1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(*kind, parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   return success();
407 }
408 
409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
410   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
411   Type redType;
412   Type resType;
413   CombiningKindAttr kindAttr;
414   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
415                                               result.attributes) ||
416       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
417       parser.parseColonType(redType) ||
418       parser.parseKeywordType("into", resType) ||
419       (!operandsInfo.empty() &&
420        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
421       (operandsInfo.size() > 1 &&
422        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
423       parser.addTypeToList(resType, result.types))
424     return failure();
425   if (operandsInfo.empty() || operandsInfo.size() > 2)
426     return parser.emitError(parser.getNameLoc(),
427                             "unsupported number of operands");
428   return success();
429 }
430 
431 void ReductionOp::print(OpAsmPrinter &p) {
432   p << " ";
433   getKindAttr().print(p);
434   p << ", " << getVector();
435   if (getAcc())
436     p << ", " << getAcc();
437   p << " : " << getVector().getType() << " into " << getDest().getType();
438 }
439 
440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
441                                          OpBuilder &builder, Location loc,
442                                          Value vector) {
443   switch (op) {
444   case arith::AtomicRMWKind::addf:
445   case arith::AtomicRMWKind::addi:
446     return builder.create<vector::ReductionOp>(vector.getLoc(),
447                                                CombiningKind::ADD, vector);
448   case arith::AtomicRMWKind::mulf:
449   case arith::AtomicRMWKind::muli:
450     return builder.create<vector::ReductionOp>(vector.getLoc(),
451                                                CombiningKind::MUL, vector);
452   case arith::AtomicRMWKind::minf:
453     return builder.create<vector::ReductionOp>(vector.getLoc(),
454                                                CombiningKind::MINF, vector);
455   case arith::AtomicRMWKind::mins:
456     return builder.create<vector::ReductionOp>(vector.getLoc(),
457                                                CombiningKind::MINSI, vector);
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MINUI, vector);
461   case arith::AtomicRMWKind::maxf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MAXF, vector);
464   case arith::AtomicRMWKind::maxs:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MAXSI, vector);
467   case arith::AtomicRMWKind::maxu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MAXUI, vector);
470   case arith::AtomicRMWKind::andi:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::AND, vector);
473   case arith::AtomicRMWKind::ori:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::OR, vector);
476   // TODO: Add remaining reduction operations.
477   default:
478     (void)emitOptionalError(loc, "Reduction operation type not supported");
479     break;
480   }
481   return nullptr;
482 }
483 
484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
485   return llvm::to_vector<4>(getVectorType().getShape());
486 }
487 
488 namespace {
489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
490   using OpRewritePattern::OpRewritePattern;
491 
492   LogicalResult matchAndRewrite(ReductionOp reductionOp,
493                                 PatternRewriter &rewriter) const override {
494     if (reductionOp.getVectorType().getDimSize(0) != 1)
495       return failure();
496 
497     Location loc = reductionOp.getLoc();
498     Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(),
499                                               reductionOp.getVector(),
500                                               rewriter.getI64ArrayAttr(0));
501 
502     if (Value acc = reductionOp.getAcc()) {
503       assert(reductionOp.getType().isa<FloatType>());
504       switch (reductionOp.getKind()) {
505       case CombiningKind::ADD:
506         result = rewriter.create<arith::AddFOp>(loc, result, acc);
507         break;
508       case CombiningKind::MUL:
509         result = rewriter.create<arith::MulFOp>(loc, result, acc);
510         break;
511       default:
512         assert(false && "invalid op!");
513       }
514     }
515 
516     rewriter.replaceOp(reductionOp, result);
517     return success();
518   }
519 };
520 } // namespace
521 
522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
523                                               MLIRContext *context) {
524   results.add<ElideSingleElementReduction>(context);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // ContractionOp
529 //===----------------------------------------------------------------------===//
530 
531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
532                                   Value lhs, Value rhs, Value acc,
533                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
534                                   ArrayRef<StringRef> iteratorTypes) {
535   result.addOperands({lhs, rhs, acc});
536   result.addTypes(acc.getType());
537   result.addAttribute(::mlir::getIndexingMapsAttrName(),
538                       builder.getAffineMapArrayAttr(
539                           AffineMap::inferFromExprList(indexingExprs)));
540   result.addAttribute(::mlir::getIteratorTypesAttrName(),
541                       builder.getStrArrayAttr(iteratorTypes));
542 }
543 
544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
545                                   Value lhs, Value rhs, Value acc,
546                                   ArrayAttr indexingMaps,
547                                   ArrayAttr iteratorTypes) {
548   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
549         ContractionOp::getDefaultKind());
550 }
551 
552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
553                                   Value lhs, Value rhs, Value acc,
554                                   ArrayAttr indexingMaps,
555                                   ArrayAttr iteratorTypes, CombiningKind kind) {
556   result.addOperands({lhs, rhs, acc});
557   result.addTypes(acc.getType());
558   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
559   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
560   result.addAttribute(ContractionOp::getKindAttrStrName(),
561                       CombiningKindAttr::get(kind, builder.getContext()));
562 }
563 
564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
565   OpAsmParser::UnresolvedOperand lhsInfo;
566   OpAsmParser::UnresolvedOperand rhsInfo;
567   OpAsmParser::UnresolvedOperand accInfo;
568   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
569   SmallVector<Type, 2> types;
570   Type resultType;
571   auto loc = parser.getCurrentLocation();
572   DictionaryAttr dictAttr;
573   // TODO: Unify linalg op attribute parsing.
574   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
575       parser.parseOperand(lhsInfo) || parser.parseComma() ||
576       parser.parseOperand(rhsInfo) || parser.parseComma() ||
577       parser.parseOperand(accInfo) ||
578       parser.parseTrailingOperandList(masksInfo) ||
579       parser.parseOptionalAttrDict(result.attributes) ||
580       parser.parseColonTypeList(types) ||
581       parser.parseKeywordType("into", resultType) ||
582       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
583       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
584       parser.resolveOperand(accInfo, resultType, result.operands) ||
585       parser.addTypeToList(resultType, result.types))
586     return failure();
587   result.attributes.assign(dictAttr.getValue().begin(),
588                            dictAttr.getValue().end());
589   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
590     result.addAttribute(ContractionOp::getKindAttrStrName(),
591                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
592                                                result.getContext()));
593   }
594   if (masksInfo.empty())
595     return success();
596   if (masksInfo.size() != 2)
597     return parser.emitError(parser.getNameLoc(),
598                             "expected zero or exactly 2 vector mask operands");
599   auto lhsType = types[0].cast<VectorType>();
600   auto rhsType = types[1].cast<VectorType>();
601   auto maskElementType = parser.getBuilder().getI1Type();
602   std::array<Type, 2> maskTypes = {
603       VectorType::Builder(lhsType).setElementType(maskElementType),
604       VectorType::Builder(rhsType).setElementType(maskElementType)};
605   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
606     return failure();
607   return success();
608 }
609 
610 void ContractionOp::print(OpAsmPrinter &p) {
611   // TODO: Unify printing code with linalg ops.
612   auto attrNames = getTraitAttrNames();
613   llvm::StringSet<> traitAttrsSet;
614   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
615   SmallVector<NamedAttribute, 8> attrs;
616   for (auto attr : (*this)->getAttrs())
617     if (traitAttrsSet.count(attr.getName().strref()) > 0)
618       attrs.push_back(attr);
619 
620   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
621   p << " " << dictAttr << " " << getLhs() << ", ";
622   p << getRhs() << ", " << getAcc();
623   if (getMasks().size() == 2)
624     p << ", " << getMasks();
625 
626   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
627   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
628     << getResultType();
629 }
630 
631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
632                          const std::vector<std::pair<int64_t, int64_t>> &map) {
633   for (auto &dimPair : map) {
634     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
635         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
636         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
637       return false;
638   }
639   return true;
640 }
641 
642 static LogicalResult verifyOutputShape(
643     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
644     Type resType,
645     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
646     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
647   DenseSet<int64_t> lhsContractingDimSet;
648   DenseSet<int64_t> rhsContractingDimSet;
649   for (auto &dimPair : contractingDimMap) {
650     lhsContractingDimSet.insert(dimPair.first);
651     rhsContractingDimSet.insert(dimPair.second);
652   }
653   DenseSet<int64_t> rhsBatchDimSet;
654   for (auto &dimPair : batchDimMap)
655     rhsBatchDimSet.insert(dimPair.second);
656 
657   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
658   SmallVector<int64_t, 4> expectedResultDims;
659   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
660     if (lhsContractingDimSet.count(i) > 0)
661       continue;
662     expectedResultDims.push_back(lhsType.getDimSize(i));
663   }
664 
665   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
666   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
667     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
668       continue;
669     expectedResultDims.push_back(rhsType.getDimSize(i));
670   }
671 
672   // Verify 'expectedResultDims'.
673   if (expectedResultDims.empty()) {
674     // No batch or free dimension implies a scalar result.
675     if (resType.isa<VectorType>() || accType.isa<VectorType>())
676       return op.emitOpError("invalid accumulator/result vector shape");
677   } else {
678     // At least one batch or free dimension implies a vector result.
679     auto resVectorType = resType.dyn_cast<VectorType>();
680     auto accVectorType = accType.dyn_cast<VectorType>();
681     if (!resVectorType || !accVectorType)
682       return op.emitOpError("invalid accumulator/result vector shape");
683 
684     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
685     // types fully define the result vector type. This assumes the affine maps
686     // are well-formed, which must have been verified already.
687     MLIRContext *ctx = op.getContext();
688     AffineMap lhsMap = op.getIndexingMaps()[0];
689     AffineMap rhsMap = op.getIndexingMaps()[1];
690     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
691     for (auto pair :
692          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
693       VectorType v = pair.first;
694       auto map = pair.second;
695       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
696         unsigned pos = map.getDimPosition(idx);
697         if (!extents[pos])
698           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
699       }
700     }
701     if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
702       return op.emitOpError("expected all input dimensions to be used by "
703                             "either the LHS or the RHS");
704 
705     AffineMap resMap = op.getIndexingMaps()[2];
706     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
707                                      /*symCount=*/0, extents, ctx);
708     // Compose the resMap with the extentsMap, which is a constant map.
709     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
710     assert(llvm::all_of(
711                expectedMap.getResults(),
712                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
713            "expected constant extent along all dimensions.");
714     // Extract the expected shape and build the type.
715     auto expectedShape = llvm::to_vector<4>(
716         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
717           return e.cast<AffineConstantExpr>().getValue();
718         }));
719     auto expected =
720         VectorType::get(expectedShape, resVectorType.getElementType());
721     if (resVectorType != expected || accVectorType != expected)
722       return op.emitOpError(
723                  "invalid accumulator/result vector shape, expected: ")
724              << expected;
725   }
726   return success();
727 }
728 
729 LogicalResult ContractionOp::verify() {
730   auto lhsType = getLhsType();
731   auto rhsType = getRhsType();
732   auto accType = getAccType();
733   auto resType = getResultType();
734 
735   // Verify that an indexing map was specified for each vector operand.
736   if (getIndexingMaps().size() != 3)
737     return emitOpError("expected an indexing map for each vector operand");
738 
739   // Verify that each index map has 'numIterators' inputs, no symbols, and
740   // that the number of map outputs equals the rank of its associated
741   // vector operand.
742   unsigned numIterators = getIteratorTypes().getValue().size();
743   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
744     auto index = it.index();
745     auto map = it.value();
746     if (map.getNumSymbols() != 0)
747       return emitOpError("expected indexing map ")
748              << index << " to have no symbols";
749     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
750     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
751     // Verify that the map has the right number of inputs, outputs, and indices.
752     // This also correctly accounts for (..) -> () for rank-0 results.
753     if (map.getNumDims() != numIterators)
754       return emitOpError("expected indexing map ")
755              << index << " to have " << numIterators << " number of inputs";
756     if (map.getNumResults() != rank)
757       return emitOpError("expected indexing map ")
758              << index << " to have " << rank << " number of outputs";
759     if (!map.isProjectedPermutation())
760       return emitOpError("expected indexing map ")
761              << index << " to be a projected permutation of its inputs";
762   }
763 
764   auto contractingDimMap = getContractingDimMap();
765   auto batchDimMap = getBatchDimMap();
766 
767   // Verify at least one contracting dimension pair was specified.
768   if (contractingDimMap.empty())
769     return emitOpError("expected at least one contracting dimension pair");
770 
771   // Verify contracting dimension map was properly constructed.
772   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
773     return emitOpError("invalid contracting dimension map");
774 
775   // Verify batch dimension map was properly constructed.
776   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
777     return emitOpError("invalid batch dimension map");
778 
779   // Verify 'accType' and 'resType' shape.
780   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
781                                contractingDimMap, batchDimMap)))
782     return failure();
783 
784   // Verify that either two vector masks are set or none are set.
785   auto lhsMaskType = getLHSVectorMaskType();
786   auto rhsMaskType = getRHSVectorMaskType();
787   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
788     return emitOpError("invalid number of vector masks specified");
789   if (lhsMaskType && rhsMaskType) {
790     // Verify mask rank == argument rank.
791     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
792         rhsMaskType.getShape().size() != rhsType.getShape().size())
793       return emitOpError("invalid vector mask rank");
794   }
795 
796   // Verify supported combining kind.
797   auto vectorType = resType.dyn_cast<VectorType>();
798   auto elementType = vectorType ? vectorType.getElementType() : resType;
799   if (!isSupportedCombiningKind(getKind(), elementType))
800     return emitOpError("unsupported contraction type");
801 
802   return success();
803 }
804 
805 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
806   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
807                                          ::mlir::getIteratorTypesAttrName(),
808                                          ContractionOp::getKindAttrStrName()};
809   return llvm::makeArrayRef(names);
810 }
811 
812 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
813   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
814     if (targetExpr == map.getResult(i))
815       return i;
816   return -1;
817 }
818 
819 static std::vector<std::pair<int64_t, int64_t>>
820 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
821           StringRef targetIteratorTypeName, MLIRContext *context) {
822   std::vector<std::pair<int64_t, int64_t>> dimMap;
823   for (const auto &it : llvm::enumerate(iteratorTypes)) {
824     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
825     if (iteratorTypeName != targetIteratorTypeName)
826       continue;
827     // Search lhs/rhs map results for 'targetExpr'.
828     auto targetExpr = getAffineDimExpr(it.index(), context);
829     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
830     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
831     if (lhsDim >= 0 && rhsDim >= 0)
832       dimMap.emplace_back(lhsDim, rhsDim);
833   }
834   return dimMap;
835 }
836 
837 void ContractionOp::getIterationBounds(
838     SmallVectorImpl<int64_t> &iterationBounds) {
839   auto lhsShape = getLhsType().getShape();
840   auto resVectorType = getResultType().dyn_cast<VectorType>();
841   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
842   SmallVector<int64_t, 2> iterationShape;
843   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
844     // Search lhs/rhs map results for 'targetExpr'.
845     auto targetExpr = getAffineDimExpr(it.index(), getContext());
846     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
847     if (iteratorTypeName == getReductionIteratorTypeName()) {
848       // Get reduction dim size from lhs shape (same size in rhsShape).
849       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
850       assert(lhsDimIndex >= 0);
851       iterationBounds.push_back(lhsShape[lhsDimIndex]);
852       continue;
853     }
854     // Get parallel dimension size from result shape.
855     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
856     assert(resDimIndex >= 0);
857     assert(resVectorType != nullptr);
858     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
859   }
860 }
861 
862 void ContractionOp::getIterationIndexMap(
863     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
864   unsigned numMaps = getIndexingMaps().size();
865   iterationIndexMap.resize(numMaps);
866   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
867     auto index = it.index();
868     auto map = it.value();
869     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
870       auto dim = map.getResult(i).cast<AffineDimExpr>();
871       iterationIndexMap[index][dim.getPosition()] = i;
872     }
873   }
874 }
875 
876 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
877   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
878   return getDimMap(indexingMaps, getIteratorTypes(),
879                    getReductionIteratorTypeName(), getContext());
880 }
881 
882 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
883   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
884   return getDimMap(indexingMaps, getIteratorTypes(),
885                    getParallelIteratorTypeName(), getContext());
886 }
887 
888 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
889   SmallVector<int64_t, 4> shape;
890   getIterationBounds(shape);
891   return shape;
892 }
893 
894 /// Return a fused vector::ContractionOp which represents a patterns such as:
895 ///
896 /// ```mlir
897 ///    %c0 = vector.constant 0: ...
898 ///    %c = vector.contract %a, %b, %c0: ...
899 ///    %e = add %c, %d: ...
900 /// ```
901 ///
902 /// by:
903 ///
904 /// ```mlir
905 ///    %e = vector.contract %a, %b, %d: ...
906 /// ```
907 ///
908 /// Return null if the canonicalization does not apply.
909 // TODO: This should be a folding of Add into Contract in core but while they
910 // live in different dialects, it is not possible without unnatural
911 // dependencies.
912 template <typename AddOpType>
913 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
914   using OpRewritePattern<AddOpType>::OpRewritePattern;
915 
916   LogicalResult matchAndRewrite(AddOpType addOp,
917                                 PatternRewriter &rewriter) const override {
918     auto canonicalize = [&](Value maybeContraction,
919                             Value otherOperand) -> vector::ContractionOp {
920       vector::ContractionOp contractionOp =
921           dyn_cast_or_null<vector::ContractionOp>(
922               maybeContraction.getDefiningOp());
923       if (!contractionOp)
924         return vector::ContractionOp();
925       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
926               contractionOp.getAcc().getDefiningOp())) {
927         if (maybeZero.getValue() ==
928             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
929           BlockAndValueMapping bvm;
930           bvm.map(contractionOp.getAcc(), otherOperand);
931           auto newContraction =
932               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
933           rewriter.replaceOp(addOp, newContraction.getResult());
934           return newContraction;
935         }
936       }
937       return vector::ContractionOp();
938     };
939 
940     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
941     vector::ContractionOp contract = canonicalize(a, b);
942     contract = contract ? contract : canonicalize(b, a);
943     return contract ? success() : failure();
944   }
945 };
946 
947 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
948                                                 MLIRContext *context) {
949   results.add<CanonicalizeContractAdd<arith::AddIOp>,
950               CanonicalizeContractAdd<arith::AddFOp>>(context);
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // ExtractElementOp
955 //===----------------------------------------------------------------------===//
956 
957 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
958                                      Value source) {
959   result.addOperands({source});
960   result.addTypes(source.getType().cast<VectorType>().getElementType());
961 }
962 
963 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
964                                      Value source, Value position) {
965   result.addOperands({source, position});
966   result.addTypes(source.getType().cast<VectorType>().getElementType());
967 }
968 
969 LogicalResult vector::ExtractElementOp::verify() {
970   VectorType vectorType = getVectorType();
971   if (vectorType.getRank() == 0) {
972     if (getPosition())
973       return emitOpError("expected position to be empty with 0-D vector");
974     return success();
975   }
976   if (vectorType.getRank() != 1)
977     return emitOpError("unexpected >1 vector rank");
978   if (!getPosition())
979     return emitOpError("expected position for 1-D vector");
980   return success();
981 }
982 
983 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
984   // Skip the 0-D vector here now.
985   if (operands.size() < 2)
986     return {};
987 
988   Attribute src = operands[0];
989   Attribute pos = operands[1];
990 
991   // Fold extractelement (splat X) -> X.
992   if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
993     return splat.getInput();
994 
995   if (!pos || !src)
996     return {};
997 
998   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
999 
1000   auto attr = pos.dyn_cast<IntegerAttr>();
1001   uint64_t posIdx = attr.getInt();
1002 
1003   return srcElements[posIdx];
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 // ExtractOp
1008 //===----------------------------------------------------------------------===//
1009 
1010 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1011                               Value source, ArrayRef<int64_t> position) {
1012   build(builder, result, source, getVectorSubscriptAttr(builder, position));
1013 }
1014 
1015 // Convenience builder which assumes the values are constant indices.
1016 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
1017                               Value source, ValueRange position) {
1018   SmallVector<int64_t, 4> positionConstants =
1019       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1020         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1021       }));
1022   build(builder, result, source, positionConstants);
1023 }
1024 
1025 LogicalResult
1026 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1027                             ValueRange operands, DictionaryAttr attributes,
1028                             RegionRange,
1029                             SmallVectorImpl<Type> &inferredReturnTypes) {
1030   ExtractOp::Adaptor op(operands, attributes);
1031   auto vectorType = op.getVector().getType().cast<VectorType>();
1032   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
1033     inferredReturnTypes.push_back(vectorType.getElementType());
1034   } else {
1035     auto n =
1036         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
1037     inferredReturnTypes.push_back(VectorType::get(
1038         vectorType.getShape().drop_front(n), vectorType.getElementType()));
1039   }
1040   return success();
1041 }
1042 
1043 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1044   // Allow extracting 1-element vectors instead of scalars.
1045   auto isCompatible = [](TypeRange l, TypeRange r) {
1046     auto vectorType = l.front().dyn_cast<VectorType>();
1047     return vectorType && vectorType.getShape().equals({1}) &&
1048            vectorType.getElementType() == r.front();
1049   };
1050   if (l.size() == 1 && r.size() == 1 &&
1051       (isCompatible(l, r) || isCompatible(r, l)))
1052     return true;
1053   return l == r;
1054 }
1055 
1056 LogicalResult vector::ExtractOp::verify() {
1057   auto positionAttr = getPosition().getValue();
1058   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1059     return emitOpError(
1060         "expected position attribute of rank smaller than vector rank");
1061   for (const auto &en : llvm::enumerate(positionAttr)) {
1062     auto attr = en.value().dyn_cast<IntegerAttr>();
1063     if (!attr || attr.getInt() < 0 ||
1064         attr.getInt() >= getVectorType().getDimSize(en.index()))
1065       return emitOpError("expected position attribute #")
1066              << (en.index() + 1)
1067              << " to be a non-negative integer smaller than the corresponding "
1068                 "vector dimension";
1069   }
1070   return success();
1071 }
1072 
1073 template <typename IntType>
1074 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1075   return llvm::to_vector<4>(llvm::map_range(
1076       arrayAttr.getAsRange<IntegerAttr>(),
1077       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1078 }
1079 
1080 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1081 /// positions.
1082 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1083   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1084     return failure();
1085 
1086   SmallVector<int64_t, 4> globalPosition;
1087   ExtractOp currentOp = extractOp;
1088   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1089   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1090   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1091     currentOp = nextOp;
1092     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1093     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1094   }
1095   extractOp.setOperand(currentOp.getVector());
1096   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1097   OpBuilder b(extractOp.getContext());
1098   std::reverse(globalPosition.begin(), globalPosition.end());
1099   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1100                      b.getI64ArrayAttr(globalPosition));
1101   return success();
1102 }
1103 
1104 namespace {
1105 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1106 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1107 /// Compose TransposeOp permutations as we walk back.
1108 /// This helper class keeps an updated extraction position `extractPosition`
1109 /// with extra trailing sentinels.
1110 /// The sentinels encode the internal transposition status of the result vector.
1111 /// As we iterate, extractPosition is permuted and updated.
1112 class ExtractFromInsertTransposeChainState {
1113 public:
1114   ExtractFromInsertTransposeChainState(ExtractOp e);
1115 
1116   /// Iterate over producing insert and transpose ops until we find a fold.
1117   Value fold();
1118 
1119 private:
1120   /// Return true if the vector at position `a` is contained within the vector
1121   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1122   /// is a prefix of `b`.
1123   template <typename ContainerA, typename ContainerB>
1124   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1125     return a.size() <= b.size() &&
1126            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1127   }
1128 
1129   /// Return true if the vector at position `a` intersects the vector at
1130   /// position `b`. Under insert/extract semantics, this is the same as equality
1131   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1132   /// Comparison is on the common prefix (i.e. zip).
1133   template <typename ContainerA, typename ContainerB>
1134   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1135     for (auto it : llvm::zip(a, b)) {
1136       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1137         continue;
1138       if (std::get<0>(it) != std::get<1>(it))
1139         return false;
1140     }
1141     return true;
1142   }
1143 
1144   /// Folding is only possible in the absence of an internal permutation in the
1145   /// result vector.
1146   bool canFold() {
1147     return (sentinels ==
1148             makeArrayRef(extractPosition).drop_front(extractedRank));
1149   }
1150 
1151   // Helper to get the next defining op of interest.
1152   void updateStateForNextIteration(Value v) {
1153     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1154     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1155   };
1156 
1157   // Case 1. If we hit a transpose, just compose the map and iterate.
1158   // Invariant: insert + transpose do not change rank, we can always compose.
1159   LogicalResult handleTransposeOp();
1160 
1161   // Case 2: the insert position matches extractPosition exactly, early return.
1162   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1163 
1164   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1165   /// portion of the source of the insert.
1166   /// Example:
1167   /// ```
1168   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1169   /// // extractPosition == [1, 2, 3]
1170   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1171   /// // can fold to vector.extract %source[0, 3]
1172   /// %ext = vector.extract %source[3]: vector<5x6>
1173   /// ```
1174   /// To traverse through %source, we need to set the leading dims to 0 and
1175   /// drop the extra leading dims.
1176   /// This method updates the internal state.
1177   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1178 
1179   /// Try to fold in place to extract(source, extractPosition) and return the
1180   /// folded result. Return null if folding is not possible (e.g. due to an
1181   /// internal tranposition in the result).
1182   Value tryToFoldExtractOpInPlace(Value source);
1183 
1184   ExtractOp extractOp;
1185   int64_t vectorRank;
1186   int64_t extractedRank;
1187 
1188   InsertOp nextInsertOp;
1189   TransposeOp nextTransposeOp;
1190 
1191   /// Sentinel values that encode the internal permutation status of the result.
1192   /// They are set to (-1, ... , -k) at the beginning and appended to
1193   /// `extractPosition`.
1194   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1195   /// ensure that there is no internal transposition.
1196   /// Internal transposition cannot be accounted for with a folding pattern.
1197   // TODO: We could relax the internal transposition with an extra transposition
1198   // operation in a future canonicalizer.
1199   SmallVector<int64_t> sentinels;
1200   SmallVector<int64_t> extractPosition;
1201 };
1202 } // namespace
1203 
1204 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1205     ExtractOp e)
1206     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1207       extractedRank(extractOp.getPosition().size()) {
1208   assert(vectorRank >= extractedRank && "extracted pos overflow");
1209   sentinels.reserve(vectorRank - extractedRank);
1210   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1211     sentinels.push_back(-(i + 1));
1212   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1213   llvm::append_range(extractPosition, sentinels);
1214 }
1215 
1216 // Case 1. If we hit a transpose, just compose the map and iterate.
1217 // Invariant: insert + transpose do not change rank, we can always compose.
1218 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1219   if (!nextTransposeOp)
1220     return failure();
1221   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1222   AffineMap m = inversePermutation(
1223       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1224   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1225   return success();
1226 }
1227 
1228 // Case 2: the insert position matches extractPosition exactly, early return.
1229 LogicalResult
1230 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1231     Value &res) {
1232   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1233   if (makeArrayRef(insertedPos) !=
1234       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1235     return failure();
1236   // Case 2.a. early-exit fold.
1237   res = nextInsertOp.getSource();
1238   // Case 2.b. if internal transposition is present, canFold will be false.
1239   return success();
1240 }
1241 
1242 /// Case 3: if inserted position is a prefix of extractPosition,
1243 /// extract a portion of the source of the insertion.
1244 /// This method updates the internal state.
1245 LogicalResult
1246 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1247   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1248   if (!isContainedWithin(insertedPos, extractPosition))
1249     return failure();
1250   // Set leading dims to zero.
1251   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1252   // Drop extra leading dims.
1253   extractPosition.erase(extractPosition.begin(),
1254                         extractPosition.begin() + insertedPos.size());
1255   extractedRank = extractPosition.size() - sentinels.size();
1256   // Case 3.a. early-exit fold (break and delegate to post-while path).
1257   res = nextInsertOp.getSource();
1258   // Case 3.b. if internal transposition is present, canFold will be false.
1259   return success();
1260 }
1261 
1262 /// Try to fold in place to extract(source, extractPosition) and return the
1263 /// folded result. Return null if folding is not possible (e.g. due to an
1264 /// internal tranposition in the result).
1265 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1266     Value source) {
1267   // If we can't fold (either internal transposition, or nothing to fold), bail.
1268   bool nothingToFold = (source == extractOp.getVector());
1269   if (nothingToFold || !canFold())
1270     return Value();
1271   // Otherwise, fold by updating the op inplace and return its result.
1272   OpBuilder b(extractOp.getContext());
1273   extractOp->setAttr(
1274       extractOp.getPositionAttrName(),
1275       b.getI64ArrayAttr(
1276           makeArrayRef(extractPosition).take_front(extractedRank)));
1277   extractOp.getVectorMutable().assign(source);
1278   return extractOp.getResult();
1279 }
1280 
1281 /// Iterate over producing insert and transpose ops until we find a fold.
1282 Value ExtractFromInsertTransposeChainState::fold() {
1283   Value valueToExtractFrom = extractOp.getVector();
1284   updateStateForNextIteration(valueToExtractFrom);
1285   while (nextInsertOp || nextTransposeOp) {
1286     // Case 1. If we hit a transpose, just compose the map and iterate.
1287     // Invariant: insert + transpose do not change rank, we can always compose.
1288     if (succeeded(handleTransposeOp())) {
1289       valueToExtractFrom = nextTransposeOp.getVector();
1290       updateStateForNextIteration(valueToExtractFrom);
1291       continue;
1292     }
1293 
1294     Value result;
1295     // Case 2: the position match exactly.
1296     if (succeeded(handleInsertOpWithMatchingPos(result)))
1297       return result;
1298 
1299     // Case 3: if the inserted position is a prefix of extractPosition, we can
1300     // just extract a portion of the source of the insert.
1301     if (succeeded(handleInsertOpWithPrefixPos(result)))
1302       return tryToFoldExtractOpInPlace(result);
1303 
1304     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1305     // values. This is a more difficult case and we bail.
1306     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1307     if (isContainedWithin(extractPosition, insertedPos) ||
1308         intersectsWhereNonNegative(extractPosition, insertedPos))
1309       return Value();
1310 
1311     // Case 5: No intersection, we forward the extract to insertOp.dest().
1312     valueToExtractFrom = nextInsertOp.getDest();
1313     updateStateForNextIteration(valueToExtractFrom);
1314   }
1315   // If after all this we can fold, go for it.
1316   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1317 }
1318 
1319 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1320 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1321   Operation *defOp = extractOp.getVector().getDefiningOp();
1322   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1323     return Value();
1324   Value source = defOp->getOperand(0);
1325   if (extractOp.getType() == source.getType())
1326     return source;
1327   auto getRank = [](Type type) {
1328     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1329   };
1330   unsigned broadcastSrcRank = getRank(source.getType());
1331   unsigned extractResultRank = getRank(extractOp.getType());
1332   if (extractResultRank >= broadcastSrcRank)
1333     return Value();
1334   // Check that the dimension of the result haven't been broadcasted.
1335   auto extractVecType = extractOp.getType().dyn_cast<VectorType>();
1336   auto broadcastVecType = source.getType().dyn_cast<VectorType>();
1337   if (extractVecType && broadcastVecType &&
1338       extractVecType.getShape() !=
1339           broadcastVecType.getShape().take_back(extractResultRank))
1340     return Value();
1341   auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1342   unsigned rankDiff = broadcastSrcRank - extractResultRank;
1343   extractPos.erase(extractPos.begin(),
1344                    std::next(extractPos.begin(), extractPos.size() - rankDiff));
1345   extractOp.setOperand(source);
1346   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1347   OpBuilder b(extractOp.getContext());
1348   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1349                      b.getI64ArrayAttr(extractPos));
1350   return extractOp.getResult();
1351 }
1352 
1353 // Fold extractOp with source coming from ShapeCast op.
1354 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1355   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1356   if (!shapeCastOp)
1357     return Value();
1358   // Get the nth dimension size starting from lowest dimension.
1359   auto getDimReverse = [](VectorType type, int64_t n) {
1360     return type.getShape().take_back(n + 1).front();
1361   };
1362   int64_t destinationRank =
1363       extractOp.getType().isa<VectorType>()
1364           ? extractOp.getType().cast<VectorType>().getRank()
1365           : 0;
1366   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1367     return Value();
1368   if (destinationRank > 0) {
1369     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1370     for (int64_t i = 0; i < destinationRank; i++) {
1371       // The lowest dimension of of the destination must match the lowest
1372       // dimension of the shapecast op source.
1373       // TODO: This case could be support in a canonicalization pattern.
1374       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1375           getDimReverse(destinationType, i))
1376         return Value();
1377     }
1378   }
1379   // Extract the strides associated with the extract op vector source. Then use
1380   // this to calculate a linearized position for the extract.
1381   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1382   std::reverse(extractedPos.begin(), extractedPos.end());
1383   SmallVector<int64_t, 4> strides;
1384   int64_t stride = 1;
1385   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1386     strides.push_back(stride);
1387     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1388   }
1389 
1390   int64_t position = linearize(extractedPos, strides);
1391   // Then extract the strides associated to the shapeCast op vector source and
1392   // delinearize the position using those strides.
1393   SmallVector<int64_t, 4> newStrides;
1394   int64_t numDimension =
1395       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1396   stride = 1;
1397   for (int64_t i = 0; i < numDimension; i++) {
1398     newStrides.push_back(stride);
1399     stride *=
1400         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1401   }
1402   std::reverse(newStrides.begin(), newStrides.end());
1403   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1404   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1405   OpBuilder b(extractOp.getContext());
1406   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1407                      b.getI64ArrayAttr(newPosition));
1408   extractOp.setOperand(shapeCastOp.getSource());
1409   return extractOp.getResult();
1410 }
1411 
1412 /// Fold an ExtractOp from ExtractStridedSliceOp.
1413 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1414   auto extractStridedSliceOp =
1415       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1416   if (!extractStridedSliceOp)
1417     return Value();
1418   // Return if 'extractStridedSliceOp' has non-unit strides.
1419   if (extractStridedSliceOp.hasNonUnitStrides())
1420     return Value();
1421 
1422   // Trim offsets for dimensions fully extracted.
1423   auto sliceOffsets =
1424       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1425   while (!sliceOffsets.empty()) {
1426     size_t lastOffset = sliceOffsets.size() - 1;
1427     if (sliceOffsets.back() != 0 ||
1428         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1429             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1430       break;
1431     sliceOffsets.pop_back();
1432   }
1433   unsigned destinationRank = 0;
1434   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1435     destinationRank = vecType.getRank();
1436   // The dimensions of the result need to be untouched by the
1437   // extractStridedSlice op.
1438   if (destinationRank >
1439       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1440     return Value();
1441   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1442   assert(extractedPos.size() >= sliceOffsets.size());
1443   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1444     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1445   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1446   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1447   OpBuilder b(extractOp.getContext());
1448   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1449                      b.getI64ArrayAttr(extractedPos));
1450   return extractOp.getResult();
1451 }
1452 
1453 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1454 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1455   int64_t destinationRank = op.getType().isa<VectorType>()
1456                                 ? op.getType().cast<VectorType>().getRank()
1457                                 : 0;
1458   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1459   while (insertOp) {
1460     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1461                              insertOp.getSourceVectorType().getRank();
1462     if (destinationRank > insertOp.getSourceVectorType().getRank())
1463       return Value();
1464     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1465     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1466 
1467     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1468           return attr.cast<IntegerAttr>().getInt() != 1;
1469         }))
1470       return Value();
1471     bool disjoint = false;
1472     SmallVector<int64_t, 4> offsetDiffs;
1473     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1474       int64_t start = insertOffsets[dim];
1475       int64_t size =
1476           (dim < insertRankDiff)
1477               ? 1
1478               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1479       int64_t end = start + size;
1480       int64_t offset = extractOffsets[dim];
1481       // Check if the start of the extract offset is in the interval inserted.
1482       if (start <= offset && offset < end) {
1483         if (dim >= insertRankDiff)
1484           offsetDiffs.push_back(offset - start);
1485         continue;
1486       }
1487       disjoint = true;
1488       break;
1489     }
1490     // The extract element chunk overlap with the vector inserted.
1491     if (!disjoint) {
1492       // If any of the inner dimensions are only partially inserted we have a
1493       // partial overlap.
1494       int64_t srcRankDiff =
1495           insertOp.getSourceVectorType().getRank() - destinationRank;
1496       for (int64_t i = 0; i < destinationRank; i++) {
1497         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1498             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1499                                                     insertRankDiff))
1500           return Value();
1501       }
1502       op.getVectorMutable().assign(insertOp.getSource());
1503       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1504       OpBuilder b(op.getContext());
1505       op->setAttr(ExtractOp::getPositionAttrStrName(),
1506                   b.getI64ArrayAttr(offsetDiffs));
1507       return op.getResult();
1508     }
1509     // If the chunk extracted is disjoint from the chunk inserted, keep
1510     // looking in the insert chain.
1511     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1512   }
1513   return Value();
1514 }
1515 
1516 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1517   if (getPosition().empty())
1518     return getVector();
1519   if (succeeded(foldExtractOpFromExtractChain(*this)))
1520     return getResult();
1521   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1522     return res;
1523   if (auto res = foldExtractFromBroadcast(*this))
1524     return res;
1525   if (auto res = foldExtractFromShapeCast(*this))
1526     return res;
1527   if (auto val = foldExtractFromExtractStrided(*this))
1528     return val;
1529   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1530     return val;
1531   return OpFoldResult();
1532 }
1533 
1534 namespace {
1535 
1536 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1537 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1538 public:
1539   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1540 
1541   LogicalResult matchAndRewrite(ExtractOp extractOp,
1542                                 PatternRewriter &rewriter) const override {
1543     Operation *defOp = extractOp.getVector().getDefiningOp();
1544     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1545       return failure();
1546 
1547     Value source = defOp->getOperand(0);
1548     if (extractOp.getType() == source.getType())
1549       return failure();
1550     auto getRank = [](Type type) {
1551       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1552     };
1553     unsigned broadcastSrcRank = getRank(source.getType());
1554     unsigned extractResultRank = getRank(extractOp.getType());
1555     // We only consider the case where the rank of the source is less than or
1556     // equal to the rank of the extract dst. The other cases are handled in the
1557     // folding patterns.
1558     if (extractResultRank < broadcastSrcRank)
1559       return failure();
1560     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1561         extractOp, extractOp.getType(), source);
1562     return success();
1563   }
1564 };
1565 
1566 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1567 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1568 public:
1569   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1570 
1571   LogicalResult matchAndRewrite(ExtractOp extractOp,
1572                                 PatternRewriter &rewriter) const override {
1573     // Return if 'extractStridedSliceOp' operand is not defined by a
1574     // ConstantOp.
1575     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1576     if (!constantOp)
1577       return failure();
1578     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1579     if (!dense)
1580       return failure();
1581     Attribute newAttr = dense.getSplatValue<Attribute>();
1582     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1583       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1584     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1585     return success();
1586   }
1587 };
1588 
1589 } // namespace
1590 
1591 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1592                                             MLIRContext *context) {
1593   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1594 }
1595 
1596 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1597                                        SmallVectorImpl<int64_t> &results) {
1598   for (auto attr : arrayAttr)
1599     results.push_back(attr.cast<IntegerAttr>().getInt());
1600 }
1601 
1602 //===----------------------------------------------------------------------===//
1603 // ExtractMapOp
1604 //===----------------------------------------------------------------------===//
1605 
1606 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1607                          Value vector, ValueRange ids,
1608                          ArrayRef<int64_t> multiplicity,
1609                          AffineMap permutationMap) {
1610   assert(ids.size() == multiplicity.size() &&
1611          ids.size() == permutationMap.getNumResults());
1612   assert(permutationMap.isProjectedPermutation());
1613   VectorType type = vector.getType().cast<VectorType>();
1614   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1615                                    type.getShape().end());
1616   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1617     AffineExpr expr = permutationMap.getResult(i);
1618     auto dim = expr.cast<AffineDimExpr>();
1619     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1620   }
1621   VectorType resultType = VectorType::get(newShape, type.getElementType());
1622   ExtractMapOp::build(builder, result, resultType, vector, ids);
1623 }
1624 
1625 LogicalResult ExtractMapOp::verify() {
1626   if (getSourceVectorType().getRank() != getResultType().getRank())
1627     return emitOpError("expected source and destination vectors of same rank");
1628   unsigned numId = 0;
1629   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1630     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1631         0)
1632       return emitOpError("source vector dimensions must be a multiple of "
1633                          "destination vector dimensions");
1634     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1635       numId++;
1636   }
1637   if (numId != getIds().size())
1638     return emitOpError("expected number of ids must match the number of "
1639                        "dimensions distributed");
1640   return success();
1641 }
1642 
1643 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1644   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1645   if (insert == nullptr || getType() != insert.getVector().getType() ||
1646       getIds() != insert.getIds())
1647     return {};
1648   return insert.getVector();
1649 }
1650 
1651 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1652   assert(multiplicity.empty());
1653   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1654     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1655       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1656                              getResultType().getDimSize(i));
1657   }
1658 }
1659 
1660 template <typename MapOp>
1661 AffineMap calculateImplicitMap(MapOp op) {
1662   SmallVector<AffineExpr, 4> perm;
1663   // Check which dimension have a multiplicity greater than 1 and associated
1664   // them to the IDs in order.
1665   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1666     if (op.getSourceVectorType().getDimSize(i) !=
1667         op.getResultType().getDimSize(i))
1668       perm.push_back(getAffineDimExpr(i, op.getContext()));
1669   }
1670   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1671                             op.getContext());
1672   return map;
1673 }
1674 
1675 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1676 
1677 //===----------------------------------------------------------------------===//
1678 // FmaOp
1679 //===----------------------------------------------------------------------===//
1680 
1681 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1682   return llvm::to_vector<4>(getVectorType().getShape());
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // BroadcastOp
1687 //===----------------------------------------------------------------------===//
1688 
1689 BroadcastableToResult
1690 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1691                                 std::pair<int, int> *mismatchingDims) {
1692   // Broadcast scalar to vector of the same element type.
1693   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1694       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1695     return BroadcastableToResult::Success;
1696   // From now on, only vectors broadcast.
1697   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1698   if (!srcVectorType)
1699     return BroadcastableToResult::SourceTypeNotAVector;
1700 
1701   int64_t srcRank = srcVectorType.getRank();
1702   int64_t dstRank = dstVectorType.getRank();
1703   if (srcRank > dstRank)
1704     return BroadcastableToResult::SourceRankHigher;
1705   // Source has an exact match or singleton value for all trailing dimensions
1706   // (all leading dimensions are simply duplicated).
1707   int64_t lead = dstRank - srcRank;
1708   for (int64_t r = 0; r < srcRank; ++r) {
1709     int64_t srcDim = srcVectorType.getDimSize(r);
1710     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1711     if (srcDim != 1 && srcDim != dstDim) {
1712       if (mismatchingDims) {
1713         mismatchingDims->first = srcDim;
1714         mismatchingDims->second = dstDim;
1715       }
1716       return BroadcastableToResult::DimensionMismatch;
1717     }
1718   }
1719 
1720   return BroadcastableToResult::Success;
1721 }
1722 
1723 LogicalResult BroadcastOp::verify() {
1724   std::pair<int, int> mismatchingDims;
1725   BroadcastableToResult res =
1726       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1727   if (res == BroadcastableToResult::Success)
1728     return success();
1729   if (res == BroadcastableToResult::SourceRankHigher)
1730     return emitOpError("source rank higher than destination rank");
1731   if (res == BroadcastableToResult::DimensionMismatch)
1732     return emitOpError("dimension mismatch (")
1733            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1734   if (res == BroadcastableToResult::SourceTypeNotAVector)
1735     return emitOpError("source type is not a vector");
1736   llvm_unreachable("unexpected vector.broadcast op error");
1737 }
1738 
1739 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1740   if (getSourceType() == getVectorType())
1741     return getSource();
1742   if (!operands[0])
1743     return {};
1744   auto vectorType = getVectorType();
1745   if (operands[0].getType().isIntOrIndexOrFloat())
1746     return DenseElementsAttr::get(vectorType, operands[0]);
1747   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1748     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1749   return {};
1750 }
1751 
1752 namespace {
1753 
1754 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1755 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1756   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1757 
1758   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1759                                 PatternRewriter &rewriter) const override {
1760     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1761     if (!srcBroadcast)
1762       return failure();
1763     rewriter.replaceOpWithNewOp<BroadcastOp>(
1764         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1765     return success();
1766   }
1767 };
1768 } // namespace
1769 
1770 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1771                                               MLIRContext *context) {
1772   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1773   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1774   results.add<BroadcastFolder>(context);
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 // ShuffleOp
1779 //===----------------------------------------------------------------------===//
1780 
1781 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1782                       Value v2, ArrayRef<int64_t> mask) {
1783   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1784 }
1785 
1786 LogicalResult ShuffleOp::verify() {
1787   VectorType resultType = getVectorType();
1788   VectorType v1Type = getV1VectorType();
1789   VectorType v2Type = getV2VectorType();
1790   // Verify ranks.
1791   int64_t resRank = resultType.getRank();
1792   int64_t v1Rank = v1Type.getRank();
1793   int64_t v2Rank = v2Type.getRank();
1794   if (resRank != v1Rank || v1Rank != v2Rank)
1795     return emitOpError("rank mismatch");
1796   // Verify all but leading dimension sizes.
1797   for (int64_t r = 1; r < v1Rank; ++r) {
1798     int64_t resDim = resultType.getDimSize(r);
1799     int64_t v1Dim = v1Type.getDimSize(r);
1800     int64_t v2Dim = v2Type.getDimSize(r);
1801     if (resDim != v1Dim || v1Dim != v2Dim)
1802       return emitOpError("dimension mismatch");
1803   }
1804   // Verify mask length.
1805   auto maskAttr = getMask().getValue();
1806   int64_t maskLength = maskAttr.size();
1807   if (maskLength <= 0)
1808     return emitOpError("invalid mask length");
1809   if (maskLength != resultType.getDimSize(0))
1810     return emitOpError("mask length mismatch");
1811   // Verify all indices.
1812   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1813   for (const auto &en : llvm::enumerate(maskAttr)) {
1814     auto attr = en.value().dyn_cast<IntegerAttr>();
1815     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1816       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1817   }
1818   return success();
1819 }
1820 
1821 LogicalResult
1822 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1823                             ValueRange operands, DictionaryAttr attributes,
1824                             RegionRange,
1825                             SmallVectorImpl<Type> &inferredReturnTypes) {
1826   ShuffleOp::Adaptor op(operands, attributes);
1827   auto v1Type = op.getV1().getType().cast<VectorType>();
1828   // Construct resulting type: leading dimension matches mask length,
1829   // all trailing dimensions match the operands.
1830   SmallVector<int64_t, 4> shape;
1831   shape.reserve(v1Type.getRank());
1832   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1833   llvm::append_range(shape, v1Type.getShape().drop_front());
1834   inferredReturnTypes.push_back(
1835       VectorType::get(shape, v1Type.getElementType()));
1836   return success();
1837 }
1838 
1839 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1840   uint64_t expected = begin;
1841   return idxArr.size() == width &&
1842          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1843                       [&expected](auto attr) {
1844                         return attr.getZExtValue() == expected++;
1845                       });
1846 }
1847 
1848 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1849   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1850   if (!getV1VectorType().isScalable() &&
1851       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1852     return getV1();
1853   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1854   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1855       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1856                        getV2VectorType().getDimSize(0)))
1857     return getV2();
1858 
1859   Attribute lhs = operands.front(), rhs = operands.back();
1860   if (!lhs || !rhs)
1861     return {};
1862 
1863   auto lhsType = lhs.getType().cast<VectorType>();
1864   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1865   // manipulation.
1866   if (lhsType.getRank() != 1)
1867     return {};
1868   int64_t lhsSize = lhsType.getDimSize(0);
1869 
1870   SmallVector<Attribute> results;
1871   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1872   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1873   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1874     int64_t i = index.getZExtValue();
1875     if (i >= lhsSize) {
1876       results.push_back(rhsElements[i - lhsSize]);
1877     } else {
1878       results.push_back(lhsElements[i]);
1879     }
1880   }
1881 
1882   return DenseElementsAttr::get(getVectorType(), results);
1883 }
1884 
1885 //===----------------------------------------------------------------------===//
1886 // InsertElementOp
1887 //===----------------------------------------------------------------------===//
1888 
1889 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1890                             Value source, Value dest) {
1891   build(builder, result, source, dest, {});
1892 }
1893 
1894 LogicalResult InsertElementOp::verify() {
1895   auto dstVectorType = getDestVectorType();
1896   if (dstVectorType.getRank() == 0) {
1897     if (getPosition())
1898       return emitOpError("expected position to be empty with 0-D vector");
1899     return success();
1900   }
1901   if (dstVectorType.getRank() != 1)
1902     return emitOpError("unexpected >1 vector rank");
1903   if (!getPosition())
1904     return emitOpError("expected position for 1-D vector");
1905   return success();
1906 }
1907 
1908 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1909   // Skip the 0-D vector here.
1910   if (operands.size() < 3)
1911     return {};
1912 
1913   Attribute src = operands[0];
1914   Attribute dst = operands[1];
1915   Attribute pos = operands[2];
1916   if (!src || !dst || !pos)
1917     return {};
1918 
1919   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1920 
1921   SmallVector<Attribute> results(dstElements);
1922 
1923   auto attr = pos.dyn_cast<IntegerAttr>();
1924   uint64_t posIdx = attr.getInt();
1925 
1926   results[posIdx] = src;
1927 
1928   return DenseElementsAttr::get(getDestVectorType(), results);
1929 }
1930 
1931 //===----------------------------------------------------------------------===//
1932 // InsertOp
1933 //===----------------------------------------------------------------------===//
1934 
1935 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1936                      Value dest, ArrayRef<int64_t> position) {
1937   result.addOperands({source, dest});
1938   auto positionAttr = getVectorSubscriptAttr(builder, position);
1939   result.addTypes(dest.getType());
1940   result.addAttribute(getPositionAttrStrName(), positionAttr);
1941 }
1942 
1943 // Convenience builder which assumes the values are constant indices.
1944 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1945                      Value dest, ValueRange position) {
1946   SmallVector<int64_t, 4> positionConstants =
1947       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1948         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1949       }));
1950   build(builder, result, source, dest, positionConstants);
1951 }
1952 
1953 LogicalResult InsertOp::verify() {
1954   auto positionAttr = getPosition().getValue();
1955   auto destVectorType = getDestVectorType();
1956   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1957     return emitOpError(
1958         "expected position attribute of rank smaller than dest vector rank");
1959   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1960   if (srcVectorType &&
1961       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1962        static_cast<unsigned>(destVectorType.getRank())))
1963     return emitOpError("expected position attribute rank + source rank to "
1964                        "match dest vector rank");
1965   if (!srcVectorType &&
1966       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1967     return emitOpError(
1968         "expected position attribute rank to match the dest vector rank");
1969   for (const auto &en : llvm::enumerate(positionAttr)) {
1970     auto attr = en.value().dyn_cast<IntegerAttr>();
1971     if (!attr || attr.getInt() < 0 ||
1972         attr.getInt() >= destVectorType.getDimSize(en.index()))
1973       return emitOpError("expected position attribute #")
1974              << (en.index() + 1)
1975              << " to be a non-negative integer smaller than the corresponding "
1976                 "dest vector dimension";
1977   }
1978   return success();
1979 }
1980 
1981 namespace {
1982 
1983 // If insertOp is only inserting unit dimensions it can be transformed to a
1984 // broadcast.
1985 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1986 public:
1987   using OpRewritePattern<InsertOp>::OpRewritePattern;
1988 
1989   LogicalResult matchAndRewrite(InsertOp insertOp,
1990                                 PatternRewriter &rewriter) const override {
1991     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1992     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1993                            srcVecType.getNumElements())
1994       return failure();
1995     rewriter.replaceOpWithNewOp<BroadcastOp>(
1996         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1997     return success();
1998   }
1999 };
2000 
2001 } // namespace
2002 
2003 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
2004                                            MLIRContext *context) {
2005   results.add<InsertToBroadcast, BroadcastFolder>(context);
2006 }
2007 
2008 // Eliminates insert operations that produce values identical to their source
2009 // value. This happens when the source and destination vectors have identical
2010 // sizes.
2011 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
2012   if (getPosition().empty())
2013     return getSource();
2014   return {};
2015 }
2016 
2017 //===----------------------------------------------------------------------===//
2018 // InsertMapOp
2019 //===----------------------------------------------------------------------===//
2020 
2021 LogicalResult InsertMapOp::verify() {
2022   if (getSourceVectorType().getRank() != getResultType().getRank())
2023     return emitOpError("expected source and destination vectors of same rank");
2024   unsigned numId = 0;
2025   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
2026     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
2027         0)
2028       return emitOpError(
2029           "destination vector size must be a multiple of source vector size");
2030     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
2031       numId++;
2032   }
2033   if (numId != getIds().size())
2034     return emitOpError("expected number of ids must match the number of "
2035                        "dimensions distributed");
2036   return success();
2037 }
2038 
2039 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
2040 
2041 //===----------------------------------------------------------------------===//
2042 // InsertStridedSliceOp
2043 //===----------------------------------------------------------------------===//
2044 
2045 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2046                                  Value source, Value dest,
2047                                  ArrayRef<int64_t> offsets,
2048                                  ArrayRef<int64_t> strides) {
2049   result.addOperands({source, dest});
2050   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2051   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2052   result.addTypes(dest.getType());
2053   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2054   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2055 }
2056 
2057 // TODO: Should be moved to Tablegen Confined attributes.
2058 template <typename OpType>
2059 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2060                                                         ArrayAttr arrayAttr,
2061                                                         ArrayRef<int64_t> shape,
2062                                                         StringRef attrName) {
2063   if (arrayAttr.size() > shape.size())
2064     return op.emitOpError("expected ")
2065            << attrName << " attribute of rank smaller than vector rank";
2066   return success();
2067 }
2068 
2069 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2070 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2071 // Otherwise, the admissible interval is [min, max].
2072 template <typename OpType>
2073 static LogicalResult
2074 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2075                                   int64_t max, StringRef attrName,
2076                                   bool halfOpen = true) {
2077   for (auto attr : arrayAttr) {
2078     auto val = attr.cast<IntegerAttr>().getInt();
2079     auto upper = max;
2080     if (!halfOpen)
2081       upper += 1;
2082     if (val < min || val >= upper)
2083       return op.emitOpError("expected ") << attrName << " to be confined to ["
2084                                          << min << ", " << upper << ")";
2085   }
2086   return success();
2087 }
2088 
2089 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2090 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2091 // Otherwise, the admissible interval is [min, max].
2092 template <typename OpType>
2093 static LogicalResult
2094 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2095                                   ArrayRef<int64_t> shape, StringRef attrName,
2096                                   bool halfOpen = true, int64_t min = 0) {
2097   assert(arrayAttr.size() <= shape.size());
2098   unsigned index = 0;
2099   for (auto it : llvm::zip(arrayAttr, shape)) {
2100     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2101     auto max = std::get<1>(it);
2102     if (!halfOpen)
2103       max += 1;
2104     if (val < min || val >= max)
2105       return op.emitOpError("expected ")
2106              << attrName << " dimension " << index << " to be confined to ["
2107              << min << ", " << max << ")";
2108     ++index;
2109   }
2110   return success();
2111 }
2112 
2113 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2114 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2115 // Otherwise, the admissible interval is [min, max].
2116 template <typename OpType>
2117 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2118     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2119     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2120     bool halfOpen = true, int64_t min = 1) {
2121   assert(arrayAttr1.size() <= shape.size());
2122   assert(arrayAttr2.size() <= shape.size());
2123   unsigned index = 0;
2124   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2125     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2126     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2127     auto max = std::get<2>(it);
2128     if (!halfOpen)
2129       max += 1;
2130     if (val1 + val2 < 0 || val1 + val2 >= max)
2131       return op.emitOpError("expected sum(")
2132              << attrName1 << ", " << attrName2 << ") dimension " << index
2133              << " to be confined to [" << min << ", " << max << ")";
2134     ++index;
2135   }
2136   return success();
2137 }
2138 
2139 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2140                                   MLIRContext *context) {
2141   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2142     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2143   });
2144   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2145 }
2146 
2147 LogicalResult InsertStridedSliceOp::verify() {
2148   auto sourceVectorType = getSourceVectorType();
2149   auto destVectorType = getDestVectorType();
2150   auto offsets = getOffsetsAttr();
2151   auto strides = getStridesAttr();
2152   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2153     return emitOpError(
2154         "expected offsets of same size as destination vector rank");
2155   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2156     return emitOpError("expected strides of same size as source vector rank");
2157   if (sourceVectorType.getRank() > destVectorType.getRank())
2158     return emitOpError(
2159         "expected source rank to be smaller than destination rank");
2160 
2161   auto sourceShape = sourceVectorType.getShape();
2162   auto destShape = destVectorType.getShape();
2163   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2164       destShape.size() - sourceShape.size(), 0);
2165   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2166   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2167   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2168   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2169                                                offName)) ||
2170       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2171                                                stridesName,
2172                                                /*halfOpen=*/false)) ||
2173       failed(isSumOfIntegerArrayAttrConfinedToShape(
2174           *this, offsets,
2175           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2176           offName, "source vector shape",
2177           /*halfOpen=*/false, /*min=*/1)))
2178     return failure();
2179 
2180   return success();
2181 }
2182 
2183 namespace {
2184 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
2185 /// SplatOp(X):dst_type) to SplatOp(X):dst_type.
2186 class FoldInsertStridedSliceSplat final
2187     : public OpRewritePattern<InsertStridedSliceOp> {
2188 public:
2189   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
2190 
2191   LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
2192                                 PatternRewriter &rewriter) const override {
2193     auto srcSplatOp =
2194         insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>();
2195     auto destSplatOp =
2196         insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
2197 
2198     if (!srcSplatOp || !destSplatOp)
2199       return failure();
2200 
2201     if (srcSplatOp.getInput() != destSplatOp.getInput())
2202       return failure();
2203 
2204     rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
2205     return success();
2206   }
2207 };
2208 } // namespace
2209 
2210 void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
2211     RewritePatternSet &results, MLIRContext *context) {
2212   results.add<FoldInsertStridedSliceSplat>(context);
2213 }
2214 
2215 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2216   if (getSourceVectorType() == getDestVectorType())
2217     return getSource();
2218   return {};
2219 }
2220 
2221 //===----------------------------------------------------------------------===//
2222 // OuterProductOp
2223 //===----------------------------------------------------------------------===//
2224 
2225 /// Build an op without mask, use the type of `acc` as the return type.
2226 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2227                            Value lhs, Value rhs, Value acc) {
2228   result.addOperands({lhs, rhs, acc});
2229   result.addTypes(acc.getType());
2230 }
2231 
2232 void OuterProductOp::print(OpAsmPrinter &p) {
2233   p << " " << getLhs() << ", " << getRhs();
2234   if (!getAcc().empty()) {
2235     p << ", " << getAcc();
2236     p.printOptionalAttrDict((*this)->getAttrs());
2237   }
2238   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2239 }
2240 
2241 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2242   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2243   Type tLHS, tRHS;
2244   if (parser.parseOperandList(operandsInfo) ||
2245       parser.parseOptionalAttrDict(result.attributes) ||
2246       parser.parseColonType(tLHS) || parser.parseComma() ||
2247       parser.parseType(tRHS))
2248     return failure();
2249   if (operandsInfo.size() < 2)
2250     return parser.emitError(parser.getNameLoc(),
2251                             "expected at least 2 operands");
2252   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2253   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2254   if (!vLHS)
2255     return parser.emitError(parser.getNameLoc(),
2256                             "expected vector type for operand #1");
2257   VectorType resType =
2258       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2259                              vLHS.getElementType())
2260            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2261 
2262   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2263     result.attributes.append(
2264         OuterProductOp::getKindAttrStrName(),
2265         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2266                                result.getContext()));
2267   }
2268 
2269   return failure(
2270       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2271       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2272       (operandsInfo.size() > 2 &&
2273        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2274       parser.addTypeToList(resType, result.types));
2275 }
2276 
2277 LogicalResult OuterProductOp::verify() {
2278   Type tRHS = getOperandTypeRHS();
2279   VectorType vLHS = getOperandVectorTypeLHS(),
2280              vRHS = tRHS.dyn_cast<VectorType>(),
2281              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2282 
2283   if (vLHS.getRank() != 1)
2284     return emitOpError("expected 1-d vector for operand #1");
2285 
2286   if (vRHS) {
2287     // Proper OUTER operation.
2288     if (vRHS.getRank() != 1)
2289       return emitOpError("expected 1-d vector for operand #2");
2290     if (vRES.getRank() != 2)
2291       return emitOpError("expected 2-d vector result");
2292     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2293       return emitOpError("expected #1 operand dim to match result dim #1");
2294     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2295       return emitOpError("expected #2 operand dim to match result dim #2");
2296   } else {
2297     // An AXPY operation.
2298     if (vRES.getRank() != 1)
2299       return emitOpError("expected 1-d vector result");
2300     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2301       return emitOpError("expected #1 operand dim to match result dim #1");
2302   }
2303 
2304   if (vACC && vACC != vRES)
2305     return emitOpError("expected operand #3 of same type as result type");
2306 
2307   // Verify supported combining kind.
2308   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2309     return emitOpError("unsupported outerproduct type");
2310 
2311   return success();
2312 }
2313 
2314 //===----------------------------------------------------------------------===//
2315 // ReshapeOp
2316 //===----------------------------------------------------------------------===//
2317 
2318 LogicalResult ReshapeOp::verify() {
2319   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2320   auto inputVectorType = getInputVectorType();
2321   auto outputVectorType = getOutputVectorType();
2322   int64_t inputShapeRank = getNumInputShapeSizes();
2323   int64_t outputShapeRank = getNumOutputShapeSizes();
2324   SmallVector<int64_t, 4> fixedVectorSizes;
2325   getFixedVectorSizes(fixedVectorSizes);
2326   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2327 
2328   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2329     return emitError("invalid input shape for vector type ") << inputVectorType;
2330 
2331   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2332     return emitError("invalid output shape for vector type ")
2333            << outputVectorType;
2334 
2335   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2336   // suffix.
2337   unsigned inputVectorRank = inputVectorType.getRank();
2338   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2339     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2340     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2341       return emitError("fixed vector size must match input vector for dim ")
2342              << i;
2343   }
2344 
2345   unsigned outputVectorRank = outputVectorType.getRank();
2346   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2347     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2348     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2349       return emitError("fixed vector size must match output vector for dim ")
2350              << i;
2351   }
2352 
2353   // If all shape operands are produced by constant ops, verify that product
2354   // of dimensions for input/output shape match.
2355   auto isDefByConstant = [](Value operand) {
2356     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2357   };
2358   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2359       llvm::all_of(getOutputShape(), isDefByConstant)) {
2360     int64_t numInputElements = 1;
2361     for (auto operand : getInputShape())
2362       numInputElements *=
2363           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2364     int64_t numOutputElements = 1;
2365     for (auto operand : getOutputShape())
2366       numOutputElements *=
2367           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2368     if (numInputElements != numOutputElements)
2369       return emitError("product of input and output shape sizes must match");
2370   }
2371   return success();
2372 }
2373 
2374 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2375   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2376 }
2377 
2378 //===----------------------------------------------------------------------===//
2379 // ExtractStridedSliceOp
2380 //===----------------------------------------------------------------------===//
2381 
2382 // Inference works as follows:
2383 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2384 //   2. Add sizes from 'vectorType' for remaining dims.
2385 static Type inferStridedSliceOpResultType(VectorType vectorType,
2386                                           ArrayAttr offsets, ArrayAttr sizes,
2387                                           ArrayAttr strides) {
2388   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2389   SmallVector<int64_t, 4> shape;
2390   shape.reserve(vectorType.getRank());
2391   unsigned idx = 0;
2392   for (unsigned e = offsets.size(); idx < e; ++idx)
2393     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2394   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2395     shape.push_back(vectorType.getShape()[idx]);
2396 
2397   return VectorType::get(shape, vectorType.getElementType());
2398 }
2399 
2400 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2401                                   Value source, ArrayRef<int64_t> offsets,
2402                                   ArrayRef<int64_t> sizes,
2403                                   ArrayRef<int64_t> strides) {
2404   result.addOperands(source);
2405   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2406   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2407   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2408   result.addTypes(
2409       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2410                                     offsetsAttr, sizesAttr, stridesAttr));
2411   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2412   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2413   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2414 }
2415 
2416 LogicalResult ExtractStridedSliceOp::verify() {
2417   auto type = getVectorType();
2418   auto offsets = getOffsetsAttr();
2419   auto sizes = getSizesAttr();
2420   auto strides = getStridesAttr();
2421   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2422     return emitOpError(
2423         "expected offsets, sizes and strides attributes of same size");
2424 
2425   auto shape = type.getShape();
2426   auto offName = getOffsetsAttrName();
2427   auto sizesName = getSizesAttrName();
2428   auto stridesName = getStridesAttrName();
2429   if (failed(
2430           isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2431       failed(
2432           isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2433       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2434                                                 stridesName)) ||
2435       failed(
2436           isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2437       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2438                                                /*halfOpen=*/false,
2439                                                /*min=*/1)) ||
2440       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2441                                                stridesName,
2442                                                /*halfOpen=*/false)) ||
2443       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
2444                                                     shape, offName, sizesName,
2445                                                     /*halfOpen=*/false)))
2446     return failure();
2447 
2448   auto resultType =
2449       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2450   if (getResult().getType() != resultType)
2451     return emitOpError("expected result type to be ") << resultType;
2452 
2453   return success();
2454 }
2455 
2456 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2457 // to use the source of the InsertStrided ops if we can detect that the
2458 // extracted vector is a subset of one of the vector inserted.
2459 static LogicalResult
2460 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2461   // Helper to extract integer out of ArrayAttr.
2462   auto getElement = [](ArrayAttr array, int idx) {
2463     return array[idx].cast<IntegerAttr>().getInt();
2464   };
2465   ArrayAttr extractOffsets = op.getOffsets();
2466   ArrayAttr extractStrides = op.getStrides();
2467   ArrayAttr extractSizes = op.getSizes();
2468   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2469   while (insertOp) {
2470     if (op.getVectorType().getRank() !=
2471         insertOp.getSourceVectorType().getRank())
2472       return failure();
2473     ArrayAttr insertOffsets = insertOp.getOffsets();
2474     ArrayAttr insertStrides = insertOp.getStrides();
2475     // If the rank of extract is greater than the rank of insert, we are likely
2476     // extracting a partial chunk of the vector inserted.
2477     if (extractOffsets.size() > insertOffsets.size())
2478       return failure();
2479     bool patialoverlap = false;
2480     bool disjoint = false;
2481     SmallVector<int64_t, 4> offsetDiffs;
2482     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2483       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2484         return failure();
2485       int64_t start = getElement(insertOffsets, dim);
2486       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2487       int64_t offset = getElement(extractOffsets, dim);
2488       int64_t size = getElement(extractSizes, dim);
2489       // Check if the start of the extract offset is in the interval inserted.
2490       if (start <= offset && offset < end) {
2491         // If the extract interval overlaps but is not fully included we may
2492         // have a partial overlap that will prevent any folding.
2493         if (offset + size > end)
2494           patialoverlap = true;
2495         offsetDiffs.push_back(offset - start);
2496         continue;
2497       }
2498       disjoint = true;
2499       break;
2500     }
2501     // The extract element chunk is a subset of the insert element.
2502     if (!disjoint && !patialoverlap) {
2503       op.setOperand(insertOp.getSource());
2504       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2505       OpBuilder b(op.getContext());
2506       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2507                   b.getI64ArrayAttr(offsetDiffs));
2508       return success();
2509     }
2510     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2511     // in the insert chain.
2512     if (disjoint)
2513       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2514     else {
2515       // The extracted vector partially overlap the inserted vector, we cannot
2516       // fold.
2517       return failure();
2518     }
2519   }
2520   return failure();
2521 }
2522 
2523 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2524   if (getVectorType() == getResult().getType())
2525     return getVector();
2526   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2527     return getResult();
2528   return {};
2529 }
2530 
2531 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2532   populateFromInt64AttrArray(getOffsets(), results);
2533 }
2534 
2535 namespace {
2536 
2537 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2538 // ConstantMaskOp.
2539 class StridedSliceConstantMaskFolder final
2540     : public OpRewritePattern<ExtractStridedSliceOp> {
2541 public:
2542   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2543 
2544   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2545                                 PatternRewriter &rewriter) const override {
2546     // Return if 'extractStridedSliceOp' operand is not defined by a
2547     // ConstantMaskOp.
2548     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2549     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2550     if (!constantMaskOp)
2551       return failure();
2552     // Return if 'extractStridedSliceOp' has non-unit strides.
2553     if (extractStridedSliceOp.hasNonUnitStrides())
2554       return failure();
2555     // Gather constant mask dimension sizes.
2556     SmallVector<int64_t, 4> maskDimSizes;
2557     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2558     // Gather strided slice offsets and sizes.
2559     SmallVector<int64_t, 4> sliceOffsets;
2560     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2561                                sliceOffsets);
2562     SmallVector<int64_t, 4> sliceSizes;
2563     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2564 
2565     // Compute slice of vector mask region.
2566     SmallVector<int64_t, 4> sliceMaskDimSizes;
2567     assert(sliceOffsets.size() == maskDimSizes.size());
2568     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2569       int64_t maskDimSize = std::get<0>(it);
2570       int64_t sliceOffset = std::get<1>(it);
2571       int64_t sliceSize = std::get<2>(it);
2572       int64_t sliceMaskDimSize = std::max(
2573           static_cast<int64_t>(0),
2574           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2575       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2576     }
2577     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2578     // region is a conjunction of mask dim intervals).
2579     if (llvm::is_contained(sliceMaskDimSizes, 0))
2580       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2581 
2582     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2583     // region.
2584     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2585         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2586         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2587     return success();
2588   }
2589 };
2590 
2591 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2592 class StridedSliceConstantFolder final
2593     : public OpRewritePattern<ExtractStridedSliceOp> {
2594 public:
2595   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2596 
2597   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2598                                 PatternRewriter &rewriter) const override {
2599     // Return if 'extractStridedSliceOp' operand is not defined by a
2600     // ConstantOp.
2601     auto constantOp =
2602         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2603     if (!constantOp)
2604       return failure();
2605     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2606     if (!dense)
2607       return failure();
2608     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2609                                           dense.getSplatValue<Attribute>());
2610     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2611                                                    newAttr);
2612     return success();
2613   }
2614 };
2615 
2616 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2617 // BroadcastOp(ExtractStrideSliceOp).
2618 class StridedSliceBroadcast final
2619     : public OpRewritePattern<ExtractStridedSliceOp> {
2620 public:
2621   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2622 
2623   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2624                                 PatternRewriter &rewriter) const override {
2625     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2626     if (!broadcast)
2627       return failure();
2628     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2629     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2630     auto dstVecType = op.getType().cast<VectorType>();
2631     unsigned dstRank = dstVecType.getRank();
2632     unsigned rankDiff = dstRank - srcRank;
2633     // Check if the most inner dimensions of the source of the broadcast are the
2634     // same as the destination of the extract. If this is the case we can just
2635     // use a broadcast as the original dimensions are untouched.
2636     bool lowerDimMatch = true;
2637     for (unsigned i = 0; i < srcRank; i++) {
2638       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2639         lowerDimMatch = false;
2640         break;
2641       }
2642     }
2643     Value source = broadcast.getSource();
2644     // If the inner dimensions don't match, it means we need to extract from the
2645     // source of the orignal broadcast and then broadcast the extracted value.
2646     // We also need to handle degenerated cases where the source is effectively
2647     // just a single scalar.
2648     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2649     if (!lowerDimMatch && !isScalarSrc) {
2650       source = rewriter.create<ExtractStridedSliceOp>(
2651           op->getLoc(), source,
2652           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2653           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2654           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2655     }
2656     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2657     return success();
2658   }
2659 };
2660 
2661 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2662 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2663 public:
2664   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2665 
2666   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2667                                 PatternRewriter &rewriter) const override {
2668     auto splat = op.getVector().getDefiningOp<SplatOp>();
2669     if (!splat)
2670       return failure();
2671     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2672     return success();
2673   }
2674 };
2675 
2676 } // namespace
2677 
2678 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2679     RewritePatternSet &results, MLIRContext *context) {
2680   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2681   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2682   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2683               StridedSliceBroadcast, StridedSliceSplat>(context);
2684 }
2685 
2686 //===----------------------------------------------------------------------===//
2687 // TransferReadOp
2688 //===----------------------------------------------------------------------===//
2689 
2690 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2691 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2692                            VectorType vectorType, Value source,
2693                            ValueRange indices, AffineMapAttr permutationMapAttr,
2694                            /*optional*/ ArrayAttr inBoundsAttr) {
2695   Type elemType = source.getType().cast<ShapedType>().getElementType();
2696   Value padding = builder.create<arith::ConstantOp>(
2697       result.location, elemType, builder.getZeroAttr(elemType));
2698   build(builder, result, vectorType, source, indices, permutationMapAttr,
2699         padding, /*mask=*/Value(), inBoundsAttr);
2700 }
2701 
2702 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2703 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2704                            VectorType vectorType, Value source,
2705                            ValueRange indices, AffineMap permutationMap,
2706                            Optional<ArrayRef<bool>> inBounds) {
2707   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2708   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2709                           ? builder.getBoolArrayAttr(inBounds.getValue())
2710                           : ArrayAttr();
2711   build(builder, result, vectorType, source, indices, permutationMapAttr,
2712         inBoundsAttr);
2713 }
2714 
2715 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2716 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2717                            VectorType vectorType, Value source,
2718                            ValueRange indices, Value padding,
2719                            Optional<ArrayRef<bool>> inBounds) {
2720   AffineMap permutationMap = getTransferMinorIdentityMap(
2721       source.getType().cast<ShapedType>(), vectorType);
2722   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2723   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2724                           ? builder.getBoolArrayAttr(inBounds.getValue())
2725                           : ArrayAttr();
2726   build(builder, result, vectorType, source, indices, permutationMapAttr,
2727         padding,
2728         /*mask=*/Value(), inBoundsAttr);
2729 }
2730 
2731 /// 4. Builder that sets padding to zero and permutation map to
2732 /// 'getMinorIdentityMap'.
2733 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2734                            VectorType vectorType, Value source,
2735                            ValueRange indices,
2736                            Optional<ArrayRef<bool>> inBounds) {
2737   Type elemType = source.getType().cast<ShapedType>().getElementType();
2738   Value padding = builder.create<arith::ConstantOp>(
2739       result.location, elemType, builder.getZeroAttr(elemType));
2740   build(builder, result, vectorType, source, indices, padding, inBounds);
2741 }
2742 
2743 template <typename EmitFun>
2744 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2745                                           EmitFun emitOpError) {
2746   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2747   for (auto expr : permutationMap.getResults()) {
2748     auto dim = expr.dyn_cast<AffineDimExpr>();
2749     auto zero = expr.dyn_cast<AffineConstantExpr>();
2750     if (zero) {
2751       if (zero.getValue() != 0) {
2752         return emitOpError(
2753             "requires a projected permutation_map (at most one dim or the zero "
2754             "constant can appear in each result)");
2755       }
2756       continue;
2757     }
2758     if (!dim) {
2759       return emitOpError("requires a projected permutation_map (at most one "
2760                          "dim or the zero constant can appear in each result)");
2761     }
2762     if (seen[dim.getPosition()]) {
2763       return emitOpError(
2764           "requires a permutation_map that is a permutation (found one dim "
2765           "used more than once)");
2766     }
2767     seen[dim.getPosition()] = true;
2768   }
2769   return success();
2770 }
2771 
2772 static LogicalResult
2773 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2774                  VectorType vectorType, VectorType maskType,
2775                  AffineMap permutationMap, ArrayAttr inBounds) {
2776   if (op->hasAttr("masked")) {
2777     return op->emitOpError("masked attribute has been removed. "
2778                            "Use in_bounds instead.");
2779   }
2780 
2781   if (!shapedType.isa<MemRefType, RankedTensorType>())
2782     return op->emitOpError(
2783         "requires source to be a memref or ranked tensor type");
2784 
2785   auto elementType = shapedType.getElementType();
2786   DataLayout dataLayout = DataLayout::closest(op);
2787   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2788     // Memref or tensor has vector element type.
2789     unsigned sourceVecSize =
2790         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2791         vectorElementType.getShape().back();
2792     unsigned resultVecSize =
2793         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2794         vectorType.getShape().back();
2795     if (resultVecSize % sourceVecSize != 0)
2796       return op->emitOpError(
2797           "requires the bitwidth of the minor 1-D vector to be an integral "
2798           "multiple of the bitwidth of the minor 1-D vector of the source");
2799 
2800     unsigned sourceVecEltRank = vectorElementType.getRank();
2801     unsigned resultVecRank = vectorType.getRank();
2802     if (sourceVecEltRank > resultVecRank)
2803       return op->emitOpError(
2804           "requires source vector element and vector result ranks to match.");
2805     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2806     // Check that permutation map results match 'rankOffset' of vector type.
2807     if (permutationMap.getNumResults() != rankOffset)
2808       return op->emitOpError("requires a permutation_map with result dims of "
2809                              "the same rank as the vector type");
2810 
2811     if (maskType)
2812       return op->emitOpError("does not support masks with vector element type");
2813   } else {
2814     // Memref or tensor has scalar element type.
2815     unsigned minorSize =
2816         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2817     unsigned resultVecSize =
2818         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2819     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2820       return op->emitOpError(
2821           "requires the bitwidth of the minor 1-D vector to be an integral "
2822           "multiple of the bitwidth of the source element type");
2823 
2824     // Check that permutation map results match rank of vector type.
2825     if (permutationMap.getNumResults() != vectorType.getRank())
2826       return op->emitOpError("requires a permutation_map with result dims of "
2827                              "the same rank as the vector type");
2828 
2829     VectorType expectedMaskType =
2830         vector::detail::transferMaskType(vectorType, permutationMap);
2831     if (maskType && expectedMaskType != maskType)
2832       return op->emitOpError("expects mask type consistent with permutation "
2833                              "map: ")
2834              << maskType;
2835   }
2836 
2837   if (permutationMap.getNumSymbols() != 0)
2838     return op->emitOpError("requires permutation_map without symbols");
2839 
2840   if (permutationMap.getNumInputs() != shapedType.getRank())
2841     return op->emitOpError("requires a permutation_map with input dims of the "
2842                            "same rank as the source type");
2843 
2844   if (inBounds) {
2845     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2846       return op->emitOpError("expects the optional in_bounds attr of same rank "
2847                              "as permutation_map results: ")
2848              << AffineMapAttr::get(permutationMap)
2849              << " vs inBounds of size: " << inBounds.size();
2850     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2851       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2852           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2853         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2854   }
2855 
2856   return success();
2857 }
2858 
2859 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2860   SmallVector<StringRef, 3> elidedAttrs;
2861   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2862   if (op.permutation_map().isMinorIdentity())
2863     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2864   bool elideInBounds = true;
2865   if (auto inBounds = op.in_bounds()) {
2866     for (auto attr : *inBounds) {
2867       if (attr.template cast<BoolAttr>().getValue()) {
2868         elideInBounds = false;
2869         break;
2870       }
2871     }
2872   }
2873   if (elideInBounds)
2874     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2875   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2876 }
2877 
2878 void TransferReadOp::print(OpAsmPrinter &p) {
2879   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2880   if (getMask())
2881     p << ", " << getMask();
2882   printTransferAttrs(p, *this);
2883   p << " : " << getShapedType() << ", " << getVectorType();
2884 }
2885 
2886 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2887   auto &builder = parser.getBuilder();
2888   SMLoc typesLoc;
2889   OpAsmParser::UnresolvedOperand sourceInfo;
2890   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2891   OpAsmParser::UnresolvedOperand paddingInfo;
2892   SmallVector<Type, 2> types;
2893   OpAsmParser::UnresolvedOperand maskInfo;
2894   // Parsing with support for paddingValue.
2895   if (parser.parseOperand(sourceInfo) ||
2896       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2897       parser.parseComma() || parser.parseOperand(paddingInfo))
2898     return failure();
2899   ParseResult hasMask = parser.parseOptionalComma();
2900   if (hasMask.succeeded()) {
2901     if (parser.parseOperand(maskInfo))
2902       return failure();
2903   }
2904   if (parser.parseOptionalAttrDict(result.attributes) ||
2905       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2906     return failure();
2907   if (types.size() != 2)
2908     return parser.emitError(typesLoc, "requires two types");
2909   auto indexType = builder.getIndexType();
2910   auto shapedType = types[0].dyn_cast<ShapedType>();
2911   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2912     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2913   VectorType vectorType = types[1].dyn_cast<VectorType>();
2914   if (!vectorType)
2915     return parser.emitError(typesLoc, "requires vector type");
2916   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2917   Attribute mapAttr = result.attributes.get(permutationAttrName);
2918   if (!mapAttr) {
2919     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2920     // Update `mapAttr` that is used later to determine mask type.
2921     mapAttr = AffineMapAttr::get(permMap);
2922     result.attributes.set(permutationAttrName, mapAttr);
2923   }
2924   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2925       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2926       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2927                             result.operands))
2928     return failure();
2929   if (hasMask.succeeded()) {
2930     if (shapedType.getElementType().dyn_cast<VectorType>())
2931       return parser.emitError(
2932           maskInfo.location, "does not support masks with vector element type");
2933     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2934     // Instead of adding the mask type as an op type, compute it based on the
2935     // vector type and the permutation map (to keep the type signature small).
2936     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2937     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2938       return failure();
2939   }
2940   result.addAttribute(
2941       TransferReadOp::getOperandSegmentSizeAttr(),
2942       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2943                                 static_cast<int32_t>(hasMask.succeeded())}));
2944   return parser.addTypeToList(vectorType, result.types);
2945 }
2946 
2947 LogicalResult TransferReadOp::verify() {
2948   // Consistency of elemental types in source and vector.
2949   ShapedType shapedType = getShapedType();
2950   VectorType vectorType = getVectorType();
2951   VectorType maskType = getMaskType();
2952   auto paddingType = getPadding().getType();
2953   auto permutationMap = getPermutationMap();
2954   auto sourceElementType = shapedType.getElementType();
2955 
2956   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2957     return emitOpError("requires ") << shapedType.getRank() << " indices";
2958 
2959   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2960                               shapedType, vectorType, maskType, permutationMap,
2961                               getInBounds() ? *getInBounds() : ArrayAttr())))
2962     return failure();
2963 
2964   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2965     // Source has vector element type.
2966     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2967     if (sourceVectorElementType != paddingType)
2968       return emitOpError(
2969           "requires source element type and padding type to match.");
2970 
2971   } else {
2972     // Check that 'paddingType' is valid to store in a vector type.
2973     if (!VectorType::isValidElementType(paddingType))
2974       return emitOpError("requires valid padding vector elemental type");
2975 
2976     // Check that padding type and vector element types match.
2977     if (paddingType != sourceElementType)
2978       return emitOpError(
2979           "requires formal padding and source of the same elemental type");
2980   }
2981 
2982   return verifyPermutationMap(permutationMap,
2983                               [&](Twine t) { return emitOpError(t); });
2984 }
2985 
2986 /// This is a common class used for patterns of the form
2987 /// ```
2988 ///    someop(memrefcast) -> someop
2989 /// ```
2990 /// It folds the source of the memref.cast into the root operation directly.
2991 static LogicalResult foldMemRefCast(Operation *op) {
2992   bool folded = false;
2993   for (OpOperand &operand : op->getOpOperands()) {
2994     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2995     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2996       operand.set(castOp.getOperand());
2997       folded = true;
2998     }
2999   }
3000   return success(folded);
3001 }
3002 
3003 static LogicalResult foldTensorCast(Operation *op) {
3004   bool folded = false;
3005   for (OpOperand &operand : op->getOpOperands()) {
3006     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
3007     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
3008       operand.set(castOp.getOperand());
3009       folded = true;
3010     }
3011   }
3012   return success(folded);
3013 }
3014 
3015 template <typename TransferOp>
3016 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
3017   // TODO: support more aggressive createOrFold on:
3018   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
3019   if (op.getShapedType().isDynamicDim(indicesIdx))
3020     return false;
3021   Value index = op.getIndices()[indicesIdx];
3022   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
3023   if (!cstOp)
3024     return false;
3025 
3026   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
3027   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
3028 
3029   return cstOp.value() + vectorSize <= sourceSize;
3030 }
3031 
3032 template <typename TransferOp>
3033 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
3034   // TODO: support 0-d corner case.
3035   // TODO: Be less conservative.
3036   if (op.getTransferRank() == 0)
3037     return failure();
3038   AffineMap permutationMap = op.getPermutationMap();
3039   bool changed = false;
3040   SmallVector<bool, 4> newInBounds;
3041   newInBounds.reserve(op.getTransferRank());
3042   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
3043     // Already marked as in-bounds, nothing to see here.
3044     if (op.isDimInBounds(i)) {
3045       newInBounds.push_back(true);
3046       continue;
3047     }
3048     // Currently out-of-bounds, check whether we can statically determine it is
3049     // inBounds.
3050     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
3051     assert(dimExpr && "Broadcast dims must be in-bounds");
3052     auto inBounds =
3053         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
3054     newInBounds.push_back(inBounds);
3055     // We commit the pattern if it is "more inbounds".
3056     changed |= inBounds;
3057   }
3058   if (!changed)
3059     return failure();
3060   // OpBuilder is only used as a helper to build an I64ArrayAttr.
3061   OpBuilder b(op.getContext());
3062   op->setAttr(TransferOp::getInBoundsAttrStrName(),
3063               b.getBoolArrayAttr(newInBounds));
3064   return success();
3065 }
3066 
3067 ///  ```
3068 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3069 ///    : vector<1x4xf32>, tensor<4x4xf32>
3070 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
3071 ///    : tensor<4x4xf32>, vector<1x4xf32>
3072 ///  ```
3073 ///  -> Folds into
3074 ///  ```
3075 ///  %v0
3076 ///  ```
3077 static Value foldRAW(TransferReadOp readOp) {
3078   if (!readOp.getShapedType().isa<RankedTensorType>())
3079     return {};
3080   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3081   while (defWrite) {
3082     if (checkSameValueRAW(defWrite, readOp))
3083       return defWrite.getVector();
3084     if (!isDisjointTransferIndices(
3085             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3086             cast<VectorTransferOpInterface>(readOp.getOperation())))
3087       break;
3088     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3089   }
3090   return {};
3091 }
3092 
3093 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3094   if (Value vec = foldRAW(*this))
3095     return vec;
3096   /// transfer_read(memrefcast) -> transfer_read
3097   if (succeeded(foldTransferInBoundsAttribute(*this)))
3098     return getResult();
3099   if (succeeded(foldMemRefCast(*this)))
3100     return getResult();
3101   if (succeeded(foldTensorCast(*this)))
3102     return getResult();
3103   return OpFoldResult();
3104 }
3105 
3106 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3107   return llvm::to_vector<4>(getVectorType().getShape());
3108 }
3109 
3110 void TransferReadOp::getEffects(
3111     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3112         &effects) {
3113   if (getShapedType().isa<MemRefType>())
3114     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3115                          SideEffects::DefaultResource::get());
3116 }
3117 
3118 namespace {
3119 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3120 ///
3121 /// ```
3122 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3123 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3124 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3125 ///     : tensor<?x?xf32>, vector<4x5xf32>
3126 /// ```
3127 /// is rewritten to:
3128 /// ```
3129 /// %p0 = arith.addi %a, %e : index
3130 /// %p1 = arith.addi %b, %f : index
3131 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3132 ///     : tensor<?x?xf32>, vector<4x5xf32>
3133 /// ```
3134 struct FoldExtractSliceIntoTransferRead
3135     : public OpRewritePattern<TransferReadOp> {
3136 public:
3137   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3138 
3139   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3140                                 PatternRewriter &rewriter) const override {
3141     // TODO: support 0-d corner case.
3142     if (xferOp.getTransferRank() == 0)
3143       return failure();
3144     if (xferOp.hasOutOfBoundsDim())
3145       return failure();
3146     if (!xferOp.getPermutationMap().isIdentity())
3147       return failure();
3148     if (xferOp.getMask())
3149       return failure();
3150     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3151     if (!extractOp)
3152       return failure();
3153     if (!extractOp.hasUnitStride())
3154       return failure();
3155 
3156     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3157     // dims are exactly the leading dims. I.e. the following is illegal:
3158     // ```
3159     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3160     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3161     //    %1 = vector.transfer_read %0[0,0], %cst :
3162     //      tensor<2x4xf32>, vector<2x4xf32>
3163     // ```
3164     //
3165     // Cannot fold into:
3166     // ```
3167     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3168     //      tensor<2x1x4xf32>, vector<2x4xf32>
3169     // ```
3170     // For this, check the trailing `vectorRank` dims of the extract_slice
3171     // result tensor match the trailing dims of the inferred result tensor.
3172     int64_t rankReduced =
3173         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3174     int64_t vectorRank = xferOp.getVectorType().getRank();
3175     RankedTensorType inferredDestTensorType =
3176         tensor::ExtractSliceOp::inferResultType(
3177             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3178             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3179     auto actualDestTensorShape = extractOp.getType().getShape();
3180     if (rankReduced > 0 &&
3181         actualDestTensorShape.take_back(vectorRank) !=
3182             inferredDestTensorType.getShape().take_back(vectorRank))
3183       return failure();
3184 
3185     SmallVector<Value> newIndices;
3186     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3187     // indices first.
3188     for (int64_t i = 0; i < rankReduced; ++i) {
3189       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3190       newIndices.push_back(getValueOrCreateConstantIndexOp(
3191           rewriter, extractOp.getLoc(), offset));
3192     }
3193     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3194       OpFoldResult offset =
3195           extractOp.getMixedOffsets()[it.index() + rankReduced];
3196       newIndices.push_back(rewriter.create<arith::AddIOp>(
3197           xferOp->getLoc(), it.value(),
3198           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3199                                           offset)));
3200     }
3201     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3202     rewriter.replaceOpWithNewOp<TransferReadOp>(
3203         xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices,
3204         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3205 
3206     return success();
3207   }
3208 };
3209 } // namespace
3210 
3211 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3212                                                  MLIRContext *context) {
3213   results.add<FoldExtractSliceIntoTransferRead>(context);
3214 }
3215 
3216 //===----------------------------------------------------------------------===//
3217 // TransferWriteOp
3218 //===----------------------------------------------------------------------===//
3219 
3220 /// 1. Builder with type inference.
3221 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3222                             Value vector, Value dest, ValueRange indices,
3223                             AffineMapAttr permutationMapAttr,
3224                             /*optional*/ Value mask,
3225                             /*optional*/ ArrayAttr inBoundsAttr) {
3226   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3227   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3228         mask, inBoundsAttr);
3229 }
3230 
3231 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3232 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3233                             Value vector, Value dest, ValueRange indices,
3234                             AffineMapAttr permutationMapAttr,
3235                             /*optional*/ ArrayAttr inBoundsAttr) {
3236   build(builder, result, vector, dest, indices, permutationMapAttr,
3237         /*mask=*/Value(), inBoundsAttr);
3238 }
3239 
3240 /// 3. Builder with type inference that sets an empty mask (variant without
3241 /// attrs)
3242 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3243                             Value vector, Value dest, ValueRange indices,
3244                             AffineMap permutationMap,
3245                             Optional<ArrayRef<bool>> inBounds) {
3246   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3247   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3248                           ? builder.getBoolArrayAttr(inBounds.getValue())
3249                           : ArrayAttr();
3250   build(builder, result, vector, dest, indices, permutationMapAttr,
3251         /*mask=*/Value(), inBoundsAttr);
3252 }
3253 
3254 /// 4. Builder with type inference that sets an empty mask and sets permutation
3255 ///    map to 'getMinorIdentityMap'.
3256 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3257                             Value vector, Value dest, ValueRange indices,
3258                             Optional<ArrayRef<bool>> inBounds) {
3259   auto vectorType = vector.getType().cast<VectorType>();
3260   AffineMap permutationMap = getTransferMinorIdentityMap(
3261       dest.getType().cast<ShapedType>(), vectorType);
3262   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3263 }
3264 
3265 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3266                                    OperationState &result) {
3267   auto &builder = parser.getBuilder();
3268   SMLoc typesLoc;
3269   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3270   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3271   SmallVector<Type, 2> types;
3272   OpAsmParser::UnresolvedOperand maskInfo;
3273   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3274       parser.parseOperand(sourceInfo) ||
3275       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3276     return failure();
3277   ParseResult hasMask = parser.parseOptionalComma();
3278   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3279     return failure();
3280   if (parser.parseOptionalAttrDict(result.attributes) ||
3281       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3282     return failure();
3283   if (types.size() != 2)
3284     return parser.emitError(typesLoc, "requires two types");
3285   auto indexType = builder.getIndexType();
3286   VectorType vectorType = types[0].dyn_cast<VectorType>();
3287   if (!vectorType)
3288     return parser.emitError(typesLoc, "requires vector type");
3289   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3290   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3291     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3292   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3293   auto attr = result.attributes.get(permutationAttrName);
3294   if (!attr) {
3295     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3296     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3297   }
3298   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3299       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3300       parser.resolveOperands(indexInfo, indexType, result.operands))
3301     return failure();
3302   if (hasMask.succeeded()) {
3303     if (shapedType.getElementType().dyn_cast<VectorType>())
3304       return parser.emitError(
3305           maskInfo.location, "does not support masks with vector element type");
3306     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3307     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3308       return failure();
3309   }
3310   result.addAttribute(
3311       TransferWriteOp::getOperandSegmentSizeAttr(),
3312       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3313                                 static_cast<int32_t>(hasMask.succeeded())}));
3314   return failure(shapedType.isa<RankedTensorType>() &&
3315                  parser.addTypeToList(shapedType, result.types));
3316 }
3317 
3318 void TransferWriteOp::print(OpAsmPrinter &p) {
3319   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3320   if (getMask())
3321     p << ", " << getMask();
3322   printTransferAttrs(p, *this);
3323   p << " : " << getVectorType() << ", " << getShapedType();
3324 }
3325 
3326 LogicalResult TransferWriteOp::verify() {
3327   // Consistency of elemental types in shape and vector.
3328   ShapedType shapedType = getShapedType();
3329   VectorType vectorType = getVectorType();
3330   VectorType maskType = getMaskType();
3331   auto permutationMap = getPermutationMap();
3332 
3333   if (llvm::size(getIndices()) != shapedType.getRank())
3334     return emitOpError("requires ") << shapedType.getRank() << " indices";
3335 
3336   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3337   // as the semantics is unclear. This can be revisited later if necessary.
3338   if (hasBroadcastDim())
3339     return emitOpError("should not have broadcast dimensions");
3340 
3341   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3342                               shapedType, vectorType, maskType, permutationMap,
3343                               getInBounds() ? *getInBounds() : ArrayAttr())))
3344     return failure();
3345 
3346   return verifyPermutationMap(permutationMap,
3347                               [&](Twine t) { return emitOpError(t); });
3348 }
3349 
3350 /// Fold:
3351 /// ```
3352 ///    %t1 = ...
3353 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3354 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3355 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3356 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3357 /// ```
3358 ///
3359 /// into:
3360 ///
3361 /// ```
3362 ///    %t0
3363 /// ```
3364 ///
3365 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3366 /// block argument or has side effects.
3367 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3368                                        ArrayRef<Attribute>,
3369                                        SmallVectorImpl<OpFoldResult> &results) {
3370   // TODO: support 0-d corner case.
3371   if (write.getTransferRank() == 0)
3372     return failure();
3373   auto rankedTensorType =
3374       write.getSource().getType().dyn_cast<RankedTensorType>();
3375   // If not operating on tensors, bail.
3376   if (!rankedTensorType)
3377     return failure();
3378   // If no read, bail.
3379   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3380   if (!read)
3381     return failure();
3382   // TODO: support 0-d corner case.
3383   if (read.getTransferRank() == 0)
3384     return failure();
3385   // For now, only accept minor identity. Future: composition is minor identity.
3386   if (!read.getPermutationMap().isMinorIdentity() ||
3387       !write.getPermutationMap().isMinorIdentity())
3388     return failure();
3389   // Bail on mismatching ranks.
3390   if (read.getTransferRank() != write.getTransferRank())
3391     return failure();
3392   // Bail on potential out-of-bounds accesses.
3393   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3394     return failure();
3395   // Tensor types must be the same.
3396   if (read.getSource().getType() != rankedTensorType)
3397     return failure();
3398   // Vector types must be the same.
3399   if (read.getVectorType() != write.getVectorType())
3400     return failure();
3401   // Vector and Tensor shapes must match.
3402   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3403     return failure();
3404   // If any index is nonzero.
3405   auto isNotConstantZero = [](Value v) {
3406     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3407     return !cstOp || cstOp.value() != 0;
3408   };
3409   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3410       llvm::any_of(write.getIndices(), isNotConstantZero))
3411     return failure();
3412   // Success.
3413   results.push_back(read.getSource());
3414   return success();
3415 }
3416 
3417 static bool checkSameValueWAR(vector::TransferReadOp read,
3418                               vector::TransferWriteOp write) {
3419   return read.getSource() == write.getSource() &&
3420          read.getIndices() == write.getIndices() &&
3421          read.getPermutationMap() == write.getPermutationMap() &&
3422          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3423          !write.getMask();
3424 }
3425 /// Fold transfer_write write after read:
3426 /// ```
3427 ///    %t0 = ...
3428 ///    %v = vector.transfer_read %t0[%c0...] :
3429 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3430 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3431 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3432 /// ```
3433 ///
3434 /// into:
3435 ///
3436 /// ```
3437 ///    %t0
3438 /// ```
3439 static LogicalResult foldWAR(TransferWriteOp write,
3440                              SmallVectorImpl<OpFoldResult> &results) {
3441   if (!write.getSource().getType().isa<RankedTensorType>())
3442     return failure();
3443   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3444   if (!read)
3445     return failure();
3446 
3447   if (!checkSameValueWAR(read, write))
3448     return failure();
3449   results.push_back(read.getSource());
3450   return success();
3451 }
3452 
3453 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3454                                     SmallVectorImpl<OpFoldResult> &results) {
3455   if (succeeded(foldReadInitWrite(*this, operands, results)))
3456     return success();
3457   if (succeeded(foldWAR(*this, results)))
3458     return success();
3459   if (succeeded(foldTransferInBoundsAttribute(*this)))
3460     return success();
3461   return foldMemRefCast(*this);
3462 }
3463 
3464 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3465   return llvm::to_vector<4>(getVectorType().getShape());
3466 }
3467 
3468 void TransferWriteOp::getEffects(
3469     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3470         &effects) {
3471   if (getShapedType().isa<MemRefType>())
3472     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3473                          SideEffects::DefaultResource::get());
3474 }
3475 
3476 namespace {
3477 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3478 /// DCE
3479 /// ```
3480 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3481 ///    : vector<1x4xf32>, tensor<4x4xf32>
3482 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3483 ///    : vector<1x4xf32>, tensor<4x4xf32>
3484 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3485 ///    : vector<1x4xf32>, tensor<4x4xf32>
3486 /// ```
3487 ///
3488 /// into:
3489 ///
3490 /// ```
3491 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3492 ///    : vector<1x4xf32>, tensor<4x4xf32>
3493 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3494 ///    : vector<1x4xf32>, tensor<4x4xf32>
3495 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3496 ///    : vector<1x4xf32>, tensor<4x4xf32>
3497 /// ```
3498 ///
3499 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3500 /// any other uses.
3501 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3502 public:
3503   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3504   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3505                                 PatternRewriter &rewriter) const override {
3506     if (!writeOp.getShapedType().isa<RankedTensorType>())
3507       return failure();
3508     vector::TransferWriteOp writeToModify = writeOp;
3509 
3510     auto defWrite =
3511         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3512     while (defWrite) {
3513       if (checkSameValueWAW(writeOp, defWrite)) {
3514         writeToModify.getSourceMutable().assign(defWrite.getSource());
3515         return success();
3516       }
3517       if (!isDisjointTransferIndices(
3518               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3519               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3520         break;
3521       // If the previous write op doesn't have any other use we an safely look
3522       // at the previous store to see if it can be removed.
3523       if (!defWrite->hasOneUse())
3524         break;
3525       writeToModify = defWrite;
3526       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3527     }
3528     return failure();
3529   }
3530 };
3531 
3532 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3533 /// could directly write to the insert_slice's destination. E.g.:
3534 ///
3535 /// ```
3536 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3537 ///     : vector<4x5xf32>, tensor<4x5xf32>
3538 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3539 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3540 /// ```
3541 /// is rewritten to:
3542 /// ```
3543 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3544 ///     : vector<4x5xf32>, tensor<?x?xf32>
3545 /// ```
3546 struct FoldInsertSliceIntoTransferWrite
3547     : public OpRewritePattern<tensor::InsertSliceOp> {
3548 public:
3549   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3550 
3551   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3552                                 PatternRewriter &rewriter) const override {
3553     if (!insertOp.hasUnitStride())
3554       return failure();
3555 
3556     auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>();
3557     if (!xferOp)
3558       return failure();
3559     // TODO: support 0-d corner case.
3560     if (xferOp.getTransferRank() == 0)
3561       return failure();
3562 
3563     if (xferOp.hasOutOfBoundsDim())
3564       return failure();
3565     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3566       return failure();
3567     if (xferOp.getMask())
3568       return failure();
3569     // Fold only if the TransferWriteOp completely overwrites the `source` with
3570     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3571     // content is the data of the vector.
3572     if (!llvm::equal(xferOp.getVectorType().getShape(),
3573                      xferOp.getShapedType().getShape()))
3574       return failure();
3575     if (!xferOp.getPermutationMap().isIdentity())
3576       return failure();
3577 
3578     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3579     // dims are exactly the leading dims. I.e. the following is illegal:
3580     // ```
3581     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3582     //      vector<2x4xf32>, tensor<2x4xf32>
3583     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3584     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3585     // ```
3586     //
3587     // Cannot fold into:
3588     // ```
3589     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3590     //      vector<2x4xf32>, tensor<2x1x4xf32>
3591     // ```
3592     // For this, check the trailing `vectorRank` dims of the insert_slice result
3593     // tensor match the trailing dims of the inferred result tensor.
3594     int64_t rankReduced =
3595         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3596     int64_t vectorRank = xferOp.getVectorType().getRank();
3597     RankedTensorType inferredSourceTensorType =
3598         tensor::ExtractSliceOp::inferResultType(
3599             insertOp.getType(), insertOp.getMixedOffsets(),
3600             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3601     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3602     if (rankReduced > 0 &&
3603         actualSourceTensorShape.take_back(vectorRank) !=
3604             inferredSourceTensorType.getShape().take_back(vectorRank))
3605       return failure();
3606 
3607     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3608         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3609     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3610     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3611                                                  insertOp.getDest(), indices,
3612                                                  ArrayRef<bool>{inBounds});
3613     return success();
3614   }
3615 };
3616 
3617 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
3618 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
3619 /// overwritten and inserted into another tensor. After this rewrite, the
3620 /// operations bufferize in-place since all of them work on the same slice.
3621 ///
3622 /// For example:
3623 /// ```mlir
3624 ///   %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
3625 ///        : vector<8x16xf32>, tensor<8x16xf32>
3626 ///   %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
3627 ///        : tensor<8x16xf32> to tensor<?x?xf32>
3628 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3629 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3630 /// ```
3631 /// folds to
3632 /// ```mlir
3633 ///   %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3634 ///        : tensor<27x37xf32> to tensor<?x?xf32>
3635 ///   %1 = vector.transfer_write %vec, %0[%c0, %c0]
3636 ///        : vector<8x16xf32>, tensor<?x?xf32>
3637 ///   %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
3638 ///        : tensor<?x?xf32> into tensor<27x37xf32>
3639 /// ```
3640 struct SwapExtractSliceOfTransferWrite
3641     : public OpRewritePattern<tensor::InsertSliceOp> {
3642 public:
3643   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3644 
3645   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3646                                 PatternRewriter &rewriter) const override {
3647     if (!insertOp.hasUnitStride())
3648       return failure();
3649     auto extractOp =
3650         insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3651     if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
3652       return failure();
3653     auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
3654     if (!transferOp || !transferOp->hasOneUse())
3655       return failure();
3656 
3657     // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
3658     // rank-reducing.
3659     if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
3660       return rewriter.notifyMatchFailure(insertOp,
3661                                          "use-def chain is rank-reducing");
3662     }
3663 
3664     // Fail if tensor::ExtractSliceOp has non-zero offset.
3665     if (!extractOp.hasZeroOffset()) {
3666       return rewriter.notifyMatchFailure(insertOp,
3667                                          "ExtractSliceOp has non-zero offset");
3668     }
3669 
3670     // Fail if tensor::TransferWriteOp has non-zero offset.
3671     if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
3672           return getConstantIntValue(value) == static_cast<int64_t>(0);
3673         })) {
3674       return rewriter.notifyMatchFailure(insertOp,
3675                                          "TranferWriteOp has non-zero offset");
3676     }
3677 
3678     // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
3679     for (const auto &it :
3680          llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
3681       if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) {
3682         return rewriter.notifyMatchFailure(
3683             insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
3684       }
3685     }
3686 
3687     // Fail if the vector::TransferWriteOp may not overwrite the full tensor.
3688     assert(transferOp.getVectorType().hasStaticShape() &&
3689            "expected vector to have a static shape");
3690     ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
3691     SmallVector<int64_t> resultShape = applyPermutationMap(
3692         transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
3693     if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
3694       return rewriter.notifyMatchFailure(
3695           insertOp, "TransferWriteOp may not write the full tensor.");
3696     }
3697 
3698     // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
3699     SmallVector<int64_t> newResultShape = applyPermutationMap(
3700         transferOp.getPermutationMap(), insertOp.getSourceType().getShape());
3701     SmallVector<bool> newInBounds;
3702     for (const auto &en : enumerate(newResultShape))
3703       newInBounds.push_back(en.value() == vectorShape[en.index()]);
3704     auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
3705         extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
3706         insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
3707         insertOp.getMixedStrides());
3708     auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
3709         transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
3710         transferOp.getIndices(), transferOp.getPermutationMapAttr(),
3711         rewriter.getBoolArrayAttr(newInBounds));
3712     rewriter.updateRootInPlace(insertOp, [&]() {
3713       insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
3714     });
3715     return success();
3716   }
3717 };
3718 
3719 } // namespace
3720 
3721 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3722                                                   MLIRContext *context) {
3723   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite,
3724               SwapExtractSliceOfTransferWrite>(context);
3725 }
3726 
3727 //===----------------------------------------------------------------------===//
3728 // LoadOp
3729 //===----------------------------------------------------------------------===//
3730 
3731 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3732                                                  MemRefType memRefTy) {
3733   if (!isLastMemrefDimUnitStride(memRefTy))
3734     return op->emitOpError("most minor memref dim must have unit stride");
3735   return success();
3736 }
3737 
3738 LogicalResult vector::LoadOp::verify() {
3739   VectorType resVecTy = getVectorType();
3740   MemRefType memRefTy = getMemRefType();
3741 
3742   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3743     return failure();
3744 
3745   // Checks for vector memrefs.
3746   Type memElemTy = memRefTy.getElementType();
3747   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3748     if (memVecTy != resVecTy)
3749       return emitOpError("base memref and result vector types should match");
3750     memElemTy = memVecTy.getElementType();
3751   }
3752 
3753   if (resVecTy.getElementType() != memElemTy)
3754     return emitOpError("base and result element types should match");
3755   if (llvm::size(getIndices()) != memRefTy.getRank())
3756     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3757   return success();
3758 }
3759 
3760 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3761   if (succeeded(foldMemRefCast(*this)))
3762     return getResult();
3763   return OpFoldResult();
3764 }
3765 
3766 //===----------------------------------------------------------------------===//
3767 // StoreOp
3768 //===----------------------------------------------------------------------===//
3769 
3770 LogicalResult vector::StoreOp::verify() {
3771   VectorType valueVecTy = getVectorType();
3772   MemRefType memRefTy = getMemRefType();
3773 
3774   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3775     return failure();
3776 
3777   // Checks for vector memrefs.
3778   Type memElemTy = memRefTy.getElementType();
3779   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3780     if (memVecTy != valueVecTy)
3781       return emitOpError(
3782           "base memref and valueToStore vector types should match");
3783     memElemTy = memVecTy.getElementType();
3784   }
3785 
3786   if (valueVecTy.getElementType() != memElemTy)
3787     return emitOpError("base and valueToStore element type should match");
3788   if (llvm::size(getIndices()) != memRefTy.getRank())
3789     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3790   return success();
3791 }
3792 
3793 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3794                             SmallVectorImpl<OpFoldResult> &results) {
3795   return foldMemRefCast(*this);
3796 }
3797 
3798 //===----------------------------------------------------------------------===//
3799 // MaskedLoadOp
3800 //===----------------------------------------------------------------------===//
3801 
3802 LogicalResult MaskedLoadOp::verify() {
3803   VectorType maskVType = getMaskVectorType();
3804   VectorType passVType = getPassThruVectorType();
3805   VectorType resVType = getVectorType();
3806   MemRefType memType = getMemRefType();
3807 
3808   if (resVType.getElementType() != memType.getElementType())
3809     return emitOpError("base and result element type should match");
3810   if (llvm::size(getIndices()) != memType.getRank())
3811     return emitOpError("requires ") << memType.getRank() << " indices";
3812   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3813     return emitOpError("expected result dim to match mask dim");
3814   if (resVType != passVType)
3815     return emitOpError("expected pass_thru of same type as result type");
3816   return success();
3817 }
3818 
3819 namespace {
3820 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3821 public:
3822   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3823   LogicalResult matchAndRewrite(MaskedLoadOp load,
3824                                 PatternRewriter &rewriter) const override {
3825     switch (get1DMaskFormat(load.getMask())) {
3826     case MaskFormat::AllTrue:
3827       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3828           load, load.getType(), load.getBase(), load.getIndices());
3829       return success();
3830     case MaskFormat::AllFalse:
3831       rewriter.replaceOp(load, load.getPassThru());
3832       return success();
3833     case MaskFormat::Unknown:
3834       return failure();
3835     }
3836     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3837   }
3838 };
3839 } // namespace
3840 
3841 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3842                                                MLIRContext *context) {
3843   results.add<MaskedLoadFolder>(context);
3844 }
3845 
3846 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3847   if (succeeded(foldMemRefCast(*this)))
3848     return getResult();
3849   return OpFoldResult();
3850 }
3851 
3852 //===----------------------------------------------------------------------===//
3853 // MaskedStoreOp
3854 //===----------------------------------------------------------------------===//
3855 
3856 LogicalResult MaskedStoreOp::verify() {
3857   VectorType maskVType = getMaskVectorType();
3858   VectorType valueVType = getVectorType();
3859   MemRefType memType = getMemRefType();
3860 
3861   if (valueVType.getElementType() != memType.getElementType())
3862     return emitOpError("base and valueToStore element type should match");
3863   if (llvm::size(getIndices()) != memType.getRank())
3864     return emitOpError("requires ") << memType.getRank() << " indices";
3865   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3866     return emitOpError("expected valueToStore dim to match mask dim");
3867   return success();
3868 }
3869 
3870 namespace {
3871 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3872 public:
3873   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3874   LogicalResult matchAndRewrite(MaskedStoreOp store,
3875                                 PatternRewriter &rewriter) const override {
3876     switch (get1DMaskFormat(store.getMask())) {
3877     case MaskFormat::AllTrue:
3878       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3879           store, store.getValueToStore(), store.getBase(), store.getIndices());
3880       return success();
3881     case MaskFormat::AllFalse:
3882       rewriter.eraseOp(store);
3883       return success();
3884     case MaskFormat::Unknown:
3885       return failure();
3886     }
3887     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3888   }
3889 };
3890 } // namespace
3891 
3892 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3893                                                 MLIRContext *context) {
3894   results.add<MaskedStoreFolder>(context);
3895 }
3896 
3897 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3898                                   SmallVectorImpl<OpFoldResult> &results) {
3899   return foldMemRefCast(*this);
3900 }
3901 
3902 //===----------------------------------------------------------------------===//
3903 // GatherOp
3904 //===----------------------------------------------------------------------===//
3905 
3906 LogicalResult GatherOp::verify() {
3907   VectorType indVType = getIndexVectorType();
3908   VectorType maskVType = getMaskVectorType();
3909   VectorType resVType = getVectorType();
3910   MemRefType memType = getMemRefType();
3911 
3912   if (resVType.getElementType() != memType.getElementType())
3913     return emitOpError("base and result element type should match");
3914   if (llvm::size(getIndices()) != memType.getRank())
3915     return emitOpError("requires ") << memType.getRank() << " indices";
3916   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3917     return emitOpError("expected result dim to match indices dim");
3918   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3919     return emitOpError("expected result dim to match mask dim");
3920   if (resVType != getPassThruVectorType())
3921     return emitOpError("expected pass_thru of same type as result type");
3922   return success();
3923 }
3924 
3925 namespace {
3926 class GatherFolder final : public OpRewritePattern<GatherOp> {
3927 public:
3928   using OpRewritePattern<GatherOp>::OpRewritePattern;
3929   LogicalResult matchAndRewrite(GatherOp gather,
3930                                 PatternRewriter &rewriter) const override {
3931     switch (get1DMaskFormat(gather.getMask())) {
3932     case MaskFormat::AllTrue:
3933       return failure(); // no unmasked equivalent
3934     case MaskFormat::AllFalse:
3935       rewriter.replaceOp(gather, gather.getPassThru());
3936       return success();
3937     case MaskFormat::Unknown:
3938       return failure();
3939     }
3940     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3941   }
3942 };
3943 } // namespace
3944 
3945 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3946                                            MLIRContext *context) {
3947   results.add<GatherFolder>(context);
3948 }
3949 
3950 //===----------------------------------------------------------------------===//
3951 // ScatterOp
3952 //===----------------------------------------------------------------------===//
3953 
3954 LogicalResult ScatterOp::verify() {
3955   VectorType indVType = getIndexVectorType();
3956   VectorType maskVType = getMaskVectorType();
3957   VectorType valueVType = getVectorType();
3958   MemRefType memType = getMemRefType();
3959 
3960   if (valueVType.getElementType() != memType.getElementType())
3961     return emitOpError("base and valueToStore element type should match");
3962   if (llvm::size(getIndices()) != memType.getRank())
3963     return emitOpError("requires ") << memType.getRank() << " indices";
3964   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3965     return emitOpError("expected valueToStore dim to match indices dim");
3966   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3967     return emitOpError("expected valueToStore dim to match mask dim");
3968   return success();
3969 }
3970 
3971 namespace {
3972 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3973 public:
3974   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3975   LogicalResult matchAndRewrite(ScatterOp scatter,
3976                                 PatternRewriter &rewriter) const override {
3977     switch (get1DMaskFormat(scatter.getMask())) {
3978     case MaskFormat::AllTrue:
3979       return failure(); // no unmasked equivalent
3980     case MaskFormat::AllFalse:
3981       rewriter.eraseOp(scatter);
3982       return success();
3983     case MaskFormat::Unknown:
3984       return failure();
3985     }
3986     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3987   }
3988 };
3989 } // namespace
3990 
3991 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3992                                             MLIRContext *context) {
3993   results.add<ScatterFolder>(context);
3994 }
3995 
3996 //===----------------------------------------------------------------------===//
3997 // ExpandLoadOp
3998 //===----------------------------------------------------------------------===//
3999 
4000 LogicalResult ExpandLoadOp::verify() {
4001   VectorType maskVType = getMaskVectorType();
4002   VectorType passVType = getPassThruVectorType();
4003   VectorType resVType = getVectorType();
4004   MemRefType memType = getMemRefType();
4005 
4006   if (resVType.getElementType() != memType.getElementType())
4007     return emitOpError("base and result element type should match");
4008   if (llvm::size(getIndices()) != memType.getRank())
4009     return emitOpError("requires ") << memType.getRank() << " indices";
4010   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
4011     return emitOpError("expected result dim to match mask dim");
4012   if (resVType != passVType)
4013     return emitOpError("expected pass_thru of same type as result type");
4014   return success();
4015 }
4016 
4017 namespace {
4018 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
4019 public:
4020   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
4021   LogicalResult matchAndRewrite(ExpandLoadOp expand,
4022                                 PatternRewriter &rewriter) const override {
4023     switch (get1DMaskFormat(expand.getMask())) {
4024     case MaskFormat::AllTrue:
4025       rewriter.replaceOpWithNewOp<vector::LoadOp>(
4026           expand, expand.getType(), expand.getBase(), expand.getIndices());
4027       return success();
4028     case MaskFormat::AllFalse:
4029       rewriter.replaceOp(expand, expand.getPassThru());
4030       return success();
4031     case MaskFormat::Unknown:
4032       return failure();
4033     }
4034     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
4035   }
4036 };
4037 } // namespace
4038 
4039 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
4040                                                MLIRContext *context) {
4041   results.add<ExpandLoadFolder>(context);
4042 }
4043 
4044 //===----------------------------------------------------------------------===//
4045 // CompressStoreOp
4046 //===----------------------------------------------------------------------===//
4047 
4048 LogicalResult CompressStoreOp::verify() {
4049   VectorType maskVType = getMaskVectorType();
4050   VectorType valueVType = getVectorType();
4051   MemRefType memType = getMemRefType();
4052 
4053   if (valueVType.getElementType() != memType.getElementType())
4054     return emitOpError("base and valueToStore element type should match");
4055   if (llvm::size(getIndices()) != memType.getRank())
4056     return emitOpError("requires ") << memType.getRank() << " indices";
4057   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
4058     return emitOpError("expected valueToStore dim to match mask dim");
4059   return success();
4060 }
4061 
4062 namespace {
4063 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
4064 public:
4065   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
4066   LogicalResult matchAndRewrite(CompressStoreOp compress,
4067                                 PatternRewriter &rewriter) const override {
4068     switch (get1DMaskFormat(compress.getMask())) {
4069     case MaskFormat::AllTrue:
4070       rewriter.replaceOpWithNewOp<vector::StoreOp>(
4071           compress, compress.getValueToStore(), compress.getBase(),
4072           compress.getIndices());
4073       return success();
4074     case MaskFormat::AllFalse:
4075       rewriter.eraseOp(compress);
4076       return success();
4077     case MaskFormat::Unknown:
4078       return failure();
4079     }
4080     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
4081   }
4082 };
4083 } // namespace
4084 
4085 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
4086                                                   MLIRContext *context) {
4087   results.add<CompressStoreFolder>(context);
4088 }
4089 
4090 //===----------------------------------------------------------------------===//
4091 // ShapeCastOp
4092 //===----------------------------------------------------------------------===//
4093 
4094 /// Returns true if each element of 'a' is equal to the product of a contiguous
4095 /// sequence of the elements of 'b'. Returns false otherwise.
4096 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
4097   unsigned rankA = a.size();
4098   unsigned rankB = b.size();
4099   assert(rankA < rankB);
4100 
4101   unsigned i = 0;
4102   unsigned j = 0;
4103   while (i < rankA && j < rankB) {
4104     int64_t dimA = a[i];
4105     int64_t dimB = 1;
4106     while (dimB < dimA && j < rankB)
4107       dimB *= b[j++];
4108     if (dimA != dimB)
4109       break;
4110     ++i;
4111 
4112     // Handle the case when trailing dimensions are of size 1.
4113     // Include them into the contiguous sequence.
4114     auto isOne = [](int64_t v) { return v == 1; };
4115     if (i < rankA && llvm::all_of(a.slice(i), isOne))
4116       i = rankA;
4117     if (j < rankB && llvm::all_of(b.slice(j), isOne))
4118       j = rankB;
4119   }
4120 
4121   return i == rankA && j == rankB;
4122 }
4123 
4124 static LogicalResult verifyVectorShapeCast(Operation *op,
4125                                            VectorType sourceVectorType,
4126                                            VectorType resultVectorType) {
4127   // Check that element type is the same.
4128   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
4129     return op->emitOpError("source/result vectors must have same element type");
4130   auto sourceShape = sourceVectorType.getShape();
4131   auto resultShape = resultVectorType.getShape();
4132 
4133   // Check that product of source dim sizes matches product of result dim sizes.
4134   int64_t sourceDimProduct = std::accumulate(
4135       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
4136   int64_t resultDimProduct = std::accumulate(
4137       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
4138   if (sourceDimProduct != resultDimProduct)
4139     return op->emitOpError("source/result number of elements must match");
4140 
4141   // Check that expanding/contracting rank cases.
4142   unsigned sourceRank = sourceVectorType.getRank();
4143   unsigned resultRank = resultVectorType.getRank();
4144   if (sourceRank < resultRank) {
4145     if (!isValidShapeCast(sourceShape, resultShape))
4146       return op->emitOpError("invalid shape cast");
4147   } else if (sourceRank > resultRank) {
4148     if (!isValidShapeCast(resultShape, sourceShape))
4149       return op->emitOpError("invalid shape cast");
4150   }
4151   return success();
4152 }
4153 
4154 LogicalResult ShapeCastOp::verify() {
4155   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
4156   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
4157 
4158   // Check if source/result are of vector type.
4159   if (sourceVectorType && resultVectorType)
4160     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
4161 
4162   return success();
4163 }
4164 
4165 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
4166   // No-op shape cast.
4167   if (getSource().getType() == getResult().getType())
4168     return getSource();
4169 
4170   // Canceling shape casts.
4171   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
4172     if (getResult().getType() == otherOp.getSource().getType())
4173       return otherOp.getSource();
4174 
4175     // Only allows valid transitive folding.
4176     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
4177     VectorType resultType = getResult().getType().cast<VectorType>();
4178     if (srcType.getRank() < resultType.getRank()) {
4179       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
4180         return {};
4181     } else if (srcType.getRank() > resultType.getRank()) {
4182       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
4183         return {};
4184     } else {
4185       return {};
4186     }
4187 
4188     setOperand(otherOp.getSource());
4189     return getResult();
4190   }
4191 
4192   // Cancelling broadcast and shape cast ops.
4193   if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
4194     if (bcastOp.getSourceType() == getType())
4195       return bcastOp.getSource();
4196   }
4197 
4198   return {};
4199 }
4200 
4201 namespace {
4202 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4203 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4204 public:
4205   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4206 
4207   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4208                                 PatternRewriter &rewriter) const override {
4209     auto constantOp =
4210         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4211     if (!constantOp)
4212       return failure();
4213     // Only handle splat for now.
4214     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4215     if (!dense)
4216       return failure();
4217     auto newAttr =
4218         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4219                                dense.getSplatValue<Attribute>());
4220     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4221     return success();
4222   }
4223 };
4224 
4225 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast.
4226 /// This only applies when the shape of the broadcast source is a suffix of the
4227 /// shape of the result (i.e. when broadcast without reshape is expressive
4228 /// enough to capture the result in a single op).
4229 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
4230 public:
4231   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4232 
4233   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4234                                 PatternRewriter &rewriter) const override {
4235     auto broadcastOp =
4236         shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
4237     if (!broadcastOp)
4238       return failure();
4239 
4240     auto broadcastSourceVectorType =
4241         broadcastOp.getSourceType().dyn_cast<VectorType>();
4242     auto broadcastSourceShape = broadcastSourceVectorType
4243                                     ? broadcastSourceVectorType.getShape()
4244                                     : ArrayRef<int64_t>{};
4245     auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape();
4246 
4247     // Bail if `broadcastSourceShape` is not a suffix of the result.
4248     bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back(
4249                                                  broadcastSourceShape.size()));
4250     if (!isSuffix)
4251       return failure();
4252 
4253     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4254         shapeCastOp, shapeCastOp.getResultVectorType(),
4255         broadcastOp.getSource());
4256     return success();
4257   }
4258 };
4259 
4260 } // namespace
4261 
4262 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4263                                               MLIRContext *context) {
4264   results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context);
4265 }
4266 
4267 //===----------------------------------------------------------------------===//
4268 // VectorBitCastOp
4269 //===----------------------------------------------------------------------===//
4270 
4271 LogicalResult BitCastOp::verify() {
4272   auto sourceVectorType = getSourceVectorType();
4273   auto resultVectorType = getResultVectorType();
4274 
4275   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4276     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4277       return emitOpError("dimension size mismatch at: ") << i;
4278   }
4279 
4280   DataLayout dataLayout = DataLayout::closest(*this);
4281   auto sourceElementBits =
4282       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4283   auto resultElementBits =
4284       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4285 
4286   if (sourceVectorType.getRank() == 0) {
4287     if (sourceElementBits != resultElementBits)
4288       return emitOpError("source/result bitwidth of the 0-D vector element "
4289                          "types must be equal");
4290   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4291              resultElementBits * resultVectorType.getShape().back()) {
4292     return emitOpError(
4293         "source/result bitwidth of the minor 1-D vectors must be equal");
4294   }
4295 
4296   return success();
4297 }
4298 
4299 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4300   // Nop cast.
4301   if (getSource().getType() == getResult().getType())
4302     return getSource();
4303 
4304   // Canceling bitcasts.
4305   if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
4306     if (getResult().getType() == otherOp.getSource().getType())
4307       return otherOp.getSource();
4308 
4309     setOperand(otherOp.getSource());
4310     return getResult();
4311   }
4312 
4313   Attribute sourceConstant = operands.front();
4314   if (!sourceConstant)
4315     return {};
4316 
4317   Type srcElemType = getSourceVectorType().getElementType();
4318   Type dstElemType = getResultVectorType().getElementType();
4319 
4320   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4321     if (floatPack.isSplat()) {
4322       auto splat = floatPack.getSplatValue<FloatAttr>();
4323 
4324       // Casting fp16 into fp32.
4325       if (srcElemType.isF16() && dstElemType.isF32()) {
4326         uint32_t bits = static_cast<uint32_t>(
4327             splat.getValue().bitcastToAPInt().getZExtValue());
4328         // Duplicate the 16-bit pattern.
4329         bits = (bits << 16) | (bits & 0xffff);
4330         APInt intBits(32, bits);
4331         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4332         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4333       }
4334     }
4335   }
4336 
4337   return {};
4338 }
4339 
4340 //===----------------------------------------------------------------------===//
4341 // TypeCastOp
4342 //===----------------------------------------------------------------------===//
4343 
4344 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4345   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4346   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4347                               memRefType.getShape().end());
4348   if (vectorType)
4349     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4350   return res;
4351 }
4352 
4353 /// Build the canonical memRefType with a single vector.
4354 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4355 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4356                        Value source) {
4357   result.addOperands(source);
4358   MemRefType memRefType = source.getType().cast<MemRefType>();
4359   VectorType vectorType =
4360       VectorType::get(extractShape(memRefType),
4361                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4362   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4363                                   memRefType.getMemorySpace()));
4364 }
4365 
4366 LogicalResult TypeCastOp::verify() {
4367   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4368   if (!canonicalType.getLayout().isIdentity())
4369     return emitOpError("expects operand to be a memref with identity layout");
4370   if (!getResultMemRefType().getLayout().isIdentity())
4371     return emitOpError("expects result to be a memref with identity layout");
4372   if (getResultMemRefType().getMemorySpace() !=
4373       getMemRefType().getMemorySpace())
4374     return emitOpError("expects result in same memory space");
4375 
4376   auto sourceType = getMemRefType();
4377   auto resultType = getResultMemRefType();
4378   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4379       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4380     return emitOpError(
4381                "expects result and operand with same underlying scalar type: ")
4382            << resultType;
4383   if (extractShape(sourceType) != extractShape(resultType))
4384     return emitOpError(
4385                "expects concatenated result and operand shapes to be equal: ")
4386            << resultType;
4387   return success();
4388 }
4389 
4390 //===----------------------------------------------------------------------===//
4391 // TransposeOp
4392 //===----------------------------------------------------------------------===//
4393 
4394 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4395                                 Value vector, ArrayRef<int64_t> transp) {
4396   VectorType vt = vector.getType().cast<VectorType>();
4397   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4398   for (unsigned i = 0; i < transp.size(); ++i)
4399     transposedShape[i] = vt.getShape()[transp[i]];
4400 
4401   result.addOperands(vector);
4402   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4403   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4404 }
4405 
4406 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4407   // Eliminate splat constant transpose ops.
4408   if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>())
4409     if (attr.isSplat())
4410       return attr.reshape(getResultType());
4411 
4412   // Eliminate identity transpose ops. This happens when the dimensions of the
4413   // input vector remain in their original order after the transpose operation.
4414   SmallVector<int64_t, 4> transp;
4415   getTransp(transp);
4416 
4417   // Check if the permutation of the dimensions contains sequential values:
4418   // {0, 1, 2, ...}.
4419   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4420     if (transp[i] != i)
4421       return {};
4422   }
4423 
4424   return getVector();
4425 }
4426 
4427 LogicalResult vector::TransposeOp::verify() {
4428   VectorType vectorType = getVectorType();
4429   VectorType resultType = getResultType();
4430   int64_t rank = resultType.getRank();
4431   if (vectorType.getRank() != rank)
4432     return emitOpError("vector result rank mismatch: ") << rank;
4433   // Verify transposition array.
4434   auto transpAttr = getTransp().getValue();
4435   int64_t size = transpAttr.size();
4436   if (rank != size)
4437     return emitOpError("transposition length mismatch: ") << size;
4438   SmallVector<bool, 8> seen(rank, false);
4439   for (const auto &ta : llvm::enumerate(transpAttr)) {
4440     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4441     if (i < 0 || i >= rank)
4442       return emitOpError("transposition index out of range: ") << i;
4443     if (seen[i])
4444       return emitOpError("duplicate position index: ") << i;
4445     seen[i] = true;
4446     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4447       return emitOpError("dimension size mismatch at: ") << i;
4448   }
4449   return success();
4450 }
4451 
4452 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
4453   return llvm::to_vector<4>(getResultType().getShape());
4454 }
4455 
4456 namespace {
4457 
4458 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4459 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4460 public:
4461   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4462 
4463   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4464                                 PatternRewriter &rewriter) const override {
4465     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4466     auto getPermutation = [](vector::TransposeOp transpose) {
4467       SmallVector<int64_t, 4> permutation;
4468       transpose.getTransp(permutation);
4469       return permutation;
4470     };
4471 
4472     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4473     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4474                                   ArrayRef<int64_t> permutation2) {
4475       SmallVector<int64_t, 4> result;
4476       for (auto index : permutation2)
4477         result.push_back(permutation1[index]);
4478       return result;
4479     };
4480 
4481     // Return if the input of 'transposeOp' is not defined by another transpose.
4482     vector::TransposeOp parentTransposeOp =
4483         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4484     if (!parentTransposeOp)
4485       return failure();
4486 
4487     SmallVector<int64_t, 4> permutation = composePermutations(
4488         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4489     // Replace 'transposeOp' with a new transpose operation.
4490     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4491         transposeOp, transposeOp.getResult().getType(),
4492         parentTransposeOp.getVector(),
4493         vector::getVectorSubscriptAttr(rewriter, permutation));
4494     return success();
4495   }
4496 };
4497 
4498 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4499 struct FoldTransposedScalarBroadcast final
4500     : public OpRewritePattern<vector::TransposeOp> {
4501   using OpRewritePattern::OpRewritePattern;
4502 
4503   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4504                                 PatternRewriter &rewriter) const override {
4505     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4506     if (!bcastOp)
4507       return failure();
4508 
4509     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4510     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4511       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4512           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4513       return success();
4514     }
4515 
4516     return failure();
4517   }
4518 };
4519 
4520 // Folds transpose(splat x : src_type) : res_type into splat x : res_type.
4521 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
4522 public:
4523   using OpRewritePattern<TransposeOp>::OpRewritePattern;
4524 
4525   LogicalResult matchAndRewrite(TransposeOp transposeOp,
4526                                 PatternRewriter &rewriter) const override {
4527     auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
4528     if (!splatOp)
4529       return failure();
4530 
4531     rewriter.replaceOpWithNewOp<vector::SplatOp>(
4532         transposeOp, transposeOp.getResultType(), splatOp.getInput());
4533     return success();
4534   }
4535 };
4536 
4537 } // namespace
4538 
4539 void vector::TransposeOp::getCanonicalizationPatterns(
4540     RewritePatternSet &results, MLIRContext *context) {
4541   results
4542       .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>(
4543           context);
4544 }
4545 
4546 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4547   populateFromInt64AttrArray(getTransp(), results);
4548 }
4549 
4550 //===----------------------------------------------------------------------===//
4551 // ConstantMaskOp
4552 //===----------------------------------------------------------------------===//
4553 
4554 LogicalResult ConstantMaskOp::verify() {
4555   auto resultType = getResult().getType().cast<VectorType>();
4556   // Check the corner case of 0-D vectors first.
4557   if (resultType.getRank() == 0) {
4558     if (getMaskDimSizes().size() != 1)
4559       return emitError("array attr must have length 1 for 0-D vectors");
4560     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4561     if (dim != 0 && dim != 1)
4562       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4563     return success();
4564   }
4565 
4566   // Verify that array attr size matches the rank of the vector result.
4567   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4568     return emitOpError(
4569         "must specify array attr of size equal vector result rank");
4570   // Verify that each array attr element is in bounds of corresponding vector
4571   // result dimension size.
4572   auto resultShape = resultType.getShape();
4573   SmallVector<int64_t, 4> maskDimSizes;
4574   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4575     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4576     if (attrValue < 0 || attrValue > resultShape[it.index()])
4577       return emitOpError(
4578           "array attr of size out of bounds of vector result dimension size");
4579     maskDimSizes.push_back(attrValue);
4580   }
4581   // Verify that if one mask dim size is zero, they all should be zero (because
4582   // the mask region is a conjunction of each mask dimension interval).
4583   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4584   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4585   if (anyZeros && !allZeros)
4586     return emitOpError("expected all mask dim sizes to be zeros, "
4587                        "as a result of conjunction with zero mask dim");
4588   // Verify that if the mask type is scalable, dimensions should be zero because
4589   // constant scalable masks can only be defined for the "none set" or "all set"
4590   // cases, and there is no VLA way to define an "all set" case for
4591   // `vector.constant_mask`. In the future, a convention could be established
4592   // to decide if a specific dimension value could be considered as "all set".
4593   if (resultType.isScalable() &&
4594       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4595     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4596   return success();
4597 }
4598 
4599 //===----------------------------------------------------------------------===//
4600 // CreateMaskOp
4601 //===----------------------------------------------------------------------===//
4602 
4603 LogicalResult CreateMaskOp::verify() {
4604   auto vectorType = getResult().getType().cast<VectorType>();
4605   // Verify that an operand was specified for each result vector each dimension.
4606   if (vectorType.getRank() == 0) {
4607     if (getNumOperands() != 1)
4608       return emitOpError(
4609           "must specify exactly one operand for 0-D create_mask");
4610   } else if (getNumOperands() !=
4611              getResult().getType().cast<VectorType>().getRank()) {
4612     return emitOpError(
4613         "must specify an operand for each result vector dimension");
4614   }
4615   return success();
4616 }
4617 
4618 namespace {
4619 
4620 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4621 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4622 public:
4623   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4624 
4625   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4626                                 PatternRewriter &rewriter) const override {
4627     // Return if any of 'createMaskOp' operands are not defined by a constant.
4628     auto isNotDefByConstant = [](Value operand) {
4629       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4630     };
4631     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4632       return failure();
4633 
4634     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4635     // are negative or zero.
4636     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4637       if (vType.isScalable())
4638         for (auto opDim : createMaskOp.getOperands()) {
4639           APInt intVal;
4640           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4641               intVal.isStrictlyPositive())
4642             return failure();
4643         }
4644     }
4645 
4646     // Gather constant mask dimension sizes.
4647     SmallVector<int64_t, 4> maskDimSizes;
4648     for (auto it : llvm::zip(createMaskOp.operands(),
4649                              createMaskOp.getType().getShape())) {
4650       auto *defOp = std::get<0>(it).getDefiningOp();
4651       int64_t maxDimSize = std::get<1>(it);
4652       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4653       dimSize = std::min(dimSize, maxDimSize);
4654       // If one of dim sizes is zero, set all dims to zero.
4655       if (dimSize <= 0) {
4656         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4657         break;
4658       }
4659       maskDimSizes.push_back(dimSize);
4660     }
4661     // Replace 'createMaskOp' with ConstantMaskOp.
4662     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4663         createMaskOp, createMaskOp.getResult().getType(),
4664         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4665     return success();
4666   }
4667 };
4668 
4669 } // namespace
4670 
4671 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4672                                                MLIRContext *context) {
4673   results.add<CreateMaskFolder>(context);
4674 }
4675 
4676 //===----------------------------------------------------------------------===//
4677 // ScanOp
4678 //===----------------------------------------------------------------------===//
4679 
4680 LogicalResult ScanOp::verify() {
4681   VectorType srcType = getSourceType();
4682   VectorType initialType = getInitialValueType();
4683   // Check reduction dimension < rank.
4684   int64_t srcRank = srcType.getRank();
4685   int64_t reductionDim = getReductionDim();
4686   if (reductionDim >= srcRank)
4687     return emitOpError("reduction dimension ")
4688            << reductionDim << " has to be less than " << srcRank;
4689 
4690   // Check that rank(initial_value) = rank(src) - 1.
4691   int64_t initialValueRank = initialType.getRank();
4692   if (initialValueRank != srcRank - 1)
4693     return emitOpError("initial value rank ")
4694            << initialValueRank << " has to be equal to " << srcRank - 1;
4695 
4696   // Check shapes of initial value and src.
4697   ArrayRef<int64_t> srcShape = srcType.getShape();
4698   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4699   SmallVector<int64_t> expectedShape;
4700   for (int i = 0; i < srcRank; i++) {
4701     if (i != reductionDim)
4702       expectedShape.push_back(srcShape[i]);
4703   }
4704   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4705                    [](std::tuple<int64_t, int64_t> s) {
4706                      return std::get<0>(s) != std::get<1>(s);
4707                    })) {
4708     return emitOpError("incompatible input/initial value shapes");
4709   }
4710 
4711   // Verify supported reduction kind.
4712   Type eltType = getDestType().getElementType();
4713   if (!isSupportedCombiningKind(getKind(), eltType))
4714     return emitOpError("unsupported reduction type ")
4715            << eltType << " for kind '" << stringifyCombiningKind(getKind())
4716            << "'";
4717 
4718   return success();
4719 }
4720 
4721 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4722     RewritePatternSet &patterns) {
4723   patterns
4724       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4725            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4726            StridedSliceConstantMaskFolder, TransposeFolder>(
4727           patterns.getContext());
4728 }
4729 
4730 //===----------------------------------------------------------------------===//
4731 // SplatOp
4732 //===----------------------------------------------------------------------===//
4733 
4734 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4735   auto constOperand = operands.front();
4736   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4737     return {};
4738 
4739   // SplatElementsAttr::get treats single value for second arg as being a splat.
4740   return SplatElementsAttr::get(getType(), {constOperand});
4741 }
4742 
4743 //===----------------------------------------------------------------------===//
4744 // WarpExecuteOnLane0Op
4745 //===----------------------------------------------------------------------===//
4746 
4747 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) {
4748   p << "(" << getLaneid() << ")";
4749 
4750   SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()};
4751   auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName());
4752   p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]";
4753 
4754   if (!getArgs().empty())
4755     p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")";
4756   if (!getResults().empty())
4757     p << " -> (" << getResults().getTypes() << ')';
4758   p << " ";
4759   p.printRegion(getRegion(),
4760                 /*printEntryBlockArgs=*/true,
4761                 /*printBlockTerminators=*/!getResults().empty());
4762   p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr);
4763 }
4764 
4765 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser,
4766                                         OperationState &result) {
4767   // Create the region.
4768   result.regions.reserve(1);
4769   Region *warpRegion = result.addRegion();
4770 
4771   auto &builder = parser.getBuilder();
4772   OpAsmParser::UnresolvedOperand laneId;
4773 
4774   // Parse predicate operand.
4775   if (parser.parseLParen() ||
4776       parser.parseOperand(laneId, /*allowResultNumber=*/false) ||
4777       parser.parseRParen())
4778     return failure();
4779 
4780   int64_t warpSize;
4781   if (parser.parseLSquare() || parser.parseInteger(warpSize) ||
4782       parser.parseRSquare())
4783     return failure();
4784   result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(),
4785                                                         builder.getContext())),
4786                       builder.getI64IntegerAttr(warpSize));
4787 
4788   if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands))
4789     return failure();
4790 
4791   llvm::SMLoc inputsOperandsLoc;
4792   SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands;
4793   SmallVector<Type> inputTypes;
4794   if (succeeded(parser.parseOptionalKeyword("args"))) {
4795     if (parser.parseLParen())
4796       return failure();
4797 
4798     inputsOperandsLoc = parser.getCurrentLocation();
4799     if (parser.parseOperandList(inputsOperands) ||
4800         parser.parseColonTypeList(inputTypes) || parser.parseRParen())
4801       return failure();
4802   }
4803   if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
4804                              result.operands))
4805     return failure();
4806 
4807   // Parse optional results type list.
4808   if (parser.parseOptionalArrowTypeList(result.types))
4809     return failure();
4810   // Parse the region.
4811   if (parser.parseRegion(*warpRegion, /*arguments=*/{},
4812                          /*argTypes=*/{}))
4813     return failure();
4814   WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location);
4815 
4816   // Parse the optional attribute list.
4817   if (parser.parseOptionalAttrDict(result.attributes))
4818     return failure();
4819   return success();
4820 }
4821 
4822 void WarpExecuteOnLane0Op::getSuccessorRegions(
4823     Optional<unsigned> index, ArrayRef<Attribute> operands,
4824     SmallVectorImpl<RegionSuccessor> &regions) {
4825   if (index) {
4826     regions.push_back(RegionSuccessor(getResults()));
4827     return;
4828   }
4829 
4830   // The warp region is always executed
4831   regions.push_back(RegionSuccessor(&getWarpRegion()));
4832 }
4833 
4834 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4835                                  TypeRange resultTypes, Value laneId,
4836                                  int64_t warpSize) {
4837   build(builder, result, resultTypes, laneId, warpSize,
4838         /*operands=*/llvm::None, /*argTypes=*/llvm::None);
4839 }
4840 
4841 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result,
4842                                  TypeRange resultTypes, Value laneId,
4843                                  int64_t warpSize, ValueRange args,
4844                                  TypeRange blockArgTypes) {
4845   result.addOperands(laneId);
4846   result.addAttribute(getAttributeNames()[0],
4847                       builder.getI64IntegerAttr(warpSize));
4848   result.addTypes(resultTypes);
4849   result.addOperands(args);
4850   assert(args.size() == blockArgTypes.size());
4851   OpBuilder::InsertionGuard guard(builder);
4852   Region *warpRegion = result.addRegion();
4853   Block *block = builder.createBlock(warpRegion);
4854   for (auto it : llvm::zip(blockArgTypes, args))
4855     block->addArgument(std::get<0>(it), std::get<1>(it).getLoc());
4856 }
4857 
4858 /// Helper check if the distributed vector type is consistent with the expanded
4859 /// type and distributed size.
4860 static LogicalResult verifyDistributedType(Type expanded, Type distributed,
4861                                            int64_t warpSize, Operation *op) {
4862   // If the types matches there is no distribution.
4863   if (expanded == distributed)
4864     return success();
4865   auto expandedVecType = expanded.dyn_cast<VectorType>();
4866   auto distributedVecType = distributed.dyn_cast<VectorType>();
4867   if (!expandedVecType || !distributedVecType)
4868     return op->emitOpError("expected vector type for distributed operands.");
4869   if (expandedVecType.getRank() != distributedVecType.getRank() ||
4870       expandedVecType.getElementType() != distributedVecType.getElementType())
4871     return op->emitOpError(
4872         "expected distributed vectors to have same rank and element type.");
4873   bool foundDistributedDim = false;
4874   for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) {
4875     if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i))
4876       continue;
4877     if (expandedVecType.getDimSize(i) ==
4878         distributedVecType.getDimSize(i) * warpSize) {
4879       if (foundDistributedDim)
4880         return op->emitOpError()
4881                << "expected only one dimension to be distributed from "
4882                << expandedVecType << " to " << distributedVecType;
4883       foundDistributedDim = true;
4884       continue;
4885     }
4886     return op->emitOpError() << "incompatible distribution dimensions from "
4887                              << expandedVecType << " to " << distributedVecType;
4888   }
4889   return success();
4890 }
4891 
4892 LogicalResult WarpExecuteOnLane0Op::verify() {
4893   if (getArgs().size() != getWarpRegion().getNumArguments())
4894     return emitOpError(
4895         "expected same number op arguments and block arguments.");
4896   auto yield =
4897       cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator());
4898   if (yield.getNumOperands() != getNumResults())
4899     return emitOpError(
4900         "expected same number of yield operands and return values.");
4901   int64_t warpSize = getWarpSize();
4902   for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) {
4903     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4904                                      std::get<1>(it).getType(), warpSize,
4905                                      getOperation())))
4906       return failure();
4907   }
4908   for (auto it : llvm::zip(yield.getOperands(), getResults())) {
4909     if (failed(verifyDistributedType(std::get<0>(it).getType(),
4910                                      std::get<1>(it).getType(), warpSize,
4911                                      getOperation())))
4912       return failure();
4913   }
4914   return success();
4915 }
4916 
4917 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) {
4918   return succeeded(
4919       verifyDistributedType(lhs, rhs, getWarpSize(), getOperation()));
4920 }
4921 
4922 //===----------------------------------------------------------------------===//
4923 // TableGen'd op method definitions
4924 //===----------------------------------------------------------------------===//
4925 
4926 #define GET_OP_CLASSES
4927 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4928