1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.mask_dim_sizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() && 144 defWrite.indices() == read.indices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.permutation_map() == read.permutation_map(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.indices() == write.indices() && 152 priorWrite.mask() == write.mask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.permutation_map() == write.permutation_map(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 result.addOperands(source); 340 auto sourceVectorType = source.getType().cast<VectorType>(); 341 auto targetType = MultiDimReductionOp::inferDestType( 342 sourceVectorType.getShape(), reductionMask, 343 sourceVectorType.getElementType()); 344 result.addTypes(targetType); 345 346 SmallVector<int64_t> reductionDims; 347 for (const auto &en : llvm::enumerate(reductionMask)) 348 if (en.value()) 349 reductionDims.push_back(en.index()); 350 result.addAttribute(getReductionDimsAttrName(), 351 builder.getI64ArrayAttr(reductionDims)); 352 result.addAttribute(getKindAttrName(), 353 CombiningKindAttr::get(kind, builder.getContext())); 354 } 355 356 LogicalResult MultiDimReductionOp::verify() { 357 auto reductionMask = getReductionMask(); 358 auto targetType = MultiDimReductionOp::inferDestType( 359 getSourceVectorType().getShape(), reductionMask, 360 getSourceVectorType().getElementType()); 361 // TODO: update to support 0-d vectors when available. 362 if (targetType != getDestType()) 363 return emitError("invalid output vector type: ") 364 << getDestType() << " (expected: " << targetType << ")"; 365 return success(); 366 } 367 368 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 369 // Single parallel dim, this is a noop. 370 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 371 return source(); 372 return {}; 373 } 374 375 //===----------------------------------------------------------------------===// 376 // ReductionOp 377 //===----------------------------------------------------------------------===// 378 379 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 380 CombiningKind kind, Value vector) { 381 build(builder, result, kind, vector, /*acc=*/Value()); 382 } 383 384 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 385 CombiningKind kind, Value vector, Value acc) { 386 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 387 kind, vector, acc); 388 } 389 390 LogicalResult ReductionOp::verify() { 391 // Verify for 1-D vector. 392 int64_t rank = getVectorType().getRank(); 393 if (rank != 1) 394 return emitOpError("unsupported reduction rank: ") << rank; 395 396 // Verify supported reduction kind. 397 Type eltType = dest().getType(); 398 if (!isSupportedCombiningKind(kind(), eltType)) 399 return emitOpError("unsupported reduction type '") 400 << eltType << "' for kind '" << stringifyCombiningKind(kind()) 401 << "'"; 402 403 // Verify optional accumulator. 404 if (acc()) { 405 if (kind() != CombiningKind::ADD && kind() != CombiningKind::MUL) 406 return emitOpError("no accumulator for reduction kind: ") 407 << stringifyCombiningKind(kind()); 408 if (!eltType.isa<FloatType>()) 409 return emitOpError("no accumulator for type: ") << eltType; 410 } 411 412 return success(); 413 } 414 415 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 416 SmallVector<OpAsmParser::OperandType, 2> operandsInfo; 417 Type redType; 418 Type resType; 419 CombiningKindAttr kindAttr; 420 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 421 result.attributes) || 422 parser.parseComma() || parser.parseOperandList(operandsInfo) || 423 parser.parseColonType(redType) || 424 parser.parseKeywordType("into", resType) || 425 (!operandsInfo.empty() && 426 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 427 (operandsInfo.size() > 1 && 428 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 429 parser.addTypeToList(resType, result.types)) 430 return failure(); 431 if (operandsInfo.empty() || operandsInfo.size() > 2) 432 return parser.emitError(parser.getNameLoc(), 433 "unsupported number of operands"); 434 return success(); 435 } 436 437 void ReductionOp::print(OpAsmPrinter &p) { 438 p << " "; 439 kindAttr().print(p); 440 p << ", " << vector(); 441 if (acc()) 442 p << ", " << acc(); 443 p << " : " << vector().getType() << " into " << dest().getType(); 444 } 445 446 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 447 OpBuilder &builder, Location loc, 448 Value vector) { 449 switch (op) { 450 case arith::AtomicRMWKind::addf: 451 case arith::AtomicRMWKind::addi: 452 return builder.create<vector::ReductionOp>(vector.getLoc(), 453 CombiningKind::ADD, vector); 454 case arith::AtomicRMWKind::mulf: 455 case arith::AtomicRMWKind::muli: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MUL, vector); 458 case arith::AtomicRMWKind::minf: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINF, vector); 461 case arith::AtomicRMWKind::mins: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINSI, vector); 464 case arith::AtomicRMWKind::minu: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINUI, vector); 467 case arith::AtomicRMWKind::maxf: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXF, vector); 470 case arith::AtomicRMWKind::maxs: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXSI, vector); 473 case arith::AtomicRMWKind::maxu: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXUI, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 //===----------------------------------------------------------------------===// 485 // ContractionOp 486 //===----------------------------------------------------------------------===// 487 488 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 489 Value lhs, Value rhs, Value acc, 490 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 491 ArrayRef<StringRef> iteratorTypes) { 492 result.addOperands({lhs, rhs, acc}); 493 result.addTypes(acc.getType()); 494 result.addAttribute(getIndexingMapsAttrName(), 495 builder.getAffineMapArrayAttr( 496 AffineMap::inferFromExprList(indexingExprs))); 497 result.addAttribute(getIteratorTypesAttrName(), 498 builder.getStrArrayAttr(iteratorTypes)); 499 } 500 501 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 502 Value lhs, Value rhs, Value acc, 503 ArrayAttr indexingMaps, 504 ArrayAttr iteratorTypes) { 505 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 506 ContractionOp::getDefaultKind()); 507 } 508 509 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 510 Value lhs, Value rhs, Value acc, 511 ArrayAttr indexingMaps, 512 ArrayAttr iteratorTypes, CombiningKind kind) { 513 result.addOperands({lhs, rhs, acc}); 514 result.addTypes(acc.getType()); 515 result.addAttribute(getIndexingMapsAttrName(), indexingMaps); 516 result.addAttribute(getIteratorTypesAttrName(), iteratorTypes); 517 result.addAttribute(ContractionOp::getKindAttrName(), 518 CombiningKindAttr::get(kind, builder.getContext())); 519 } 520 521 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 522 OpAsmParser::OperandType lhsInfo; 523 OpAsmParser::OperandType rhsInfo; 524 OpAsmParser::OperandType accInfo; 525 SmallVector<OpAsmParser::OperandType, 2> masksInfo; 526 SmallVector<Type, 2> types; 527 Type resultType; 528 auto loc = parser.getCurrentLocation(); 529 DictionaryAttr dictAttr; 530 // TODO: Unify linalg op attribute parsing. 531 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 532 parser.parseOperand(lhsInfo) || parser.parseComma() || 533 parser.parseOperand(rhsInfo) || parser.parseComma() || 534 parser.parseOperand(accInfo) || 535 parser.parseTrailingOperandList(masksInfo) || 536 parser.parseOptionalAttrDict(result.attributes) || 537 parser.parseColonTypeList(types) || 538 parser.parseKeywordType("into", resultType) || 539 parser.resolveOperand(lhsInfo, types[0], result.operands) || 540 parser.resolveOperand(rhsInfo, types[1], result.operands) || 541 parser.resolveOperand(accInfo, resultType, result.operands) || 542 parser.addTypeToList(resultType, result.types)) 543 return failure(); 544 result.attributes.assign(dictAttr.getValue().begin(), 545 dictAttr.getValue().end()); 546 if (!result.attributes.get(ContractionOp::getKindAttrName())) { 547 result.addAttribute(ContractionOp::getKindAttrName(), 548 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 549 result.getContext())); 550 } 551 if (masksInfo.empty()) 552 return success(); 553 if (masksInfo.size() != 2) 554 return parser.emitError(parser.getNameLoc(), 555 "expected zero or exactly 2 vector mask operands"); 556 auto lhsType = types[0].cast<VectorType>(); 557 auto rhsType = types[1].cast<VectorType>(); 558 auto maskElementType = parser.getBuilder().getI1Type(); 559 std::array<Type, 2> maskTypes = { 560 VectorType::Builder(lhsType).setElementType(maskElementType), 561 VectorType::Builder(rhsType).setElementType(maskElementType)}; 562 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 563 return failure(); 564 return success(); 565 } 566 567 void ContractionOp::print(OpAsmPrinter &p) { 568 // TODO: Unify printing code with linalg ops. 569 auto attrNames = getTraitAttrNames(); 570 llvm::StringSet<> traitAttrsSet; 571 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 572 SmallVector<NamedAttribute, 8> attrs; 573 for (auto attr : (*this)->getAttrs()) 574 if (traitAttrsSet.count(attr.getName().strref()) > 0) 575 attrs.push_back(attr); 576 577 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 578 p << " " << dictAttr << " " << lhs() << ", "; 579 p << rhs() << ", " << acc(); 580 if (masks().size() == 2) 581 p << ", " << masks(); 582 583 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 584 p << " : " << lhs().getType() << ", " << rhs().getType() << " into " 585 << getResultType(); 586 } 587 588 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 589 const std::vector<std::pair<int64_t, int64_t>> &map) { 590 for (auto &dimPair : map) { 591 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 592 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 593 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 594 return false; 595 } 596 return true; 597 } 598 599 static LogicalResult verifyOutputShape( 600 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 601 Type resType, 602 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 603 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 604 DenseSet<int64_t> lhsContractingDimSet; 605 DenseSet<int64_t> rhsContractingDimSet; 606 for (auto &dimPair : contractingDimMap) { 607 lhsContractingDimSet.insert(dimPair.first); 608 rhsContractingDimSet.insert(dimPair.second); 609 } 610 DenseSet<int64_t> rhsBatchDimSet; 611 for (auto &dimPair : batchDimMap) 612 rhsBatchDimSet.insert(dimPair.second); 613 614 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 615 SmallVector<int64_t, 4> expectedResultDims; 616 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 617 if (lhsContractingDimSet.count(i) > 0) 618 continue; 619 expectedResultDims.push_back(lhsType.getDimSize(i)); 620 } 621 622 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 623 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 624 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(rhsType.getDimSize(i)); 627 } 628 629 // Verify 'expectedResultDims'. 630 if (expectedResultDims.empty()) { 631 // No batch or free dimension implies a scalar result. 632 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 633 return op.emitOpError("invalid accumulator/result vector shape"); 634 } else { 635 // At least one batch or free dimension implies a vector result. 636 auto resVectorType = resType.dyn_cast<VectorType>(); 637 auto accVectorType = accType.dyn_cast<VectorType>(); 638 if (!resVectorType || !accVectorType) 639 return op.emitOpError("invalid accumulator/result vector shape"); 640 641 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 642 // types fully define the result vector type. This assumes the affine maps 643 // are well-formed, which must have been verified already. 644 MLIRContext *ctx = op.getContext(); 645 AffineMap lhsMap = op.getIndexingMaps()[0]; 646 AffineMap rhsMap = op.getIndexingMaps()[1]; 647 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 648 for (auto pair : 649 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 650 VectorType v = pair.first; 651 auto map = pair.second; 652 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 653 unsigned pos = map.getDimPosition(idx); 654 if (!extents[pos]) 655 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 656 } 657 } 658 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 659 "expected extent along all dimensions."); 660 661 AffineMap resMap = op.getIndexingMaps()[2]; 662 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 663 /*symCount=*/0, extents, ctx); 664 // Compose the resMap with the extentsMap, which is a constant map. 665 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 666 assert(llvm::all_of( 667 expectedMap.getResults(), 668 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 669 "expected constant extent along all dimensions."); 670 // Extract the expected shape and build the type. 671 auto expectedShape = llvm::to_vector<4>( 672 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 673 return e.cast<AffineConstantExpr>().getValue(); 674 })); 675 auto expected = 676 VectorType::get(expectedShape, resVectorType.getElementType()); 677 if (resVectorType != expected || accVectorType != expected) 678 return op.emitOpError( 679 "invalid accumulator/result vector shape, expected: ") 680 << expected; 681 } 682 return success(); 683 } 684 685 LogicalResult ContractionOp::verify() { 686 auto lhsType = getLhsType(); 687 auto rhsType = getRhsType(); 688 auto accType = getAccType(); 689 auto resType = getResultType(); 690 691 // Verify that an indexing map was specified for each vector operand. 692 if (indexing_maps().size() != 3) 693 return emitOpError("expected an indexing map for each vector operand"); 694 695 // Verify that each index map has 'numIterators' inputs, no symbols, and 696 // that the number of map outputs equals the rank of its associated 697 // vector operand. 698 unsigned numIterators = iterator_types().getValue().size(); 699 for (const auto &it : llvm::enumerate(indexing_maps())) { 700 auto index = it.index(); 701 auto map = it.value().cast<AffineMapAttr>().getValue(); 702 if (map.getNumSymbols() != 0) 703 return emitOpError("expected indexing map ") 704 << index << " to have no symbols"; 705 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 706 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 707 // Verify that the map has the right number of inputs, outputs, and indices. 708 // This also correctly accounts for (..) -> () for rank-0 results. 709 if (map.getNumDims() != numIterators) 710 return emitOpError("expected indexing map ") 711 << index << " to have " << numIterators << " number of inputs"; 712 if (map.getNumResults() != rank) 713 return emitOpError("expected indexing map ") 714 << index << " to have " << rank << " number of outputs"; 715 if (!map.isProjectedPermutation()) 716 return emitOpError("expected indexing map ") 717 << index << " to be a projected permutation of its inputs"; 718 } 719 720 auto contractingDimMap = getContractingDimMap(); 721 auto batchDimMap = getBatchDimMap(); 722 723 // Verify at least one contracting dimension pair was specified. 724 if (contractingDimMap.empty()) 725 return emitOpError("expected at least one contracting dimension pair"); 726 727 // Verify contracting dimension map was properly constructed. 728 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 729 return emitOpError("invalid contracting dimension map"); 730 731 // Verify batch dimension map was properly constructed. 732 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 733 return emitOpError("invalid batch dimension map"); 734 735 // Verify 'accType' and 'resType' shape. 736 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 737 contractingDimMap, batchDimMap))) 738 return failure(); 739 740 // Verify that either two vector masks are set or none are set. 741 auto lhsMaskType = getLHSVectorMaskType(); 742 auto rhsMaskType = getRHSVectorMaskType(); 743 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 744 return emitOpError("invalid number of vector masks specified"); 745 if (lhsMaskType && rhsMaskType) { 746 // Verify mask rank == argument rank. 747 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 748 rhsMaskType.getShape().size() != rhsType.getShape().size()) 749 return emitOpError("invalid vector mask rank"); 750 } 751 752 // Verify supported combining kind. 753 auto vectorType = resType.dyn_cast<VectorType>(); 754 auto elementType = vectorType ? vectorType.getElementType() : resType; 755 if (!isSupportedCombiningKind(kind(), elementType)) 756 return emitOpError("unsupported contraction type"); 757 758 return success(); 759 } 760 761 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 762 static constexpr StringRef names[3] = {getIndexingMapsAttrName(), 763 getIteratorTypesAttrName(), 764 ContractionOp::getKindAttrName()}; 765 return llvm::makeArrayRef(names); 766 } 767 768 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 769 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 770 if (targetExpr == map.getResult(i)) 771 return i; 772 return -1; 773 } 774 775 static std::vector<std::pair<int64_t, int64_t>> 776 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 777 StringRef targetIteratorTypeName, MLIRContext *context) { 778 std::vector<std::pair<int64_t, int64_t>> dimMap; 779 for (const auto &it : llvm::enumerate(iteratorTypes)) { 780 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 781 if (iteratorTypeName != targetIteratorTypeName) 782 continue; 783 // Search lhs/rhs map results for 'targetExpr'. 784 auto targetExpr = getAffineDimExpr(it.index(), context); 785 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 786 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 787 if (lhsDim >= 0 && rhsDim >= 0) 788 dimMap.emplace_back(lhsDim, rhsDim); 789 } 790 return dimMap; 791 } 792 793 void ContractionOp::getIterationBounds( 794 SmallVectorImpl<int64_t> &iterationBounds) { 795 auto lhsShape = getLhsType().getShape(); 796 auto resVectorType = getResultType().dyn_cast<VectorType>(); 797 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 798 SmallVector<int64_t, 2> iterationShape; 799 for (const auto &it : llvm::enumerate(iterator_types())) { 800 // Search lhs/rhs map results for 'targetExpr'. 801 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 802 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 803 if (iteratorTypeName == getReductionIteratorTypeName()) { 804 // Get reduction dim size from lhs shape (same size in rhsShape). 805 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 806 assert(lhsDimIndex >= 0); 807 iterationBounds.push_back(lhsShape[lhsDimIndex]); 808 continue; 809 } 810 // Get parallel dimension size from result shape. 811 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 812 assert(resDimIndex >= 0); 813 assert(resVectorType != nullptr); 814 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 815 } 816 } 817 818 void ContractionOp::getIterationIndexMap( 819 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 820 unsigned numMaps = indexing_maps().getValue().size(); 821 iterationIndexMap.resize(numMaps); 822 for (const auto &it : llvm::enumerate(indexing_maps())) { 823 auto index = it.index(); 824 auto map = it.value().cast<AffineMapAttr>().getValue(); 825 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 826 auto dim = map.getResult(i).cast<AffineDimExpr>(); 827 iterationIndexMap[index][dim.getPosition()] = i; 828 } 829 } 830 } 831 832 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 833 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 834 return getDimMap(indexingMaps, iterator_types(), 835 getReductionIteratorTypeName(), getContext()); 836 } 837 838 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 839 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 840 return getDimMap(indexingMaps, iterator_types(), 841 getParallelIteratorTypeName(), getContext()); 842 } 843 844 SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() { 845 return llvm::to_vector<4>( 846 llvm::map_range(indexing_maps().getValue(), [](Attribute mapAttr) { 847 return mapAttr.cast<AffineMapAttr>().getValue(); 848 })); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.acc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.acc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.acc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (position()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!position()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 //===----------------------------------------------------------------------===// 947 // ExtractOp 948 //===----------------------------------------------------------------------===// 949 950 static Type inferExtractOpResultType(VectorType vectorType, 951 ArrayAttr position) { 952 if (static_cast<int64_t>(position.size()) == vectorType.getRank()) 953 return vectorType.getElementType(); 954 return VectorType::get(vectorType.getShape().drop_front(position.size()), 955 vectorType.getElementType()); 956 } 957 958 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 959 Value source, ArrayRef<int64_t> position) { 960 result.addOperands(source); 961 auto positionAttr = getVectorSubscriptAttr(builder, position); 962 result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(), 963 positionAttr)); 964 result.addAttribute(getPositionAttrName(), positionAttr); 965 } 966 967 // Convenience builder which assumes the values are constant indices. 968 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 969 Value source, ValueRange position) { 970 SmallVector<int64_t, 4> positionConstants = 971 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 972 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 973 })); 974 build(builder, result, source, positionConstants); 975 } 976 977 void vector::ExtractOp::print(OpAsmPrinter &p) { 978 p << " " << vector() << position(); 979 p.printOptionalAttrDict((*this)->getAttrs(), {"position"}); 980 p << " : " << vector().getType(); 981 } 982 983 ParseResult vector::ExtractOp::parse(OpAsmParser &parser, 984 OperationState &result) { 985 SMLoc attributeLoc, typeLoc; 986 NamedAttrList attrs; 987 OpAsmParser::OperandType vector; 988 Type type; 989 Attribute attr; 990 if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || 991 parser.parseAttribute(attr, "position", attrs) || 992 parser.parseOptionalAttrDict(attrs) || 993 parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type)) 994 return failure(); 995 996 auto vectorType = type.dyn_cast<VectorType>(); 997 if (!vectorType) 998 return parser.emitError(typeLoc, "expected vector type"); 999 1000 auto positionAttr = attr.dyn_cast<ArrayAttr>(); 1001 if (!positionAttr || 1002 static_cast<int64_t>(positionAttr.size()) > vectorType.getRank()) 1003 return parser.emitError( 1004 attributeLoc, 1005 "expected position attribute of rank smaller than vector rank"); 1006 1007 Type resType = inferExtractOpResultType(vectorType, positionAttr); 1008 result.attributes = attrs; 1009 return failure(parser.resolveOperand(vector, type, result.operands) || 1010 parser.addTypeToList(resType, result.types)); 1011 } 1012 1013 LogicalResult vector::ExtractOp::verify() { 1014 auto positionAttr = position().getValue(); 1015 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1016 return emitOpError( 1017 "expected position attribute of rank smaller than vector rank"); 1018 for (const auto &en : llvm::enumerate(positionAttr)) { 1019 auto attr = en.value().dyn_cast<IntegerAttr>(); 1020 if (!attr || attr.getInt() < 0 || 1021 attr.getInt() >= getVectorType().getDimSize(en.index())) 1022 return emitOpError("expected position attribute #") 1023 << (en.index() + 1) 1024 << " to be a non-negative integer smaller than the corresponding " 1025 "vector dimension"; 1026 } 1027 return success(); 1028 } 1029 1030 template <typename IntType> 1031 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1032 return llvm::to_vector<4>(llvm::map_range( 1033 arrayAttr.getAsRange<IntegerAttr>(), 1034 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1035 } 1036 1037 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1038 /// positions. 1039 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1040 if (!extractOp.vector().getDefiningOp<ExtractOp>()) 1041 return failure(); 1042 1043 SmallVector<int64_t, 4> globalPosition; 1044 ExtractOp currentOp = extractOp; 1045 auto extrPos = extractVector<int64_t>(currentOp.position()); 1046 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1047 while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) { 1048 currentOp = nextOp; 1049 auto extrPos = extractVector<int64_t>(currentOp.position()); 1050 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1051 } 1052 extractOp.setOperand(currentOp.vector()); 1053 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1054 OpBuilder b(extractOp.getContext()); 1055 std::reverse(globalPosition.begin(), globalPosition.end()); 1056 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1057 b.getI64ArrayAttr(globalPosition)); 1058 return success(); 1059 } 1060 1061 namespace { 1062 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1063 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1064 /// Compose TransposeOp permutations as we walk back. 1065 /// This helper class keeps an updated extraction position `extractPosition` 1066 /// with extra trailing sentinels. 1067 /// The sentinels encode the internal transposition status of the result vector. 1068 /// As we iterate, extractPosition is permuted and updated. 1069 class ExtractFromInsertTransposeChainState { 1070 public: 1071 ExtractFromInsertTransposeChainState(ExtractOp e); 1072 1073 /// Iterate over producing insert and transpose ops until we find a fold. 1074 Value fold(); 1075 1076 private: 1077 /// Return true if the vector at position `a` is contained within the vector 1078 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1079 /// is a prefix of `b`. 1080 template <typename ContainerA, typename ContainerB> 1081 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1082 return a.size() <= b.size() && 1083 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1084 } 1085 1086 /// Return true if the vector at position `a` intersects the vector at 1087 /// position `b`. Under insert/extract semantics, this is the same as equality 1088 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1089 /// Comparison is on the common prefix (i.e. zip). 1090 template <typename ContainerA, typename ContainerB> 1091 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1092 for (auto it : llvm::zip(a, b)) { 1093 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1094 continue; 1095 if (std::get<0>(it) != std::get<1>(it)) 1096 return false; 1097 } 1098 return true; 1099 } 1100 1101 /// Folding is only possible in the absence of an internal permutation in the 1102 /// result vector. 1103 bool canFold() { 1104 return (sentinels == 1105 makeArrayRef(extractPosition).drop_front(extractedRank)); 1106 } 1107 1108 // Helper to get the next defining op of interest. 1109 void updateStateForNextIteration(Value v) { 1110 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1111 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1112 }; 1113 1114 // Case 1. If we hit a transpose, just compose the map and iterate. 1115 // Invariant: insert + transpose do not change rank, we can always compose. 1116 LogicalResult handleTransposeOp(); 1117 1118 // Case 2: the insert position matches extractPosition exactly, early return. 1119 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1120 1121 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1122 /// portion of the source of the insert. 1123 /// Example: 1124 /// ``` 1125 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1126 /// // extractPosition == [1, 2, 3] 1127 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1128 /// // can fold to vector.extract %source[0, 3] 1129 /// %ext = vector.extract %source[3]: vector<5x6> 1130 /// ``` 1131 /// To traverse through %source, we need to set the leading dims to 0 and 1132 /// drop the extra leading dims. 1133 /// This method updates the internal state. 1134 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1135 1136 /// Try to fold in place to extract(source, extractPosition) and return the 1137 /// folded result. Return null if folding is not possible (e.g. due to an 1138 /// internal tranposition in the result). 1139 Value tryToFoldExtractOpInPlace(Value source); 1140 1141 ExtractOp extractOp; 1142 int64_t vectorRank; 1143 int64_t extractedRank; 1144 1145 InsertOp nextInsertOp; 1146 TransposeOp nextTransposeOp; 1147 1148 /// Sentinel values that encode the internal permutation status of the result. 1149 /// They are set to (-1, ... , -k) at the beginning and appended to 1150 /// `extractPosition`. 1151 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1152 /// ensure that there is no internal transposition. 1153 /// Internal transposition cannot be accounted for with a folding pattern. 1154 // TODO: We could relax the internal transposition with an extra transposition 1155 // operation in a future canonicalizer. 1156 SmallVector<int64_t> sentinels; 1157 SmallVector<int64_t> extractPosition; 1158 }; 1159 } // namespace 1160 1161 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1162 ExtractOp e) 1163 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1164 extractedRank(extractOp.position().size()) { 1165 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1166 sentinels.reserve(vectorRank - extractedRank); 1167 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1168 sentinels.push_back(-(i + 1)); 1169 extractPosition = extractVector<int64_t>(extractOp.position()); 1170 llvm::append_range(extractPosition, sentinels); 1171 } 1172 1173 // Case 1. If we hit a transpose, just compose the map and iterate. 1174 // Invariant: insert + transpose do not change rank, we can always compose. 1175 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1176 if (!nextTransposeOp) 1177 return failure(); 1178 auto permutation = extractVector<unsigned>(nextTransposeOp.transp()); 1179 AffineMap m = inversePermutation( 1180 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1181 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1182 return success(); 1183 } 1184 1185 // Case 2: the insert position matches extractPosition exactly, early return. 1186 LogicalResult 1187 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1188 Value &res) { 1189 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1190 if (makeArrayRef(insertedPos) != 1191 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1192 return failure(); 1193 // Case 2.a. early-exit fold. 1194 res = nextInsertOp.source(); 1195 // Case 2.b. if internal transposition is present, canFold will be false. 1196 return success(); 1197 } 1198 1199 /// Case 3: if inserted position is a prefix of extractPosition, 1200 /// extract a portion of the source of the insertion. 1201 /// This method updates the internal state. 1202 LogicalResult 1203 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1204 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1205 if (!isContainedWithin(insertedPos, extractPosition)) 1206 return failure(); 1207 // Set leading dims to zero. 1208 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1209 // Drop extra leading dims. 1210 extractPosition.erase(extractPosition.begin(), 1211 extractPosition.begin() + insertedPos.size()); 1212 extractedRank = extractPosition.size() - sentinels.size(); 1213 // Case 3.a. early-exit fold (break and delegate to post-while path). 1214 res = nextInsertOp.source(); 1215 // Case 3.b. if internal transposition is present, canFold will be false. 1216 return success(); 1217 } 1218 1219 /// Try to fold in place to extract(source, extractPosition) and return the 1220 /// folded result. Return null if folding is not possible (e.g. due to an 1221 /// internal tranposition in the result). 1222 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1223 Value source) { 1224 // If we can't fold (either internal transposition, or nothing to fold), bail. 1225 bool nothingToFold = (source == extractOp.vector()); 1226 if (nothingToFold || !canFold()) 1227 return Value(); 1228 // Otherwise, fold by updating the op inplace and return its result. 1229 OpBuilder b(extractOp.getContext()); 1230 extractOp->setAttr( 1231 extractOp.positionAttrName(), 1232 b.getI64ArrayAttr( 1233 makeArrayRef(extractPosition).take_front(extractedRank))); 1234 extractOp.vectorMutable().assign(source); 1235 return extractOp.getResult(); 1236 } 1237 1238 /// Iterate over producing insert and transpose ops until we find a fold. 1239 Value ExtractFromInsertTransposeChainState::fold() { 1240 Value valueToExtractFrom = extractOp.vector(); 1241 updateStateForNextIteration(valueToExtractFrom); 1242 while (nextInsertOp || nextTransposeOp) { 1243 // Case 1. If we hit a transpose, just compose the map and iterate. 1244 // Invariant: insert + transpose do not change rank, we can always compose. 1245 if (succeeded(handleTransposeOp())) { 1246 valueToExtractFrom = nextTransposeOp.vector(); 1247 updateStateForNextIteration(valueToExtractFrom); 1248 continue; 1249 } 1250 1251 Value result; 1252 // Case 2: the position match exactly. 1253 if (succeeded(handleInsertOpWithMatchingPos(result))) 1254 return result; 1255 1256 // Case 3: if the inserted position is a prefix of extractPosition, we can 1257 // just extract a portion of the source of the insert. 1258 if (succeeded(handleInsertOpWithPrefixPos(result))) 1259 return tryToFoldExtractOpInPlace(result); 1260 1261 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1262 // values. This is a more difficult case and we bail. 1263 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1264 if (isContainedWithin(extractPosition, insertedPos) || 1265 intersectsWhereNonNegative(extractPosition, insertedPos)) 1266 return Value(); 1267 1268 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1269 valueToExtractFrom = nextInsertOp.dest(); 1270 updateStateForNextIteration(valueToExtractFrom); 1271 } 1272 // If after all this we can fold, go for it. 1273 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1274 } 1275 1276 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1277 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1278 Operation *defOp = extractOp.vector().getDefiningOp(); 1279 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1280 return Value(); 1281 Value source = defOp->getOperand(0); 1282 if (extractOp.getType() == source.getType()) 1283 return source; 1284 auto getRank = [](Type type) { 1285 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1286 }; 1287 unsigned broadcastSrcRank = getRank(source.getType()); 1288 unsigned extractResultRank = getRank(extractOp.getType()); 1289 if (extractResultRank < broadcastSrcRank) { 1290 auto extractPos = extractVector<int64_t>(extractOp.position()); 1291 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1292 extractPos.erase( 1293 extractPos.begin(), 1294 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1295 extractOp.setOperand(source); 1296 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1297 OpBuilder b(extractOp.getContext()); 1298 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1299 b.getI64ArrayAttr(extractPos)); 1300 return extractOp.getResult(); 1301 } 1302 return Value(); 1303 } 1304 1305 // Fold extractOp with source coming from ShapeCast op. 1306 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1307 auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>(); 1308 if (!shapeCastOp) 1309 return Value(); 1310 // Get the nth dimension size starting from lowest dimension. 1311 auto getDimReverse = [](VectorType type, int64_t n) { 1312 return type.getShape().take_back(n + 1).front(); 1313 }; 1314 int64_t destinationRank = 1315 extractOp.getType().isa<VectorType>() 1316 ? extractOp.getType().cast<VectorType>().getRank() 1317 : 0; 1318 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1319 return Value(); 1320 if (destinationRank > 0) { 1321 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1322 for (int64_t i = 0; i < destinationRank; i++) { 1323 // The lowest dimension of of the destination must match the lowest 1324 // dimension of the shapecast op source. 1325 // TODO: This case could be support in a canonicalization pattern. 1326 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1327 getDimReverse(destinationType, i)) 1328 return Value(); 1329 } 1330 } 1331 // Extract the strides associated with the extract op vector source. Then use 1332 // this to calculate a linearized position for the extract. 1333 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1334 std::reverse(extractedPos.begin(), extractedPos.end()); 1335 SmallVector<int64_t, 4> strides; 1336 int64_t stride = 1; 1337 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1338 strides.push_back(stride); 1339 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1340 } 1341 1342 int64_t position = linearize(extractedPos, strides); 1343 // Then extract the strides associated to the shapeCast op vector source and 1344 // delinearize the position using those strides. 1345 SmallVector<int64_t, 4> newStrides; 1346 int64_t numDimension = 1347 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1348 stride = 1; 1349 for (int64_t i = 0; i < numDimension; i++) { 1350 newStrides.push_back(stride); 1351 stride *= 1352 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1353 } 1354 std::reverse(newStrides.begin(), newStrides.end()); 1355 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1356 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1357 OpBuilder b(extractOp.getContext()); 1358 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1359 b.getI64ArrayAttr(newPosition)); 1360 extractOp.setOperand(shapeCastOp.source()); 1361 return extractOp.getResult(); 1362 } 1363 1364 /// Fold an ExtractOp from ExtractStridedSliceOp. 1365 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1366 auto extractStridedSliceOp = 1367 extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1368 if (!extractStridedSliceOp) 1369 return Value(); 1370 // Return if 'extractStridedSliceOp' has non-unit strides. 1371 if (extractStridedSliceOp.hasNonUnitStrides()) 1372 return Value(); 1373 1374 // Trim offsets for dimensions fully extracted. 1375 auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets()); 1376 while (!sliceOffsets.empty()) { 1377 size_t lastOffset = sliceOffsets.size() - 1; 1378 if (sliceOffsets.back() != 0 || 1379 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1380 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1381 break; 1382 sliceOffsets.pop_back(); 1383 } 1384 unsigned destinationRank = 0; 1385 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1386 destinationRank = vecType.getRank(); 1387 // The dimensions of the result need to be untouched by the 1388 // extractStridedSlice op. 1389 if (destinationRank > 1390 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1391 return Value(); 1392 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1393 assert(extractedPos.size() >= sliceOffsets.size()); 1394 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1395 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1396 extractOp.vectorMutable().assign(extractStridedSliceOp.vector()); 1397 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1398 OpBuilder b(extractOp.getContext()); 1399 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1400 b.getI64ArrayAttr(extractedPos)); 1401 return extractOp.getResult(); 1402 } 1403 1404 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1405 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1406 int64_t destinationRank = op.getType().isa<VectorType>() 1407 ? op.getType().cast<VectorType>().getRank() 1408 : 0; 1409 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 1410 while (insertOp) { 1411 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1412 insertOp.getSourceVectorType().getRank(); 1413 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1414 return Value(); 1415 auto insertOffsets = extractVector<int64_t>(insertOp.offsets()); 1416 auto extractOffsets = extractVector<int64_t>(op.position()); 1417 1418 if (llvm::any_of(insertOp.strides(), [](Attribute attr) { 1419 return attr.cast<IntegerAttr>().getInt() != 1; 1420 })) 1421 return Value(); 1422 bool disjoint = false; 1423 SmallVector<int64_t, 4> offsetDiffs; 1424 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1425 int64_t start = insertOffsets[dim]; 1426 int64_t size = 1427 (dim < insertRankDiff) 1428 ? 1 1429 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1430 int64_t end = start + size; 1431 int64_t offset = extractOffsets[dim]; 1432 // Check if the start of the extract offset is in the interval inserted. 1433 if (start <= offset && offset < end) { 1434 if (dim >= insertRankDiff) 1435 offsetDiffs.push_back(offset - start); 1436 continue; 1437 } 1438 disjoint = true; 1439 break; 1440 } 1441 // The extract element chunk overlap with the vector inserted. 1442 if (!disjoint) { 1443 // If any of the inner dimensions are only partially inserted we have a 1444 // partial overlap. 1445 int64_t srcRankDiff = 1446 insertOp.getSourceVectorType().getRank() - destinationRank; 1447 for (int64_t i = 0; i < destinationRank; i++) { 1448 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1449 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1450 insertRankDiff)) 1451 return Value(); 1452 } 1453 op.vectorMutable().assign(insertOp.source()); 1454 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1455 OpBuilder b(op.getContext()); 1456 op->setAttr(ExtractOp::getPositionAttrName(), 1457 b.getI64ArrayAttr(offsetDiffs)); 1458 return op.getResult(); 1459 } 1460 // If the chunk extracted is disjoint from the chunk inserted, keep 1461 // looking in the insert chain. 1462 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 1463 } 1464 return Value(); 1465 } 1466 1467 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1468 if (position().empty()) 1469 return vector(); 1470 if (succeeded(foldExtractOpFromExtractChain(*this))) 1471 return getResult(); 1472 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1473 return res; 1474 if (auto res = foldExtractFromBroadcast(*this)) 1475 return res; 1476 if (auto res = foldExtractFromShapeCast(*this)) 1477 return res; 1478 if (auto val = foldExtractFromExtractStrided(*this)) 1479 return val; 1480 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1481 return val; 1482 return OpFoldResult(); 1483 } 1484 1485 namespace { 1486 1487 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1488 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1489 public: 1490 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1491 1492 LogicalResult matchAndRewrite(ExtractOp extractOp, 1493 PatternRewriter &rewriter) const override { 1494 Operation *defOp = extractOp.vector().getDefiningOp(); 1495 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1496 return failure(); 1497 Value source = defOp->getOperand(0); 1498 if (extractOp.getType() == source.getType()) 1499 return failure(); 1500 auto getRank = [](Type type) { 1501 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1502 }; 1503 unsigned broadcastSrcRank = getRank(source.getType()); 1504 unsigned extractResultRank = getRank(extractOp.getType()); 1505 // We only consider the case where the rank of the source is smaller than 1506 // the rank of the extract dst. The other cases are handled in the folding 1507 // patterns. 1508 if (extractResultRank <= broadcastSrcRank) 1509 return failure(); 1510 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1511 extractOp, extractOp.getType(), source); 1512 return success(); 1513 } 1514 }; 1515 1516 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1517 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1518 public: 1519 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1520 1521 LogicalResult matchAndRewrite(ExtractOp extractOp, 1522 PatternRewriter &rewriter) const override { 1523 // Return if 'extractStridedSliceOp' operand is not defined by a 1524 // ConstantOp. 1525 auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>(); 1526 if (!constantOp) 1527 return failure(); 1528 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1529 if (!dense) 1530 return failure(); 1531 Attribute newAttr = dense.getSplatValue<Attribute>(); 1532 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1533 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1534 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1535 return success(); 1536 } 1537 }; 1538 1539 } // namespace 1540 1541 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1542 MLIRContext *context) { 1543 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1544 } 1545 1546 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1547 SmallVectorImpl<int64_t> &results) { 1548 for (auto attr : arrayAttr) 1549 results.push_back(attr.cast<IntegerAttr>().getInt()); 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // ExtractMapOp 1554 //===----------------------------------------------------------------------===// 1555 1556 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1557 Value vector, ValueRange ids, 1558 ArrayRef<int64_t> multiplicity, 1559 AffineMap permutationMap) { 1560 assert(ids.size() == multiplicity.size() && 1561 ids.size() == permutationMap.getNumResults()); 1562 assert(permutationMap.isProjectedPermutation()); 1563 VectorType type = vector.getType().cast<VectorType>(); 1564 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1565 type.getShape().end()); 1566 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1567 AffineExpr expr = permutationMap.getResult(i); 1568 auto dim = expr.cast<AffineDimExpr>(); 1569 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1570 } 1571 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1572 ExtractMapOp::build(builder, result, resultType, vector, ids); 1573 } 1574 1575 LogicalResult ExtractMapOp::verify() { 1576 if (getSourceVectorType().getRank() != getResultType().getRank()) 1577 return emitOpError("expected source and destination vectors of same rank"); 1578 unsigned numId = 0; 1579 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1580 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1581 0) 1582 return emitOpError("source vector dimensions must be a multiple of " 1583 "destination vector dimensions"); 1584 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1585 numId++; 1586 } 1587 if (numId != ids().size()) 1588 return emitOpError("expected number of ids must match the number of " 1589 "dimensions distributed"); 1590 return success(); 1591 } 1592 1593 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1594 auto insert = vector().getDefiningOp<vector::InsertMapOp>(); 1595 if (insert == nullptr || getType() != insert.vector().getType() || 1596 ids() != insert.ids()) 1597 return {}; 1598 return insert.vector(); 1599 } 1600 1601 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1602 assert(multiplicity.empty()); 1603 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1604 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1605 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1606 getResultType().getDimSize(i)); 1607 } 1608 } 1609 1610 template <typename MapOp> 1611 AffineMap calculateImplicitMap(MapOp op) { 1612 SmallVector<AffineExpr, 4> perm; 1613 // Check which dimension have a multiplicity greater than 1 and associated 1614 // them to the IDs in order. 1615 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1616 if (op.getSourceVectorType().getDimSize(i) != 1617 op.getResultType().getDimSize(i)) 1618 perm.push_back(getAffineDimExpr(i, op.getContext())); 1619 } 1620 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1621 op.getContext()); 1622 return map; 1623 } 1624 1625 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1626 1627 //===----------------------------------------------------------------------===// 1628 // FmaOp 1629 //===----------------------------------------------------------------------===// 1630 1631 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1632 return llvm::to_vector<4>(getVectorType().getShape()); 1633 } 1634 1635 //===----------------------------------------------------------------------===// 1636 // BroadcastOp 1637 //===----------------------------------------------------------------------===// 1638 1639 BroadcastableToResult 1640 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1641 std::pair<int, int> *mismatchingDims) { 1642 // Broadcast scalar to vector of the same element type. 1643 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1644 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1645 return BroadcastableToResult::Success; 1646 // From now on, only vectors broadcast. 1647 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1648 if (!srcVectorType) 1649 return BroadcastableToResult::SourceTypeNotAVector; 1650 1651 int64_t srcRank = srcVectorType.getRank(); 1652 int64_t dstRank = dstVectorType.getRank(); 1653 if (srcRank > dstRank) 1654 return BroadcastableToResult::SourceRankHigher; 1655 // Source has an exact match or singleton value for all trailing dimensions 1656 // (all leading dimensions are simply duplicated). 1657 int64_t lead = dstRank - srcRank; 1658 for (int64_t r = 0; r < srcRank; ++r) { 1659 int64_t srcDim = srcVectorType.getDimSize(r); 1660 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1661 if (srcDim != 1 && srcDim != dstDim) { 1662 if (mismatchingDims) { 1663 mismatchingDims->first = srcDim; 1664 mismatchingDims->second = dstDim; 1665 } 1666 return BroadcastableToResult::DimensionMismatch; 1667 } 1668 } 1669 1670 return BroadcastableToResult::Success; 1671 } 1672 1673 LogicalResult BroadcastOp::verify() { 1674 std::pair<int, int> mismatchingDims; 1675 BroadcastableToResult res = 1676 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1677 if (res == BroadcastableToResult::Success) 1678 return success(); 1679 if (res == BroadcastableToResult::SourceRankHigher) 1680 return emitOpError("source rank higher than destination rank"); 1681 if (res == BroadcastableToResult::DimensionMismatch) 1682 return emitOpError("dimension mismatch (") 1683 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1684 if (res == BroadcastableToResult::SourceTypeNotAVector) 1685 return emitOpError("source type is not a vector"); 1686 llvm_unreachable("unexpected vector.broadcast op error"); 1687 } 1688 1689 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1690 if (getSourceType() == getVectorType()) 1691 return source(); 1692 if (!operands[0]) 1693 return {}; 1694 auto vectorType = getVectorType(); 1695 if (operands[0].getType().isIntOrIndexOrFloat()) 1696 return DenseElementsAttr::get(vectorType, operands[0]); 1697 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1698 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1699 return {}; 1700 } 1701 1702 namespace { 1703 1704 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1705 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1706 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1707 1708 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1709 PatternRewriter &rewriter) const override { 1710 auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>(); 1711 if (!srcBroadcast) 1712 return failure(); 1713 rewriter.replaceOpWithNewOp<BroadcastOp>( 1714 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source()); 1715 return success(); 1716 } 1717 }; 1718 } // namespace 1719 1720 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1721 MLIRContext *context) { 1722 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1723 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1724 results.add<BroadcastFolder>(context); 1725 } 1726 1727 //===----------------------------------------------------------------------===// 1728 // ShuffleOp 1729 //===----------------------------------------------------------------------===// 1730 1731 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1732 Value v2, ArrayRef<int64_t> mask) { 1733 result.addOperands({v1, v2}); 1734 auto maskAttr = getVectorSubscriptAttr(builder, mask); 1735 auto v1Type = v1.getType().cast<VectorType>(); 1736 auto shape = llvm::to_vector<4>(v1Type.getShape()); 1737 shape[0] = mask.size(); 1738 result.addTypes(VectorType::get(shape, v1Type.getElementType())); 1739 result.addAttribute(getMaskAttrName(), maskAttr); 1740 } 1741 1742 void ShuffleOp::print(OpAsmPrinter &p) { 1743 p << " " << v1() << ", " << v2() << " " << mask(); 1744 p.printOptionalAttrDict((*this)->getAttrs(), {ShuffleOp::getMaskAttrName()}); 1745 p << " : " << v1().getType() << ", " << v2().getType(); 1746 } 1747 1748 LogicalResult ShuffleOp::verify() { 1749 VectorType resultType = getVectorType(); 1750 VectorType v1Type = getV1VectorType(); 1751 VectorType v2Type = getV2VectorType(); 1752 // Verify ranks. 1753 int64_t resRank = resultType.getRank(); 1754 int64_t v1Rank = v1Type.getRank(); 1755 int64_t v2Rank = v2Type.getRank(); 1756 if (resRank != v1Rank || v1Rank != v2Rank) 1757 return emitOpError("rank mismatch"); 1758 // Verify all but leading dimension sizes. 1759 for (int64_t r = 1; r < v1Rank; ++r) { 1760 int64_t resDim = resultType.getDimSize(r); 1761 int64_t v1Dim = v1Type.getDimSize(r); 1762 int64_t v2Dim = v2Type.getDimSize(r); 1763 if (resDim != v1Dim || v1Dim != v2Dim) 1764 return emitOpError("dimension mismatch"); 1765 } 1766 // Verify mask length. 1767 auto maskAttr = mask().getValue(); 1768 int64_t maskLength = maskAttr.size(); 1769 if (maskLength != resultType.getDimSize(0)) 1770 return emitOpError("mask length mismatch"); 1771 // Verify all indices. 1772 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1773 for (const auto &en : llvm::enumerate(maskAttr)) { 1774 auto attr = en.value().dyn_cast<IntegerAttr>(); 1775 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1776 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1777 } 1778 return success(); 1779 } 1780 1781 ParseResult ShuffleOp::parse(OpAsmParser &parser, OperationState &result) { 1782 OpAsmParser::OperandType v1, v2; 1783 Attribute attr; 1784 VectorType v1Type, v2Type; 1785 if (parser.parseOperand(v1) || parser.parseComma() || 1786 parser.parseOperand(v2) || 1787 parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(), 1788 result.attributes) || 1789 parser.parseOptionalAttrDict(result.attributes) || 1790 parser.parseColonType(v1Type) || parser.parseComma() || 1791 parser.parseType(v2Type) || 1792 parser.resolveOperand(v1, v1Type, result.operands) || 1793 parser.resolveOperand(v2, v2Type, result.operands)) 1794 return failure(); 1795 // Construct resulting type: leading dimension matches mask length, 1796 // all trailing dimensions match the operands. 1797 auto maskAttr = attr.dyn_cast<ArrayAttr>(); 1798 if (!maskAttr) 1799 return parser.emitError(parser.getNameLoc(), "missing mask attribute"); 1800 int64_t maskLength = maskAttr.size(); 1801 if (maskLength <= 0) 1802 return parser.emitError(parser.getNameLoc(), "invalid mask length"); 1803 int64_t v1Rank = v1Type.getRank(); 1804 SmallVector<int64_t, 4> shape; 1805 shape.reserve(v1Rank); 1806 shape.push_back(maskLength); 1807 for (int64_t r = 1; r < v1Rank; ++r) 1808 shape.push_back(v1Type.getDimSize(r)); 1809 VectorType resType = VectorType::get(shape, v1Type.getElementType()); 1810 parser.addTypeToList(resType, result.types); 1811 return success(); 1812 } 1813 1814 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1815 Attribute lhs = operands.front(), rhs = operands.back(); 1816 if (!lhs || !rhs) 1817 return {}; 1818 1819 auto lhsType = lhs.getType().cast<VectorType>(); 1820 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1821 // manipulation. 1822 if (lhsType.getRank() != 1) 1823 return {}; 1824 int64_t lhsSize = lhsType.getDimSize(0); 1825 1826 SmallVector<Attribute> results; 1827 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1828 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1829 for (const auto &index : this->mask().getAsValueRange<IntegerAttr>()) { 1830 int64_t i = index.getZExtValue(); 1831 if (i >= lhsSize) { 1832 results.push_back(rhsElements[i - lhsSize]); 1833 } else { 1834 results.push_back(lhsElements[i]); 1835 } 1836 } 1837 1838 return DenseElementsAttr::get(getVectorType(), results); 1839 } 1840 1841 //===----------------------------------------------------------------------===// 1842 // InsertElementOp 1843 //===----------------------------------------------------------------------===// 1844 1845 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1846 Value source, Value dest) { 1847 result.addOperands({source, dest}); 1848 result.addTypes(dest.getType()); 1849 } 1850 1851 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1852 Value source, Value dest, Value position) { 1853 result.addOperands({source, dest, position}); 1854 result.addTypes(dest.getType()); 1855 } 1856 1857 LogicalResult InsertElementOp::verify() { 1858 auto dstVectorType = getDestVectorType(); 1859 if (dstVectorType.getRank() == 0) { 1860 if (position()) 1861 return emitOpError("expected position to be empty with 0-D vector"); 1862 return success(); 1863 } 1864 if (dstVectorType.getRank() != 1) 1865 return emitOpError("unexpected >1 vector rank"); 1866 if (!position()) 1867 return emitOpError("expected position for 1-D vector"); 1868 return success(); 1869 } 1870 1871 //===----------------------------------------------------------------------===// 1872 // InsertOp 1873 //===----------------------------------------------------------------------===// 1874 1875 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1876 Value dest, ArrayRef<int64_t> position) { 1877 result.addOperands({source, dest}); 1878 auto positionAttr = getVectorSubscriptAttr(builder, position); 1879 result.addTypes(dest.getType()); 1880 result.addAttribute(getPositionAttrName(), positionAttr); 1881 } 1882 1883 // Convenience builder which assumes the values are constant indices. 1884 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1885 Value dest, ValueRange position) { 1886 SmallVector<int64_t, 4> positionConstants = 1887 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1888 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1889 })); 1890 build(builder, result, source, dest, positionConstants); 1891 } 1892 1893 LogicalResult InsertOp::verify() { 1894 auto positionAttr = position().getValue(); 1895 auto destVectorType = getDestVectorType(); 1896 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1897 return emitOpError( 1898 "expected position attribute of rank smaller than dest vector rank"); 1899 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1900 if (srcVectorType && 1901 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1902 static_cast<unsigned>(destVectorType.getRank()))) 1903 return emitOpError("expected position attribute rank + source rank to " 1904 "match dest vector rank"); 1905 if (!srcVectorType && 1906 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1907 return emitOpError( 1908 "expected position attribute rank to match the dest vector rank"); 1909 for (const auto &en : llvm::enumerate(positionAttr)) { 1910 auto attr = en.value().dyn_cast<IntegerAttr>(); 1911 if (!attr || attr.getInt() < 0 || 1912 attr.getInt() >= destVectorType.getDimSize(en.index())) 1913 return emitOpError("expected position attribute #") 1914 << (en.index() + 1) 1915 << " to be a non-negative integer smaller than the corresponding " 1916 "dest vector dimension"; 1917 } 1918 return success(); 1919 } 1920 1921 namespace { 1922 1923 // If insertOp is only inserting unit dimensions it can be transformed to a 1924 // broadcast. 1925 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1926 public: 1927 using OpRewritePattern<InsertOp>::OpRewritePattern; 1928 1929 LogicalResult matchAndRewrite(InsertOp insertOp, 1930 PatternRewriter &rewriter) const override { 1931 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1932 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1933 srcVecType.getNumElements()) 1934 return failure(); 1935 rewriter.replaceOpWithNewOp<BroadcastOp>( 1936 insertOp, insertOp.getDestVectorType(), insertOp.source()); 1937 return success(); 1938 } 1939 }; 1940 1941 } // namespace 1942 1943 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1944 MLIRContext *context) { 1945 results.add<InsertToBroadcast, BroadcastFolder>(context); 1946 } 1947 1948 // Eliminates insert operations that produce values identical to their source 1949 // value. This happens when the source and destination vectors have identical 1950 // sizes. 1951 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1952 if (position().empty()) 1953 return source(); 1954 return {}; 1955 } 1956 1957 //===----------------------------------------------------------------------===// 1958 // InsertMapOp 1959 //===----------------------------------------------------------------------===// 1960 1961 void InsertMapOp::build(OpBuilder &builder, OperationState &result, 1962 Value vector, Value dest, ValueRange ids) { 1963 InsertMapOp::build(builder, result, dest.getType(), vector, dest, ids); 1964 } 1965 1966 LogicalResult InsertMapOp::verify() { 1967 if (getSourceVectorType().getRank() != getResultType().getRank()) 1968 return emitOpError("expected source and destination vectors of same rank"); 1969 unsigned numId = 0; 1970 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1971 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1972 0) 1973 return emitOpError( 1974 "destination vector size must be a multiple of source vector size"); 1975 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1976 numId++; 1977 } 1978 if (numId != ids().size()) 1979 return emitOpError("expected number of ids must match the number of " 1980 "dimensions distributed"); 1981 return success(); 1982 } 1983 1984 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1985 1986 //===----------------------------------------------------------------------===// 1987 // InsertStridedSliceOp 1988 //===----------------------------------------------------------------------===// 1989 1990 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1991 Value source, Value dest, 1992 ArrayRef<int64_t> offsets, 1993 ArrayRef<int64_t> strides) { 1994 result.addOperands({source, dest}); 1995 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 1996 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 1997 result.addTypes(dest.getType()); 1998 result.addAttribute(getOffsetsAttrName(), offsetsAttr); 1999 result.addAttribute(getStridesAttrName(), stridesAttr); 2000 } 2001 2002 // TODO: Should be moved to Tablegen Confined attributes. 2003 template <typename OpType> 2004 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2005 ArrayAttr arrayAttr, 2006 ArrayRef<int64_t> shape, 2007 StringRef attrName) { 2008 if (arrayAttr.size() > shape.size()) 2009 return op.emitOpError("expected ") 2010 << attrName << " attribute of rank smaller than vector rank"; 2011 return success(); 2012 } 2013 2014 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2015 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2016 // Otherwise, the admissible interval is [min, max]. 2017 template <typename OpType> 2018 static LogicalResult 2019 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2020 int64_t max, StringRef attrName, 2021 bool halfOpen = true) { 2022 for (auto attr : arrayAttr) { 2023 auto val = attr.cast<IntegerAttr>().getInt(); 2024 auto upper = max; 2025 if (!halfOpen) 2026 upper += 1; 2027 if (val < min || val >= upper) 2028 return op.emitOpError("expected ") << attrName << " to be confined to [" 2029 << min << ", " << upper << ")"; 2030 } 2031 return success(); 2032 } 2033 2034 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2035 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2036 // Otherwise, the admissible interval is [min, max]. 2037 template <typename OpType> 2038 static LogicalResult 2039 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2040 ArrayRef<int64_t> shape, StringRef attrName, 2041 bool halfOpen = true, int64_t min = 0) { 2042 assert(arrayAttr.size() <= shape.size()); 2043 unsigned index = 0; 2044 for (auto it : llvm::zip(arrayAttr, shape)) { 2045 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2046 auto max = std::get<1>(it); 2047 if (!halfOpen) 2048 max += 1; 2049 if (val < min || val >= max) 2050 return op.emitOpError("expected ") 2051 << attrName << " dimension " << index << " to be confined to [" 2052 << min << ", " << max << ")"; 2053 ++index; 2054 } 2055 return success(); 2056 } 2057 2058 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2059 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2060 // Otherwise, the admissible interval is [min, max]. 2061 template <typename OpType> 2062 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2063 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2064 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2065 bool halfOpen = true, int64_t min = 1) { 2066 assert(arrayAttr1.size() <= shape.size()); 2067 assert(arrayAttr2.size() <= shape.size()); 2068 unsigned index = 0; 2069 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2070 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2071 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2072 auto max = std::get<2>(it); 2073 if (!halfOpen) 2074 max += 1; 2075 if (val1 + val2 < 0 || val1 + val2 >= max) 2076 return op.emitOpError("expected sum(") 2077 << attrName1 << ", " << attrName2 << ") dimension " << index 2078 << " to be confined to [" << min << ", " << max << ")"; 2079 ++index; 2080 } 2081 return success(); 2082 } 2083 2084 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2085 MLIRContext *context) { 2086 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2087 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2088 }); 2089 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2090 } 2091 2092 LogicalResult InsertStridedSliceOp::verify() { 2093 auto sourceVectorType = getSourceVectorType(); 2094 auto destVectorType = getDestVectorType(); 2095 auto offsets = offsetsAttr(); 2096 auto strides = stridesAttr(); 2097 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2098 return emitOpError( 2099 "expected offsets of same size as destination vector rank"); 2100 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2101 return emitOpError("expected strides of same size as source vector rank"); 2102 if (sourceVectorType.getRank() > destVectorType.getRank()) 2103 return emitOpError( 2104 "expected source rank to be smaller than destination rank"); 2105 2106 auto sourceShape = sourceVectorType.getShape(); 2107 auto destShape = destVectorType.getShape(); 2108 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2109 destShape.size() - sourceShape.size(), 0); 2110 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2111 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2112 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2113 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2114 offName)) || 2115 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2116 stridesName, 2117 /*halfOpen=*/false)) || 2118 failed(isSumOfIntegerArrayAttrConfinedToShape( 2119 *this, offsets, 2120 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2121 offName, "source vector shape", 2122 /*halfOpen=*/false, /*min=*/1))) 2123 return failure(); 2124 2125 return success(); 2126 } 2127 2128 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2129 if (getSourceVectorType() == getDestVectorType()) 2130 return source(); 2131 return {}; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // OuterProductOp 2136 //===----------------------------------------------------------------------===// 2137 2138 /// Build an op without mask, use the type of `acc` as the return type. 2139 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2140 Value lhs, Value rhs, Value acc) { 2141 result.addOperands({lhs, rhs, acc}); 2142 result.addTypes(acc.getType()); 2143 } 2144 2145 void OuterProductOp::print(OpAsmPrinter &p) { 2146 p << " " << lhs() << ", " << rhs(); 2147 if (!acc().empty()) { 2148 p << ", " << acc(); 2149 p.printOptionalAttrDict((*this)->getAttrs()); 2150 } 2151 p << " : " << lhs().getType() << ", " << rhs().getType(); 2152 } 2153 2154 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2155 SmallVector<OpAsmParser::OperandType, 3> operandsInfo; 2156 Type tLHS, tRHS; 2157 if (parser.parseOperandList(operandsInfo) || 2158 parser.parseOptionalAttrDict(result.attributes) || 2159 parser.parseColonType(tLHS) || parser.parseComma() || 2160 parser.parseType(tRHS)) 2161 return failure(); 2162 if (operandsInfo.size() < 2) 2163 return parser.emitError(parser.getNameLoc(), 2164 "expected at least 2 operands"); 2165 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2166 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2167 if (!vLHS) 2168 return parser.emitError(parser.getNameLoc(), 2169 "expected vector type for operand #1"); 2170 VectorType resType = 2171 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2172 vLHS.getElementType()) 2173 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2174 2175 if (!result.attributes.get(OuterProductOp::getKindAttrName())) { 2176 result.attributes.append( 2177 OuterProductOp::getKindAttrName(), 2178 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2179 result.getContext())); 2180 } 2181 2182 return failure( 2183 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2184 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2185 (operandsInfo.size() > 2 && 2186 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2187 parser.addTypeToList(resType, result.types)); 2188 } 2189 2190 LogicalResult OuterProductOp::verify() { 2191 Type tRHS = getOperandTypeRHS(); 2192 VectorType vLHS = getOperandVectorTypeLHS(), 2193 vRHS = tRHS.dyn_cast<VectorType>(), 2194 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2195 2196 if (vLHS.getRank() != 1) 2197 return emitOpError("expected 1-d vector for operand #1"); 2198 2199 if (vRHS) { 2200 // Proper OUTER operation. 2201 if (vRHS.getRank() != 1) 2202 return emitOpError("expected 1-d vector for operand #2"); 2203 if (vRES.getRank() != 2) 2204 return emitOpError("expected 2-d vector result"); 2205 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2206 return emitOpError("expected #1 operand dim to match result dim #1"); 2207 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2208 return emitOpError("expected #2 operand dim to match result dim #2"); 2209 } else { 2210 // An AXPY operation. 2211 if (vRES.getRank() != 1) 2212 return emitOpError("expected 1-d vector result"); 2213 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2214 return emitOpError("expected #1 operand dim to match result dim #1"); 2215 } 2216 2217 if (vACC && vACC != vRES) 2218 return emitOpError("expected operand #3 of same type as result type"); 2219 2220 // Verify supported combining kind. 2221 if (!isSupportedCombiningKind(kind(), vRES.getElementType())) 2222 return emitOpError("unsupported outerproduct type"); 2223 2224 return success(); 2225 } 2226 2227 //===----------------------------------------------------------------------===// 2228 // ReshapeOp 2229 //===----------------------------------------------------------------------===// 2230 2231 LogicalResult ReshapeOp::verify() { 2232 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2233 auto inputVectorType = getInputVectorType(); 2234 auto outputVectorType = getOutputVectorType(); 2235 int64_t inputShapeRank = getNumInputShapeSizes(); 2236 int64_t outputShapeRank = getNumOutputShapeSizes(); 2237 SmallVector<int64_t, 4> fixedVectorSizes; 2238 getFixedVectorSizes(fixedVectorSizes); 2239 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2240 2241 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2242 return emitError("invalid input shape for vector type ") 2243 << inputVectorType; 2244 2245 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2246 return emitError("invalid output shape for vector type ") 2247 << outputVectorType; 2248 2249 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2250 // suffix. 2251 unsigned inputVectorRank = inputVectorType.getRank(); 2252 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2253 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2254 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2255 return emitError("fixed vector size must match input vector for dim ") 2256 << i; 2257 } 2258 2259 unsigned outputVectorRank = outputVectorType.getRank(); 2260 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2261 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2262 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2263 return emitError("fixed vector size must match output vector for dim ") 2264 << i; 2265 } 2266 2267 // If all shape operands are produced by constant ops, verify that product 2268 // of dimensions for input/output shape match. 2269 auto isDefByConstant = [](Value operand) { 2270 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2271 }; 2272 if (llvm::all_of(input_shape(), isDefByConstant) && 2273 llvm::all_of(output_shape(), isDefByConstant)) { 2274 int64_t numInputElements = 1; 2275 for (auto operand : input_shape()) 2276 numInputElements *= 2277 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2278 int64_t numOutputElements = 1; 2279 for (auto operand : output_shape()) 2280 numOutputElements *= 2281 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2282 if (numInputElements != numOutputElements) 2283 return emitError("product of input and output shape sizes must match"); 2284 } 2285 return success(); 2286 } 2287 2288 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2289 populateFromInt64AttrArray(fixed_vector_sizes(), results); 2290 } 2291 2292 //===----------------------------------------------------------------------===// 2293 // ExtractStridedSliceOp 2294 //===----------------------------------------------------------------------===// 2295 2296 // Inference works as follows: 2297 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2298 // 2. Add sizes from 'vectorType' for remaining dims. 2299 static Type inferStridedSliceOpResultType(VectorType vectorType, 2300 ArrayAttr offsets, ArrayAttr sizes, 2301 ArrayAttr strides) { 2302 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2303 SmallVector<int64_t, 4> shape; 2304 shape.reserve(vectorType.getRank()); 2305 unsigned idx = 0; 2306 for (unsigned e = offsets.size(); idx < e; ++idx) 2307 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2308 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2309 shape.push_back(vectorType.getShape()[idx]); 2310 2311 return VectorType::get(shape, vectorType.getElementType()); 2312 } 2313 2314 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2315 Value source, ArrayRef<int64_t> offsets, 2316 ArrayRef<int64_t> sizes, 2317 ArrayRef<int64_t> strides) { 2318 result.addOperands(source); 2319 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2320 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2321 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2322 result.addTypes( 2323 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2324 offsetsAttr, sizesAttr, stridesAttr)); 2325 result.addAttribute(getOffsetsAttrName(), offsetsAttr); 2326 result.addAttribute(getSizesAttrName(), sizesAttr); 2327 result.addAttribute(getStridesAttrName(), stridesAttr); 2328 } 2329 2330 LogicalResult ExtractStridedSliceOp::verify() { 2331 auto type = getVectorType(); 2332 auto offsets = offsetsAttr(); 2333 auto sizes = sizesAttr(); 2334 auto strides = stridesAttr(); 2335 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2336 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2337 2338 auto shape = type.getShape(); 2339 auto offName = getOffsetsAttrName(); 2340 auto sizesName = getSizesAttrName(); 2341 auto stridesName = getStridesAttrName(); 2342 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2343 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2344 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2345 stridesName)) || 2346 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2347 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2348 /*halfOpen=*/false, 2349 /*min=*/1)) || 2350 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2351 /*halfOpen=*/false)) || 2352 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2353 offName, sizesName, 2354 /*halfOpen=*/false))) 2355 return failure(); 2356 2357 auto resultType = 2358 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2359 if (getResult().getType() != resultType) 2360 return emitOpError("expected result type to be ") << resultType; 2361 2362 return success(); 2363 } 2364 2365 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2366 // to use the source of the InsertStrided ops if we can detect that the 2367 // extracted vector is a subset of one of the vector inserted. 2368 static LogicalResult 2369 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2370 // Helper to extract integer out of ArrayAttr. 2371 auto getElement = [](ArrayAttr array, int idx) { 2372 return array[idx].cast<IntegerAttr>().getInt(); 2373 }; 2374 ArrayAttr extractOffsets = op.offsets(); 2375 ArrayAttr extractStrides = op.strides(); 2376 ArrayAttr extractSizes = op.sizes(); 2377 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 2378 while (insertOp) { 2379 if (op.getVectorType().getRank() != 2380 insertOp.getSourceVectorType().getRank()) 2381 return failure(); 2382 ArrayAttr insertOffsets = insertOp.offsets(); 2383 ArrayAttr insertStrides = insertOp.strides(); 2384 // If the rank of extract is greater than the rank of insert, we are likely 2385 // extracting a partial chunk of the vector inserted. 2386 if (extractOffsets.size() > insertOffsets.size()) 2387 return failure(); 2388 bool patialoverlap = false; 2389 bool disjoint = false; 2390 SmallVector<int64_t, 4> offsetDiffs; 2391 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2392 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2393 return failure(); 2394 int64_t start = getElement(insertOffsets, dim); 2395 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2396 int64_t offset = getElement(extractOffsets, dim); 2397 int64_t size = getElement(extractSizes, dim); 2398 // Check if the start of the extract offset is in the interval inserted. 2399 if (start <= offset && offset < end) { 2400 // If the extract interval overlaps but is not fully included we may 2401 // have a partial overlap that will prevent any folding. 2402 if (offset + size > end) 2403 patialoverlap = true; 2404 offsetDiffs.push_back(offset - start); 2405 continue; 2406 } 2407 disjoint = true; 2408 break; 2409 } 2410 // The extract element chunk is a subset of the insert element. 2411 if (!disjoint && !patialoverlap) { 2412 op.setOperand(insertOp.source()); 2413 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2414 OpBuilder b(op.getContext()); 2415 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrName(), 2416 b.getI64ArrayAttr(offsetDiffs)); 2417 return success(); 2418 } 2419 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2420 // in the insert chain. 2421 if (disjoint) 2422 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 2423 else { 2424 // The extracted vector partially overlap the inserted vector, we cannot 2425 // fold. 2426 return failure(); 2427 } 2428 } 2429 return failure(); 2430 } 2431 2432 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2433 if (getVectorType() == getResult().getType()) 2434 return vector(); 2435 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2436 return getResult(); 2437 return {}; 2438 } 2439 2440 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2441 populateFromInt64AttrArray(offsets(), results); 2442 } 2443 2444 namespace { 2445 2446 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2447 // ConstantMaskOp. 2448 class StridedSliceConstantMaskFolder final 2449 : public OpRewritePattern<ExtractStridedSliceOp> { 2450 public: 2451 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2452 2453 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2454 PatternRewriter &rewriter) const override { 2455 // Return if 'extractStridedSliceOp' operand is not defined by a 2456 // ConstantMaskOp. 2457 auto *defOp = extractStridedSliceOp.vector().getDefiningOp(); 2458 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2459 if (!constantMaskOp) 2460 return failure(); 2461 // Return if 'extractStridedSliceOp' has non-unit strides. 2462 if (extractStridedSliceOp.hasNonUnitStrides()) 2463 return failure(); 2464 // Gather constant mask dimension sizes. 2465 SmallVector<int64_t, 4> maskDimSizes; 2466 populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes); 2467 // Gather strided slice offsets and sizes. 2468 SmallVector<int64_t, 4> sliceOffsets; 2469 populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets); 2470 SmallVector<int64_t, 4> sliceSizes; 2471 populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes); 2472 2473 // Compute slice of vector mask region. 2474 SmallVector<int64_t, 4> sliceMaskDimSizes; 2475 assert(sliceOffsets.size() == maskDimSizes.size()); 2476 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2477 int64_t maskDimSize = std::get<0>(it); 2478 int64_t sliceOffset = std::get<1>(it); 2479 int64_t sliceSize = std::get<2>(it); 2480 int64_t sliceMaskDimSize = std::max( 2481 static_cast<int64_t>(0), 2482 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2483 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2484 } 2485 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2486 // region is a conjunction of mask dim intervals). 2487 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2488 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2489 2490 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2491 // region. 2492 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2493 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2494 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2495 return success(); 2496 } 2497 }; 2498 2499 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2500 class StridedSliceConstantFolder final 2501 : public OpRewritePattern<ExtractStridedSliceOp> { 2502 public: 2503 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2504 2505 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2506 PatternRewriter &rewriter) const override { 2507 // Return if 'extractStridedSliceOp' operand is not defined by a 2508 // ConstantOp. 2509 auto constantOp = 2510 extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>(); 2511 if (!constantOp) 2512 return failure(); 2513 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2514 if (!dense) 2515 return failure(); 2516 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2517 dense.getSplatValue<Attribute>()); 2518 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2519 newAttr); 2520 return success(); 2521 } 2522 }; 2523 2524 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2525 // BroadcastOp(ExtractStrideSliceOp). 2526 class StridedSliceBroadcast final 2527 : public OpRewritePattern<ExtractStridedSliceOp> { 2528 public: 2529 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2530 2531 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2532 PatternRewriter &rewriter) const override { 2533 auto broadcast = op.vector().getDefiningOp<BroadcastOp>(); 2534 if (!broadcast) 2535 return failure(); 2536 auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>(); 2537 unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0; 2538 auto dstVecType = op.getType().cast<VectorType>(); 2539 unsigned dstRank = dstVecType.getRank(); 2540 unsigned rankDiff = dstRank - srcRrank; 2541 // Check if the most inner dimensions of the source of the broadcast are the 2542 // same as the destination of the extract. If this is the case we can just 2543 // use a broadcast as the original dimensions are untouched. 2544 bool lowerDimMatch = true; 2545 for (unsigned i = 0; i < srcRrank; i++) { 2546 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2547 lowerDimMatch = false; 2548 break; 2549 } 2550 } 2551 Value source = broadcast.source(); 2552 if (!lowerDimMatch) { 2553 // The inner dimensions don't match, it means we need to extract from the 2554 // source of the orignal broadcast and then broadcast the extracted value. 2555 source = rewriter.create<ExtractStridedSliceOp>( 2556 op->getLoc(), source, 2557 getI64SubArray(op.offsets(), /* dropFront=*/rankDiff), 2558 getI64SubArray(op.sizes(), /* dropFront=*/rankDiff), 2559 getI64SubArray(op.strides(), /* dropFront=*/rankDiff)); 2560 } 2561 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2562 return success(); 2563 } 2564 }; 2565 2566 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2567 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2568 public: 2569 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2570 2571 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2572 PatternRewriter &rewriter) const override { 2573 auto splat = op.vector().getDefiningOp<SplatOp>(); 2574 if (!splat) 2575 return failure(); 2576 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input()); 2577 return success(); 2578 } 2579 }; 2580 2581 } // namespace 2582 2583 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2584 RewritePatternSet &results, MLIRContext *context) { 2585 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2586 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2587 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2588 StridedSliceBroadcast, StridedSliceSplat>(context); 2589 } 2590 2591 //===----------------------------------------------------------------------===// 2592 // TransferReadOp 2593 //===----------------------------------------------------------------------===// 2594 2595 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2596 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2597 VectorType vectorType, Value source, 2598 ValueRange indices, AffineMapAttr permutationMapAttr, 2599 /*optional*/ ArrayAttr inBoundsAttr) { 2600 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2601 Value padding = builder.create<arith::ConstantOp>( 2602 result.location, elemType, builder.getZeroAttr(elemType)); 2603 build(builder, result, vectorType, source, indices, permutationMapAttr, 2604 padding, /*mask=*/Value(), inBoundsAttr); 2605 } 2606 2607 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2608 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2609 VectorType vectorType, Value source, 2610 ValueRange indices, AffineMap permutationMap, 2611 Optional<ArrayRef<bool>> inBounds) { 2612 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2613 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2614 ? builder.getBoolArrayAttr(inBounds.getValue()) 2615 : ArrayAttr(); 2616 build(builder, result, vectorType, source, indices, permutationMapAttr, 2617 inBoundsAttr); 2618 } 2619 2620 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2621 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2622 VectorType vectorType, Value source, 2623 ValueRange indices, Value padding, 2624 Optional<ArrayRef<bool>> inBounds) { 2625 AffineMap permutationMap = getTransferMinorIdentityMap( 2626 source.getType().cast<ShapedType>(), vectorType); 2627 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2628 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2629 ? builder.getBoolArrayAttr(inBounds.getValue()) 2630 : ArrayAttr(); 2631 build(builder, result, vectorType, source, indices, permutationMapAttr, 2632 padding, 2633 /*mask=*/Value(), inBoundsAttr); 2634 } 2635 2636 /// 4. Builder that sets padding to zero and permutation map to 2637 /// 'getMinorIdentityMap'. 2638 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2639 VectorType vectorType, Value source, 2640 ValueRange indices, 2641 Optional<ArrayRef<bool>> inBounds) { 2642 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2643 Value padding = builder.create<arith::ConstantOp>( 2644 result.location, elemType, builder.getZeroAttr(elemType)); 2645 build(builder, result, vectorType, source, indices, padding, inBounds); 2646 } 2647 2648 template <typename EmitFun> 2649 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2650 EmitFun emitOpError) { 2651 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2652 for (auto expr : permutationMap.getResults()) { 2653 auto dim = expr.dyn_cast<AffineDimExpr>(); 2654 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2655 if (zero) { 2656 if (zero.getValue() != 0) { 2657 return emitOpError( 2658 "requires a projected permutation_map (at most one dim or the zero " 2659 "constant can appear in each result)"); 2660 } 2661 continue; 2662 } 2663 if (!dim) { 2664 return emitOpError("requires a projected permutation_map (at most one " 2665 "dim or the zero constant can appear in each result)"); 2666 } 2667 if (seen[dim.getPosition()]) { 2668 return emitOpError( 2669 "requires a permutation_map that is a permutation (found one dim " 2670 "used more than once)"); 2671 } 2672 seen[dim.getPosition()] = true; 2673 } 2674 return success(); 2675 } 2676 2677 static LogicalResult 2678 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2679 VectorType vectorType, VectorType maskType, 2680 AffineMap permutationMap, ArrayAttr inBounds) { 2681 if (op->hasAttr("masked")) { 2682 return op->emitOpError("masked attribute has been removed. " 2683 "Use in_bounds instead."); 2684 } 2685 2686 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2687 return op->emitOpError( 2688 "requires source to be a memref or ranked tensor type"); 2689 2690 auto elementType = shapedType.getElementType(); 2691 DataLayout dataLayout = DataLayout::closest(op); 2692 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2693 // Memref or tensor has vector element type. 2694 unsigned sourceVecSize = 2695 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2696 vectorElementType.getShape().back(); 2697 unsigned resultVecSize = 2698 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2699 vectorType.getShape().back(); 2700 if (resultVecSize % sourceVecSize != 0) 2701 return op->emitOpError( 2702 "requires the bitwidth of the minor 1-D vector to be an integral " 2703 "multiple of the bitwidth of the minor 1-D vector of the source"); 2704 2705 unsigned sourceVecEltRank = vectorElementType.getRank(); 2706 unsigned resultVecRank = vectorType.getRank(); 2707 if (sourceVecEltRank > resultVecRank) 2708 return op->emitOpError( 2709 "requires source vector element and vector result ranks to match."); 2710 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2711 // Check that permutation map results match 'rankOffset' of vector type. 2712 if (permutationMap.getNumResults() != rankOffset) 2713 return op->emitOpError("requires a permutation_map with result dims of " 2714 "the same rank as the vector type"); 2715 2716 if (maskType) 2717 return op->emitOpError("does not support masks with vector element type"); 2718 } else { 2719 // Memref or tensor has scalar element type. 2720 unsigned minorSize = 2721 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2722 unsigned resultVecSize = 2723 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2724 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2725 return op->emitOpError( 2726 "requires the bitwidth of the minor 1-D vector to be an integral " 2727 "multiple of the bitwidth of the source element type"); 2728 2729 // Check that permutation map results match rank of vector type. 2730 if (permutationMap.getNumResults() != vectorType.getRank()) 2731 return op->emitOpError("requires a permutation_map with result dims of " 2732 "the same rank as the vector type"); 2733 2734 VectorType expectedMaskType = 2735 vector::detail::transferMaskType(vectorType, permutationMap); 2736 if (maskType && expectedMaskType != maskType) 2737 return op->emitOpError("expects mask type consistent with permutation " 2738 "map: ") 2739 << maskType; 2740 } 2741 2742 if (permutationMap.getNumSymbols() != 0) 2743 return op->emitOpError("requires permutation_map without symbols"); 2744 2745 if (permutationMap.getNumInputs() != shapedType.getRank()) 2746 return op->emitOpError("requires a permutation_map with input dims of the " 2747 "same rank as the source type"); 2748 2749 if (inBounds) { 2750 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2751 return op->emitOpError("expects the optional in_bounds attr of same rank " 2752 "as permutation_map results: ") 2753 << AffineMapAttr::get(permutationMap) 2754 << " vs inBounds of size: " << inBounds.size(); 2755 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2756 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2757 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2758 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2759 } 2760 2761 return success(); 2762 } 2763 2764 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2765 SmallVector<StringRef, 3> elidedAttrs; 2766 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2767 if (op.permutation_map().isMinorIdentity()) 2768 elidedAttrs.push_back(op.getPermutationMapAttrName()); 2769 bool elideInBounds = true; 2770 if (auto inBounds = op.in_bounds()) { 2771 for (auto attr : *inBounds) { 2772 if (attr.template cast<BoolAttr>().getValue()) { 2773 elideInBounds = false; 2774 break; 2775 } 2776 } 2777 } 2778 if (elideInBounds) 2779 elidedAttrs.push_back(op.getInBoundsAttrName()); 2780 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2781 } 2782 2783 void TransferReadOp::print(OpAsmPrinter &p) { 2784 p << " " << source() << "[" << indices() << "], " << padding(); 2785 if (mask()) 2786 p << ", " << mask(); 2787 printTransferAttrs(p, *this); 2788 p << " : " << getShapedType() << ", " << getVectorType(); 2789 } 2790 2791 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2792 auto &builder = parser.getBuilder(); 2793 SMLoc typesLoc; 2794 OpAsmParser::OperandType sourceInfo; 2795 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 2796 OpAsmParser::OperandType paddingInfo; 2797 SmallVector<Type, 2> types; 2798 OpAsmParser::OperandType maskInfo; 2799 // Parsing with support for paddingValue. 2800 if (parser.parseOperand(sourceInfo) || 2801 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2802 parser.parseComma() || parser.parseOperand(paddingInfo)) 2803 return failure(); 2804 ParseResult hasMask = parser.parseOptionalComma(); 2805 if (hasMask.succeeded()) { 2806 parser.parseOperand(maskInfo); 2807 } 2808 if (parser.parseOptionalAttrDict(result.attributes) || 2809 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2810 return failure(); 2811 if (types.size() != 2) 2812 return parser.emitError(typesLoc, "requires two types"); 2813 auto indexType = builder.getIndexType(); 2814 auto shapedType = types[0].dyn_cast<ShapedType>(); 2815 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2816 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2817 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2818 if (!vectorType) 2819 return parser.emitError(typesLoc, "requires vector type"); 2820 auto permutationAttrName = TransferReadOp::getPermutationMapAttrName(); 2821 Attribute mapAttr = result.attributes.get(permutationAttrName); 2822 if (!mapAttr) { 2823 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2824 // Update `mapAttr` that is used later to determine mask type. 2825 mapAttr = AffineMapAttr::get(permMap); 2826 result.attributes.set(permutationAttrName, mapAttr); 2827 } 2828 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2829 parser.resolveOperands(indexInfo, indexType, result.operands) || 2830 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2831 result.operands)) 2832 return failure(); 2833 if (hasMask.succeeded()) { 2834 if (shapedType.getElementType().dyn_cast<VectorType>()) 2835 return parser.emitError( 2836 maskInfo.location, "does not support masks with vector element type"); 2837 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2838 // Instead of adding the mask type as an op type, compute it based on the 2839 // vector type and the permutation map (to keep the type signature small). 2840 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2841 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2842 return failure(); 2843 } 2844 result.addAttribute( 2845 TransferReadOp::getOperandSegmentSizeAttr(), 2846 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2847 static_cast<int32_t>(hasMask.succeeded())})); 2848 return parser.addTypeToList(vectorType, result.types); 2849 } 2850 2851 LogicalResult TransferReadOp::verify() { 2852 // Consistency of elemental types in source and vector. 2853 ShapedType shapedType = getShapedType(); 2854 VectorType vectorType = getVectorType(); 2855 VectorType maskType = getMaskType(); 2856 auto paddingType = padding().getType(); 2857 auto permutationMap = permutation_map(); 2858 auto sourceElementType = shapedType.getElementType(); 2859 2860 if (static_cast<int64_t>(indices().size()) != shapedType.getRank()) 2861 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2862 2863 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2864 shapedType, vectorType, maskType, permutationMap, 2865 in_bounds() ? *in_bounds() : ArrayAttr()))) 2866 return failure(); 2867 2868 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2869 // Source has vector element type. 2870 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2871 if (sourceVectorElementType != paddingType) 2872 return emitOpError( 2873 "requires source element type and padding type to match."); 2874 2875 } else { 2876 // Check that 'paddingType' is valid to store in a vector type. 2877 if (!VectorType::isValidElementType(paddingType)) 2878 return emitOpError("requires valid padding vector elemental type"); 2879 2880 // Check that padding type and vector element types match. 2881 if (paddingType != sourceElementType) 2882 return emitOpError( 2883 "requires formal padding and source of the same elemental type"); 2884 } 2885 2886 return verifyPermutationMap(permutationMap, 2887 [&](Twine t) { return emitOpError(t); }); 2888 } 2889 2890 /// This is a common class used for patterns of the form 2891 /// ``` 2892 /// someop(memrefcast) -> someop 2893 /// ``` 2894 /// It folds the source of the memref.cast into the root operation directly. 2895 static LogicalResult foldMemRefCast(Operation *op) { 2896 bool folded = false; 2897 for (OpOperand &operand : op->getOpOperands()) { 2898 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2899 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2900 operand.set(castOp.getOperand()); 2901 folded = true; 2902 } 2903 } 2904 return success(folded); 2905 } 2906 2907 static LogicalResult foldTensorCast(Operation *op) { 2908 bool folded = false; 2909 for (OpOperand &operand : op->getOpOperands()) { 2910 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2911 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2912 operand.set(castOp.getOperand()); 2913 folded = true; 2914 } 2915 } 2916 return success(folded); 2917 } 2918 2919 template <typename TransferOp> 2920 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2921 // TODO: support more aggressive createOrFold on: 2922 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2923 if (op.getShapedType().isDynamicDim(indicesIdx)) 2924 return false; 2925 Value index = op.indices()[indicesIdx]; 2926 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2927 if (!cstOp) 2928 return false; 2929 2930 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2931 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2932 2933 return cstOp.value() + vectorSize <= sourceSize; 2934 } 2935 2936 template <typename TransferOp> 2937 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2938 // TODO: support 0-d corner case. 2939 // TODO: Be less conservative. 2940 if (op.getTransferRank() == 0) 2941 return failure(); 2942 AffineMap permutationMap = op.permutation_map(); 2943 bool changed = false; 2944 SmallVector<bool, 4> newInBounds; 2945 newInBounds.reserve(op.getTransferRank()); 2946 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2947 // Already marked as in-bounds, nothing to see here. 2948 if (op.isDimInBounds(i)) { 2949 newInBounds.push_back(true); 2950 continue; 2951 } 2952 // Currently out-of-bounds, check whether we can statically determine it is 2953 // inBounds. 2954 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2955 assert(dimExpr && "Broadcast dims must be in-bounds"); 2956 auto inBounds = 2957 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2958 newInBounds.push_back(inBounds); 2959 // We commit the pattern if it is "more inbounds". 2960 changed |= inBounds; 2961 } 2962 if (!changed) 2963 return failure(); 2964 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2965 OpBuilder b(op.getContext()); 2966 op->setAttr(TransferOp::getInBoundsAttrName(), 2967 b.getBoolArrayAttr(newInBounds)); 2968 return success(); 2969 } 2970 2971 /// ``` 2972 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2973 /// : vector<1x4xf32>, tensor<4x4xf32> 2974 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2975 /// : tensor<4x4xf32>, vector<1x4xf32> 2976 /// ``` 2977 /// -> Folds into 2978 /// ``` 2979 /// %v0 2980 /// ``` 2981 static Value foldRAW(TransferReadOp readOp) { 2982 if (!readOp.getShapedType().isa<RankedTensorType>()) 2983 return {}; 2984 auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>(); 2985 while (defWrite) { 2986 if (checkSameValueRAW(defWrite, readOp)) 2987 return defWrite.vector(); 2988 if (!isDisjointTransferIndices( 2989 cast<VectorTransferOpInterface>(defWrite.getOperation()), 2990 cast<VectorTransferOpInterface>(readOp.getOperation()))) 2991 break; 2992 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 2993 } 2994 return {}; 2995 } 2996 2997 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 2998 if (Value vec = foldRAW(*this)) 2999 return vec; 3000 /// transfer_read(memrefcast) -> transfer_read 3001 if (succeeded(foldTransferInBoundsAttribute(*this))) 3002 return getResult(); 3003 if (succeeded(foldMemRefCast(*this))) 3004 return getResult(); 3005 if (succeeded(foldTensorCast(*this))) 3006 return getResult(); 3007 return OpFoldResult(); 3008 } 3009 3010 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3011 return llvm::to_vector<4>(getVectorType().getShape()); 3012 } 3013 3014 void TransferReadOp::getEffects( 3015 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3016 &effects) { 3017 if (getShapedType().isa<MemRefType>()) 3018 effects.emplace_back(MemoryEffects::Read::get(), source(), 3019 SideEffects::DefaultResource::get()); 3020 } 3021 3022 namespace { 3023 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3024 /// 3025 /// ``` 3026 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3027 /// : tensor<?x?xf32> to tensor<?x?xf32> 3028 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3029 /// : tensor<?x?xf32>, vector<4x5xf32> 3030 /// ``` 3031 /// is rewritten to: 3032 /// ``` 3033 /// %p0 = arith.addi %a, %e : index 3034 /// %p1 = arith.addi %b, %f : index 3035 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3036 /// : tensor<?x?xf32>, vector<4x5xf32> 3037 /// ``` 3038 struct FoldExtractSliceIntoTransferRead 3039 : public OpRewritePattern<TransferReadOp> { 3040 public: 3041 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3042 3043 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3044 PatternRewriter &rewriter) const override { 3045 // TODO: support 0-d corner case. 3046 if (xferOp.getTransferRank() == 0) 3047 return failure(); 3048 if (xferOp.hasOutOfBoundsDim()) 3049 return failure(); 3050 if (!xferOp.permutation_map().isIdentity()) 3051 return failure(); 3052 if (xferOp.mask()) 3053 return failure(); 3054 auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3055 if (!extractOp) 3056 return failure(); 3057 if (!extractOp.hasUnitStride()) 3058 return failure(); 3059 3060 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3061 // dims are exactly the leading dims. I.e. the following is illegal: 3062 // ``` 3063 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3064 // tensor<2x1x4xf32> to tensor<2x4xf32> 3065 // %1 = vector.transfer_read %0[0,0], %cst : 3066 // tensor<2x4xf32>, vector<2x4xf32> 3067 // ``` 3068 // 3069 // Cannot fold into: 3070 // ``` 3071 // %0 = vector.transfer_read %t[0,0,0], %cst : 3072 // tensor<2x1x4xf32>, vector<2x4xf32> 3073 // ``` 3074 // For this, check the trailing `vectorRank` dims of the extract_slice 3075 // result tensor match the trailing dims of the inferred result tensor. 3076 int64_t rankReduced = 3077 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3078 int64_t vectorRank = xferOp.getVectorType().getRank(); 3079 RankedTensorType inferredDestTensorType = 3080 tensor::ExtractSliceOp::inferResultType( 3081 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3082 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3083 auto actualDestTensorShape = extractOp.getType().getShape(); 3084 if (rankReduced > 0 && 3085 actualDestTensorShape.take_back(vectorRank) != 3086 inferredDestTensorType.getShape().take_back(vectorRank)) 3087 return failure(); 3088 3089 SmallVector<Value> newIndices; 3090 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3091 // indices first. 3092 for (int64_t i = 0; i < rankReduced; ++i) { 3093 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3094 newIndices.push_back(getValueOrCreateConstantIndexOp( 3095 rewriter, extractOp.getLoc(), offset)); 3096 } 3097 for (const auto &it : llvm::enumerate(xferOp.indices())) { 3098 OpFoldResult offset = 3099 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3100 newIndices.push_back(rewriter.create<arith::AddIOp>( 3101 xferOp->getLoc(), it.value(), 3102 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3103 offset))); 3104 } 3105 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3106 rewriter.replaceOpWithNewOp<TransferReadOp>( 3107 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3108 xferOp.padding(), ArrayRef<bool>{inBounds}); 3109 3110 return success(); 3111 } 3112 }; 3113 } // namespace 3114 3115 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3116 MLIRContext *context) { 3117 results.add<FoldExtractSliceIntoTransferRead>(context); 3118 } 3119 3120 //===----------------------------------------------------------------------===// 3121 // TransferWriteOp 3122 //===----------------------------------------------------------------------===// 3123 3124 /// 1. Builder with type inference. 3125 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3126 Value vector, Value dest, ValueRange indices, 3127 AffineMapAttr permutationMapAttr, 3128 /*optional*/ Value mask, 3129 /*optional*/ ArrayAttr inBoundsAttr) { 3130 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3131 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3132 mask, inBoundsAttr); 3133 } 3134 3135 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3136 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3137 Value vector, Value dest, ValueRange indices, 3138 AffineMapAttr permutationMapAttr, 3139 /*optional*/ ArrayAttr inBoundsAttr) { 3140 build(builder, result, vector, dest, indices, permutationMapAttr, 3141 /*mask=*/Value(), inBoundsAttr); 3142 } 3143 3144 /// 3. Builder with type inference that sets an empty mask (variant without 3145 /// attrs) 3146 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3147 Value vector, Value dest, ValueRange indices, 3148 AffineMap permutationMap, 3149 Optional<ArrayRef<bool>> inBounds) { 3150 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3151 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3152 ? builder.getBoolArrayAttr(inBounds.getValue()) 3153 : ArrayAttr(); 3154 build(builder, result, vector, dest, indices, permutationMapAttr, 3155 /*mask=*/Value(), inBoundsAttr); 3156 } 3157 3158 /// 4. Builder with type inference that sets an empty mask and sets permutation 3159 /// map to 'getMinorIdentityMap'. 3160 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3161 Value vector, Value dest, ValueRange indices, 3162 Optional<ArrayRef<bool>> inBounds) { 3163 auto vectorType = vector.getType().cast<VectorType>(); 3164 AffineMap permutationMap = getTransferMinorIdentityMap( 3165 dest.getType().cast<ShapedType>(), vectorType); 3166 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3167 } 3168 3169 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3170 OperationState &result) { 3171 auto &builder = parser.getBuilder(); 3172 SMLoc typesLoc; 3173 OpAsmParser::OperandType vectorInfo, sourceInfo; 3174 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 3175 SmallVector<Type, 2> types; 3176 OpAsmParser::OperandType maskInfo; 3177 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3178 parser.parseOperand(sourceInfo) || 3179 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3180 return failure(); 3181 ParseResult hasMask = parser.parseOptionalComma(); 3182 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3183 return failure(); 3184 if (parser.parseOptionalAttrDict(result.attributes) || 3185 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3186 return failure(); 3187 if (types.size() != 2) 3188 return parser.emitError(typesLoc, "requires two types"); 3189 auto indexType = builder.getIndexType(); 3190 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3191 if (!vectorType) 3192 return parser.emitError(typesLoc, "requires vector type"); 3193 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3194 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3195 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3196 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrName(); 3197 auto attr = result.attributes.get(permutationAttrName); 3198 if (!attr) { 3199 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3200 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3201 } 3202 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3203 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3204 parser.resolveOperands(indexInfo, indexType, result.operands)) 3205 return failure(); 3206 if (hasMask.succeeded()) { 3207 if (shapedType.getElementType().dyn_cast<VectorType>()) 3208 return parser.emitError( 3209 maskInfo.location, "does not support masks with vector element type"); 3210 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3211 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3212 return failure(); 3213 } 3214 result.addAttribute( 3215 TransferWriteOp::getOperandSegmentSizeAttr(), 3216 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3217 static_cast<int32_t>(hasMask.succeeded())})); 3218 return failure(shapedType.isa<RankedTensorType>() && 3219 parser.addTypeToList(shapedType, result.types)); 3220 } 3221 3222 void TransferWriteOp::print(OpAsmPrinter &p) { 3223 p << " " << vector() << ", " << source() << "[" << indices() << "]"; 3224 if (mask()) 3225 p << ", " << mask(); 3226 printTransferAttrs(p, *this); 3227 p << " : " << getVectorType() << ", " << getShapedType(); 3228 } 3229 3230 LogicalResult TransferWriteOp::verify() { 3231 // Consistency of elemental types in shape and vector. 3232 ShapedType shapedType = getShapedType(); 3233 VectorType vectorType = getVectorType(); 3234 VectorType maskType = getMaskType(); 3235 auto permutationMap = permutation_map(); 3236 3237 if (llvm::size(indices()) != shapedType.getRank()) 3238 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3239 3240 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3241 // as the semantics is unclear. This can be revisited later if necessary. 3242 if (hasBroadcastDim()) 3243 return emitOpError("should not have broadcast dimensions"); 3244 3245 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3246 shapedType, vectorType, maskType, permutationMap, 3247 in_bounds() ? *in_bounds() : ArrayAttr()))) 3248 return failure(); 3249 3250 return verifyPermutationMap(permutationMap, 3251 [&](Twine t) { return emitOpError(t); }); 3252 } 3253 3254 /// Fold: 3255 /// ``` 3256 /// %t1 = ... 3257 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3258 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3259 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3260 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3261 /// ``` 3262 /// 3263 /// into: 3264 /// 3265 /// ``` 3266 /// %t0 3267 /// ``` 3268 /// 3269 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3270 /// block argument or has side effects. 3271 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3272 ArrayRef<Attribute>, 3273 SmallVectorImpl<OpFoldResult> &results) { 3274 // TODO: support 0-d corner case. 3275 if (write.getTransferRank() == 0) 3276 return failure(); 3277 auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>(); 3278 // If not operating on tensors, bail. 3279 if (!rankedTensorType) 3280 return failure(); 3281 // If no read, bail. 3282 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3283 if (!read) 3284 return failure(); 3285 // TODO: support 0-d corner case. 3286 if (read.getTransferRank() == 0) 3287 return failure(); 3288 // For now, only accept minor identity. Future: composition is minor identity. 3289 if (!read.permutation_map().isMinorIdentity() || 3290 !write.permutation_map().isMinorIdentity()) 3291 return failure(); 3292 // Bail on mismatching ranks. 3293 if (read.getTransferRank() != write.getTransferRank()) 3294 return failure(); 3295 // Bail on potential out-of-bounds accesses. 3296 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3297 return failure(); 3298 // Tensor types must be the same. 3299 if (read.source().getType() != rankedTensorType) 3300 return failure(); 3301 // Vector types must be the same. 3302 if (read.getVectorType() != write.getVectorType()) 3303 return failure(); 3304 // Vector and Tensor shapes must match. 3305 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3306 return failure(); 3307 // If any index is nonzero. 3308 auto isNotConstantZero = [](Value v) { 3309 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3310 return !cstOp || cstOp.value() != 0; 3311 }; 3312 if (llvm::any_of(read.indices(), isNotConstantZero) || 3313 llvm::any_of(write.indices(), isNotConstantZero)) 3314 return failure(); 3315 // Success. 3316 results.push_back(read.source()); 3317 return success(); 3318 } 3319 3320 static bool checkSameValueWAR(vector::TransferReadOp read, 3321 vector::TransferWriteOp write) { 3322 return read.source() == write.source() && read.indices() == write.indices() && 3323 read.permutation_map() == write.permutation_map() && 3324 read.getVectorType() == write.getVectorType() && !read.mask() && 3325 !write.mask(); 3326 } 3327 /// Fold transfer_write write after read: 3328 /// ``` 3329 /// %t0 = ... 3330 /// %v = vector.transfer_read %t0[%c0...] : 3331 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3332 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3333 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3334 /// ``` 3335 /// 3336 /// into: 3337 /// 3338 /// ``` 3339 /// %t0 3340 /// ``` 3341 static LogicalResult foldWAR(TransferWriteOp write, 3342 SmallVectorImpl<OpFoldResult> &results) { 3343 if (!write.source().getType().isa<RankedTensorType>()) 3344 return failure(); 3345 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3346 if (!read) 3347 return failure(); 3348 3349 if (!checkSameValueWAR(read, write)) 3350 return failure(); 3351 results.push_back(read.source()); 3352 return success(); 3353 } 3354 3355 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3356 SmallVectorImpl<OpFoldResult> &results) { 3357 if (succeeded(foldReadInitWrite(*this, operands, results))) 3358 return success(); 3359 if (succeeded(foldWAR(*this, results))) 3360 return success(); 3361 if (succeeded(foldTransferInBoundsAttribute(*this))) 3362 return success(); 3363 return foldMemRefCast(*this); 3364 } 3365 3366 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3367 return llvm::to_vector<4>(getVectorType().getShape()); 3368 } 3369 3370 void TransferWriteOp::getEffects( 3371 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3372 &effects) { 3373 if (getShapedType().isa<MemRefType>()) 3374 effects.emplace_back(MemoryEffects::Write::get(), source(), 3375 SideEffects::DefaultResource::get()); 3376 } 3377 3378 namespace { 3379 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3380 /// DCE 3381 /// ``` 3382 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3383 /// : vector<1x4xf32>, tensor<4x4xf32> 3384 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3385 /// : vector<1x4xf32>, tensor<4x4xf32> 3386 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3387 /// : vector<1x4xf32>, tensor<4x4xf32> 3388 /// ``` 3389 /// 3390 /// into: 3391 /// 3392 /// ``` 3393 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3394 /// : vector<1x4xf32>, tensor<4x4xf32> 3395 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3396 /// : vector<1x4xf32>, tensor<4x4xf32> 3397 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3398 /// : vector<1x4xf32>, tensor<4x4xf32> 3399 /// ``` 3400 /// 3401 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3402 /// any other uses. 3403 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3404 public: 3405 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3406 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3407 PatternRewriter &rewriter) const override { 3408 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3409 return failure(); 3410 vector::TransferWriteOp writeToModify = writeOp; 3411 3412 auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>(); 3413 while (defWrite) { 3414 if (checkSameValueWAW(writeOp, defWrite)) { 3415 writeToModify.sourceMutable().assign(defWrite.source()); 3416 return success(); 3417 } 3418 if (!isDisjointTransferIndices( 3419 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3420 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3421 break; 3422 // If the previous write op doesn't have any other use we an safely look 3423 // at the previous store to see if it can be removed. 3424 if (!defWrite->hasOneUse()) 3425 break; 3426 writeToModify = defWrite; 3427 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 3428 } 3429 return failure(); 3430 } 3431 }; 3432 3433 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3434 /// could directly write to the insert_slice's destination. E.g.: 3435 /// 3436 /// ``` 3437 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3438 /// : vector<4x5xf32>, tensor<4x5xf32> 3439 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3440 /// : tensor<4x5xf32> into tensor<?x?xf32> 3441 /// ``` 3442 /// is rewritten to: 3443 /// ``` 3444 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3445 /// : vector<4x5xf32>, tensor<?x?xf32> 3446 /// ``` 3447 struct FoldInsertSliceIntoTransferWrite 3448 : public OpRewritePattern<tensor::InsertSliceOp> { 3449 public: 3450 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3451 3452 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3453 PatternRewriter &rewriter) const override { 3454 if (!insertOp.hasUnitStride()) 3455 return failure(); 3456 3457 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3458 if (!xferOp) 3459 return failure(); 3460 // TODO: support 0-d corner case. 3461 if (xferOp.getTransferRank() == 0) 3462 return failure(); 3463 3464 if (xferOp.hasOutOfBoundsDim()) 3465 return failure(); 3466 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3467 return failure(); 3468 if (xferOp.mask()) 3469 return failure(); 3470 // Fold only if the TransferWriteOp completely overwrites the `source` with 3471 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3472 // content is the data of the vector. 3473 if (!llvm::equal(xferOp.getVectorType().getShape(), 3474 xferOp.getShapedType().getShape())) 3475 return failure(); 3476 if (!xferOp.permutation_map().isIdentity()) 3477 return failure(); 3478 3479 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3480 // dims are exactly the leading dims. I.e. the following is illegal: 3481 // ``` 3482 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3483 // vector<2x4xf32>, tensor<2x4xf32> 3484 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3485 // tensor<2x4xf32> into tensor<2x1x4xf32> 3486 // ``` 3487 // 3488 // Cannot fold into: 3489 // ``` 3490 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3491 // vector<2x4xf32>, tensor<2x1x4xf32> 3492 // ``` 3493 // For this, check the trailing `vectorRank` dims of the insert_slice result 3494 // tensor match the trailing dims of the inferred result tensor. 3495 int64_t rankReduced = 3496 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3497 int64_t vectorRank = xferOp.getVectorType().getRank(); 3498 RankedTensorType inferredSourceTensorType = 3499 tensor::ExtractSliceOp::inferResultType( 3500 insertOp.getType(), insertOp.getMixedOffsets(), 3501 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3502 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3503 if (rankReduced > 0 && 3504 actualSourceTensorShape.take_back(vectorRank) != 3505 inferredSourceTensorType.getShape().take_back(vectorRank)) 3506 return failure(); 3507 3508 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3509 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3510 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3511 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(), 3512 insertOp.dest(), indices, 3513 ArrayRef<bool>{inBounds}); 3514 return success(); 3515 } 3516 }; 3517 } // namespace 3518 3519 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3520 MLIRContext *context) { 3521 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // LoadOp 3526 //===----------------------------------------------------------------------===// 3527 3528 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3529 MemRefType memRefTy) { 3530 if (!isLastMemrefDimUnitStride(memRefTy)) 3531 return op->emitOpError("most minor memref dim must have unit stride"); 3532 return success(); 3533 } 3534 3535 LogicalResult vector::LoadOp::verify() { 3536 VectorType resVecTy = getVectorType(); 3537 MemRefType memRefTy = getMemRefType(); 3538 3539 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3540 return failure(); 3541 3542 // Checks for vector memrefs. 3543 Type memElemTy = memRefTy.getElementType(); 3544 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3545 if (memVecTy != resVecTy) 3546 return emitOpError("base memref and result vector types should match"); 3547 memElemTy = memVecTy.getElementType(); 3548 } 3549 3550 if (resVecTy.getElementType() != memElemTy) 3551 return emitOpError("base and result element types should match"); 3552 if (llvm::size(indices()) != memRefTy.getRank()) 3553 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3554 return success(); 3555 } 3556 3557 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3558 if (succeeded(foldMemRefCast(*this))) 3559 return getResult(); 3560 return OpFoldResult(); 3561 } 3562 3563 //===----------------------------------------------------------------------===// 3564 // StoreOp 3565 //===----------------------------------------------------------------------===// 3566 3567 LogicalResult vector::StoreOp::verify() { 3568 VectorType valueVecTy = getVectorType(); 3569 MemRefType memRefTy = getMemRefType(); 3570 3571 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3572 return failure(); 3573 3574 // Checks for vector memrefs. 3575 Type memElemTy = memRefTy.getElementType(); 3576 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3577 if (memVecTy != valueVecTy) 3578 return emitOpError( 3579 "base memref and valueToStore vector types should match"); 3580 memElemTy = memVecTy.getElementType(); 3581 } 3582 3583 if (valueVecTy.getElementType() != memElemTy) 3584 return emitOpError("base and valueToStore element type should match"); 3585 if (llvm::size(indices()) != memRefTy.getRank()) 3586 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3587 return success(); 3588 } 3589 3590 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3591 SmallVectorImpl<OpFoldResult> &results) { 3592 return foldMemRefCast(*this); 3593 } 3594 3595 //===----------------------------------------------------------------------===// 3596 // MaskedLoadOp 3597 //===----------------------------------------------------------------------===// 3598 3599 LogicalResult MaskedLoadOp::verify() { 3600 VectorType maskVType = getMaskVectorType(); 3601 VectorType passVType = getPassThruVectorType(); 3602 VectorType resVType = getVectorType(); 3603 MemRefType memType = getMemRefType(); 3604 3605 if (resVType.getElementType() != memType.getElementType()) 3606 return emitOpError("base and result element type should match"); 3607 if (llvm::size(indices()) != memType.getRank()) 3608 return emitOpError("requires ") << memType.getRank() << " indices"; 3609 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3610 return emitOpError("expected result dim to match mask dim"); 3611 if (resVType != passVType) 3612 return emitOpError("expected pass_thru of same type as result type"); 3613 return success(); 3614 } 3615 3616 namespace { 3617 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3618 public: 3619 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3620 LogicalResult matchAndRewrite(MaskedLoadOp load, 3621 PatternRewriter &rewriter) const override { 3622 switch (get1DMaskFormat(load.mask())) { 3623 case MaskFormat::AllTrue: 3624 rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(), 3625 load.base(), load.indices()); 3626 return success(); 3627 case MaskFormat::AllFalse: 3628 rewriter.replaceOp(load, load.pass_thru()); 3629 return success(); 3630 case MaskFormat::Unknown: 3631 return failure(); 3632 } 3633 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3634 } 3635 }; 3636 } // namespace 3637 3638 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3639 MLIRContext *context) { 3640 results.add<MaskedLoadFolder>(context); 3641 } 3642 3643 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3644 if (succeeded(foldMemRefCast(*this))) 3645 return getResult(); 3646 return OpFoldResult(); 3647 } 3648 3649 //===----------------------------------------------------------------------===// 3650 // MaskedStoreOp 3651 //===----------------------------------------------------------------------===// 3652 3653 LogicalResult MaskedStoreOp::verify() { 3654 VectorType maskVType = getMaskVectorType(); 3655 VectorType valueVType = getVectorType(); 3656 MemRefType memType = getMemRefType(); 3657 3658 if (valueVType.getElementType() != memType.getElementType()) 3659 return emitOpError("base and valueToStore element type should match"); 3660 if (llvm::size(indices()) != memType.getRank()) 3661 return emitOpError("requires ") << memType.getRank() << " indices"; 3662 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3663 return emitOpError("expected valueToStore dim to match mask dim"); 3664 return success(); 3665 } 3666 3667 namespace { 3668 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3669 public: 3670 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3671 LogicalResult matchAndRewrite(MaskedStoreOp store, 3672 PatternRewriter &rewriter) const override { 3673 switch (get1DMaskFormat(store.mask())) { 3674 case MaskFormat::AllTrue: 3675 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3676 store, store.valueToStore(), store.base(), store.indices()); 3677 return success(); 3678 case MaskFormat::AllFalse: 3679 rewriter.eraseOp(store); 3680 return success(); 3681 case MaskFormat::Unknown: 3682 return failure(); 3683 } 3684 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3685 } 3686 }; 3687 } // namespace 3688 3689 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3690 MLIRContext *context) { 3691 results.add<MaskedStoreFolder>(context); 3692 } 3693 3694 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3695 SmallVectorImpl<OpFoldResult> &results) { 3696 return foldMemRefCast(*this); 3697 } 3698 3699 //===----------------------------------------------------------------------===// 3700 // GatherOp 3701 //===----------------------------------------------------------------------===// 3702 3703 LogicalResult GatherOp::verify() { 3704 VectorType indVType = getIndexVectorType(); 3705 VectorType maskVType = getMaskVectorType(); 3706 VectorType resVType = getVectorType(); 3707 MemRefType memType = getMemRefType(); 3708 3709 if (resVType.getElementType() != memType.getElementType()) 3710 return emitOpError("base and result element type should match"); 3711 if (llvm::size(indices()) != memType.getRank()) 3712 return emitOpError("requires ") << memType.getRank() << " indices"; 3713 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3714 return emitOpError("expected result dim to match indices dim"); 3715 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3716 return emitOpError("expected result dim to match mask dim"); 3717 if (resVType != getPassThruVectorType()) 3718 return emitOpError("expected pass_thru of same type as result type"); 3719 return success(); 3720 } 3721 3722 namespace { 3723 class GatherFolder final : public OpRewritePattern<GatherOp> { 3724 public: 3725 using OpRewritePattern<GatherOp>::OpRewritePattern; 3726 LogicalResult matchAndRewrite(GatherOp gather, 3727 PatternRewriter &rewriter) const override { 3728 switch (get1DMaskFormat(gather.mask())) { 3729 case MaskFormat::AllTrue: 3730 return failure(); // no unmasked equivalent 3731 case MaskFormat::AllFalse: 3732 rewriter.replaceOp(gather, gather.pass_thru()); 3733 return success(); 3734 case MaskFormat::Unknown: 3735 return failure(); 3736 } 3737 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3738 } 3739 }; 3740 } // namespace 3741 3742 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3743 MLIRContext *context) { 3744 results.add<GatherFolder>(context); 3745 } 3746 3747 //===----------------------------------------------------------------------===// 3748 // ScatterOp 3749 //===----------------------------------------------------------------------===// 3750 3751 LogicalResult ScatterOp::verify() { 3752 VectorType indVType = getIndexVectorType(); 3753 VectorType maskVType = getMaskVectorType(); 3754 VectorType valueVType = getVectorType(); 3755 MemRefType memType = getMemRefType(); 3756 3757 if (valueVType.getElementType() != memType.getElementType()) 3758 return emitOpError("base and valueToStore element type should match"); 3759 if (llvm::size(indices()) != memType.getRank()) 3760 return emitOpError("requires ") << memType.getRank() << " indices"; 3761 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3762 return emitOpError("expected valueToStore dim to match indices dim"); 3763 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3764 return emitOpError("expected valueToStore dim to match mask dim"); 3765 return success(); 3766 } 3767 3768 namespace { 3769 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3770 public: 3771 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3772 LogicalResult matchAndRewrite(ScatterOp scatter, 3773 PatternRewriter &rewriter) const override { 3774 switch (get1DMaskFormat(scatter.mask())) { 3775 case MaskFormat::AllTrue: 3776 return failure(); // no unmasked equivalent 3777 case MaskFormat::AllFalse: 3778 rewriter.eraseOp(scatter); 3779 return success(); 3780 case MaskFormat::Unknown: 3781 return failure(); 3782 } 3783 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3784 } 3785 }; 3786 } // namespace 3787 3788 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3789 MLIRContext *context) { 3790 results.add<ScatterFolder>(context); 3791 } 3792 3793 //===----------------------------------------------------------------------===// 3794 // ExpandLoadOp 3795 //===----------------------------------------------------------------------===// 3796 3797 LogicalResult ExpandLoadOp::verify() { 3798 VectorType maskVType = getMaskVectorType(); 3799 VectorType passVType = getPassThruVectorType(); 3800 VectorType resVType = getVectorType(); 3801 MemRefType memType = getMemRefType(); 3802 3803 if (resVType.getElementType() != memType.getElementType()) 3804 return emitOpError("base and result element type should match"); 3805 if (llvm::size(indices()) != memType.getRank()) 3806 return emitOpError("requires ") << memType.getRank() << " indices"; 3807 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3808 return emitOpError("expected result dim to match mask dim"); 3809 if (resVType != passVType) 3810 return emitOpError("expected pass_thru of same type as result type"); 3811 return success(); 3812 } 3813 3814 namespace { 3815 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3816 public: 3817 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3818 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3819 PatternRewriter &rewriter) const override { 3820 switch (get1DMaskFormat(expand.mask())) { 3821 case MaskFormat::AllTrue: 3822 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3823 expand, expand.getType(), expand.base(), expand.indices()); 3824 return success(); 3825 case MaskFormat::AllFalse: 3826 rewriter.replaceOp(expand, expand.pass_thru()); 3827 return success(); 3828 case MaskFormat::Unknown: 3829 return failure(); 3830 } 3831 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3832 } 3833 }; 3834 } // namespace 3835 3836 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3837 MLIRContext *context) { 3838 results.add<ExpandLoadFolder>(context); 3839 } 3840 3841 //===----------------------------------------------------------------------===// 3842 // CompressStoreOp 3843 //===----------------------------------------------------------------------===// 3844 3845 LogicalResult CompressStoreOp::verify() { 3846 VectorType maskVType = getMaskVectorType(); 3847 VectorType valueVType = getVectorType(); 3848 MemRefType memType = getMemRefType(); 3849 3850 if (valueVType.getElementType() != memType.getElementType()) 3851 return emitOpError("base and valueToStore element type should match"); 3852 if (llvm::size(indices()) != memType.getRank()) 3853 return emitOpError("requires ") << memType.getRank() << " indices"; 3854 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3855 return emitOpError("expected valueToStore dim to match mask dim"); 3856 return success(); 3857 } 3858 3859 namespace { 3860 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3861 public: 3862 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3863 LogicalResult matchAndRewrite(CompressStoreOp compress, 3864 PatternRewriter &rewriter) const override { 3865 switch (get1DMaskFormat(compress.mask())) { 3866 case MaskFormat::AllTrue: 3867 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3868 compress, compress.valueToStore(), compress.base(), 3869 compress.indices()); 3870 return success(); 3871 case MaskFormat::AllFalse: 3872 rewriter.eraseOp(compress); 3873 return success(); 3874 case MaskFormat::Unknown: 3875 return failure(); 3876 } 3877 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3878 } 3879 }; 3880 } // namespace 3881 3882 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3883 MLIRContext *context) { 3884 results.add<CompressStoreFolder>(context); 3885 } 3886 3887 //===----------------------------------------------------------------------===// 3888 // ShapeCastOp 3889 //===----------------------------------------------------------------------===// 3890 3891 /// Returns true if each element of 'a' is equal to the product of a contiguous 3892 /// sequence of the elements of 'b'. Returns false otherwise. 3893 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3894 unsigned rankA = a.size(); 3895 unsigned rankB = b.size(); 3896 assert(rankA < rankB); 3897 3898 unsigned i = 0; 3899 unsigned j = 0; 3900 while (i < rankA && j < rankB) { 3901 int64_t dimA = a[i]; 3902 int64_t dimB = 1; 3903 while (dimB < dimA && j < rankB) 3904 dimB *= b[j++]; 3905 if (dimA != dimB) 3906 break; 3907 ++i; 3908 3909 // Handle the case when trailing dimensions are of size 1. 3910 // Include them into the contiguous sequence. 3911 auto isOne = [](int64_t v) { return v == 1; }; 3912 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3913 i = rankA; 3914 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3915 j = rankB; 3916 } 3917 3918 return i == rankA && j == rankB; 3919 } 3920 3921 static LogicalResult verifyVectorShapeCast(Operation *op, 3922 VectorType sourceVectorType, 3923 VectorType resultVectorType) { 3924 // Check that element type is the same. 3925 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3926 return op->emitOpError("source/result vectors must have same element type"); 3927 auto sourceShape = sourceVectorType.getShape(); 3928 auto resultShape = resultVectorType.getShape(); 3929 3930 // Check that product of source dim sizes matches product of result dim sizes. 3931 int64_t sourceDimProduct = std::accumulate( 3932 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3933 int64_t resultDimProduct = std::accumulate( 3934 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3935 if (sourceDimProduct != resultDimProduct) 3936 return op->emitOpError("source/result number of elements must match"); 3937 3938 // Check that expanding/contracting rank cases. 3939 unsigned sourceRank = sourceVectorType.getRank(); 3940 unsigned resultRank = resultVectorType.getRank(); 3941 if (sourceRank < resultRank) { 3942 if (!isValidShapeCast(sourceShape, resultShape)) 3943 return op->emitOpError("invalid shape cast"); 3944 } else if (sourceRank > resultRank) { 3945 if (!isValidShapeCast(resultShape, sourceShape)) 3946 return op->emitOpError("invalid shape cast"); 3947 } 3948 return success(); 3949 } 3950 3951 LogicalResult ShapeCastOp::verify() { 3952 auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>(); 3953 auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>(); 3954 3955 // Check if source/result are of vector type. 3956 if (sourceVectorType && resultVectorType) 3957 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3958 3959 return success(); 3960 } 3961 3962 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3963 // Nop shape cast. 3964 if (source().getType() == result().getType()) 3965 return source(); 3966 3967 // Canceling shape casts. 3968 if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) { 3969 if (result().getType() == otherOp.source().getType()) 3970 return otherOp.source(); 3971 3972 // Only allows valid transitive folding. 3973 VectorType srcType = otherOp.source().getType().cast<VectorType>(); 3974 VectorType resultType = getResult().getType().cast<VectorType>(); 3975 if (srcType.getRank() < resultType.getRank()) { 3976 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3977 return {}; 3978 } else if (srcType.getRank() > resultType.getRank()) { 3979 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3980 return {}; 3981 } else { 3982 return {}; 3983 } 3984 3985 setOperand(otherOp.source()); 3986 return getResult(); 3987 } 3988 return {}; 3989 } 3990 3991 namespace { 3992 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 3993 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 3994 public: 3995 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 3996 3997 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 3998 PatternRewriter &rewriter) const override { 3999 auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>(); 4000 if (!constantOp) 4001 return failure(); 4002 // Only handle splat for now. 4003 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4004 if (!dense) 4005 return failure(); 4006 auto newAttr = 4007 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4008 dense.getSplatValue<Attribute>()); 4009 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4010 return success(); 4011 } 4012 }; 4013 4014 } // namespace 4015 4016 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4017 MLIRContext *context) { 4018 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4019 results.add<ShapeCastConstantFolder>(context); 4020 } 4021 4022 //===----------------------------------------------------------------------===// 4023 // VectorBitCastOp 4024 //===----------------------------------------------------------------------===// 4025 4026 LogicalResult BitCastOp::verify() { 4027 auto sourceVectorType = getSourceVectorType(); 4028 auto resultVectorType = getResultVectorType(); 4029 4030 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4031 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4032 return emitOpError("dimension size mismatch at: ") << i; 4033 } 4034 4035 DataLayout dataLayout = DataLayout::closest(*this); 4036 auto sourceElementBits = 4037 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4038 auto resultElementBits = 4039 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4040 4041 if (sourceVectorType.getRank() == 0) { 4042 if (sourceElementBits != resultElementBits) 4043 return emitOpError("source/result bitwidth of the 0-D vector element " 4044 "types must be equal"); 4045 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4046 resultElementBits * resultVectorType.getShape().back()) { 4047 return emitOpError( 4048 "source/result bitwidth of the minor 1-D vectors must be equal"); 4049 } 4050 4051 return success(); 4052 } 4053 4054 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4055 // Nop cast. 4056 if (source().getType() == result().getType()) 4057 return source(); 4058 4059 // Canceling bitcasts. 4060 if (auto otherOp = source().getDefiningOp<BitCastOp>()) 4061 if (result().getType() == otherOp.source().getType()) 4062 return otherOp.source(); 4063 4064 Attribute sourceConstant = operands.front(); 4065 if (!sourceConstant) 4066 return {}; 4067 4068 Type srcElemType = getSourceVectorType().getElementType(); 4069 Type dstElemType = getResultVectorType().getElementType(); 4070 4071 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4072 if (floatPack.isSplat()) { 4073 auto splat = floatPack.getSplatValue<FloatAttr>(); 4074 4075 // Casting fp16 into fp32. 4076 if (srcElemType.isF16() && dstElemType.isF32()) { 4077 uint32_t bits = static_cast<uint32_t>( 4078 splat.getValue().bitcastToAPInt().getZExtValue()); 4079 // Duplicate the 16-bit pattern. 4080 bits = (bits << 16) | (bits & 0xffff); 4081 APInt intBits(32, bits); 4082 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4083 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4084 } 4085 } 4086 } 4087 4088 return {}; 4089 } 4090 4091 //===----------------------------------------------------------------------===// 4092 // TypeCastOp 4093 //===----------------------------------------------------------------------===// 4094 4095 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4096 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4097 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4098 memRefType.getShape().end()); 4099 if (vectorType) 4100 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4101 return res; 4102 } 4103 4104 /// Build the canonical memRefType with a single vector. 4105 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4106 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4107 Value source) { 4108 result.addOperands(source); 4109 MemRefType memRefType = source.getType().cast<MemRefType>(); 4110 VectorType vectorType = 4111 VectorType::get(extractShape(memRefType), 4112 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4113 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4114 memRefType.getMemorySpace())); 4115 } 4116 4117 LogicalResult TypeCastOp::verify() { 4118 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4119 if (!canonicalType.getLayout().isIdentity()) 4120 return emitOpError("expects operand to be a memref with identity layout"); 4121 if (!getResultMemRefType().getLayout().isIdentity()) 4122 return emitOpError("expects result to be a memref with identity layout"); 4123 if (getResultMemRefType().getMemorySpace() != 4124 getMemRefType().getMemorySpace()) 4125 return emitOpError("expects result in same memory space"); 4126 4127 auto sourceType = getMemRefType(); 4128 auto resultType = getResultMemRefType(); 4129 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4130 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4131 return emitOpError( 4132 "expects result and operand with same underlying scalar type: ") 4133 << resultType; 4134 if (extractShape(sourceType) != extractShape(resultType)) 4135 return emitOpError( 4136 "expects concatenated result and operand shapes to be equal: ") 4137 << resultType; 4138 return success(); 4139 } 4140 4141 //===----------------------------------------------------------------------===// 4142 // TransposeOp 4143 //===----------------------------------------------------------------------===// 4144 4145 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4146 Value vector, ArrayRef<int64_t> transp) { 4147 VectorType vt = vector.getType().cast<VectorType>(); 4148 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4149 for (unsigned i = 0; i < transp.size(); ++i) 4150 transposedShape[i] = vt.getShape()[transp[i]]; 4151 4152 result.addOperands(vector); 4153 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4154 result.addAttribute(getTranspAttrName(), builder.getI64ArrayAttr(transp)); 4155 } 4156 4157 // Eliminates transpose operations, which produce values identical to their 4158 // input values. This happens when the dimensions of the input vector remain in 4159 // their original order after the transpose operation. 4160 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4161 SmallVector<int64_t, 4> transp; 4162 getTransp(transp); 4163 4164 // Check if the permutation of the dimensions contains sequential values: 4165 // {0, 1, 2, ...}. 4166 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4167 if (transp[i] != i) 4168 return {}; 4169 } 4170 4171 return vector(); 4172 } 4173 4174 LogicalResult vector::TransposeOp::verify() { 4175 VectorType vectorType = getVectorType(); 4176 VectorType resultType = getResultType(); 4177 int64_t rank = resultType.getRank(); 4178 if (vectorType.getRank() != rank) 4179 return emitOpError("vector result rank mismatch: ") << rank; 4180 // Verify transposition array. 4181 auto transpAttr = transp().getValue(); 4182 int64_t size = transpAttr.size(); 4183 if (rank != size) 4184 return emitOpError("transposition length mismatch: ") << size; 4185 SmallVector<bool, 8> seen(rank, false); 4186 for (const auto &ta : llvm::enumerate(transpAttr)) { 4187 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4188 if (i < 0 || i >= rank) 4189 return emitOpError("transposition index out of range: ") << i; 4190 if (seen[i]) 4191 return emitOpError("duplicate position index: ") << i; 4192 seen[i] = true; 4193 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4194 return emitOpError("dimension size mismatch at: ") << i; 4195 } 4196 return success(); 4197 } 4198 4199 namespace { 4200 4201 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4202 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4203 public: 4204 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4205 4206 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4207 PatternRewriter &rewriter) const override { 4208 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4209 auto getPermutation = [](vector::TransposeOp transpose) { 4210 SmallVector<int64_t, 4> permutation; 4211 transpose.getTransp(permutation); 4212 return permutation; 4213 }; 4214 4215 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4216 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4217 ArrayRef<int64_t> permutation2) { 4218 SmallVector<int64_t, 4> result; 4219 for (auto index : permutation2) 4220 result.push_back(permutation1[index]); 4221 return result; 4222 }; 4223 4224 // Return if the input of 'transposeOp' is not defined by another transpose. 4225 vector::TransposeOp parentTransposeOp = 4226 transposeOp.vector().getDefiningOp<vector::TransposeOp>(); 4227 if (!parentTransposeOp) 4228 return failure(); 4229 4230 SmallVector<int64_t, 4> permutation = composePermutations( 4231 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4232 // Replace 'transposeOp' with a new transpose operation. 4233 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4234 transposeOp, transposeOp.getResult().getType(), 4235 parentTransposeOp.vector(), 4236 vector::getVectorSubscriptAttr(rewriter, permutation)); 4237 return success(); 4238 } 4239 }; 4240 4241 } // namespace 4242 4243 void vector::TransposeOp::getCanonicalizationPatterns( 4244 RewritePatternSet &results, MLIRContext *context) { 4245 results.add<TransposeFolder>(context); 4246 } 4247 4248 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4249 populateFromInt64AttrArray(transp(), results); 4250 } 4251 4252 //===----------------------------------------------------------------------===// 4253 // ConstantMaskOp 4254 //===----------------------------------------------------------------------===// 4255 4256 LogicalResult ConstantMaskOp::verify() { 4257 auto resultType = getResult().getType().cast<VectorType>(); 4258 // Check the corner case of 0-D vectors first. 4259 if (resultType.getRank() == 0) { 4260 if (mask_dim_sizes().size() != 1) 4261 return emitError("array attr must have length 1 for 0-D vectors"); 4262 auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt(); 4263 if (dim != 0 && dim != 1) 4264 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4265 return success(); 4266 } 4267 4268 // Verify that array attr size matches the rank of the vector result. 4269 if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank()) 4270 return emitOpError( 4271 "must specify array attr of size equal vector result rank"); 4272 // Verify that each array attr element is in bounds of corresponding vector 4273 // result dimension size. 4274 auto resultShape = resultType.getShape(); 4275 SmallVector<int64_t, 4> maskDimSizes; 4276 for (const auto &it : llvm::enumerate(mask_dim_sizes())) { 4277 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4278 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4279 return emitOpError( 4280 "array attr of size out of bounds of vector result dimension size"); 4281 maskDimSizes.push_back(attrValue); 4282 } 4283 // Verify that if one mask dim size is zero, they all should be zero (because 4284 // the mask region is a conjunction of each mask dimension interval). 4285 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4286 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4287 if (anyZeros && !allZeros) 4288 return emitOpError("expected all mask dim sizes to be zeros, " 4289 "as a result of conjunction with zero mask dim"); 4290 return success(); 4291 } 4292 4293 //===----------------------------------------------------------------------===// 4294 // CreateMaskOp 4295 //===----------------------------------------------------------------------===// 4296 4297 LogicalResult CreateMaskOp::verify() { 4298 auto vectorType = getResult().getType().cast<VectorType>(); 4299 // Verify that an operand was specified for each result vector each dimension. 4300 if (vectorType.getRank() == 0) { 4301 if (getNumOperands() != 1) 4302 return emitOpError( 4303 "must specify exactly one operand for 0-D create_mask"); 4304 } else if (getNumOperands() != 4305 getResult().getType().cast<VectorType>().getRank()) { 4306 return emitOpError( 4307 "must specify an operand for each result vector dimension"); 4308 } 4309 return success(); 4310 } 4311 4312 namespace { 4313 4314 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4315 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4316 public: 4317 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4318 4319 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4320 PatternRewriter &rewriter) const override { 4321 // Return if any of 'createMaskOp' operands are not defined by a constant. 4322 auto isNotDefByConstant = [](Value operand) { 4323 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4324 }; 4325 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4326 return failure(); 4327 // Gather constant mask dimension sizes. 4328 SmallVector<int64_t, 4> maskDimSizes; 4329 for (auto it : llvm::zip(createMaskOp.operands(), 4330 createMaskOp.getType().getShape())) { 4331 auto *defOp = std::get<0>(it).getDefiningOp(); 4332 int64_t maxDimSize = std::get<1>(it); 4333 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4334 dimSize = std::min(dimSize, maxDimSize); 4335 // If one of dim sizes is zero, set all dims to zero. 4336 if (dimSize <= 0) { 4337 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4338 break; 4339 } 4340 maskDimSizes.push_back(dimSize); 4341 } 4342 // Replace 'createMaskOp' with ConstantMaskOp. 4343 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4344 createMaskOp, createMaskOp.getResult().getType(), 4345 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4346 return success(); 4347 } 4348 }; 4349 4350 } // namespace 4351 4352 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4353 MLIRContext *context) { 4354 results.add<CreateMaskFolder>(context); 4355 } 4356 4357 //===----------------------------------------------------------------------===// 4358 // ScanOp 4359 //===----------------------------------------------------------------------===// 4360 4361 LogicalResult ScanOp::verify() { 4362 VectorType srcType = getSourceType(); 4363 VectorType initialType = getInitialValueType(); 4364 // Check reduction dimension < rank. 4365 int64_t srcRank = srcType.getRank(); 4366 int64_t reductionDim = reduction_dim(); 4367 if (reductionDim >= srcRank) 4368 return emitOpError("reduction dimension ") 4369 << reductionDim << " has to be less than " << srcRank; 4370 4371 // Check that rank(initial_value) = rank(src) - 1. 4372 int64_t initialValueRank = initialType.getRank(); 4373 if (initialValueRank != srcRank - 1) 4374 return emitOpError("initial value rank ") 4375 << initialValueRank << " has to be equal to " << srcRank - 1; 4376 4377 // Check shapes of initial value and src. 4378 ArrayRef<int64_t> srcShape = srcType.getShape(); 4379 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4380 SmallVector<int64_t> expectedShape; 4381 for (int i = 0; i < srcRank; i++) { 4382 if (i != reductionDim) 4383 expectedShape.push_back(srcShape[i]); 4384 } 4385 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4386 [](std::tuple<int64_t, int64_t> s) { 4387 return std::get<0>(s) != std::get<1>(s); 4388 })) { 4389 return emitOpError("incompatible input/initial value shapes"); 4390 } 4391 4392 return success(); 4393 } 4394 4395 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4396 RewritePatternSet &patterns) { 4397 patterns 4398 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4399 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4400 StridedSliceConstantMaskFolder, TransposeFolder>( 4401 patterns.getContext()); 4402 } 4403 4404 //===----------------------------------------------------------------------===// 4405 // SplatOp 4406 //===----------------------------------------------------------------------===// 4407 4408 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4409 auto constOperand = operands.front(); 4410 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4411 return {}; 4412 4413 // SplatElementsAttr::get treats single value for second arg as being a splat. 4414 return SplatElementsAttr::get(getType(), {constOperand}); 4415 } 4416 4417 //===----------------------------------------------------------------------===// 4418 // TableGen'd op method definitions 4419 //===----------------------------------------------------------------------===// 4420 4421 #define GET_OP_CLASSES 4422 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4423