1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 case arith::AtomicRMWKind::andi: 480 return builder.create<vector::ReductionOp>(vector.getLoc(), 481 CombiningKind::AND, vector); 482 case arith::AtomicRMWKind::ori: 483 return builder.create<vector::ReductionOp>(vector.getLoc(), 484 CombiningKind::OR, vector); 485 // TODO: Add remaining reduction operations. 486 default: 487 (void)emitOptionalError(loc, "Reduction operation type not supported"); 488 break; 489 } 490 return nullptr; 491 } 492 493 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 494 return llvm::to_vector<4>(getVectorType().getShape()); 495 } 496 497 namespace { 498 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 499 using OpRewritePattern::OpRewritePattern; 500 501 LogicalResult matchAndRewrite(ReductionOp reductionOp, 502 PatternRewriter &rewriter) const override { 503 if (reductionOp.getVectorType().getDimSize(0) != 1) 504 return failure(); 505 506 Location loc = reductionOp.getLoc(); 507 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 508 reductionOp.getVector(), 509 rewriter.getI64ArrayAttr(0)); 510 511 if (Value acc = reductionOp.getAcc()) { 512 assert(reductionOp.getType().isa<FloatType>()); 513 switch (reductionOp.getKind()) { 514 case CombiningKind::ADD: 515 result = rewriter.create<arith::AddFOp>(loc, result, acc); 516 break; 517 case CombiningKind::MUL: 518 result = rewriter.create<arith::MulFOp>(loc, result, acc); 519 break; 520 default: 521 assert(false && "invalid op!"); 522 } 523 } 524 525 rewriter.replaceOp(reductionOp, result); 526 return success(); 527 } 528 }; 529 } // namespace 530 531 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 532 MLIRContext *context) { 533 results.add<ElideSingleElementReduction>(context); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // ContractionOp 538 //===----------------------------------------------------------------------===// 539 540 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 541 Value lhs, Value rhs, Value acc, 542 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 543 ArrayRef<StringRef> iteratorTypes) { 544 result.addOperands({lhs, rhs, acc}); 545 result.addTypes(acc.getType()); 546 result.addAttribute(::mlir::getIndexingMapsAttrName(), 547 builder.getAffineMapArrayAttr( 548 AffineMap::inferFromExprList(indexingExprs))); 549 result.addAttribute(::mlir::getIteratorTypesAttrName(), 550 builder.getStrArrayAttr(iteratorTypes)); 551 } 552 553 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 554 Value lhs, Value rhs, Value acc, 555 ArrayAttr indexingMaps, 556 ArrayAttr iteratorTypes) { 557 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 558 ContractionOp::getDefaultKind()); 559 } 560 561 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 562 Value lhs, Value rhs, Value acc, 563 ArrayAttr indexingMaps, 564 ArrayAttr iteratorTypes, CombiningKind kind) { 565 result.addOperands({lhs, rhs, acc}); 566 result.addTypes(acc.getType()); 567 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 568 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 569 result.addAttribute(ContractionOp::getKindAttrStrName(), 570 CombiningKindAttr::get(kind, builder.getContext())); 571 } 572 573 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 574 OpAsmParser::UnresolvedOperand lhsInfo; 575 OpAsmParser::UnresolvedOperand rhsInfo; 576 OpAsmParser::UnresolvedOperand accInfo; 577 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 578 SmallVector<Type, 2> types; 579 Type resultType; 580 auto loc = parser.getCurrentLocation(); 581 DictionaryAttr dictAttr; 582 // TODO: Unify linalg op attribute parsing. 583 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 584 parser.parseOperand(lhsInfo) || parser.parseComma() || 585 parser.parseOperand(rhsInfo) || parser.parseComma() || 586 parser.parseOperand(accInfo) || 587 parser.parseTrailingOperandList(masksInfo) || 588 parser.parseOptionalAttrDict(result.attributes) || 589 parser.parseColonTypeList(types) || 590 parser.parseKeywordType("into", resultType) || 591 parser.resolveOperand(lhsInfo, types[0], result.operands) || 592 parser.resolveOperand(rhsInfo, types[1], result.operands) || 593 parser.resolveOperand(accInfo, resultType, result.operands) || 594 parser.addTypeToList(resultType, result.types)) 595 return failure(); 596 result.attributes.assign(dictAttr.getValue().begin(), 597 dictAttr.getValue().end()); 598 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 599 result.addAttribute(ContractionOp::getKindAttrStrName(), 600 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 601 result.getContext())); 602 } 603 if (masksInfo.empty()) 604 return success(); 605 if (masksInfo.size() != 2) 606 return parser.emitError(parser.getNameLoc(), 607 "expected zero or exactly 2 vector mask operands"); 608 auto lhsType = types[0].cast<VectorType>(); 609 auto rhsType = types[1].cast<VectorType>(); 610 auto maskElementType = parser.getBuilder().getI1Type(); 611 std::array<Type, 2> maskTypes = { 612 VectorType::Builder(lhsType).setElementType(maskElementType), 613 VectorType::Builder(rhsType).setElementType(maskElementType)}; 614 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 615 return failure(); 616 return success(); 617 } 618 619 void ContractionOp::print(OpAsmPrinter &p) { 620 // TODO: Unify printing code with linalg ops. 621 auto attrNames = getTraitAttrNames(); 622 llvm::StringSet<> traitAttrsSet; 623 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 624 SmallVector<NamedAttribute, 8> attrs; 625 for (auto attr : (*this)->getAttrs()) 626 if (traitAttrsSet.count(attr.getName().strref()) > 0) 627 attrs.push_back(attr); 628 629 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 630 p << " " << dictAttr << " " << getLhs() << ", "; 631 p << getRhs() << ", " << getAcc(); 632 if (getMasks().size() == 2) 633 p << ", " << getMasks(); 634 635 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 636 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 637 << getResultType(); 638 } 639 640 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 641 const std::vector<std::pair<int64_t, int64_t>> &map) { 642 for (auto &dimPair : map) { 643 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 644 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 645 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 646 return false; 647 } 648 return true; 649 } 650 651 static LogicalResult verifyOutputShape( 652 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 653 Type resType, 654 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 655 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 656 DenseSet<int64_t> lhsContractingDimSet; 657 DenseSet<int64_t> rhsContractingDimSet; 658 for (auto &dimPair : contractingDimMap) { 659 lhsContractingDimSet.insert(dimPair.first); 660 rhsContractingDimSet.insert(dimPair.second); 661 } 662 DenseSet<int64_t> rhsBatchDimSet; 663 for (auto &dimPair : batchDimMap) 664 rhsBatchDimSet.insert(dimPair.second); 665 666 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 667 SmallVector<int64_t, 4> expectedResultDims; 668 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 669 if (lhsContractingDimSet.count(i) > 0) 670 continue; 671 expectedResultDims.push_back(lhsType.getDimSize(i)); 672 } 673 674 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 675 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 676 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 677 continue; 678 expectedResultDims.push_back(rhsType.getDimSize(i)); 679 } 680 681 // Verify 'expectedResultDims'. 682 if (expectedResultDims.empty()) { 683 // No batch or free dimension implies a scalar result. 684 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 685 return op.emitOpError("invalid accumulator/result vector shape"); 686 } else { 687 // At least one batch or free dimension implies a vector result. 688 auto resVectorType = resType.dyn_cast<VectorType>(); 689 auto accVectorType = accType.dyn_cast<VectorType>(); 690 if (!resVectorType || !accVectorType) 691 return op.emitOpError("invalid accumulator/result vector shape"); 692 693 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 694 // types fully define the result vector type. This assumes the affine maps 695 // are well-formed, which must have been verified already. 696 MLIRContext *ctx = op.getContext(); 697 AffineMap lhsMap = op.getIndexingMaps()[0]; 698 AffineMap rhsMap = op.getIndexingMaps()[1]; 699 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 700 for (auto pair : 701 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 702 VectorType v = pair.first; 703 auto map = pair.second; 704 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 705 unsigned pos = map.getDimPosition(idx); 706 if (!extents[pos]) 707 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 708 } 709 } 710 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 711 "expected extent along all dimensions."); 712 713 AffineMap resMap = op.getIndexingMaps()[2]; 714 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 715 /*symCount=*/0, extents, ctx); 716 // Compose the resMap with the extentsMap, which is a constant map. 717 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 718 assert(llvm::all_of( 719 expectedMap.getResults(), 720 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 721 "expected constant extent along all dimensions."); 722 // Extract the expected shape and build the type. 723 auto expectedShape = llvm::to_vector<4>( 724 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 725 return e.cast<AffineConstantExpr>().getValue(); 726 })); 727 auto expected = 728 VectorType::get(expectedShape, resVectorType.getElementType()); 729 if (resVectorType != expected || accVectorType != expected) 730 return op.emitOpError( 731 "invalid accumulator/result vector shape, expected: ") 732 << expected; 733 } 734 return success(); 735 } 736 737 LogicalResult ContractionOp::verify() { 738 auto lhsType = getLhsType(); 739 auto rhsType = getRhsType(); 740 auto accType = getAccType(); 741 auto resType = getResultType(); 742 743 // Verify that an indexing map was specified for each vector operand. 744 if (getIndexingMaps().size() != 3) 745 return emitOpError("expected an indexing map for each vector operand"); 746 747 // Verify that each index map has 'numIterators' inputs, no symbols, and 748 // that the number of map outputs equals the rank of its associated 749 // vector operand. 750 unsigned numIterators = getIteratorTypes().getValue().size(); 751 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 752 auto index = it.index(); 753 auto map = it.value(); 754 if (map.getNumSymbols() != 0) 755 return emitOpError("expected indexing map ") 756 << index << " to have no symbols"; 757 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 758 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 759 // Verify that the map has the right number of inputs, outputs, and indices. 760 // This also correctly accounts for (..) -> () for rank-0 results. 761 if (map.getNumDims() != numIterators) 762 return emitOpError("expected indexing map ") 763 << index << " to have " << numIterators << " number of inputs"; 764 if (map.getNumResults() != rank) 765 return emitOpError("expected indexing map ") 766 << index << " to have " << rank << " number of outputs"; 767 if (!map.isProjectedPermutation()) 768 return emitOpError("expected indexing map ") 769 << index << " to be a projected permutation of its inputs"; 770 } 771 772 auto contractingDimMap = getContractingDimMap(); 773 auto batchDimMap = getBatchDimMap(); 774 775 // Verify at least one contracting dimension pair was specified. 776 if (contractingDimMap.empty()) 777 return emitOpError("expected at least one contracting dimension pair"); 778 779 // Verify contracting dimension map was properly constructed. 780 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 781 return emitOpError("invalid contracting dimension map"); 782 783 // Verify batch dimension map was properly constructed. 784 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 785 return emitOpError("invalid batch dimension map"); 786 787 // Verify 'accType' and 'resType' shape. 788 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 789 contractingDimMap, batchDimMap))) 790 return failure(); 791 792 // Verify that either two vector masks are set or none are set. 793 auto lhsMaskType = getLHSVectorMaskType(); 794 auto rhsMaskType = getRHSVectorMaskType(); 795 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 796 return emitOpError("invalid number of vector masks specified"); 797 if (lhsMaskType && rhsMaskType) { 798 // Verify mask rank == argument rank. 799 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 800 rhsMaskType.getShape().size() != rhsType.getShape().size()) 801 return emitOpError("invalid vector mask rank"); 802 } 803 804 // Verify supported combining kind. 805 auto vectorType = resType.dyn_cast<VectorType>(); 806 auto elementType = vectorType ? vectorType.getElementType() : resType; 807 if (!isSupportedCombiningKind(getKind(), elementType)) 808 return emitOpError("unsupported contraction type"); 809 810 return success(); 811 } 812 813 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 814 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 815 ::mlir::getIteratorTypesAttrName(), 816 ContractionOp::getKindAttrStrName()}; 817 return llvm::makeArrayRef(names); 818 } 819 820 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 821 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 822 if (targetExpr == map.getResult(i)) 823 return i; 824 return -1; 825 } 826 827 static std::vector<std::pair<int64_t, int64_t>> 828 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 829 StringRef targetIteratorTypeName, MLIRContext *context) { 830 std::vector<std::pair<int64_t, int64_t>> dimMap; 831 for (const auto &it : llvm::enumerate(iteratorTypes)) { 832 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 833 if (iteratorTypeName != targetIteratorTypeName) 834 continue; 835 // Search lhs/rhs map results for 'targetExpr'. 836 auto targetExpr = getAffineDimExpr(it.index(), context); 837 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 838 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 839 if (lhsDim >= 0 && rhsDim >= 0) 840 dimMap.emplace_back(lhsDim, rhsDim); 841 } 842 return dimMap; 843 } 844 845 void ContractionOp::getIterationBounds( 846 SmallVectorImpl<int64_t> &iterationBounds) { 847 auto lhsShape = getLhsType().getShape(); 848 auto resVectorType = getResultType().dyn_cast<VectorType>(); 849 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 850 SmallVector<int64_t, 2> iterationShape; 851 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 852 // Search lhs/rhs map results for 'targetExpr'. 853 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 854 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 855 if (iteratorTypeName == getReductionIteratorTypeName()) { 856 // Get reduction dim size from lhs shape (same size in rhsShape). 857 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 858 assert(lhsDimIndex >= 0); 859 iterationBounds.push_back(lhsShape[lhsDimIndex]); 860 continue; 861 } 862 // Get parallel dimension size from result shape. 863 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 864 assert(resDimIndex >= 0); 865 assert(resVectorType != nullptr); 866 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 867 } 868 } 869 870 void ContractionOp::getIterationIndexMap( 871 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 872 unsigned numMaps = getIndexingMaps().size(); 873 iterationIndexMap.resize(numMaps); 874 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 875 auto index = it.index(); 876 auto map = it.value(); 877 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 878 auto dim = map.getResult(i).cast<AffineDimExpr>(); 879 iterationIndexMap[index][dim.getPosition()] = i; 880 } 881 } 882 } 883 884 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 885 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 886 return getDimMap(indexingMaps, getIteratorTypes(), 887 getReductionIteratorTypeName(), getContext()); 888 } 889 890 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 891 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 892 return getDimMap(indexingMaps, getIteratorTypes(), 893 getParallelIteratorTypeName(), getContext()); 894 } 895 896 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 897 SmallVector<int64_t, 4> shape; 898 getIterationBounds(shape); 899 return shape; 900 } 901 902 /// Return a fused vector::ContractionOp which represents a patterns such as: 903 /// 904 /// ```mlir 905 /// %c0 = vector.constant 0: ... 906 /// %c = vector.contract %a, %b, %c0: ... 907 /// %e = add %c, %d: ... 908 /// ``` 909 /// 910 /// by: 911 /// 912 /// ```mlir 913 /// %e = vector.contract %a, %b, %d: ... 914 /// ``` 915 /// 916 /// Return null if the canonicalization does not apply. 917 // TODO: This should be a folding of Add into Contract in core but while they 918 // live in different dialects, it is not possible without unnatural 919 // dependencies. 920 template <typename AddOpType> 921 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 922 using OpRewritePattern<AddOpType>::OpRewritePattern; 923 924 LogicalResult matchAndRewrite(AddOpType addOp, 925 PatternRewriter &rewriter) const override { 926 auto canonicalize = [&](Value maybeContraction, 927 Value otherOperand) -> vector::ContractionOp { 928 vector::ContractionOp contractionOp = 929 dyn_cast_or_null<vector::ContractionOp>( 930 maybeContraction.getDefiningOp()); 931 if (!contractionOp) 932 return vector::ContractionOp(); 933 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 934 contractionOp.getAcc().getDefiningOp())) { 935 if (maybeZero.getValue() == 936 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 937 BlockAndValueMapping bvm; 938 bvm.map(contractionOp.getAcc(), otherOperand); 939 auto newContraction = 940 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 941 rewriter.replaceOp(addOp, newContraction.getResult()); 942 return newContraction; 943 } 944 } 945 return vector::ContractionOp(); 946 }; 947 948 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 949 vector::ContractionOp contract = canonicalize(a, b); 950 contract = contract ? contract : canonicalize(b, a); 951 return contract ? success() : failure(); 952 } 953 }; 954 955 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 956 MLIRContext *context) { 957 results.add<CanonicalizeContractAdd<arith::AddIOp>, 958 CanonicalizeContractAdd<arith::AddFOp>>(context); 959 } 960 961 //===----------------------------------------------------------------------===// 962 // ExtractElementOp 963 //===----------------------------------------------------------------------===// 964 965 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 966 Value source) { 967 result.addOperands({source}); 968 result.addTypes(source.getType().cast<VectorType>().getElementType()); 969 } 970 971 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 972 Value source, Value position) { 973 result.addOperands({source, position}); 974 result.addTypes(source.getType().cast<VectorType>().getElementType()); 975 } 976 977 LogicalResult vector::ExtractElementOp::verify() { 978 VectorType vectorType = getVectorType(); 979 if (vectorType.getRank() == 0) { 980 if (getPosition()) 981 return emitOpError("expected position to be empty with 0-D vector"); 982 return success(); 983 } 984 if (vectorType.getRank() != 1) 985 return emitOpError("unexpected >1 vector rank"); 986 if (!getPosition()) 987 return emitOpError("expected position for 1-D vector"); 988 return success(); 989 } 990 991 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 992 // Skip the 0-D vector here now. 993 if (operands.size() < 2) 994 return {}; 995 996 Attribute src = operands[0]; 997 Attribute pos = operands[1]; 998 999 // Fold extractelement (splat X) -> X. 1000 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 1001 return splat.getInput(); 1002 1003 if (!pos || !src) 1004 return {}; 1005 1006 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 1007 1008 auto attr = pos.dyn_cast<IntegerAttr>(); 1009 uint64_t posIdx = attr.getInt(); 1010 1011 return srcElements[posIdx]; 1012 } 1013 1014 //===----------------------------------------------------------------------===// 1015 // ExtractOp 1016 //===----------------------------------------------------------------------===// 1017 1018 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1019 Value source, ArrayRef<int64_t> position) { 1020 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1021 } 1022 1023 // Convenience builder which assumes the values are constant indices. 1024 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1025 Value source, ValueRange position) { 1026 SmallVector<int64_t, 4> positionConstants = 1027 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1028 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1029 })); 1030 build(builder, result, source, positionConstants); 1031 } 1032 1033 LogicalResult 1034 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1035 ValueRange operands, DictionaryAttr attributes, 1036 RegionRange, 1037 SmallVectorImpl<Type> &inferredReturnTypes) { 1038 ExtractOp::Adaptor op(operands, attributes); 1039 auto vectorType = op.getVector().getType().cast<VectorType>(); 1040 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1041 inferredReturnTypes.push_back(vectorType.getElementType()); 1042 } else { 1043 auto n = 1044 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1045 inferredReturnTypes.push_back(VectorType::get( 1046 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1047 } 1048 return success(); 1049 } 1050 1051 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1052 // Allow extracting 1-element vectors instead of scalars. 1053 auto isCompatible = [](TypeRange l, TypeRange r) { 1054 auto vectorType = l.front().dyn_cast<VectorType>(); 1055 return vectorType && vectorType.getShape().equals({1}) && 1056 vectorType.getElementType() == r.front(); 1057 }; 1058 if (l.size() == 1 && r.size() == 1 && 1059 (isCompatible(l, r) || isCompatible(r, l))) 1060 return true; 1061 return l == r; 1062 } 1063 1064 LogicalResult vector::ExtractOp::verify() { 1065 auto positionAttr = getPosition().getValue(); 1066 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1067 return emitOpError( 1068 "expected position attribute of rank smaller than vector rank"); 1069 for (const auto &en : llvm::enumerate(positionAttr)) { 1070 auto attr = en.value().dyn_cast<IntegerAttr>(); 1071 if (!attr || attr.getInt() < 0 || 1072 attr.getInt() >= getVectorType().getDimSize(en.index())) 1073 return emitOpError("expected position attribute #") 1074 << (en.index() + 1) 1075 << " to be a non-negative integer smaller than the corresponding " 1076 "vector dimension"; 1077 } 1078 return success(); 1079 } 1080 1081 template <typename IntType> 1082 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1083 return llvm::to_vector<4>(llvm::map_range( 1084 arrayAttr.getAsRange<IntegerAttr>(), 1085 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1086 } 1087 1088 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1089 /// positions. 1090 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1091 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1092 return failure(); 1093 1094 SmallVector<int64_t, 4> globalPosition; 1095 ExtractOp currentOp = extractOp; 1096 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1097 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1098 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1099 currentOp = nextOp; 1100 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1101 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1102 } 1103 extractOp.setOperand(currentOp.getVector()); 1104 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1105 OpBuilder b(extractOp.getContext()); 1106 std::reverse(globalPosition.begin(), globalPosition.end()); 1107 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1108 b.getI64ArrayAttr(globalPosition)); 1109 return success(); 1110 } 1111 1112 namespace { 1113 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1114 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1115 /// Compose TransposeOp permutations as we walk back. 1116 /// This helper class keeps an updated extraction position `extractPosition` 1117 /// with extra trailing sentinels. 1118 /// The sentinels encode the internal transposition status of the result vector. 1119 /// As we iterate, extractPosition is permuted and updated. 1120 class ExtractFromInsertTransposeChainState { 1121 public: 1122 ExtractFromInsertTransposeChainState(ExtractOp e); 1123 1124 /// Iterate over producing insert and transpose ops until we find a fold. 1125 Value fold(); 1126 1127 private: 1128 /// Return true if the vector at position `a` is contained within the vector 1129 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1130 /// is a prefix of `b`. 1131 template <typename ContainerA, typename ContainerB> 1132 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1133 return a.size() <= b.size() && 1134 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1135 } 1136 1137 /// Return true if the vector at position `a` intersects the vector at 1138 /// position `b`. Under insert/extract semantics, this is the same as equality 1139 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1140 /// Comparison is on the common prefix (i.e. zip). 1141 template <typename ContainerA, typename ContainerB> 1142 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1143 for (auto it : llvm::zip(a, b)) { 1144 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1145 continue; 1146 if (std::get<0>(it) != std::get<1>(it)) 1147 return false; 1148 } 1149 return true; 1150 } 1151 1152 /// Folding is only possible in the absence of an internal permutation in the 1153 /// result vector. 1154 bool canFold() { 1155 return (sentinels == 1156 makeArrayRef(extractPosition).drop_front(extractedRank)); 1157 } 1158 1159 // Helper to get the next defining op of interest. 1160 void updateStateForNextIteration(Value v) { 1161 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1162 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1163 }; 1164 1165 // Case 1. If we hit a transpose, just compose the map and iterate. 1166 // Invariant: insert + transpose do not change rank, we can always compose. 1167 LogicalResult handleTransposeOp(); 1168 1169 // Case 2: the insert position matches extractPosition exactly, early return. 1170 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1171 1172 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1173 /// portion of the source of the insert. 1174 /// Example: 1175 /// ``` 1176 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1177 /// // extractPosition == [1, 2, 3] 1178 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1179 /// // can fold to vector.extract %source[0, 3] 1180 /// %ext = vector.extract %source[3]: vector<5x6> 1181 /// ``` 1182 /// To traverse through %source, we need to set the leading dims to 0 and 1183 /// drop the extra leading dims. 1184 /// This method updates the internal state. 1185 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1186 1187 /// Try to fold in place to extract(source, extractPosition) and return the 1188 /// folded result. Return null if folding is not possible (e.g. due to an 1189 /// internal tranposition in the result). 1190 Value tryToFoldExtractOpInPlace(Value source); 1191 1192 ExtractOp extractOp; 1193 int64_t vectorRank; 1194 int64_t extractedRank; 1195 1196 InsertOp nextInsertOp; 1197 TransposeOp nextTransposeOp; 1198 1199 /// Sentinel values that encode the internal permutation status of the result. 1200 /// They are set to (-1, ... , -k) at the beginning and appended to 1201 /// `extractPosition`. 1202 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1203 /// ensure that there is no internal transposition. 1204 /// Internal transposition cannot be accounted for with a folding pattern. 1205 // TODO: We could relax the internal transposition with an extra transposition 1206 // operation in a future canonicalizer. 1207 SmallVector<int64_t> sentinels; 1208 SmallVector<int64_t> extractPosition; 1209 }; 1210 } // namespace 1211 1212 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1213 ExtractOp e) 1214 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1215 extractedRank(extractOp.getPosition().size()) { 1216 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1217 sentinels.reserve(vectorRank - extractedRank); 1218 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1219 sentinels.push_back(-(i + 1)); 1220 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1221 llvm::append_range(extractPosition, sentinels); 1222 } 1223 1224 // Case 1. If we hit a transpose, just compose the map and iterate. 1225 // Invariant: insert + transpose do not change rank, we can always compose. 1226 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1227 if (!nextTransposeOp) 1228 return failure(); 1229 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1230 AffineMap m = inversePermutation( 1231 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1232 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1233 return success(); 1234 } 1235 1236 // Case 2: the insert position matches extractPosition exactly, early return. 1237 LogicalResult 1238 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1239 Value &res) { 1240 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1241 if (makeArrayRef(insertedPos) != 1242 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1243 return failure(); 1244 // Case 2.a. early-exit fold. 1245 res = nextInsertOp.getSource(); 1246 // Case 2.b. if internal transposition is present, canFold will be false. 1247 return success(); 1248 } 1249 1250 /// Case 3: if inserted position is a prefix of extractPosition, 1251 /// extract a portion of the source of the insertion. 1252 /// This method updates the internal state. 1253 LogicalResult 1254 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1255 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1256 if (!isContainedWithin(insertedPos, extractPosition)) 1257 return failure(); 1258 // Set leading dims to zero. 1259 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1260 // Drop extra leading dims. 1261 extractPosition.erase(extractPosition.begin(), 1262 extractPosition.begin() + insertedPos.size()); 1263 extractedRank = extractPosition.size() - sentinels.size(); 1264 // Case 3.a. early-exit fold (break and delegate to post-while path). 1265 res = nextInsertOp.getSource(); 1266 // Case 3.b. if internal transposition is present, canFold will be false. 1267 return success(); 1268 } 1269 1270 /// Try to fold in place to extract(source, extractPosition) and return the 1271 /// folded result. Return null if folding is not possible (e.g. due to an 1272 /// internal tranposition in the result). 1273 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1274 Value source) { 1275 // If we can't fold (either internal transposition, or nothing to fold), bail. 1276 bool nothingToFold = (source == extractOp.getVector()); 1277 if (nothingToFold || !canFold()) 1278 return Value(); 1279 // Otherwise, fold by updating the op inplace and return its result. 1280 OpBuilder b(extractOp.getContext()); 1281 extractOp->setAttr( 1282 extractOp.getPositionAttrName(), 1283 b.getI64ArrayAttr( 1284 makeArrayRef(extractPosition).take_front(extractedRank))); 1285 extractOp.getVectorMutable().assign(source); 1286 return extractOp.getResult(); 1287 } 1288 1289 /// Iterate over producing insert and transpose ops until we find a fold. 1290 Value ExtractFromInsertTransposeChainState::fold() { 1291 Value valueToExtractFrom = extractOp.getVector(); 1292 updateStateForNextIteration(valueToExtractFrom); 1293 while (nextInsertOp || nextTransposeOp) { 1294 // Case 1. If we hit a transpose, just compose the map and iterate. 1295 // Invariant: insert + transpose do not change rank, we can always compose. 1296 if (succeeded(handleTransposeOp())) { 1297 valueToExtractFrom = nextTransposeOp.getVector(); 1298 updateStateForNextIteration(valueToExtractFrom); 1299 continue; 1300 } 1301 1302 Value result; 1303 // Case 2: the position match exactly. 1304 if (succeeded(handleInsertOpWithMatchingPos(result))) 1305 return result; 1306 1307 // Case 3: if the inserted position is a prefix of extractPosition, we can 1308 // just extract a portion of the source of the insert. 1309 if (succeeded(handleInsertOpWithPrefixPos(result))) 1310 return tryToFoldExtractOpInPlace(result); 1311 1312 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1313 // values. This is a more difficult case and we bail. 1314 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1315 if (isContainedWithin(extractPosition, insertedPos) || 1316 intersectsWhereNonNegative(extractPosition, insertedPos)) 1317 return Value(); 1318 1319 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1320 valueToExtractFrom = nextInsertOp.getDest(); 1321 updateStateForNextIteration(valueToExtractFrom); 1322 } 1323 // If after all this we can fold, go for it. 1324 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1325 } 1326 1327 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1328 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1329 Operation *defOp = extractOp.getVector().getDefiningOp(); 1330 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1331 return Value(); 1332 Value source = defOp->getOperand(0); 1333 if (extractOp.getType() == source.getType()) 1334 return source; 1335 auto getRank = [](Type type) { 1336 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1337 }; 1338 unsigned broadcastSrcRank = getRank(source.getType()); 1339 unsigned extractResultRank = getRank(extractOp.getType()); 1340 if (extractResultRank >= broadcastSrcRank) 1341 return Value(); 1342 // Check that the dimension of the result haven't been broadcasted. 1343 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1344 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1345 if (extractVecType && broadcastVecType && 1346 extractVecType.getShape() != 1347 broadcastVecType.getShape().take_back(extractResultRank)) 1348 return Value(); 1349 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1350 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1351 extractPos.erase(extractPos.begin(), 1352 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1353 extractOp.setOperand(source); 1354 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1355 OpBuilder b(extractOp.getContext()); 1356 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1357 b.getI64ArrayAttr(extractPos)); 1358 return extractOp.getResult(); 1359 } 1360 1361 // Fold extractOp with source coming from ShapeCast op. 1362 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1363 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1364 if (!shapeCastOp) 1365 return Value(); 1366 // Get the nth dimension size starting from lowest dimension. 1367 auto getDimReverse = [](VectorType type, int64_t n) { 1368 return type.getShape().take_back(n + 1).front(); 1369 }; 1370 int64_t destinationRank = 1371 extractOp.getType().isa<VectorType>() 1372 ? extractOp.getType().cast<VectorType>().getRank() 1373 : 0; 1374 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1375 return Value(); 1376 if (destinationRank > 0) { 1377 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1378 for (int64_t i = 0; i < destinationRank; i++) { 1379 // The lowest dimension of of the destination must match the lowest 1380 // dimension of the shapecast op source. 1381 // TODO: This case could be support in a canonicalization pattern. 1382 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1383 getDimReverse(destinationType, i)) 1384 return Value(); 1385 } 1386 } 1387 // Extract the strides associated with the extract op vector source. Then use 1388 // this to calculate a linearized position for the extract. 1389 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1390 std::reverse(extractedPos.begin(), extractedPos.end()); 1391 SmallVector<int64_t, 4> strides; 1392 int64_t stride = 1; 1393 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1394 strides.push_back(stride); 1395 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1396 } 1397 1398 int64_t position = linearize(extractedPos, strides); 1399 // Then extract the strides associated to the shapeCast op vector source and 1400 // delinearize the position using those strides. 1401 SmallVector<int64_t, 4> newStrides; 1402 int64_t numDimension = 1403 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1404 stride = 1; 1405 for (int64_t i = 0; i < numDimension; i++) { 1406 newStrides.push_back(stride); 1407 stride *= 1408 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1409 } 1410 std::reverse(newStrides.begin(), newStrides.end()); 1411 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1412 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1413 OpBuilder b(extractOp.getContext()); 1414 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1415 b.getI64ArrayAttr(newPosition)); 1416 extractOp.setOperand(shapeCastOp.getSource()); 1417 return extractOp.getResult(); 1418 } 1419 1420 /// Fold an ExtractOp from ExtractStridedSliceOp. 1421 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1422 auto extractStridedSliceOp = 1423 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1424 if (!extractStridedSliceOp) 1425 return Value(); 1426 // Return if 'extractStridedSliceOp' has non-unit strides. 1427 if (extractStridedSliceOp.hasNonUnitStrides()) 1428 return Value(); 1429 1430 // Trim offsets for dimensions fully extracted. 1431 auto sliceOffsets = 1432 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1433 while (!sliceOffsets.empty()) { 1434 size_t lastOffset = sliceOffsets.size() - 1; 1435 if (sliceOffsets.back() != 0 || 1436 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1437 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1438 break; 1439 sliceOffsets.pop_back(); 1440 } 1441 unsigned destinationRank = 0; 1442 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1443 destinationRank = vecType.getRank(); 1444 // The dimensions of the result need to be untouched by the 1445 // extractStridedSlice op. 1446 if (destinationRank > 1447 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1448 return Value(); 1449 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1450 assert(extractedPos.size() >= sliceOffsets.size()); 1451 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1452 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1453 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1454 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1455 OpBuilder b(extractOp.getContext()); 1456 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1457 b.getI64ArrayAttr(extractedPos)); 1458 return extractOp.getResult(); 1459 } 1460 1461 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1462 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1463 int64_t destinationRank = op.getType().isa<VectorType>() 1464 ? op.getType().cast<VectorType>().getRank() 1465 : 0; 1466 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1467 while (insertOp) { 1468 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1469 insertOp.getSourceVectorType().getRank(); 1470 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1471 return Value(); 1472 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1473 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1474 1475 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1476 return attr.cast<IntegerAttr>().getInt() != 1; 1477 })) 1478 return Value(); 1479 bool disjoint = false; 1480 SmallVector<int64_t, 4> offsetDiffs; 1481 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1482 int64_t start = insertOffsets[dim]; 1483 int64_t size = 1484 (dim < insertRankDiff) 1485 ? 1 1486 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1487 int64_t end = start + size; 1488 int64_t offset = extractOffsets[dim]; 1489 // Check if the start of the extract offset is in the interval inserted. 1490 if (start <= offset && offset < end) { 1491 if (dim >= insertRankDiff) 1492 offsetDiffs.push_back(offset - start); 1493 continue; 1494 } 1495 disjoint = true; 1496 break; 1497 } 1498 // The extract element chunk overlap with the vector inserted. 1499 if (!disjoint) { 1500 // If any of the inner dimensions are only partially inserted we have a 1501 // partial overlap. 1502 int64_t srcRankDiff = 1503 insertOp.getSourceVectorType().getRank() - destinationRank; 1504 for (int64_t i = 0; i < destinationRank; i++) { 1505 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1506 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1507 insertRankDiff)) 1508 return Value(); 1509 } 1510 op.getVectorMutable().assign(insertOp.getSource()); 1511 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1512 OpBuilder b(op.getContext()); 1513 op->setAttr(ExtractOp::getPositionAttrStrName(), 1514 b.getI64ArrayAttr(offsetDiffs)); 1515 return op.getResult(); 1516 } 1517 // If the chunk extracted is disjoint from the chunk inserted, keep 1518 // looking in the insert chain. 1519 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1520 } 1521 return Value(); 1522 } 1523 1524 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1525 if (getPosition().empty()) 1526 return getVector(); 1527 if (succeeded(foldExtractOpFromExtractChain(*this))) 1528 return getResult(); 1529 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1530 return res; 1531 if (auto res = foldExtractFromBroadcast(*this)) 1532 return res; 1533 if (auto res = foldExtractFromShapeCast(*this)) 1534 return res; 1535 if (auto val = foldExtractFromExtractStrided(*this)) 1536 return val; 1537 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1538 return val; 1539 return OpFoldResult(); 1540 } 1541 1542 namespace { 1543 1544 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1545 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1546 public: 1547 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1548 1549 LogicalResult matchAndRewrite(ExtractOp extractOp, 1550 PatternRewriter &rewriter) const override { 1551 Operation *defOp = extractOp.getVector().getDefiningOp(); 1552 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1553 return failure(); 1554 1555 Value source = defOp->getOperand(0); 1556 if (extractOp.getType() == source.getType()) 1557 return failure(); 1558 auto getRank = [](Type type) { 1559 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1560 }; 1561 unsigned broadcastSrcRank = getRank(source.getType()); 1562 unsigned extractResultRank = getRank(extractOp.getType()); 1563 // We only consider the case where the rank of the source is less than or 1564 // equal to the rank of the extract dst. The other cases are handled in the 1565 // folding patterns. 1566 if (extractResultRank < broadcastSrcRank) 1567 return failure(); 1568 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1569 extractOp, extractOp.getType(), source); 1570 return success(); 1571 } 1572 }; 1573 1574 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1575 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1576 public: 1577 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1578 1579 LogicalResult matchAndRewrite(ExtractOp extractOp, 1580 PatternRewriter &rewriter) const override { 1581 // Return if 'extractStridedSliceOp' operand is not defined by a 1582 // ConstantOp. 1583 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1584 if (!constantOp) 1585 return failure(); 1586 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1587 if (!dense) 1588 return failure(); 1589 Attribute newAttr = dense.getSplatValue<Attribute>(); 1590 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1591 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1592 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1593 return success(); 1594 } 1595 }; 1596 1597 } // namespace 1598 1599 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1600 MLIRContext *context) { 1601 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1602 } 1603 1604 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1605 SmallVectorImpl<int64_t> &results) { 1606 for (auto attr : arrayAttr) 1607 results.push_back(attr.cast<IntegerAttr>().getInt()); 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // ExtractMapOp 1612 //===----------------------------------------------------------------------===// 1613 1614 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1615 Value vector, ValueRange ids, 1616 ArrayRef<int64_t> multiplicity, 1617 AffineMap permutationMap) { 1618 assert(ids.size() == multiplicity.size() && 1619 ids.size() == permutationMap.getNumResults()); 1620 assert(permutationMap.isProjectedPermutation()); 1621 VectorType type = vector.getType().cast<VectorType>(); 1622 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1623 type.getShape().end()); 1624 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1625 AffineExpr expr = permutationMap.getResult(i); 1626 auto dim = expr.cast<AffineDimExpr>(); 1627 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1628 } 1629 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1630 ExtractMapOp::build(builder, result, resultType, vector, ids); 1631 } 1632 1633 LogicalResult ExtractMapOp::verify() { 1634 if (getSourceVectorType().getRank() != getResultType().getRank()) 1635 return emitOpError("expected source and destination vectors of same rank"); 1636 unsigned numId = 0; 1637 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1638 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1639 0) 1640 return emitOpError("source vector dimensions must be a multiple of " 1641 "destination vector dimensions"); 1642 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1643 numId++; 1644 } 1645 if (numId != getIds().size()) 1646 return emitOpError("expected number of ids must match the number of " 1647 "dimensions distributed"); 1648 return success(); 1649 } 1650 1651 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1652 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1653 if (insert == nullptr || getType() != insert.getVector().getType() || 1654 getIds() != insert.getIds()) 1655 return {}; 1656 return insert.getVector(); 1657 } 1658 1659 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1660 assert(multiplicity.empty()); 1661 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1662 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1663 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1664 getResultType().getDimSize(i)); 1665 } 1666 } 1667 1668 template <typename MapOp> 1669 AffineMap calculateImplicitMap(MapOp op) { 1670 SmallVector<AffineExpr, 4> perm; 1671 // Check which dimension have a multiplicity greater than 1 and associated 1672 // them to the IDs in order. 1673 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1674 if (op.getSourceVectorType().getDimSize(i) != 1675 op.getResultType().getDimSize(i)) 1676 perm.push_back(getAffineDimExpr(i, op.getContext())); 1677 } 1678 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1679 op.getContext()); 1680 return map; 1681 } 1682 1683 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1684 1685 //===----------------------------------------------------------------------===// 1686 // FmaOp 1687 //===----------------------------------------------------------------------===// 1688 1689 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1690 return llvm::to_vector<4>(getVectorType().getShape()); 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // BroadcastOp 1695 //===----------------------------------------------------------------------===// 1696 1697 BroadcastableToResult 1698 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1699 std::pair<int, int> *mismatchingDims) { 1700 // Broadcast scalar to vector of the same element type. 1701 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1702 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1703 return BroadcastableToResult::Success; 1704 // From now on, only vectors broadcast. 1705 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1706 if (!srcVectorType) 1707 return BroadcastableToResult::SourceTypeNotAVector; 1708 1709 int64_t srcRank = srcVectorType.getRank(); 1710 int64_t dstRank = dstVectorType.getRank(); 1711 if (srcRank > dstRank) 1712 return BroadcastableToResult::SourceRankHigher; 1713 // Source has an exact match or singleton value for all trailing dimensions 1714 // (all leading dimensions are simply duplicated). 1715 int64_t lead = dstRank - srcRank; 1716 for (int64_t r = 0; r < srcRank; ++r) { 1717 int64_t srcDim = srcVectorType.getDimSize(r); 1718 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1719 if (srcDim != 1 && srcDim != dstDim) { 1720 if (mismatchingDims) { 1721 mismatchingDims->first = srcDim; 1722 mismatchingDims->second = dstDim; 1723 } 1724 return BroadcastableToResult::DimensionMismatch; 1725 } 1726 } 1727 1728 return BroadcastableToResult::Success; 1729 } 1730 1731 LogicalResult BroadcastOp::verify() { 1732 std::pair<int, int> mismatchingDims; 1733 BroadcastableToResult res = 1734 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1735 if (res == BroadcastableToResult::Success) 1736 return success(); 1737 if (res == BroadcastableToResult::SourceRankHigher) 1738 return emitOpError("source rank higher than destination rank"); 1739 if (res == BroadcastableToResult::DimensionMismatch) 1740 return emitOpError("dimension mismatch (") 1741 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1742 if (res == BroadcastableToResult::SourceTypeNotAVector) 1743 return emitOpError("source type is not a vector"); 1744 llvm_unreachable("unexpected vector.broadcast op error"); 1745 } 1746 1747 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1748 if (getSourceType() == getVectorType()) 1749 return getSource(); 1750 if (!operands[0]) 1751 return {}; 1752 auto vectorType = getVectorType(); 1753 if (operands[0].getType().isIntOrIndexOrFloat()) 1754 return DenseElementsAttr::get(vectorType, operands[0]); 1755 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1756 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1757 return {}; 1758 } 1759 1760 namespace { 1761 1762 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1763 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1764 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1765 1766 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1767 PatternRewriter &rewriter) const override { 1768 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1769 if (!srcBroadcast) 1770 return failure(); 1771 rewriter.replaceOpWithNewOp<BroadcastOp>( 1772 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1773 return success(); 1774 } 1775 }; 1776 } // namespace 1777 1778 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1779 MLIRContext *context) { 1780 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1781 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1782 results.add<BroadcastFolder>(context); 1783 } 1784 1785 //===----------------------------------------------------------------------===// 1786 // ShuffleOp 1787 //===----------------------------------------------------------------------===// 1788 1789 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1790 Value v2, ArrayRef<int64_t> mask) { 1791 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1792 } 1793 1794 LogicalResult ShuffleOp::verify() { 1795 VectorType resultType = getVectorType(); 1796 VectorType v1Type = getV1VectorType(); 1797 VectorType v2Type = getV2VectorType(); 1798 // Verify ranks. 1799 int64_t resRank = resultType.getRank(); 1800 int64_t v1Rank = v1Type.getRank(); 1801 int64_t v2Rank = v2Type.getRank(); 1802 if (resRank != v1Rank || v1Rank != v2Rank) 1803 return emitOpError("rank mismatch"); 1804 // Verify all but leading dimension sizes. 1805 for (int64_t r = 1; r < v1Rank; ++r) { 1806 int64_t resDim = resultType.getDimSize(r); 1807 int64_t v1Dim = v1Type.getDimSize(r); 1808 int64_t v2Dim = v2Type.getDimSize(r); 1809 if (resDim != v1Dim || v1Dim != v2Dim) 1810 return emitOpError("dimension mismatch"); 1811 } 1812 // Verify mask length. 1813 auto maskAttr = getMask().getValue(); 1814 int64_t maskLength = maskAttr.size(); 1815 if (maskLength <= 0) 1816 return emitOpError("invalid mask length"); 1817 if (maskLength != resultType.getDimSize(0)) 1818 return emitOpError("mask length mismatch"); 1819 // Verify all indices. 1820 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1821 for (const auto &en : llvm::enumerate(maskAttr)) { 1822 auto attr = en.value().dyn_cast<IntegerAttr>(); 1823 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1824 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1825 } 1826 return success(); 1827 } 1828 1829 LogicalResult 1830 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1831 ValueRange operands, DictionaryAttr attributes, 1832 RegionRange, 1833 SmallVectorImpl<Type> &inferredReturnTypes) { 1834 ShuffleOp::Adaptor op(operands, attributes); 1835 auto v1Type = op.getV1().getType().cast<VectorType>(); 1836 // Construct resulting type: leading dimension matches mask length, 1837 // all trailing dimensions match the operands. 1838 SmallVector<int64_t, 4> shape; 1839 shape.reserve(v1Type.getRank()); 1840 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1841 llvm::append_range(shape, v1Type.getShape().drop_front()); 1842 inferredReturnTypes.push_back( 1843 VectorType::get(shape, v1Type.getElementType())); 1844 return success(); 1845 } 1846 1847 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1848 uint64_t expected = begin; 1849 return idxArr.size() == width && 1850 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1851 [&expected](auto attr) { 1852 return attr.getZExtValue() == expected++; 1853 }); 1854 } 1855 1856 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1857 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1858 if (!getV1VectorType().isScalable() && 1859 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1860 return getV1(); 1861 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1862 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1863 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1864 getV2VectorType().getDimSize(0))) 1865 return getV2(); 1866 1867 Attribute lhs = operands.front(), rhs = operands.back(); 1868 if (!lhs || !rhs) 1869 return {}; 1870 1871 auto lhsType = lhs.getType().cast<VectorType>(); 1872 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1873 // manipulation. 1874 if (lhsType.getRank() != 1) 1875 return {}; 1876 int64_t lhsSize = lhsType.getDimSize(0); 1877 1878 SmallVector<Attribute> results; 1879 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1880 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1881 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1882 int64_t i = index.getZExtValue(); 1883 if (i >= lhsSize) { 1884 results.push_back(rhsElements[i - lhsSize]); 1885 } else { 1886 results.push_back(lhsElements[i]); 1887 } 1888 } 1889 1890 return DenseElementsAttr::get(getVectorType(), results); 1891 } 1892 1893 //===----------------------------------------------------------------------===// 1894 // InsertElementOp 1895 //===----------------------------------------------------------------------===// 1896 1897 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1898 Value source, Value dest) { 1899 build(builder, result, source, dest, {}); 1900 } 1901 1902 LogicalResult InsertElementOp::verify() { 1903 auto dstVectorType = getDestVectorType(); 1904 if (dstVectorType.getRank() == 0) { 1905 if (getPosition()) 1906 return emitOpError("expected position to be empty with 0-D vector"); 1907 return success(); 1908 } 1909 if (dstVectorType.getRank() != 1) 1910 return emitOpError("unexpected >1 vector rank"); 1911 if (!getPosition()) 1912 return emitOpError("expected position for 1-D vector"); 1913 return success(); 1914 } 1915 1916 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1917 // Skip the 0-D vector here. 1918 if (operands.size() < 3) 1919 return {}; 1920 1921 Attribute src = operands[0]; 1922 Attribute dst = operands[1]; 1923 Attribute pos = operands[2]; 1924 if (!src || !dst || !pos) 1925 return {}; 1926 1927 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1928 1929 SmallVector<Attribute> results(dstElements); 1930 1931 auto attr = pos.dyn_cast<IntegerAttr>(); 1932 uint64_t posIdx = attr.getInt(); 1933 1934 results[posIdx] = src; 1935 1936 return DenseElementsAttr::get(getDestVectorType(), results); 1937 } 1938 1939 //===----------------------------------------------------------------------===// 1940 // InsertOp 1941 //===----------------------------------------------------------------------===// 1942 1943 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1944 Value dest, ArrayRef<int64_t> position) { 1945 result.addOperands({source, dest}); 1946 auto positionAttr = getVectorSubscriptAttr(builder, position); 1947 result.addTypes(dest.getType()); 1948 result.addAttribute(getPositionAttrStrName(), positionAttr); 1949 } 1950 1951 // Convenience builder which assumes the values are constant indices. 1952 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1953 Value dest, ValueRange position) { 1954 SmallVector<int64_t, 4> positionConstants = 1955 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1956 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1957 })); 1958 build(builder, result, source, dest, positionConstants); 1959 } 1960 1961 LogicalResult InsertOp::verify() { 1962 auto positionAttr = getPosition().getValue(); 1963 auto destVectorType = getDestVectorType(); 1964 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1965 return emitOpError( 1966 "expected position attribute of rank smaller than dest vector rank"); 1967 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1968 if (srcVectorType && 1969 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1970 static_cast<unsigned>(destVectorType.getRank()))) 1971 return emitOpError("expected position attribute rank + source rank to " 1972 "match dest vector rank"); 1973 if (!srcVectorType && 1974 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1975 return emitOpError( 1976 "expected position attribute rank to match the dest vector rank"); 1977 for (const auto &en : llvm::enumerate(positionAttr)) { 1978 auto attr = en.value().dyn_cast<IntegerAttr>(); 1979 if (!attr || attr.getInt() < 0 || 1980 attr.getInt() >= destVectorType.getDimSize(en.index())) 1981 return emitOpError("expected position attribute #") 1982 << (en.index() + 1) 1983 << " to be a non-negative integer smaller than the corresponding " 1984 "dest vector dimension"; 1985 } 1986 return success(); 1987 } 1988 1989 namespace { 1990 1991 // If insertOp is only inserting unit dimensions it can be transformed to a 1992 // broadcast. 1993 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1994 public: 1995 using OpRewritePattern<InsertOp>::OpRewritePattern; 1996 1997 LogicalResult matchAndRewrite(InsertOp insertOp, 1998 PatternRewriter &rewriter) const override { 1999 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 2000 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 2001 srcVecType.getNumElements()) 2002 return failure(); 2003 rewriter.replaceOpWithNewOp<BroadcastOp>( 2004 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 2005 return success(); 2006 } 2007 }; 2008 2009 } // namespace 2010 2011 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2012 MLIRContext *context) { 2013 results.add<InsertToBroadcast, BroadcastFolder>(context); 2014 } 2015 2016 // Eliminates insert operations that produce values identical to their source 2017 // value. This happens when the source and destination vectors have identical 2018 // sizes. 2019 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2020 if (getPosition().empty()) 2021 return getSource(); 2022 return {}; 2023 } 2024 2025 //===----------------------------------------------------------------------===// 2026 // InsertMapOp 2027 //===----------------------------------------------------------------------===// 2028 2029 LogicalResult InsertMapOp::verify() { 2030 if (getSourceVectorType().getRank() != getResultType().getRank()) 2031 return emitOpError("expected source and destination vectors of same rank"); 2032 unsigned numId = 0; 2033 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2034 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2035 0) 2036 return emitOpError( 2037 "destination vector size must be a multiple of source vector size"); 2038 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2039 numId++; 2040 } 2041 if (numId != getIds().size()) 2042 return emitOpError("expected number of ids must match the number of " 2043 "dimensions distributed"); 2044 return success(); 2045 } 2046 2047 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2048 2049 //===----------------------------------------------------------------------===// 2050 // InsertStridedSliceOp 2051 //===----------------------------------------------------------------------===// 2052 2053 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2054 Value source, Value dest, 2055 ArrayRef<int64_t> offsets, 2056 ArrayRef<int64_t> strides) { 2057 result.addOperands({source, dest}); 2058 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2059 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2060 result.addTypes(dest.getType()); 2061 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2062 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2063 } 2064 2065 // TODO: Should be moved to Tablegen Confined attributes. 2066 template <typename OpType> 2067 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2068 ArrayAttr arrayAttr, 2069 ArrayRef<int64_t> shape, 2070 StringRef attrName) { 2071 if (arrayAttr.size() > shape.size()) 2072 return op.emitOpError("expected ") 2073 << attrName << " attribute of rank smaller than vector rank"; 2074 return success(); 2075 } 2076 2077 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2078 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2079 // Otherwise, the admissible interval is [min, max]. 2080 template <typename OpType> 2081 static LogicalResult 2082 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2083 int64_t max, StringRef attrName, 2084 bool halfOpen = true) { 2085 for (auto attr : arrayAttr) { 2086 auto val = attr.cast<IntegerAttr>().getInt(); 2087 auto upper = max; 2088 if (!halfOpen) 2089 upper += 1; 2090 if (val < min || val >= upper) 2091 return op.emitOpError("expected ") << attrName << " to be confined to [" 2092 << min << ", " << upper << ")"; 2093 } 2094 return success(); 2095 } 2096 2097 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2098 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2099 // Otherwise, the admissible interval is [min, max]. 2100 template <typename OpType> 2101 static LogicalResult 2102 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2103 ArrayRef<int64_t> shape, StringRef attrName, 2104 bool halfOpen = true, int64_t min = 0) { 2105 assert(arrayAttr.size() <= shape.size()); 2106 unsigned index = 0; 2107 for (auto it : llvm::zip(arrayAttr, shape)) { 2108 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2109 auto max = std::get<1>(it); 2110 if (!halfOpen) 2111 max += 1; 2112 if (val < min || val >= max) 2113 return op.emitOpError("expected ") 2114 << attrName << " dimension " << index << " to be confined to [" 2115 << min << ", " << max << ")"; 2116 ++index; 2117 } 2118 return success(); 2119 } 2120 2121 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2122 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2123 // Otherwise, the admissible interval is [min, max]. 2124 template <typename OpType> 2125 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2126 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2127 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2128 bool halfOpen = true, int64_t min = 1) { 2129 assert(arrayAttr1.size() <= shape.size()); 2130 assert(arrayAttr2.size() <= shape.size()); 2131 unsigned index = 0; 2132 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2133 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2134 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2135 auto max = std::get<2>(it); 2136 if (!halfOpen) 2137 max += 1; 2138 if (val1 + val2 < 0 || val1 + val2 >= max) 2139 return op.emitOpError("expected sum(") 2140 << attrName1 << ", " << attrName2 << ") dimension " << index 2141 << " to be confined to [" << min << ", " << max << ")"; 2142 ++index; 2143 } 2144 return success(); 2145 } 2146 2147 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2148 MLIRContext *context) { 2149 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2150 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2151 }); 2152 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2153 } 2154 2155 LogicalResult InsertStridedSliceOp::verify() { 2156 auto sourceVectorType = getSourceVectorType(); 2157 auto destVectorType = getDestVectorType(); 2158 auto offsets = getOffsetsAttr(); 2159 auto strides = getStridesAttr(); 2160 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2161 return emitOpError( 2162 "expected offsets of same size as destination vector rank"); 2163 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2164 return emitOpError("expected strides of same size as source vector rank"); 2165 if (sourceVectorType.getRank() > destVectorType.getRank()) 2166 return emitOpError( 2167 "expected source rank to be smaller than destination rank"); 2168 2169 auto sourceShape = sourceVectorType.getShape(); 2170 auto destShape = destVectorType.getShape(); 2171 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2172 destShape.size() - sourceShape.size(), 0); 2173 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2174 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2175 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2176 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2177 offName)) || 2178 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2179 stridesName, 2180 /*halfOpen=*/false)) || 2181 failed(isSumOfIntegerArrayAttrConfinedToShape( 2182 *this, offsets, 2183 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2184 offName, "source vector shape", 2185 /*halfOpen=*/false, /*min=*/1))) 2186 return failure(); 2187 2188 return success(); 2189 } 2190 2191 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2192 if (getSourceVectorType() == getDestVectorType()) 2193 return getSource(); 2194 return {}; 2195 } 2196 2197 //===----------------------------------------------------------------------===// 2198 // OuterProductOp 2199 //===----------------------------------------------------------------------===// 2200 2201 /// Build an op without mask, use the type of `acc` as the return type. 2202 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2203 Value lhs, Value rhs, Value acc) { 2204 result.addOperands({lhs, rhs, acc}); 2205 result.addTypes(acc.getType()); 2206 } 2207 2208 void OuterProductOp::print(OpAsmPrinter &p) { 2209 p << " " << getLhs() << ", " << getRhs(); 2210 if (!getAcc().empty()) { 2211 p << ", " << getAcc(); 2212 p.printOptionalAttrDict((*this)->getAttrs()); 2213 } 2214 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2215 } 2216 2217 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2218 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2219 Type tLHS, tRHS; 2220 if (parser.parseOperandList(operandsInfo) || 2221 parser.parseOptionalAttrDict(result.attributes) || 2222 parser.parseColonType(tLHS) || parser.parseComma() || 2223 parser.parseType(tRHS)) 2224 return failure(); 2225 if (operandsInfo.size() < 2) 2226 return parser.emitError(parser.getNameLoc(), 2227 "expected at least 2 operands"); 2228 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2229 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2230 if (!vLHS) 2231 return parser.emitError(parser.getNameLoc(), 2232 "expected vector type for operand #1"); 2233 VectorType resType = 2234 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2235 vLHS.getElementType()) 2236 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2237 2238 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2239 result.attributes.append( 2240 OuterProductOp::getKindAttrStrName(), 2241 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2242 result.getContext())); 2243 } 2244 2245 return failure( 2246 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2247 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2248 (operandsInfo.size() > 2 && 2249 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2250 parser.addTypeToList(resType, result.types)); 2251 } 2252 2253 LogicalResult OuterProductOp::verify() { 2254 Type tRHS = getOperandTypeRHS(); 2255 VectorType vLHS = getOperandVectorTypeLHS(), 2256 vRHS = tRHS.dyn_cast<VectorType>(), 2257 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2258 2259 if (vLHS.getRank() != 1) 2260 return emitOpError("expected 1-d vector for operand #1"); 2261 2262 if (vRHS) { 2263 // Proper OUTER operation. 2264 if (vRHS.getRank() != 1) 2265 return emitOpError("expected 1-d vector for operand #2"); 2266 if (vRES.getRank() != 2) 2267 return emitOpError("expected 2-d vector result"); 2268 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2269 return emitOpError("expected #1 operand dim to match result dim #1"); 2270 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2271 return emitOpError("expected #2 operand dim to match result dim #2"); 2272 } else { 2273 // An AXPY operation. 2274 if (vRES.getRank() != 1) 2275 return emitOpError("expected 1-d vector result"); 2276 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2277 return emitOpError("expected #1 operand dim to match result dim #1"); 2278 } 2279 2280 if (vACC && vACC != vRES) 2281 return emitOpError("expected operand #3 of same type as result type"); 2282 2283 // Verify supported combining kind. 2284 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2285 return emitOpError("unsupported outerproduct type"); 2286 2287 return success(); 2288 } 2289 2290 //===----------------------------------------------------------------------===// 2291 // ReshapeOp 2292 //===----------------------------------------------------------------------===// 2293 2294 LogicalResult ReshapeOp::verify() { 2295 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2296 auto inputVectorType = getInputVectorType(); 2297 auto outputVectorType = getOutputVectorType(); 2298 int64_t inputShapeRank = getNumInputShapeSizes(); 2299 int64_t outputShapeRank = getNumOutputShapeSizes(); 2300 SmallVector<int64_t, 4> fixedVectorSizes; 2301 getFixedVectorSizes(fixedVectorSizes); 2302 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2303 2304 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2305 return emitError("invalid input shape for vector type ") 2306 << inputVectorType; 2307 2308 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2309 return emitError("invalid output shape for vector type ") 2310 << outputVectorType; 2311 2312 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2313 // suffix. 2314 unsigned inputVectorRank = inputVectorType.getRank(); 2315 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2316 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2317 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2318 return emitError("fixed vector size must match input vector for dim ") 2319 << i; 2320 } 2321 2322 unsigned outputVectorRank = outputVectorType.getRank(); 2323 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2324 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2325 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2326 return emitError("fixed vector size must match output vector for dim ") 2327 << i; 2328 } 2329 2330 // If all shape operands are produced by constant ops, verify that product 2331 // of dimensions for input/output shape match. 2332 auto isDefByConstant = [](Value operand) { 2333 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2334 }; 2335 if (llvm::all_of(getInputShape(), isDefByConstant) && 2336 llvm::all_of(getOutputShape(), isDefByConstant)) { 2337 int64_t numInputElements = 1; 2338 for (auto operand : getInputShape()) 2339 numInputElements *= 2340 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2341 int64_t numOutputElements = 1; 2342 for (auto operand : getOutputShape()) 2343 numOutputElements *= 2344 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2345 if (numInputElements != numOutputElements) 2346 return emitError("product of input and output shape sizes must match"); 2347 } 2348 return success(); 2349 } 2350 2351 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2352 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2353 } 2354 2355 //===----------------------------------------------------------------------===// 2356 // ExtractStridedSliceOp 2357 //===----------------------------------------------------------------------===// 2358 2359 // Inference works as follows: 2360 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2361 // 2. Add sizes from 'vectorType' for remaining dims. 2362 static Type inferStridedSliceOpResultType(VectorType vectorType, 2363 ArrayAttr offsets, ArrayAttr sizes, 2364 ArrayAttr strides) { 2365 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2366 SmallVector<int64_t, 4> shape; 2367 shape.reserve(vectorType.getRank()); 2368 unsigned idx = 0; 2369 for (unsigned e = offsets.size(); idx < e; ++idx) 2370 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2371 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2372 shape.push_back(vectorType.getShape()[idx]); 2373 2374 return VectorType::get(shape, vectorType.getElementType()); 2375 } 2376 2377 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2378 Value source, ArrayRef<int64_t> offsets, 2379 ArrayRef<int64_t> sizes, 2380 ArrayRef<int64_t> strides) { 2381 result.addOperands(source); 2382 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2383 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2384 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2385 result.addTypes( 2386 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2387 offsetsAttr, sizesAttr, stridesAttr)); 2388 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2389 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2390 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2391 } 2392 2393 LogicalResult ExtractStridedSliceOp::verify() { 2394 auto type = getVectorType(); 2395 auto offsets = getOffsetsAttr(); 2396 auto sizes = getSizesAttr(); 2397 auto strides = getStridesAttr(); 2398 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2399 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2400 2401 auto shape = type.getShape(); 2402 auto offName = getOffsetsAttrName(); 2403 auto sizesName = getSizesAttrName(); 2404 auto stridesName = getStridesAttrName(); 2405 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2406 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2407 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2408 stridesName)) || 2409 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2410 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2411 /*halfOpen=*/false, 2412 /*min=*/1)) || 2413 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2414 /*halfOpen=*/false)) || 2415 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2416 offName, sizesName, 2417 /*halfOpen=*/false))) 2418 return failure(); 2419 2420 auto resultType = 2421 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2422 if (getResult().getType() != resultType) 2423 return emitOpError("expected result type to be ") << resultType; 2424 2425 return success(); 2426 } 2427 2428 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2429 // to use the source of the InsertStrided ops if we can detect that the 2430 // extracted vector is a subset of one of the vector inserted. 2431 static LogicalResult 2432 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2433 // Helper to extract integer out of ArrayAttr. 2434 auto getElement = [](ArrayAttr array, int idx) { 2435 return array[idx].cast<IntegerAttr>().getInt(); 2436 }; 2437 ArrayAttr extractOffsets = op.getOffsets(); 2438 ArrayAttr extractStrides = op.getStrides(); 2439 ArrayAttr extractSizes = op.getSizes(); 2440 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2441 while (insertOp) { 2442 if (op.getVectorType().getRank() != 2443 insertOp.getSourceVectorType().getRank()) 2444 return failure(); 2445 ArrayAttr insertOffsets = insertOp.getOffsets(); 2446 ArrayAttr insertStrides = insertOp.getStrides(); 2447 // If the rank of extract is greater than the rank of insert, we are likely 2448 // extracting a partial chunk of the vector inserted. 2449 if (extractOffsets.size() > insertOffsets.size()) 2450 return failure(); 2451 bool patialoverlap = false; 2452 bool disjoint = false; 2453 SmallVector<int64_t, 4> offsetDiffs; 2454 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2455 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2456 return failure(); 2457 int64_t start = getElement(insertOffsets, dim); 2458 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2459 int64_t offset = getElement(extractOffsets, dim); 2460 int64_t size = getElement(extractSizes, dim); 2461 // Check if the start of the extract offset is in the interval inserted. 2462 if (start <= offset && offset < end) { 2463 // If the extract interval overlaps but is not fully included we may 2464 // have a partial overlap that will prevent any folding. 2465 if (offset + size > end) 2466 patialoverlap = true; 2467 offsetDiffs.push_back(offset - start); 2468 continue; 2469 } 2470 disjoint = true; 2471 break; 2472 } 2473 // The extract element chunk is a subset of the insert element. 2474 if (!disjoint && !patialoverlap) { 2475 op.setOperand(insertOp.getSource()); 2476 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2477 OpBuilder b(op.getContext()); 2478 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2479 b.getI64ArrayAttr(offsetDiffs)); 2480 return success(); 2481 } 2482 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2483 // in the insert chain. 2484 if (disjoint) 2485 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2486 else { 2487 // The extracted vector partially overlap the inserted vector, we cannot 2488 // fold. 2489 return failure(); 2490 } 2491 } 2492 return failure(); 2493 } 2494 2495 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2496 if (getVectorType() == getResult().getType()) 2497 return getVector(); 2498 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2499 return getResult(); 2500 return {}; 2501 } 2502 2503 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2504 populateFromInt64AttrArray(getOffsets(), results); 2505 } 2506 2507 namespace { 2508 2509 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2510 // ConstantMaskOp. 2511 class StridedSliceConstantMaskFolder final 2512 : public OpRewritePattern<ExtractStridedSliceOp> { 2513 public: 2514 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2515 2516 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2517 PatternRewriter &rewriter) const override { 2518 // Return if 'extractStridedSliceOp' operand is not defined by a 2519 // ConstantMaskOp. 2520 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2521 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2522 if (!constantMaskOp) 2523 return failure(); 2524 // Return if 'extractStridedSliceOp' has non-unit strides. 2525 if (extractStridedSliceOp.hasNonUnitStrides()) 2526 return failure(); 2527 // Gather constant mask dimension sizes. 2528 SmallVector<int64_t, 4> maskDimSizes; 2529 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2530 // Gather strided slice offsets and sizes. 2531 SmallVector<int64_t, 4> sliceOffsets; 2532 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2533 sliceOffsets); 2534 SmallVector<int64_t, 4> sliceSizes; 2535 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2536 2537 // Compute slice of vector mask region. 2538 SmallVector<int64_t, 4> sliceMaskDimSizes; 2539 assert(sliceOffsets.size() == maskDimSizes.size()); 2540 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2541 int64_t maskDimSize = std::get<0>(it); 2542 int64_t sliceOffset = std::get<1>(it); 2543 int64_t sliceSize = std::get<2>(it); 2544 int64_t sliceMaskDimSize = std::max( 2545 static_cast<int64_t>(0), 2546 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2547 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2548 } 2549 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2550 // region is a conjunction of mask dim intervals). 2551 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2552 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2553 2554 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2555 // region. 2556 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2557 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2558 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2559 return success(); 2560 } 2561 }; 2562 2563 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2564 class StridedSliceConstantFolder final 2565 : public OpRewritePattern<ExtractStridedSliceOp> { 2566 public: 2567 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2568 2569 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2570 PatternRewriter &rewriter) const override { 2571 // Return if 'extractStridedSliceOp' operand is not defined by a 2572 // ConstantOp. 2573 auto constantOp = 2574 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2575 if (!constantOp) 2576 return failure(); 2577 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2578 if (!dense) 2579 return failure(); 2580 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2581 dense.getSplatValue<Attribute>()); 2582 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2583 newAttr); 2584 return success(); 2585 } 2586 }; 2587 2588 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2589 // BroadcastOp(ExtractStrideSliceOp). 2590 class StridedSliceBroadcast final 2591 : public OpRewritePattern<ExtractStridedSliceOp> { 2592 public: 2593 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2594 2595 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2596 PatternRewriter &rewriter) const override { 2597 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2598 if (!broadcast) 2599 return failure(); 2600 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2601 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2602 auto dstVecType = op.getType().cast<VectorType>(); 2603 unsigned dstRank = dstVecType.getRank(); 2604 unsigned rankDiff = dstRank - srcRank; 2605 // Check if the most inner dimensions of the source of the broadcast are the 2606 // same as the destination of the extract. If this is the case we can just 2607 // use a broadcast as the original dimensions are untouched. 2608 bool lowerDimMatch = true; 2609 for (unsigned i = 0; i < srcRank; i++) { 2610 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2611 lowerDimMatch = false; 2612 break; 2613 } 2614 } 2615 Value source = broadcast.getSource(); 2616 // If the inner dimensions don't match, it means we need to extract from the 2617 // source of the orignal broadcast and then broadcast the extracted value. 2618 // We also need to handle degenerated cases where the source is effectively 2619 // just a single scalar. 2620 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2621 if (!lowerDimMatch && !isScalarSrc) { 2622 source = rewriter.create<ExtractStridedSliceOp>( 2623 op->getLoc(), source, 2624 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2625 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2626 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2627 } 2628 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2629 return success(); 2630 } 2631 }; 2632 2633 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2634 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2635 public: 2636 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2637 2638 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2639 PatternRewriter &rewriter) const override { 2640 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2641 if (!splat) 2642 return failure(); 2643 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2644 return success(); 2645 } 2646 }; 2647 2648 } // namespace 2649 2650 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2651 RewritePatternSet &results, MLIRContext *context) { 2652 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2653 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2654 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2655 StridedSliceBroadcast, StridedSliceSplat>(context); 2656 } 2657 2658 //===----------------------------------------------------------------------===// 2659 // TransferReadOp 2660 //===----------------------------------------------------------------------===// 2661 2662 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2663 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2664 VectorType vectorType, Value source, 2665 ValueRange indices, AffineMapAttr permutationMapAttr, 2666 /*optional*/ ArrayAttr inBoundsAttr) { 2667 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2668 Value padding = builder.create<arith::ConstantOp>( 2669 result.location, elemType, builder.getZeroAttr(elemType)); 2670 build(builder, result, vectorType, source, indices, permutationMapAttr, 2671 padding, /*mask=*/Value(), inBoundsAttr); 2672 } 2673 2674 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2675 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2676 VectorType vectorType, Value source, 2677 ValueRange indices, AffineMap permutationMap, 2678 Optional<ArrayRef<bool>> inBounds) { 2679 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2680 auto inBoundsAttr = (inBounds && !inBounds->empty()) 2681 ? builder.getBoolArrayAttr(inBounds.value()) 2682 : ArrayAttr(); 2683 build(builder, result, vectorType, source, indices, permutationMapAttr, 2684 inBoundsAttr); 2685 } 2686 2687 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2688 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2689 VectorType vectorType, Value source, 2690 ValueRange indices, Value padding, 2691 Optional<ArrayRef<bool>> inBounds) { 2692 AffineMap permutationMap = getTransferMinorIdentityMap( 2693 source.getType().cast<ShapedType>(), vectorType); 2694 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2695 auto inBoundsAttr = (inBounds && !inBounds->empty()) 2696 ? builder.getBoolArrayAttr(inBounds.value()) 2697 : ArrayAttr(); 2698 build(builder, result, vectorType, source, indices, permutationMapAttr, 2699 padding, 2700 /*mask=*/Value(), inBoundsAttr); 2701 } 2702 2703 /// 4. Builder that sets padding to zero and permutation map to 2704 /// 'getMinorIdentityMap'. 2705 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2706 VectorType vectorType, Value source, 2707 ValueRange indices, 2708 Optional<ArrayRef<bool>> inBounds) { 2709 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2710 Value padding = builder.create<arith::ConstantOp>( 2711 result.location, elemType, builder.getZeroAttr(elemType)); 2712 build(builder, result, vectorType, source, indices, padding, inBounds); 2713 } 2714 2715 template <typename EmitFun> 2716 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2717 EmitFun emitOpError) { 2718 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2719 for (auto expr : permutationMap.getResults()) { 2720 auto dim = expr.dyn_cast<AffineDimExpr>(); 2721 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2722 if (zero) { 2723 if (zero.getValue() != 0) { 2724 return emitOpError( 2725 "requires a projected permutation_map (at most one dim or the zero " 2726 "constant can appear in each result)"); 2727 } 2728 continue; 2729 } 2730 if (!dim) { 2731 return emitOpError("requires a projected permutation_map (at most one " 2732 "dim or the zero constant can appear in each result)"); 2733 } 2734 if (seen[dim.getPosition()]) { 2735 return emitOpError( 2736 "requires a permutation_map that is a permutation (found one dim " 2737 "used more than once)"); 2738 } 2739 seen[dim.getPosition()] = true; 2740 } 2741 return success(); 2742 } 2743 2744 static LogicalResult 2745 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2746 VectorType vectorType, VectorType maskType, 2747 AffineMap permutationMap, ArrayAttr inBounds) { 2748 if (op->hasAttr("masked")) { 2749 return op->emitOpError("masked attribute has been removed. " 2750 "Use in_bounds instead."); 2751 } 2752 2753 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2754 return op->emitOpError( 2755 "requires source to be a memref or ranked tensor type"); 2756 2757 auto elementType = shapedType.getElementType(); 2758 DataLayout dataLayout = DataLayout::closest(op); 2759 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2760 // Memref or tensor has vector element type. 2761 unsigned sourceVecSize = 2762 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2763 vectorElementType.getShape().back(); 2764 unsigned resultVecSize = 2765 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2766 vectorType.getShape().back(); 2767 if (resultVecSize % sourceVecSize != 0) 2768 return op->emitOpError( 2769 "requires the bitwidth of the minor 1-D vector to be an integral " 2770 "multiple of the bitwidth of the minor 1-D vector of the source"); 2771 2772 unsigned sourceVecEltRank = vectorElementType.getRank(); 2773 unsigned resultVecRank = vectorType.getRank(); 2774 if (sourceVecEltRank > resultVecRank) 2775 return op->emitOpError( 2776 "requires source vector element and vector result ranks to match."); 2777 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2778 // Check that permutation map results match 'rankOffset' of vector type. 2779 if (permutationMap.getNumResults() != rankOffset) 2780 return op->emitOpError("requires a permutation_map with result dims of " 2781 "the same rank as the vector type"); 2782 2783 if (maskType) 2784 return op->emitOpError("does not support masks with vector element type"); 2785 } else { 2786 // Memref or tensor has scalar element type. 2787 unsigned minorSize = 2788 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2789 unsigned resultVecSize = 2790 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2791 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2792 return op->emitOpError( 2793 "requires the bitwidth of the minor 1-D vector to be an integral " 2794 "multiple of the bitwidth of the source element type"); 2795 2796 // Check that permutation map results match rank of vector type. 2797 if (permutationMap.getNumResults() != vectorType.getRank()) 2798 return op->emitOpError("requires a permutation_map with result dims of " 2799 "the same rank as the vector type"); 2800 2801 VectorType expectedMaskType = 2802 vector::detail::transferMaskType(vectorType, permutationMap); 2803 if (maskType && expectedMaskType != maskType) 2804 return op->emitOpError("expects mask type consistent with permutation " 2805 "map: ") 2806 << maskType; 2807 } 2808 2809 if (permutationMap.getNumSymbols() != 0) 2810 return op->emitOpError("requires permutation_map without symbols"); 2811 2812 if (permutationMap.getNumInputs() != shapedType.getRank()) 2813 return op->emitOpError("requires a permutation_map with input dims of the " 2814 "same rank as the source type"); 2815 2816 if (inBounds) { 2817 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2818 return op->emitOpError("expects the optional in_bounds attr of same rank " 2819 "as permutation_map results: ") 2820 << AffineMapAttr::get(permutationMap) 2821 << " vs inBounds of size: " << inBounds.size(); 2822 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2823 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2824 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2825 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2826 } 2827 2828 return success(); 2829 } 2830 2831 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2832 SmallVector<StringRef, 3> elidedAttrs; 2833 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2834 if (op.permutation_map().isMinorIdentity()) 2835 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2836 bool elideInBounds = true; 2837 if (auto inBounds = op.in_bounds()) { 2838 for (auto attr : *inBounds) { 2839 if (attr.template cast<BoolAttr>().getValue()) { 2840 elideInBounds = false; 2841 break; 2842 } 2843 } 2844 } 2845 if (elideInBounds) 2846 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2847 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2848 } 2849 2850 void TransferReadOp::print(OpAsmPrinter &p) { 2851 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2852 if (getMask()) 2853 p << ", " << getMask(); 2854 printTransferAttrs(p, *this); 2855 p << " : " << getShapedType() << ", " << getVectorType(); 2856 } 2857 2858 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2859 auto &builder = parser.getBuilder(); 2860 SMLoc typesLoc; 2861 OpAsmParser::UnresolvedOperand sourceInfo; 2862 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2863 OpAsmParser::UnresolvedOperand paddingInfo; 2864 SmallVector<Type, 2> types; 2865 OpAsmParser::UnresolvedOperand maskInfo; 2866 // Parsing with support for paddingValue. 2867 if (parser.parseOperand(sourceInfo) || 2868 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2869 parser.parseComma() || parser.parseOperand(paddingInfo)) 2870 return failure(); 2871 ParseResult hasMask = parser.parseOptionalComma(); 2872 if (hasMask.succeeded()) { 2873 if (parser.parseOperand(maskInfo)) 2874 return failure(); 2875 } 2876 if (parser.parseOptionalAttrDict(result.attributes) || 2877 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2878 return failure(); 2879 if (types.size() != 2) 2880 return parser.emitError(typesLoc, "requires two types"); 2881 auto indexType = builder.getIndexType(); 2882 auto shapedType = types[0].dyn_cast<ShapedType>(); 2883 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2884 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2885 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2886 if (!vectorType) 2887 return parser.emitError(typesLoc, "requires vector type"); 2888 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2889 Attribute mapAttr = result.attributes.get(permutationAttrName); 2890 if (!mapAttr) { 2891 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2892 // Update `mapAttr` that is used later to determine mask type. 2893 mapAttr = AffineMapAttr::get(permMap); 2894 result.attributes.set(permutationAttrName, mapAttr); 2895 } 2896 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2897 parser.resolveOperands(indexInfo, indexType, result.operands) || 2898 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2899 result.operands)) 2900 return failure(); 2901 if (hasMask.succeeded()) { 2902 if (shapedType.getElementType().dyn_cast<VectorType>()) 2903 return parser.emitError( 2904 maskInfo.location, "does not support masks with vector element type"); 2905 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2906 // Instead of adding the mask type as an op type, compute it based on the 2907 // vector type and the permutation map (to keep the type signature small). 2908 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2909 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2910 return failure(); 2911 } 2912 result.addAttribute( 2913 TransferReadOp::getOperandSegmentSizeAttr(), 2914 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2915 static_cast<int32_t>(hasMask.succeeded())})); 2916 return parser.addTypeToList(vectorType, result.types); 2917 } 2918 2919 LogicalResult TransferReadOp::verify() { 2920 // Consistency of elemental types in source and vector. 2921 ShapedType shapedType = getShapedType(); 2922 VectorType vectorType = getVectorType(); 2923 VectorType maskType = getMaskType(); 2924 auto paddingType = getPadding().getType(); 2925 auto permutationMap = getPermutationMap(); 2926 auto sourceElementType = shapedType.getElementType(); 2927 2928 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2929 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2930 2931 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2932 shapedType, vectorType, maskType, permutationMap, 2933 getInBounds() ? *getInBounds() : ArrayAttr()))) 2934 return failure(); 2935 2936 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2937 // Source has vector element type. 2938 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2939 if (sourceVectorElementType != paddingType) 2940 return emitOpError( 2941 "requires source element type and padding type to match."); 2942 2943 } else { 2944 // Check that 'paddingType' is valid to store in a vector type. 2945 if (!VectorType::isValidElementType(paddingType)) 2946 return emitOpError("requires valid padding vector elemental type"); 2947 2948 // Check that padding type and vector element types match. 2949 if (paddingType != sourceElementType) 2950 return emitOpError( 2951 "requires formal padding and source of the same elemental type"); 2952 } 2953 2954 return verifyPermutationMap(permutationMap, 2955 [&](Twine t) { return emitOpError(t); }); 2956 } 2957 2958 /// This is a common class used for patterns of the form 2959 /// ``` 2960 /// someop(memrefcast) -> someop 2961 /// ``` 2962 /// It folds the source of the memref.cast into the root operation directly. 2963 static LogicalResult foldMemRefCast(Operation *op) { 2964 bool folded = false; 2965 for (OpOperand &operand : op->getOpOperands()) { 2966 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2967 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2968 operand.set(castOp.getOperand()); 2969 folded = true; 2970 } 2971 } 2972 return success(folded); 2973 } 2974 2975 static LogicalResult foldTensorCast(Operation *op) { 2976 bool folded = false; 2977 for (OpOperand &operand : op->getOpOperands()) { 2978 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2979 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2980 operand.set(castOp.getOperand()); 2981 folded = true; 2982 } 2983 } 2984 return success(folded); 2985 } 2986 2987 template <typename TransferOp> 2988 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2989 // TODO: support more aggressive createOrFold on: 2990 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2991 if (op.getShapedType().isDynamicDim(indicesIdx)) 2992 return false; 2993 Value index = op.getIndices()[indicesIdx]; 2994 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2995 if (!cstOp) 2996 return false; 2997 2998 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2999 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 3000 3001 return cstOp.value() + vectorSize <= sourceSize; 3002 } 3003 3004 template <typename TransferOp> 3005 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3006 // TODO: support 0-d corner case. 3007 // TODO: Be less conservative. 3008 if (op.getTransferRank() == 0) 3009 return failure(); 3010 AffineMap permutationMap = op.getPermutationMap(); 3011 bool changed = false; 3012 SmallVector<bool, 4> newInBounds; 3013 newInBounds.reserve(op.getTransferRank()); 3014 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3015 // Already marked as in-bounds, nothing to see here. 3016 if (op.isDimInBounds(i)) { 3017 newInBounds.push_back(true); 3018 continue; 3019 } 3020 // Currently out-of-bounds, check whether we can statically determine it is 3021 // inBounds. 3022 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3023 assert(dimExpr && "Broadcast dims must be in-bounds"); 3024 auto inBounds = 3025 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3026 newInBounds.push_back(inBounds); 3027 // We commit the pattern if it is "more inbounds". 3028 changed |= inBounds; 3029 } 3030 if (!changed) 3031 return failure(); 3032 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3033 OpBuilder b(op.getContext()); 3034 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3035 b.getBoolArrayAttr(newInBounds)); 3036 return success(); 3037 } 3038 3039 /// ``` 3040 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3041 /// : vector<1x4xf32>, tensor<4x4xf32> 3042 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3043 /// : tensor<4x4xf32>, vector<1x4xf32> 3044 /// ``` 3045 /// -> Folds into 3046 /// ``` 3047 /// %v0 3048 /// ``` 3049 static Value foldRAW(TransferReadOp readOp) { 3050 if (!readOp.getShapedType().isa<RankedTensorType>()) 3051 return {}; 3052 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3053 while (defWrite) { 3054 if (checkSameValueRAW(defWrite, readOp)) 3055 return defWrite.getVector(); 3056 if (!isDisjointTransferIndices( 3057 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3058 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3059 break; 3060 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3061 } 3062 return {}; 3063 } 3064 3065 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3066 if (Value vec = foldRAW(*this)) 3067 return vec; 3068 /// transfer_read(memrefcast) -> transfer_read 3069 if (succeeded(foldTransferInBoundsAttribute(*this))) 3070 return getResult(); 3071 if (succeeded(foldMemRefCast(*this))) 3072 return getResult(); 3073 if (succeeded(foldTensorCast(*this))) 3074 return getResult(); 3075 return OpFoldResult(); 3076 } 3077 3078 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3079 return llvm::to_vector<4>(getVectorType().getShape()); 3080 } 3081 3082 void TransferReadOp::getEffects( 3083 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3084 &effects) { 3085 if (getShapedType().isa<MemRefType>()) 3086 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3087 SideEffects::DefaultResource::get()); 3088 } 3089 3090 namespace { 3091 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3092 /// 3093 /// ``` 3094 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3095 /// : tensor<?x?xf32> to tensor<?x?xf32> 3096 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3097 /// : tensor<?x?xf32>, vector<4x5xf32> 3098 /// ``` 3099 /// is rewritten to: 3100 /// ``` 3101 /// %p0 = arith.addi %a, %e : index 3102 /// %p1 = arith.addi %b, %f : index 3103 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3104 /// : tensor<?x?xf32>, vector<4x5xf32> 3105 /// ``` 3106 struct FoldExtractSliceIntoTransferRead 3107 : public OpRewritePattern<TransferReadOp> { 3108 public: 3109 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3110 3111 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3112 PatternRewriter &rewriter) const override { 3113 // TODO: support 0-d corner case. 3114 if (xferOp.getTransferRank() == 0) 3115 return failure(); 3116 if (xferOp.hasOutOfBoundsDim()) 3117 return failure(); 3118 if (!xferOp.getPermutationMap().isIdentity()) 3119 return failure(); 3120 if (xferOp.getMask()) 3121 return failure(); 3122 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3123 if (!extractOp) 3124 return failure(); 3125 if (!extractOp.hasUnitStride()) 3126 return failure(); 3127 3128 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3129 // dims are exactly the leading dims. I.e. the following is illegal: 3130 // ``` 3131 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3132 // tensor<2x1x4xf32> to tensor<2x4xf32> 3133 // %1 = vector.transfer_read %0[0,0], %cst : 3134 // tensor<2x4xf32>, vector<2x4xf32> 3135 // ``` 3136 // 3137 // Cannot fold into: 3138 // ``` 3139 // %0 = vector.transfer_read %t[0,0,0], %cst : 3140 // tensor<2x1x4xf32>, vector<2x4xf32> 3141 // ``` 3142 // For this, check the trailing `vectorRank` dims of the extract_slice 3143 // result tensor match the trailing dims of the inferred result tensor. 3144 int64_t rankReduced = 3145 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3146 int64_t vectorRank = xferOp.getVectorType().getRank(); 3147 RankedTensorType inferredDestTensorType = 3148 tensor::ExtractSliceOp::inferResultType( 3149 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3150 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3151 auto actualDestTensorShape = extractOp.getType().getShape(); 3152 if (rankReduced > 0 && 3153 actualDestTensorShape.take_back(vectorRank) != 3154 inferredDestTensorType.getShape().take_back(vectorRank)) 3155 return failure(); 3156 3157 SmallVector<Value> newIndices; 3158 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3159 // indices first. 3160 for (int64_t i = 0; i < rankReduced; ++i) { 3161 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3162 newIndices.push_back(getValueOrCreateConstantIndexOp( 3163 rewriter, extractOp.getLoc(), offset)); 3164 } 3165 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3166 OpFoldResult offset = 3167 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3168 newIndices.push_back(rewriter.create<arith::AddIOp>( 3169 xferOp->getLoc(), it.value(), 3170 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3171 offset))); 3172 } 3173 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3174 rewriter.replaceOpWithNewOp<TransferReadOp>( 3175 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3176 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3177 3178 return success(); 3179 } 3180 }; 3181 } // namespace 3182 3183 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3184 MLIRContext *context) { 3185 results.add<FoldExtractSliceIntoTransferRead>(context); 3186 } 3187 3188 //===----------------------------------------------------------------------===// 3189 // TransferWriteOp 3190 //===----------------------------------------------------------------------===// 3191 3192 /// 1. Builder with type inference. 3193 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3194 Value vector, Value dest, ValueRange indices, 3195 AffineMapAttr permutationMapAttr, 3196 /*optional*/ Value mask, 3197 /*optional*/ ArrayAttr inBoundsAttr) { 3198 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3199 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3200 mask, inBoundsAttr); 3201 } 3202 3203 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3204 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3205 Value vector, Value dest, ValueRange indices, 3206 AffineMapAttr permutationMapAttr, 3207 /*optional*/ ArrayAttr inBoundsAttr) { 3208 build(builder, result, vector, dest, indices, permutationMapAttr, 3209 /*mask=*/Value(), inBoundsAttr); 3210 } 3211 3212 /// 3. Builder with type inference that sets an empty mask (variant without 3213 /// attrs) 3214 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3215 Value vector, Value dest, ValueRange indices, 3216 AffineMap permutationMap, 3217 Optional<ArrayRef<bool>> inBounds) { 3218 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3219 auto inBoundsAttr = (inBounds && !inBounds->empty()) 3220 ? builder.getBoolArrayAttr(inBounds.value()) 3221 : ArrayAttr(); 3222 build(builder, result, vector, dest, indices, permutationMapAttr, 3223 /*mask=*/Value(), inBoundsAttr); 3224 } 3225 3226 /// 4. Builder with type inference that sets an empty mask and sets permutation 3227 /// map to 'getMinorIdentityMap'. 3228 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3229 Value vector, Value dest, ValueRange indices, 3230 Optional<ArrayRef<bool>> inBounds) { 3231 auto vectorType = vector.getType().cast<VectorType>(); 3232 AffineMap permutationMap = getTransferMinorIdentityMap( 3233 dest.getType().cast<ShapedType>(), vectorType); 3234 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3235 } 3236 3237 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3238 OperationState &result) { 3239 auto &builder = parser.getBuilder(); 3240 SMLoc typesLoc; 3241 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3242 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3243 SmallVector<Type, 2> types; 3244 OpAsmParser::UnresolvedOperand maskInfo; 3245 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3246 parser.parseOperand(sourceInfo) || 3247 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3248 return failure(); 3249 ParseResult hasMask = parser.parseOptionalComma(); 3250 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3251 return failure(); 3252 if (parser.parseOptionalAttrDict(result.attributes) || 3253 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3254 return failure(); 3255 if (types.size() != 2) 3256 return parser.emitError(typesLoc, "requires two types"); 3257 auto indexType = builder.getIndexType(); 3258 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3259 if (!vectorType) 3260 return parser.emitError(typesLoc, "requires vector type"); 3261 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3262 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3263 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3264 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3265 auto attr = result.attributes.get(permutationAttrName); 3266 if (!attr) { 3267 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3268 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3269 } 3270 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3271 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3272 parser.resolveOperands(indexInfo, indexType, result.operands)) 3273 return failure(); 3274 if (hasMask.succeeded()) { 3275 if (shapedType.getElementType().dyn_cast<VectorType>()) 3276 return parser.emitError( 3277 maskInfo.location, "does not support masks with vector element type"); 3278 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3279 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3280 return failure(); 3281 } 3282 result.addAttribute( 3283 TransferWriteOp::getOperandSegmentSizeAttr(), 3284 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3285 static_cast<int32_t>(hasMask.succeeded())})); 3286 return failure(shapedType.isa<RankedTensorType>() && 3287 parser.addTypeToList(shapedType, result.types)); 3288 } 3289 3290 void TransferWriteOp::print(OpAsmPrinter &p) { 3291 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3292 if (getMask()) 3293 p << ", " << getMask(); 3294 printTransferAttrs(p, *this); 3295 p << " : " << getVectorType() << ", " << getShapedType(); 3296 } 3297 3298 LogicalResult TransferWriteOp::verify() { 3299 // Consistency of elemental types in shape and vector. 3300 ShapedType shapedType = getShapedType(); 3301 VectorType vectorType = getVectorType(); 3302 VectorType maskType = getMaskType(); 3303 auto permutationMap = getPermutationMap(); 3304 3305 if (llvm::size(getIndices()) != shapedType.getRank()) 3306 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3307 3308 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3309 // as the semantics is unclear. This can be revisited later if necessary. 3310 if (hasBroadcastDim()) 3311 return emitOpError("should not have broadcast dimensions"); 3312 3313 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3314 shapedType, vectorType, maskType, permutationMap, 3315 getInBounds() ? *getInBounds() : ArrayAttr()))) 3316 return failure(); 3317 3318 return verifyPermutationMap(permutationMap, 3319 [&](Twine t) { return emitOpError(t); }); 3320 } 3321 3322 /// Fold: 3323 /// ``` 3324 /// %t1 = ... 3325 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3326 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3327 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3328 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3329 /// ``` 3330 /// 3331 /// into: 3332 /// 3333 /// ``` 3334 /// %t0 3335 /// ``` 3336 /// 3337 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3338 /// block argument or has side effects. 3339 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3340 ArrayRef<Attribute>, 3341 SmallVectorImpl<OpFoldResult> &results) { 3342 // TODO: support 0-d corner case. 3343 if (write.getTransferRank() == 0) 3344 return failure(); 3345 auto rankedTensorType = 3346 write.getSource().getType().dyn_cast<RankedTensorType>(); 3347 // If not operating on tensors, bail. 3348 if (!rankedTensorType) 3349 return failure(); 3350 // If no read, bail. 3351 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3352 if (!read) 3353 return failure(); 3354 // TODO: support 0-d corner case. 3355 if (read.getTransferRank() == 0) 3356 return failure(); 3357 // For now, only accept minor identity. Future: composition is minor identity. 3358 if (!read.getPermutationMap().isMinorIdentity() || 3359 !write.getPermutationMap().isMinorIdentity()) 3360 return failure(); 3361 // Bail on mismatching ranks. 3362 if (read.getTransferRank() != write.getTransferRank()) 3363 return failure(); 3364 // Bail on potential out-of-bounds accesses. 3365 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3366 return failure(); 3367 // Tensor types must be the same. 3368 if (read.getSource().getType() != rankedTensorType) 3369 return failure(); 3370 // Vector types must be the same. 3371 if (read.getVectorType() != write.getVectorType()) 3372 return failure(); 3373 // Vector and Tensor shapes must match. 3374 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3375 return failure(); 3376 // If any index is nonzero. 3377 auto isNotConstantZero = [](Value v) { 3378 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3379 return !cstOp || cstOp.value() != 0; 3380 }; 3381 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3382 llvm::any_of(write.getIndices(), isNotConstantZero)) 3383 return failure(); 3384 // Success. 3385 results.push_back(read.getSource()); 3386 return success(); 3387 } 3388 3389 static bool checkSameValueWAR(vector::TransferReadOp read, 3390 vector::TransferWriteOp write) { 3391 return read.getSource() == write.getSource() && 3392 read.getIndices() == write.getIndices() && 3393 read.getPermutationMap() == write.getPermutationMap() && 3394 read.getVectorType() == write.getVectorType() && !read.getMask() && 3395 !write.getMask(); 3396 } 3397 /// Fold transfer_write write after read: 3398 /// ``` 3399 /// %t0 = ... 3400 /// %v = vector.transfer_read %t0[%c0...] : 3401 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3402 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3403 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3404 /// ``` 3405 /// 3406 /// into: 3407 /// 3408 /// ``` 3409 /// %t0 3410 /// ``` 3411 static LogicalResult foldWAR(TransferWriteOp write, 3412 SmallVectorImpl<OpFoldResult> &results) { 3413 if (!write.getSource().getType().isa<RankedTensorType>()) 3414 return failure(); 3415 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3416 if (!read) 3417 return failure(); 3418 3419 if (!checkSameValueWAR(read, write)) 3420 return failure(); 3421 results.push_back(read.getSource()); 3422 return success(); 3423 } 3424 3425 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3426 SmallVectorImpl<OpFoldResult> &results) { 3427 if (succeeded(foldReadInitWrite(*this, operands, results))) 3428 return success(); 3429 if (succeeded(foldWAR(*this, results))) 3430 return success(); 3431 if (succeeded(foldTransferInBoundsAttribute(*this))) 3432 return success(); 3433 return foldMemRefCast(*this); 3434 } 3435 3436 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3437 return llvm::to_vector<4>(getVectorType().getShape()); 3438 } 3439 3440 void TransferWriteOp::getEffects( 3441 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3442 &effects) { 3443 if (getShapedType().isa<MemRefType>()) 3444 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3445 SideEffects::DefaultResource::get()); 3446 } 3447 3448 namespace { 3449 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3450 /// DCE 3451 /// ``` 3452 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3453 /// : vector<1x4xf32>, tensor<4x4xf32> 3454 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3455 /// : vector<1x4xf32>, tensor<4x4xf32> 3456 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3457 /// : vector<1x4xf32>, tensor<4x4xf32> 3458 /// ``` 3459 /// 3460 /// into: 3461 /// 3462 /// ``` 3463 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3464 /// : vector<1x4xf32>, tensor<4x4xf32> 3465 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3466 /// : vector<1x4xf32>, tensor<4x4xf32> 3467 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3468 /// : vector<1x4xf32>, tensor<4x4xf32> 3469 /// ``` 3470 /// 3471 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3472 /// any other uses. 3473 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3474 public: 3475 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3476 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3477 PatternRewriter &rewriter) const override { 3478 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3479 return failure(); 3480 vector::TransferWriteOp writeToModify = writeOp; 3481 3482 auto defWrite = 3483 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3484 while (defWrite) { 3485 if (checkSameValueWAW(writeOp, defWrite)) { 3486 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3487 return success(); 3488 } 3489 if (!isDisjointTransferIndices( 3490 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3491 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3492 break; 3493 // If the previous write op doesn't have any other use we an safely look 3494 // at the previous store to see if it can be removed. 3495 if (!defWrite->hasOneUse()) 3496 break; 3497 writeToModify = defWrite; 3498 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3499 } 3500 return failure(); 3501 } 3502 }; 3503 3504 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3505 /// could directly write to the insert_slice's destination. E.g.: 3506 /// 3507 /// ``` 3508 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3509 /// : vector<4x5xf32>, tensor<4x5xf32> 3510 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3511 /// : tensor<4x5xf32> into tensor<?x?xf32> 3512 /// ``` 3513 /// is rewritten to: 3514 /// ``` 3515 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3516 /// : vector<4x5xf32>, tensor<?x?xf32> 3517 /// ``` 3518 struct FoldInsertSliceIntoTransferWrite 3519 : public OpRewritePattern<tensor::InsertSliceOp> { 3520 public: 3521 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3522 3523 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3524 PatternRewriter &rewriter) const override { 3525 if (!insertOp.hasUnitStride()) 3526 return failure(); 3527 3528 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3529 if (!xferOp) 3530 return failure(); 3531 // TODO: support 0-d corner case. 3532 if (xferOp.getTransferRank() == 0) 3533 return failure(); 3534 3535 if (xferOp.hasOutOfBoundsDim()) 3536 return failure(); 3537 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3538 return failure(); 3539 if (xferOp.getMask()) 3540 return failure(); 3541 // Fold only if the TransferWriteOp completely overwrites the `source` with 3542 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3543 // content is the data of the vector. 3544 if (!llvm::equal(xferOp.getVectorType().getShape(), 3545 xferOp.getShapedType().getShape())) 3546 return failure(); 3547 if (!xferOp.getPermutationMap().isIdentity()) 3548 return failure(); 3549 3550 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3551 // dims are exactly the leading dims. I.e. the following is illegal: 3552 // ``` 3553 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3554 // vector<2x4xf32>, tensor<2x4xf32> 3555 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3556 // tensor<2x4xf32> into tensor<2x1x4xf32> 3557 // ``` 3558 // 3559 // Cannot fold into: 3560 // ``` 3561 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3562 // vector<2x4xf32>, tensor<2x1x4xf32> 3563 // ``` 3564 // For this, check the trailing `vectorRank` dims of the insert_slice result 3565 // tensor match the trailing dims of the inferred result tensor. 3566 int64_t rankReduced = 3567 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3568 int64_t vectorRank = xferOp.getVectorType().getRank(); 3569 RankedTensorType inferredSourceTensorType = 3570 tensor::ExtractSliceOp::inferResultType( 3571 insertOp.getType(), insertOp.getMixedOffsets(), 3572 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3573 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3574 if (rankReduced > 0 && 3575 actualSourceTensorShape.take_back(vectorRank) != 3576 inferredSourceTensorType.getShape().take_back(vectorRank)) 3577 return failure(); 3578 3579 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3580 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3581 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3582 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3583 insertOp.dest(), indices, 3584 ArrayRef<bool>{inBounds}); 3585 return success(); 3586 } 3587 }; 3588 3589 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3590 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3591 /// overwritten and inserted into another tensor. After this rewrite, the 3592 /// operations bufferize in-place since all of them work on the same slice. 3593 /// 3594 /// For example: 3595 /// ```mlir 3596 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3597 /// : vector<8x16xf32>, tensor<8x16xf32> 3598 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3599 /// : tensor<8x16xf32> to tensor<?x?xf32> 3600 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3601 /// : tensor<?x?xf32> into tensor<27x37xf32> 3602 /// ``` 3603 /// folds to 3604 /// ```mlir 3605 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3606 /// : tensor<27x37xf32> to tensor<?x?xf32> 3607 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3608 /// : vector<8x16xf32>, tensor<?x?xf32> 3609 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3610 /// : tensor<?x?xf32> into tensor<27x37xf32> 3611 /// ``` 3612 struct SwapExtractSliceOfTransferWrite 3613 : public OpRewritePattern<tensor::InsertSliceOp> { 3614 public: 3615 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3616 3617 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3618 PatternRewriter &rewriter) const override { 3619 if (!insertOp.hasUnitStride()) 3620 return failure(); 3621 auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3622 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3623 return failure(); 3624 auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>(); 3625 if (!transferOp || !transferOp->hasOneUse()) 3626 return failure(); 3627 3628 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3629 // rank-reducing. 3630 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3631 return rewriter.notifyMatchFailure(insertOp, 3632 "use-def chain is rank-reducing"); 3633 } 3634 3635 // Fail if tensor::ExtractSliceOp has non-zero offset. 3636 if (!extractOp.hasZeroOffset()) { 3637 return rewriter.notifyMatchFailure(insertOp, 3638 "ExtractSliceOp has non-zero offset"); 3639 } 3640 3641 // Fail if tensor::TransferWriteOp has non-zero offset. 3642 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3643 return getConstantIntValue(value) == static_cast<int64_t>(0); 3644 })) { 3645 return rewriter.notifyMatchFailure(insertOp, 3646 "TranferWriteOp has non-zero offset"); 3647 } 3648 3649 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3650 for (const auto &it : 3651 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3652 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3653 return rewriter.notifyMatchFailure( 3654 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3655 } 3656 } 3657 3658 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3659 assert(transferOp.getVectorType().hasStaticShape() && 3660 "expected vector to have a static shape"); 3661 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3662 SmallVector<int64_t> resultShape = applyPermutationMap( 3663 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3664 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3665 return rewriter.notifyMatchFailure( 3666 insertOp, "TransferWriteOp may not write the full tensor."); 3667 } 3668 3669 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3670 SmallVector<int64_t> newResultShape = applyPermutationMap( 3671 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3672 SmallVector<bool> newInBounds; 3673 for (const auto &en : enumerate(newResultShape)) 3674 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3675 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3676 extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(), 3677 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3678 insertOp.getMixedStrides()); 3679 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3680 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3681 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3682 rewriter.getBoolArrayAttr(newInBounds)); 3683 rewriter.updateRootInPlace(insertOp, [&]() { 3684 insertOp.sourceMutable().assign(newTransferWriteOp.getResult()); 3685 }); 3686 return success(); 3687 } 3688 }; 3689 3690 } // namespace 3691 3692 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3693 MLIRContext *context) { 3694 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3695 SwapExtractSliceOfTransferWrite>(context); 3696 } 3697 3698 //===----------------------------------------------------------------------===// 3699 // LoadOp 3700 //===----------------------------------------------------------------------===// 3701 3702 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3703 MemRefType memRefTy) { 3704 if (!isLastMemrefDimUnitStride(memRefTy)) 3705 return op->emitOpError("most minor memref dim must have unit stride"); 3706 return success(); 3707 } 3708 3709 LogicalResult vector::LoadOp::verify() { 3710 VectorType resVecTy = getVectorType(); 3711 MemRefType memRefTy = getMemRefType(); 3712 3713 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3714 return failure(); 3715 3716 // Checks for vector memrefs. 3717 Type memElemTy = memRefTy.getElementType(); 3718 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3719 if (memVecTy != resVecTy) 3720 return emitOpError("base memref and result vector types should match"); 3721 memElemTy = memVecTy.getElementType(); 3722 } 3723 3724 if (resVecTy.getElementType() != memElemTy) 3725 return emitOpError("base and result element types should match"); 3726 if (llvm::size(getIndices()) != memRefTy.getRank()) 3727 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3728 return success(); 3729 } 3730 3731 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3732 if (succeeded(foldMemRefCast(*this))) 3733 return getResult(); 3734 return OpFoldResult(); 3735 } 3736 3737 //===----------------------------------------------------------------------===// 3738 // StoreOp 3739 //===----------------------------------------------------------------------===// 3740 3741 LogicalResult vector::StoreOp::verify() { 3742 VectorType valueVecTy = getVectorType(); 3743 MemRefType memRefTy = getMemRefType(); 3744 3745 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3746 return failure(); 3747 3748 // Checks for vector memrefs. 3749 Type memElemTy = memRefTy.getElementType(); 3750 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3751 if (memVecTy != valueVecTy) 3752 return emitOpError( 3753 "base memref and valueToStore vector types should match"); 3754 memElemTy = memVecTy.getElementType(); 3755 } 3756 3757 if (valueVecTy.getElementType() != memElemTy) 3758 return emitOpError("base and valueToStore element type should match"); 3759 if (llvm::size(getIndices()) != memRefTy.getRank()) 3760 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3761 return success(); 3762 } 3763 3764 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3765 SmallVectorImpl<OpFoldResult> &results) { 3766 return foldMemRefCast(*this); 3767 } 3768 3769 //===----------------------------------------------------------------------===// 3770 // MaskedLoadOp 3771 //===----------------------------------------------------------------------===// 3772 3773 LogicalResult MaskedLoadOp::verify() { 3774 VectorType maskVType = getMaskVectorType(); 3775 VectorType passVType = getPassThruVectorType(); 3776 VectorType resVType = getVectorType(); 3777 MemRefType memType = getMemRefType(); 3778 3779 if (resVType.getElementType() != memType.getElementType()) 3780 return emitOpError("base and result element type should match"); 3781 if (llvm::size(getIndices()) != memType.getRank()) 3782 return emitOpError("requires ") << memType.getRank() << " indices"; 3783 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3784 return emitOpError("expected result dim to match mask dim"); 3785 if (resVType != passVType) 3786 return emitOpError("expected pass_thru of same type as result type"); 3787 return success(); 3788 } 3789 3790 namespace { 3791 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3792 public: 3793 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3794 LogicalResult matchAndRewrite(MaskedLoadOp load, 3795 PatternRewriter &rewriter) const override { 3796 switch (get1DMaskFormat(load.getMask())) { 3797 case MaskFormat::AllTrue: 3798 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3799 load, load.getType(), load.getBase(), load.getIndices()); 3800 return success(); 3801 case MaskFormat::AllFalse: 3802 rewriter.replaceOp(load, load.getPassThru()); 3803 return success(); 3804 case MaskFormat::Unknown: 3805 return failure(); 3806 } 3807 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3808 } 3809 }; 3810 } // namespace 3811 3812 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3813 MLIRContext *context) { 3814 results.add<MaskedLoadFolder>(context); 3815 } 3816 3817 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3818 if (succeeded(foldMemRefCast(*this))) 3819 return getResult(); 3820 return OpFoldResult(); 3821 } 3822 3823 //===----------------------------------------------------------------------===// 3824 // MaskedStoreOp 3825 //===----------------------------------------------------------------------===// 3826 3827 LogicalResult MaskedStoreOp::verify() { 3828 VectorType maskVType = getMaskVectorType(); 3829 VectorType valueVType = getVectorType(); 3830 MemRefType memType = getMemRefType(); 3831 3832 if (valueVType.getElementType() != memType.getElementType()) 3833 return emitOpError("base and valueToStore element type should match"); 3834 if (llvm::size(getIndices()) != memType.getRank()) 3835 return emitOpError("requires ") << memType.getRank() << " indices"; 3836 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3837 return emitOpError("expected valueToStore dim to match mask dim"); 3838 return success(); 3839 } 3840 3841 namespace { 3842 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3843 public: 3844 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3845 LogicalResult matchAndRewrite(MaskedStoreOp store, 3846 PatternRewriter &rewriter) const override { 3847 switch (get1DMaskFormat(store.getMask())) { 3848 case MaskFormat::AllTrue: 3849 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3850 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3851 return success(); 3852 case MaskFormat::AllFalse: 3853 rewriter.eraseOp(store); 3854 return success(); 3855 case MaskFormat::Unknown: 3856 return failure(); 3857 } 3858 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3859 } 3860 }; 3861 } // namespace 3862 3863 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3864 MLIRContext *context) { 3865 results.add<MaskedStoreFolder>(context); 3866 } 3867 3868 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3869 SmallVectorImpl<OpFoldResult> &results) { 3870 return foldMemRefCast(*this); 3871 } 3872 3873 //===----------------------------------------------------------------------===// 3874 // GatherOp 3875 //===----------------------------------------------------------------------===// 3876 3877 LogicalResult GatherOp::verify() { 3878 VectorType indVType = getIndexVectorType(); 3879 VectorType maskVType = getMaskVectorType(); 3880 VectorType resVType = getVectorType(); 3881 MemRefType memType = getMemRefType(); 3882 3883 if (resVType.getElementType() != memType.getElementType()) 3884 return emitOpError("base and result element type should match"); 3885 if (llvm::size(getIndices()) != memType.getRank()) 3886 return emitOpError("requires ") << memType.getRank() << " indices"; 3887 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3888 return emitOpError("expected result dim to match indices dim"); 3889 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3890 return emitOpError("expected result dim to match mask dim"); 3891 if (resVType != getPassThruVectorType()) 3892 return emitOpError("expected pass_thru of same type as result type"); 3893 return success(); 3894 } 3895 3896 namespace { 3897 class GatherFolder final : public OpRewritePattern<GatherOp> { 3898 public: 3899 using OpRewritePattern<GatherOp>::OpRewritePattern; 3900 LogicalResult matchAndRewrite(GatherOp gather, 3901 PatternRewriter &rewriter) const override { 3902 switch (get1DMaskFormat(gather.getMask())) { 3903 case MaskFormat::AllTrue: 3904 return failure(); // no unmasked equivalent 3905 case MaskFormat::AllFalse: 3906 rewriter.replaceOp(gather, gather.getPassThru()); 3907 return success(); 3908 case MaskFormat::Unknown: 3909 return failure(); 3910 } 3911 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3912 } 3913 }; 3914 } // namespace 3915 3916 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3917 MLIRContext *context) { 3918 results.add<GatherFolder>(context); 3919 } 3920 3921 //===----------------------------------------------------------------------===// 3922 // ScatterOp 3923 //===----------------------------------------------------------------------===// 3924 3925 LogicalResult ScatterOp::verify() { 3926 VectorType indVType = getIndexVectorType(); 3927 VectorType maskVType = getMaskVectorType(); 3928 VectorType valueVType = getVectorType(); 3929 MemRefType memType = getMemRefType(); 3930 3931 if (valueVType.getElementType() != memType.getElementType()) 3932 return emitOpError("base and valueToStore element type should match"); 3933 if (llvm::size(getIndices()) != memType.getRank()) 3934 return emitOpError("requires ") << memType.getRank() << " indices"; 3935 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3936 return emitOpError("expected valueToStore dim to match indices dim"); 3937 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3938 return emitOpError("expected valueToStore dim to match mask dim"); 3939 return success(); 3940 } 3941 3942 namespace { 3943 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3944 public: 3945 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3946 LogicalResult matchAndRewrite(ScatterOp scatter, 3947 PatternRewriter &rewriter) const override { 3948 switch (get1DMaskFormat(scatter.getMask())) { 3949 case MaskFormat::AllTrue: 3950 return failure(); // no unmasked equivalent 3951 case MaskFormat::AllFalse: 3952 rewriter.eraseOp(scatter); 3953 return success(); 3954 case MaskFormat::Unknown: 3955 return failure(); 3956 } 3957 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3958 } 3959 }; 3960 } // namespace 3961 3962 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3963 MLIRContext *context) { 3964 results.add<ScatterFolder>(context); 3965 } 3966 3967 //===----------------------------------------------------------------------===// 3968 // ExpandLoadOp 3969 //===----------------------------------------------------------------------===// 3970 3971 LogicalResult ExpandLoadOp::verify() { 3972 VectorType maskVType = getMaskVectorType(); 3973 VectorType passVType = getPassThruVectorType(); 3974 VectorType resVType = getVectorType(); 3975 MemRefType memType = getMemRefType(); 3976 3977 if (resVType.getElementType() != memType.getElementType()) 3978 return emitOpError("base and result element type should match"); 3979 if (llvm::size(getIndices()) != memType.getRank()) 3980 return emitOpError("requires ") << memType.getRank() << " indices"; 3981 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3982 return emitOpError("expected result dim to match mask dim"); 3983 if (resVType != passVType) 3984 return emitOpError("expected pass_thru of same type as result type"); 3985 return success(); 3986 } 3987 3988 namespace { 3989 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3990 public: 3991 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3992 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3993 PatternRewriter &rewriter) const override { 3994 switch (get1DMaskFormat(expand.getMask())) { 3995 case MaskFormat::AllTrue: 3996 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3997 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3998 return success(); 3999 case MaskFormat::AllFalse: 4000 rewriter.replaceOp(expand, expand.getPassThru()); 4001 return success(); 4002 case MaskFormat::Unknown: 4003 return failure(); 4004 } 4005 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4006 } 4007 }; 4008 } // namespace 4009 4010 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4011 MLIRContext *context) { 4012 results.add<ExpandLoadFolder>(context); 4013 } 4014 4015 //===----------------------------------------------------------------------===// 4016 // CompressStoreOp 4017 //===----------------------------------------------------------------------===// 4018 4019 LogicalResult CompressStoreOp::verify() { 4020 VectorType maskVType = getMaskVectorType(); 4021 VectorType valueVType = getVectorType(); 4022 MemRefType memType = getMemRefType(); 4023 4024 if (valueVType.getElementType() != memType.getElementType()) 4025 return emitOpError("base and valueToStore element type should match"); 4026 if (llvm::size(getIndices()) != memType.getRank()) 4027 return emitOpError("requires ") << memType.getRank() << " indices"; 4028 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4029 return emitOpError("expected valueToStore dim to match mask dim"); 4030 return success(); 4031 } 4032 4033 namespace { 4034 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4035 public: 4036 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4037 LogicalResult matchAndRewrite(CompressStoreOp compress, 4038 PatternRewriter &rewriter) const override { 4039 switch (get1DMaskFormat(compress.getMask())) { 4040 case MaskFormat::AllTrue: 4041 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4042 compress, compress.getValueToStore(), compress.getBase(), 4043 compress.getIndices()); 4044 return success(); 4045 case MaskFormat::AllFalse: 4046 rewriter.eraseOp(compress); 4047 return success(); 4048 case MaskFormat::Unknown: 4049 return failure(); 4050 } 4051 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4052 } 4053 }; 4054 } // namespace 4055 4056 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4057 MLIRContext *context) { 4058 results.add<CompressStoreFolder>(context); 4059 } 4060 4061 //===----------------------------------------------------------------------===// 4062 // ShapeCastOp 4063 //===----------------------------------------------------------------------===// 4064 4065 /// Returns true if each element of 'a' is equal to the product of a contiguous 4066 /// sequence of the elements of 'b'. Returns false otherwise. 4067 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4068 unsigned rankA = a.size(); 4069 unsigned rankB = b.size(); 4070 assert(rankA < rankB); 4071 4072 unsigned i = 0; 4073 unsigned j = 0; 4074 while (i < rankA && j < rankB) { 4075 int64_t dimA = a[i]; 4076 int64_t dimB = 1; 4077 while (dimB < dimA && j < rankB) 4078 dimB *= b[j++]; 4079 if (dimA != dimB) 4080 break; 4081 ++i; 4082 4083 // Handle the case when trailing dimensions are of size 1. 4084 // Include them into the contiguous sequence. 4085 auto isOne = [](int64_t v) { return v == 1; }; 4086 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4087 i = rankA; 4088 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4089 j = rankB; 4090 } 4091 4092 return i == rankA && j == rankB; 4093 } 4094 4095 static LogicalResult verifyVectorShapeCast(Operation *op, 4096 VectorType sourceVectorType, 4097 VectorType resultVectorType) { 4098 // Check that element type is the same. 4099 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4100 return op->emitOpError("source/result vectors must have same element type"); 4101 auto sourceShape = sourceVectorType.getShape(); 4102 auto resultShape = resultVectorType.getShape(); 4103 4104 // Check that product of source dim sizes matches product of result dim sizes. 4105 int64_t sourceDimProduct = std::accumulate( 4106 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4107 int64_t resultDimProduct = std::accumulate( 4108 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4109 if (sourceDimProduct != resultDimProduct) 4110 return op->emitOpError("source/result number of elements must match"); 4111 4112 // Check that expanding/contracting rank cases. 4113 unsigned sourceRank = sourceVectorType.getRank(); 4114 unsigned resultRank = resultVectorType.getRank(); 4115 if (sourceRank < resultRank) { 4116 if (!isValidShapeCast(sourceShape, resultShape)) 4117 return op->emitOpError("invalid shape cast"); 4118 } else if (sourceRank > resultRank) { 4119 if (!isValidShapeCast(resultShape, sourceShape)) 4120 return op->emitOpError("invalid shape cast"); 4121 } 4122 return success(); 4123 } 4124 4125 LogicalResult ShapeCastOp::verify() { 4126 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4127 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4128 4129 // Check if source/result are of vector type. 4130 if (sourceVectorType && resultVectorType) 4131 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4132 4133 return success(); 4134 } 4135 4136 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4137 // No-op shape cast. 4138 if (getSource().getType() == getResult().getType()) 4139 return getSource(); 4140 4141 // Canceling shape casts. 4142 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4143 if (getResult().getType() == otherOp.getSource().getType()) 4144 return otherOp.getSource(); 4145 4146 // Only allows valid transitive folding. 4147 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4148 VectorType resultType = getResult().getType().cast<VectorType>(); 4149 if (srcType.getRank() < resultType.getRank()) { 4150 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4151 return {}; 4152 } else if (srcType.getRank() > resultType.getRank()) { 4153 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4154 return {}; 4155 } else { 4156 return {}; 4157 } 4158 4159 setOperand(otherOp.getSource()); 4160 return getResult(); 4161 } 4162 4163 // Cancelling broadcast and shape cast ops. 4164 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4165 if (bcastOp.getSourceType() == getType()) 4166 return bcastOp.getSource(); 4167 } 4168 4169 return {}; 4170 } 4171 4172 namespace { 4173 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4174 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4175 public: 4176 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4177 4178 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4179 PatternRewriter &rewriter) const override { 4180 auto constantOp = 4181 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4182 if (!constantOp) 4183 return failure(); 4184 // Only handle splat for now. 4185 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4186 if (!dense) 4187 return failure(); 4188 auto newAttr = 4189 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4190 dense.getSplatValue<Attribute>()); 4191 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4192 return success(); 4193 } 4194 }; 4195 4196 } // namespace 4197 4198 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4199 MLIRContext *context) { 4200 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4201 results.add<ShapeCastConstantFolder>(context); 4202 } 4203 4204 //===----------------------------------------------------------------------===// 4205 // VectorBitCastOp 4206 //===----------------------------------------------------------------------===// 4207 4208 LogicalResult BitCastOp::verify() { 4209 auto sourceVectorType = getSourceVectorType(); 4210 auto resultVectorType = getResultVectorType(); 4211 4212 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4213 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4214 return emitOpError("dimension size mismatch at: ") << i; 4215 } 4216 4217 DataLayout dataLayout = DataLayout::closest(*this); 4218 auto sourceElementBits = 4219 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4220 auto resultElementBits = 4221 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4222 4223 if (sourceVectorType.getRank() == 0) { 4224 if (sourceElementBits != resultElementBits) 4225 return emitOpError("source/result bitwidth of the 0-D vector element " 4226 "types must be equal"); 4227 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4228 resultElementBits * resultVectorType.getShape().back()) { 4229 return emitOpError( 4230 "source/result bitwidth of the minor 1-D vectors must be equal"); 4231 } 4232 4233 return success(); 4234 } 4235 4236 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4237 // Nop cast. 4238 if (getSource().getType() == getResult().getType()) 4239 return getSource(); 4240 4241 // Canceling bitcasts. 4242 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4243 if (getResult().getType() == otherOp.getSource().getType()) 4244 return otherOp.getSource(); 4245 4246 setOperand(otherOp.getSource()); 4247 return getResult(); 4248 } 4249 4250 Attribute sourceConstant = operands.front(); 4251 if (!sourceConstant) 4252 return {}; 4253 4254 Type srcElemType = getSourceVectorType().getElementType(); 4255 Type dstElemType = getResultVectorType().getElementType(); 4256 4257 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4258 if (floatPack.isSplat()) { 4259 auto splat = floatPack.getSplatValue<FloatAttr>(); 4260 4261 // Casting fp16 into fp32. 4262 if (srcElemType.isF16() && dstElemType.isF32()) { 4263 uint32_t bits = static_cast<uint32_t>( 4264 splat.getValue().bitcastToAPInt().getZExtValue()); 4265 // Duplicate the 16-bit pattern. 4266 bits = (bits << 16) | (bits & 0xffff); 4267 APInt intBits(32, bits); 4268 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4269 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4270 } 4271 } 4272 } 4273 4274 return {}; 4275 } 4276 4277 //===----------------------------------------------------------------------===// 4278 // TypeCastOp 4279 //===----------------------------------------------------------------------===// 4280 4281 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4282 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4283 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4284 memRefType.getShape().end()); 4285 if (vectorType) 4286 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4287 return res; 4288 } 4289 4290 /// Build the canonical memRefType with a single vector. 4291 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4292 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4293 Value source) { 4294 result.addOperands(source); 4295 MemRefType memRefType = source.getType().cast<MemRefType>(); 4296 VectorType vectorType = 4297 VectorType::get(extractShape(memRefType), 4298 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4299 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4300 memRefType.getMemorySpace())); 4301 } 4302 4303 LogicalResult TypeCastOp::verify() { 4304 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4305 if (!canonicalType.getLayout().isIdentity()) 4306 return emitOpError("expects operand to be a memref with identity layout"); 4307 if (!getResultMemRefType().getLayout().isIdentity()) 4308 return emitOpError("expects result to be a memref with identity layout"); 4309 if (getResultMemRefType().getMemorySpace() != 4310 getMemRefType().getMemorySpace()) 4311 return emitOpError("expects result in same memory space"); 4312 4313 auto sourceType = getMemRefType(); 4314 auto resultType = getResultMemRefType(); 4315 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4316 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4317 return emitOpError( 4318 "expects result and operand with same underlying scalar type: ") 4319 << resultType; 4320 if (extractShape(sourceType) != extractShape(resultType)) 4321 return emitOpError( 4322 "expects concatenated result and operand shapes to be equal: ") 4323 << resultType; 4324 return success(); 4325 } 4326 4327 //===----------------------------------------------------------------------===// 4328 // TransposeOp 4329 //===----------------------------------------------------------------------===// 4330 4331 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4332 Value vector, ArrayRef<int64_t> transp) { 4333 VectorType vt = vector.getType().cast<VectorType>(); 4334 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4335 for (unsigned i = 0; i < transp.size(); ++i) 4336 transposedShape[i] = vt.getShape()[transp[i]]; 4337 4338 result.addOperands(vector); 4339 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4340 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4341 } 4342 4343 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4344 // Eliminate splat constant transpose ops. 4345 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4346 if (attr.isSplat()) 4347 return attr.reshape(getResultType()); 4348 4349 // Eliminate identity transpose ops. This happens when the dimensions of the 4350 // input vector remain in their original order after the transpose operation. 4351 SmallVector<int64_t, 4> transp; 4352 getTransp(transp); 4353 4354 // Check if the permutation of the dimensions contains sequential values: 4355 // {0, 1, 2, ...}. 4356 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4357 if (transp[i] != i) 4358 return {}; 4359 } 4360 4361 return getVector(); 4362 } 4363 4364 LogicalResult vector::TransposeOp::verify() { 4365 VectorType vectorType = getVectorType(); 4366 VectorType resultType = getResultType(); 4367 int64_t rank = resultType.getRank(); 4368 if (vectorType.getRank() != rank) 4369 return emitOpError("vector result rank mismatch: ") << rank; 4370 // Verify transposition array. 4371 auto transpAttr = getTransp().getValue(); 4372 int64_t size = transpAttr.size(); 4373 if (rank != size) 4374 return emitOpError("transposition length mismatch: ") << size; 4375 SmallVector<bool, 8> seen(rank, false); 4376 for (const auto &ta : llvm::enumerate(transpAttr)) { 4377 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4378 if (i < 0 || i >= rank) 4379 return emitOpError("transposition index out of range: ") << i; 4380 if (seen[i]) 4381 return emitOpError("duplicate position index: ") << i; 4382 seen[i] = true; 4383 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4384 return emitOpError("dimension size mismatch at: ") << i; 4385 } 4386 return success(); 4387 } 4388 4389 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4390 return llvm::to_vector<4>(getResultType().getShape()); 4391 } 4392 4393 namespace { 4394 4395 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4396 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4397 public: 4398 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4399 4400 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4401 PatternRewriter &rewriter) const override { 4402 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4403 auto getPermutation = [](vector::TransposeOp transpose) { 4404 SmallVector<int64_t, 4> permutation; 4405 transpose.getTransp(permutation); 4406 return permutation; 4407 }; 4408 4409 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4410 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4411 ArrayRef<int64_t> permutation2) { 4412 SmallVector<int64_t, 4> result; 4413 for (auto index : permutation2) 4414 result.push_back(permutation1[index]); 4415 return result; 4416 }; 4417 4418 // Return if the input of 'transposeOp' is not defined by another transpose. 4419 vector::TransposeOp parentTransposeOp = 4420 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4421 if (!parentTransposeOp) 4422 return failure(); 4423 4424 SmallVector<int64_t, 4> permutation = composePermutations( 4425 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4426 // Replace 'transposeOp' with a new transpose operation. 4427 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4428 transposeOp, transposeOp.getResult().getType(), 4429 parentTransposeOp.getVector(), 4430 vector::getVectorSubscriptAttr(rewriter, permutation)); 4431 return success(); 4432 } 4433 }; 4434 4435 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4436 struct FoldTransposedScalarBroadcast final 4437 : public OpRewritePattern<vector::TransposeOp> { 4438 using OpRewritePattern::OpRewritePattern; 4439 4440 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4441 PatternRewriter &rewriter) const override { 4442 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4443 if (!bcastOp) 4444 return failure(); 4445 4446 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4447 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4448 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4449 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4450 return success(); 4451 } 4452 4453 return failure(); 4454 } 4455 }; 4456 4457 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4458 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4459 public: 4460 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4461 4462 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4463 PatternRewriter &rewriter) const override { 4464 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4465 if (!splatOp) 4466 return failure(); 4467 4468 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4469 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4470 return success(); 4471 } 4472 }; 4473 4474 } // namespace 4475 4476 void vector::TransposeOp::getCanonicalizationPatterns( 4477 RewritePatternSet &results, MLIRContext *context) { 4478 results 4479 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4480 context); 4481 } 4482 4483 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4484 populateFromInt64AttrArray(getTransp(), results); 4485 } 4486 4487 //===----------------------------------------------------------------------===// 4488 // ConstantMaskOp 4489 //===----------------------------------------------------------------------===// 4490 4491 LogicalResult ConstantMaskOp::verify() { 4492 auto resultType = getResult().getType().cast<VectorType>(); 4493 // Check the corner case of 0-D vectors first. 4494 if (resultType.getRank() == 0) { 4495 if (getMaskDimSizes().size() != 1) 4496 return emitError("array attr must have length 1 for 0-D vectors"); 4497 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4498 if (dim != 0 && dim != 1) 4499 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4500 return success(); 4501 } 4502 4503 // Verify that array attr size matches the rank of the vector result. 4504 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4505 return emitOpError( 4506 "must specify array attr of size equal vector result rank"); 4507 // Verify that each array attr element is in bounds of corresponding vector 4508 // result dimension size. 4509 auto resultShape = resultType.getShape(); 4510 SmallVector<int64_t, 4> maskDimSizes; 4511 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4512 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4513 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4514 return emitOpError( 4515 "array attr of size out of bounds of vector result dimension size"); 4516 maskDimSizes.push_back(attrValue); 4517 } 4518 // Verify that if one mask dim size is zero, they all should be zero (because 4519 // the mask region is a conjunction of each mask dimension interval). 4520 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4521 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4522 if (anyZeros && !allZeros) 4523 return emitOpError("expected all mask dim sizes to be zeros, " 4524 "as a result of conjunction with zero mask dim"); 4525 // Verify that if the mask type is scalable, dimensions should be zero because 4526 // constant scalable masks can only be defined for the "none set" or "all set" 4527 // cases, and there is no VLA way to define an "all set" case for 4528 // `vector.constant_mask`. In the future, a convention could be established 4529 // to decide if a specific dimension value could be considered as "all set". 4530 if (resultType.isScalable() && 4531 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4532 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4533 return success(); 4534 } 4535 4536 //===----------------------------------------------------------------------===// 4537 // CreateMaskOp 4538 //===----------------------------------------------------------------------===// 4539 4540 LogicalResult CreateMaskOp::verify() { 4541 auto vectorType = getResult().getType().cast<VectorType>(); 4542 // Verify that an operand was specified for each result vector each dimension. 4543 if (vectorType.getRank() == 0) { 4544 if (getNumOperands() != 1) 4545 return emitOpError( 4546 "must specify exactly one operand for 0-D create_mask"); 4547 } else if (getNumOperands() != 4548 getResult().getType().cast<VectorType>().getRank()) { 4549 return emitOpError( 4550 "must specify an operand for each result vector dimension"); 4551 } 4552 return success(); 4553 } 4554 4555 namespace { 4556 4557 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4558 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4559 public: 4560 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4561 4562 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4563 PatternRewriter &rewriter) const override { 4564 // Return if any of 'createMaskOp' operands are not defined by a constant. 4565 auto isNotDefByConstant = [](Value operand) { 4566 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4567 }; 4568 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4569 return failure(); 4570 4571 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4572 // are negative or zero. 4573 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4574 if (vType.isScalable()) 4575 for (auto opDim : createMaskOp.getOperands()) { 4576 APInt intVal; 4577 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4578 intVal.isStrictlyPositive()) 4579 return failure(); 4580 } 4581 } 4582 4583 // Gather constant mask dimension sizes. 4584 SmallVector<int64_t, 4> maskDimSizes; 4585 for (auto it : llvm::zip(createMaskOp.operands(), 4586 createMaskOp.getType().getShape())) { 4587 auto *defOp = std::get<0>(it).getDefiningOp(); 4588 int64_t maxDimSize = std::get<1>(it); 4589 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4590 dimSize = std::min(dimSize, maxDimSize); 4591 // If one of dim sizes is zero, set all dims to zero. 4592 if (dimSize <= 0) { 4593 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4594 break; 4595 } 4596 maskDimSizes.push_back(dimSize); 4597 } 4598 // Replace 'createMaskOp' with ConstantMaskOp. 4599 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4600 createMaskOp, createMaskOp.getResult().getType(), 4601 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4602 return success(); 4603 } 4604 }; 4605 4606 } // namespace 4607 4608 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4609 MLIRContext *context) { 4610 results.add<CreateMaskFolder>(context); 4611 } 4612 4613 //===----------------------------------------------------------------------===// 4614 // ScanOp 4615 //===----------------------------------------------------------------------===// 4616 4617 LogicalResult ScanOp::verify() { 4618 VectorType srcType = getSourceType(); 4619 VectorType initialType = getInitialValueType(); 4620 // Check reduction dimension < rank. 4621 int64_t srcRank = srcType.getRank(); 4622 int64_t reductionDim = getReductionDim(); 4623 if (reductionDim >= srcRank) 4624 return emitOpError("reduction dimension ") 4625 << reductionDim << " has to be less than " << srcRank; 4626 4627 // Check that rank(initial_value) = rank(src) - 1. 4628 int64_t initialValueRank = initialType.getRank(); 4629 if (initialValueRank != srcRank - 1) 4630 return emitOpError("initial value rank ") 4631 << initialValueRank << " has to be equal to " << srcRank - 1; 4632 4633 // Check shapes of initial value and src. 4634 ArrayRef<int64_t> srcShape = srcType.getShape(); 4635 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4636 SmallVector<int64_t> expectedShape; 4637 for (int i = 0; i < srcRank; i++) { 4638 if (i != reductionDim) 4639 expectedShape.push_back(srcShape[i]); 4640 } 4641 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4642 [](std::tuple<int64_t, int64_t> s) { 4643 return std::get<0>(s) != std::get<1>(s); 4644 })) { 4645 return emitOpError("incompatible input/initial value shapes"); 4646 } 4647 4648 // Verify supported reduction kind. 4649 Type eltType = getDestType().getElementType(); 4650 if (!isSupportedCombiningKind(getKind(), eltType)) 4651 return emitOpError("unsupported reduction type ") 4652 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4653 << "'"; 4654 4655 return success(); 4656 } 4657 4658 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4659 RewritePatternSet &patterns) { 4660 patterns 4661 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4662 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4663 StridedSliceConstantMaskFolder, TransposeFolder>( 4664 patterns.getContext()); 4665 } 4666 4667 //===----------------------------------------------------------------------===// 4668 // SplatOp 4669 //===----------------------------------------------------------------------===// 4670 4671 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4672 auto constOperand = operands.front(); 4673 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4674 return {}; 4675 4676 // SplatElementsAttr::get treats single value for second arg as being a splat. 4677 return SplatElementsAttr::get(getType(), {constOperand}); 4678 } 4679 4680 //===----------------------------------------------------------------------===// 4681 // WarpExecuteOnLane0Op 4682 //===----------------------------------------------------------------------===// 4683 4684 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4685 p << "(" << getLaneid() << ")"; 4686 4687 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4688 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4689 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4690 4691 if (!getArgs().empty()) 4692 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4693 if (!getResults().empty()) 4694 p << " -> (" << getResults().getTypes() << ')'; 4695 p << " "; 4696 p.printRegion(getRegion(), 4697 /*printEntryBlockArgs=*/true, 4698 /*printBlockTerminators=*/!getResults().empty()); 4699 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4700 } 4701 4702 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4703 OperationState &result) { 4704 // Create the region. 4705 result.regions.reserve(1); 4706 Region *warpRegion = result.addRegion(); 4707 4708 auto &builder = parser.getBuilder(); 4709 OpAsmParser::UnresolvedOperand laneId; 4710 4711 // Parse predicate operand. 4712 if (parser.parseLParen() || 4713 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4714 parser.parseRParen()) 4715 return failure(); 4716 4717 int64_t warpSize; 4718 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4719 parser.parseRSquare()) 4720 return failure(); 4721 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4722 builder.getContext())), 4723 builder.getI64IntegerAttr(warpSize)); 4724 4725 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4726 return failure(); 4727 4728 llvm::SMLoc inputsOperandsLoc; 4729 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4730 SmallVector<Type> inputTypes; 4731 if (succeeded(parser.parseOptionalKeyword("args"))) { 4732 if (parser.parseLParen()) 4733 return failure(); 4734 4735 inputsOperandsLoc = parser.getCurrentLocation(); 4736 if (parser.parseOperandList(inputsOperands) || 4737 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4738 return failure(); 4739 } 4740 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4741 result.operands)) 4742 return failure(); 4743 4744 // Parse optional results type list. 4745 if (parser.parseOptionalArrowTypeList(result.types)) 4746 return failure(); 4747 // Parse the region. 4748 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4749 /*argTypes=*/{})) 4750 return failure(); 4751 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4752 4753 // Parse the optional attribute list. 4754 if (parser.parseOptionalAttrDict(result.attributes)) 4755 return failure(); 4756 return success(); 4757 } 4758 4759 void WarpExecuteOnLane0Op::getSuccessorRegions( 4760 Optional<unsigned> index, ArrayRef<Attribute> operands, 4761 SmallVectorImpl<RegionSuccessor> ®ions) { 4762 if (index) { 4763 regions.push_back(RegionSuccessor(getResults())); 4764 return; 4765 } 4766 4767 // The warp region is always executed 4768 regions.push_back(RegionSuccessor(&getWarpRegion())); 4769 } 4770 4771 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4772 TypeRange resultTypes, Value laneId, 4773 int64_t warpSize) { 4774 build(builder, result, resultTypes, laneId, warpSize, 4775 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4776 } 4777 4778 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4779 TypeRange resultTypes, Value laneId, 4780 int64_t warpSize, ValueRange args, 4781 TypeRange blockArgTypes) { 4782 result.addOperands(laneId); 4783 result.addAttribute(getAttributeNames()[0], 4784 builder.getI64IntegerAttr(warpSize)); 4785 result.addTypes(resultTypes); 4786 result.addOperands(args); 4787 assert(args.size() == blockArgTypes.size()); 4788 OpBuilder::InsertionGuard guard(builder); 4789 Region *warpRegion = result.addRegion(); 4790 Block *block = builder.createBlock(warpRegion); 4791 for (auto it : llvm::zip(blockArgTypes, args)) 4792 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4793 } 4794 4795 /// Helper check if the distributed vector type is consistent with the expanded 4796 /// type and distributed size. 4797 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4798 int64_t warpSize, Operation *op) { 4799 // If the types matches there is no distribution. 4800 if (expanded == distributed) 4801 return success(); 4802 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4803 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4804 if (!expandedVecType || !distributedVecType) 4805 return op->emitOpError("expected vector type for distributed operands."); 4806 if (expandedVecType.getRank() != distributedVecType.getRank() || 4807 expandedVecType.getElementType() != distributedVecType.getElementType()) 4808 return op->emitOpError( 4809 "expected distributed vectors to have same rank and element type."); 4810 bool foundDistributedDim = false; 4811 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4812 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4813 continue; 4814 if (expandedVecType.getDimSize(i) == 4815 distributedVecType.getDimSize(i) * warpSize) { 4816 if (foundDistributedDim) 4817 return op->emitOpError() 4818 << "expected only one dimension to be distributed from " 4819 << expandedVecType << " to " << distributedVecType; 4820 foundDistributedDim = true; 4821 continue; 4822 } 4823 return op->emitOpError() << "incompatible distribution dimensions from " 4824 << expandedVecType << " to " << distributedVecType; 4825 } 4826 return success(); 4827 } 4828 4829 LogicalResult WarpExecuteOnLane0Op::verify() { 4830 if (getArgs().size() != getWarpRegion().getNumArguments()) 4831 return emitOpError( 4832 "expected same number op arguments and block arguments."); 4833 auto yield = 4834 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4835 if (yield.getNumOperands() != getNumResults()) 4836 return emitOpError( 4837 "expected same number of yield operands and return values."); 4838 int64_t warpSize = getWarpSize(); 4839 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4840 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4841 std::get<1>(it).getType(), warpSize, 4842 getOperation()))) 4843 return failure(); 4844 } 4845 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4846 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4847 std::get<1>(it).getType(), warpSize, 4848 getOperation()))) 4849 return failure(); 4850 } 4851 return success(); 4852 } 4853 4854 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4855 return succeeded( 4856 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4857 } 4858 4859 //===----------------------------------------------------------------------===// 4860 // TableGen'd op method definitions 4861 //===----------------------------------------------------------------------===// 4862 4863 #define GET_OP_CLASSES 4864 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4865