1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.mask_dim_sizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() && 144 defWrite.indices() == read.indices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.permutation_map() == read.permutation_map(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.indices() == write.indices() && 152 priorWrite.mask() == write.mask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.permutation_map() == write.permutation_map(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 result.addOperands(source); 340 auto sourceVectorType = source.getType().cast<VectorType>(); 341 auto targetType = MultiDimReductionOp::inferDestType( 342 sourceVectorType.getShape(), reductionMask, 343 sourceVectorType.getElementType()); 344 result.addTypes(targetType); 345 346 SmallVector<int64_t> reductionDims; 347 for (const auto &en : llvm::enumerate(reductionMask)) 348 if (en.value()) 349 reductionDims.push_back(en.index()); 350 result.addAttribute(getReductionDimsAttrName(), 351 builder.getI64ArrayAttr(reductionDims)); 352 result.addAttribute(getKindAttrName(), 353 CombiningKindAttr::get(kind, builder.getContext())); 354 } 355 356 LogicalResult MultiDimReductionOp::verify() { 357 auto reductionMask = getReductionMask(); 358 auto targetType = MultiDimReductionOp::inferDestType( 359 getSourceVectorType().getShape(), reductionMask, 360 getSourceVectorType().getElementType()); 361 // TODO: update to support 0-d vectors when available. 362 if (targetType != getDestType()) 363 return emitError("invalid output vector type: ") 364 << getDestType() << " (expected: " << targetType << ")"; 365 return success(); 366 } 367 368 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 369 // Single parallel dim, this is a noop. 370 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 371 return source(); 372 return {}; 373 } 374 375 //===----------------------------------------------------------------------===// 376 // ReductionOp 377 //===----------------------------------------------------------------------===// 378 379 LogicalResult ReductionOp::verify() { 380 // Verify for 1-D vector. 381 int64_t rank = getVectorType().getRank(); 382 if (rank != 1) 383 return emitOpError("unsupported reduction rank: ") << rank; 384 385 // Verify supported reduction kind. 386 StringRef strKind = kind(); 387 auto maybeKind = symbolizeCombiningKind(strKind); 388 if (!maybeKind) 389 return emitOpError("unknown reduction kind: ") << strKind; 390 391 Type eltType = dest().getType(); 392 if (!isSupportedCombiningKind(*maybeKind, eltType)) 393 return emitOpError("unsupported reduction type '") 394 << eltType << "' for kind '" << strKind << "'"; 395 396 // Verify optional accumulator. 397 if (!acc().empty()) { 398 if (strKind != "add" && strKind != "mul") 399 return emitOpError("no accumulator for reduction kind: ") << strKind; 400 if (!eltType.isa<FloatType>()) 401 return emitOpError("no accumulator for type: ") << eltType; 402 } 403 404 return success(); 405 } 406 407 static ParseResult parseReductionOp(OpAsmParser &parser, 408 OperationState &result) { 409 SmallVector<OpAsmParser::OperandType, 2> operandsInfo; 410 Type redType; 411 Type resType; 412 Attribute attr; 413 if (parser.parseAttribute(attr, "kind", result.attributes) || 414 parser.parseComma() || parser.parseOperandList(operandsInfo) || 415 parser.parseColonType(redType) || 416 parser.parseKeywordType("into", resType) || 417 (!operandsInfo.empty() && 418 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 419 (operandsInfo.size() > 1 && 420 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 421 parser.addTypeToList(resType, result.types)) 422 return failure(); 423 if (operandsInfo.empty() || operandsInfo.size() > 2) 424 return parser.emitError(parser.getNameLoc(), 425 "unsupported number of operands"); 426 return success(); 427 } 428 429 static void print(OpAsmPrinter &p, ReductionOp op) { 430 p << " \"" << op.kind() << "\", " << op.vector(); 431 if (!op.acc().empty()) 432 p << ", " << op.acc(); 433 p << " : " << op.vector().getType() << " into " << op.dest().getType(); 434 } 435 436 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 437 OpBuilder &builder, Location loc, 438 Value vector) { 439 Type scalarType = vector.getType().cast<ShapedType>().getElementType(); 440 switch (op) { 441 case arith::AtomicRMWKind::addf: 442 case arith::AtomicRMWKind::addi: 443 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 444 builder.getStringAttr("add"), 445 vector, ValueRange{}); 446 case arith::AtomicRMWKind::mulf: 447 case arith::AtomicRMWKind::muli: 448 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 449 builder.getStringAttr("mul"), 450 vector, ValueRange{}); 451 case arith::AtomicRMWKind::minf: 452 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 453 builder.getStringAttr("minf"), 454 vector, ValueRange{}); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 457 builder.getStringAttr("minsi"), 458 vector, ValueRange{}); 459 case arith::AtomicRMWKind::minu: 460 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 461 builder.getStringAttr("minui"), 462 vector, ValueRange{}); 463 case arith::AtomicRMWKind::maxf: 464 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 465 builder.getStringAttr("maxf"), 466 vector, ValueRange{}); 467 case arith::AtomicRMWKind::maxs: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 469 builder.getStringAttr("maxsi"), 470 vector, ValueRange{}); 471 case arith::AtomicRMWKind::maxu: 472 return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType, 473 builder.getStringAttr("maxui"), 474 vector, ValueRange{}); 475 // TODO: Add remaining reduction operations. 476 default: 477 (void)emitOptionalError(loc, "Reduction operation type not supported"); 478 break; 479 } 480 return nullptr; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // ContractionOp 485 //===----------------------------------------------------------------------===// 486 487 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 488 Value lhs, Value rhs, Value acc, 489 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 490 ArrayRef<StringRef> iteratorTypes) { 491 result.addOperands({lhs, rhs, acc}); 492 result.addTypes(acc.getType()); 493 result.addAttribute(getIndexingMapsAttrName(), 494 builder.getAffineMapArrayAttr( 495 AffineMap::inferFromExprList(indexingExprs))); 496 result.addAttribute(getIteratorTypesAttrName(), 497 builder.getStrArrayAttr(iteratorTypes)); 498 } 499 500 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 501 Value lhs, Value rhs, Value acc, 502 ArrayAttr indexingMaps, 503 ArrayAttr iteratorTypes) { 504 result.addOperands({lhs, rhs, acc}); 505 result.addTypes(acc.getType()); 506 result.addAttribute(getIndexingMapsAttrName(), indexingMaps); 507 result.addAttribute(getIteratorTypesAttrName(), iteratorTypes); 508 result.addAttribute(ContractionOp::getKindAttrName(), 509 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 510 builder.getContext())); 511 } 512 513 static ParseResult parseContractionOp(OpAsmParser &parser, 514 OperationState &result) { 515 OpAsmParser::OperandType lhsInfo; 516 OpAsmParser::OperandType rhsInfo; 517 OpAsmParser::OperandType accInfo; 518 SmallVector<OpAsmParser::OperandType, 2> masksInfo; 519 SmallVector<Type, 2> types; 520 Type resultType; 521 auto loc = parser.getCurrentLocation(); 522 DictionaryAttr dictAttr; 523 // TODO: Unify linalg op attribute parsing. 524 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 525 parser.parseOperand(lhsInfo) || parser.parseComma() || 526 parser.parseOperand(rhsInfo) || parser.parseComma() || 527 parser.parseOperand(accInfo) || 528 parser.parseTrailingOperandList(masksInfo) || 529 parser.parseOptionalAttrDict(result.attributes) || 530 parser.parseColonTypeList(types) || 531 parser.parseKeywordType("into", resultType) || 532 parser.resolveOperand(lhsInfo, types[0], result.operands) || 533 parser.resolveOperand(rhsInfo, types[1], result.operands) || 534 parser.resolveOperand(accInfo, resultType, result.operands) || 535 parser.addTypeToList(resultType, result.types)) 536 return failure(); 537 result.attributes.assign(dictAttr.getValue().begin(), 538 dictAttr.getValue().end()); 539 if (!result.attributes.get(ContractionOp::getKindAttrName())) { 540 result.addAttribute(ContractionOp::getKindAttrName(), 541 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 542 result.getContext())); 543 } 544 if (masksInfo.empty()) 545 return success(); 546 if (masksInfo.size() != 2) 547 return parser.emitError(parser.getNameLoc(), 548 "expected zero or exactly 2 vector mask operands"); 549 auto lhsType = types[0].cast<VectorType>(); 550 auto rhsType = types[1].cast<VectorType>(); 551 auto maskElementType = parser.getBuilder().getI1Type(); 552 std::array<Type, 2> maskTypes = { 553 VectorType::Builder(lhsType).setElementType(maskElementType), 554 VectorType::Builder(rhsType).setElementType(maskElementType)}; 555 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 556 return failure(); 557 return success(); 558 } 559 560 static void print(OpAsmPrinter &p, ContractionOp op) { 561 // TODO: Unify printing code with linalg ops. 562 auto attrNames = op.getTraitAttrNames(); 563 llvm::StringSet<> traitAttrsSet; 564 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 565 SmallVector<NamedAttribute, 8> attrs; 566 for (auto attr : op->getAttrs()) 567 if (traitAttrsSet.count(attr.getName().strref()) > 0) 568 attrs.push_back(attr); 569 570 auto dictAttr = DictionaryAttr::get(op.getContext(), attrs); 571 p << " " << dictAttr << " " << op.lhs() << ", "; 572 p << op.rhs() << ", " << op.acc(); 573 if (op.masks().size() == 2) 574 p << ", " << op.masks(); 575 576 p.printOptionalAttrDict(op->getAttrs(), attrNames); 577 p << " : " << op.lhs().getType() << ", " << op.rhs().getType() << " into " 578 << op.getResultType(); 579 } 580 581 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 582 const std::vector<std::pair<int64_t, int64_t>> &map) { 583 for (auto &dimPair : map) { 584 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 585 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 586 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 587 return false; 588 } 589 return true; 590 } 591 592 static LogicalResult verifyOutputShape( 593 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 594 Type resType, 595 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 596 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 597 DenseSet<int64_t> lhsContractingDimSet; 598 DenseSet<int64_t> rhsContractingDimSet; 599 for (auto &dimPair : contractingDimMap) { 600 lhsContractingDimSet.insert(dimPair.first); 601 rhsContractingDimSet.insert(dimPair.second); 602 } 603 DenseSet<int64_t> rhsBatchDimSet; 604 for (auto &dimPair : batchDimMap) 605 rhsBatchDimSet.insert(dimPair.second); 606 607 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 608 SmallVector<int64_t, 4> expectedResultDims; 609 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 610 if (lhsContractingDimSet.count(i) > 0) 611 continue; 612 expectedResultDims.push_back(lhsType.getDimSize(i)); 613 } 614 615 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 616 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 617 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 618 continue; 619 expectedResultDims.push_back(rhsType.getDimSize(i)); 620 } 621 622 // Verify 'expectedResultDims'. 623 if (expectedResultDims.empty()) { 624 // No batch or free dimension implies a scalar result. 625 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 626 return op.emitOpError("invalid accumulator/result vector shape"); 627 } else { 628 // At least one batch or free dimension implies a vector result. 629 auto resVectorType = resType.dyn_cast<VectorType>(); 630 auto accVectorType = accType.dyn_cast<VectorType>(); 631 if (!resVectorType || !accVectorType) 632 return op.emitOpError("invalid accumulator/result vector shape"); 633 634 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 635 // types fully define the result vector type. This assumes the affine maps 636 // are well-formed, which must have been verified already. 637 MLIRContext *ctx = op.getContext(); 638 AffineMap lhsMap = op.getIndexingMaps()[0]; 639 AffineMap rhsMap = op.getIndexingMaps()[1]; 640 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 641 for (auto pair : 642 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 643 VectorType v = pair.first; 644 auto map = pair.second; 645 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 646 unsigned pos = map.getDimPosition(idx); 647 if (!extents[pos]) 648 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 649 } 650 } 651 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 652 "expected extent along all dimensions."); 653 654 AffineMap resMap = op.getIndexingMaps()[2]; 655 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 656 /*symCount=*/0, extents, ctx); 657 // Compose the resMap with the extentsMap, which is a constant map. 658 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 659 assert(llvm::all_of( 660 expectedMap.getResults(), 661 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 662 "expected constant extent along all dimensions."); 663 // Extract the expected shape and build the type. 664 auto expectedShape = llvm::to_vector<4>( 665 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 666 return e.cast<AffineConstantExpr>().getValue(); 667 })); 668 auto expected = 669 VectorType::get(expectedShape, resVectorType.getElementType()); 670 if (resVectorType != expected || accVectorType != expected) 671 return op.emitOpError( 672 "invalid accumulator/result vector shape, expected: ") 673 << expected; 674 } 675 return success(); 676 } 677 678 LogicalResult ContractionOp::verify() { 679 auto lhsType = getLhsType(); 680 auto rhsType = getRhsType(); 681 auto accType = getAccType(); 682 auto resType = getResultType(); 683 684 // Verify that an indexing map was specified for each vector operand. 685 if (indexing_maps().size() != 3) 686 return emitOpError("expected an indexing map for each vector operand"); 687 688 // Verify that each index map has 'numIterators' inputs, no symbols, and 689 // that the number of map outputs equals the rank of its associated 690 // vector operand. 691 unsigned numIterators = iterator_types().getValue().size(); 692 for (const auto &it : llvm::enumerate(indexing_maps())) { 693 auto index = it.index(); 694 auto map = it.value().cast<AffineMapAttr>().getValue(); 695 if (map.getNumSymbols() != 0) 696 return emitOpError("expected indexing map ") 697 << index << " to have no symbols"; 698 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 699 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 700 // Verify that the map has the right number of inputs, outputs, and indices. 701 // This also correctly accounts for (..) -> () for rank-0 results. 702 if (map.getNumDims() != numIterators) 703 return emitOpError("expected indexing map ") 704 << index << " to have " << numIterators << " number of inputs"; 705 if (map.getNumResults() != rank) 706 return emitOpError("expected indexing map ") 707 << index << " to have " << rank << " number of outputs"; 708 if (!map.isProjectedPermutation()) 709 return emitOpError("expected indexing map ") 710 << index << " to be a projected permutation of its inputs"; 711 } 712 713 auto contractingDimMap = getContractingDimMap(); 714 auto batchDimMap = getBatchDimMap(); 715 716 // Verify at least one contracting dimension pair was specified. 717 if (contractingDimMap.empty()) 718 return emitOpError("expected at least one contracting dimension pair"); 719 720 // Verify contracting dimension map was properly constructed. 721 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 722 return emitOpError("invalid contracting dimension map"); 723 724 // Verify batch dimension map was properly constructed. 725 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 726 return emitOpError("invalid batch dimension map"); 727 728 // Verify 'accType' and 'resType' shape. 729 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 730 contractingDimMap, batchDimMap))) 731 return failure(); 732 733 // Verify that either two vector masks are set or none are set. 734 auto lhsMaskType = getLHSVectorMaskType(); 735 auto rhsMaskType = getRHSVectorMaskType(); 736 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 737 return emitOpError("invalid number of vector masks specified"); 738 if (lhsMaskType && rhsMaskType) { 739 // Verify mask rank == argument rank. 740 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 741 rhsMaskType.getShape().size() != rhsType.getShape().size()) 742 return emitOpError("invalid vector mask rank"); 743 } 744 745 // Verify supported combining kind. 746 auto vectorType = resType.dyn_cast<VectorType>(); 747 auto elementType = vectorType ? vectorType.getElementType() : resType; 748 if (!isSupportedCombiningKind(kind(), elementType)) 749 return emitOpError("unsupported contraction type"); 750 751 return success(); 752 } 753 754 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 755 static constexpr StringRef names[3] = {getIndexingMapsAttrName(), 756 getIteratorTypesAttrName(), 757 ContractionOp::getKindAttrName()}; 758 return llvm::makeArrayRef(names); 759 } 760 761 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 762 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 763 if (targetExpr == map.getResult(i)) 764 return i; 765 return -1; 766 } 767 768 static std::vector<std::pair<int64_t, int64_t>> 769 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 770 StringRef targetIteratorTypeName, MLIRContext *context) { 771 std::vector<std::pair<int64_t, int64_t>> dimMap; 772 for (const auto &it : llvm::enumerate(iteratorTypes)) { 773 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 774 if (iteratorTypeName != targetIteratorTypeName) 775 continue; 776 // Search lhs/rhs map results for 'targetExpr'. 777 auto targetExpr = getAffineDimExpr(it.index(), context); 778 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 779 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 780 if (lhsDim >= 0 && rhsDim >= 0) 781 dimMap.emplace_back(lhsDim, rhsDim); 782 } 783 return dimMap; 784 } 785 786 void ContractionOp::getIterationBounds( 787 SmallVectorImpl<int64_t> &iterationBounds) { 788 auto lhsShape = getLhsType().getShape(); 789 auto resVectorType = getResultType().dyn_cast<VectorType>(); 790 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 791 SmallVector<int64_t, 2> iterationShape; 792 for (const auto &it : llvm::enumerate(iterator_types())) { 793 // Search lhs/rhs map results for 'targetExpr'. 794 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 795 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 796 if (iteratorTypeName == getReductionIteratorTypeName()) { 797 // Get reduction dim size from lhs shape (same size in rhsShape). 798 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 799 assert(lhsDimIndex >= 0); 800 iterationBounds.push_back(lhsShape[lhsDimIndex]); 801 continue; 802 } 803 // Get parallel dimension size from result shape. 804 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 805 assert(resDimIndex >= 0); 806 assert(resVectorType != nullptr); 807 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 808 } 809 } 810 811 void ContractionOp::getIterationIndexMap( 812 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 813 unsigned numMaps = indexing_maps().getValue().size(); 814 iterationIndexMap.resize(numMaps); 815 for (const auto &it : llvm::enumerate(indexing_maps())) { 816 auto index = it.index(); 817 auto map = it.value().cast<AffineMapAttr>().getValue(); 818 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 819 auto dim = map.getResult(i).cast<AffineDimExpr>(); 820 iterationIndexMap[index][dim.getPosition()] = i; 821 } 822 } 823 } 824 825 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 826 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 827 return getDimMap(indexingMaps, iterator_types(), 828 getReductionIteratorTypeName(), getContext()); 829 } 830 831 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 832 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 833 return getDimMap(indexingMaps, iterator_types(), 834 getParallelIteratorTypeName(), getContext()); 835 } 836 837 SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() { 838 return llvm::to_vector<4>( 839 llvm::map_range(indexing_maps().getValue(), [](Attribute mapAttr) { 840 return mapAttr.cast<AffineMapAttr>().getValue(); 841 })); 842 } 843 844 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 845 SmallVector<int64_t, 4> shape; 846 getIterationBounds(shape); 847 return shape; 848 } 849 850 /// Return a fused vector::ContractionOp which represents a patterns such as: 851 /// 852 /// ```mlir 853 /// %c0 = vector.constant 0: ... 854 /// %c = vector.contract %a, %b, %c0: ... 855 /// %e = add %c, %d: ... 856 /// ``` 857 /// 858 /// by: 859 /// 860 /// ```mlir 861 /// %e = vector.contract %a, %b, %d: ... 862 /// ``` 863 /// 864 /// Return null if the canonicalization does not apply. 865 // TODO: This should be a folding of Add into Contract in core but while they 866 // live in different dialects, it is not possible without unnatural 867 // dependencies. 868 template <typename AddOpType> 869 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 870 using OpRewritePattern<AddOpType>::OpRewritePattern; 871 872 LogicalResult matchAndRewrite(AddOpType addOp, 873 PatternRewriter &rewriter) const override { 874 auto canonicalize = [&](Value maybeContraction, 875 Value otherOperand) -> vector::ContractionOp { 876 vector::ContractionOp contractionOp = 877 dyn_cast_or_null<vector::ContractionOp>( 878 maybeContraction.getDefiningOp()); 879 if (!contractionOp) 880 return vector::ContractionOp(); 881 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 882 contractionOp.acc().getDefiningOp())) { 883 if (maybeZero.getValue() == 884 rewriter.getZeroAttr(contractionOp.acc().getType())) { 885 BlockAndValueMapping bvm; 886 bvm.map(contractionOp.acc(), otherOperand); 887 auto newContraction = 888 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 889 rewriter.replaceOp(addOp, newContraction.getResult()); 890 return newContraction; 891 } 892 } 893 return vector::ContractionOp(); 894 }; 895 896 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 897 vector::ContractionOp contract = canonicalize(a, b); 898 contract = contract ? contract : canonicalize(b, a); 899 return contract ? success() : failure(); 900 } 901 }; 902 903 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 904 MLIRContext *context) { 905 results.add<CanonicalizeContractAdd<arith::AddIOp>, 906 CanonicalizeContractAdd<arith::AddFOp>>(context); 907 } 908 909 //===----------------------------------------------------------------------===// 910 // ExtractElementOp 911 //===----------------------------------------------------------------------===// 912 913 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 914 Value source) { 915 result.addOperands({source}); 916 result.addTypes(source.getType().cast<VectorType>().getElementType()); 917 } 918 919 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 920 Value source, Value position) { 921 result.addOperands({source, position}); 922 result.addTypes(source.getType().cast<VectorType>().getElementType()); 923 } 924 925 LogicalResult vector::ExtractElementOp::verify() { 926 VectorType vectorType = getVectorType(); 927 if (vectorType.getRank() == 0) { 928 if (position()) 929 return emitOpError("expected position to be empty with 0-D vector"); 930 return success(); 931 } 932 if (vectorType.getRank() != 1) 933 return emitOpError("unexpected >1 vector rank"); 934 if (!position()) 935 return emitOpError("expected position for 1-D vector"); 936 return success(); 937 } 938 939 //===----------------------------------------------------------------------===// 940 // ExtractOp 941 //===----------------------------------------------------------------------===// 942 943 static Type inferExtractOpResultType(VectorType vectorType, 944 ArrayAttr position) { 945 if (static_cast<int64_t>(position.size()) == vectorType.getRank()) 946 return vectorType.getElementType(); 947 return VectorType::get(vectorType.getShape().drop_front(position.size()), 948 vectorType.getElementType()); 949 } 950 951 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 952 Value source, ArrayRef<int64_t> position) { 953 result.addOperands(source); 954 auto positionAttr = getVectorSubscriptAttr(builder, position); 955 result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(), 956 positionAttr)); 957 result.addAttribute(getPositionAttrName(), positionAttr); 958 } 959 960 // Convenience builder which assumes the values are constant indices. 961 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 962 Value source, ValueRange position) { 963 SmallVector<int64_t, 4> positionConstants = 964 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 965 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 966 })); 967 build(builder, result, source, positionConstants); 968 } 969 970 static void print(OpAsmPrinter &p, vector::ExtractOp op) { 971 p << " " << op.vector() << op.position(); 972 p.printOptionalAttrDict(op->getAttrs(), {"position"}); 973 p << " : " << op.vector().getType(); 974 } 975 976 static ParseResult parseExtractOp(OpAsmParser &parser, OperationState &result) { 977 SMLoc attributeLoc, typeLoc; 978 NamedAttrList attrs; 979 OpAsmParser::OperandType vector; 980 Type type; 981 Attribute attr; 982 if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || 983 parser.parseAttribute(attr, "position", attrs) || 984 parser.parseOptionalAttrDict(attrs) || 985 parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type)) 986 return failure(); 987 988 auto vectorType = type.dyn_cast<VectorType>(); 989 if (!vectorType) 990 return parser.emitError(typeLoc, "expected vector type"); 991 992 auto positionAttr = attr.dyn_cast<ArrayAttr>(); 993 if (!positionAttr || 994 static_cast<int64_t>(positionAttr.size()) > vectorType.getRank()) 995 return parser.emitError( 996 attributeLoc, 997 "expected position attribute of rank smaller than vector rank"); 998 999 Type resType = inferExtractOpResultType(vectorType, positionAttr); 1000 result.attributes = attrs; 1001 return failure(parser.resolveOperand(vector, type, result.operands) || 1002 parser.addTypeToList(resType, result.types)); 1003 } 1004 1005 LogicalResult vector::ExtractOp::verify() { 1006 auto positionAttr = position().getValue(); 1007 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1008 return emitOpError( 1009 "expected position attribute of rank smaller than vector rank"); 1010 for (const auto &en : llvm::enumerate(positionAttr)) { 1011 auto attr = en.value().dyn_cast<IntegerAttr>(); 1012 if (!attr || attr.getInt() < 0 || 1013 attr.getInt() >= getVectorType().getDimSize(en.index())) 1014 return emitOpError("expected position attribute #") 1015 << (en.index() + 1) 1016 << " to be a non-negative integer smaller than the corresponding " 1017 "vector dimension"; 1018 } 1019 return success(); 1020 } 1021 1022 template <typename IntType> 1023 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1024 return llvm::to_vector<4>(llvm::map_range( 1025 arrayAttr.getAsRange<IntegerAttr>(), 1026 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1027 } 1028 1029 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1030 /// positions. 1031 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1032 if (!extractOp.vector().getDefiningOp<ExtractOp>()) 1033 return failure(); 1034 1035 SmallVector<int64_t, 4> globalPosition; 1036 ExtractOp currentOp = extractOp; 1037 auto extrPos = extractVector<int64_t>(currentOp.position()); 1038 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1039 while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) { 1040 currentOp = nextOp; 1041 auto extrPos = extractVector<int64_t>(currentOp.position()); 1042 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1043 } 1044 extractOp.setOperand(currentOp.vector()); 1045 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1046 OpBuilder b(extractOp.getContext()); 1047 std::reverse(globalPosition.begin(), globalPosition.end()); 1048 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1049 b.getI64ArrayAttr(globalPosition)); 1050 return success(); 1051 } 1052 1053 namespace { 1054 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1055 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1056 /// Compose TransposeOp permutations as we walk back. 1057 /// This helper class keeps an updated extraction position `extractPosition` 1058 /// with extra trailing sentinels. 1059 /// The sentinels encode the internal transposition status of the result vector. 1060 /// As we iterate, extractPosition is permuted and updated. 1061 class ExtractFromInsertTransposeChainState { 1062 public: 1063 ExtractFromInsertTransposeChainState(ExtractOp e); 1064 1065 /// Iterate over producing insert and transpose ops until we find a fold. 1066 Value fold(); 1067 1068 private: 1069 /// Return true if the vector at position `a` is contained within the vector 1070 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1071 /// is a prefix of `b`. 1072 template <typename ContainerA, typename ContainerB> 1073 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1074 return a.size() <= b.size() && 1075 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1076 } 1077 1078 /// Return true if the vector at position `a` intersects the vector at 1079 /// position `b`. Under insert/extract semantics, this is the same as equality 1080 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1081 /// Comparison is on the common prefix (i.e. zip). 1082 template <typename ContainerA, typename ContainerB> 1083 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1084 for (auto it : llvm::zip(a, b)) { 1085 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1086 continue; 1087 if (std::get<0>(it) != std::get<1>(it)) 1088 return false; 1089 } 1090 return true; 1091 } 1092 1093 /// Folding is only possible in the absence of an internal permutation in the 1094 /// result vector. 1095 bool canFold() { 1096 return (sentinels == 1097 makeArrayRef(extractPosition).drop_front(extractedRank)); 1098 } 1099 1100 // Helper to get the next defining op of interest. 1101 void updateStateForNextIteration(Value v) { 1102 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1103 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1104 }; 1105 1106 // Case 1. If we hit a transpose, just compose the map and iterate. 1107 // Invariant: insert + transpose do not change rank, we can always compose. 1108 LogicalResult handleTransposeOp(); 1109 1110 // Case 2: the insert position matches extractPosition exactly, early return. 1111 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1112 1113 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1114 /// portion of the source of the insert. 1115 /// Example: 1116 /// ``` 1117 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1118 /// // extractPosition == [1, 2, 3] 1119 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1120 /// // can fold to vector.extract %source[0, 3] 1121 /// %ext = vector.extract %source[3]: vector<5x6> 1122 /// ``` 1123 /// To traverse through %source, we need to set the leading dims to 0 and 1124 /// drop the extra leading dims. 1125 /// This method updates the internal state. 1126 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1127 1128 /// Try to fold in place to extract(source, extractPosition) and return the 1129 /// folded result. Return null if folding is not possible (e.g. due to an 1130 /// internal tranposition in the result). 1131 Value tryToFoldExtractOpInPlace(Value source); 1132 1133 ExtractOp extractOp; 1134 int64_t vectorRank; 1135 int64_t extractedRank; 1136 1137 InsertOp nextInsertOp; 1138 TransposeOp nextTransposeOp; 1139 1140 /// Sentinel values that encode the internal permutation status of the result. 1141 /// They are set to (-1, ... , -k) at the beginning and appended to 1142 /// `extractPosition`. 1143 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1144 /// ensure that there is no internal transposition. 1145 /// Internal transposition cannot be accounted for with a folding pattern. 1146 // TODO: We could relax the internal transposition with an extra transposition 1147 // operation in a future canonicalizer. 1148 SmallVector<int64_t> sentinels; 1149 SmallVector<int64_t> extractPosition; 1150 }; 1151 } // namespace 1152 1153 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1154 ExtractOp e) 1155 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1156 extractedRank(extractOp.position().size()) { 1157 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1158 sentinels.reserve(vectorRank - extractedRank); 1159 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1160 sentinels.push_back(-(i + 1)); 1161 extractPosition = extractVector<int64_t>(extractOp.position()); 1162 llvm::append_range(extractPosition, sentinels); 1163 } 1164 1165 // Case 1. If we hit a transpose, just compose the map and iterate. 1166 // Invariant: insert + transpose do not change rank, we can always compose. 1167 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1168 if (!nextTransposeOp) 1169 return failure(); 1170 auto permutation = extractVector<unsigned>(nextTransposeOp.transp()); 1171 AffineMap m = inversePermutation( 1172 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1173 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1174 return success(); 1175 } 1176 1177 // Case 2: the insert position matches extractPosition exactly, early return. 1178 LogicalResult 1179 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1180 Value &res) { 1181 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1182 if (makeArrayRef(insertedPos) != 1183 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1184 return failure(); 1185 // Case 2.a. early-exit fold. 1186 res = nextInsertOp.source(); 1187 // Case 2.b. if internal transposition is present, canFold will be false. 1188 return success(); 1189 } 1190 1191 /// Case 3: if inserted position is a prefix of extractPosition, 1192 /// extract a portion of the source of the insertion. 1193 /// This method updates the internal state. 1194 LogicalResult 1195 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1196 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1197 if (!isContainedWithin(insertedPos, extractPosition)) 1198 return failure(); 1199 // Set leading dims to zero. 1200 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1201 // Drop extra leading dims. 1202 extractPosition.erase(extractPosition.begin(), 1203 extractPosition.begin() + insertedPos.size()); 1204 extractedRank = extractPosition.size() - sentinels.size(); 1205 // Case 3.a. early-exit fold (break and delegate to post-while path). 1206 res = nextInsertOp.source(); 1207 // Case 3.b. if internal transposition is present, canFold will be false. 1208 return success(); 1209 } 1210 1211 /// Try to fold in place to extract(source, extractPosition) and return the 1212 /// folded result. Return null if folding is not possible (e.g. due to an 1213 /// internal tranposition in the result). 1214 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1215 Value source) { 1216 // If we can't fold (either internal transposition, or nothing to fold), bail. 1217 bool nothingToFold = (source == extractOp.vector()); 1218 if (nothingToFold || !canFold()) 1219 return Value(); 1220 // Otherwise, fold by updating the op inplace and return its result. 1221 OpBuilder b(extractOp.getContext()); 1222 extractOp->setAttr( 1223 extractOp.positionAttrName(), 1224 b.getI64ArrayAttr( 1225 makeArrayRef(extractPosition).take_front(extractedRank))); 1226 extractOp.vectorMutable().assign(source); 1227 return extractOp.getResult(); 1228 } 1229 1230 /// Iterate over producing insert and transpose ops until we find a fold. 1231 Value ExtractFromInsertTransposeChainState::fold() { 1232 Value valueToExtractFrom = extractOp.vector(); 1233 updateStateForNextIteration(valueToExtractFrom); 1234 while (nextInsertOp || nextTransposeOp) { 1235 // Case 1. If we hit a transpose, just compose the map and iterate. 1236 // Invariant: insert + transpose do not change rank, we can always compose. 1237 if (succeeded(handleTransposeOp())) { 1238 valueToExtractFrom = nextTransposeOp.vector(); 1239 updateStateForNextIteration(valueToExtractFrom); 1240 continue; 1241 } 1242 1243 Value result; 1244 // Case 2: the position match exactly. 1245 if (succeeded(handleInsertOpWithMatchingPos(result))) 1246 return result; 1247 1248 // Case 3: if the inserted position is a prefix of extractPosition, we can 1249 // just extract a portion of the source of the insert. 1250 if (succeeded(handleInsertOpWithPrefixPos(result))) 1251 return tryToFoldExtractOpInPlace(result); 1252 1253 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1254 // values. This is a more difficult case and we bail. 1255 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1256 if (isContainedWithin(extractPosition, insertedPos) || 1257 intersectsWhereNonNegative(extractPosition, insertedPos)) 1258 return Value(); 1259 1260 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1261 valueToExtractFrom = nextInsertOp.dest(); 1262 updateStateForNextIteration(valueToExtractFrom); 1263 } 1264 // If after all this we can fold, go for it. 1265 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1266 } 1267 1268 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1269 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1270 Operation *defOp = extractOp.vector().getDefiningOp(); 1271 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1272 return Value(); 1273 Value source = defOp->getOperand(0); 1274 if (extractOp.getType() == source.getType()) 1275 return source; 1276 auto getRank = [](Type type) { 1277 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1278 }; 1279 unsigned broadcastSrcRank = getRank(source.getType()); 1280 unsigned extractResultRank = getRank(extractOp.getType()); 1281 if (extractResultRank < broadcastSrcRank) { 1282 auto extractPos = extractVector<int64_t>(extractOp.position()); 1283 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1284 extractPos.erase( 1285 extractPos.begin(), 1286 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1287 extractOp.setOperand(source); 1288 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1289 OpBuilder b(extractOp.getContext()); 1290 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1291 b.getI64ArrayAttr(extractPos)); 1292 return extractOp.getResult(); 1293 } 1294 return Value(); 1295 } 1296 1297 // Fold extractOp with source coming from ShapeCast op. 1298 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1299 auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>(); 1300 if (!shapeCastOp) 1301 return Value(); 1302 // Get the nth dimension size starting from lowest dimension. 1303 auto getDimReverse = [](VectorType type, int64_t n) { 1304 return type.getShape().take_back(n + 1).front(); 1305 }; 1306 int64_t destinationRank = 1307 extractOp.getType().isa<VectorType>() 1308 ? extractOp.getType().cast<VectorType>().getRank() 1309 : 0; 1310 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1311 return Value(); 1312 if (destinationRank > 0) { 1313 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1314 for (int64_t i = 0; i < destinationRank; i++) { 1315 // The lowest dimension of of the destination must match the lowest 1316 // dimension of the shapecast op source. 1317 // TODO: This case could be support in a canonicalization pattern. 1318 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1319 getDimReverse(destinationType, i)) 1320 return Value(); 1321 } 1322 } 1323 // Extract the strides associated with the extract op vector source. Then use 1324 // this to calculate a linearized position for the extract. 1325 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1326 std::reverse(extractedPos.begin(), extractedPos.end()); 1327 SmallVector<int64_t, 4> strides; 1328 int64_t stride = 1; 1329 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1330 strides.push_back(stride); 1331 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1332 } 1333 1334 int64_t position = linearize(extractedPos, strides); 1335 // Then extract the strides associated to the shapeCast op vector source and 1336 // delinearize the position using those strides. 1337 SmallVector<int64_t, 4> newStrides; 1338 int64_t numDimension = 1339 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1340 stride = 1; 1341 for (int64_t i = 0; i < numDimension; i++) { 1342 newStrides.push_back(stride); 1343 stride *= 1344 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1345 } 1346 std::reverse(newStrides.begin(), newStrides.end()); 1347 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1348 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1349 OpBuilder b(extractOp.getContext()); 1350 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1351 b.getI64ArrayAttr(newPosition)); 1352 extractOp.setOperand(shapeCastOp.source()); 1353 return extractOp.getResult(); 1354 } 1355 1356 /// Fold an ExtractOp from ExtractStridedSliceOp. 1357 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1358 auto extractStridedSliceOp = 1359 extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1360 if (!extractStridedSliceOp) 1361 return Value(); 1362 // Return if 'extractStridedSliceOp' has non-unit strides. 1363 if (extractStridedSliceOp.hasNonUnitStrides()) 1364 return Value(); 1365 1366 // Trim offsets for dimensions fully extracted. 1367 auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets()); 1368 while (!sliceOffsets.empty()) { 1369 size_t lastOffset = sliceOffsets.size() - 1; 1370 if (sliceOffsets.back() != 0 || 1371 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1372 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1373 break; 1374 sliceOffsets.pop_back(); 1375 } 1376 unsigned destinationRank = 0; 1377 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1378 destinationRank = vecType.getRank(); 1379 // The dimensions of the result need to be untouched by the 1380 // extractStridedSlice op. 1381 if (destinationRank > 1382 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1383 return Value(); 1384 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1385 assert(extractedPos.size() >= sliceOffsets.size()); 1386 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1387 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1388 extractOp.vectorMutable().assign(extractStridedSliceOp.vector()); 1389 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1390 OpBuilder b(extractOp.getContext()); 1391 extractOp->setAttr(ExtractOp::getPositionAttrName(), 1392 b.getI64ArrayAttr(extractedPos)); 1393 return extractOp.getResult(); 1394 } 1395 1396 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1397 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1398 int64_t destinationRank = op.getType().isa<VectorType>() 1399 ? op.getType().cast<VectorType>().getRank() 1400 : 0; 1401 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 1402 while (insertOp) { 1403 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1404 insertOp.getSourceVectorType().getRank(); 1405 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1406 return Value(); 1407 auto insertOffsets = extractVector<int64_t>(insertOp.offsets()); 1408 auto extractOffsets = extractVector<int64_t>(op.position()); 1409 1410 if (llvm::any_of(insertOp.strides(), [](Attribute attr) { 1411 return attr.cast<IntegerAttr>().getInt() != 1; 1412 })) 1413 return Value(); 1414 bool disjoint = false; 1415 SmallVector<int64_t, 4> offsetDiffs; 1416 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1417 int64_t start = insertOffsets[dim]; 1418 int64_t size = 1419 (dim < insertRankDiff) 1420 ? 1 1421 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1422 int64_t end = start + size; 1423 int64_t offset = extractOffsets[dim]; 1424 // Check if the start of the extract offset is in the interval inserted. 1425 if (start <= offset && offset < end) { 1426 if (dim >= insertRankDiff) 1427 offsetDiffs.push_back(offset - start); 1428 continue; 1429 } 1430 disjoint = true; 1431 break; 1432 } 1433 // The extract element chunk overlap with the vector inserted. 1434 if (!disjoint) { 1435 // If any of the inner dimensions are only partially inserted we have a 1436 // partial overlap. 1437 int64_t srcRankDiff = 1438 insertOp.getSourceVectorType().getRank() - destinationRank; 1439 for (int64_t i = 0; i < destinationRank; i++) { 1440 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1441 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1442 insertRankDiff)) 1443 return Value(); 1444 } 1445 op.vectorMutable().assign(insertOp.source()); 1446 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1447 OpBuilder b(op.getContext()); 1448 op->setAttr(ExtractOp::getPositionAttrName(), 1449 b.getI64ArrayAttr(offsetDiffs)); 1450 return op.getResult(); 1451 } 1452 // If the chunk extracted is disjoint from the chunk inserted, keep 1453 // looking in the insert chain. 1454 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 1455 } 1456 return Value(); 1457 } 1458 1459 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1460 if (position().empty()) 1461 return vector(); 1462 if (succeeded(foldExtractOpFromExtractChain(*this))) 1463 return getResult(); 1464 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1465 return res; 1466 if (auto res = foldExtractFromBroadcast(*this)) 1467 return res; 1468 if (auto res = foldExtractFromShapeCast(*this)) 1469 return res; 1470 if (auto val = foldExtractFromExtractStrided(*this)) 1471 return val; 1472 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1473 return val; 1474 return OpFoldResult(); 1475 } 1476 1477 namespace { 1478 1479 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1480 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1481 public: 1482 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1483 1484 LogicalResult matchAndRewrite(ExtractOp extractOp, 1485 PatternRewriter &rewriter) const override { 1486 Operation *defOp = extractOp.vector().getDefiningOp(); 1487 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1488 return failure(); 1489 Value source = defOp->getOperand(0); 1490 if (extractOp.getType() == source.getType()) 1491 return failure(); 1492 auto getRank = [](Type type) { 1493 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1494 }; 1495 unsigned broadcastSrcRank = getRank(source.getType()); 1496 unsigned extractResultRank = getRank(extractOp.getType()); 1497 // We only consider the case where the rank of the source is smaller than 1498 // the rank of the extract dst. The other cases are handled in the folding 1499 // patterns. 1500 if (extractResultRank <= broadcastSrcRank) 1501 return failure(); 1502 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1503 extractOp, extractOp.getType(), source); 1504 return success(); 1505 } 1506 }; 1507 1508 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1509 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1510 public: 1511 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1512 1513 LogicalResult matchAndRewrite(ExtractOp extractOp, 1514 PatternRewriter &rewriter) const override { 1515 // Return if 'extractStridedSliceOp' operand is not defined by a 1516 // ConstantOp. 1517 auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>(); 1518 if (!constantOp) 1519 return failure(); 1520 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1521 if (!dense) 1522 return failure(); 1523 Attribute newAttr = dense.getSplatValue<Attribute>(); 1524 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1525 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1526 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1527 return success(); 1528 } 1529 }; 1530 1531 } // namespace 1532 1533 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1534 MLIRContext *context) { 1535 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1536 } 1537 1538 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1539 SmallVectorImpl<int64_t> &results) { 1540 for (auto attr : arrayAttr) 1541 results.push_back(attr.cast<IntegerAttr>().getInt()); 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // ExtractMapOp 1546 //===----------------------------------------------------------------------===// 1547 1548 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1549 Value vector, ValueRange ids, 1550 ArrayRef<int64_t> multiplicity, 1551 AffineMap permutationMap) { 1552 assert(ids.size() == multiplicity.size() && 1553 ids.size() == permutationMap.getNumResults()); 1554 assert(permutationMap.isProjectedPermutation()); 1555 VectorType type = vector.getType().cast<VectorType>(); 1556 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1557 type.getShape().end()); 1558 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1559 AffineExpr expr = permutationMap.getResult(i); 1560 auto dim = expr.cast<AffineDimExpr>(); 1561 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1562 } 1563 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1564 ExtractMapOp::build(builder, result, resultType, vector, ids); 1565 } 1566 1567 LogicalResult ExtractMapOp::verify() { 1568 if (getSourceVectorType().getRank() != getResultType().getRank()) 1569 return emitOpError("expected source and destination vectors of same rank"); 1570 unsigned numId = 0; 1571 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1572 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1573 0) 1574 return emitOpError("source vector dimensions must be a multiple of " 1575 "destination vector dimensions"); 1576 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1577 numId++; 1578 } 1579 if (numId != ids().size()) 1580 return emitOpError("expected number of ids must match the number of " 1581 "dimensions distributed"); 1582 return success(); 1583 } 1584 1585 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1586 auto insert = vector().getDefiningOp<vector::InsertMapOp>(); 1587 if (insert == nullptr || getType() != insert.vector().getType() || 1588 ids() != insert.ids()) 1589 return {}; 1590 return insert.vector(); 1591 } 1592 1593 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1594 assert(multiplicity.empty()); 1595 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1596 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1597 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1598 getResultType().getDimSize(i)); 1599 } 1600 } 1601 1602 template <typename MapOp> 1603 AffineMap calculateImplicitMap(MapOp op) { 1604 SmallVector<AffineExpr, 4> perm; 1605 // Check which dimension have a multiplicity greater than 1 and associated 1606 // them to the IDs in order. 1607 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1608 if (op.getSourceVectorType().getDimSize(i) != 1609 op.getResultType().getDimSize(i)) 1610 perm.push_back(getAffineDimExpr(i, op.getContext())); 1611 } 1612 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1613 op.getContext()); 1614 return map; 1615 } 1616 1617 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1618 1619 //===----------------------------------------------------------------------===// 1620 // FmaOp 1621 //===----------------------------------------------------------------------===// 1622 1623 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1624 return llvm::to_vector<4>(getVectorType().getShape()); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // BroadcastOp 1629 //===----------------------------------------------------------------------===// 1630 1631 BroadcastableToResult 1632 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1633 std::pair<int, int> *mismatchingDims) { 1634 // Broadcast scalar to vector of the same element type. 1635 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1636 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1637 return BroadcastableToResult::Success; 1638 // From now on, only vectors broadcast. 1639 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1640 if (!srcVectorType) 1641 return BroadcastableToResult::SourceTypeNotAVector; 1642 1643 int64_t srcRank = srcVectorType.getRank(); 1644 int64_t dstRank = dstVectorType.getRank(); 1645 if (srcRank > dstRank) 1646 return BroadcastableToResult::SourceRankHigher; 1647 // Source has an exact match or singleton value for all trailing dimensions 1648 // (all leading dimensions are simply duplicated). 1649 int64_t lead = dstRank - srcRank; 1650 for (int64_t r = 0; r < srcRank; ++r) { 1651 int64_t srcDim = srcVectorType.getDimSize(r); 1652 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1653 if (srcDim != 1 && srcDim != dstDim) { 1654 if (mismatchingDims) { 1655 mismatchingDims->first = srcDim; 1656 mismatchingDims->second = dstDim; 1657 } 1658 return BroadcastableToResult::DimensionMismatch; 1659 } 1660 } 1661 1662 return BroadcastableToResult::Success; 1663 } 1664 1665 LogicalResult BroadcastOp::verify() { 1666 std::pair<int, int> mismatchingDims; 1667 BroadcastableToResult res = 1668 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1669 if (res == BroadcastableToResult::Success) 1670 return success(); 1671 if (res == BroadcastableToResult::SourceRankHigher) 1672 return emitOpError("source rank higher than destination rank"); 1673 if (res == BroadcastableToResult::DimensionMismatch) 1674 return emitOpError("dimension mismatch (") 1675 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1676 if (res == BroadcastableToResult::SourceTypeNotAVector) 1677 return emitOpError("source type is not a vector"); 1678 llvm_unreachable("unexpected vector.broadcast op error"); 1679 } 1680 1681 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1682 if (getSourceType() == getVectorType()) 1683 return source(); 1684 if (!operands[0]) 1685 return {}; 1686 auto vectorType = getVectorType(); 1687 if (operands[0].getType().isIntOrIndexOrFloat()) 1688 return DenseElementsAttr::get(vectorType, operands[0]); 1689 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1690 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1691 return {}; 1692 } 1693 1694 namespace { 1695 1696 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1697 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1698 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1699 1700 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1701 PatternRewriter &rewriter) const override { 1702 auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>(); 1703 if (!srcBroadcast) 1704 return failure(); 1705 rewriter.replaceOpWithNewOp<BroadcastOp>( 1706 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source()); 1707 return success(); 1708 } 1709 }; 1710 } // namespace 1711 1712 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1713 MLIRContext *context) { 1714 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1715 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1716 results.add<BroadcastFolder>(context); 1717 } 1718 1719 //===----------------------------------------------------------------------===// 1720 // ShuffleOp 1721 //===----------------------------------------------------------------------===// 1722 1723 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1724 Value v2, ArrayRef<int64_t> mask) { 1725 result.addOperands({v1, v2}); 1726 auto maskAttr = getVectorSubscriptAttr(builder, mask); 1727 auto v1Type = v1.getType().cast<VectorType>(); 1728 auto shape = llvm::to_vector<4>(v1Type.getShape()); 1729 shape[0] = mask.size(); 1730 result.addTypes(VectorType::get(shape, v1Type.getElementType())); 1731 result.addAttribute(getMaskAttrName(), maskAttr); 1732 } 1733 1734 static void print(OpAsmPrinter &p, ShuffleOp op) { 1735 p << " " << op.v1() << ", " << op.v2() << " " << op.mask(); 1736 p.printOptionalAttrDict(op->getAttrs(), {ShuffleOp::getMaskAttrName()}); 1737 p << " : " << op.v1().getType() << ", " << op.v2().getType(); 1738 } 1739 1740 LogicalResult ShuffleOp::verify() { 1741 VectorType resultType = getVectorType(); 1742 VectorType v1Type = getV1VectorType(); 1743 VectorType v2Type = getV2VectorType(); 1744 // Verify ranks. 1745 int64_t resRank = resultType.getRank(); 1746 int64_t v1Rank = v1Type.getRank(); 1747 int64_t v2Rank = v2Type.getRank(); 1748 if (resRank != v1Rank || v1Rank != v2Rank) 1749 return emitOpError("rank mismatch"); 1750 // Verify all but leading dimension sizes. 1751 for (int64_t r = 1; r < v1Rank; ++r) { 1752 int64_t resDim = resultType.getDimSize(r); 1753 int64_t v1Dim = v1Type.getDimSize(r); 1754 int64_t v2Dim = v2Type.getDimSize(r); 1755 if (resDim != v1Dim || v1Dim != v2Dim) 1756 return emitOpError("dimension mismatch"); 1757 } 1758 // Verify mask length. 1759 auto maskAttr = mask().getValue(); 1760 int64_t maskLength = maskAttr.size(); 1761 if (maskLength != resultType.getDimSize(0)) 1762 return emitOpError("mask length mismatch"); 1763 // Verify all indices. 1764 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1765 for (const auto &en : llvm::enumerate(maskAttr)) { 1766 auto attr = en.value().dyn_cast<IntegerAttr>(); 1767 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1768 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1769 } 1770 return success(); 1771 } 1772 1773 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &result) { 1774 OpAsmParser::OperandType v1, v2; 1775 Attribute attr; 1776 VectorType v1Type, v2Type; 1777 if (parser.parseOperand(v1) || parser.parseComma() || 1778 parser.parseOperand(v2) || 1779 parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(), 1780 result.attributes) || 1781 parser.parseOptionalAttrDict(result.attributes) || 1782 parser.parseColonType(v1Type) || parser.parseComma() || 1783 parser.parseType(v2Type) || 1784 parser.resolveOperand(v1, v1Type, result.operands) || 1785 parser.resolveOperand(v2, v2Type, result.operands)) 1786 return failure(); 1787 // Construct resulting type: leading dimension matches mask length, 1788 // all trailing dimensions match the operands. 1789 auto maskAttr = attr.dyn_cast<ArrayAttr>(); 1790 if (!maskAttr) 1791 return parser.emitError(parser.getNameLoc(), "missing mask attribute"); 1792 int64_t maskLength = maskAttr.size(); 1793 if (maskLength <= 0) 1794 return parser.emitError(parser.getNameLoc(), "invalid mask length"); 1795 int64_t v1Rank = v1Type.getRank(); 1796 SmallVector<int64_t, 4> shape; 1797 shape.reserve(v1Rank); 1798 shape.push_back(maskLength); 1799 for (int64_t r = 1; r < v1Rank; ++r) 1800 shape.push_back(v1Type.getDimSize(r)); 1801 VectorType resType = VectorType::get(shape, v1Type.getElementType()); 1802 parser.addTypeToList(resType, result.types); 1803 return success(); 1804 } 1805 1806 //===----------------------------------------------------------------------===// 1807 // InsertElementOp 1808 //===----------------------------------------------------------------------===// 1809 1810 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1811 Value source, Value dest) { 1812 result.addOperands({source, dest}); 1813 result.addTypes(dest.getType()); 1814 } 1815 1816 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1817 Value source, Value dest, Value position) { 1818 result.addOperands({source, dest, position}); 1819 result.addTypes(dest.getType()); 1820 } 1821 1822 LogicalResult InsertElementOp::verify() { 1823 auto dstVectorType = getDestVectorType(); 1824 if (dstVectorType.getRank() == 0) { 1825 if (position()) 1826 return emitOpError("expected position to be empty with 0-D vector"); 1827 return success(); 1828 } 1829 if (dstVectorType.getRank() != 1) 1830 return emitOpError("unexpected >1 vector rank"); 1831 if (!position()) 1832 return emitOpError("expected position for 1-D vector"); 1833 return success(); 1834 } 1835 1836 //===----------------------------------------------------------------------===// 1837 // InsertOp 1838 //===----------------------------------------------------------------------===// 1839 1840 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1841 Value dest, ArrayRef<int64_t> position) { 1842 result.addOperands({source, dest}); 1843 auto positionAttr = getVectorSubscriptAttr(builder, position); 1844 result.addTypes(dest.getType()); 1845 result.addAttribute(getPositionAttrName(), positionAttr); 1846 } 1847 1848 // Convenience builder which assumes the values are constant indices. 1849 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1850 Value dest, ValueRange position) { 1851 SmallVector<int64_t, 4> positionConstants = 1852 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1853 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1854 })); 1855 build(builder, result, source, dest, positionConstants); 1856 } 1857 1858 LogicalResult InsertOp::verify() { 1859 auto positionAttr = position().getValue(); 1860 auto destVectorType = getDestVectorType(); 1861 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1862 return emitOpError( 1863 "expected position attribute of rank smaller than dest vector rank"); 1864 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1865 if (srcVectorType && 1866 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1867 static_cast<unsigned>(destVectorType.getRank()))) 1868 return emitOpError("expected position attribute rank + source rank to " 1869 "match dest vector rank"); 1870 if (!srcVectorType && 1871 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1872 return emitOpError( 1873 "expected position attribute rank to match the dest vector rank"); 1874 for (const auto &en : llvm::enumerate(positionAttr)) { 1875 auto attr = en.value().dyn_cast<IntegerAttr>(); 1876 if (!attr || attr.getInt() < 0 || 1877 attr.getInt() >= destVectorType.getDimSize(en.index())) 1878 return emitOpError("expected position attribute #") 1879 << (en.index() + 1) 1880 << " to be a non-negative integer smaller than the corresponding " 1881 "dest vector dimension"; 1882 } 1883 return success(); 1884 } 1885 1886 namespace { 1887 1888 // If insertOp is only inserting unit dimensions it can be transformed to a 1889 // broadcast. 1890 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1891 public: 1892 using OpRewritePattern<InsertOp>::OpRewritePattern; 1893 1894 LogicalResult matchAndRewrite(InsertOp insertOp, 1895 PatternRewriter &rewriter) const override { 1896 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1897 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1898 srcVecType.getNumElements()) 1899 return failure(); 1900 rewriter.replaceOpWithNewOp<BroadcastOp>( 1901 insertOp, insertOp.getDestVectorType(), insertOp.source()); 1902 return success(); 1903 } 1904 }; 1905 1906 } // namespace 1907 1908 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1909 MLIRContext *context) { 1910 results.add<InsertToBroadcast, BroadcastFolder>(context); 1911 } 1912 1913 // Eliminates insert operations that produce values identical to their source 1914 // value. This happens when the source and destination vectors have identical 1915 // sizes. 1916 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1917 if (position().empty()) 1918 return source(); 1919 return {}; 1920 } 1921 1922 //===----------------------------------------------------------------------===// 1923 // InsertMapOp 1924 //===----------------------------------------------------------------------===// 1925 1926 void InsertMapOp::build(OpBuilder &builder, OperationState &result, 1927 Value vector, Value dest, ValueRange ids) { 1928 InsertMapOp::build(builder, result, dest.getType(), vector, dest, ids); 1929 } 1930 1931 LogicalResult InsertMapOp::verify() { 1932 if (getSourceVectorType().getRank() != getResultType().getRank()) 1933 return emitOpError("expected source and destination vectors of same rank"); 1934 unsigned numId = 0; 1935 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1936 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1937 0) 1938 return emitOpError( 1939 "destination vector size must be a multiple of source vector size"); 1940 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1941 numId++; 1942 } 1943 if (numId != ids().size()) 1944 return emitOpError("expected number of ids must match the number of " 1945 "dimensions distributed"); 1946 return success(); 1947 } 1948 1949 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1950 1951 //===----------------------------------------------------------------------===// 1952 // InsertStridedSliceOp 1953 //===----------------------------------------------------------------------===// 1954 1955 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1956 Value source, Value dest, 1957 ArrayRef<int64_t> offsets, 1958 ArrayRef<int64_t> strides) { 1959 result.addOperands({source, dest}); 1960 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 1961 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 1962 result.addTypes(dest.getType()); 1963 result.addAttribute(getOffsetsAttrName(), offsetsAttr); 1964 result.addAttribute(getStridesAttrName(), stridesAttr); 1965 } 1966 1967 // TODO: Should be moved to Tablegen Confined attributes. 1968 template <typename OpType> 1969 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 1970 ArrayAttr arrayAttr, 1971 ArrayRef<int64_t> shape, 1972 StringRef attrName) { 1973 if (arrayAttr.size() > shape.size()) 1974 return op.emitOpError("expected ") 1975 << attrName << " attribute of rank smaller than vector rank"; 1976 return success(); 1977 } 1978 1979 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1980 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1981 // Otherwise, the admissible interval is [min, max]. 1982 template <typename OpType> 1983 static LogicalResult 1984 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 1985 int64_t max, StringRef attrName, 1986 bool halfOpen = true) { 1987 for (auto attr : arrayAttr) { 1988 auto val = attr.cast<IntegerAttr>().getInt(); 1989 auto upper = max; 1990 if (!halfOpen) 1991 upper += 1; 1992 if (val < min || val >= upper) 1993 return op.emitOpError("expected ") << attrName << " to be confined to [" 1994 << min << ", " << upper << ")"; 1995 } 1996 return success(); 1997 } 1998 1999 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2000 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2001 // Otherwise, the admissible interval is [min, max]. 2002 template <typename OpType> 2003 static LogicalResult 2004 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2005 ArrayRef<int64_t> shape, StringRef attrName, 2006 bool halfOpen = true, int64_t min = 0) { 2007 assert(arrayAttr.size() <= shape.size()); 2008 unsigned index = 0; 2009 for (auto it : llvm::zip(arrayAttr, shape)) { 2010 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2011 auto max = std::get<1>(it); 2012 if (!halfOpen) 2013 max += 1; 2014 if (val < min || val >= max) 2015 return op.emitOpError("expected ") 2016 << attrName << " dimension " << index << " to be confined to [" 2017 << min << ", " << max << ")"; 2018 ++index; 2019 } 2020 return success(); 2021 } 2022 2023 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2024 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2025 // Otherwise, the admissible interval is [min, max]. 2026 template <typename OpType> 2027 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2028 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2029 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2030 bool halfOpen = true, int64_t min = 1) { 2031 assert(arrayAttr1.size() <= shape.size()); 2032 assert(arrayAttr2.size() <= shape.size()); 2033 unsigned index = 0; 2034 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2035 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2036 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2037 auto max = std::get<2>(it); 2038 if (!halfOpen) 2039 max += 1; 2040 if (val1 + val2 < 0 || val1 + val2 >= max) 2041 return op.emitOpError("expected sum(") 2042 << attrName1 << ", " << attrName2 << ") dimension " << index 2043 << " to be confined to [" << min << ", " << max << ")"; 2044 ++index; 2045 } 2046 return success(); 2047 } 2048 2049 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2050 MLIRContext *context) { 2051 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2052 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2053 }); 2054 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2055 } 2056 2057 LogicalResult InsertStridedSliceOp::verify() { 2058 auto sourceVectorType = getSourceVectorType(); 2059 auto destVectorType = getDestVectorType(); 2060 auto offsets = offsetsAttr(); 2061 auto strides = stridesAttr(); 2062 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2063 return emitOpError( 2064 "expected offsets of same size as destination vector rank"); 2065 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2066 return emitOpError("expected strides of same size as source vector rank"); 2067 if (sourceVectorType.getRank() > destVectorType.getRank()) 2068 return emitOpError( 2069 "expected source rank to be smaller than destination rank"); 2070 2071 auto sourceShape = sourceVectorType.getShape(); 2072 auto destShape = destVectorType.getShape(); 2073 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2074 destShape.size() - sourceShape.size(), 0); 2075 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2076 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2077 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2078 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2079 offName)) || 2080 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2081 stridesName, 2082 /*halfOpen=*/false)) || 2083 failed(isSumOfIntegerArrayAttrConfinedToShape( 2084 *this, offsets, 2085 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2086 offName, "source vector shape", 2087 /*halfOpen=*/false, /*min=*/1))) 2088 return failure(); 2089 2090 return success(); 2091 } 2092 2093 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2094 if (getSourceVectorType() == getDestVectorType()) 2095 return source(); 2096 return {}; 2097 } 2098 2099 //===----------------------------------------------------------------------===// 2100 // OuterProductOp 2101 //===----------------------------------------------------------------------===// 2102 2103 /// Build an op without mask, use the type of `acc` as the return type. 2104 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2105 Value lhs, Value rhs, Value acc) { 2106 result.addOperands({lhs, rhs, acc}); 2107 result.addTypes(acc.getType()); 2108 } 2109 2110 static void print(OpAsmPrinter &p, OuterProductOp op) { 2111 p << " " << op.lhs() << ", " << op.rhs(); 2112 if (!op.acc().empty()) { 2113 p << ", " << op.acc(); 2114 p.printOptionalAttrDict(op->getAttrs()); 2115 } 2116 p << " : " << op.lhs().getType() << ", " << op.rhs().getType(); 2117 } 2118 2119 static ParseResult parseOuterProductOp(OpAsmParser &parser, 2120 OperationState &result) { 2121 SmallVector<OpAsmParser::OperandType, 3> operandsInfo; 2122 Type tLHS, tRHS; 2123 if (parser.parseOperandList(operandsInfo) || 2124 parser.parseOptionalAttrDict(result.attributes) || 2125 parser.parseColonType(tLHS) || parser.parseComma() || 2126 parser.parseType(tRHS)) 2127 return failure(); 2128 if (operandsInfo.size() < 2) 2129 return parser.emitError(parser.getNameLoc(), 2130 "expected at least 2 operands"); 2131 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2132 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2133 if (!vLHS) 2134 return parser.emitError(parser.getNameLoc(), 2135 "expected vector type for operand #1"); 2136 VectorType resType = 2137 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2138 vLHS.getElementType()) 2139 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2140 2141 if (!result.attributes.get(OuterProductOp::getKindAttrName())) { 2142 result.attributes.append( 2143 OuterProductOp::getKindAttrName(), 2144 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2145 result.getContext())); 2146 } 2147 2148 return failure( 2149 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2150 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2151 (operandsInfo.size() > 2 && 2152 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2153 parser.addTypeToList(resType, result.types)); 2154 } 2155 2156 LogicalResult OuterProductOp::verify() { 2157 Type tRHS = getOperandTypeRHS(); 2158 VectorType vLHS = getOperandVectorTypeLHS(), 2159 vRHS = tRHS.dyn_cast<VectorType>(), 2160 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2161 2162 if (vLHS.getRank() != 1) 2163 return emitOpError("expected 1-d vector for operand #1"); 2164 2165 if (vRHS) { 2166 // Proper OUTER operation. 2167 if (vRHS.getRank() != 1) 2168 return emitOpError("expected 1-d vector for operand #2"); 2169 if (vRES.getRank() != 2) 2170 return emitOpError("expected 2-d vector result"); 2171 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2172 return emitOpError("expected #1 operand dim to match result dim #1"); 2173 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2174 return emitOpError("expected #2 operand dim to match result dim #2"); 2175 } else { 2176 // An AXPY operation. 2177 if (vRES.getRank() != 1) 2178 return emitOpError("expected 1-d vector result"); 2179 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2180 return emitOpError("expected #1 operand dim to match result dim #1"); 2181 } 2182 2183 if (vACC && vACC != vRES) 2184 return emitOpError("expected operand #3 of same type as result type"); 2185 2186 // Verify supported combining kind. 2187 if (!isSupportedCombiningKind(kind(), vRES.getElementType())) 2188 return emitOpError("unsupported outerproduct type"); 2189 2190 return success(); 2191 } 2192 2193 //===----------------------------------------------------------------------===// 2194 // ReshapeOp 2195 //===----------------------------------------------------------------------===// 2196 2197 LogicalResult ReshapeOp::verify() { 2198 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2199 auto inputVectorType = getInputVectorType(); 2200 auto outputVectorType = getOutputVectorType(); 2201 int64_t inputShapeRank = getNumInputShapeSizes(); 2202 int64_t outputShapeRank = getNumOutputShapeSizes(); 2203 SmallVector<int64_t, 4> fixedVectorSizes; 2204 getFixedVectorSizes(fixedVectorSizes); 2205 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2206 2207 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2208 return emitError("invalid input shape for vector type ") 2209 << inputVectorType; 2210 2211 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2212 return emitError("invalid output shape for vector type ") 2213 << outputVectorType; 2214 2215 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2216 // suffix. 2217 unsigned inputVectorRank = inputVectorType.getRank(); 2218 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2219 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2220 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2221 return emitError("fixed vector size must match input vector for dim ") 2222 << i; 2223 } 2224 2225 unsigned outputVectorRank = outputVectorType.getRank(); 2226 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2227 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2228 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2229 return emitError("fixed vector size must match output vector for dim ") 2230 << i; 2231 } 2232 2233 // If all shape operands are produced by constant ops, verify that product 2234 // of dimensions for input/output shape match. 2235 auto isDefByConstant = [](Value operand) { 2236 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2237 }; 2238 if (llvm::all_of(input_shape(), isDefByConstant) && 2239 llvm::all_of(output_shape(), isDefByConstant)) { 2240 int64_t numInputElements = 1; 2241 for (auto operand : input_shape()) 2242 numInputElements *= 2243 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2244 int64_t numOutputElements = 1; 2245 for (auto operand : output_shape()) 2246 numOutputElements *= 2247 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2248 if (numInputElements != numOutputElements) 2249 return emitError("product of input and output shape sizes must match"); 2250 } 2251 return success(); 2252 } 2253 2254 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2255 populateFromInt64AttrArray(fixed_vector_sizes(), results); 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // ExtractStridedSliceOp 2260 //===----------------------------------------------------------------------===// 2261 2262 // Inference works as follows: 2263 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2264 // 2. Add sizes from 'vectorType' for remaining dims. 2265 static Type inferStridedSliceOpResultType(VectorType vectorType, 2266 ArrayAttr offsets, ArrayAttr sizes, 2267 ArrayAttr strides) { 2268 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2269 SmallVector<int64_t, 4> shape; 2270 shape.reserve(vectorType.getRank()); 2271 unsigned idx = 0; 2272 for (unsigned e = offsets.size(); idx < e; ++idx) 2273 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2274 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2275 shape.push_back(vectorType.getShape()[idx]); 2276 2277 return VectorType::get(shape, vectorType.getElementType()); 2278 } 2279 2280 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2281 Value source, ArrayRef<int64_t> offsets, 2282 ArrayRef<int64_t> sizes, 2283 ArrayRef<int64_t> strides) { 2284 result.addOperands(source); 2285 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2286 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2287 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2288 result.addTypes( 2289 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2290 offsetsAttr, sizesAttr, stridesAttr)); 2291 result.addAttribute(getOffsetsAttrName(), offsetsAttr); 2292 result.addAttribute(getSizesAttrName(), sizesAttr); 2293 result.addAttribute(getStridesAttrName(), stridesAttr); 2294 } 2295 2296 LogicalResult ExtractStridedSliceOp::verify() { 2297 auto type = getVectorType(); 2298 auto offsets = offsetsAttr(); 2299 auto sizes = sizesAttr(); 2300 auto strides = stridesAttr(); 2301 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2302 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2303 2304 auto shape = type.getShape(); 2305 auto offName = getOffsetsAttrName(); 2306 auto sizesName = getSizesAttrName(); 2307 auto stridesName = getStridesAttrName(); 2308 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2309 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2310 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2311 stridesName)) || 2312 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2313 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2314 /*halfOpen=*/false, 2315 /*min=*/1)) || 2316 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2317 /*halfOpen=*/false)) || 2318 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2319 offName, sizesName, 2320 /*halfOpen=*/false))) 2321 return failure(); 2322 2323 auto resultType = 2324 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2325 if (getResult().getType() != resultType) 2326 return emitOpError("expected result type to be ") << resultType; 2327 2328 return success(); 2329 } 2330 2331 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2332 // to use the source of the InsertStrided ops if we can detect that the 2333 // extracted vector is a subset of one of the vector inserted. 2334 static LogicalResult 2335 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2336 // Helper to extract integer out of ArrayAttr. 2337 auto getElement = [](ArrayAttr array, int idx) { 2338 return array[idx].cast<IntegerAttr>().getInt(); 2339 }; 2340 ArrayAttr extractOffsets = op.offsets(); 2341 ArrayAttr extractStrides = op.strides(); 2342 ArrayAttr extractSizes = op.sizes(); 2343 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 2344 while (insertOp) { 2345 if (op.getVectorType().getRank() != 2346 insertOp.getSourceVectorType().getRank()) 2347 return failure(); 2348 ArrayAttr insertOffsets = insertOp.offsets(); 2349 ArrayAttr insertStrides = insertOp.strides(); 2350 // If the rank of extract is greater than the rank of insert, we are likely 2351 // extracting a partial chunk of the vector inserted. 2352 if (extractOffsets.size() > insertOffsets.size()) 2353 return failure(); 2354 bool patialoverlap = false; 2355 bool disjoint = false; 2356 SmallVector<int64_t, 4> offsetDiffs; 2357 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2358 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2359 return failure(); 2360 int64_t start = getElement(insertOffsets, dim); 2361 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2362 int64_t offset = getElement(extractOffsets, dim); 2363 int64_t size = getElement(extractSizes, dim); 2364 // Check if the start of the extract offset is in the interval inserted. 2365 if (start <= offset && offset < end) { 2366 // If the extract interval overlaps but is not fully included we may 2367 // have a partial overlap that will prevent any folding. 2368 if (offset + size > end) 2369 patialoverlap = true; 2370 offsetDiffs.push_back(offset - start); 2371 continue; 2372 } 2373 disjoint = true; 2374 break; 2375 } 2376 // The extract element chunk is a subset of the insert element. 2377 if (!disjoint && !patialoverlap) { 2378 op.setOperand(insertOp.source()); 2379 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2380 OpBuilder b(op.getContext()); 2381 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrName(), 2382 b.getI64ArrayAttr(offsetDiffs)); 2383 return success(); 2384 } 2385 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2386 // in the insert chain. 2387 if (disjoint) 2388 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 2389 else { 2390 // The extracted vector partially overlap the inserted vector, we cannot 2391 // fold. 2392 return failure(); 2393 } 2394 } 2395 return failure(); 2396 } 2397 2398 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2399 if (getVectorType() == getResult().getType()) 2400 return vector(); 2401 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2402 return getResult(); 2403 return {}; 2404 } 2405 2406 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2407 populateFromInt64AttrArray(offsets(), results); 2408 } 2409 2410 namespace { 2411 2412 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2413 // ConstantMaskOp. 2414 class StridedSliceConstantMaskFolder final 2415 : public OpRewritePattern<ExtractStridedSliceOp> { 2416 public: 2417 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2418 2419 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2420 PatternRewriter &rewriter) const override { 2421 // Return if 'extractStridedSliceOp' operand is not defined by a 2422 // ConstantMaskOp. 2423 auto *defOp = extractStridedSliceOp.vector().getDefiningOp(); 2424 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2425 if (!constantMaskOp) 2426 return failure(); 2427 // Return if 'extractStridedSliceOp' has non-unit strides. 2428 if (extractStridedSliceOp.hasNonUnitStrides()) 2429 return failure(); 2430 // Gather constant mask dimension sizes. 2431 SmallVector<int64_t, 4> maskDimSizes; 2432 populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes); 2433 // Gather strided slice offsets and sizes. 2434 SmallVector<int64_t, 4> sliceOffsets; 2435 populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets); 2436 SmallVector<int64_t, 4> sliceSizes; 2437 populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes); 2438 2439 // Compute slice of vector mask region. 2440 SmallVector<int64_t, 4> sliceMaskDimSizes; 2441 assert(sliceOffsets.size() == maskDimSizes.size()); 2442 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2443 int64_t maskDimSize = std::get<0>(it); 2444 int64_t sliceOffset = std::get<1>(it); 2445 int64_t sliceSize = std::get<2>(it); 2446 int64_t sliceMaskDimSize = std::max( 2447 static_cast<int64_t>(0), 2448 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2449 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2450 } 2451 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2452 // region is a conjunction of mask dim intervals). 2453 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2454 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2455 2456 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2457 // region. 2458 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2459 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2460 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2461 return success(); 2462 } 2463 }; 2464 2465 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2466 class StridedSliceConstantFolder final 2467 : public OpRewritePattern<ExtractStridedSliceOp> { 2468 public: 2469 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2470 2471 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2472 PatternRewriter &rewriter) const override { 2473 // Return if 'extractStridedSliceOp' operand is not defined by a 2474 // ConstantOp. 2475 auto constantOp = 2476 extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>(); 2477 if (!constantOp) 2478 return failure(); 2479 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2480 if (!dense) 2481 return failure(); 2482 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2483 dense.getSplatValue<Attribute>()); 2484 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2485 newAttr); 2486 return success(); 2487 } 2488 }; 2489 2490 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2491 // BroadcastOp(ExtractStrideSliceOp). 2492 class StridedSliceBroadcast final 2493 : public OpRewritePattern<ExtractStridedSliceOp> { 2494 public: 2495 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2496 2497 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2498 PatternRewriter &rewriter) const override { 2499 auto broadcast = op.vector().getDefiningOp<BroadcastOp>(); 2500 if (!broadcast) 2501 return failure(); 2502 auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>(); 2503 unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0; 2504 auto dstVecType = op.getType().cast<VectorType>(); 2505 unsigned dstRank = dstVecType.getRank(); 2506 unsigned rankDiff = dstRank - srcRrank; 2507 // Check if the most inner dimensions of the source of the broadcast are the 2508 // same as the destination of the extract. If this is the case we can just 2509 // use a broadcast as the original dimensions are untouched. 2510 bool lowerDimMatch = true; 2511 for (unsigned i = 0; i < srcRrank; i++) { 2512 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2513 lowerDimMatch = false; 2514 break; 2515 } 2516 } 2517 Value source = broadcast.source(); 2518 if (!lowerDimMatch) { 2519 // The inner dimensions don't match, it means we need to extract from the 2520 // source of the orignal broadcast and then broadcast the extracted value. 2521 source = rewriter.create<ExtractStridedSliceOp>( 2522 op->getLoc(), source, 2523 getI64SubArray(op.offsets(), /* dropFront=*/rankDiff), 2524 getI64SubArray(op.sizes(), /* dropFront=*/rankDiff), 2525 getI64SubArray(op.strides(), /* dropFront=*/rankDiff)); 2526 } 2527 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2528 return success(); 2529 } 2530 }; 2531 2532 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2533 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2534 public: 2535 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2536 2537 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2538 PatternRewriter &rewriter) const override { 2539 auto splat = op.vector().getDefiningOp<SplatOp>(); 2540 if (!splat) 2541 return failure(); 2542 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input()); 2543 return success(); 2544 } 2545 }; 2546 2547 } // namespace 2548 2549 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2550 RewritePatternSet &results, MLIRContext *context) { 2551 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2552 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2553 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2554 StridedSliceBroadcast, StridedSliceSplat>(context); 2555 } 2556 2557 //===----------------------------------------------------------------------===// 2558 // TransferReadOp 2559 //===----------------------------------------------------------------------===// 2560 2561 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2562 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2563 VectorType vectorType, Value source, 2564 ValueRange indices, AffineMapAttr permutationMapAttr, 2565 /*optional*/ ArrayAttr inBoundsAttr) { 2566 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2567 Value padding = builder.create<arith::ConstantOp>( 2568 result.location, elemType, builder.getZeroAttr(elemType)); 2569 build(builder, result, vectorType, source, indices, permutationMapAttr, 2570 padding, /*mask=*/Value(), inBoundsAttr); 2571 } 2572 2573 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2574 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2575 VectorType vectorType, Value source, 2576 ValueRange indices, AffineMap permutationMap, 2577 Optional<ArrayRef<bool>> inBounds) { 2578 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2579 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2580 ? builder.getBoolArrayAttr(inBounds.getValue()) 2581 : ArrayAttr(); 2582 build(builder, result, vectorType, source, indices, permutationMapAttr, 2583 inBoundsAttr); 2584 } 2585 2586 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2587 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2588 VectorType vectorType, Value source, 2589 ValueRange indices, Value padding, 2590 Optional<ArrayRef<bool>> inBounds) { 2591 AffineMap permutationMap = getTransferMinorIdentityMap( 2592 source.getType().cast<ShapedType>(), vectorType); 2593 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2594 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2595 ? builder.getBoolArrayAttr(inBounds.getValue()) 2596 : ArrayAttr(); 2597 build(builder, result, vectorType, source, indices, permutationMapAttr, 2598 padding, 2599 /*mask=*/Value(), inBoundsAttr); 2600 } 2601 2602 /// 4. Builder that sets padding to zero and permutation map to 2603 /// 'getMinorIdentityMap'. 2604 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2605 VectorType vectorType, Value source, 2606 ValueRange indices, 2607 Optional<ArrayRef<bool>> inBounds) { 2608 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2609 Value padding = builder.create<arith::ConstantOp>( 2610 result.location, elemType, builder.getZeroAttr(elemType)); 2611 build(builder, result, vectorType, source, indices, padding, inBounds); 2612 } 2613 2614 template <typename EmitFun> 2615 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2616 EmitFun emitOpError) { 2617 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2618 for (auto expr : permutationMap.getResults()) { 2619 auto dim = expr.dyn_cast<AffineDimExpr>(); 2620 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2621 if (zero) { 2622 if (zero.getValue() != 0) { 2623 return emitOpError( 2624 "requires a projected permutation_map (at most one dim or the zero " 2625 "constant can appear in each result)"); 2626 } 2627 continue; 2628 } 2629 if (!dim) { 2630 return emitOpError("requires a projected permutation_map (at most one " 2631 "dim or the zero constant can appear in each result)"); 2632 } 2633 if (seen[dim.getPosition()]) { 2634 return emitOpError( 2635 "requires a permutation_map that is a permutation (found one dim " 2636 "used more than once)"); 2637 } 2638 seen[dim.getPosition()] = true; 2639 } 2640 return success(); 2641 } 2642 2643 static LogicalResult 2644 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2645 VectorType vectorType, VectorType maskType, 2646 AffineMap permutationMap, ArrayAttr inBounds) { 2647 if (op->hasAttr("masked")) { 2648 return op->emitOpError("masked attribute has been removed. " 2649 "Use in_bounds instead."); 2650 } 2651 2652 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2653 return op->emitOpError( 2654 "requires source to be a memref or ranked tensor type"); 2655 2656 auto elementType = shapedType.getElementType(); 2657 DataLayout dataLayout = DataLayout::closest(op); 2658 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2659 // Memref or tensor has vector element type. 2660 unsigned sourceVecSize = 2661 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2662 vectorElementType.getShape().back(); 2663 unsigned resultVecSize = 2664 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2665 vectorType.getShape().back(); 2666 if (resultVecSize % sourceVecSize != 0) 2667 return op->emitOpError( 2668 "requires the bitwidth of the minor 1-D vector to be an integral " 2669 "multiple of the bitwidth of the minor 1-D vector of the source"); 2670 2671 unsigned sourceVecEltRank = vectorElementType.getRank(); 2672 unsigned resultVecRank = vectorType.getRank(); 2673 if (sourceVecEltRank > resultVecRank) 2674 return op->emitOpError( 2675 "requires source vector element and vector result ranks to match."); 2676 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2677 // Check that permutation map results match 'rankOffset' of vector type. 2678 if (permutationMap.getNumResults() != rankOffset) 2679 return op->emitOpError("requires a permutation_map with result dims of " 2680 "the same rank as the vector type"); 2681 2682 if (maskType) 2683 return op->emitOpError("does not support masks with vector element type"); 2684 } else { 2685 // Memref or tensor has scalar element type. 2686 unsigned minorSize = 2687 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2688 unsigned resultVecSize = 2689 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2690 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2691 return op->emitOpError( 2692 "requires the bitwidth of the minor 1-D vector to be an integral " 2693 "multiple of the bitwidth of the source element type"); 2694 2695 // Check that permutation map results match rank of vector type. 2696 if (permutationMap.getNumResults() != vectorType.getRank()) 2697 return op->emitOpError("requires a permutation_map with result dims of " 2698 "the same rank as the vector type"); 2699 2700 VectorType expectedMaskType = 2701 vector::detail::transferMaskType(vectorType, permutationMap); 2702 if (maskType && expectedMaskType != maskType) 2703 return op->emitOpError("expects mask type consistent with permutation " 2704 "map: ") 2705 << maskType; 2706 } 2707 2708 if (permutationMap.getNumSymbols() != 0) 2709 return op->emitOpError("requires permutation_map without symbols"); 2710 2711 if (permutationMap.getNumInputs() != shapedType.getRank()) 2712 return op->emitOpError("requires a permutation_map with input dims of the " 2713 "same rank as the source type"); 2714 2715 if (inBounds) { 2716 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2717 return op->emitOpError("expects the optional in_bounds attr of same rank " 2718 "as permutation_map results: ") 2719 << AffineMapAttr::get(permutationMap) 2720 << " vs inBounds of size: " << inBounds.size(); 2721 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2722 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2723 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2724 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2725 } 2726 2727 return success(); 2728 } 2729 2730 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2731 SmallVector<StringRef, 3> elidedAttrs; 2732 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2733 if (op.permutation_map().isMinorIdentity()) 2734 elidedAttrs.push_back(op.getPermutationMapAttrName()); 2735 bool elideInBounds = true; 2736 if (auto inBounds = op.in_bounds()) { 2737 for (auto attr : *inBounds) { 2738 if (attr.template cast<BoolAttr>().getValue()) { 2739 elideInBounds = false; 2740 break; 2741 } 2742 } 2743 } 2744 if (elideInBounds) 2745 elidedAttrs.push_back(op.getInBoundsAttrName()); 2746 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2747 } 2748 2749 static void print(OpAsmPrinter &p, TransferReadOp op) { 2750 p << " " << op.source() << "[" << op.indices() << "], " << op.padding(); 2751 if (op.mask()) 2752 p << ", " << op.mask(); 2753 printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation())); 2754 p << " : " << op.getShapedType() << ", " << op.getVectorType(); 2755 } 2756 2757 static ParseResult parseTransferReadOp(OpAsmParser &parser, 2758 OperationState &result) { 2759 auto &builder = parser.getBuilder(); 2760 SMLoc typesLoc; 2761 OpAsmParser::OperandType sourceInfo; 2762 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 2763 OpAsmParser::OperandType paddingInfo; 2764 SmallVector<Type, 2> types; 2765 OpAsmParser::OperandType maskInfo; 2766 // Parsing with support for paddingValue. 2767 if (parser.parseOperand(sourceInfo) || 2768 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2769 parser.parseComma() || parser.parseOperand(paddingInfo)) 2770 return failure(); 2771 ParseResult hasMask = parser.parseOptionalComma(); 2772 if (hasMask.succeeded()) { 2773 parser.parseOperand(maskInfo); 2774 } 2775 if (parser.parseOptionalAttrDict(result.attributes) || 2776 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2777 return failure(); 2778 if (types.size() != 2) 2779 return parser.emitError(typesLoc, "requires two types"); 2780 auto indexType = builder.getIndexType(); 2781 auto shapedType = types[0].dyn_cast<ShapedType>(); 2782 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2783 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2784 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2785 if (!vectorType) 2786 return parser.emitError(typesLoc, "requires vector type"); 2787 auto permutationAttrName = TransferReadOp::getPermutationMapAttrName(); 2788 Attribute mapAttr = result.attributes.get(permutationAttrName); 2789 if (!mapAttr) { 2790 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2791 // Update `mapAttr` that is used later to determine mask type. 2792 mapAttr = AffineMapAttr::get(permMap); 2793 result.attributes.set(permutationAttrName, mapAttr); 2794 } 2795 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2796 parser.resolveOperands(indexInfo, indexType, result.operands) || 2797 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2798 result.operands)) 2799 return failure(); 2800 if (hasMask.succeeded()) { 2801 if (shapedType.getElementType().dyn_cast<VectorType>()) 2802 return parser.emitError( 2803 maskInfo.location, "does not support masks with vector element type"); 2804 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2805 // Instead of adding the mask type as an op type, compute it based on the 2806 // vector type and the permutation map (to keep the type signature small). 2807 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2808 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2809 return failure(); 2810 } 2811 result.addAttribute( 2812 TransferReadOp::getOperandSegmentSizeAttr(), 2813 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2814 static_cast<int32_t>(hasMask.succeeded())})); 2815 return parser.addTypeToList(vectorType, result.types); 2816 } 2817 2818 LogicalResult TransferReadOp::verify() { 2819 // Consistency of elemental types in source and vector. 2820 ShapedType shapedType = getShapedType(); 2821 VectorType vectorType = getVectorType(); 2822 VectorType maskType = getMaskType(); 2823 auto paddingType = padding().getType(); 2824 auto permutationMap = permutation_map(); 2825 auto sourceElementType = shapedType.getElementType(); 2826 2827 if (static_cast<int64_t>(indices().size()) != shapedType.getRank()) 2828 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2829 2830 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2831 shapedType, vectorType, maskType, permutationMap, 2832 in_bounds() ? *in_bounds() : ArrayAttr()))) 2833 return failure(); 2834 2835 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2836 // Source has vector element type. 2837 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2838 if (sourceVectorElementType != paddingType) 2839 return emitOpError( 2840 "requires source element type and padding type to match."); 2841 2842 } else { 2843 // Check that 'paddingType' is valid to store in a vector type. 2844 if (!VectorType::isValidElementType(paddingType)) 2845 return emitOpError("requires valid padding vector elemental type"); 2846 2847 // Check that padding type and vector element types match. 2848 if (paddingType != sourceElementType) 2849 return emitOpError( 2850 "requires formal padding and source of the same elemental type"); 2851 } 2852 2853 return verifyPermutationMap(permutationMap, 2854 [&](Twine t) { return emitOpError(t); }); 2855 } 2856 2857 /// This is a common class used for patterns of the form 2858 /// ``` 2859 /// someop(memrefcast) -> someop 2860 /// ``` 2861 /// It folds the source of the memref.cast into the root operation directly. 2862 static LogicalResult foldMemRefCast(Operation *op) { 2863 bool folded = false; 2864 for (OpOperand &operand : op->getOpOperands()) { 2865 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2866 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2867 operand.set(castOp.getOperand()); 2868 folded = true; 2869 } 2870 } 2871 return success(folded); 2872 } 2873 2874 static LogicalResult foldTensorCast(Operation *op) { 2875 bool folded = false; 2876 for (OpOperand &operand : op->getOpOperands()) { 2877 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2878 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2879 operand.set(castOp.getOperand()); 2880 folded = true; 2881 } 2882 } 2883 return success(folded); 2884 } 2885 2886 template <typename TransferOp> 2887 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2888 // TODO: support more aggressive createOrFold on: 2889 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2890 if (op.getShapedType().isDynamicDim(indicesIdx)) 2891 return false; 2892 Value index = op.indices()[indicesIdx]; 2893 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2894 if (!cstOp) 2895 return false; 2896 2897 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2898 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2899 2900 return cstOp.value() + vectorSize <= sourceSize; 2901 } 2902 2903 template <typename TransferOp> 2904 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2905 // TODO: support 0-d corner case. 2906 // TODO: Be less conservative. 2907 if (op.getTransferRank() == 0) 2908 return failure(); 2909 AffineMap permutationMap = op.permutation_map(); 2910 bool changed = false; 2911 SmallVector<bool, 4> newInBounds; 2912 newInBounds.reserve(op.getTransferRank()); 2913 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2914 // Already marked as in-bounds, nothing to see here. 2915 if (op.isDimInBounds(i)) { 2916 newInBounds.push_back(true); 2917 continue; 2918 } 2919 // Currently out-of-bounds, check whether we can statically determine it is 2920 // inBounds. 2921 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2922 assert(dimExpr && "Broadcast dims must be in-bounds"); 2923 auto inBounds = 2924 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2925 newInBounds.push_back(inBounds); 2926 // We commit the pattern if it is "more inbounds". 2927 changed |= inBounds; 2928 } 2929 if (!changed) 2930 return failure(); 2931 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2932 OpBuilder b(op.getContext()); 2933 op->setAttr(TransferOp::getInBoundsAttrName(), 2934 b.getBoolArrayAttr(newInBounds)); 2935 return success(); 2936 } 2937 2938 /// ``` 2939 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2940 /// : vector<1x4xf32>, tensor<4x4xf32> 2941 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2942 /// : tensor<4x4xf32>, vector<1x4xf32> 2943 /// ``` 2944 /// -> Folds into 2945 /// ``` 2946 /// %v0 2947 /// ``` 2948 static Value foldRAW(TransferReadOp readOp) { 2949 if (!readOp.getShapedType().isa<RankedTensorType>()) 2950 return {}; 2951 auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>(); 2952 while (defWrite) { 2953 if (checkSameValueRAW(defWrite, readOp)) 2954 return defWrite.vector(); 2955 if (!isDisjointTransferIndices( 2956 cast<VectorTransferOpInterface>(defWrite.getOperation()), 2957 cast<VectorTransferOpInterface>(readOp.getOperation()))) 2958 break; 2959 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 2960 } 2961 return {}; 2962 } 2963 2964 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 2965 if (Value vec = foldRAW(*this)) 2966 return vec; 2967 /// transfer_read(memrefcast) -> transfer_read 2968 if (succeeded(foldTransferInBoundsAttribute(*this))) 2969 return getResult(); 2970 if (succeeded(foldMemRefCast(*this))) 2971 return getResult(); 2972 if (succeeded(foldTensorCast(*this))) 2973 return getResult(); 2974 return OpFoldResult(); 2975 } 2976 2977 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 2978 return llvm::to_vector<4>(getVectorType().getShape()); 2979 } 2980 2981 void TransferReadOp::getEffects( 2982 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 2983 &effects) { 2984 if (getShapedType().isa<MemRefType>()) 2985 effects.emplace_back(MemoryEffects::Read::get(), source(), 2986 SideEffects::DefaultResource::get()); 2987 } 2988 2989 namespace { 2990 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 2991 /// 2992 /// ``` 2993 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 2994 /// : tensor<?x?xf32> to tensor<?x?xf32> 2995 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 2996 /// : tensor<?x?xf32>, vector<4x5xf32> 2997 /// ``` 2998 /// is rewritten to: 2999 /// ``` 3000 /// %p0 = arith.addi %a, %e : index 3001 /// %p1 = arith.addi %b, %f : index 3002 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3003 /// : tensor<?x?xf32>, vector<4x5xf32> 3004 /// ``` 3005 struct FoldExtractSliceIntoTransferRead 3006 : public OpRewritePattern<TransferReadOp> { 3007 public: 3008 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3009 3010 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3011 PatternRewriter &rewriter) const override { 3012 // TODO: support 0-d corner case. 3013 if (xferOp.getTransferRank() == 0) 3014 return failure(); 3015 if (xferOp.hasOutOfBoundsDim()) 3016 return failure(); 3017 if (!xferOp.permutation_map().isIdentity()) 3018 return failure(); 3019 if (xferOp.mask()) 3020 return failure(); 3021 auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3022 if (!extractOp) 3023 return failure(); 3024 if (!extractOp.hasUnitStride()) 3025 return failure(); 3026 3027 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3028 // dims are exactly the leading dims. I.e. the following is illegal: 3029 // ``` 3030 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3031 // tensor<2x1x4xf32> to tensor<2x4xf32> 3032 // %1 = vector.transfer_read %0[0,0], %cst : 3033 // tensor<2x4xf32>, vector<2x4xf32> 3034 // ``` 3035 // 3036 // Cannot fold into: 3037 // ``` 3038 // %0 = vector.transfer_read %t[0,0,0], %cst : 3039 // tensor<2x1x4xf32>, vector<2x4xf32> 3040 // ``` 3041 // For this, check the trailing `vectorRank` dims of the extract_slice 3042 // result tensor match the trailing dims of the inferred result tensor. 3043 int64_t rankReduced = 3044 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3045 int64_t vectorRank = xferOp.getVectorType().getRank(); 3046 RankedTensorType inferredDestTensorType = 3047 tensor::ExtractSliceOp::inferResultType( 3048 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3049 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3050 auto actualDestTensorShape = extractOp.getType().getShape(); 3051 if (rankReduced > 0 && 3052 actualDestTensorShape.take_back(vectorRank) != 3053 inferredDestTensorType.getShape().take_back(vectorRank)) 3054 return failure(); 3055 3056 SmallVector<Value> newIndices; 3057 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3058 // indices first. 3059 for (int64_t i = 0; i < rankReduced; ++i) { 3060 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3061 newIndices.push_back(getValueOrCreateConstantIndexOp( 3062 rewriter, extractOp.getLoc(), offset)); 3063 } 3064 for (const auto &it : llvm::enumerate(xferOp.indices())) { 3065 OpFoldResult offset = 3066 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3067 newIndices.push_back(rewriter.create<arith::AddIOp>( 3068 xferOp->getLoc(), it.value(), 3069 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3070 offset))); 3071 } 3072 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3073 rewriter.replaceOpWithNewOp<TransferReadOp>( 3074 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3075 xferOp.padding(), ArrayRef<bool>{inBounds}); 3076 3077 return success(); 3078 } 3079 }; 3080 } // namespace 3081 3082 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3083 MLIRContext *context) { 3084 results.add<FoldExtractSliceIntoTransferRead>(context); 3085 } 3086 3087 //===----------------------------------------------------------------------===// 3088 // TransferWriteOp 3089 //===----------------------------------------------------------------------===// 3090 3091 /// 1. Builder with type inference. 3092 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3093 Value vector, Value dest, ValueRange indices, 3094 AffineMapAttr permutationMapAttr, 3095 /*optional*/ Value mask, 3096 /*optional*/ ArrayAttr inBoundsAttr) { 3097 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3098 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3099 mask, inBoundsAttr); 3100 } 3101 3102 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3103 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3104 Value vector, Value dest, ValueRange indices, 3105 AffineMapAttr permutationMapAttr, 3106 /*optional*/ ArrayAttr inBoundsAttr) { 3107 build(builder, result, vector, dest, indices, permutationMapAttr, 3108 /*mask=*/Value(), inBoundsAttr); 3109 } 3110 3111 /// 3. Builder with type inference that sets an empty mask (variant without 3112 /// attrs) 3113 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3114 Value vector, Value dest, ValueRange indices, 3115 AffineMap permutationMap, 3116 Optional<ArrayRef<bool>> inBounds) { 3117 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3118 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3119 ? builder.getBoolArrayAttr(inBounds.getValue()) 3120 : ArrayAttr(); 3121 build(builder, result, vector, dest, indices, permutationMapAttr, 3122 /*mask=*/Value(), inBoundsAttr); 3123 } 3124 3125 /// 4. Builder with type inference that sets an empty mask and sets permutation 3126 /// map to 'getMinorIdentityMap'. 3127 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3128 Value vector, Value dest, ValueRange indices, 3129 Optional<ArrayRef<bool>> inBounds) { 3130 auto vectorType = vector.getType().cast<VectorType>(); 3131 AffineMap permutationMap = getTransferMinorIdentityMap( 3132 dest.getType().cast<ShapedType>(), vectorType); 3133 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3134 } 3135 3136 static ParseResult parseTransferWriteOp(OpAsmParser &parser, 3137 OperationState &result) { 3138 auto &builder = parser.getBuilder(); 3139 SMLoc typesLoc; 3140 OpAsmParser::OperandType vectorInfo, sourceInfo; 3141 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 3142 SmallVector<Type, 2> types; 3143 OpAsmParser::OperandType maskInfo; 3144 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3145 parser.parseOperand(sourceInfo) || 3146 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3147 return failure(); 3148 ParseResult hasMask = parser.parseOptionalComma(); 3149 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3150 return failure(); 3151 if (parser.parseOptionalAttrDict(result.attributes) || 3152 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3153 return failure(); 3154 if (types.size() != 2) 3155 return parser.emitError(typesLoc, "requires two types"); 3156 auto indexType = builder.getIndexType(); 3157 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3158 if (!vectorType) 3159 return parser.emitError(typesLoc, "requires vector type"); 3160 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3161 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3162 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3163 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrName(); 3164 auto attr = result.attributes.get(permutationAttrName); 3165 if (!attr) { 3166 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3167 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3168 } 3169 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3170 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3171 parser.resolveOperands(indexInfo, indexType, result.operands)) 3172 return failure(); 3173 if (hasMask.succeeded()) { 3174 if (shapedType.getElementType().dyn_cast<VectorType>()) 3175 return parser.emitError( 3176 maskInfo.location, "does not support masks with vector element type"); 3177 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3178 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3179 return failure(); 3180 } 3181 result.addAttribute( 3182 TransferWriteOp::getOperandSegmentSizeAttr(), 3183 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3184 static_cast<int32_t>(hasMask.succeeded())})); 3185 return failure(shapedType.isa<RankedTensorType>() && 3186 parser.addTypeToList(shapedType, result.types)); 3187 } 3188 3189 static void print(OpAsmPrinter &p, TransferWriteOp op) { 3190 p << " " << op.vector() << ", " << op.source() << "[" << op.indices() << "]"; 3191 if (op.mask()) 3192 p << ", " << op.mask(); 3193 printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation())); 3194 p << " : " << op.getVectorType() << ", " << op.getShapedType(); 3195 } 3196 3197 LogicalResult TransferWriteOp::verify() { 3198 // Consistency of elemental types in shape and vector. 3199 ShapedType shapedType = getShapedType(); 3200 VectorType vectorType = getVectorType(); 3201 VectorType maskType = getMaskType(); 3202 auto permutationMap = permutation_map(); 3203 3204 if (llvm::size(indices()) != shapedType.getRank()) 3205 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3206 3207 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3208 // as the semantics is unclear. This can be revisited later if necessary. 3209 if (hasBroadcastDim()) 3210 return emitOpError("should not have broadcast dimensions"); 3211 3212 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3213 shapedType, vectorType, maskType, permutationMap, 3214 in_bounds() ? *in_bounds() : ArrayAttr()))) 3215 return failure(); 3216 3217 return verifyPermutationMap(permutationMap, 3218 [&](Twine t) { return emitOpError(t); }); 3219 } 3220 3221 /// Fold: 3222 /// ``` 3223 /// %t1 = ... 3224 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3225 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3226 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3227 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3228 /// ``` 3229 /// 3230 /// into: 3231 /// 3232 /// ``` 3233 /// %t0 3234 /// ``` 3235 /// 3236 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3237 /// block argument or has side effects. 3238 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3239 ArrayRef<Attribute>, 3240 SmallVectorImpl<OpFoldResult> &results) { 3241 // TODO: support 0-d corner case. 3242 if (write.getTransferRank() == 0) 3243 return failure(); 3244 auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>(); 3245 // If not operating on tensors, bail. 3246 if (!rankedTensorType) 3247 return failure(); 3248 // If no read, bail. 3249 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3250 if (!read) 3251 return failure(); 3252 // TODO: support 0-d corner case. 3253 if (read.getTransferRank() == 0) 3254 return failure(); 3255 // For now, only accept minor identity. Future: composition is minor identity. 3256 if (!read.permutation_map().isMinorIdentity() || 3257 !write.permutation_map().isMinorIdentity()) 3258 return failure(); 3259 // Bail on mismatching ranks. 3260 if (read.getTransferRank() != write.getTransferRank()) 3261 return failure(); 3262 // Bail on potential out-of-bounds accesses. 3263 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3264 return failure(); 3265 // Tensor types must be the same. 3266 if (read.source().getType() != rankedTensorType) 3267 return failure(); 3268 // Vector types must be the same. 3269 if (read.getVectorType() != write.getVectorType()) 3270 return failure(); 3271 // Vector and Tensor shapes must match. 3272 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3273 return failure(); 3274 // If any index is nonzero. 3275 auto isNotConstantZero = [](Value v) { 3276 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3277 return !cstOp || cstOp.value() != 0; 3278 }; 3279 if (llvm::any_of(read.indices(), isNotConstantZero) || 3280 llvm::any_of(write.indices(), isNotConstantZero)) 3281 return failure(); 3282 // Success. 3283 results.push_back(read.source()); 3284 return success(); 3285 } 3286 3287 static bool checkSameValueWAR(vector::TransferReadOp read, 3288 vector::TransferWriteOp write) { 3289 return read.source() == write.source() && read.indices() == write.indices() && 3290 read.permutation_map() == write.permutation_map() && 3291 read.getVectorType() == write.getVectorType() && !read.mask() && 3292 !write.mask(); 3293 } 3294 /// Fold transfer_write write after read: 3295 /// ``` 3296 /// %t0 = ... 3297 /// %v = vector.transfer_read %t0[%c0...] : 3298 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3299 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3300 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3301 /// ``` 3302 /// 3303 /// into: 3304 /// 3305 /// ``` 3306 /// %t0 3307 /// ``` 3308 static LogicalResult foldWAR(TransferWriteOp write, 3309 SmallVectorImpl<OpFoldResult> &results) { 3310 if (!write.source().getType().isa<RankedTensorType>()) 3311 return failure(); 3312 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3313 if (!read) 3314 return failure(); 3315 3316 if (!checkSameValueWAR(read, write)) 3317 return failure(); 3318 results.push_back(read.source()); 3319 return success(); 3320 } 3321 3322 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3323 SmallVectorImpl<OpFoldResult> &results) { 3324 if (succeeded(foldReadInitWrite(*this, operands, results))) 3325 return success(); 3326 if (succeeded(foldWAR(*this, results))) 3327 return success(); 3328 if (succeeded(foldTransferInBoundsAttribute(*this))) 3329 return success(); 3330 return foldMemRefCast(*this); 3331 } 3332 3333 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3334 return llvm::to_vector<4>(getVectorType().getShape()); 3335 } 3336 3337 void TransferWriteOp::getEffects( 3338 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3339 &effects) { 3340 if (getShapedType().isa<MemRefType>()) 3341 effects.emplace_back(MemoryEffects::Write::get(), source(), 3342 SideEffects::DefaultResource::get()); 3343 } 3344 3345 namespace { 3346 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3347 /// DCE 3348 /// ``` 3349 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3350 /// : vector<1x4xf32>, tensor<4x4xf32> 3351 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3352 /// : vector<1x4xf32>, tensor<4x4xf32> 3353 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3354 /// : vector<1x4xf32>, tensor<4x4xf32> 3355 /// ``` 3356 /// 3357 /// into: 3358 /// 3359 /// ``` 3360 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3361 /// : vector<1x4xf32>, tensor<4x4xf32> 3362 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3363 /// : vector<1x4xf32>, tensor<4x4xf32> 3364 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3365 /// : vector<1x4xf32>, tensor<4x4xf32> 3366 /// ``` 3367 /// 3368 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3369 /// any other uses. 3370 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3371 public: 3372 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3373 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3374 PatternRewriter &rewriter) const override { 3375 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3376 return failure(); 3377 vector::TransferWriteOp writeToModify = writeOp; 3378 3379 auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>(); 3380 while (defWrite) { 3381 if (checkSameValueWAW(writeOp, defWrite)) { 3382 writeToModify.sourceMutable().assign(defWrite.source()); 3383 return success(); 3384 } 3385 if (!isDisjointTransferIndices( 3386 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3387 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3388 break; 3389 // If the previous write op doesn't have any other use we an safely look 3390 // at the previous store to see if it can be removed. 3391 if (!defWrite->hasOneUse()) 3392 break; 3393 writeToModify = defWrite; 3394 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 3395 } 3396 return failure(); 3397 } 3398 }; 3399 3400 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3401 /// could directly write to the insert_slice's destination. E.g.: 3402 /// 3403 /// ``` 3404 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3405 /// : vector<4x5xf32>, tensor<4x5xf32> 3406 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3407 /// : tensor<4x5xf32> into tensor<?x?xf32> 3408 /// ``` 3409 /// is rewritten to: 3410 /// ``` 3411 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3412 /// : vector<4x5xf32>, tensor<?x?xf32> 3413 /// ``` 3414 struct FoldInsertSliceIntoTransferWrite 3415 : public OpRewritePattern<tensor::InsertSliceOp> { 3416 public: 3417 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3418 3419 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3420 PatternRewriter &rewriter) const override { 3421 if (!insertOp.hasUnitStride()) 3422 return failure(); 3423 3424 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3425 if (!xferOp) 3426 return failure(); 3427 // TODO: support 0-d corner case. 3428 if (xferOp.getTransferRank() == 0) 3429 return failure(); 3430 3431 if (xferOp.hasOutOfBoundsDim()) 3432 return failure(); 3433 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3434 return failure(); 3435 if (xferOp.mask()) 3436 return failure(); 3437 // Fold only if the TransferWriteOp completely overwrites the `source` with 3438 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3439 // content is the data of the vector. 3440 if (!llvm::equal(xferOp.getVectorType().getShape(), 3441 xferOp.getShapedType().getShape())) 3442 return failure(); 3443 if (!xferOp.permutation_map().isIdentity()) 3444 return failure(); 3445 3446 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3447 // dims are exactly the leading dims. I.e. the following is illegal: 3448 // ``` 3449 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3450 // vector<2x4xf32>, tensor<2x4xf32> 3451 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3452 // tensor<2x4xf32> into tensor<2x1x4xf32> 3453 // ``` 3454 // 3455 // Cannot fold into: 3456 // ``` 3457 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3458 // vector<2x4xf32>, tensor<2x1x4xf32> 3459 // ``` 3460 // For this, check the trailing `vectorRank` dims of the insert_slice result 3461 // tensor match the trailing dims of the inferred result tensor. 3462 int64_t rankReduced = 3463 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3464 int64_t vectorRank = xferOp.getVectorType().getRank(); 3465 RankedTensorType inferredSourceTensorType = 3466 tensor::ExtractSliceOp::inferResultType( 3467 insertOp.getType(), insertOp.getMixedOffsets(), 3468 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3469 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3470 if (rankReduced > 0 && 3471 actualSourceTensorShape.take_back(vectorRank) != 3472 inferredSourceTensorType.getShape().take_back(vectorRank)) 3473 return failure(); 3474 3475 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3476 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3477 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3478 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(), 3479 insertOp.dest(), indices, 3480 ArrayRef<bool>{inBounds}); 3481 return success(); 3482 } 3483 }; 3484 } // namespace 3485 3486 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3487 MLIRContext *context) { 3488 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3489 } 3490 3491 //===----------------------------------------------------------------------===// 3492 // LoadOp 3493 //===----------------------------------------------------------------------===// 3494 3495 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3496 MemRefType memRefTy) { 3497 if (!isLastMemrefDimUnitStride(memRefTy)) 3498 return op->emitOpError("most minor memref dim must have unit stride"); 3499 return success(); 3500 } 3501 3502 LogicalResult vector::LoadOp::verify() { 3503 VectorType resVecTy = getVectorType(); 3504 MemRefType memRefTy = getMemRefType(); 3505 3506 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3507 return failure(); 3508 3509 // Checks for vector memrefs. 3510 Type memElemTy = memRefTy.getElementType(); 3511 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3512 if (memVecTy != resVecTy) 3513 return emitOpError("base memref and result vector types should match"); 3514 memElemTy = memVecTy.getElementType(); 3515 } 3516 3517 if (resVecTy.getElementType() != memElemTy) 3518 return emitOpError("base and result element types should match"); 3519 if (llvm::size(indices()) != memRefTy.getRank()) 3520 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3521 return success(); 3522 } 3523 3524 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3525 if (succeeded(foldMemRefCast(*this))) 3526 return getResult(); 3527 return OpFoldResult(); 3528 } 3529 3530 //===----------------------------------------------------------------------===// 3531 // StoreOp 3532 //===----------------------------------------------------------------------===// 3533 3534 LogicalResult vector::StoreOp::verify() { 3535 VectorType valueVecTy = getVectorType(); 3536 MemRefType memRefTy = getMemRefType(); 3537 3538 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3539 return failure(); 3540 3541 // Checks for vector memrefs. 3542 Type memElemTy = memRefTy.getElementType(); 3543 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3544 if (memVecTy != valueVecTy) 3545 return emitOpError( 3546 "base memref and valueToStore vector types should match"); 3547 memElemTy = memVecTy.getElementType(); 3548 } 3549 3550 if (valueVecTy.getElementType() != memElemTy) 3551 return emitOpError("base and valueToStore element type should match"); 3552 if (llvm::size(indices()) != memRefTy.getRank()) 3553 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3554 return success(); 3555 } 3556 3557 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3558 SmallVectorImpl<OpFoldResult> &results) { 3559 return foldMemRefCast(*this); 3560 } 3561 3562 //===----------------------------------------------------------------------===// 3563 // MaskedLoadOp 3564 //===----------------------------------------------------------------------===// 3565 3566 LogicalResult MaskedLoadOp::verify() { 3567 VectorType maskVType = getMaskVectorType(); 3568 VectorType passVType = getPassThruVectorType(); 3569 VectorType resVType = getVectorType(); 3570 MemRefType memType = getMemRefType(); 3571 3572 if (resVType.getElementType() != memType.getElementType()) 3573 return emitOpError("base and result element type should match"); 3574 if (llvm::size(indices()) != memType.getRank()) 3575 return emitOpError("requires ") << memType.getRank() << " indices"; 3576 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3577 return emitOpError("expected result dim to match mask dim"); 3578 if (resVType != passVType) 3579 return emitOpError("expected pass_thru of same type as result type"); 3580 return success(); 3581 } 3582 3583 namespace { 3584 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3585 public: 3586 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3587 LogicalResult matchAndRewrite(MaskedLoadOp load, 3588 PatternRewriter &rewriter) const override { 3589 switch (get1DMaskFormat(load.mask())) { 3590 case MaskFormat::AllTrue: 3591 rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(), 3592 load.base(), load.indices()); 3593 return success(); 3594 case MaskFormat::AllFalse: 3595 rewriter.replaceOp(load, load.pass_thru()); 3596 return success(); 3597 case MaskFormat::Unknown: 3598 return failure(); 3599 } 3600 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3601 } 3602 }; 3603 } // namespace 3604 3605 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3606 MLIRContext *context) { 3607 results.add<MaskedLoadFolder>(context); 3608 } 3609 3610 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3611 if (succeeded(foldMemRefCast(*this))) 3612 return getResult(); 3613 return OpFoldResult(); 3614 } 3615 3616 //===----------------------------------------------------------------------===// 3617 // MaskedStoreOp 3618 //===----------------------------------------------------------------------===// 3619 3620 LogicalResult MaskedStoreOp::verify() { 3621 VectorType maskVType = getMaskVectorType(); 3622 VectorType valueVType = getVectorType(); 3623 MemRefType memType = getMemRefType(); 3624 3625 if (valueVType.getElementType() != memType.getElementType()) 3626 return emitOpError("base and valueToStore element type should match"); 3627 if (llvm::size(indices()) != memType.getRank()) 3628 return emitOpError("requires ") << memType.getRank() << " indices"; 3629 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3630 return emitOpError("expected valueToStore dim to match mask dim"); 3631 return success(); 3632 } 3633 3634 namespace { 3635 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3636 public: 3637 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3638 LogicalResult matchAndRewrite(MaskedStoreOp store, 3639 PatternRewriter &rewriter) const override { 3640 switch (get1DMaskFormat(store.mask())) { 3641 case MaskFormat::AllTrue: 3642 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3643 store, store.valueToStore(), store.base(), store.indices()); 3644 return success(); 3645 case MaskFormat::AllFalse: 3646 rewriter.eraseOp(store); 3647 return success(); 3648 case MaskFormat::Unknown: 3649 return failure(); 3650 } 3651 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3652 } 3653 }; 3654 } // namespace 3655 3656 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3657 MLIRContext *context) { 3658 results.add<MaskedStoreFolder>(context); 3659 } 3660 3661 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3662 SmallVectorImpl<OpFoldResult> &results) { 3663 return foldMemRefCast(*this); 3664 } 3665 3666 //===----------------------------------------------------------------------===// 3667 // GatherOp 3668 //===----------------------------------------------------------------------===// 3669 3670 LogicalResult GatherOp::verify() { 3671 VectorType indVType = getIndexVectorType(); 3672 VectorType maskVType = getMaskVectorType(); 3673 VectorType resVType = getVectorType(); 3674 MemRefType memType = getMemRefType(); 3675 3676 if (resVType.getElementType() != memType.getElementType()) 3677 return emitOpError("base and result element type should match"); 3678 if (llvm::size(indices()) != memType.getRank()) 3679 return emitOpError("requires ") << memType.getRank() << " indices"; 3680 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3681 return emitOpError("expected result dim to match indices dim"); 3682 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3683 return emitOpError("expected result dim to match mask dim"); 3684 if (resVType != getPassThruVectorType()) 3685 return emitOpError("expected pass_thru of same type as result type"); 3686 return success(); 3687 } 3688 3689 namespace { 3690 class GatherFolder final : public OpRewritePattern<GatherOp> { 3691 public: 3692 using OpRewritePattern<GatherOp>::OpRewritePattern; 3693 LogicalResult matchAndRewrite(GatherOp gather, 3694 PatternRewriter &rewriter) const override { 3695 switch (get1DMaskFormat(gather.mask())) { 3696 case MaskFormat::AllTrue: 3697 return failure(); // no unmasked equivalent 3698 case MaskFormat::AllFalse: 3699 rewriter.replaceOp(gather, gather.pass_thru()); 3700 return success(); 3701 case MaskFormat::Unknown: 3702 return failure(); 3703 } 3704 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3705 } 3706 }; 3707 } // namespace 3708 3709 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3710 MLIRContext *context) { 3711 results.add<GatherFolder>(context); 3712 } 3713 3714 //===----------------------------------------------------------------------===// 3715 // ScatterOp 3716 //===----------------------------------------------------------------------===// 3717 3718 LogicalResult ScatterOp::verify() { 3719 VectorType indVType = getIndexVectorType(); 3720 VectorType maskVType = getMaskVectorType(); 3721 VectorType valueVType = getVectorType(); 3722 MemRefType memType = getMemRefType(); 3723 3724 if (valueVType.getElementType() != memType.getElementType()) 3725 return emitOpError("base and valueToStore element type should match"); 3726 if (llvm::size(indices()) != memType.getRank()) 3727 return emitOpError("requires ") << memType.getRank() << " indices"; 3728 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3729 return emitOpError("expected valueToStore dim to match indices dim"); 3730 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3731 return emitOpError("expected valueToStore dim to match mask dim"); 3732 return success(); 3733 } 3734 3735 namespace { 3736 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3737 public: 3738 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3739 LogicalResult matchAndRewrite(ScatterOp scatter, 3740 PatternRewriter &rewriter) const override { 3741 switch (get1DMaskFormat(scatter.mask())) { 3742 case MaskFormat::AllTrue: 3743 return failure(); // no unmasked equivalent 3744 case MaskFormat::AllFalse: 3745 rewriter.eraseOp(scatter); 3746 return success(); 3747 case MaskFormat::Unknown: 3748 return failure(); 3749 } 3750 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3751 } 3752 }; 3753 } // namespace 3754 3755 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3756 MLIRContext *context) { 3757 results.add<ScatterFolder>(context); 3758 } 3759 3760 //===----------------------------------------------------------------------===// 3761 // ExpandLoadOp 3762 //===----------------------------------------------------------------------===// 3763 3764 LogicalResult ExpandLoadOp::verify() { 3765 VectorType maskVType = getMaskVectorType(); 3766 VectorType passVType = getPassThruVectorType(); 3767 VectorType resVType = getVectorType(); 3768 MemRefType memType = getMemRefType(); 3769 3770 if (resVType.getElementType() != memType.getElementType()) 3771 return emitOpError("base and result element type should match"); 3772 if (llvm::size(indices()) != memType.getRank()) 3773 return emitOpError("requires ") << memType.getRank() << " indices"; 3774 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3775 return emitOpError("expected result dim to match mask dim"); 3776 if (resVType != passVType) 3777 return emitOpError("expected pass_thru of same type as result type"); 3778 return success(); 3779 } 3780 3781 namespace { 3782 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3783 public: 3784 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3785 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3786 PatternRewriter &rewriter) const override { 3787 switch (get1DMaskFormat(expand.mask())) { 3788 case MaskFormat::AllTrue: 3789 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3790 expand, expand.getType(), expand.base(), expand.indices()); 3791 return success(); 3792 case MaskFormat::AllFalse: 3793 rewriter.replaceOp(expand, expand.pass_thru()); 3794 return success(); 3795 case MaskFormat::Unknown: 3796 return failure(); 3797 } 3798 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3799 } 3800 }; 3801 } // namespace 3802 3803 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3804 MLIRContext *context) { 3805 results.add<ExpandLoadFolder>(context); 3806 } 3807 3808 //===----------------------------------------------------------------------===// 3809 // CompressStoreOp 3810 //===----------------------------------------------------------------------===// 3811 3812 LogicalResult CompressStoreOp::verify() { 3813 VectorType maskVType = getMaskVectorType(); 3814 VectorType valueVType = getVectorType(); 3815 MemRefType memType = getMemRefType(); 3816 3817 if (valueVType.getElementType() != memType.getElementType()) 3818 return emitOpError("base and valueToStore element type should match"); 3819 if (llvm::size(indices()) != memType.getRank()) 3820 return emitOpError("requires ") << memType.getRank() << " indices"; 3821 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3822 return emitOpError("expected valueToStore dim to match mask dim"); 3823 return success(); 3824 } 3825 3826 namespace { 3827 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3828 public: 3829 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3830 LogicalResult matchAndRewrite(CompressStoreOp compress, 3831 PatternRewriter &rewriter) const override { 3832 switch (get1DMaskFormat(compress.mask())) { 3833 case MaskFormat::AllTrue: 3834 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3835 compress, compress.valueToStore(), compress.base(), 3836 compress.indices()); 3837 return success(); 3838 case MaskFormat::AllFalse: 3839 rewriter.eraseOp(compress); 3840 return success(); 3841 case MaskFormat::Unknown: 3842 return failure(); 3843 } 3844 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3845 } 3846 }; 3847 } // namespace 3848 3849 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3850 MLIRContext *context) { 3851 results.add<CompressStoreFolder>(context); 3852 } 3853 3854 //===----------------------------------------------------------------------===// 3855 // ShapeCastOp 3856 //===----------------------------------------------------------------------===// 3857 3858 /// Returns true if each element of 'a' is equal to the product of a contiguous 3859 /// sequence of the elements of 'b'. Returns false otherwise. 3860 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3861 unsigned rankA = a.size(); 3862 unsigned rankB = b.size(); 3863 assert(rankA < rankB); 3864 3865 unsigned i = 0; 3866 unsigned j = 0; 3867 while (i < rankA && j < rankB) { 3868 int64_t dimA = a[i]; 3869 int64_t dimB = 1; 3870 while (dimB < dimA && j < rankB) 3871 dimB *= b[j++]; 3872 if (dimA != dimB) 3873 break; 3874 ++i; 3875 3876 // Handle the case when trailing dimensions are of size 1. 3877 // Include them into the contiguous sequence. 3878 auto isOne = [](int64_t v) { return v == 1; }; 3879 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3880 i = rankA; 3881 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3882 j = rankB; 3883 } 3884 3885 return i == rankA && j == rankB; 3886 } 3887 3888 static LogicalResult verifyVectorShapeCast(Operation *op, 3889 VectorType sourceVectorType, 3890 VectorType resultVectorType) { 3891 // Check that element type is the same. 3892 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3893 return op->emitOpError("source/result vectors must have same element type"); 3894 auto sourceShape = sourceVectorType.getShape(); 3895 auto resultShape = resultVectorType.getShape(); 3896 3897 // Check that product of source dim sizes matches product of result dim sizes. 3898 int64_t sourceDimProduct = std::accumulate( 3899 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3900 int64_t resultDimProduct = std::accumulate( 3901 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3902 if (sourceDimProduct != resultDimProduct) 3903 return op->emitOpError("source/result number of elements must match"); 3904 3905 // Check that expanding/contracting rank cases. 3906 unsigned sourceRank = sourceVectorType.getRank(); 3907 unsigned resultRank = resultVectorType.getRank(); 3908 if (sourceRank < resultRank) { 3909 if (!isValidShapeCast(sourceShape, resultShape)) 3910 return op->emitOpError("invalid shape cast"); 3911 } else if (sourceRank > resultRank) { 3912 if (!isValidShapeCast(resultShape, sourceShape)) 3913 return op->emitOpError("invalid shape cast"); 3914 } 3915 return success(); 3916 } 3917 3918 LogicalResult ShapeCastOp::verify() { 3919 auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>(); 3920 auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>(); 3921 3922 // Check if source/result are of vector type. 3923 if (sourceVectorType && resultVectorType) 3924 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3925 3926 return success(); 3927 } 3928 3929 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3930 // Nop shape cast. 3931 if (source().getType() == result().getType()) 3932 return source(); 3933 3934 // Canceling shape casts. 3935 if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) { 3936 if (result().getType() == otherOp.source().getType()) 3937 return otherOp.source(); 3938 3939 // Only allows valid transitive folding. 3940 VectorType srcType = otherOp.source().getType().cast<VectorType>(); 3941 VectorType resultType = getResult().getType().cast<VectorType>(); 3942 if (srcType.getRank() < resultType.getRank()) { 3943 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3944 return {}; 3945 } else if (srcType.getRank() > resultType.getRank()) { 3946 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3947 return {}; 3948 } else { 3949 return {}; 3950 } 3951 3952 setOperand(otherOp.source()); 3953 return getResult(); 3954 } 3955 return {}; 3956 } 3957 3958 namespace { 3959 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 3960 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 3961 public: 3962 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 3963 3964 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 3965 PatternRewriter &rewriter) const override { 3966 auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>(); 3967 if (!constantOp) 3968 return failure(); 3969 // Only handle splat for now. 3970 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 3971 if (!dense) 3972 return failure(); 3973 auto newAttr = 3974 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 3975 dense.getSplatValue<Attribute>()); 3976 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 3977 return success(); 3978 } 3979 }; 3980 3981 } // namespace 3982 3983 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 3984 MLIRContext *context) { 3985 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 3986 results.add<ShapeCastConstantFolder>(context); 3987 } 3988 3989 //===----------------------------------------------------------------------===// 3990 // VectorBitCastOp 3991 //===----------------------------------------------------------------------===// 3992 3993 LogicalResult BitCastOp::verify() { 3994 auto sourceVectorType = getSourceVectorType(); 3995 auto resultVectorType = getResultVectorType(); 3996 3997 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 3998 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 3999 return emitOpError("dimension size mismatch at: ") << i; 4000 } 4001 4002 DataLayout dataLayout = DataLayout::closest(*this); 4003 auto sourceElementBits = 4004 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4005 auto resultElementBits = 4006 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4007 4008 if (sourceVectorType.getRank() == 0) { 4009 if (sourceElementBits != resultElementBits) 4010 return emitOpError("source/result bitwidth of the 0-D vector element " 4011 "types must be equal"); 4012 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4013 resultElementBits * resultVectorType.getShape().back()) { 4014 return emitOpError( 4015 "source/result bitwidth of the minor 1-D vectors must be equal"); 4016 } 4017 4018 return success(); 4019 } 4020 4021 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4022 // Nop cast. 4023 if (source().getType() == result().getType()) 4024 return source(); 4025 4026 // Canceling bitcasts. 4027 if (auto otherOp = source().getDefiningOp<BitCastOp>()) 4028 if (result().getType() == otherOp.source().getType()) 4029 return otherOp.source(); 4030 4031 Attribute sourceConstant = operands.front(); 4032 if (!sourceConstant) 4033 return {}; 4034 4035 Type srcElemType = getSourceVectorType().getElementType(); 4036 Type dstElemType = getResultVectorType().getElementType(); 4037 4038 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4039 if (floatPack.isSplat()) { 4040 auto splat = floatPack.getSplatValue<FloatAttr>(); 4041 4042 // Casting fp16 into fp32. 4043 if (srcElemType.isF16() && dstElemType.isF32()) { 4044 uint32_t bits = static_cast<uint32_t>( 4045 splat.getValue().bitcastToAPInt().getZExtValue()); 4046 // Duplicate the 16-bit pattern. 4047 bits = (bits << 16) | (bits & 0xffff); 4048 APInt intBits(32, bits); 4049 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4050 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4051 } 4052 } 4053 } 4054 4055 return {}; 4056 } 4057 4058 //===----------------------------------------------------------------------===// 4059 // TypeCastOp 4060 //===----------------------------------------------------------------------===// 4061 4062 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4063 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4064 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4065 memRefType.getShape().end()); 4066 if (vectorType) 4067 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4068 return res; 4069 } 4070 4071 /// Build the canonical memRefType with a single vector. 4072 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4073 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4074 Value source) { 4075 result.addOperands(source); 4076 MemRefType memRefType = source.getType().cast<MemRefType>(); 4077 VectorType vectorType = 4078 VectorType::get(extractShape(memRefType), 4079 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4080 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4081 memRefType.getMemorySpace())); 4082 } 4083 4084 LogicalResult TypeCastOp::verify() { 4085 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4086 if (!canonicalType.getLayout().isIdentity()) 4087 return emitOpError("expects operand to be a memref with identity layout"); 4088 if (!getResultMemRefType().getLayout().isIdentity()) 4089 return emitOpError("expects result to be a memref with identity layout"); 4090 if (getResultMemRefType().getMemorySpace() != 4091 getMemRefType().getMemorySpace()) 4092 return emitOpError("expects result in same memory space"); 4093 4094 auto sourceType = getMemRefType(); 4095 auto resultType = getResultMemRefType(); 4096 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4097 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4098 return emitOpError( 4099 "expects result and operand with same underlying scalar type: ") 4100 << resultType; 4101 if (extractShape(sourceType) != extractShape(resultType)) 4102 return emitOpError( 4103 "expects concatenated result and operand shapes to be equal: ") 4104 << resultType; 4105 return success(); 4106 } 4107 4108 //===----------------------------------------------------------------------===// 4109 // TransposeOp 4110 //===----------------------------------------------------------------------===// 4111 4112 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4113 Value vector, ArrayRef<int64_t> transp) { 4114 VectorType vt = vector.getType().cast<VectorType>(); 4115 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4116 for (unsigned i = 0; i < transp.size(); ++i) 4117 transposedShape[i] = vt.getShape()[transp[i]]; 4118 4119 result.addOperands(vector); 4120 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4121 result.addAttribute(getTranspAttrName(), builder.getI64ArrayAttr(transp)); 4122 } 4123 4124 // Eliminates transpose operations, which produce values identical to their 4125 // input values. This happens when the dimensions of the input vector remain in 4126 // their original order after the transpose operation. 4127 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4128 SmallVector<int64_t, 4> transp; 4129 getTransp(transp); 4130 4131 // Check if the permutation of the dimensions contains sequential values: 4132 // {0, 1, 2, ...}. 4133 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4134 if (transp[i] != i) 4135 return {}; 4136 } 4137 4138 return vector(); 4139 } 4140 4141 LogicalResult vector::TransposeOp::verify() { 4142 VectorType vectorType = getVectorType(); 4143 VectorType resultType = getResultType(); 4144 int64_t rank = resultType.getRank(); 4145 if (vectorType.getRank() != rank) 4146 return emitOpError("vector result rank mismatch: ") << rank; 4147 // Verify transposition array. 4148 auto transpAttr = transp().getValue(); 4149 int64_t size = transpAttr.size(); 4150 if (rank != size) 4151 return emitOpError("transposition length mismatch: ") << size; 4152 SmallVector<bool, 8> seen(rank, false); 4153 for (const auto &ta : llvm::enumerate(transpAttr)) { 4154 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4155 if (i < 0 || i >= rank) 4156 return emitOpError("transposition index out of range: ") << i; 4157 if (seen[i]) 4158 return emitOpError("duplicate position index: ") << i; 4159 seen[i] = true; 4160 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4161 return emitOpError("dimension size mismatch at: ") << i; 4162 } 4163 return success(); 4164 } 4165 4166 namespace { 4167 4168 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4169 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4170 public: 4171 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4172 4173 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4174 PatternRewriter &rewriter) const override { 4175 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4176 auto getPermutation = [](vector::TransposeOp transpose) { 4177 SmallVector<int64_t, 4> permutation; 4178 transpose.getTransp(permutation); 4179 return permutation; 4180 }; 4181 4182 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4183 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4184 ArrayRef<int64_t> permutation2) { 4185 SmallVector<int64_t, 4> result; 4186 for (auto index : permutation2) 4187 result.push_back(permutation1[index]); 4188 return result; 4189 }; 4190 4191 // Return if the input of 'transposeOp' is not defined by another transpose. 4192 vector::TransposeOp parentTransposeOp = 4193 transposeOp.vector().getDefiningOp<vector::TransposeOp>(); 4194 if (!parentTransposeOp) 4195 return failure(); 4196 4197 SmallVector<int64_t, 4> permutation = composePermutations( 4198 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4199 // Replace 'transposeOp' with a new transpose operation. 4200 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4201 transposeOp, transposeOp.getResult().getType(), 4202 parentTransposeOp.vector(), 4203 vector::getVectorSubscriptAttr(rewriter, permutation)); 4204 return success(); 4205 } 4206 }; 4207 4208 } // namespace 4209 4210 void vector::TransposeOp::getCanonicalizationPatterns( 4211 RewritePatternSet &results, MLIRContext *context) { 4212 results.add<TransposeFolder>(context); 4213 } 4214 4215 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4216 populateFromInt64AttrArray(transp(), results); 4217 } 4218 4219 //===----------------------------------------------------------------------===// 4220 // ConstantMaskOp 4221 //===----------------------------------------------------------------------===// 4222 4223 LogicalResult ConstantMaskOp::verify() { 4224 auto resultType = getResult().getType().cast<VectorType>(); 4225 // Check the corner case of 0-D vectors first. 4226 if (resultType.getRank() == 0) { 4227 if (mask_dim_sizes().size() != 1) 4228 return emitError("array attr must have length 1 for 0-D vectors"); 4229 auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt(); 4230 if (dim != 0 && dim != 1) 4231 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4232 return success(); 4233 } 4234 4235 // Verify that array attr size matches the rank of the vector result. 4236 if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank()) 4237 return emitOpError( 4238 "must specify array attr of size equal vector result rank"); 4239 // Verify that each array attr element is in bounds of corresponding vector 4240 // result dimension size. 4241 auto resultShape = resultType.getShape(); 4242 SmallVector<int64_t, 4> maskDimSizes; 4243 for (const auto &it : llvm::enumerate(mask_dim_sizes())) { 4244 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4245 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4246 return emitOpError( 4247 "array attr of size out of bounds of vector result dimension size"); 4248 maskDimSizes.push_back(attrValue); 4249 } 4250 // Verify that if one mask dim size is zero, they all should be zero (because 4251 // the mask region is a conjunction of each mask dimension interval). 4252 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4253 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4254 if (anyZeros && !allZeros) 4255 return emitOpError("expected all mask dim sizes to be zeros, " 4256 "as a result of conjunction with zero mask dim"); 4257 return success(); 4258 } 4259 4260 //===----------------------------------------------------------------------===// 4261 // CreateMaskOp 4262 //===----------------------------------------------------------------------===// 4263 4264 LogicalResult CreateMaskOp::verify() { 4265 auto vectorType = getResult().getType().cast<VectorType>(); 4266 // Verify that an operand was specified for each result vector each dimension. 4267 if (vectorType.getRank() == 0) { 4268 if (getNumOperands() != 1) 4269 return emitOpError( 4270 "must specify exactly one operand for 0-D create_mask"); 4271 } else if (getNumOperands() != 4272 getResult().getType().cast<VectorType>().getRank()) { 4273 return emitOpError( 4274 "must specify an operand for each result vector dimension"); 4275 } 4276 return success(); 4277 } 4278 4279 namespace { 4280 4281 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4282 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4283 public: 4284 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4285 4286 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4287 PatternRewriter &rewriter) const override { 4288 // Return if any of 'createMaskOp' operands are not defined by a constant. 4289 auto isNotDefByConstant = [](Value operand) { 4290 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4291 }; 4292 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4293 return failure(); 4294 // Gather constant mask dimension sizes. 4295 SmallVector<int64_t, 4> maskDimSizes; 4296 for (auto it : llvm::zip(createMaskOp.operands(), 4297 createMaskOp.getType().getShape())) { 4298 auto *defOp = std::get<0>(it).getDefiningOp(); 4299 int64_t maxDimSize = std::get<1>(it); 4300 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4301 dimSize = std::min(dimSize, maxDimSize); 4302 // If one of dim sizes is zero, set all dims to zero. 4303 if (dimSize <= 0) { 4304 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4305 break; 4306 } 4307 maskDimSizes.push_back(dimSize); 4308 } 4309 // Replace 'createMaskOp' with ConstantMaskOp. 4310 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4311 createMaskOp, createMaskOp.getResult().getType(), 4312 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4313 return success(); 4314 } 4315 }; 4316 4317 } // namespace 4318 4319 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4320 MLIRContext *context) { 4321 results.add<CreateMaskFolder>(context); 4322 } 4323 4324 //===----------------------------------------------------------------------===// 4325 // ScanOp 4326 //===----------------------------------------------------------------------===// 4327 4328 LogicalResult ScanOp::verify() { 4329 VectorType srcType = getSourceType(); 4330 VectorType initialType = getInitialValueType(); 4331 // Check reduction dimension < rank. 4332 int64_t srcRank = srcType.getRank(); 4333 int64_t reductionDim = reduction_dim(); 4334 if (reductionDim >= srcRank) 4335 return emitOpError("reduction dimension ") 4336 << reductionDim << " has to be less than " << srcRank; 4337 4338 // Check that rank(initial_value) = rank(src) - 1. 4339 int64_t initialValueRank = initialType.getRank(); 4340 if (initialValueRank != srcRank - 1) 4341 return emitOpError("initial value rank ") 4342 << initialValueRank << " has to be equal to " << srcRank - 1; 4343 4344 // Check shapes of initial value and src. 4345 ArrayRef<int64_t> srcShape = srcType.getShape(); 4346 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4347 SmallVector<int64_t> expectedShape; 4348 for (int i = 0; i < srcRank; i++) { 4349 if (i != reductionDim) 4350 expectedShape.push_back(srcShape[i]); 4351 } 4352 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4353 [](std::tuple<int64_t, int64_t> s) { 4354 return std::get<0>(s) != std::get<1>(s); 4355 })) { 4356 return emitOpError("incompatible input/initial value shapes"); 4357 } 4358 4359 return success(); 4360 } 4361 4362 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4363 RewritePatternSet &patterns) { 4364 patterns 4365 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4366 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4367 StridedSliceConstantMaskFolder, TransposeFolder>( 4368 patterns.getContext()); 4369 } 4370 4371 //===----------------------------------------------------------------------===// 4372 // SplatOp 4373 //===----------------------------------------------------------------------===// 4374 4375 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4376 auto constOperand = operands.front(); 4377 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4378 return {}; 4379 4380 // SplatElementsAttr::get treats single value for second arg as being a splat. 4381 return SplatElementsAttr::get(getType(), {constOperand}); 4382 } 4383 4384 //===----------------------------------------------------------------------===// 4385 // TableGen'd op method definitions 4386 //===----------------------------------------------------------------------===// 4387 4388 #define GET_OP_CLASSES 4389 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4390