1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.mask_dim_sizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() && 144 defWrite.indices() == read.indices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.permutation_map() == read.permutation_map(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.indices() == write.indices() && 152 priorWrite.mask() == write.mask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.permutation_map() == write.permutation_map(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 result.addOperands(source); 340 auto sourceVectorType = source.getType().cast<VectorType>(); 341 auto targetType = MultiDimReductionOp::inferDestType( 342 sourceVectorType.getShape(), reductionMask, 343 sourceVectorType.getElementType()); 344 result.addTypes(targetType); 345 346 SmallVector<int64_t> reductionDims; 347 for (const auto &en : llvm::enumerate(reductionMask)) 348 if (en.value()) 349 reductionDims.push_back(en.index()); 350 result.addAttribute(getReductionDimsAttrStrName(), 351 builder.getI64ArrayAttr(reductionDims)); 352 result.addAttribute(getKindAttrStrName(), 353 CombiningKindAttr::get(kind, builder.getContext())); 354 } 355 356 LogicalResult MultiDimReductionOp::verify() { 357 auto reductionMask = getReductionMask(); 358 auto targetType = MultiDimReductionOp::inferDestType( 359 getSourceVectorType().getShape(), reductionMask, 360 getSourceVectorType().getElementType()); 361 // TODO: update to support 0-d vectors when available. 362 if (targetType != getDestType()) 363 return emitError("invalid output vector type: ") 364 << getDestType() << " (expected: " << targetType << ")"; 365 return success(); 366 } 367 368 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 369 // Single parallel dim, this is a noop. 370 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 371 return source(); 372 return {}; 373 } 374 375 //===----------------------------------------------------------------------===// 376 // ReductionOp 377 //===----------------------------------------------------------------------===// 378 379 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 380 CombiningKind kind, Value vector) { 381 build(builder, result, kind, vector, /*acc=*/Value()); 382 } 383 384 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 385 CombiningKind kind, Value vector, Value acc) { 386 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 387 kind, vector, acc); 388 } 389 390 LogicalResult ReductionOp::verify() { 391 // Verify for 1-D vector. 392 int64_t rank = getVectorType().getRank(); 393 if (rank != 1) 394 return emitOpError("unsupported reduction rank: ") << rank; 395 396 // Verify supported reduction kind. 397 Type eltType = dest().getType(); 398 if (!isSupportedCombiningKind(kind(), eltType)) 399 return emitOpError("unsupported reduction type '") 400 << eltType << "' for kind '" << stringifyCombiningKind(kind()) 401 << "'"; 402 403 // Verify optional accumulator. 404 if (acc()) { 405 if (kind() != CombiningKind::ADD && kind() != CombiningKind::MUL) 406 return emitOpError("no accumulator for reduction kind: ") 407 << stringifyCombiningKind(kind()); 408 if (!eltType.isa<FloatType>()) 409 return emitOpError("no accumulator for type: ") << eltType; 410 } 411 412 return success(); 413 } 414 415 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 416 SmallVector<OpAsmParser::OperandType, 2> operandsInfo; 417 Type redType; 418 Type resType; 419 CombiningKindAttr kindAttr; 420 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 421 result.attributes) || 422 parser.parseComma() || parser.parseOperandList(operandsInfo) || 423 parser.parseColonType(redType) || 424 parser.parseKeywordType("into", resType) || 425 (!operandsInfo.empty() && 426 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 427 (operandsInfo.size() > 1 && 428 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 429 parser.addTypeToList(resType, result.types)) 430 return failure(); 431 if (operandsInfo.empty() || operandsInfo.size() > 2) 432 return parser.emitError(parser.getNameLoc(), 433 "unsupported number of operands"); 434 return success(); 435 } 436 437 void ReductionOp::print(OpAsmPrinter &p) { 438 p << " "; 439 kindAttr().print(p); 440 p << ", " << vector(); 441 if (acc()) 442 p << ", " << acc(); 443 p << " : " << vector().getType() << " into " << dest().getType(); 444 } 445 446 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 447 OpBuilder &builder, Location loc, 448 Value vector) { 449 switch (op) { 450 case arith::AtomicRMWKind::addf: 451 case arith::AtomicRMWKind::addi: 452 return builder.create<vector::ReductionOp>(vector.getLoc(), 453 CombiningKind::ADD, vector); 454 case arith::AtomicRMWKind::mulf: 455 case arith::AtomicRMWKind::muli: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MUL, vector); 458 case arith::AtomicRMWKind::minf: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINF, vector); 461 case arith::AtomicRMWKind::mins: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINSI, vector); 464 case arith::AtomicRMWKind::minu: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINUI, vector); 467 case arith::AtomicRMWKind::maxf: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXF, vector); 470 case arith::AtomicRMWKind::maxs: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXSI, vector); 473 case arith::AtomicRMWKind::maxu: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXUI, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 //===----------------------------------------------------------------------===// 485 // ContractionOp 486 //===----------------------------------------------------------------------===// 487 488 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 489 Value lhs, Value rhs, Value acc, 490 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 491 ArrayRef<StringRef> iteratorTypes) { 492 result.addOperands({lhs, rhs, acc}); 493 result.addTypes(acc.getType()); 494 result.addAttribute(::mlir::getIndexingMapsAttrName(), 495 builder.getAffineMapArrayAttr( 496 AffineMap::inferFromExprList(indexingExprs))); 497 result.addAttribute(::mlir::getIteratorTypesAttrName(), 498 builder.getStrArrayAttr(iteratorTypes)); 499 } 500 501 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 502 Value lhs, Value rhs, Value acc, 503 ArrayAttr indexingMaps, 504 ArrayAttr iteratorTypes) { 505 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 506 ContractionOp::getDefaultKind()); 507 } 508 509 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 510 Value lhs, Value rhs, Value acc, 511 ArrayAttr indexingMaps, 512 ArrayAttr iteratorTypes, CombiningKind kind) { 513 result.addOperands({lhs, rhs, acc}); 514 result.addTypes(acc.getType()); 515 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 516 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 517 result.addAttribute(ContractionOp::getKindAttrStrName(), 518 CombiningKindAttr::get(kind, builder.getContext())); 519 } 520 521 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 522 OpAsmParser::OperandType lhsInfo; 523 OpAsmParser::OperandType rhsInfo; 524 OpAsmParser::OperandType accInfo; 525 SmallVector<OpAsmParser::OperandType, 2> masksInfo; 526 SmallVector<Type, 2> types; 527 Type resultType; 528 auto loc = parser.getCurrentLocation(); 529 DictionaryAttr dictAttr; 530 // TODO: Unify linalg op attribute parsing. 531 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 532 parser.parseOperand(lhsInfo) || parser.parseComma() || 533 parser.parseOperand(rhsInfo) || parser.parseComma() || 534 parser.parseOperand(accInfo) || 535 parser.parseTrailingOperandList(masksInfo) || 536 parser.parseOptionalAttrDict(result.attributes) || 537 parser.parseColonTypeList(types) || 538 parser.parseKeywordType("into", resultType) || 539 parser.resolveOperand(lhsInfo, types[0], result.operands) || 540 parser.resolveOperand(rhsInfo, types[1], result.operands) || 541 parser.resolveOperand(accInfo, resultType, result.operands) || 542 parser.addTypeToList(resultType, result.types)) 543 return failure(); 544 result.attributes.assign(dictAttr.getValue().begin(), 545 dictAttr.getValue().end()); 546 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 547 result.addAttribute(ContractionOp::getKindAttrStrName(), 548 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 549 result.getContext())); 550 } 551 if (masksInfo.empty()) 552 return success(); 553 if (masksInfo.size() != 2) 554 return parser.emitError(parser.getNameLoc(), 555 "expected zero or exactly 2 vector mask operands"); 556 auto lhsType = types[0].cast<VectorType>(); 557 auto rhsType = types[1].cast<VectorType>(); 558 auto maskElementType = parser.getBuilder().getI1Type(); 559 std::array<Type, 2> maskTypes = { 560 VectorType::Builder(lhsType).setElementType(maskElementType), 561 VectorType::Builder(rhsType).setElementType(maskElementType)}; 562 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 563 return failure(); 564 return success(); 565 } 566 567 void ContractionOp::print(OpAsmPrinter &p) { 568 // TODO: Unify printing code with linalg ops. 569 auto attrNames = getTraitAttrNames(); 570 llvm::StringSet<> traitAttrsSet; 571 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 572 SmallVector<NamedAttribute, 8> attrs; 573 for (auto attr : (*this)->getAttrs()) 574 if (traitAttrsSet.count(attr.getName().strref()) > 0) 575 attrs.push_back(attr); 576 577 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 578 p << " " << dictAttr << " " << lhs() << ", "; 579 p << rhs() << ", " << acc(); 580 if (masks().size() == 2) 581 p << ", " << masks(); 582 583 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 584 p << " : " << lhs().getType() << ", " << rhs().getType() << " into " 585 << getResultType(); 586 } 587 588 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 589 const std::vector<std::pair<int64_t, int64_t>> &map) { 590 for (auto &dimPair : map) { 591 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 592 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 593 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 594 return false; 595 } 596 return true; 597 } 598 599 static LogicalResult verifyOutputShape( 600 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 601 Type resType, 602 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 603 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 604 DenseSet<int64_t> lhsContractingDimSet; 605 DenseSet<int64_t> rhsContractingDimSet; 606 for (auto &dimPair : contractingDimMap) { 607 lhsContractingDimSet.insert(dimPair.first); 608 rhsContractingDimSet.insert(dimPair.second); 609 } 610 DenseSet<int64_t> rhsBatchDimSet; 611 for (auto &dimPair : batchDimMap) 612 rhsBatchDimSet.insert(dimPair.second); 613 614 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 615 SmallVector<int64_t, 4> expectedResultDims; 616 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 617 if (lhsContractingDimSet.count(i) > 0) 618 continue; 619 expectedResultDims.push_back(lhsType.getDimSize(i)); 620 } 621 622 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 623 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 624 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(rhsType.getDimSize(i)); 627 } 628 629 // Verify 'expectedResultDims'. 630 if (expectedResultDims.empty()) { 631 // No batch or free dimension implies a scalar result. 632 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 633 return op.emitOpError("invalid accumulator/result vector shape"); 634 } else { 635 // At least one batch or free dimension implies a vector result. 636 auto resVectorType = resType.dyn_cast<VectorType>(); 637 auto accVectorType = accType.dyn_cast<VectorType>(); 638 if (!resVectorType || !accVectorType) 639 return op.emitOpError("invalid accumulator/result vector shape"); 640 641 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 642 // types fully define the result vector type. This assumes the affine maps 643 // are well-formed, which must have been verified already. 644 MLIRContext *ctx = op.getContext(); 645 AffineMap lhsMap = op.getIndexingMaps()[0]; 646 AffineMap rhsMap = op.getIndexingMaps()[1]; 647 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 648 for (auto pair : 649 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 650 VectorType v = pair.first; 651 auto map = pair.second; 652 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 653 unsigned pos = map.getDimPosition(idx); 654 if (!extents[pos]) 655 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 656 } 657 } 658 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 659 "expected extent along all dimensions."); 660 661 AffineMap resMap = op.getIndexingMaps()[2]; 662 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 663 /*symCount=*/0, extents, ctx); 664 // Compose the resMap with the extentsMap, which is a constant map. 665 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 666 assert(llvm::all_of( 667 expectedMap.getResults(), 668 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 669 "expected constant extent along all dimensions."); 670 // Extract the expected shape and build the type. 671 auto expectedShape = llvm::to_vector<4>( 672 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 673 return e.cast<AffineConstantExpr>().getValue(); 674 })); 675 auto expected = 676 VectorType::get(expectedShape, resVectorType.getElementType()); 677 if (resVectorType != expected || accVectorType != expected) 678 return op.emitOpError( 679 "invalid accumulator/result vector shape, expected: ") 680 << expected; 681 } 682 return success(); 683 } 684 685 LogicalResult ContractionOp::verify() { 686 auto lhsType = getLhsType(); 687 auto rhsType = getRhsType(); 688 auto accType = getAccType(); 689 auto resType = getResultType(); 690 691 // Verify that an indexing map was specified for each vector operand. 692 if (indexing_maps().size() != 3) 693 return emitOpError("expected an indexing map for each vector operand"); 694 695 // Verify that each index map has 'numIterators' inputs, no symbols, and 696 // that the number of map outputs equals the rank of its associated 697 // vector operand. 698 unsigned numIterators = iterator_types().getValue().size(); 699 for (const auto &it : llvm::enumerate(indexing_maps())) { 700 auto index = it.index(); 701 auto map = it.value(); 702 if (map.getNumSymbols() != 0) 703 return emitOpError("expected indexing map ") 704 << index << " to have no symbols"; 705 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 706 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 707 // Verify that the map has the right number of inputs, outputs, and indices. 708 // This also correctly accounts for (..) -> () for rank-0 results. 709 if (map.getNumDims() != numIterators) 710 return emitOpError("expected indexing map ") 711 << index << " to have " << numIterators << " number of inputs"; 712 if (map.getNumResults() != rank) 713 return emitOpError("expected indexing map ") 714 << index << " to have " << rank << " number of outputs"; 715 if (!map.isProjectedPermutation()) 716 return emitOpError("expected indexing map ") 717 << index << " to be a projected permutation of its inputs"; 718 } 719 720 auto contractingDimMap = getContractingDimMap(); 721 auto batchDimMap = getBatchDimMap(); 722 723 // Verify at least one contracting dimension pair was specified. 724 if (contractingDimMap.empty()) 725 return emitOpError("expected at least one contracting dimension pair"); 726 727 // Verify contracting dimension map was properly constructed. 728 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 729 return emitOpError("invalid contracting dimension map"); 730 731 // Verify batch dimension map was properly constructed. 732 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 733 return emitOpError("invalid batch dimension map"); 734 735 // Verify 'accType' and 'resType' shape. 736 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 737 contractingDimMap, batchDimMap))) 738 return failure(); 739 740 // Verify that either two vector masks are set or none are set. 741 auto lhsMaskType = getLHSVectorMaskType(); 742 auto rhsMaskType = getRHSVectorMaskType(); 743 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 744 return emitOpError("invalid number of vector masks specified"); 745 if (lhsMaskType && rhsMaskType) { 746 // Verify mask rank == argument rank. 747 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 748 rhsMaskType.getShape().size() != rhsType.getShape().size()) 749 return emitOpError("invalid vector mask rank"); 750 } 751 752 // Verify supported combining kind. 753 auto vectorType = resType.dyn_cast<VectorType>(); 754 auto elementType = vectorType ? vectorType.getElementType() : resType; 755 if (!isSupportedCombiningKind(kind(), elementType)) 756 return emitOpError("unsupported contraction type"); 757 758 return success(); 759 } 760 761 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 762 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 763 ::mlir::getIteratorTypesAttrName(), 764 ContractionOp::getKindAttrStrName()}; 765 return llvm::makeArrayRef(names); 766 } 767 768 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 769 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 770 if (targetExpr == map.getResult(i)) 771 return i; 772 return -1; 773 } 774 775 static std::vector<std::pair<int64_t, int64_t>> 776 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 777 StringRef targetIteratorTypeName, MLIRContext *context) { 778 std::vector<std::pair<int64_t, int64_t>> dimMap; 779 for (const auto &it : llvm::enumerate(iteratorTypes)) { 780 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 781 if (iteratorTypeName != targetIteratorTypeName) 782 continue; 783 // Search lhs/rhs map results for 'targetExpr'. 784 auto targetExpr = getAffineDimExpr(it.index(), context); 785 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 786 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 787 if (lhsDim >= 0 && rhsDim >= 0) 788 dimMap.emplace_back(lhsDim, rhsDim); 789 } 790 return dimMap; 791 } 792 793 void ContractionOp::getIterationBounds( 794 SmallVectorImpl<int64_t> &iterationBounds) { 795 auto lhsShape = getLhsType().getShape(); 796 auto resVectorType = getResultType().dyn_cast<VectorType>(); 797 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 798 SmallVector<int64_t, 2> iterationShape; 799 for (const auto &it : llvm::enumerate(iterator_types())) { 800 // Search lhs/rhs map results for 'targetExpr'. 801 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 802 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 803 if (iteratorTypeName == getReductionIteratorTypeName()) { 804 // Get reduction dim size from lhs shape (same size in rhsShape). 805 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 806 assert(lhsDimIndex >= 0); 807 iterationBounds.push_back(lhsShape[lhsDimIndex]); 808 continue; 809 } 810 // Get parallel dimension size from result shape. 811 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 812 assert(resDimIndex >= 0); 813 assert(resVectorType != nullptr); 814 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 815 } 816 } 817 818 void ContractionOp::getIterationIndexMap( 819 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 820 unsigned numMaps = indexing_maps().size(); 821 iterationIndexMap.resize(numMaps); 822 for (const auto &it : llvm::enumerate(indexing_maps())) { 823 auto index = it.index(); 824 auto map = it.value(); 825 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 826 auto dim = map.getResult(i).cast<AffineDimExpr>(); 827 iterationIndexMap[index][dim.getPosition()] = i; 828 } 829 } 830 } 831 832 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 833 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 834 return getDimMap(indexingMaps, iterator_types(), 835 getReductionIteratorTypeName(), getContext()); 836 } 837 838 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 839 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 840 return getDimMap(indexingMaps, iterator_types(), 841 getParallelIteratorTypeName(), getContext()); 842 } 843 844 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 845 SmallVector<int64_t, 4> shape; 846 getIterationBounds(shape); 847 return shape; 848 } 849 850 /// Return a fused vector::ContractionOp which represents a patterns such as: 851 /// 852 /// ```mlir 853 /// %c0 = vector.constant 0: ... 854 /// %c = vector.contract %a, %b, %c0: ... 855 /// %e = add %c, %d: ... 856 /// ``` 857 /// 858 /// by: 859 /// 860 /// ```mlir 861 /// %e = vector.contract %a, %b, %d: ... 862 /// ``` 863 /// 864 /// Return null if the canonicalization does not apply. 865 // TODO: This should be a folding of Add into Contract in core but while they 866 // live in different dialects, it is not possible without unnatural 867 // dependencies. 868 template <typename AddOpType> 869 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 870 using OpRewritePattern<AddOpType>::OpRewritePattern; 871 872 LogicalResult matchAndRewrite(AddOpType addOp, 873 PatternRewriter &rewriter) const override { 874 auto canonicalize = [&](Value maybeContraction, 875 Value otherOperand) -> vector::ContractionOp { 876 vector::ContractionOp contractionOp = 877 dyn_cast_or_null<vector::ContractionOp>( 878 maybeContraction.getDefiningOp()); 879 if (!contractionOp) 880 return vector::ContractionOp(); 881 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 882 contractionOp.acc().getDefiningOp())) { 883 if (maybeZero.getValue() == 884 rewriter.getZeroAttr(contractionOp.acc().getType())) { 885 BlockAndValueMapping bvm; 886 bvm.map(contractionOp.acc(), otherOperand); 887 auto newContraction = 888 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 889 rewriter.replaceOp(addOp, newContraction.getResult()); 890 return newContraction; 891 } 892 } 893 return vector::ContractionOp(); 894 }; 895 896 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 897 vector::ContractionOp contract = canonicalize(a, b); 898 contract = contract ? contract : canonicalize(b, a); 899 return contract ? success() : failure(); 900 } 901 }; 902 903 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 904 MLIRContext *context) { 905 results.add<CanonicalizeContractAdd<arith::AddIOp>, 906 CanonicalizeContractAdd<arith::AddFOp>>(context); 907 } 908 909 //===----------------------------------------------------------------------===// 910 // ExtractElementOp 911 //===----------------------------------------------------------------------===// 912 913 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 914 Value source) { 915 result.addOperands({source}); 916 result.addTypes(source.getType().cast<VectorType>().getElementType()); 917 } 918 919 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 920 Value source, Value position) { 921 result.addOperands({source, position}); 922 result.addTypes(source.getType().cast<VectorType>().getElementType()); 923 } 924 925 LogicalResult vector::ExtractElementOp::verify() { 926 VectorType vectorType = getVectorType(); 927 if (vectorType.getRank() == 0) { 928 if (position()) 929 return emitOpError("expected position to be empty with 0-D vector"); 930 return success(); 931 } 932 if (vectorType.getRank() != 1) 933 return emitOpError("unexpected >1 vector rank"); 934 if (!position()) 935 return emitOpError("expected position for 1-D vector"); 936 return success(); 937 } 938 939 //===----------------------------------------------------------------------===// 940 // ExtractOp 941 //===----------------------------------------------------------------------===// 942 943 static Type inferExtractOpResultType(VectorType vectorType, 944 ArrayAttr position) { 945 if (static_cast<int64_t>(position.size()) == vectorType.getRank()) 946 return vectorType.getElementType(); 947 return VectorType::get(vectorType.getShape().drop_front(position.size()), 948 vectorType.getElementType()); 949 } 950 951 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 952 Value source, ArrayRef<int64_t> position) { 953 result.addOperands(source); 954 auto positionAttr = getVectorSubscriptAttr(builder, position); 955 result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(), 956 positionAttr)); 957 result.addAttribute(getPositionAttrStrName(), positionAttr); 958 } 959 960 // Convenience builder which assumes the values are constant indices. 961 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 962 Value source, ValueRange position) { 963 SmallVector<int64_t, 4> positionConstants = 964 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 965 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 966 })); 967 build(builder, result, source, positionConstants); 968 } 969 970 void vector::ExtractOp::print(OpAsmPrinter &p) { 971 p << " " << vector() << position(); 972 p.printOptionalAttrDict((*this)->getAttrs(), {"position"}); 973 p << " : " << vector().getType(); 974 } 975 976 ParseResult vector::ExtractOp::parse(OpAsmParser &parser, 977 OperationState &result) { 978 SMLoc attributeLoc, typeLoc; 979 NamedAttrList attrs; 980 OpAsmParser::OperandType vector; 981 Type type; 982 Attribute attr; 983 if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || 984 parser.parseAttribute(attr, "position", attrs) || 985 parser.parseOptionalAttrDict(attrs) || 986 parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type)) 987 return failure(); 988 989 auto vectorType = type.dyn_cast<VectorType>(); 990 if (!vectorType) 991 return parser.emitError(typeLoc, "expected vector type"); 992 993 auto positionAttr = attr.dyn_cast<ArrayAttr>(); 994 if (!positionAttr || 995 static_cast<int64_t>(positionAttr.size()) > vectorType.getRank()) 996 return parser.emitError( 997 attributeLoc, 998 "expected position attribute of rank smaller than vector rank"); 999 1000 Type resType = inferExtractOpResultType(vectorType, positionAttr); 1001 result.attributes = attrs; 1002 return failure(parser.resolveOperand(vector, type, result.operands) || 1003 parser.addTypeToList(resType, result.types)); 1004 } 1005 1006 LogicalResult vector::ExtractOp::verify() { 1007 auto positionAttr = position().getValue(); 1008 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1009 return emitOpError( 1010 "expected position attribute of rank smaller than vector rank"); 1011 for (const auto &en : llvm::enumerate(positionAttr)) { 1012 auto attr = en.value().dyn_cast<IntegerAttr>(); 1013 if (!attr || attr.getInt() < 0 || 1014 attr.getInt() >= getVectorType().getDimSize(en.index())) 1015 return emitOpError("expected position attribute #") 1016 << (en.index() + 1) 1017 << " to be a non-negative integer smaller than the corresponding " 1018 "vector dimension"; 1019 } 1020 return success(); 1021 } 1022 1023 template <typename IntType> 1024 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1025 return llvm::to_vector<4>(llvm::map_range( 1026 arrayAttr.getAsRange<IntegerAttr>(), 1027 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1028 } 1029 1030 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1031 /// positions. 1032 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1033 if (!extractOp.vector().getDefiningOp<ExtractOp>()) 1034 return failure(); 1035 1036 SmallVector<int64_t, 4> globalPosition; 1037 ExtractOp currentOp = extractOp; 1038 auto extrPos = extractVector<int64_t>(currentOp.position()); 1039 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1040 while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) { 1041 currentOp = nextOp; 1042 auto extrPos = extractVector<int64_t>(currentOp.position()); 1043 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1044 } 1045 extractOp.setOperand(currentOp.vector()); 1046 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1047 OpBuilder b(extractOp.getContext()); 1048 std::reverse(globalPosition.begin(), globalPosition.end()); 1049 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1050 b.getI64ArrayAttr(globalPosition)); 1051 return success(); 1052 } 1053 1054 namespace { 1055 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1056 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1057 /// Compose TransposeOp permutations as we walk back. 1058 /// This helper class keeps an updated extraction position `extractPosition` 1059 /// with extra trailing sentinels. 1060 /// The sentinels encode the internal transposition status of the result vector. 1061 /// As we iterate, extractPosition is permuted and updated. 1062 class ExtractFromInsertTransposeChainState { 1063 public: 1064 ExtractFromInsertTransposeChainState(ExtractOp e); 1065 1066 /// Iterate over producing insert and transpose ops until we find a fold. 1067 Value fold(); 1068 1069 private: 1070 /// Return true if the vector at position `a` is contained within the vector 1071 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1072 /// is a prefix of `b`. 1073 template <typename ContainerA, typename ContainerB> 1074 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1075 return a.size() <= b.size() && 1076 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1077 } 1078 1079 /// Return true if the vector at position `a` intersects the vector at 1080 /// position `b`. Under insert/extract semantics, this is the same as equality 1081 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1082 /// Comparison is on the common prefix (i.e. zip). 1083 template <typename ContainerA, typename ContainerB> 1084 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1085 for (auto it : llvm::zip(a, b)) { 1086 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1087 continue; 1088 if (std::get<0>(it) != std::get<1>(it)) 1089 return false; 1090 } 1091 return true; 1092 } 1093 1094 /// Folding is only possible in the absence of an internal permutation in the 1095 /// result vector. 1096 bool canFold() { 1097 return (sentinels == 1098 makeArrayRef(extractPosition).drop_front(extractedRank)); 1099 } 1100 1101 // Helper to get the next defining op of interest. 1102 void updateStateForNextIteration(Value v) { 1103 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1104 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1105 }; 1106 1107 // Case 1. If we hit a transpose, just compose the map and iterate. 1108 // Invariant: insert + transpose do not change rank, we can always compose. 1109 LogicalResult handleTransposeOp(); 1110 1111 // Case 2: the insert position matches extractPosition exactly, early return. 1112 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1113 1114 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1115 /// portion of the source of the insert. 1116 /// Example: 1117 /// ``` 1118 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1119 /// // extractPosition == [1, 2, 3] 1120 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1121 /// // can fold to vector.extract %source[0, 3] 1122 /// %ext = vector.extract %source[3]: vector<5x6> 1123 /// ``` 1124 /// To traverse through %source, we need to set the leading dims to 0 and 1125 /// drop the extra leading dims. 1126 /// This method updates the internal state. 1127 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1128 1129 /// Try to fold in place to extract(source, extractPosition) and return the 1130 /// folded result. Return null if folding is not possible (e.g. due to an 1131 /// internal tranposition in the result). 1132 Value tryToFoldExtractOpInPlace(Value source); 1133 1134 ExtractOp extractOp; 1135 int64_t vectorRank; 1136 int64_t extractedRank; 1137 1138 InsertOp nextInsertOp; 1139 TransposeOp nextTransposeOp; 1140 1141 /// Sentinel values that encode the internal permutation status of the result. 1142 /// They are set to (-1, ... , -k) at the beginning and appended to 1143 /// `extractPosition`. 1144 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1145 /// ensure that there is no internal transposition. 1146 /// Internal transposition cannot be accounted for with a folding pattern. 1147 // TODO: We could relax the internal transposition with an extra transposition 1148 // operation in a future canonicalizer. 1149 SmallVector<int64_t> sentinels; 1150 SmallVector<int64_t> extractPosition; 1151 }; 1152 } // namespace 1153 1154 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1155 ExtractOp e) 1156 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1157 extractedRank(extractOp.position().size()) { 1158 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1159 sentinels.reserve(vectorRank - extractedRank); 1160 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1161 sentinels.push_back(-(i + 1)); 1162 extractPosition = extractVector<int64_t>(extractOp.position()); 1163 llvm::append_range(extractPosition, sentinels); 1164 } 1165 1166 // Case 1. If we hit a transpose, just compose the map and iterate. 1167 // Invariant: insert + transpose do not change rank, we can always compose. 1168 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1169 if (!nextTransposeOp) 1170 return failure(); 1171 auto permutation = extractVector<unsigned>(nextTransposeOp.transp()); 1172 AffineMap m = inversePermutation( 1173 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1174 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1175 return success(); 1176 } 1177 1178 // Case 2: the insert position matches extractPosition exactly, early return. 1179 LogicalResult 1180 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1181 Value &res) { 1182 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1183 if (makeArrayRef(insertedPos) != 1184 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1185 return failure(); 1186 // Case 2.a. early-exit fold. 1187 res = nextInsertOp.source(); 1188 // Case 2.b. if internal transposition is present, canFold will be false. 1189 return success(); 1190 } 1191 1192 /// Case 3: if inserted position is a prefix of extractPosition, 1193 /// extract a portion of the source of the insertion. 1194 /// This method updates the internal state. 1195 LogicalResult 1196 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1197 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1198 if (!isContainedWithin(insertedPos, extractPosition)) 1199 return failure(); 1200 // Set leading dims to zero. 1201 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1202 // Drop extra leading dims. 1203 extractPosition.erase(extractPosition.begin(), 1204 extractPosition.begin() + insertedPos.size()); 1205 extractedRank = extractPosition.size() - sentinels.size(); 1206 // Case 3.a. early-exit fold (break and delegate to post-while path). 1207 res = nextInsertOp.source(); 1208 // Case 3.b. if internal transposition is present, canFold will be false. 1209 return success(); 1210 } 1211 1212 /// Try to fold in place to extract(source, extractPosition) and return the 1213 /// folded result. Return null if folding is not possible (e.g. due to an 1214 /// internal tranposition in the result). 1215 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1216 Value source) { 1217 // If we can't fold (either internal transposition, or nothing to fold), bail. 1218 bool nothingToFold = (source == extractOp.vector()); 1219 if (nothingToFold || !canFold()) 1220 return Value(); 1221 // Otherwise, fold by updating the op inplace and return its result. 1222 OpBuilder b(extractOp.getContext()); 1223 extractOp->setAttr( 1224 extractOp.positionAttrName(), 1225 b.getI64ArrayAttr( 1226 makeArrayRef(extractPosition).take_front(extractedRank))); 1227 extractOp.vectorMutable().assign(source); 1228 return extractOp.getResult(); 1229 } 1230 1231 /// Iterate over producing insert and transpose ops until we find a fold. 1232 Value ExtractFromInsertTransposeChainState::fold() { 1233 Value valueToExtractFrom = extractOp.vector(); 1234 updateStateForNextIteration(valueToExtractFrom); 1235 while (nextInsertOp || nextTransposeOp) { 1236 // Case 1. If we hit a transpose, just compose the map and iterate. 1237 // Invariant: insert + transpose do not change rank, we can always compose. 1238 if (succeeded(handleTransposeOp())) { 1239 valueToExtractFrom = nextTransposeOp.vector(); 1240 updateStateForNextIteration(valueToExtractFrom); 1241 continue; 1242 } 1243 1244 Value result; 1245 // Case 2: the position match exactly. 1246 if (succeeded(handleInsertOpWithMatchingPos(result))) 1247 return result; 1248 1249 // Case 3: if the inserted position is a prefix of extractPosition, we can 1250 // just extract a portion of the source of the insert. 1251 if (succeeded(handleInsertOpWithPrefixPos(result))) 1252 return tryToFoldExtractOpInPlace(result); 1253 1254 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1255 // values. This is a more difficult case and we bail. 1256 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1257 if (isContainedWithin(extractPosition, insertedPos) || 1258 intersectsWhereNonNegative(extractPosition, insertedPos)) 1259 return Value(); 1260 1261 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1262 valueToExtractFrom = nextInsertOp.dest(); 1263 updateStateForNextIteration(valueToExtractFrom); 1264 } 1265 // If after all this we can fold, go for it. 1266 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1267 } 1268 1269 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1270 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1271 Operation *defOp = extractOp.vector().getDefiningOp(); 1272 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1273 return Value(); 1274 Value source = defOp->getOperand(0); 1275 if (extractOp.getType() == source.getType()) 1276 return source; 1277 auto getRank = [](Type type) { 1278 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1279 }; 1280 unsigned broadcastSrcRank = getRank(source.getType()); 1281 unsigned extractResultRank = getRank(extractOp.getType()); 1282 if (extractResultRank < broadcastSrcRank) { 1283 auto extractPos = extractVector<int64_t>(extractOp.position()); 1284 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1285 extractPos.erase( 1286 extractPos.begin(), 1287 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1288 extractOp.setOperand(source); 1289 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1290 OpBuilder b(extractOp.getContext()); 1291 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1292 b.getI64ArrayAttr(extractPos)); 1293 return extractOp.getResult(); 1294 } 1295 return Value(); 1296 } 1297 1298 // Fold extractOp with source coming from ShapeCast op. 1299 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1300 auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>(); 1301 if (!shapeCastOp) 1302 return Value(); 1303 // Get the nth dimension size starting from lowest dimension. 1304 auto getDimReverse = [](VectorType type, int64_t n) { 1305 return type.getShape().take_back(n + 1).front(); 1306 }; 1307 int64_t destinationRank = 1308 extractOp.getType().isa<VectorType>() 1309 ? extractOp.getType().cast<VectorType>().getRank() 1310 : 0; 1311 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1312 return Value(); 1313 if (destinationRank > 0) { 1314 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1315 for (int64_t i = 0; i < destinationRank; i++) { 1316 // The lowest dimension of of the destination must match the lowest 1317 // dimension of the shapecast op source. 1318 // TODO: This case could be support in a canonicalization pattern. 1319 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1320 getDimReverse(destinationType, i)) 1321 return Value(); 1322 } 1323 } 1324 // Extract the strides associated with the extract op vector source. Then use 1325 // this to calculate a linearized position for the extract. 1326 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1327 std::reverse(extractedPos.begin(), extractedPos.end()); 1328 SmallVector<int64_t, 4> strides; 1329 int64_t stride = 1; 1330 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1331 strides.push_back(stride); 1332 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1333 } 1334 1335 int64_t position = linearize(extractedPos, strides); 1336 // Then extract the strides associated to the shapeCast op vector source and 1337 // delinearize the position using those strides. 1338 SmallVector<int64_t, 4> newStrides; 1339 int64_t numDimension = 1340 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1341 stride = 1; 1342 for (int64_t i = 0; i < numDimension; i++) { 1343 newStrides.push_back(stride); 1344 stride *= 1345 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1346 } 1347 std::reverse(newStrides.begin(), newStrides.end()); 1348 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1349 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1350 OpBuilder b(extractOp.getContext()); 1351 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1352 b.getI64ArrayAttr(newPosition)); 1353 extractOp.setOperand(shapeCastOp.source()); 1354 return extractOp.getResult(); 1355 } 1356 1357 /// Fold an ExtractOp from ExtractStridedSliceOp. 1358 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1359 auto extractStridedSliceOp = 1360 extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1361 if (!extractStridedSliceOp) 1362 return Value(); 1363 // Return if 'extractStridedSliceOp' has non-unit strides. 1364 if (extractStridedSliceOp.hasNonUnitStrides()) 1365 return Value(); 1366 1367 // Trim offsets for dimensions fully extracted. 1368 auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets()); 1369 while (!sliceOffsets.empty()) { 1370 size_t lastOffset = sliceOffsets.size() - 1; 1371 if (sliceOffsets.back() != 0 || 1372 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1373 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1374 break; 1375 sliceOffsets.pop_back(); 1376 } 1377 unsigned destinationRank = 0; 1378 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1379 destinationRank = vecType.getRank(); 1380 // The dimensions of the result need to be untouched by the 1381 // extractStridedSlice op. 1382 if (destinationRank > 1383 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1384 return Value(); 1385 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1386 assert(extractedPos.size() >= sliceOffsets.size()); 1387 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1388 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1389 extractOp.vectorMutable().assign(extractStridedSliceOp.vector()); 1390 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1391 OpBuilder b(extractOp.getContext()); 1392 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1393 b.getI64ArrayAttr(extractedPos)); 1394 return extractOp.getResult(); 1395 } 1396 1397 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1398 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1399 int64_t destinationRank = op.getType().isa<VectorType>() 1400 ? op.getType().cast<VectorType>().getRank() 1401 : 0; 1402 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 1403 while (insertOp) { 1404 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1405 insertOp.getSourceVectorType().getRank(); 1406 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1407 return Value(); 1408 auto insertOffsets = extractVector<int64_t>(insertOp.offsets()); 1409 auto extractOffsets = extractVector<int64_t>(op.position()); 1410 1411 if (llvm::any_of(insertOp.strides(), [](Attribute attr) { 1412 return attr.cast<IntegerAttr>().getInt() != 1; 1413 })) 1414 return Value(); 1415 bool disjoint = false; 1416 SmallVector<int64_t, 4> offsetDiffs; 1417 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1418 int64_t start = insertOffsets[dim]; 1419 int64_t size = 1420 (dim < insertRankDiff) 1421 ? 1 1422 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1423 int64_t end = start + size; 1424 int64_t offset = extractOffsets[dim]; 1425 // Check if the start of the extract offset is in the interval inserted. 1426 if (start <= offset && offset < end) { 1427 if (dim >= insertRankDiff) 1428 offsetDiffs.push_back(offset - start); 1429 continue; 1430 } 1431 disjoint = true; 1432 break; 1433 } 1434 // The extract element chunk overlap with the vector inserted. 1435 if (!disjoint) { 1436 // If any of the inner dimensions are only partially inserted we have a 1437 // partial overlap. 1438 int64_t srcRankDiff = 1439 insertOp.getSourceVectorType().getRank() - destinationRank; 1440 for (int64_t i = 0; i < destinationRank; i++) { 1441 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1442 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1443 insertRankDiff)) 1444 return Value(); 1445 } 1446 op.vectorMutable().assign(insertOp.source()); 1447 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1448 OpBuilder b(op.getContext()); 1449 op->setAttr(ExtractOp::getPositionAttrStrName(), 1450 b.getI64ArrayAttr(offsetDiffs)); 1451 return op.getResult(); 1452 } 1453 // If the chunk extracted is disjoint from the chunk inserted, keep 1454 // looking in the insert chain. 1455 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 1456 } 1457 return Value(); 1458 } 1459 1460 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1461 if (position().empty()) 1462 return vector(); 1463 if (succeeded(foldExtractOpFromExtractChain(*this))) 1464 return getResult(); 1465 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1466 return res; 1467 if (auto res = foldExtractFromBroadcast(*this)) 1468 return res; 1469 if (auto res = foldExtractFromShapeCast(*this)) 1470 return res; 1471 if (auto val = foldExtractFromExtractStrided(*this)) 1472 return val; 1473 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1474 return val; 1475 return OpFoldResult(); 1476 } 1477 1478 namespace { 1479 1480 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1481 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1482 public: 1483 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1484 1485 LogicalResult matchAndRewrite(ExtractOp extractOp, 1486 PatternRewriter &rewriter) const override { 1487 Operation *defOp = extractOp.vector().getDefiningOp(); 1488 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1489 return failure(); 1490 Value source = defOp->getOperand(0); 1491 if (extractOp.getType() == source.getType()) 1492 return failure(); 1493 auto getRank = [](Type type) { 1494 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1495 }; 1496 unsigned broadcastSrcRank = getRank(source.getType()); 1497 unsigned extractResultRank = getRank(extractOp.getType()); 1498 // We only consider the case where the rank of the source is smaller than 1499 // the rank of the extract dst. The other cases are handled in the folding 1500 // patterns. 1501 if (extractResultRank <= broadcastSrcRank) 1502 return failure(); 1503 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1504 extractOp, extractOp.getType(), source); 1505 return success(); 1506 } 1507 }; 1508 1509 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1510 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1511 public: 1512 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1513 1514 LogicalResult matchAndRewrite(ExtractOp extractOp, 1515 PatternRewriter &rewriter) const override { 1516 // Return if 'extractStridedSliceOp' operand is not defined by a 1517 // ConstantOp. 1518 auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>(); 1519 if (!constantOp) 1520 return failure(); 1521 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1522 if (!dense) 1523 return failure(); 1524 Attribute newAttr = dense.getSplatValue<Attribute>(); 1525 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1526 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1527 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1528 return success(); 1529 } 1530 }; 1531 1532 } // namespace 1533 1534 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1535 MLIRContext *context) { 1536 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1537 } 1538 1539 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1540 SmallVectorImpl<int64_t> &results) { 1541 for (auto attr : arrayAttr) 1542 results.push_back(attr.cast<IntegerAttr>().getInt()); 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // ExtractMapOp 1547 //===----------------------------------------------------------------------===// 1548 1549 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1550 Value vector, ValueRange ids, 1551 ArrayRef<int64_t> multiplicity, 1552 AffineMap permutationMap) { 1553 assert(ids.size() == multiplicity.size() && 1554 ids.size() == permutationMap.getNumResults()); 1555 assert(permutationMap.isProjectedPermutation()); 1556 VectorType type = vector.getType().cast<VectorType>(); 1557 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1558 type.getShape().end()); 1559 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1560 AffineExpr expr = permutationMap.getResult(i); 1561 auto dim = expr.cast<AffineDimExpr>(); 1562 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1563 } 1564 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1565 ExtractMapOp::build(builder, result, resultType, vector, ids); 1566 } 1567 1568 LogicalResult ExtractMapOp::verify() { 1569 if (getSourceVectorType().getRank() != getResultType().getRank()) 1570 return emitOpError("expected source and destination vectors of same rank"); 1571 unsigned numId = 0; 1572 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1573 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1574 0) 1575 return emitOpError("source vector dimensions must be a multiple of " 1576 "destination vector dimensions"); 1577 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1578 numId++; 1579 } 1580 if (numId != ids().size()) 1581 return emitOpError("expected number of ids must match the number of " 1582 "dimensions distributed"); 1583 return success(); 1584 } 1585 1586 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1587 auto insert = vector().getDefiningOp<vector::InsertMapOp>(); 1588 if (insert == nullptr || getType() != insert.vector().getType() || 1589 ids() != insert.ids()) 1590 return {}; 1591 return insert.vector(); 1592 } 1593 1594 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1595 assert(multiplicity.empty()); 1596 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1597 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1598 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1599 getResultType().getDimSize(i)); 1600 } 1601 } 1602 1603 template <typename MapOp> 1604 AffineMap calculateImplicitMap(MapOp op) { 1605 SmallVector<AffineExpr, 4> perm; 1606 // Check which dimension have a multiplicity greater than 1 and associated 1607 // them to the IDs in order. 1608 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1609 if (op.getSourceVectorType().getDimSize(i) != 1610 op.getResultType().getDimSize(i)) 1611 perm.push_back(getAffineDimExpr(i, op.getContext())); 1612 } 1613 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1614 op.getContext()); 1615 return map; 1616 } 1617 1618 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1619 1620 //===----------------------------------------------------------------------===// 1621 // FmaOp 1622 //===----------------------------------------------------------------------===// 1623 1624 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1625 return llvm::to_vector<4>(getVectorType().getShape()); 1626 } 1627 1628 //===----------------------------------------------------------------------===// 1629 // BroadcastOp 1630 //===----------------------------------------------------------------------===// 1631 1632 BroadcastableToResult 1633 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1634 std::pair<int, int> *mismatchingDims) { 1635 // Broadcast scalar to vector of the same element type. 1636 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1637 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1638 return BroadcastableToResult::Success; 1639 // From now on, only vectors broadcast. 1640 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1641 if (!srcVectorType) 1642 return BroadcastableToResult::SourceTypeNotAVector; 1643 1644 int64_t srcRank = srcVectorType.getRank(); 1645 int64_t dstRank = dstVectorType.getRank(); 1646 if (srcRank > dstRank) 1647 return BroadcastableToResult::SourceRankHigher; 1648 // Source has an exact match or singleton value for all trailing dimensions 1649 // (all leading dimensions are simply duplicated). 1650 int64_t lead = dstRank - srcRank; 1651 for (int64_t r = 0; r < srcRank; ++r) { 1652 int64_t srcDim = srcVectorType.getDimSize(r); 1653 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1654 if (srcDim != 1 && srcDim != dstDim) { 1655 if (mismatchingDims) { 1656 mismatchingDims->first = srcDim; 1657 mismatchingDims->second = dstDim; 1658 } 1659 return BroadcastableToResult::DimensionMismatch; 1660 } 1661 } 1662 1663 return BroadcastableToResult::Success; 1664 } 1665 1666 LogicalResult BroadcastOp::verify() { 1667 std::pair<int, int> mismatchingDims; 1668 BroadcastableToResult res = 1669 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1670 if (res == BroadcastableToResult::Success) 1671 return success(); 1672 if (res == BroadcastableToResult::SourceRankHigher) 1673 return emitOpError("source rank higher than destination rank"); 1674 if (res == BroadcastableToResult::DimensionMismatch) 1675 return emitOpError("dimension mismatch (") 1676 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1677 if (res == BroadcastableToResult::SourceTypeNotAVector) 1678 return emitOpError("source type is not a vector"); 1679 llvm_unreachable("unexpected vector.broadcast op error"); 1680 } 1681 1682 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1683 if (getSourceType() == getVectorType()) 1684 return source(); 1685 if (!operands[0]) 1686 return {}; 1687 auto vectorType = getVectorType(); 1688 if (operands[0].getType().isIntOrIndexOrFloat()) 1689 return DenseElementsAttr::get(vectorType, operands[0]); 1690 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1691 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1692 return {}; 1693 } 1694 1695 namespace { 1696 1697 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1698 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1699 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1700 1701 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1702 PatternRewriter &rewriter) const override { 1703 auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>(); 1704 if (!srcBroadcast) 1705 return failure(); 1706 rewriter.replaceOpWithNewOp<BroadcastOp>( 1707 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source()); 1708 return success(); 1709 } 1710 }; 1711 } // namespace 1712 1713 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1714 MLIRContext *context) { 1715 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1716 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1717 results.add<BroadcastFolder>(context); 1718 } 1719 1720 //===----------------------------------------------------------------------===// 1721 // ShuffleOp 1722 //===----------------------------------------------------------------------===// 1723 1724 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1725 Value v2, ArrayRef<int64_t> mask) { 1726 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1727 } 1728 1729 LogicalResult ShuffleOp::verify() { 1730 VectorType resultType = getVectorType(); 1731 VectorType v1Type = getV1VectorType(); 1732 VectorType v2Type = getV2VectorType(); 1733 // Verify ranks. 1734 int64_t resRank = resultType.getRank(); 1735 int64_t v1Rank = v1Type.getRank(); 1736 int64_t v2Rank = v2Type.getRank(); 1737 if (resRank != v1Rank || v1Rank != v2Rank) 1738 return emitOpError("rank mismatch"); 1739 // Verify all but leading dimension sizes. 1740 for (int64_t r = 1; r < v1Rank; ++r) { 1741 int64_t resDim = resultType.getDimSize(r); 1742 int64_t v1Dim = v1Type.getDimSize(r); 1743 int64_t v2Dim = v2Type.getDimSize(r); 1744 if (resDim != v1Dim || v1Dim != v2Dim) 1745 return emitOpError("dimension mismatch"); 1746 } 1747 // Verify mask length. 1748 auto maskAttr = mask().getValue(); 1749 int64_t maskLength = maskAttr.size(); 1750 if (maskLength <= 0) 1751 return emitOpError("invalid mask length"); 1752 if (maskLength != resultType.getDimSize(0)) 1753 return emitOpError("mask length mismatch"); 1754 // Verify all indices. 1755 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1756 for (const auto &en : llvm::enumerate(maskAttr)) { 1757 auto attr = en.value().dyn_cast<IntegerAttr>(); 1758 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1759 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1760 } 1761 return success(); 1762 } 1763 1764 LogicalResult 1765 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1766 ValueRange operands, DictionaryAttr attributes, 1767 RegionRange, 1768 SmallVectorImpl<Type> &inferredReturnTypes) { 1769 ShuffleOp::Adaptor op(operands, attributes); 1770 auto v1Type = op.v1().getType().cast<VectorType>(); 1771 // Construct resulting type: leading dimension matches mask length, 1772 // all trailing dimensions match the operands. 1773 SmallVector<int64_t, 4> shape; 1774 shape.reserve(v1Type.getRank()); 1775 shape.push_back(std::max<size_t>(1, op.mask().size())); 1776 llvm::append_range(shape, v1Type.getShape().drop_front()); 1777 inferredReturnTypes.push_back( 1778 VectorType::get(shape, v1Type.getElementType())); 1779 return success(); 1780 } 1781 1782 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1783 Attribute lhs = operands.front(), rhs = operands.back(); 1784 if (!lhs || !rhs) 1785 return {}; 1786 1787 auto lhsType = lhs.getType().cast<VectorType>(); 1788 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1789 // manipulation. 1790 if (lhsType.getRank() != 1) 1791 return {}; 1792 int64_t lhsSize = lhsType.getDimSize(0); 1793 1794 SmallVector<Attribute> results; 1795 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1796 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1797 for (const auto &index : this->mask().getAsValueRange<IntegerAttr>()) { 1798 int64_t i = index.getZExtValue(); 1799 if (i >= lhsSize) { 1800 results.push_back(rhsElements[i - lhsSize]); 1801 } else { 1802 results.push_back(lhsElements[i]); 1803 } 1804 } 1805 1806 return DenseElementsAttr::get(getVectorType(), results); 1807 } 1808 1809 //===----------------------------------------------------------------------===// 1810 // InsertElementOp 1811 //===----------------------------------------------------------------------===// 1812 1813 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1814 Value source, Value dest) { 1815 build(builder, result, source, dest, {}); 1816 } 1817 1818 LogicalResult InsertElementOp::verify() { 1819 auto dstVectorType = getDestVectorType(); 1820 if (dstVectorType.getRank() == 0) { 1821 if (position()) 1822 return emitOpError("expected position to be empty with 0-D vector"); 1823 return success(); 1824 } 1825 if (dstVectorType.getRank() != 1) 1826 return emitOpError("unexpected >1 vector rank"); 1827 if (!position()) 1828 return emitOpError("expected position for 1-D vector"); 1829 return success(); 1830 } 1831 1832 //===----------------------------------------------------------------------===// 1833 // InsertOp 1834 //===----------------------------------------------------------------------===// 1835 1836 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1837 Value dest, ArrayRef<int64_t> position) { 1838 result.addOperands({source, dest}); 1839 auto positionAttr = getVectorSubscriptAttr(builder, position); 1840 result.addTypes(dest.getType()); 1841 result.addAttribute(getPositionAttrStrName(), positionAttr); 1842 } 1843 1844 // Convenience builder which assumes the values are constant indices. 1845 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1846 Value dest, ValueRange position) { 1847 SmallVector<int64_t, 4> positionConstants = 1848 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1849 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1850 })); 1851 build(builder, result, source, dest, positionConstants); 1852 } 1853 1854 LogicalResult InsertOp::verify() { 1855 auto positionAttr = position().getValue(); 1856 auto destVectorType = getDestVectorType(); 1857 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1858 return emitOpError( 1859 "expected position attribute of rank smaller than dest vector rank"); 1860 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1861 if (srcVectorType && 1862 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1863 static_cast<unsigned>(destVectorType.getRank()))) 1864 return emitOpError("expected position attribute rank + source rank to " 1865 "match dest vector rank"); 1866 if (!srcVectorType && 1867 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1868 return emitOpError( 1869 "expected position attribute rank to match the dest vector rank"); 1870 for (const auto &en : llvm::enumerate(positionAttr)) { 1871 auto attr = en.value().dyn_cast<IntegerAttr>(); 1872 if (!attr || attr.getInt() < 0 || 1873 attr.getInt() >= destVectorType.getDimSize(en.index())) 1874 return emitOpError("expected position attribute #") 1875 << (en.index() + 1) 1876 << " to be a non-negative integer smaller than the corresponding " 1877 "dest vector dimension"; 1878 } 1879 return success(); 1880 } 1881 1882 namespace { 1883 1884 // If insertOp is only inserting unit dimensions it can be transformed to a 1885 // broadcast. 1886 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1887 public: 1888 using OpRewritePattern<InsertOp>::OpRewritePattern; 1889 1890 LogicalResult matchAndRewrite(InsertOp insertOp, 1891 PatternRewriter &rewriter) const override { 1892 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1893 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1894 srcVecType.getNumElements()) 1895 return failure(); 1896 rewriter.replaceOpWithNewOp<BroadcastOp>( 1897 insertOp, insertOp.getDestVectorType(), insertOp.source()); 1898 return success(); 1899 } 1900 }; 1901 1902 } // namespace 1903 1904 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1905 MLIRContext *context) { 1906 results.add<InsertToBroadcast, BroadcastFolder>(context); 1907 } 1908 1909 // Eliminates insert operations that produce values identical to their source 1910 // value. This happens when the source and destination vectors have identical 1911 // sizes. 1912 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1913 if (position().empty()) 1914 return source(); 1915 return {}; 1916 } 1917 1918 //===----------------------------------------------------------------------===// 1919 // InsertMapOp 1920 //===----------------------------------------------------------------------===// 1921 1922 void InsertMapOp::build(OpBuilder &builder, OperationState &result, 1923 Value vector, Value dest, ValueRange ids) { 1924 InsertMapOp::build(builder, result, dest.getType(), vector, dest, ids); 1925 } 1926 1927 LogicalResult InsertMapOp::verify() { 1928 if (getSourceVectorType().getRank() != getResultType().getRank()) 1929 return emitOpError("expected source and destination vectors of same rank"); 1930 unsigned numId = 0; 1931 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1932 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1933 0) 1934 return emitOpError( 1935 "destination vector size must be a multiple of source vector size"); 1936 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1937 numId++; 1938 } 1939 if (numId != ids().size()) 1940 return emitOpError("expected number of ids must match the number of " 1941 "dimensions distributed"); 1942 return success(); 1943 } 1944 1945 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1946 1947 //===----------------------------------------------------------------------===// 1948 // InsertStridedSliceOp 1949 //===----------------------------------------------------------------------===// 1950 1951 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1952 Value source, Value dest, 1953 ArrayRef<int64_t> offsets, 1954 ArrayRef<int64_t> strides) { 1955 result.addOperands({source, dest}); 1956 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 1957 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 1958 result.addTypes(dest.getType()); 1959 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 1960 result.addAttribute(getStridesAttrStrName(), stridesAttr); 1961 } 1962 1963 // TODO: Should be moved to Tablegen Confined attributes. 1964 template <typename OpType> 1965 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 1966 ArrayAttr arrayAttr, 1967 ArrayRef<int64_t> shape, 1968 StringRef attrName) { 1969 if (arrayAttr.size() > shape.size()) 1970 return op.emitOpError("expected ") 1971 << attrName << " attribute of rank smaller than vector rank"; 1972 return success(); 1973 } 1974 1975 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1976 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1977 // Otherwise, the admissible interval is [min, max]. 1978 template <typename OpType> 1979 static LogicalResult 1980 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 1981 int64_t max, StringRef attrName, 1982 bool halfOpen = true) { 1983 for (auto attr : arrayAttr) { 1984 auto val = attr.cast<IntegerAttr>().getInt(); 1985 auto upper = max; 1986 if (!halfOpen) 1987 upper += 1; 1988 if (val < min || val >= upper) 1989 return op.emitOpError("expected ") << attrName << " to be confined to [" 1990 << min << ", " << upper << ")"; 1991 } 1992 return success(); 1993 } 1994 1995 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1996 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1997 // Otherwise, the admissible interval is [min, max]. 1998 template <typename OpType> 1999 static LogicalResult 2000 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2001 ArrayRef<int64_t> shape, StringRef attrName, 2002 bool halfOpen = true, int64_t min = 0) { 2003 assert(arrayAttr.size() <= shape.size()); 2004 unsigned index = 0; 2005 for (auto it : llvm::zip(arrayAttr, shape)) { 2006 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2007 auto max = std::get<1>(it); 2008 if (!halfOpen) 2009 max += 1; 2010 if (val < min || val >= max) 2011 return op.emitOpError("expected ") 2012 << attrName << " dimension " << index << " to be confined to [" 2013 << min << ", " << max << ")"; 2014 ++index; 2015 } 2016 return success(); 2017 } 2018 2019 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2020 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2021 // Otherwise, the admissible interval is [min, max]. 2022 template <typename OpType> 2023 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2024 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2025 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2026 bool halfOpen = true, int64_t min = 1) { 2027 assert(arrayAttr1.size() <= shape.size()); 2028 assert(arrayAttr2.size() <= shape.size()); 2029 unsigned index = 0; 2030 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2031 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2032 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2033 auto max = std::get<2>(it); 2034 if (!halfOpen) 2035 max += 1; 2036 if (val1 + val2 < 0 || val1 + val2 >= max) 2037 return op.emitOpError("expected sum(") 2038 << attrName1 << ", " << attrName2 << ") dimension " << index 2039 << " to be confined to [" << min << ", " << max << ")"; 2040 ++index; 2041 } 2042 return success(); 2043 } 2044 2045 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2046 MLIRContext *context) { 2047 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2048 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2049 }); 2050 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2051 } 2052 2053 LogicalResult InsertStridedSliceOp::verify() { 2054 auto sourceVectorType = getSourceVectorType(); 2055 auto destVectorType = getDestVectorType(); 2056 auto offsets = offsetsAttr(); 2057 auto strides = stridesAttr(); 2058 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2059 return emitOpError( 2060 "expected offsets of same size as destination vector rank"); 2061 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2062 return emitOpError("expected strides of same size as source vector rank"); 2063 if (sourceVectorType.getRank() > destVectorType.getRank()) 2064 return emitOpError( 2065 "expected source rank to be smaller than destination rank"); 2066 2067 auto sourceShape = sourceVectorType.getShape(); 2068 auto destShape = destVectorType.getShape(); 2069 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2070 destShape.size() - sourceShape.size(), 0); 2071 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2072 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2073 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2074 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2075 offName)) || 2076 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2077 stridesName, 2078 /*halfOpen=*/false)) || 2079 failed(isSumOfIntegerArrayAttrConfinedToShape( 2080 *this, offsets, 2081 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2082 offName, "source vector shape", 2083 /*halfOpen=*/false, /*min=*/1))) 2084 return failure(); 2085 2086 return success(); 2087 } 2088 2089 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2090 if (getSourceVectorType() == getDestVectorType()) 2091 return source(); 2092 return {}; 2093 } 2094 2095 //===----------------------------------------------------------------------===// 2096 // OuterProductOp 2097 //===----------------------------------------------------------------------===// 2098 2099 /// Build an op without mask, use the type of `acc` as the return type. 2100 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2101 Value lhs, Value rhs, Value acc) { 2102 result.addOperands({lhs, rhs, acc}); 2103 result.addTypes(acc.getType()); 2104 } 2105 2106 void OuterProductOp::print(OpAsmPrinter &p) { 2107 p << " " << lhs() << ", " << rhs(); 2108 if (!acc().empty()) { 2109 p << ", " << acc(); 2110 p.printOptionalAttrDict((*this)->getAttrs()); 2111 } 2112 p << " : " << lhs().getType() << ", " << rhs().getType(); 2113 } 2114 2115 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2116 SmallVector<OpAsmParser::OperandType, 3> operandsInfo; 2117 Type tLHS, tRHS; 2118 if (parser.parseOperandList(operandsInfo) || 2119 parser.parseOptionalAttrDict(result.attributes) || 2120 parser.parseColonType(tLHS) || parser.parseComma() || 2121 parser.parseType(tRHS)) 2122 return failure(); 2123 if (operandsInfo.size() < 2) 2124 return parser.emitError(parser.getNameLoc(), 2125 "expected at least 2 operands"); 2126 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2127 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2128 if (!vLHS) 2129 return parser.emitError(parser.getNameLoc(), 2130 "expected vector type for operand #1"); 2131 VectorType resType = 2132 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2133 vLHS.getElementType()) 2134 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2135 2136 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2137 result.attributes.append( 2138 OuterProductOp::getKindAttrStrName(), 2139 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2140 result.getContext())); 2141 } 2142 2143 return failure( 2144 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2145 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2146 (operandsInfo.size() > 2 && 2147 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2148 parser.addTypeToList(resType, result.types)); 2149 } 2150 2151 LogicalResult OuterProductOp::verify() { 2152 Type tRHS = getOperandTypeRHS(); 2153 VectorType vLHS = getOperandVectorTypeLHS(), 2154 vRHS = tRHS.dyn_cast<VectorType>(), 2155 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2156 2157 if (vLHS.getRank() != 1) 2158 return emitOpError("expected 1-d vector for operand #1"); 2159 2160 if (vRHS) { 2161 // Proper OUTER operation. 2162 if (vRHS.getRank() != 1) 2163 return emitOpError("expected 1-d vector for operand #2"); 2164 if (vRES.getRank() != 2) 2165 return emitOpError("expected 2-d vector result"); 2166 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2167 return emitOpError("expected #1 operand dim to match result dim #1"); 2168 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2169 return emitOpError("expected #2 operand dim to match result dim #2"); 2170 } else { 2171 // An AXPY operation. 2172 if (vRES.getRank() != 1) 2173 return emitOpError("expected 1-d vector result"); 2174 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2175 return emitOpError("expected #1 operand dim to match result dim #1"); 2176 } 2177 2178 if (vACC && vACC != vRES) 2179 return emitOpError("expected operand #3 of same type as result type"); 2180 2181 // Verify supported combining kind. 2182 if (!isSupportedCombiningKind(kind(), vRES.getElementType())) 2183 return emitOpError("unsupported outerproduct type"); 2184 2185 return success(); 2186 } 2187 2188 //===----------------------------------------------------------------------===// 2189 // ReshapeOp 2190 //===----------------------------------------------------------------------===// 2191 2192 LogicalResult ReshapeOp::verify() { 2193 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2194 auto inputVectorType = getInputVectorType(); 2195 auto outputVectorType = getOutputVectorType(); 2196 int64_t inputShapeRank = getNumInputShapeSizes(); 2197 int64_t outputShapeRank = getNumOutputShapeSizes(); 2198 SmallVector<int64_t, 4> fixedVectorSizes; 2199 getFixedVectorSizes(fixedVectorSizes); 2200 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2201 2202 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2203 return emitError("invalid input shape for vector type ") 2204 << inputVectorType; 2205 2206 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2207 return emitError("invalid output shape for vector type ") 2208 << outputVectorType; 2209 2210 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2211 // suffix. 2212 unsigned inputVectorRank = inputVectorType.getRank(); 2213 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2214 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2215 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2216 return emitError("fixed vector size must match input vector for dim ") 2217 << i; 2218 } 2219 2220 unsigned outputVectorRank = outputVectorType.getRank(); 2221 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2222 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2223 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2224 return emitError("fixed vector size must match output vector for dim ") 2225 << i; 2226 } 2227 2228 // If all shape operands are produced by constant ops, verify that product 2229 // of dimensions for input/output shape match. 2230 auto isDefByConstant = [](Value operand) { 2231 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2232 }; 2233 if (llvm::all_of(input_shape(), isDefByConstant) && 2234 llvm::all_of(output_shape(), isDefByConstant)) { 2235 int64_t numInputElements = 1; 2236 for (auto operand : input_shape()) 2237 numInputElements *= 2238 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2239 int64_t numOutputElements = 1; 2240 for (auto operand : output_shape()) 2241 numOutputElements *= 2242 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2243 if (numInputElements != numOutputElements) 2244 return emitError("product of input and output shape sizes must match"); 2245 } 2246 return success(); 2247 } 2248 2249 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2250 populateFromInt64AttrArray(fixed_vector_sizes(), results); 2251 } 2252 2253 //===----------------------------------------------------------------------===// 2254 // ExtractStridedSliceOp 2255 //===----------------------------------------------------------------------===// 2256 2257 // Inference works as follows: 2258 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2259 // 2. Add sizes from 'vectorType' for remaining dims. 2260 static Type inferStridedSliceOpResultType(VectorType vectorType, 2261 ArrayAttr offsets, ArrayAttr sizes, 2262 ArrayAttr strides) { 2263 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2264 SmallVector<int64_t, 4> shape; 2265 shape.reserve(vectorType.getRank()); 2266 unsigned idx = 0; 2267 for (unsigned e = offsets.size(); idx < e; ++idx) 2268 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2269 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2270 shape.push_back(vectorType.getShape()[idx]); 2271 2272 return VectorType::get(shape, vectorType.getElementType()); 2273 } 2274 2275 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2276 Value source, ArrayRef<int64_t> offsets, 2277 ArrayRef<int64_t> sizes, 2278 ArrayRef<int64_t> strides) { 2279 result.addOperands(source); 2280 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2281 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2282 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2283 result.addTypes( 2284 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2285 offsetsAttr, sizesAttr, stridesAttr)); 2286 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2287 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2288 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2289 } 2290 2291 LogicalResult ExtractStridedSliceOp::verify() { 2292 auto type = getVectorType(); 2293 auto offsets = offsetsAttr(); 2294 auto sizes = sizesAttr(); 2295 auto strides = stridesAttr(); 2296 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2297 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2298 2299 auto shape = type.getShape(); 2300 auto offName = getOffsetsAttrName(); 2301 auto sizesName = getSizesAttrName(); 2302 auto stridesName = getStridesAttrName(); 2303 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2304 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2305 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2306 stridesName)) || 2307 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2308 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2309 /*halfOpen=*/false, 2310 /*min=*/1)) || 2311 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2312 /*halfOpen=*/false)) || 2313 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2314 offName, sizesName, 2315 /*halfOpen=*/false))) 2316 return failure(); 2317 2318 auto resultType = 2319 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2320 if (getResult().getType() != resultType) 2321 return emitOpError("expected result type to be ") << resultType; 2322 2323 return success(); 2324 } 2325 2326 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2327 // to use the source of the InsertStrided ops if we can detect that the 2328 // extracted vector is a subset of one of the vector inserted. 2329 static LogicalResult 2330 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2331 // Helper to extract integer out of ArrayAttr. 2332 auto getElement = [](ArrayAttr array, int idx) { 2333 return array[idx].cast<IntegerAttr>().getInt(); 2334 }; 2335 ArrayAttr extractOffsets = op.offsets(); 2336 ArrayAttr extractStrides = op.strides(); 2337 ArrayAttr extractSizes = op.sizes(); 2338 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 2339 while (insertOp) { 2340 if (op.getVectorType().getRank() != 2341 insertOp.getSourceVectorType().getRank()) 2342 return failure(); 2343 ArrayAttr insertOffsets = insertOp.offsets(); 2344 ArrayAttr insertStrides = insertOp.strides(); 2345 // If the rank of extract is greater than the rank of insert, we are likely 2346 // extracting a partial chunk of the vector inserted. 2347 if (extractOffsets.size() > insertOffsets.size()) 2348 return failure(); 2349 bool patialoverlap = false; 2350 bool disjoint = false; 2351 SmallVector<int64_t, 4> offsetDiffs; 2352 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2353 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2354 return failure(); 2355 int64_t start = getElement(insertOffsets, dim); 2356 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2357 int64_t offset = getElement(extractOffsets, dim); 2358 int64_t size = getElement(extractSizes, dim); 2359 // Check if the start of the extract offset is in the interval inserted. 2360 if (start <= offset && offset < end) { 2361 // If the extract interval overlaps but is not fully included we may 2362 // have a partial overlap that will prevent any folding. 2363 if (offset + size > end) 2364 patialoverlap = true; 2365 offsetDiffs.push_back(offset - start); 2366 continue; 2367 } 2368 disjoint = true; 2369 break; 2370 } 2371 // The extract element chunk is a subset of the insert element. 2372 if (!disjoint && !patialoverlap) { 2373 op.setOperand(insertOp.source()); 2374 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2375 OpBuilder b(op.getContext()); 2376 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2377 b.getI64ArrayAttr(offsetDiffs)); 2378 return success(); 2379 } 2380 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2381 // in the insert chain. 2382 if (disjoint) 2383 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 2384 else { 2385 // The extracted vector partially overlap the inserted vector, we cannot 2386 // fold. 2387 return failure(); 2388 } 2389 } 2390 return failure(); 2391 } 2392 2393 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2394 if (getVectorType() == getResult().getType()) 2395 return vector(); 2396 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2397 return getResult(); 2398 return {}; 2399 } 2400 2401 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2402 populateFromInt64AttrArray(offsets(), results); 2403 } 2404 2405 namespace { 2406 2407 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2408 // ConstantMaskOp. 2409 class StridedSliceConstantMaskFolder final 2410 : public OpRewritePattern<ExtractStridedSliceOp> { 2411 public: 2412 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2413 2414 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2415 PatternRewriter &rewriter) const override { 2416 // Return if 'extractStridedSliceOp' operand is not defined by a 2417 // ConstantMaskOp. 2418 auto *defOp = extractStridedSliceOp.vector().getDefiningOp(); 2419 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2420 if (!constantMaskOp) 2421 return failure(); 2422 // Return if 'extractStridedSliceOp' has non-unit strides. 2423 if (extractStridedSliceOp.hasNonUnitStrides()) 2424 return failure(); 2425 // Gather constant mask dimension sizes. 2426 SmallVector<int64_t, 4> maskDimSizes; 2427 populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes); 2428 // Gather strided slice offsets and sizes. 2429 SmallVector<int64_t, 4> sliceOffsets; 2430 populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets); 2431 SmallVector<int64_t, 4> sliceSizes; 2432 populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes); 2433 2434 // Compute slice of vector mask region. 2435 SmallVector<int64_t, 4> sliceMaskDimSizes; 2436 assert(sliceOffsets.size() == maskDimSizes.size()); 2437 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2438 int64_t maskDimSize = std::get<0>(it); 2439 int64_t sliceOffset = std::get<1>(it); 2440 int64_t sliceSize = std::get<2>(it); 2441 int64_t sliceMaskDimSize = std::max( 2442 static_cast<int64_t>(0), 2443 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2444 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2445 } 2446 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2447 // region is a conjunction of mask dim intervals). 2448 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2449 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2450 2451 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2452 // region. 2453 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2454 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2455 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2456 return success(); 2457 } 2458 }; 2459 2460 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2461 class StridedSliceConstantFolder final 2462 : public OpRewritePattern<ExtractStridedSliceOp> { 2463 public: 2464 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2465 2466 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2467 PatternRewriter &rewriter) const override { 2468 // Return if 'extractStridedSliceOp' operand is not defined by a 2469 // ConstantOp. 2470 auto constantOp = 2471 extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>(); 2472 if (!constantOp) 2473 return failure(); 2474 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2475 if (!dense) 2476 return failure(); 2477 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2478 dense.getSplatValue<Attribute>()); 2479 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2480 newAttr); 2481 return success(); 2482 } 2483 }; 2484 2485 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2486 // BroadcastOp(ExtractStrideSliceOp). 2487 class StridedSliceBroadcast final 2488 : public OpRewritePattern<ExtractStridedSliceOp> { 2489 public: 2490 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2491 2492 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2493 PatternRewriter &rewriter) const override { 2494 auto broadcast = op.vector().getDefiningOp<BroadcastOp>(); 2495 if (!broadcast) 2496 return failure(); 2497 auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>(); 2498 unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0; 2499 auto dstVecType = op.getType().cast<VectorType>(); 2500 unsigned dstRank = dstVecType.getRank(); 2501 unsigned rankDiff = dstRank - srcRrank; 2502 // Check if the most inner dimensions of the source of the broadcast are the 2503 // same as the destination of the extract. If this is the case we can just 2504 // use a broadcast as the original dimensions are untouched. 2505 bool lowerDimMatch = true; 2506 for (unsigned i = 0; i < srcRrank; i++) { 2507 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2508 lowerDimMatch = false; 2509 break; 2510 } 2511 } 2512 Value source = broadcast.source(); 2513 if (!lowerDimMatch) { 2514 // The inner dimensions don't match, it means we need to extract from the 2515 // source of the orignal broadcast and then broadcast the extracted value. 2516 source = rewriter.create<ExtractStridedSliceOp>( 2517 op->getLoc(), source, 2518 getI64SubArray(op.offsets(), /* dropFront=*/rankDiff), 2519 getI64SubArray(op.sizes(), /* dropFront=*/rankDiff), 2520 getI64SubArray(op.strides(), /* dropFront=*/rankDiff)); 2521 } 2522 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2523 return success(); 2524 } 2525 }; 2526 2527 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2528 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2529 public: 2530 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2531 2532 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2533 PatternRewriter &rewriter) const override { 2534 auto splat = op.vector().getDefiningOp<SplatOp>(); 2535 if (!splat) 2536 return failure(); 2537 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input()); 2538 return success(); 2539 } 2540 }; 2541 2542 } // namespace 2543 2544 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2545 RewritePatternSet &results, MLIRContext *context) { 2546 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2547 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2548 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2549 StridedSliceBroadcast, StridedSliceSplat>(context); 2550 } 2551 2552 //===----------------------------------------------------------------------===// 2553 // TransferReadOp 2554 //===----------------------------------------------------------------------===// 2555 2556 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2557 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2558 VectorType vectorType, Value source, 2559 ValueRange indices, AffineMapAttr permutationMapAttr, 2560 /*optional*/ ArrayAttr inBoundsAttr) { 2561 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2562 Value padding = builder.create<arith::ConstantOp>( 2563 result.location, elemType, builder.getZeroAttr(elemType)); 2564 build(builder, result, vectorType, source, indices, permutationMapAttr, 2565 padding, /*mask=*/Value(), inBoundsAttr); 2566 } 2567 2568 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2569 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2570 VectorType vectorType, Value source, 2571 ValueRange indices, AffineMap permutationMap, 2572 Optional<ArrayRef<bool>> inBounds) { 2573 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2574 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2575 ? builder.getBoolArrayAttr(inBounds.getValue()) 2576 : ArrayAttr(); 2577 build(builder, result, vectorType, source, indices, permutationMapAttr, 2578 inBoundsAttr); 2579 } 2580 2581 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2582 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2583 VectorType vectorType, Value source, 2584 ValueRange indices, Value padding, 2585 Optional<ArrayRef<bool>> inBounds) { 2586 AffineMap permutationMap = getTransferMinorIdentityMap( 2587 source.getType().cast<ShapedType>(), vectorType); 2588 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2589 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2590 ? builder.getBoolArrayAttr(inBounds.getValue()) 2591 : ArrayAttr(); 2592 build(builder, result, vectorType, source, indices, permutationMapAttr, 2593 padding, 2594 /*mask=*/Value(), inBoundsAttr); 2595 } 2596 2597 /// 4. Builder that sets padding to zero and permutation map to 2598 /// 'getMinorIdentityMap'. 2599 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2600 VectorType vectorType, Value source, 2601 ValueRange indices, 2602 Optional<ArrayRef<bool>> inBounds) { 2603 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2604 Value padding = builder.create<arith::ConstantOp>( 2605 result.location, elemType, builder.getZeroAttr(elemType)); 2606 build(builder, result, vectorType, source, indices, padding, inBounds); 2607 } 2608 2609 template <typename EmitFun> 2610 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2611 EmitFun emitOpError) { 2612 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2613 for (auto expr : permutationMap.getResults()) { 2614 auto dim = expr.dyn_cast<AffineDimExpr>(); 2615 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2616 if (zero) { 2617 if (zero.getValue() != 0) { 2618 return emitOpError( 2619 "requires a projected permutation_map (at most one dim or the zero " 2620 "constant can appear in each result)"); 2621 } 2622 continue; 2623 } 2624 if (!dim) { 2625 return emitOpError("requires a projected permutation_map (at most one " 2626 "dim or the zero constant can appear in each result)"); 2627 } 2628 if (seen[dim.getPosition()]) { 2629 return emitOpError( 2630 "requires a permutation_map that is a permutation (found one dim " 2631 "used more than once)"); 2632 } 2633 seen[dim.getPosition()] = true; 2634 } 2635 return success(); 2636 } 2637 2638 static LogicalResult 2639 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2640 VectorType vectorType, VectorType maskType, 2641 AffineMap permutationMap, ArrayAttr inBounds) { 2642 if (op->hasAttr("masked")) { 2643 return op->emitOpError("masked attribute has been removed. " 2644 "Use in_bounds instead."); 2645 } 2646 2647 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2648 return op->emitOpError( 2649 "requires source to be a memref or ranked tensor type"); 2650 2651 auto elementType = shapedType.getElementType(); 2652 DataLayout dataLayout = DataLayout::closest(op); 2653 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2654 // Memref or tensor has vector element type. 2655 unsigned sourceVecSize = 2656 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2657 vectorElementType.getShape().back(); 2658 unsigned resultVecSize = 2659 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2660 vectorType.getShape().back(); 2661 if (resultVecSize % sourceVecSize != 0) 2662 return op->emitOpError( 2663 "requires the bitwidth of the minor 1-D vector to be an integral " 2664 "multiple of the bitwidth of the minor 1-D vector of the source"); 2665 2666 unsigned sourceVecEltRank = vectorElementType.getRank(); 2667 unsigned resultVecRank = vectorType.getRank(); 2668 if (sourceVecEltRank > resultVecRank) 2669 return op->emitOpError( 2670 "requires source vector element and vector result ranks to match."); 2671 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2672 // Check that permutation map results match 'rankOffset' of vector type. 2673 if (permutationMap.getNumResults() != rankOffset) 2674 return op->emitOpError("requires a permutation_map with result dims of " 2675 "the same rank as the vector type"); 2676 2677 if (maskType) 2678 return op->emitOpError("does not support masks with vector element type"); 2679 } else { 2680 // Memref or tensor has scalar element type. 2681 unsigned minorSize = 2682 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2683 unsigned resultVecSize = 2684 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2685 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2686 return op->emitOpError( 2687 "requires the bitwidth of the minor 1-D vector to be an integral " 2688 "multiple of the bitwidth of the source element type"); 2689 2690 // Check that permutation map results match rank of vector type. 2691 if (permutationMap.getNumResults() != vectorType.getRank()) 2692 return op->emitOpError("requires a permutation_map with result dims of " 2693 "the same rank as the vector type"); 2694 2695 VectorType expectedMaskType = 2696 vector::detail::transferMaskType(vectorType, permutationMap); 2697 if (maskType && expectedMaskType != maskType) 2698 return op->emitOpError("expects mask type consistent with permutation " 2699 "map: ") 2700 << maskType; 2701 } 2702 2703 if (permutationMap.getNumSymbols() != 0) 2704 return op->emitOpError("requires permutation_map without symbols"); 2705 2706 if (permutationMap.getNumInputs() != shapedType.getRank()) 2707 return op->emitOpError("requires a permutation_map with input dims of the " 2708 "same rank as the source type"); 2709 2710 if (inBounds) { 2711 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2712 return op->emitOpError("expects the optional in_bounds attr of same rank " 2713 "as permutation_map results: ") 2714 << AffineMapAttr::get(permutationMap) 2715 << " vs inBounds of size: " << inBounds.size(); 2716 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2717 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2718 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2719 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2720 } 2721 2722 return success(); 2723 } 2724 2725 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2726 SmallVector<StringRef, 3> elidedAttrs; 2727 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2728 if (op.permutation_map().isMinorIdentity()) 2729 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2730 bool elideInBounds = true; 2731 if (auto inBounds = op.in_bounds()) { 2732 for (auto attr : *inBounds) { 2733 if (attr.template cast<BoolAttr>().getValue()) { 2734 elideInBounds = false; 2735 break; 2736 } 2737 } 2738 } 2739 if (elideInBounds) 2740 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2741 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2742 } 2743 2744 void TransferReadOp::print(OpAsmPrinter &p) { 2745 p << " " << source() << "[" << indices() << "], " << padding(); 2746 if (mask()) 2747 p << ", " << mask(); 2748 printTransferAttrs(p, *this); 2749 p << " : " << getShapedType() << ", " << getVectorType(); 2750 } 2751 2752 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2753 auto &builder = parser.getBuilder(); 2754 SMLoc typesLoc; 2755 OpAsmParser::OperandType sourceInfo; 2756 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 2757 OpAsmParser::OperandType paddingInfo; 2758 SmallVector<Type, 2> types; 2759 OpAsmParser::OperandType maskInfo; 2760 // Parsing with support for paddingValue. 2761 if (parser.parseOperand(sourceInfo) || 2762 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2763 parser.parseComma() || parser.parseOperand(paddingInfo)) 2764 return failure(); 2765 ParseResult hasMask = parser.parseOptionalComma(); 2766 if (hasMask.succeeded()) { 2767 parser.parseOperand(maskInfo); 2768 } 2769 if (parser.parseOptionalAttrDict(result.attributes) || 2770 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2771 return failure(); 2772 if (types.size() != 2) 2773 return parser.emitError(typesLoc, "requires two types"); 2774 auto indexType = builder.getIndexType(); 2775 auto shapedType = types[0].dyn_cast<ShapedType>(); 2776 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2777 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2778 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2779 if (!vectorType) 2780 return parser.emitError(typesLoc, "requires vector type"); 2781 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2782 Attribute mapAttr = result.attributes.get(permutationAttrName); 2783 if (!mapAttr) { 2784 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2785 // Update `mapAttr` that is used later to determine mask type. 2786 mapAttr = AffineMapAttr::get(permMap); 2787 result.attributes.set(permutationAttrName, mapAttr); 2788 } 2789 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2790 parser.resolveOperands(indexInfo, indexType, result.operands) || 2791 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2792 result.operands)) 2793 return failure(); 2794 if (hasMask.succeeded()) { 2795 if (shapedType.getElementType().dyn_cast<VectorType>()) 2796 return parser.emitError( 2797 maskInfo.location, "does not support masks with vector element type"); 2798 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2799 // Instead of adding the mask type as an op type, compute it based on the 2800 // vector type and the permutation map (to keep the type signature small). 2801 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2802 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2803 return failure(); 2804 } 2805 result.addAttribute( 2806 TransferReadOp::getOperandSegmentSizeAttr(), 2807 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2808 static_cast<int32_t>(hasMask.succeeded())})); 2809 return parser.addTypeToList(vectorType, result.types); 2810 } 2811 2812 LogicalResult TransferReadOp::verify() { 2813 // Consistency of elemental types in source and vector. 2814 ShapedType shapedType = getShapedType(); 2815 VectorType vectorType = getVectorType(); 2816 VectorType maskType = getMaskType(); 2817 auto paddingType = padding().getType(); 2818 auto permutationMap = permutation_map(); 2819 auto sourceElementType = shapedType.getElementType(); 2820 2821 if (static_cast<int64_t>(indices().size()) != shapedType.getRank()) 2822 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2823 2824 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2825 shapedType, vectorType, maskType, permutationMap, 2826 in_bounds() ? *in_bounds() : ArrayAttr()))) 2827 return failure(); 2828 2829 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2830 // Source has vector element type. 2831 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2832 if (sourceVectorElementType != paddingType) 2833 return emitOpError( 2834 "requires source element type and padding type to match."); 2835 2836 } else { 2837 // Check that 'paddingType' is valid to store in a vector type. 2838 if (!VectorType::isValidElementType(paddingType)) 2839 return emitOpError("requires valid padding vector elemental type"); 2840 2841 // Check that padding type and vector element types match. 2842 if (paddingType != sourceElementType) 2843 return emitOpError( 2844 "requires formal padding and source of the same elemental type"); 2845 } 2846 2847 return verifyPermutationMap(permutationMap, 2848 [&](Twine t) { return emitOpError(t); }); 2849 } 2850 2851 /// This is a common class used for patterns of the form 2852 /// ``` 2853 /// someop(memrefcast) -> someop 2854 /// ``` 2855 /// It folds the source of the memref.cast into the root operation directly. 2856 static LogicalResult foldMemRefCast(Operation *op) { 2857 bool folded = false; 2858 for (OpOperand &operand : op->getOpOperands()) { 2859 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2860 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2861 operand.set(castOp.getOperand()); 2862 folded = true; 2863 } 2864 } 2865 return success(folded); 2866 } 2867 2868 static LogicalResult foldTensorCast(Operation *op) { 2869 bool folded = false; 2870 for (OpOperand &operand : op->getOpOperands()) { 2871 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2872 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2873 operand.set(castOp.getOperand()); 2874 folded = true; 2875 } 2876 } 2877 return success(folded); 2878 } 2879 2880 template <typename TransferOp> 2881 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2882 // TODO: support more aggressive createOrFold on: 2883 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2884 if (op.getShapedType().isDynamicDim(indicesIdx)) 2885 return false; 2886 Value index = op.indices()[indicesIdx]; 2887 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2888 if (!cstOp) 2889 return false; 2890 2891 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2892 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2893 2894 return cstOp.value() + vectorSize <= sourceSize; 2895 } 2896 2897 template <typename TransferOp> 2898 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2899 // TODO: support 0-d corner case. 2900 // TODO: Be less conservative. 2901 if (op.getTransferRank() == 0) 2902 return failure(); 2903 AffineMap permutationMap = op.permutation_map(); 2904 bool changed = false; 2905 SmallVector<bool, 4> newInBounds; 2906 newInBounds.reserve(op.getTransferRank()); 2907 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2908 // Already marked as in-bounds, nothing to see here. 2909 if (op.isDimInBounds(i)) { 2910 newInBounds.push_back(true); 2911 continue; 2912 } 2913 // Currently out-of-bounds, check whether we can statically determine it is 2914 // inBounds. 2915 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2916 assert(dimExpr && "Broadcast dims must be in-bounds"); 2917 auto inBounds = 2918 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2919 newInBounds.push_back(inBounds); 2920 // We commit the pattern if it is "more inbounds". 2921 changed |= inBounds; 2922 } 2923 if (!changed) 2924 return failure(); 2925 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2926 OpBuilder b(op.getContext()); 2927 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2928 b.getBoolArrayAttr(newInBounds)); 2929 return success(); 2930 } 2931 2932 /// ``` 2933 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2934 /// : vector<1x4xf32>, tensor<4x4xf32> 2935 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2936 /// : tensor<4x4xf32>, vector<1x4xf32> 2937 /// ``` 2938 /// -> Folds into 2939 /// ``` 2940 /// %v0 2941 /// ``` 2942 static Value foldRAW(TransferReadOp readOp) { 2943 if (!readOp.getShapedType().isa<RankedTensorType>()) 2944 return {}; 2945 auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>(); 2946 while (defWrite) { 2947 if (checkSameValueRAW(defWrite, readOp)) 2948 return defWrite.vector(); 2949 if (!isDisjointTransferIndices( 2950 cast<VectorTransferOpInterface>(defWrite.getOperation()), 2951 cast<VectorTransferOpInterface>(readOp.getOperation()))) 2952 break; 2953 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 2954 } 2955 return {}; 2956 } 2957 2958 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 2959 if (Value vec = foldRAW(*this)) 2960 return vec; 2961 /// transfer_read(memrefcast) -> transfer_read 2962 if (succeeded(foldTransferInBoundsAttribute(*this))) 2963 return getResult(); 2964 if (succeeded(foldMemRefCast(*this))) 2965 return getResult(); 2966 if (succeeded(foldTensorCast(*this))) 2967 return getResult(); 2968 return OpFoldResult(); 2969 } 2970 2971 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 2972 return llvm::to_vector<4>(getVectorType().getShape()); 2973 } 2974 2975 void TransferReadOp::getEffects( 2976 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 2977 &effects) { 2978 if (getShapedType().isa<MemRefType>()) 2979 effects.emplace_back(MemoryEffects::Read::get(), source(), 2980 SideEffects::DefaultResource::get()); 2981 } 2982 2983 namespace { 2984 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 2985 /// 2986 /// ``` 2987 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 2988 /// : tensor<?x?xf32> to tensor<?x?xf32> 2989 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 2990 /// : tensor<?x?xf32>, vector<4x5xf32> 2991 /// ``` 2992 /// is rewritten to: 2993 /// ``` 2994 /// %p0 = arith.addi %a, %e : index 2995 /// %p1 = arith.addi %b, %f : index 2996 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 2997 /// : tensor<?x?xf32>, vector<4x5xf32> 2998 /// ``` 2999 struct FoldExtractSliceIntoTransferRead 3000 : public OpRewritePattern<TransferReadOp> { 3001 public: 3002 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3003 3004 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3005 PatternRewriter &rewriter) const override { 3006 // TODO: support 0-d corner case. 3007 if (xferOp.getTransferRank() == 0) 3008 return failure(); 3009 if (xferOp.hasOutOfBoundsDim()) 3010 return failure(); 3011 if (!xferOp.permutation_map().isIdentity()) 3012 return failure(); 3013 if (xferOp.mask()) 3014 return failure(); 3015 auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3016 if (!extractOp) 3017 return failure(); 3018 if (!extractOp.hasUnitStride()) 3019 return failure(); 3020 3021 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3022 // dims are exactly the leading dims. I.e. the following is illegal: 3023 // ``` 3024 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3025 // tensor<2x1x4xf32> to tensor<2x4xf32> 3026 // %1 = vector.transfer_read %0[0,0], %cst : 3027 // tensor<2x4xf32>, vector<2x4xf32> 3028 // ``` 3029 // 3030 // Cannot fold into: 3031 // ``` 3032 // %0 = vector.transfer_read %t[0,0,0], %cst : 3033 // tensor<2x1x4xf32>, vector<2x4xf32> 3034 // ``` 3035 // For this, check the trailing `vectorRank` dims of the extract_slice 3036 // result tensor match the trailing dims of the inferred result tensor. 3037 int64_t rankReduced = 3038 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3039 int64_t vectorRank = xferOp.getVectorType().getRank(); 3040 RankedTensorType inferredDestTensorType = 3041 tensor::ExtractSliceOp::inferResultType( 3042 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3043 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3044 auto actualDestTensorShape = extractOp.getType().getShape(); 3045 if (rankReduced > 0 && 3046 actualDestTensorShape.take_back(vectorRank) != 3047 inferredDestTensorType.getShape().take_back(vectorRank)) 3048 return failure(); 3049 3050 SmallVector<Value> newIndices; 3051 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3052 // indices first. 3053 for (int64_t i = 0; i < rankReduced; ++i) { 3054 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3055 newIndices.push_back(getValueOrCreateConstantIndexOp( 3056 rewriter, extractOp.getLoc(), offset)); 3057 } 3058 for (const auto &it : llvm::enumerate(xferOp.indices())) { 3059 OpFoldResult offset = 3060 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3061 newIndices.push_back(rewriter.create<arith::AddIOp>( 3062 xferOp->getLoc(), it.value(), 3063 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3064 offset))); 3065 } 3066 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3067 rewriter.replaceOpWithNewOp<TransferReadOp>( 3068 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3069 xferOp.padding(), ArrayRef<bool>{inBounds}); 3070 3071 return success(); 3072 } 3073 }; 3074 } // namespace 3075 3076 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3077 MLIRContext *context) { 3078 results.add<FoldExtractSliceIntoTransferRead>(context); 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // TransferWriteOp 3083 //===----------------------------------------------------------------------===// 3084 3085 /// 1. Builder with type inference. 3086 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3087 Value vector, Value dest, ValueRange indices, 3088 AffineMapAttr permutationMapAttr, 3089 /*optional*/ Value mask, 3090 /*optional*/ ArrayAttr inBoundsAttr) { 3091 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3092 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3093 mask, inBoundsAttr); 3094 } 3095 3096 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3097 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3098 Value vector, Value dest, ValueRange indices, 3099 AffineMapAttr permutationMapAttr, 3100 /*optional*/ ArrayAttr inBoundsAttr) { 3101 build(builder, result, vector, dest, indices, permutationMapAttr, 3102 /*mask=*/Value(), inBoundsAttr); 3103 } 3104 3105 /// 3. Builder with type inference that sets an empty mask (variant without 3106 /// attrs) 3107 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3108 Value vector, Value dest, ValueRange indices, 3109 AffineMap permutationMap, 3110 Optional<ArrayRef<bool>> inBounds) { 3111 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3112 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3113 ? builder.getBoolArrayAttr(inBounds.getValue()) 3114 : ArrayAttr(); 3115 build(builder, result, vector, dest, indices, permutationMapAttr, 3116 /*mask=*/Value(), inBoundsAttr); 3117 } 3118 3119 /// 4. Builder with type inference that sets an empty mask and sets permutation 3120 /// map to 'getMinorIdentityMap'. 3121 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3122 Value vector, Value dest, ValueRange indices, 3123 Optional<ArrayRef<bool>> inBounds) { 3124 auto vectorType = vector.getType().cast<VectorType>(); 3125 AffineMap permutationMap = getTransferMinorIdentityMap( 3126 dest.getType().cast<ShapedType>(), vectorType); 3127 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3128 } 3129 3130 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3131 OperationState &result) { 3132 auto &builder = parser.getBuilder(); 3133 SMLoc typesLoc; 3134 OpAsmParser::OperandType vectorInfo, sourceInfo; 3135 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 3136 SmallVector<Type, 2> types; 3137 OpAsmParser::OperandType maskInfo; 3138 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3139 parser.parseOperand(sourceInfo) || 3140 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3141 return failure(); 3142 ParseResult hasMask = parser.parseOptionalComma(); 3143 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3144 return failure(); 3145 if (parser.parseOptionalAttrDict(result.attributes) || 3146 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3147 return failure(); 3148 if (types.size() != 2) 3149 return parser.emitError(typesLoc, "requires two types"); 3150 auto indexType = builder.getIndexType(); 3151 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3152 if (!vectorType) 3153 return parser.emitError(typesLoc, "requires vector type"); 3154 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3155 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3156 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3157 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3158 auto attr = result.attributes.get(permutationAttrName); 3159 if (!attr) { 3160 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3161 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3162 } 3163 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3164 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3165 parser.resolveOperands(indexInfo, indexType, result.operands)) 3166 return failure(); 3167 if (hasMask.succeeded()) { 3168 if (shapedType.getElementType().dyn_cast<VectorType>()) 3169 return parser.emitError( 3170 maskInfo.location, "does not support masks with vector element type"); 3171 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3172 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3173 return failure(); 3174 } 3175 result.addAttribute( 3176 TransferWriteOp::getOperandSegmentSizeAttr(), 3177 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3178 static_cast<int32_t>(hasMask.succeeded())})); 3179 return failure(shapedType.isa<RankedTensorType>() && 3180 parser.addTypeToList(shapedType, result.types)); 3181 } 3182 3183 void TransferWriteOp::print(OpAsmPrinter &p) { 3184 p << " " << vector() << ", " << source() << "[" << indices() << "]"; 3185 if (mask()) 3186 p << ", " << mask(); 3187 printTransferAttrs(p, *this); 3188 p << " : " << getVectorType() << ", " << getShapedType(); 3189 } 3190 3191 LogicalResult TransferWriteOp::verify() { 3192 // Consistency of elemental types in shape and vector. 3193 ShapedType shapedType = getShapedType(); 3194 VectorType vectorType = getVectorType(); 3195 VectorType maskType = getMaskType(); 3196 auto permutationMap = permutation_map(); 3197 3198 if (llvm::size(indices()) != shapedType.getRank()) 3199 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3200 3201 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3202 // as the semantics is unclear. This can be revisited later if necessary. 3203 if (hasBroadcastDim()) 3204 return emitOpError("should not have broadcast dimensions"); 3205 3206 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3207 shapedType, vectorType, maskType, permutationMap, 3208 in_bounds() ? *in_bounds() : ArrayAttr()))) 3209 return failure(); 3210 3211 return verifyPermutationMap(permutationMap, 3212 [&](Twine t) { return emitOpError(t); }); 3213 } 3214 3215 /// Fold: 3216 /// ``` 3217 /// %t1 = ... 3218 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3219 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3220 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3221 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3222 /// ``` 3223 /// 3224 /// into: 3225 /// 3226 /// ``` 3227 /// %t0 3228 /// ``` 3229 /// 3230 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3231 /// block argument or has side effects. 3232 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3233 ArrayRef<Attribute>, 3234 SmallVectorImpl<OpFoldResult> &results) { 3235 // TODO: support 0-d corner case. 3236 if (write.getTransferRank() == 0) 3237 return failure(); 3238 auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>(); 3239 // If not operating on tensors, bail. 3240 if (!rankedTensorType) 3241 return failure(); 3242 // If no read, bail. 3243 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3244 if (!read) 3245 return failure(); 3246 // TODO: support 0-d corner case. 3247 if (read.getTransferRank() == 0) 3248 return failure(); 3249 // For now, only accept minor identity. Future: composition is minor identity. 3250 if (!read.permutation_map().isMinorIdentity() || 3251 !write.permutation_map().isMinorIdentity()) 3252 return failure(); 3253 // Bail on mismatching ranks. 3254 if (read.getTransferRank() != write.getTransferRank()) 3255 return failure(); 3256 // Bail on potential out-of-bounds accesses. 3257 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3258 return failure(); 3259 // Tensor types must be the same. 3260 if (read.source().getType() != rankedTensorType) 3261 return failure(); 3262 // Vector types must be the same. 3263 if (read.getVectorType() != write.getVectorType()) 3264 return failure(); 3265 // Vector and Tensor shapes must match. 3266 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3267 return failure(); 3268 // If any index is nonzero. 3269 auto isNotConstantZero = [](Value v) { 3270 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3271 return !cstOp || cstOp.value() != 0; 3272 }; 3273 if (llvm::any_of(read.indices(), isNotConstantZero) || 3274 llvm::any_of(write.indices(), isNotConstantZero)) 3275 return failure(); 3276 // Success. 3277 results.push_back(read.source()); 3278 return success(); 3279 } 3280 3281 static bool checkSameValueWAR(vector::TransferReadOp read, 3282 vector::TransferWriteOp write) { 3283 return read.source() == write.source() && read.indices() == write.indices() && 3284 read.permutation_map() == write.permutation_map() && 3285 read.getVectorType() == write.getVectorType() && !read.mask() && 3286 !write.mask(); 3287 } 3288 /// Fold transfer_write write after read: 3289 /// ``` 3290 /// %t0 = ... 3291 /// %v = vector.transfer_read %t0[%c0...] : 3292 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3293 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3294 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3295 /// ``` 3296 /// 3297 /// into: 3298 /// 3299 /// ``` 3300 /// %t0 3301 /// ``` 3302 static LogicalResult foldWAR(TransferWriteOp write, 3303 SmallVectorImpl<OpFoldResult> &results) { 3304 if (!write.source().getType().isa<RankedTensorType>()) 3305 return failure(); 3306 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3307 if (!read) 3308 return failure(); 3309 3310 if (!checkSameValueWAR(read, write)) 3311 return failure(); 3312 results.push_back(read.source()); 3313 return success(); 3314 } 3315 3316 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3317 SmallVectorImpl<OpFoldResult> &results) { 3318 if (succeeded(foldReadInitWrite(*this, operands, results))) 3319 return success(); 3320 if (succeeded(foldWAR(*this, results))) 3321 return success(); 3322 if (succeeded(foldTransferInBoundsAttribute(*this))) 3323 return success(); 3324 return foldMemRefCast(*this); 3325 } 3326 3327 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3328 return llvm::to_vector<4>(getVectorType().getShape()); 3329 } 3330 3331 void TransferWriteOp::getEffects( 3332 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3333 &effects) { 3334 if (getShapedType().isa<MemRefType>()) 3335 effects.emplace_back(MemoryEffects::Write::get(), source(), 3336 SideEffects::DefaultResource::get()); 3337 } 3338 3339 namespace { 3340 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3341 /// DCE 3342 /// ``` 3343 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3344 /// : vector<1x4xf32>, tensor<4x4xf32> 3345 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3346 /// : vector<1x4xf32>, tensor<4x4xf32> 3347 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3348 /// : vector<1x4xf32>, tensor<4x4xf32> 3349 /// ``` 3350 /// 3351 /// into: 3352 /// 3353 /// ``` 3354 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3355 /// : vector<1x4xf32>, tensor<4x4xf32> 3356 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3357 /// : vector<1x4xf32>, tensor<4x4xf32> 3358 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3359 /// : vector<1x4xf32>, tensor<4x4xf32> 3360 /// ``` 3361 /// 3362 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3363 /// any other uses. 3364 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3365 public: 3366 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3367 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3368 PatternRewriter &rewriter) const override { 3369 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3370 return failure(); 3371 vector::TransferWriteOp writeToModify = writeOp; 3372 3373 auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>(); 3374 while (defWrite) { 3375 if (checkSameValueWAW(writeOp, defWrite)) { 3376 writeToModify.sourceMutable().assign(defWrite.source()); 3377 return success(); 3378 } 3379 if (!isDisjointTransferIndices( 3380 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3381 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3382 break; 3383 // If the previous write op doesn't have any other use we an safely look 3384 // at the previous store to see if it can be removed. 3385 if (!defWrite->hasOneUse()) 3386 break; 3387 writeToModify = defWrite; 3388 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 3389 } 3390 return failure(); 3391 } 3392 }; 3393 3394 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3395 /// could directly write to the insert_slice's destination. E.g.: 3396 /// 3397 /// ``` 3398 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3399 /// : vector<4x5xf32>, tensor<4x5xf32> 3400 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3401 /// : tensor<4x5xf32> into tensor<?x?xf32> 3402 /// ``` 3403 /// is rewritten to: 3404 /// ``` 3405 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3406 /// : vector<4x5xf32>, tensor<?x?xf32> 3407 /// ``` 3408 struct FoldInsertSliceIntoTransferWrite 3409 : public OpRewritePattern<tensor::InsertSliceOp> { 3410 public: 3411 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3412 3413 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3414 PatternRewriter &rewriter) const override { 3415 if (!insertOp.hasUnitStride()) 3416 return failure(); 3417 3418 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3419 if (!xferOp) 3420 return failure(); 3421 // TODO: support 0-d corner case. 3422 if (xferOp.getTransferRank() == 0) 3423 return failure(); 3424 3425 if (xferOp.hasOutOfBoundsDim()) 3426 return failure(); 3427 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3428 return failure(); 3429 if (xferOp.mask()) 3430 return failure(); 3431 // Fold only if the TransferWriteOp completely overwrites the `source` with 3432 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3433 // content is the data of the vector. 3434 if (!llvm::equal(xferOp.getVectorType().getShape(), 3435 xferOp.getShapedType().getShape())) 3436 return failure(); 3437 if (!xferOp.permutation_map().isIdentity()) 3438 return failure(); 3439 3440 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3441 // dims are exactly the leading dims. I.e. the following is illegal: 3442 // ``` 3443 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3444 // vector<2x4xf32>, tensor<2x4xf32> 3445 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3446 // tensor<2x4xf32> into tensor<2x1x4xf32> 3447 // ``` 3448 // 3449 // Cannot fold into: 3450 // ``` 3451 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3452 // vector<2x4xf32>, tensor<2x1x4xf32> 3453 // ``` 3454 // For this, check the trailing `vectorRank` dims of the insert_slice result 3455 // tensor match the trailing dims of the inferred result tensor. 3456 int64_t rankReduced = 3457 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3458 int64_t vectorRank = xferOp.getVectorType().getRank(); 3459 RankedTensorType inferredSourceTensorType = 3460 tensor::ExtractSliceOp::inferResultType( 3461 insertOp.getType(), insertOp.getMixedOffsets(), 3462 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3463 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3464 if (rankReduced > 0 && 3465 actualSourceTensorShape.take_back(vectorRank) != 3466 inferredSourceTensorType.getShape().take_back(vectorRank)) 3467 return failure(); 3468 3469 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3470 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3471 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3472 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(), 3473 insertOp.dest(), indices, 3474 ArrayRef<bool>{inBounds}); 3475 return success(); 3476 } 3477 }; 3478 } // namespace 3479 3480 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3481 MLIRContext *context) { 3482 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3483 } 3484 3485 //===----------------------------------------------------------------------===// 3486 // LoadOp 3487 //===----------------------------------------------------------------------===// 3488 3489 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3490 MemRefType memRefTy) { 3491 if (!isLastMemrefDimUnitStride(memRefTy)) 3492 return op->emitOpError("most minor memref dim must have unit stride"); 3493 return success(); 3494 } 3495 3496 LogicalResult vector::LoadOp::verify() { 3497 VectorType resVecTy = getVectorType(); 3498 MemRefType memRefTy = getMemRefType(); 3499 3500 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3501 return failure(); 3502 3503 // Checks for vector memrefs. 3504 Type memElemTy = memRefTy.getElementType(); 3505 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3506 if (memVecTy != resVecTy) 3507 return emitOpError("base memref and result vector types should match"); 3508 memElemTy = memVecTy.getElementType(); 3509 } 3510 3511 if (resVecTy.getElementType() != memElemTy) 3512 return emitOpError("base and result element types should match"); 3513 if (llvm::size(indices()) != memRefTy.getRank()) 3514 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3515 return success(); 3516 } 3517 3518 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3519 if (succeeded(foldMemRefCast(*this))) 3520 return getResult(); 3521 return OpFoldResult(); 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // StoreOp 3526 //===----------------------------------------------------------------------===// 3527 3528 LogicalResult vector::StoreOp::verify() { 3529 VectorType valueVecTy = getVectorType(); 3530 MemRefType memRefTy = getMemRefType(); 3531 3532 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3533 return failure(); 3534 3535 // Checks for vector memrefs. 3536 Type memElemTy = memRefTy.getElementType(); 3537 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3538 if (memVecTy != valueVecTy) 3539 return emitOpError( 3540 "base memref and valueToStore vector types should match"); 3541 memElemTy = memVecTy.getElementType(); 3542 } 3543 3544 if (valueVecTy.getElementType() != memElemTy) 3545 return emitOpError("base and valueToStore element type should match"); 3546 if (llvm::size(indices()) != memRefTy.getRank()) 3547 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3548 return success(); 3549 } 3550 3551 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3552 SmallVectorImpl<OpFoldResult> &results) { 3553 return foldMemRefCast(*this); 3554 } 3555 3556 //===----------------------------------------------------------------------===// 3557 // MaskedLoadOp 3558 //===----------------------------------------------------------------------===// 3559 3560 LogicalResult MaskedLoadOp::verify() { 3561 VectorType maskVType = getMaskVectorType(); 3562 VectorType passVType = getPassThruVectorType(); 3563 VectorType resVType = getVectorType(); 3564 MemRefType memType = getMemRefType(); 3565 3566 if (resVType.getElementType() != memType.getElementType()) 3567 return emitOpError("base and result element type should match"); 3568 if (llvm::size(indices()) != memType.getRank()) 3569 return emitOpError("requires ") << memType.getRank() << " indices"; 3570 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3571 return emitOpError("expected result dim to match mask dim"); 3572 if (resVType != passVType) 3573 return emitOpError("expected pass_thru of same type as result type"); 3574 return success(); 3575 } 3576 3577 namespace { 3578 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3579 public: 3580 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3581 LogicalResult matchAndRewrite(MaskedLoadOp load, 3582 PatternRewriter &rewriter) const override { 3583 switch (get1DMaskFormat(load.mask())) { 3584 case MaskFormat::AllTrue: 3585 rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(), 3586 load.base(), load.indices()); 3587 return success(); 3588 case MaskFormat::AllFalse: 3589 rewriter.replaceOp(load, load.pass_thru()); 3590 return success(); 3591 case MaskFormat::Unknown: 3592 return failure(); 3593 } 3594 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3595 } 3596 }; 3597 } // namespace 3598 3599 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3600 MLIRContext *context) { 3601 results.add<MaskedLoadFolder>(context); 3602 } 3603 3604 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3605 if (succeeded(foldMemRefCast(*this))) 3606 return getResult(); 3607 return OpFoldResult(); 3608 } 3609 3610 //===----------------------------------------------------------------------===// 3611 // MaskedStoreOp 3612 //===----------------------------------------------------------------------===// 3613 3614 LogicalResult MaskedStoreOp::verify() { 3615 VectorType maskVType = getMaskVectorType(); 3616 VectorType valueVType = getVectorType(); 3617 MemRefType memType = getMemRefType(); 3618 3619 if (valueVType.getElementType() != memType.getElementType()) 3620 return emitOpError("base and valueToStore element type should match"); 3621 if (llvm::size(indices()) != memType.getRank()) 3622 return emitOpError("requires ") << memType.getRank() << " indices"; 3623 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3624 return emitOpError("expected valueToStore dim to match mask dim"); 3625 return success(); 3626 } 3627 3628 namespace { 3629 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3630 public: 3631 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3632 LogicalResult matchAndRewrite(MaskedStoreOp store, 3633 PatternRewriter &rewriter) const override { 3634 switch (get1DMaskFormat(store.mask())) { 3635 case MaskFormat::AllTrue: 3636 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3637 store, store.valueToStore(), store.base(), store.indices()); 3638 return success(); 3639 case MaskFormat::AllFalse: 3640 rewriter.eraseOp(store); 3641 return success(); 3642 case MaskFormat::Unknown: 3643 return failure(); 3644 } 3645 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3646 } 3647 }; 3648 } // namespace 3649 3650 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3651 MLIRContext *context) { 3652 results.add<MaskedStoreFolder>(context); 3653 } 3654 3655 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3656 SmallVectorImpl<OpFoldResult> &results) { 3657 return foldMemRefCast(*this); 3658 } 3659 3660 //===----------------------------------------------------------------------===// 3661 // GatherOp 3662 //===----------------------------------------------------------------------===// 3663 3664 LogicalResult GatherOp::verify() { 3665 VectorType indVType = getIndexVectorType(); 3666 VectorType maskVType = getMaskVectorType(); 3667 VectorType resVType = getVectorType(); 3668 MemRefType memType = getMemRefType(); 3669 3670 if (resVType.getElementType() != memType.getElementType()) 3671 return emitOpError("base and result element type should match"); 3672 if (llvm::size(indices()) != memType.getRank()) 3673 return emitOpError("requires ") << memType.getRank() << " indices"; 3674 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3675 return emitOpError("expected result dim to match indices dim"); 3676 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3677 return emitOpError("expected result dim to match mask dim"); 3678 if (resVType != getPassThruVectorType()) 3679 return emitOpError("expected pass_thru of same type as result type"); 3680 return success(); 3681 } 3682 3683 namespace { 3684 class GatherFolder final : public OpRewritePattern<GatherOp> { 3685 public: 3686 using OpRewritePattern<GatherOp>::OpRewritePattern; 3687 LogicalResult matchAndRewrite(GatherOp gather, 3688 PatternRewriter &rewriter) const override { 3689 switch (get1DMaskFormat(gather.mask())) { 3690 case MaskFormat::AllTrue: 3691 return failure(); // no unmasked equivalent 3692 case MaskFormat::AllFalse: 3693 rewriter.replaceOp(gather, gather.pass_thru()); 3694 return success(); 3695 case MaskFormat::Unknown: 3696 return failure(); 3697 } 3698 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3699 } 3700 }; 3701 } // namespace 3702 3703 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3704 MLIRContext *context) { 3705 results.add<GatherFolder>(context); 3706 } 3707 3708 //===----------------------------------------------------------------------===// 3709 // ScatterOp 3710 //===----------------------------------------------------------------------===// 3711 3712 LogicalResult ScatterOp::verify() { 3713 VectorType indVType = getIndexVectorType(); 3714 VectorType maskVType = getMaskVectorType(); 3715 VectorType valueVType = getVectorType(); 3716 MemRefType memType = getMemRefType(); 3717 3718 if (valueVType.getElementType() != memType.getElementType()) 3719 return emitOpError("base and valueToStore element type should match"); 3720 if (llvm::size(indices()) != memType.getRank()) 3721 return emitOpError("requires ") << memType.getRank() << " indices"; 3722 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3723 return emitOpError("expected valueToStore dim to match indices dim"); 3724 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3725 return emitOpError("expected valueToStore dim to match mask dim"); 3726 return success(); 3727 } 3728 3729 namespace { 3730 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3731 public: 3732 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3733 LogicalResult matchAndRewrite(ScatterOp scatter, 3734 PatternRewriter &rewriter) const override { 3735 switch (get1DMaskFormat(scatter.mask())) { 3736 case MaskFormat::AllTrue: 3737 return failure(); // no unmasked equivalent 3738 case MaskFormat::AllFalse: 3739 rewriter.eraseOp(scatter); 3740 return success(); 3741 case MaskFormat::Unknown: 3742 return failure(); 3743 } 3744 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3745 } 3746 }; 3747 } // namespace 3748 3749 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3750 MLIRContext *context) { 3751 results.add<ScatterFolder>(context); 3752 } 3753 3754 //===----------------------------------------------------------------------===// 3755 // ExpandLoadOp 3756 //===----------------------------------------------------------------------===// 3757 3758 LogicalResult ExpandLoadOp::verify() { 3759 VectorType maskVType = getMaskVectorType(); 3760 VectorType passVType = getPassThruVectorType(); 3761 VectorType resVType = getVectorType(); 3762 MemRefType memType = getMemRefType(); 3763 3764 if (resVType.getElementType() != memType.getElementType()) 3765 return emitOpError("base and result element type should match"); 3766 if (llvm::size(indices()) != memType.getRank()) 3767 return emitOpError("requires ") << memType.getRank() << " indices"; 3768 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3769 return emitOpError("expected result dim to match mask dim"); 3770 if (resVType != passVType) 3771 return emitOpError("expected pass_thru of same type as result type"); 3772 return success(); 3773 } 3774 3775 namespace { 3776 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3777 public: 3778 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3779 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3780 PatternRewriter &rewriter) const override { 3781 switch (get1DMaskFormat(expand.mask())) { 3782 case MaskFormat::AllTrue: 3783 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3784 expand, expand.getType(), expand.base(), expand.indices()); 3785 return success(); 3786 case MaskFormat::AllFalse: 3787 rewriter.replaceOp(expand, expand.pass_thru()); 3788 return success(); 3789 case MaskFormat::Unknown: 3790 return failure(); 3791 } 3792 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3793 } 3794 }; 3795 } // namespace 3796 3797 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3798 MLIRContext *context) { 3799 results.add<ExpandLoadFolder>(context); 3800 } 3801 3802 //===----------------------------------------------------------------------===// 3803 // CompressStoreOp 3804 //===----------------------------------------------------------------------===// 3805 3806 LogicalResult CompressStoreOp::verify() { 3807 VectorType maskVType = getMaskVectorType(); 3808 VectorType valueVType = getVectorType(); 3809 MemRefType memType = getMemRefType(); 3810 3811 if (valueVType.getElementType() != memType.getElementType()) 3812 return emitOpError("base and valueToStore element type should match"); 3813 if (llvm::size(indices()) != memType.getRank()) 3814 return emitOpError("requires ") << memType.getRank() << " indices"; 3815 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3816 return emitOpError("expected valueToStore dim to match mask dim"); 3817 return success(); 3818 } 3819 3820 namespace { 3821 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3822 public: 3823 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3824 LogicalResult matchAndRewrite(CompressStoreOp compress, 3825 PatternRewriter &rewriter) const override { 3826 switch (get1DMaskFormat(compress.mask())) { 3827 case MaskFormat::AllTrue: 3828 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3829 compress, compress.valueToStore(), compress.base(), 3830 compress.indices()); 3831 return success(); 3832 case MaskFormat::AllFalse: 3833 rewriter.eraseOp(compress); 3834 return success(); 3835 case MaskFormat::Unknown: 3836 return failure(); 3837 } 3838 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3839 } 3840 }; 3841 } // namespace 3842 3843 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3844 MLIRContext *context) { 3845 results.add<CompressStoreFolder>(context); 3846 } 3847 3848 //===----------------------------------------------------------------------===// 3849 // ShapeCastOp 3850 //===----------------------------------------------------------------------===// 3851 3852 /// Returns true if each element of 'a' is equal to the product of a contiguous 3853 /// sequence of the elements of 'b'. Returns false otherwise. 3854 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3855 unsigned rankA = a.size(); 3856 unsigned rankB = b.size(); 3857 assert(rankA < rankB); 3858 3859 unsigned i = 0; 3860 unsigned j = 0; 3861 while (i < rankA && j < rankB) { 3862 int64_t dimA = a[i]; 3863 int64_t dimB = 1; 3864 while (dimB < dimA && j < rankB) 3865 dimB *= b[j++]; 3866 if (dimA != dimB) 3867 break; 3868 ++i; 3869 3870 // Handle the case when trailing dimensions are of size 1. 3871 // Include them into the contiguous sequence. 3872 auto isOne = [](int64_t v) { return v == 1; }; 3873 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3874 i = rankA; 3875 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3876 j = rankB; 3877 } 3878 3879 return i == rankA && j == rankB; 3880 } 3881 3882 static LogicalResult verifyVectorShapeCast(Operation *op, 3883 VectorType sourceVectorType, 3884 VectorType resultVectorType) { 3885 // Check that element type is the same. 3886 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3887 return op->emitOpError("source/result vectors must have same element type"); 3888 auto sourceShape = sourceVectorType.getShape(); 3889 auto resultShape = resultVectorType.getShape(); 3890 3891 // Check that product of source dim sizes matches product of result dim sizes. 3892 int64_t sourceDimProduct = std::accumulate( 3893 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3894 int64_t resultDimProduct = std::accumulate( 3895 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3896 if (sourceDimProduct != resultDimProduct) 3897 return op->emitOpError("source/result number of elements must match"); 3898 3899 // Check that expanding/contracting rank cases. 3900 unsigned sourceRank = sourceVectorType.getRank(); 3901 unsigned resultRank = resultVectorType.getRank(); 3902 if (sourceRank < resultRank) { 3903 if (!isValidShapeCast(sourceShape, resultShape)) 3904 return op->emitOpError("invalid shape cast"); 3905 } else if (sourceRank > resultRank) { 3906 if (!isValidShapeCast(resultShape, sourceShape)) 3907 return op->emitOpError("invalid shape cast"); 3908 } 3909 return success(); 3910 } 3911 3912 LogicalResult ShapeCastOp::verify() { 3913 auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>(); 3914 auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>(); 3915 3916 // Check if source/result are of vector type. 3917 if (sourceVectorType && resultVectorType) 3918 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3919 3920 return success(); 3921 } 3922 3923 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3924 // Nop shape cast. 3925 if (source().getType() == result().getType()) 3926 return source(); 3927 3928 // Canceling shape casts. 3929 if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) { 3930 if (result().getType() == otherOp.source().getType()) 3931 return otherOp.source(); 3932 3933 // Only allows valid transitive folding. 3934 VectorType srcType = otherOp.source().getType().cast<VectorType>(); 3935 VectorType resultType = getResult().getType().cast<VectorType>(); 3936 if (srcType.getRank() < resultType.getRank()) { 3937 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3938 return {}; 3939 } else if (srcType.getRank() > resultType.getRank()) { 3940 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3941 return {}; 3942 } else { 3943 return {}; 3944 } 3945 3946 setOperand(otherOp.source()); 3947 return getResult(); 3948 } 3949 return {}; 3950 } 3951 3952 namespace { 3953 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 3954 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 3955 public: 3956 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 3957 3958 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 3959 PatternRewriter &rewriter) const override { 3960 auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>(); 3961 if (!constantOp) 3962 return failure(); 3963 // Only handle splat for now. 3964 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 3965 if (!dense) 3966 return failure(); 3967 auto newAttr = 3968 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 3969 dense.getSplatValue<Attribute>()); 3970 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 3971 return success(); 3972 } 3973 }; 3974 3975 } // namespace 3976 3977 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 3978 MLIRContext *context) { 3979 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 3980 results.add<ShapeCastConstantFolder>(context); 3981 } 3982 3983 //===----------------------------------------------------------------------===// 3984 // VectorBitCastOp 3985 //===----------------------------------------------------------------------===// 3986 3987 LogicalResult BitCastOp::verify() { 3988 auto sourceVectorType = getSourceVectorType(); 3989 auto resultVectorType = getResultVectorType(); 3990 3991 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 3992 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 3993 return emitOpError("dimension size mismatch at: ") << i; 3994 } 3995 3996 DataLayout dataLayout = DataLayout::closest(*this); 3997 auto sourceElementBits = 3998 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 3999 auto resultElementBits = 4000 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4001 4002 if (sourceVectorType.getRank() == 0) { 4003 if (sourceElementBits != resultElementBits) 4004 return emitOpError("source/result bitwidth of the 0-D vector element " 4005 "types must be equal"); 4006 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4007 resultElementBits * resultVectorType.getShape().back()) { 4008 return emitOpError( 4009 "source/result bitwidth of the minor 1-D vectors must be equal"); 4010 } 4011 4012 return success(); 4013 } 4014 4015 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4016 // Nop cast. 4017 if (source().getType() == result().getType()) 4018 return source(); 4019 4020 // Canceling bitcasts. 4021 if (auto otherOp = source().getDefiningOp<BitCastOp>()) 4022 if (result().getType() == otherOp.source().getType()) 4023 return otherOp.source(); 4024 4025 Attribute sourceConstant = operands.front(); 4026 if (!sourceConstant) 4027 return {}; 4028 4029 Type srcElemType = getSourceVectorType().getElementType(); 4030 Type dstElemType = getResultVectorType().getElementType(); 4031 4032 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4033 if (floatPack.isSplat()) { 4034 auto splat = floatPack.getSplatValue<FloatAttr>(); 4035 4036 // Casting fp16 into fp32. 4037 if (srcElemType.isF16() && dstElemType.isF32()) { 4038 uint32_t bits = static_cast<uint32_t>( 4039 splat.getValue().bitcastToAPInt().getZExtValue()); 4040 // Duplicate the 16-bit pattern. 4041 bits = (bits << 16) | (bits & 0xffff); 4042 APInt intBits(32, bits); 4043 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4044 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4045 } 4046 } 4047 } 4048 4049 return {}; 4050 } 4051 4052 //===----------------------------------------------------------------------===// 4053 // TypeCastOp 4054 //===----------------------------------------------------------------------===// 4055 4056 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4057 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4058 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4059 memRefType.getShape().end()); 4060 if (vectorType) 4061 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4062 return res; 4063 } 4064 4065 /// Build the canonical memRefType with a single vector. 4066 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4067 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4068 Value source) { 4069 result.addOperands(source); 4070 MemRefType memRefType = source.getType().cast<MemRefType>(); 4071 VectorType vectorType = 4072 VectorType::get(extractShape(memRefType), 4073 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4074 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4075 memRefType.getMemorySpace())); 4076 } 4077 4078 LogicalResult TypeCastOp::verify() { 4079 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4080 if (!canonicalType.getLayout().isIdentity()) 4081 return emitOpError("expects operand to be a memref with identity layout"); 4082 if (!getResultMemRefType().getLayout().isIdentity()) 4083 return emitOpError("expects result to be a memref with identity layout"); 4084 if (getResultMemRefType().getMemorySpace() != 4085 getMemRefType().getMemorySpace()) 4086 return emitOpError("expects result in same memory space"); 4087 4088 auto sourceType = getMemRefType(); 4089 auto resultType = getResultMemRefType(); 4090 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4091 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4092 return emitOpError( 4093 "expects result and operand with same underlying scalar type: ") 4094 << resultType; 4095 if (extractShape(sourceType) != extractShape(resultType)) 4096 return emitOpError( 4097 "expects concatenated result and operand shapes to be equal: ") 4098 << resultType; 4099 return success(); 4100 } 4101 4102 //===----------------------------------------------------------------------===// 4103 // TransposeOp 4104 //===----------------------------------------------------------------------===// 4105 4106 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4107 Value vector, ArrayRef<int64_t> transp) { 4108 VectorType vt = vector.getType().cast<VectorType>(); 4109 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4110 for (unsigned i = 0; i < transp.size(); ++i) 4111 transposedShape[i] = vt.getShape()[transp[i]]; 4112 4113 result.addOperands(vector); 4114 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4115 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4116 } 4117 4118 // Eliminates transpose operations, which produce values identical to their 4119 // input values. This happens when the dimensions of the input vector remain in 4120 // their original order after the transpose operation. 4121 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4122 SmallVector<int64_t, 4> transp; 4123 getTransp(transp); 4124 4125 // Check if the permutation of the dimensions contains sequential values: 4126 // {0, 1, 2, ...}. 4127 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4128 if (transp[i] != i) 4129 return {}; 4130 } 4131 4132 return vector(); 4133 } 4134 4135 LogicalResult vector::TransposeOp::verify() { 4136 VectorType vectorType = getVectorType(); 4137 VectorType resultType = getResultType(); 4138 int64_t rank = resultType.getRank(); 4139 if (vectorType.getRank() != rank) 4140 return emitOpError("vector result rank mismatch: ") << rank; 4141 // Verify transposition array. 4142 auto transpAttr = transp().getValue(); 4143 int64_t size = transpAttr.size(); 4144 if (rank != size) 4145 return emitOpError("transposition length mismatch: ") << size; 4146 SmallVector<bool, 8> seen(rank, false); 4147 for (const auto &ta : llvm::enumerate(transpAttr)) { 4148 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4149 if (i < 0 || i >= rank) 4150 return emitOpError("transposition index out of range: ") << i; 4151 if (seen[i]) 4152 return emitOpError("duplicate position index: ") << i; 4153 seen[i] = true; 4154 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4155 return emitOpError("dimension size mismatch at: ") << i; 4156 } 4157 return success(); 4158 } 4159 4160 namespace { 4161 4162 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4163 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4164 public: 4165 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4166 4167 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4168 PatternRewriter &rewriter) const override { 4169 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4170 auto getPermutation = [](vector::TransposeOp transpose) { 4171 SmallVector<int64_t, 4> permutation; 4172 transpose.getTransp(permutation); 4173 return permutation; 4174 }; 4175 4176 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4177 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4178 ArrayRef<int64_t> permutation2) { 4179 SmallVector<int64_t, 4> result; 4180 for (auto index : permutation2) 4181 result.push_back(permutation1[index]); 4182 return result; 4183 }; 4184 4185 // Return if the input of 'transposeOp' is not defined by another transpose. 4186 vector::TransposeOp parentTransposeOp = 4187 transposeOp.vector().getDefiningOp<vector::TransposeOp>(); 4188 if (!parentTransposeOp) 4189 return failure(); 4190 4191 SmallVector<int64_t, 4> permutation = composePermutations( 4192 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4193 // Replace 'transposeOp' with a new transpose operation. 4194 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4195 transposeOp, transposeOp.getResult().getType(), 4196 parentTransposeOp.vector(), 4197 vector::getVectorSubscriptAttr(rewriter, permutation)); 4198 return success(); 4199 } 4200 }; 4201 4202 } // namespace 4203 4204 void vector::TransposeOp::getCanonicalizationPatterns( 4205 RewritePatternSet &results, MLIRContext *context) { 4206 results.add<TransposeFolder>(context); 4207 } 4208 4209 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4210 populateFromInt64AttrArray(transp(), results); 4211 } 4212 4213 //===----------------------------------------------------------------------===// 4214 // ConstantMaskOp 4215 //===----------------------------------------------------------------------===// 4216 4217 LogicalResult ConstantMaskOp::verify() { 4218 auto resultType = getResult().getType().cast<VectorType>(); 4219 // Check the corner case of 0-D vectors first. 4220 if (resultType.getRank() == 0) { 4221 if (mask_dim_sizes().size() != 1) 4222 return emitError("array attr must have length 1 for 0-D vectors"); 4223 auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt(); 4224 if (dim != 0 && dim != 1) 4225 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4226 return success(); 4227 } 4228 4229 // Verify that array attr size matches the rank of the vector result. 4230 if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank()) 4231 return emitOpError( 4232 "must specify array attr of size equal vector result rank"); 4233 // Verify that each array attr element is in bounds of corresponding vector 4234 // result dimension size. 4235 auto resultShape = resultType.getShape(); 4236 SmallVector<int64_t, 4> maskDimSizes; 4237 for (const auto &it : llvm::enumerate(mask_dim_sizes())) { 4238 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4239 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4240 return emitOpError( 4241 "array attr of size out of bounds of vector result dimension size"); 4242 maskDimSizes.push_back(attrValue); 4243 } 4244 // Verify that if one mask dim size is zero, they all should be zero (because 4245 // the mask region is a conjunction of each mask dimension interval). 4246 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4247 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4248 if (anyZeros && !allZeros) 4249 return emitOpError("expected all mask dim sizes to be zeros, " 4250 "as a result of conjunction with zero mask dim"); 4251 return success(); 4252 } 4253 4254 //===----------------------------------------------------------------------===// 4255 // CreateMaskOp 4256 //===----------------------------------------------------------------------===// 4257 4258 LogicalResult CreateMaskOp::verify() { 4259 auto vectorType = getResult().getType().cast<VectorType>(); 4260 // Verify that an operand was specified for each result vector each dimension. 4261 if (vectorType.getRank() == 0) { 4262 if (getNumOperands() != 1) 4263 return emitOpError( 4264 "must specify exactly one operand for 0-D create_mask"); 4265 } else if (getNumOperands() != 4266 getResult().getType().cast<VectorType>().getRank()) { 4267 return emitOpError( 4268 "must specify an operand for each result vector dimension"); 4269 } 4270 return success(); 4271 } 4272 4273 namespace { 4274 4275 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4276 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4277 public: 4278 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4279 4280 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4281 PatternRewriter &rewriter) const override { 4282 // Return if any of 'createMaskOp' operands are not defined by a constant. 4283 auto isNotDefByConstant = [](Value operand) { 4284 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4285 }; 4286 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4287 return failure(); 4288 // Gather constant mask dimension sizes. 4289 SmallVector<int64_t, 4> maskDimSizes; 4290 for (auto it : llvm::zip(createMaskOp.operands(), 4291 createMaskOp.getType().getShape())) { 4292 auto *defOp = std::get<0>(it).getDefiningOp(); 4293 int64_t maxDimSize = std::get<1>(it); 4294 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4295 dimSize = std::min(dimSize, maxDimSize); 4296 // If one of dim sizes is zero, set all dims to zero. 4297 if (dimSize <= 0) { 4298 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4299 break; 4300 } 4301 maskDimSizes.push_back(dimSize); 4302 } 4303 // Replace 'createMaskOp' with ConstantMaskOp. 4304 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4305 createMaskOp, createMaskOp.getResult().getType(), 4306 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4307 return success(); 4308 } 4309 }; 4310 4311 } // namespace 4312 4313 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4314 MLIRContext *context) { 4315 results.add<CreateMaskFolder>(context); 4316 } 4317 4318 //===----------------------------------------------------------------------===// 4319 // ScanOp 4320 //===----------------------------------------------------------------------===// 4321 4322 LogicalResult ScanOp::verify() { 4323 VectorType srcType = getSourceType(); 4324 VectorType initialType = getInitialValueType(); 4325 // Check reduction dimension < rank. 4326 int64_t srcRank = srcType.getRank(); 4327 int64_t reductionDim = reduction_dim(); 4328 if (reductionDim >= srcRank) 4329 return emitOpError("reduction dimension ") 4330 << reductionDim << " has to be less than " << srcRank; 4331 4332 // Check that rank(initial_value) = rank(src) - 1. 4333 int64_t initialValueRank = initialType.getRank(); 4334 if (initialValueRank != srcRank - 1) 4335 return emitOpError("initial value rank ") 4336 << initialValueRank << " has to be equal to " << srcRank - 1; 4337 4338 // Check shapes of initial value and src. 4339 ArrayRef<int64_t> srcShape = srcType.getShape(); 4340 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4341 SmallVector<int64_t> expectedShape; 4342 for (int i = 0; i < srcRank; i++) { 4343 if (i != reductionDim) 4344 expectedShape.push_back(srcShape[i]); 4345 } 4346 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4347 [](std::tuple<int64_t, int64_t> s) { 4348 return std::get<0>(s) != std::get<1>(s); 4349 })) { 4350 return emitOpError("incompatible input/initial value shapes"); 4351 } 4352 4353 return success(); 4354 } 4355 4356 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4357 RewritePatternSet &patterns) { 4358 patterns 4359 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4360 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4361 StridedSliceConstantMaskFolder, TransposeFolder>( 4362 patterns.getContext()); 4363 } 4364 4365 //===----------------------------------------------------------------------===// 4366 // SplatOp 4367 //===----------------------------------------------------------------------===// 4368 4369 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4370 auto constOperand = operands.front(); 4371 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4372 return {}; 4373 4374 // SplatElementsAttr::get treats single value for second arg as being a splat. 4375 return SplatElementsAttr::get(getType(), {constOperand}); 4376 } 4377 4378 //===----------------------------------------------------------------------===// 4379 // TableGen'd op method definitions 4380 //===----------------------------------------------------------------------===// 4381 4382 #define GET_OP_CLASSES 4383 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4384