransferRank() == 0)
3344     return failure();
3345   auto rankedTensorType =
3346       write.getSource().getType().dyn_cast<RankedTensorType>();
3347   // If not operating on tensors, bail.
3348   if (!rankedTensorType)
3349     return failure();
3350   // If no read, bail.
3351   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3352   if (!read)
3353     return failure();
3354   // TODO: support 0-d corner case.
3355   if (read.getTransferRank() == 0)
3356     return failure();
3357   // For now, only accept minor identity. Future: composition is minor identity.
3358   if (!read.getPermutationMap().isMinorIdentity() ||
3359       !write.getPermutationMap().isMinorIdentity())
3360     return failure();
3361   // Bail on mismatching ranks.
3362   if (read.getTransferRank() != write.getTransferRank())
3363     return failure();
3364   // Bail on potential out-of-bounds accesses.
3365   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3366     return failure();
3367   // Tensor types must be the same.
3368   if (read.getSource().getType() != rankedTensorType)
3369     return failure();
3370   // Vector types must be the same.
3371   if (read.getVectorType() != write.getVectorType())
3372     return failure();
3373   // Vector and Tensor shapes must match.
3374   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3375     return failure();
3376   // If any index is nonzero.
3377   auto isNotConstantZero = [](Value v) {
3378     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3379     return !cstOp || cstOp.value() != 0;
3380   };
3381   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3382       llvm::any_of(write.getIndices(), isNotConstantZero))
3383     return failure();
3384   // Success.
3385   results.push_back(read.getSource());
3386   return success();
3387 }
3388 
3389 static bool checkSameValueWAR(vector::TransferReadOp read,
3390                               vector::TransferWriteOp write) {
3391   return read.getSource() == write.getSource() &&
3392          read.getIndices() == write.getIndices() &&
3393          read.getPermutationMap() == write.getPermutationMap() &&
3394          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3395          !write.getMask();
3396 }
3397 /// Fold transfer_write write after read:
3398 /// ```
3399 ///    %t0 = ...
3400 ///    %v = vector.transfer_read %t0[%c0...] :
3401 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3402 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3403 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3404 /// ```
3405 ///
3406 /// into:
3407 ///
3408 /// ```
3409 ///    %t0
3410 /// ```
3411 static LogicalResult foldWAR(TransferWriteOp write,
3412                              SmallVectorImpl<OpFoldResult> &results) {
3413   if (!write.getSource().getType().isa<RankedTensorType>())
3414     return failure();
3415   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3416   if (!read)
3417     return failure();
3418 
3419   if (!checkSameValueWAR(read, write))
3420     return failure();
3421   results.push_back(read.getSource());
3422   return success();
3423 }
3424 
3425 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3426                                     SmallVectorImpl<OpFoldResult> &results) {
3427   if (succeeded(foldReadInitWrite(*this, operands, results)))
3428     return success();
3429   if (succeeded(foldWAR(*this, results)))
3430     return success();
3431   if (succeeded(foldTransferInBoundsAttribute(*this)))
3432     return success();
3433   return foldMemRefCast(*this);
3434 }
3435 
3436 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3437   return llvm::to_vector<4>(getVectorType().getShape());
3438 }
3439 
3440 void TransferWriteOp::getEffects(
3441     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3442         &effects) {
3443   if (getShapedType().isa<MemRefType>())
3444     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3445                          SideEffects::DefaultResource::get());
3446 }
3447 
3448 namespace {
3449 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3450 /// DCE
3451 /// ```
3452 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3453 ///    : vector<1x4xf32>, tensor<4x4xf32>
3454 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3455 ///    : vector<1x4xf32>, tensor<4x4xf32>
3456 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3457 ///    : vector<1x4xf32>, tensor<4x4xf32>
3458 /// ```
3459 ///
3460 /// into:
3461 ///
3462 /// ```
3463 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3464 ///    : vector<1x4xf32>, tensor<4x4xf32>
3465 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3466 ///    : vector<1x4xf32>, tensor<4x4xf32>
3467 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3468 ///    : vector<1x4xf32>, tensor<4x4xf32>
3469 /// ```
3470 ///
3471 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3472 /// any other uses.
3473 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3474 public:
3475   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3476   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3477                                 PatternRewriter &rewriter) const override {
3478     if (!writeOp.getShapedType().isa<RankedTensorType>())
3479       return failure();
3480     vector::TransferWriteOp writeToModify = writeOp;
3481 
3482     auto defWrite =
3483         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3484     while (defWrite) {
3485       if (checkSameValueWAW(writeOp, defWrite)) {
3486         writeToModify.getSourceMutable().assign(defWrite.getSource());
3487         return success();
3488       }
3489       if (!isDisjointTransferIndices(
3490               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3491               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3492         break;
3493       // If the previous write op doesn't have any other use we an safely look
3494       // at the previous store to see if it can be removed.
3495       if (!defWrite->hasOneUse())
3496         break;
3497       writeToModify = defWrite;
3498       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3499     }
3500     return failure();
3501   }
3502 };
3503 
3504 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3505 /// could directly write to the insert_slice's destination. E.g.:
3506 ///
3507 /// ```
3508 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3509 ///     : vector<4x5xf32>, tensor<4x5xf32>
3510 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3511 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3512 /// ```
3513 /// is rewritten to:
3514 /// ```
3515 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3516 ///     : vector<4x5xf32>, tensor<?x?xf32>
3517 /// ```
3518 struct FoldInsertSliceIntoTransferWrite
3519     : public OpRewritePattern<tensor::InsertSliceOp> {
3520 public:
3521   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3522 
3523   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3524                                 PatternRewriter &rewriter) const override {
3525     if (!insertOp.hasUnitStride())
3526       return failure();
3527 
3528     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3529     if (!xferOp)
3530       return failure();
3531     // TODO: support 0-d corner case.
3532     if (xferOp.getTransferRank() == 0)
3533       return failure();
3534 
3535     if (xferOp.hasOutOfBoundsDim())
3536       return failure();
3537     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3538       return failure();
3539     if (xferOp.getMask())
3540       return failure();
3541     // Fold only if the TransferWriteOp completely overwrites the `source` with
3542     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3543     // content is the data of the vector.
3544     if (!llvm::equal(xferOp.getVectorType().getShape(),
3545                      xferOp.getShapedType().getShape()))
3546       return failure();
3547     if (!xferOp.getPermutationMap().isIdentity())
3548       return failure();
3549 
3550     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3551     // dims are exactly the leading dims. I.e. the following is illegal:
3552     // ```
3553     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3554     //      vector<2x4xf32>, tensor<2x4xf32>
3555     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3556     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3557     // ```
3558     //
3559     // Cannot fold into:
3560     // ```
3561     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3562     //      vector<2x4xf32>, tensor<2x1x4xf32>
3563     // ```
3564     // For this, check the trailing `vectorRank` dims of the insert_slice result
3565     // tensor match the trailing dims of the inferred result tensor.
3566     int64_t rankReduced =
3567         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3568     int64_t vectorRank = xferOp.getVectorType().getRank();
3569     RankedTensorType inferredSourceTensorType =
3570         tensor::ExtractSliceOp::inferResultType(
3571             insertOp.getType(), insertOp.getMixedOffsets(),
3572             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3573     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3574     if (rankReduced > 0 &&
3575         actualSourceTensorShape.take_back(vectorRank) !=
3576             inferredSourceTensorType.getShape().take_back(vectorRank))
3577       return failure();
3578 
3579     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3580         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3581     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3582     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3583                                                  insertOp.dest(), indices,
3584                                                  ArrayRef<bool>{inBounds});
3585     return success();
3586   }
3587 };
3588 
3589 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3590 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3591 /// overwritten and inserted into another tensor. After this rewrite, the
3592 /// operations bufferize in-place since all of them work on the same slice.
3593 ///
3594 /// For example:
3595 /// ```mlir
3596 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3597 ///        : vector<8x16xf32>, tensor<8x16xf32>
3598 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3599 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3600 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3601 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3602 /// ```
3603 /// folds to
3604 /// ```mlir
3605 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3606 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3607 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3608 ///        : vector<8x16xf32>, tensor<?x?xf32>
3609 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3610 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3611 /// ```
3612 struct SwapExtractSliceOfTransferWrite
3613     : public OpRewritePattern<tensor::InsertSliceOp> {
3614 public:
3615   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3616 
3617   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3618                                 PatternRewriter &rewriter) const override {
3619     if (!insertOp.hasUnitStride())
3620       return failure();
3621     auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3622     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3623       return failure();
3624     auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>();
3625     if (!transferOp || !transferOp->hasOneUse())
3626       return failure();
3627 
3628     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3629     // rank-reducing.
3630     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3631       return rewriter.notifyMatchFailure(insertOp,
3632                                          "use-def chain is rank-reducing");
3633     }
3634 
3635     // Fail if tensor::ExtractSliceOp has non-zero offset.
3636     if (!extractOp.hasZeroOffset()) {
3637       return rewriter.notifyMatchFailure(insertOp,
3638                                          "ExtractSliceOp has non-zero offset");
3639     }
3640 
3641     // Fail if tensor::TransferWriteOp has non-zero offset.
3642     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3643           return getConstantIntValue(value) == static_cast<int64_t>(0);
3644         })) {
3645       return rewriter.notifyMatchFailure(insertOp,
3646                                          "TranferWriteOp has non-zero offset");
3647     }
3648 
3649     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3650     for (const auto &it :
3651          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3652       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3653         return rewriter.notifyMatchFailure(
3654             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3655       }
3656     }
3657 
3658     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3659     assert(transferOp.getVectorType().hasStaticShape() &&
3660            "expected vector to have a static shape");
3661     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3662     SmallVector<int64_t> resultShape = applyPermutationMap(
3663         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3664     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3665       return rewriter.notifyMatchFailure(
3666           insertOp, "TransferWriteOp may not write the full tensor.");
3667     }
3668 
3669     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3670     SmallVector<int64_t> newResultShape = applyPermutationMap(
3671         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3672     SmallVector<bool> newInBounds;
3673     for (const auto &en : enumerate(newResultShape))
3674       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3675     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3676         extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(),
3677         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3678         insertOp.getMixedStrides());
3679     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3680         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3681         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3682         rewriter.getBoolArrayAttr(newInBounds));
3683     rewriter.updateRootInPlace(insertOp, [&]() {
3684       insertOp.sourceMutable().assign(newTransferWriteOp.getResult());
3685     });
3686     return success();
3687   }
3688 };
3689 
3690 } // namespace
3691 
3692 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3693                                                   MLIRContext *context) {
3694   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3695               SwapExtractSliceOfTransferWrite>(context);
3696 }
3697 
3698 //===----------------------------------------------------------------------===//
3699 // LoadOp
3700 //===----------------------------------------------------------------------===//
3701 
3702 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3703                                                  MemRefType memRefTy) {
3704   if (!isLastMemrefDimUnitStride(memRefTy))
3705     return op->emitOpError("most minor memref dim must have unit stride");
3706   return success();
3707 }
3708 
3709 LogicalResult vector::LoadOp::verify() {
3710   VectorType resVecTy = getVectorType();
3711   MemRefType memRefTy = getMemRefType();
3712 
3713   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3714     return failure();
3715 
3716   // Checks for vector memrefs.
3717   Type memElemTy = memRefTy.getElementType();
3718   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3719     if (memVecTy != resVecTy)
3720       return emitOpError("base memref and result vector types should match");
3721     memElemTy = memVecTy.getElementType();
3722   }
3723 
3724   if (resVecTy.getElementType() != memElemTy)
3725     return emitOpError("base and result element types should match");
3726   if (llvm::size(getIndices()) != memRefTy.getRank())
3727     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3728   return success();
3729 }
3730 
3731 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3732   if (succeeded(foldMemRefCast(*this)))
3733     return getResult();
3734   return OpFoldResult();
3735 }
3736 
3737 //===----------------------------------------------------------------------===//
3738 // StoreOp
3739 //===----------------------------------------------------------------------===//
3740 
3741 LogicalResult vector::StoreOp::verify() {
3742   VectorType valueVecTy = getVectorType();
3743   MemRefType memRefTy = getMemRefType();
3744 
3745   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3746     return failure();
3747 
3748   // Checks for vector memrefs.
3749   Type memElemTy = memRefTy.getElementType();
3750   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3751     if (memVecTy != valueVecTy)
3752       return emitOpError(
3753           "base memref and valueToStore vector types should match");
3754     memElemTy = memVecTy.getElementType();
3755   }
3756 
3757   if (valueVecTy.getElementType() != memElemTy)
3758     return emitOpError("base and valueToStore element type should match");
3759   if (llvm::size(getIndices()) != memRefTy.getRank())
3760     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3761   return success();
3762 }
3763 
3764 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3765                             SmallVectorImpl<OpFoldResult> &results) {
3766   return foldMemRefCast(*this);
3767 }
3768 
3769 //===----------------------------------------------------------------------===//
3770 // MaskedLoadOp
3771 //===----------------------------------------------------------------------===//
3772 
3773 LogicalResult MaskedLoadOp::verify() {
3774   VectorType maskVType = getMaskVectorType();
3775   VectorType passVType = getPassThruVectorType();
3776   VectorType resVType = getVectorType();
3777   MemRefType memType = getMemRefType();
3778 
3779   if (resVType.getElementType() != memType.getElementType())
3780     return emitOpError("base and result element type should match");
3781   if (llvm::size(getIndices()) != memType.getRank())
3782     return emitOpError("requires ") << memType.getRank() << " indices";
3783   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3784     return emitOpError("expected result dim to match mask dim");
3785   if (resVType != passVType)
3786     return emitOpError("expected pass_thru of same type as result type");
3787   return success();
3788 }
3789 
3790 namespace {
3791 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3792 public:
3793   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3794   LogicalResult matchAndRewrite(MaskedLoadOp load,
3795                                 PatternRewriter &rewriter) const override {
3796     switch (get1DMaskFormat(load.getMask())) {
3797     case MaskFormat::AllTrue:
3798       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3799           load, load.getType(), load.getBase(), load.getIndices());
3800       return success();
3801     case MaskFormat::AllFalse:
3802       rewriter.replaceOp(load, load.getPassThru());
3803       return success();
3804     case MaskFormat::Unknown:
3805       return failure();
3806     }
3807     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3808   }
3809 };
3810 } // namespace
3811 
3812 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3813                                                MLIRContext *context) {
3814   results.add<MaskedLoadFolder>(context);
3815 }
3816 
3817 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3818   if (succeeded(foldMemRefCast(*this)))
3819     return getResult();
3820   return OpFoldResult();
3821 }
3822 
3823 //===----------------------------------------------------------------------===//
3824 // MaskedStoreOp
3825 //===----------------------------------------------------------------------===//
3826 
3827 LogicalResult MaskedStoreOp::verify() {
3828   VectorType maskVType = getMaskVectorType();
3829   VectorType valueVType = getVectorType();
3830   MemRefType memType = getMemRefType();
3831 
3832   if (valueVType.getElementType() != memType.getElementType())
3833     return emitOpError("base and valueToStore element type should match");
3834   if (llvm::size(getIndices()) != memType.getRank())
3835     return emitOpError("requires ") << memType.getRank() << " indices";
3836   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3837     return emitOpError("expected valueToStore dim to match mask dim");
3838   return success();
3839 }
3840 
3841 namespace {
3842 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3843 public:
3844   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3845   LogicalResult matchAndRewrite(MaskedStoreOp store,
3846                                 PatternRewriter &rewriter) const override {
3847     switch (get1DMaskFormat(store.getMask())) {
3848     case MaskFormat::AllTrue:
3849       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3850           store, store.getValueToStore(), store.getBase(), store.getIndices());
3851       return success();
3852     case MaskFormat::AllFalse:
3853       rewriter.eraseOp(store);
3854       return success();
3855     case MaskFormat::Unknown:
3856       return failure();
3857     }
3858     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3859   }
3860 };
3861 } // namespace
3862 
3863 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3864                                                 MLIRContext *context) {
3865   results.add<MaskedStoreFolder>(context);
3866 }
3867 
3868 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3869                                   SmallVectorImpl<OpFoldResult> &results) {
3870   return foldMemRefCast(*this);
3871 }
3872 
3873 //===----------------------------------------------------------------------===//
3874 // GatherOp
3875 //===----------------------------------------------------------------------===//
3876 
3877 LogicalResult GatherOp::verify() {
3878   VectorType indVType = getIndexVectorType();
3879   VectorType maskVType = getMaskVectorType();
3880   VectorType resVType = getVectorType();
3881   MemRefType memType = getMemRefType();
3882 
3883   if (resVType.getElementType() != memType.getElementType())
3884     return emitOpError("base and result element type should match");
3885   if (llvm::size(getIndices()) != memType.getRank())
3886     return emitOpError("requires ") << memType.getRank() << " indices";
3887   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3888     return emitOpError("expected result dim to match indices dim");
3889   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3890     return emitOpError("expected result dim to match mask dim");
3891   if (resVType != getPassThruVectorType())
3892     return emitOpError("expected pass_thru of same type as result type");
3893   return success();
3894 }
3895 
3896 namespace {
3897 class GatherFolder final : public OpRewritePattern<GatherOp> {
3898 public:
3899   using OpRewritePattern<GatherOp>::OpRewritePattern;
3900   LogicalResult matchAndRewrite(GatherOp gather,
3901                                 PatternRewriter &rewriter) const override {
3902     switch (get1DMaskFormat(gather.getMask())) {
3903     case MaskFormat::AllTrue:
3904       return failure(); // no unmasked equivalent
3905     case MaskFormat::AllFalse:
3906       rewriter.replaceOp(gather, gather.getPassThru());
3907       return success();
3908     case MaskFormat::Unknown:
3909       return failure();
3910     }
3911     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3912   }
3913 };
3914 } // namespace
3915 
3916 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3917                                            MLIRContext *context) {
3918   results.add<GatherFolder>(context);
3919 }
3920 
3921 //===----------------------------------------------------------------------===//
3922 // ScatterOp
3923 //===----------------------------------------------------------------------===//
3924 
3925 LogicalResult ScatterOp::verify() {
3926   VectorType indVType = getIndexVectorType();
3927   VectorType maskVType = getMaskVectorType();
3928   VectorType valueVType = getVectorType();
3929   MemRefType memType = getMemRefType();
3930 
3931   if (valueVType.getElementType() != memType.getElementType())
3932     return emitOpError("base and valueToStore element type should match");
3933   if (llvm::size(getIndices()) != memType.getRank())
3934     return emitOpError("requires ") << memType.getRank() << " indices";
3935   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3936     return emitOpError("expected valueToStore dim to match indices dim");
3937   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3938     return emitOpError("expected valueToStore dim to match mask dim");
3939   return success();
3940 }
3941 
3942 namespace {
3943 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3944 public:
3945   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3946   LogicalResult matchAndRewrite(ScatterOp scatter,
3947                                 PatternRewriter &rewriter) const override {
3948     switch (get1DMaskFormat(scatter.getMask())) {
3949     case MaskFormat::AllTrue:
3950       return failure(); // no unmasked equivalent
3951     case MaskFormat::AllFalse:
3952       rewriter.eraseOp(scatter);
3953       return success();
3954     case MaskFormat::Unknown:
3955       return failure();
3956     }
3957     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3958   }
3959 };
3960 } // namespace
3961 
3962 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3963                                             MLIRContext *context) {
3964   results.add<ScatterFolder>(context);
3965 }
3966 
3967 //===----------------------------------------------------------------------===//
3968 // ExpandLoadOp
3969 //===----------------------------------------------------------------------===//
3970 
3971 LogicalResult ExpandLoadOp::verify() {
3972   VectorType maskVType = getMaskVectorType();
3973   VectorType passVType = getPassThruVectorType();
3974   VectorType resVType = getVectorType();
3975   MemRefType memType = getMemRefType();
3976 
3977   if (resVType.getElementType() != memType.getElementType())
3978     return emitOpError("base and result element type should match");
3979   if (llvm::size(getIndices()) != memType.getRank())
3980     return emitOpError("requires ") << memType.getRank() << " indices";
3981   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3982     return emitOpError("expected result dim to match mask dim");
3983   if (resVType != passVType)
3984     return emitOpError("expected pass_thru of same type as result type");
3985   return success();
3986 }
3987 
3988 namespace {
3989 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3990 public:
3991   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3992   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3993                                 PatternRewriter &rewriter) const override {
3994     switch (get1DMaskFormat(expand.getMask())) {
3995     case MaskFormat::AllTrue:
3996       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3997           expand, expand.getType(), expand.getBase(), expand.getIndices());
3998       return success();
3999     case MaskFormat::AllFalse:
4000       rewriter.replaceOp(expand, expand.getPassThru());
4001       return success();
4002     case MaskFormat::Unknown:
4003       return failure();
4004     }
4005     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4006   }
4007 };
4008 } // namespace
4009 
4010 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4011                                                MLIRContext *context) {
4012   results.add<ExpandLoadFolder>(context);
4013 }
4014 
4015 //===----------------------------------------------------------------------===//
4016 // CompressStoreOp
4017 //===----------------------------------------------------------------------===//
4018 
4019 LogicalResult CompressStoreOp::verify() {
4020   VectorType maskVType = getMaskVectorType();
4021   VectorType valueVType = getVectorType();
4022   MemRefType memType = getMemRefType();
4023 
4024   if (valueVType.getElementType() != memType.getElementType())
4025     return emitOpError("base and valueToStore element type should match");
4026   if (llvm::size(getIndices()) != memType.getRank())
4027     return emitOpError("requires ") << memType.getRank() << " indices";
4028   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4029     return emitOpError("expected valueToStore dim to match mask dim");
4030   return success();
4031 }
4032 
4033 namespace {
4034 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4035 public:
4036   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4037   LogicalResult matchAndRewrite(CompressStoreOp compress,
4038                                 PatternRewriter &rewriter) const override {
4039     switch (get1DMaskFormat(compress.getMask())) {
4040     case MaskFormat::AllTrue:
4041       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4042           compress, compress.getValueToStore(), compress.getBase(),
4043           compress.getIndices());
4044       return success();
4045     case MaskFormat::AllFalse:
4046       rewriter.eraseOp(compress);
4047       return success();
4048     case MaskFormat::Unknown:
4049       return failure();
4050     }
4051     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4052   }
4053 };
4054 } // namespace
4055 
4056 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4057                                                   MLIRContext *context) {
4058   results.add<CompressStoreFolder>(context);
4059 }
4060 
4061 //===----------------------------------------------------------------------===//
4062 // ShapeCastOp
4063 //===----------------------------------------------------------------------===//
4064 
4065 /// Returns true if each element of 'a' is equal to the product of a contiguous
4066 /// sequence of the elements of 'b'. Returns false otherwise.
4067 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4068   unsigned rankA = a.size();
4069   unsigned rankB = b.size();
4070   assert(rankA < rankB);
4071 
4072   unsigned i = 0;
4073   unsigned j = 0;
4074   while (i < rankA && j < rankB) {
4075     int64_t dimA = a[i];
4076     int64_t dimB = 1;
4077     while (dimB < dimA && j < rankB)
4078       dimB *= b[j++];
4079     if (dimA != dimB)
4080       break;
4081     ++i;
4082 
4083     // Handle the case when trailing dimensions are of size 1.
4084     // Include them into the contiguous sequence.
4085     auto isOne = [](int64_t v) { return v == 1; };
4086     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4087       i = rankA;
4088     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4089       j = rankB;
4090   }
4091 
4092   return i == rankA && j == rankB;
4093 }
4094 
4095 static LogicalResult verifyVectorShapeCast(Operation *op,
4096                                            VectorType sourceVectorType,
4097                                            VectorType resultVectorType) {
4098   // Check that element type is the same.
4099   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4100     return op->emitOpError("source/result vectors must have same element type");
4101   auto sourceShape = sourceVectorType.getShape();
4102   auto resultShape = resultVectorType.getShape();
4103 
4104   // Check that product of source dim sizes matches product of result dim sizes.
4105   int64_t sourceDimProduct = std::accumulate(
4106       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4107   int64_t resultDimProduct = std::accumulate(
4108       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4109   if (sourceDimProduct != resultDimProduct)
4110     return op->emitOpError("source/result number of elements must match");
4111 
4112   // Check that expanding/contracting rank cases.
4113   unsigned sourceRank = sourceVectorType.getRank();
4114   unsigned resultRank = resultVectorType.getRank();
4115   if (sourceRank < resultRank) {
4116     if (!isValidShapeCast(sourceShape, resultShape))
4117       return op->emitOpError("invalid shape cast");
4118   } else if (sourceRank > resultRank) {
4119     if (!isValidShapeCast(resultShape, sourceShape))
4120       return op->emitOpError("invalid shape cast");
4121   }
4122   return success();
4123 }
4124 
4125 LogicalResult ShapeCastOp::verify() {
4126   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4127   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4128 
4129   // Check if source/result are of vector type.
4130   if (sourceVectorType && resultVectorType)
4131     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4132 
4133   return success();
4134 }
4135 
4136 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4137   // No-op shape cast.
4138   if (getSource().getType() == getResult().getType())
4139     return getSource();
4140 
4141   // Canceling shape casts.
4142   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4143     if (getResult().getType() == otherOp.getSource().getType())
4144       return otherOp.getSource();
4145 
4146     // Only allows valid transitive folding.
4147     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4148     VectorType resultType = getResult().getType().cast<VectorType>();
4149     if (srcType.getRank() < resultType.getRank()) {
4150       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4151         return {};
4152     } else if (srcType.getRank() > resultType.getRank()) {
4153       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4154         return {};
4155     } else {
4156       return {};
4157     }
4158 
4159     setOperand(otherOp.getSource());
4160     return getResult();
4161   }
4162 
4163   // Cancelling broadcast and shape cast ops.
4164   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4165     if (bcastOp.getSourceType() == getType())
4166       return bcastOp.getSource();
4167   }
4168 
4169   return {};
4170 }
4171 
4172 namespace {
4173 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4174 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4175 public:
4176   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4177 
4178   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4179                                 PatternRewriter &rewriter) const override {
4180     auto constantOp =
4181         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4182     if (!constantOp)
4183       return failure();
4184     // Only handle splat for now.
4185     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4186     if (!dense)
4187       return failure();
4188     auto newAttr =
4189         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4190                                dense.getSplatValue<Attribute>());
4191     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4192     return success();
4193   }
4194 };
4195 
4196 } // namespace
4197 
4198 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4199                                               MLIRContext *context) {
4200   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4201   results.add<ShapeCastConstantFolder>(context);
4202 }
4203 
4204 //===----------------------------------------------------------------------===//
4205 // VectorBitCastOp
4206 //===----------------------------------------------------------------------===//
4207 
4208 LogicalResult BitCastOp::verify() {
4209   auto sourceVectorType = getSourceVectorType();
4210   auto resultVectorType = getResultVectorType();
4211 
4212   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4213     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4214       return emitOpError("dimension size mismatch at: ") << i;
4215   }
4216 
4217   DataLayout dataLayout = DataLayout::closest(*this);
4218   auto sourceElementBits =
4219       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4220   auto resultElementBits =
4221       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4222 
4223   if (sourceVectorType.getRank() == 0) {
4224     if (sourceElementBits != resultElementBits)
4225       return emitOpError("source/result bitwidth of the 0-D vector element "
4226                             "types must be equal");
4227   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4228              resultElementBits * resultVectorType.getShape().back()) {
4229     return emitOpError(
4230         "source/result bitwidth of the minor 1-D vectors must be equal");
4231   }
4232 
4233   return success();
4234 }
4235 
4236 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4237   // Nop cast.
4238   if (getSource().getType() == getResult().getType())
4239     return getSource();
4240 
4241   // Canceling bitcasts.
4242   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4243     if (getResult().getType() == otherOp.getSource().getType())
4244       return otherOp.getSource();
4245 
4246     setOperand(otherOp.getSource());
4247     return getResult();
4248   }
4249 
4250   Attribute sourceConstant = operands.front();
4251   if (!sourceConstant)
4252     return {};
4253 
4254   Type srcElemType = getSourceVectorType().getElementType();
4255   Type dstElemType = getResultVectorType().getElementType();
4256 
4257   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4258     if (floatPack.isSplat()) {
4259       auto splat = floatPack.getSplatValue<FloatAttr>();
4260 
4261       // Casting fp16 into fp32.
4262       if (srcElemType.isF16() && dstElemType.isF32()) {
4263         uint32_t bits = static_cast<uint32_t>(
4264             splat.getValue().bitcastToAPInt().getZExtValue());
4265         // Duplicate the 16-bit pattern.
4266         bits = (bits << 16) | (bits & 0xffff);
4267         APInt intBits(32, bits);
4268         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4269         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4270       }
4271     }
4272   }
4273 
4274   return {};
4275 }
4276 
4277 //===----------------------------------------------------------------------===//
4278 // TypeCastOp
4279 //===----------------------------------------------------------------------===//
4280 
4281 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4282   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4283   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4284                               memRefType.getShape().end());
4285   if (vectorType)
4286     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4287   return res;
4288 }
4289 
4290 /// Build the canonical memRefType with a single vector.
4291 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4292 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4293                        Value source) {
4294   result.addOperands(source);
4295   MemRefType memRefType = source.getType().cast<MemRefType>();
4296   VectorType vectorType =
4297       VectorType::get(extractShape(memRefType),
4298                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4299   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4300                                   memRefType.getMemorySpace()));
4301 }
4302 
4303 LogicalResult TypeCastOp::verify() {
4304   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4305   if (!canonicalType.getLayout().isIdentity())
4306     return emitOpError("expects operand to be a memref with identity layout");
4307   if (!getResultMemRefType().getLayout().isIdentity())
4308     return emitOpError("expects result to be a memref with identity layout");
4309   if (getResultMemRefType().getMemorySpace() !=
4310       getMemRefType().getMemorySpace())
4311     return emitOpError("expects result in same memory space");
4312 
4313   auto sourceType = getMemRefType();
4314   auto resultType = getResultMemRefType();
4315   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4316       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4317     return emitOpError(
4318                "expects result and operand with same underlying scalar type: ")
4319            << resultType;
4320   if (extractShape(sourceType) != extractShape(resultType))
4321     return emitOpError(
4322                "expects concatenated result and operand shapes to be equal: ")
4323            << resultType;
4324   return success();
4325 }
4326 
4327 //===----------------------------------------------------------------------===//
4328 // TransposeOp
4329 //===----------------------------------------------------------------------===//
4330 
4331 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4332                                 Value vector, ArrayRef<int64_t> transp) {
4333   VectorType vt = vector.getType().cast<VectorType>();
4334   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4335   for (unsigned i = 0; i < transp.size(); ++i)
4336     transposedShape[i] = vt.getShape()[transp[i]];
4337 
4338   result.addOperands(vector);
4339   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4340   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4341 }
4342 
4343 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4344   // Eliminate splat constant transpose ops.
4345   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4346     if (attr.isSplat())
4347       return attr.reshape(getResultType());
4348 
4349   // Eliminate identity transpose ops. This happens when the dimensions of the
4350   // input vector remain in their original order after the transpose operation.
4351   SmallVector<int64_t, 4> transp;
4352   getTransp(transp);
4353 
4354   // Check if the permutation of the dimensions contains sequential values:
4355   // {0, 1, 2, ...}.
4356   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4357     if (transp[i] != i)
4358       return {};
4359   }
4360 
4361   return getVector();
4362 }
4363 
4364 LogicalResult vector::TransposeOp::verify() {
4365   VectorType vectorType = getVectorType();
4366   VectorType resultType = getResultType();
4367   int64_t rank = resultType.getRank();
4368   if (vectorType.getRank() != rank)
4369     return emitOpError("vector result rank mismatch: ") << rank;
4370   // Verify transposition array.
4371   auto transpAttr = getTransp().getValue();
4372   int64_t size = transpAttr.size();
4373   if (rank != size)
4374     return emitOpError("transposition length mismatch: ") << size;
4375   SmallVector<bool, 8> seen(rank, false);
4376   for (const auto &ta : llvm::enumerate(transpAttr)) {
4377     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4378     if (i < 0 || i >= rank)
4379       return emitOpError("transposition index out of range: ") << i;
4380     if (seen[i])
4381       return emitOpError("duplicate position index: ") << i;
4382     seen[i] = true;
4383     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4384       return emitOpError("dimension size mismatch at: ") << i;
4385   }
4386   return success();
4387 }
4388 
4389 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4390   return llvm::to_vector<4>(getResultType().getShape());
4391 }
4392 
4393 namespace {
4394 
4395 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4396 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4397 public:
4398   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4399 
4400   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4401                                 PatternRewriter &rewriter) const override {
4402     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4403     auto getPermutation = [](vector::TransposeOp transpose) {
4404       SmallVector<int64_t, 4> permutation;
4405       transpose.getTransp(permutation);
4406       return permutation;
4407     };
4408 
4409     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4410     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4411                                   ArrayRef<int64_t> permutation2) {
4412       SmallVector<int64_t, 4> result;
4413       for (auto index : permutation2)
4414         result.push_back(permutation1[index]);
4415       return result;
4416     };
4417 
4418     // Return if the input of 'transposeOp' is not defined by another transpose.
4419     vector::TransposeOp parentTransposeOp =
4420         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4421     if (!parentTransposeOp)
4422       return failure();
4423 
4424     SmallVector<int64_t, 4> permutation = composePermutations(
4425         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4426     // Replace 'transposeOp' with a new transpose operation.
4427     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4428         transposeOp, transposeOp.getResult().getType(),
4429         parentTransposeOp.getVector(),
4430         vector::getVectorSubscriptAttr(rewriter, permutation));
4431     return success();
4432   }
4433 };
4434 
4435 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4436 struct FoldTransposedScalarBroadcast final
4437     : public OpRewritePattern<vector::TransposeOp> {
4438   using OpRewritePattern::OpRewritePattern;
4439 
4440   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4441                                 PatternRewriter &rewriter) const override {
4442     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4443     if (!bcastOp)
4444       return failure();
4445 
4446     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4447     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4448       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4449           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4450       return success();
4451     }
4452 
4453     return failure();
4454   }
4455 };
4456 
4457 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4458 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4459 public:
4460   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4461 
4462   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4463                                 PatternRewriter &rewriter) const override {
4464     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4465     if (!splatOp)
4466       return failure();
4467 
4468     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4469         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4470     return success();
4471   }
4472 };
4473 
4474 } // namespace
4475 
4476 void vector::TransposeOp::getCanonicalizationPatterns(
4477     RewritePatternSet &results, MLIRContext *context) {
4478   results
4479       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4480           context);
4481 }
4482 
4483 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4484   populateFromInt64AttrArray(getTransp(), results);
4485 }
4486 
4487 //===----------------------------------------------------------------------===//
4488 // ConstantMaskOp
4489 //===----------------------------------------------------------------------===//
4490 
4491 LogicalResult ConstantMaskOp::verify() {
4492   auto resultType = getResult().getType().cast<VectorType>();
4493   // Check the corner case of 0-D vectors first.
4494   if (resultType.getRank() == 0) {
4495     if (getMaskDimSizes().size() != 1)
4496       return emitError("array attr must have length 1 for 0-D vectors");
4497     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4498     if (dim != 0 && dim != 1)
4499       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4500     return success();
4501   }
4502 
4503   // Verify that array attr size matches the rank of the vector result.
4504   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4505     return emitOpError(
4506         "must specify array attr of size equal vector result rank");
4507   // Verify that each array attr element is in bounds of corresponding vector
4508   // result dimension size.
4509   auto resultShape = resultType.getShape();
4510   SmallVector<int64_t, 4> maskDimSizes;
4511   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4512     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4513     if (attrValue < 0 || attrValue > resultShape[it.index()])
4514       return emitOpError(
4515           "array attr of size out of bounds of vector result dimension size");
4516     maskDimSizes.push_back(attrValue);
4517   }
4518   // Verify that if one mask dim size is zero, they all should be zero (because
4519   // the mask region is a conjunction of each mask dimension interval).
4520   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4521   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4522   if (anyZeros && !allZeros)
4523     return emitOpError("expected all mask dim sizes to be zeros, "
4524                        "as a result of conjunction with zero mask dim");
4525   // Verify that if the mask type is scalable, dimensions should be zero because
4526   // constant scalable masks can only be defined for the "none set" or "all set"
4527   // cases, and there is no VLA way to define an "all set" case for
4528   // `vector.constant_mask`. In the future, a convention could be established
4529   // to decide if a specific dimension value could be considered as "all set".
4530   if (resultType.isScalable() &&
4531       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4532     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4533   return success();
4534 }
4535 
4536 //===----------------------------------------------------------------------===//
4537 // CreateMaskOp
4538 //===----------------------------------------------------------------------===//
4539 
4540 LogicalResult CreateMaskOp::verify() {
4541   auto vectorType = getResult().getType().cast<VectorType>();
4542   // Verify that an operand was specified for each result vector each dimension.
4543   if (vectorType.getRank() == 0) {
4544     if (getNumOperands() != 1)
4545       return emitOpError(
4546           "must specify exactly one operand for 0-D create_mask");
4547   } else if (getNumOperands() !=
4548              getResult().getType().cast<VectorType>().getRank()) {
4549     return emitOpError(
4550         "must specify an operand for each result vector dimension");
4551   }
4552   return success();
4553 }
4554 
4555 namespace {
4556 
4557 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4558 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4559 public:
4560   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4561 
4562   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4563                                 PatternRewriter &rewriter) const override {
4564     // Return if any of 'createMaskOp' operands are not defined by a constant.
4565     auto isNotDefByConstant = [](Value operand) {
4566       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4567     };
4568     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4569       return failure();
4570 
4571     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4572     // are negative or zero.
4573     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4574       if (vType.isScalable())
4575         for (auto opDim : createMaskOp.getOperands()) {
4576           APInt intVal;
4577           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4578               intVal.isStrictlyPositive())
4579             return failure();
4580         }
4581     }
4582 
4583     // Gather constant mask dimension sizes.
4584     SmallVector<int64_t, 4> maskDimSizes;
4585     for (auto it : llvm::zip(createMaskOp.operands(),
4586                              createMaskOp.getType().getShape())) {
4587       auto *defOp = std::get<0>(it).getDefiningOp();
4588       int64_t maxDimSize = std::get<1>(it);
4589       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4590       dimSize = std::min(dimSize, maxDimSize);
4591       // If one of dim sizes is zero, set all dims to zero.
4592       if (dimSize <= 0) {
4593         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4594         break;
4595       }
4596       maskDimSizes.push_back(dimSize);
4597     }
4598     // Replace 'createMaskOp' with ConstantMaskOp.
4599     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4600         createMaskOp, createMaskOp.getResult().getType(),
4601         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4602     return success();
4603   }
4604 };
4605 
4606 } // namespace
4607 
4608 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4609                                                MLIRContext *context) {
4610   results.add<CreateMaskFolder>(context);
4611 }
4612 
4613 //===----------------------------------------------------------------------===//
4614 // ScanOp
4615 //===----------------------------------------------------------------------===//
4616 
4617 LogicalResult ScanOp::verify() {
4618   VectorType srcType = getSourceType();
4619   VectorType initialType = getInitialValueType();
4620   // Check reduction dimension < rank.
4621   int64_t srcRank = srcType.getRank();
4622   int64_t reductionDim = getReductionDim();
4623   if (reductionDim >= srcRank)
4624     return emitOpError("reduction dimension ")
4625            << reductionDim << " has to be less than " << srcRank;
4626 
4627   // Check that rank(initial_value) = rank(src) - 1.
4628   int64_t initialValueRank = initialType.getRank();
4629   if (initialValueRank != srcRank - 1)
4630     return emitOpError("initial value rank ")
4631            << initialValueRank << " has to be equal to " << srcRank - 1;
4632 
4633   // Check shapes of initial value and src.
4634   ArrayRef<int64_t> srcShape = srcType.getShape();
4635   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4636   SmallVector<int64_t> expectedShape;
4637   for (int i = 0; i < srcRank; i++) {
4638     if (i != reductionDim)
4639       expectedShape.push_back(srcShape[i]);
4640   }
4641   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4642                    [](std::tuple<int64_t, int64_t> s) {
4643                      return std::get<0>(s) != std::get<1>(s);
4644                    })) {
4645     return emitOpError("incompatible input/initial value shapes");
4646   }
4647 
4648   // Verify supported reduction kind.
4649   Type eltType = getDestType().getElementType();
4650   if (!isSupportedCombiningKind(getKind(), eltType))
4651     return emitOpError("unsupported reduction type ")
4652            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4653            << "'";
4654 
4655   return success();
4656 }
4657 
4658 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4659     RewritePatternSet &patterns) {
4660   patterns
4661       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4662            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4663            StridedSliceConstantMaskFolder, TransposeFolder>(
4664           patterns.getContext());
4665 }
4666 
4667 //===----------------------------------------------------------------------===//
4668 // SplatOp
4669 //===----------------------------------------------------------------------===//
4670 
4671 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4672   auto constOperand = operands.front();
4673   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4674     return {};
4675 
4676   // SplatElementsAttr::get treats single value for second arg as being a splat.
4677   return SplatElementsAttr::get(getType(), {constOperand});
4678 }
4679 
4680 //===----------------------------------------------------------------------===//
4681 // WarpExecuteOnLane0Op
4682 //===----------------------------------------------------------------------===//
4683 
4684 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4685   p << "(" << getLaneid() << ")";
4686 
4687   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4688   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4689   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4690 
4691   if (!getArgs().empty())
4692     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4693   if (!getResults().empty())
4694     p << " -> (" << getResults().getTypes() << ')';
4695   p << " ";
4696   p.printRegion(getRegion(),
4697                 /*printEntryBlockArgs=*/true,
4698                 /*printBlockTerminators=*/!getResults().empty());
4699   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4700 }
4701 
4702 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4703                                         OperationState &result) {
4704   // Create the region.
4705   result.regions.reserve(1);
4706   Region *warpRegion = result.addRegion();
4707 
4708   auto &builder = parser.getBuilder();
4709   OpAsmParser::UnresolvedOperand laneId;
4710 
4711   // Parse predicate operand.
4712   if (parser.parseLParen() ||
4713       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4714       parser.parseRParen())
4715     return failure();
4716 
4717   int64_t warpSize;
4718   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4719       parser.parseRSquare())
4720     return failure();
4721   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4722                                                         builder.getContext())),
4723                       builder.getI64IntegerAttr(warpSize));
4724 
4725   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4726     return failure();
4727 
4728   llvm::SMLoc inputsOperandsLoc;
4729   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4730   SmallVector<Type> inputTypes;
4731   if (succeeded(parser.parseOptionalKeyword("args"))) {
4732     if (parser.parseLParen())
4733       return failure();
4734 
4735     inputsOperandsLoc = parser.getCurrentLocation();
4736     if (parser.parseOperandList(inputsOperands) ||
4737         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4738       return failure();
4739   }
4740   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4741                              result.operands))
4742     return failure();
4743 
4744   // Parse optional results type list.
4745   if (parser.parseOptionalArrowTypeList(result.types))
4746     return failure();
4747   // Parse the region.
4748   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4749                          /*argTypes=*/{}))
4750     return failure();
4751   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4752 
4753   // Parse the optional attribute list.
4754   if (parser.parseOptionalAttrDict(result.attributes))
4755     return failure();
4756   return success();
4757 }
4758 
4759 void WarpExecuteOnLane0Op::getSuccessorRegions(
4760     Optional<unsigned> index, ArrayRef<Attribute> operands,
4761     SmallVectorImpl<RegionSuccessor> &regions) {
4762   if (index) {
4763     regions.push_back(RegionSuccessor(getResults()));
4764     return;
4765   }
4766 
4767   // The warp region is always executed
4768   regions.push_back(RegionSuccessor(&getWarpRegion()));
4769 }
4770 
4771 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4772                                  TypeRange resultTypes, Value laneId,
4773                                  int64_t warpSize) {
4774   build(builder, result, resultTypes, laneId, warpSize,
4775         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4776 }
4777 
4778 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4779                                  TypeRange resultTypes, Value laneId,
4780                                  int64_t warpSize, ValueRange args,
4781                                  TypeRange blockArgTypes) {
4782   result.addOperands(laneId);
4783   result.addAttribute(getAttributeNames()[0],
4784                       builder.getI64IntegerAttr(warpSize));
4785   result.addTypes(resultTypes);
4786   result.addOperands(args);
4787   assert(args.size() == blockArgTypes.size());
4788   OpBuilder::InsertionGuard guard(builder);
4789   Region *warpRegion = result.addRegion();
4790   Block *block = builder.createBlock(warpRegion);
4791   for (auto it : llvm::zip(blockArgTypes, args))
4792     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4793 }
4794 
4795 /// Helper check if the distributed vector type is consistent with the expanded
4796 /// type and distributed size.
4797 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4798                                            int64_t warpSize, Operation *op) {
4799   // If the types matches there is no distribution.
4800   if (expanded == distributed)
4801     return success();
4802   auto expandedVecType = expanded.dyn_cast<VectorType>();
4803   auto distributedVecType = distributed.dyn_cast<VectorType>();
4804   if (!expandedVecType || !distributedVecType)
4805     return op->emitOpError("expected vector type for distributed operands.");
4806   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4807       expandedVecType.getElementType() != distributedVecType.getElementType())
4808     return op->emitOpError(
4809         "expected distributed vectors to have same rank and element type.");
4810   bool foundDistributedDim = false;
4811   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4812     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4813       continue;
4814     if (expandedVecType.getDimSize(i) ==
4815         distributedVecType.getDimSize(i) * warpSize) {
4816       if (foundDistributedDim)
4817         return op->emitOpError()
4818                << "expected only one dimension to be distributed from "
4819                << expandedVecType << " to " << distributedVecType;
4820       foundDistributedDim = true;
4821       continue;
4822     }
4823     return op->emitOpError() << "incompatible distribution dimensions from "
4824                              << expandedVecType << " to " << distributedVecType;
4825   }
4826   return success();
4827 }
4828 
4829 LogicalResult WarpExecuteOnLane0Op::verify() {
4830   if (getArgs().size() != getWarpRegion().getNumArguments())
4831     return emitOpError(
4832         "expected same number op arguments and block arguments.");
4833   auto yield =
4834       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4835   if (yield.getNumOperands() != getNumResults())
4836     return emitOpError(
4837         "expected same number of yield operands and return values.");
4838   int64_t warpSize = getWarpSize();
4839   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4840     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4841                                      std::get<1>(it).getType(), warpSize,
4842                                      getOperation())))
4843       return failure();
4844   }
4845   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4846     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4847                                      std::get<1>(it).getType(), warpSize,
4848                                      getOperation())))
4849       return failure();
4850   }
4851   return success();
4852 }
4853 
4854 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4855   return succeeded(
4856       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4857 }
4858 
4859 //===----------------------------------------------------------------------===//
4860 // TableGen'd op method definitions
4861 //===----------------------------------------------------------------------===//
4862 
4863 #define GET_OP_CLASSES
4864 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4865